

UNIVERSITAT DE BARCELONA

Contribución al estudio de la influencia de los centros profundos en los diodos Schottky

Juan Esteve Pujol

UNIVERSIDAD DE BARCELONA

FACULTAD DE CIENCIAS FISICAS

DEPARTAMENTO DE ELECTRICIDAD Y MAGNETISMO

CONTRIBUCION AL ESTUDIO DE

LA INFLUENCIA DE LOS CENTROS PROFUNDOS ÉN LOS DIDDOS SCHOTTKY

MEMORIA

que para optar al Grado de DOCTOR EN CIENCIAS

presenta el Licenciado: JUAN ESTEVE PUJOL

Trabajo dirigido por el Dr. Daniel Esteve

Directeur de Recherche en el CNRS de Toulouse

R.7- 0604

Darcelona - 1079

" (see

INDICE

INTRODUCCION

CAPITULO I : EL CONTACTO METAL-SEMICONDUCTOR

I.1. - La barrera de potencial.

I.1.1 - Interfase metal-vacio. Efecto Schottky.

I.1.2 - Interfese semiconductor-vacio. Estados de superficie.

I.1.3 - Contacto motal-semiconductor.

I.1.4 - Dipolo eléctrico de interfase.

I.2. - Teoría del transporte de corriente en las barreras Schottky.

I.2.1 - Teoría de la emisión termoiónica.

I.2.2 - Teoría de la difusión.

I.2.3 - La constante de Richardson efectiva. Teoría de la difusión-emisión termoiónica.

I.2.4 - Emisión termoiónica por efecto de campo.

1.2.5 - Corrientos por ofecto túncl.

CAPITULO II : PROPIEDADES EXPERIMENTALES DE LOS DIODOS SCHOTTKY

II.1 - La característica de conducción en directo.

II.1.1 - Corriento de saturación I.

II.1.2.- El parámetro "n".

- II.1.3 Características experimentales en polarización directa.
- II.1.4 Hipótesis de la presencia de centros profundos en la interfese.

II.1.5 - Cálculo de la corriento.

II.2 - Conducción en inversa.

II.3. - Fenómenos de conmutación en polarización inversa.

- II.3.1 Inestabilidades observadas en los diodos sin tratamiento térmico.
- II.3.2 Conmutación y efecto memoria en los diodos tratados térmicamente.

II.3.3 - Interpretación de los fenómenos.

CAPITULO III : METODOS EXPERIMENTALES PARA ANALIZAR LOS CENTROS PRO-FUNDOS EN LA INTERFASE.

III.1 - Dependencia de la capacidad de transición con el estado de carga de los centros profundos.

III.1.1 - Expresión de la capacidad de transición.

III.1.2 - Doterminación de los centros profundos a través

do la capacidad do transición.

III.1.3 - Pulsos de polarización directa.

- III.1.4 Pulsos de polarización directa de amplitud creciente.
- III.2 Variación de la capacidad diferencial con la frecuencia de medida.
- III.3 Comparación de las posibilidades de ambos métodos.
- III.4 Determinación de la energía de los centros profundos.
- III.5 Contros profundos y estados de superficie. Pseudoniveles de Fermi.

<u>CAPITULG IV</u> : CARACTERIZACION EXPERIMENTAL DE LOS CENTROS PROFUNDOS. IV.1 - Dispositivos experimentales.

- IV.1.1 Dispositivo experimental para la determinación de centros profundos a través de las variaciones de la capacidad con la polarización. Polarización del diodo y medida de los incrementos de C.
- IV.1.2 Doscenso do la temperatura.
- IV.1.3 Dispositivo experimental para la determinación de la variación de la capacidad con la frecuencia y la temperatura.

IV.1.4 - Criostato.

IV.2 - Resultados obtenidos.

IV.2.1 - Diodos Schottky de pequeña superficie y con anillo de guarda.

IV.2.2 - Diodos Schottky de gran superficie.

CONCLUSION

APENDICE

- A.1. Estados de carga de los centros profundos.
- A.2. Cálculo de los valores de λ .
- A.3. Evolución del estado de carga de los centros profundos fuera del equilibrio.

BIBLIDGRAFIA

INTRODUCCION

Dentro del gran desarrollo que en nuestros días tienen los dispositivos electrónicos de estado sólido, el contacto metal-semiconductor, diodo Schottky, ha encontrado, recientemente, un interés renovado.

Diversos progresos en la tecnología planar y en la formación del contacto metálico, han conducido a la obtención de contactos metalsemiconductor con características casi ideales y perfectamente reproducibles, con lo que ha resultado posible su incorporación en los dispositivos electrónicos de estado sólido, aprovechándose las ventajas potenciales que presenta frente a la unión p-n.

La ausencia de acumulación de portadores minoritarios es una ventaja en la detección en altas frecuencias, y mejora la velocidad de conmutación en los circuitos lógicos.

La tensión umbral de conducción directa, inferior a la de las uniones p-n, reduce la potencia disipada en la rectificación de corrientes elevadas.

La barrera de potencial del contacto metal-semiconductor también resulta ventajosa para la fotodetección a altas frecuencias y amplio espectro.

También se han empleado diodos Schottky como contactos inyectores de mayoritarios en los semiconductores compuestos, para los que la difusión de una unión p-n causa problemes.

Aunque las teorías básicas de los diodos Schottky están bién establecidas, en la interpretación de los resultados experimentales intervienen parámetros empíricos, para la interpretación de los cuales, compiten diversas teorías basadas en distintas hipótesis sobre la constitución íntima del contacto, como pueden ser la presencia de: una capa interfacial de óxido, estados de superficie, capas dipolares, o impurazas con niveles energóticos profundos.

Los resultados experimentales sobre las características de conducción que hemos obtenido, análogos a los obtenidos por otros autores, así como los fenómenos de conmutación biestable que hemos observado en ciertos dispositivos, nos han sugerido atribuir una importancia especial a la hipótesis de la existencia de centros profundos en el contacto, por lo menos en los dispositivos preparados con nuestra tecnología.

Estas consideraciones vienen apoyadas, por otra parte, por los numerosos estudios que se han publicado recientemente sobre las reacciones fisicoquímicas en las interfases sólidas, en particular metal-semiconductor.

La importancia de esta hipótesis nos ha llevado a estudiar la eplicación de distintos métodos eléctricos para la caracterización de los centros profundos, al problema particular de la determinación de estos centros en la interfase metal-semiconductor, y a analizar con ellos los contactos experimentales.

En el primer capítulo resumimos las teorías existentes sobre la conducción eléctrica en los diodos Schottky.

En el segundo capítulo describimos las propiedades de conducción y de conmutación observadas, y proponemos su interpretación a partir de la hipótesis de la presencia de centros profundos.

En el tercer capítulo analizamos teóricamente dos métodos eléctricos que permiten, con ciertas limitaciones, la determinación de los centros profundos en la interfase.

En el cuarto capítulo presentamos los medios experimentales empleados y los resultados obtenidos para comprobar la validez de las consideraciones teóricas y que apoyan las hipótesis emitidas sobre los centros profundos en nuestros dispositivos.

CAPITULO I

EL CONTACTO METAL - SEMICONDUCTOR

.....

La estructura formada por un metal y un semiconductor en contacto íntimo posee propiedades notables, la más importante y la primera que se descubrió /1/ es la de presentar una característica de conducción eléctrica disimétrica, efecto rectificador para la corriente alterna.

Las primeras teorías formuladas sobre el contacto metal-semiconductor, basadas en hipótesis diversas de la constitución fisicocuímica de la interfase, no fueron capaces de explicer el comportamiento eléctrico de este dispositivo.

La teoría de bandas de los sólidos permitió explicar cualitativamente las propiedades rectificadoras del contacto /2/ /3/ , postulando que se forma una barrera de potencial disimétrica que determina el paso de la corriente entre el metal y el semiconductor.

La excesiva simplicidad de este modelo no es capaz de explicar cuantitativamente la totalidad de las propiedades eléctricas del contacto. Para ello ha sido nocesario desarrollar teorías mas complejas sobre la formación de la barrera de potencial y sobre los mecanismos do transporto de corriente a través de esta barrera. Estas teorías incluyen nuevas hipótesis que reflejan la complejidad de la constitución intima del contacto.

El avance en la comprensión del contacto metal-semiconductor ha sido gradual y lento, apoyándose en los progresos experimentados por la tecnología planar sobre el Silicio, que han permitido el deserrollo de dispositivos con características reproducibles.

La aparición de la tecnología de semiconductores compuestos, ha ampliado el campo de aplicación del contacto metal-semiconductor, proporcionando a la voz nuevas dificultades a las teorías existentes y nuevas bases experimentales para su desarrollo.

Actualmente disponemes de unas bases teóricas sólidas para ex-

plicar la mayoría de las propiedades del contacto metal-semiconductor; sin embargo, son varias las teorías existentes, siendo válidas cada una de ellas en casos distintos y coexistiendo en los casos intermedios.

Por otra parte las teorías sólo predicen totalmente el comportamiento de los llamados "contactos ideales", que se han podido realizar prácticamente sólo con algunas combinaciones particulares metalsemiconductor, con una elaboración cuidadosa.

La mayoría de los contactos utilizados en la práctica, los "contactos reales", no pueden ser totalmente descritos por la teoría, quedando algunos parámetros empíricos que se determinan experimentalmente, y que es conveniente poder relacionar con el proceso tecnológico.

I.1. LA BARRERA DE POTENCIAL

Dos métodos son posibles para analizar la región del contacto, dentro de la teoria de bandas:

- Considerar el contacto ya formado, y analizar las densidades de portadores y sus energias en la interfase. Esta es la presentación adoptada por SCHOTTKY /3/, y modernamente por otros autores.

- Considerar separadamente las interfases metal-vacio y semiconductor-vacio, y seguidamente analizar las consecuencias de la aproximación progresiva del metal y el semiconductor.

Este último planteamiento es menos realista, pero tiene la ventaja de introducir naturalmente las distintas magnitudes que se utilizan clásicamente en la descripción del contacto metal-semiconductor.

Describiremos brevemente esta última presentación /4/ a modo de introducción para las distintas magnitudes que serán empleadas en el resto del trabajo.

I.1.1. Interfase metal-vacio.Efecto Schottky.

En el sistema metal-vacio, la energia necesaria para que el electrón pueda escapar al vacio desde el nivel de Fermi del metal se llama "trabajo de extracción". Esta cantidad es igual a q \emptyset_m , y es del orden de algunos electrón-voltios.

El trabajo de extracción está intimamente relacionado con las propiedades de volumen del metal. Para la mayoría de los metales el trabajo de extracción es proporcional a la electronegatividad, como muestra la Tabla 1; también se observa una evolución periódica del trabajo de extracción siguiendo la clasificación de Mendeleieff, (Fig. 1).

Por otra parte, el trabajo de extracción de un metal depende también de las propiedades de superficie, como pueden ser su plano cristalográfico y su estado químico; en particular se ha comprobado que resultan muy sensibles a la adsorción superficial de metales cloclinos (Fig. 2).

Netal	¢ _m /18/	Electronegatividad /25/
Mg	3,6	1,2
AL	4,2	1,59
Gr	4,6	1,7
Ni	4,5	1,8
Çu	4,4	1,9
Zn	4,3	1,6
Mo	4,3	2,1
Pd	4,8	2,2
Ag	٥,٥	1,93
Sn	9,0	1,7
W	4,5	2,3
Pt	5,3	2,28
Au	4,8	2,4

Tabla I

Figura 1 - Trabajo de extracción hacia el vacio para los electrones de distintos metales en función del número atómico /18/.

Figura 2 - Variación del trabajo de extracción hacia el vacio para los electrones del Trungsteno en función de la concentración superficial de sodio /48/.

Un análisis detallado de la extracción de un electrón del metal debe tener en cuenta los efectos colectivos entre los electrones, y las interacciones del electrón con los iones metálicos. Una teoria que incluya estos efectos /10/, /5/, muestra que existe una distribución de densidad electrónica en la superficie, que forma una capa dipolar. Este tipo de tratamiento permite justificar la importancia de la superficie sobre el trabajo de extracción.

El trabajo de extracción es modificado además cuando existe un campo eléctrico en el exterior del metal.

En efecto :

Cuando el electrón extraido se encuentra a una distancia x de la superficie del metal, induce una carga positiva en la superficie; la fuerza de atracción entre el electrón y esta carga es la llamada fuerza imagen, y vale :

que corresponde a una energia potencial :

$$q \phi_{0}(x) = \frac{q^{2}}{16 \pi \epsilon_{0} x}$$

Debido a esta forma de barrera el trabajo de extracción disminuye al aplicar un campo eléctrico exterior. Entonces la energia potencial total, vista por el electrón, será :

$$q \not{p}_{t}(x) = \frac{q^{2}}{16 \pi \epsilon_{o} x} + q F x \qquad (I-3)$$

donde F es el campo eléctrico exterior.

De esta manera la altura de la barrera de potencial disminuye en :

$$\Delta \not = \sqrt{\frac{q F}{4 \pi E_0}} \qquad (I-4)$$

Figura 3 .- Diagrama energético de la barrera de potencial metal-vacio. q ϕ_m = trabajo de extracción metal-vacio.

q F x = energia potencial debida a un campo externo F.

 $\phi_t(x)$ = barrera de potencial total vista por el electrón.

 $\Delta \phi$ = disminución de la altura de la barrera por efecto Schottky.

Ahora el máximo de la barrera de potencial no estará en la superficie del metal, sino a una distancia :

$$x_{m} = \sqrt{\frac{q}{16 \pi \epsilon_{0} F}}$$
 (I-5)

Esta disminución de la altura de la barrera por el efecto combinado de la fuerza imagen y del campo eléctrico exterior, es el llamado " efecto Schottky ".

Otro efecto que contribuye a la reducción de la barrera al aplicar un campo eléctrico externo, resulta al considerar la penetración de este campo en el interior del metal /6/. Debido a la densidad elevada de electrones en el metal, este efecto resulta menos importante que el efecto Schottky.

Al considerar este último efecto, la reducción global de la altura de la barrera será

$$\Delta \phi = \sqrt{\frac{q F}{4 \pi \epsilon_{\alpha}}} + \epsilon_{m} \lambda F \qquad (I-6)$$

donde ε_{m} y λ son, respectivamente, la constante dieléctrica relativa y la longitud de Thomas-Fermi del metal.

I.1.2. Interfase semiconductor-vacio. Estados de superficie.

Al igual que para un metal, se puede definir el trabajo de estracción para los electrones de un semiconductor. Aquí, sin embargo, el nivel de Fermi está dentro de la banda prohibida^{*}, por lo que los portadores extraidos no partirán de la energia del nivel de Fermi, sinó de la banda de conducción o la de valencia. Es conveniente intro-

* Salvo en semiconductoros degenerados.

ducir un nuevo término q χ , llamado afinidad electrónica, que se define como la energia necesaria para extraer un electrón del fondo de la banda de conducción y transferirlo, en reposo, al vacio.

A diferencia de los metales, al aplicar un campo externo a un semiconductor, se forma una zona de carga de espacio de extensión considerable, en la proximidad de la superficie.

Esta capa límite está desprovista de portadores libres; las líneas de fuerza del campo eléctrico penetran en su interior, terminando en los átomos ionizados del semiconductor. Ello se traduce en una curvatura de las bandas de energia a lo ancho de la zona de carga de espacio.

Debido a que la densidad de carga volúmica que puede adquirir un semiconductor viene limitada por la densidad neta de átomos dopantes, la zona de carga de espacio alcenza un espesor que puede ser incluso de algunas micras.

Además hay que considerar en los semiconductores un nuevo fenómeno de gran importancia: los " estados de superficie "/7/. Los estados de superficie son estados electrónicos localizados en la superficie del semiconductor, que pueden tener su origen en la perturbación del potencial periódico que representa el límite del cristal /8/, o bien ser debidos a impurezas o defectos cristalinos presentes en la superficie.

En un semiconductor, los estados de superficie tienen especial importancia por tener energias en el interior de la banda prohibida, donde no existen estados intrínsecos.

Los estados de superficie pueden cargarse eléctricamente, creando así una distribución superficial de carga que modifica el potencial de la capa límite del semiconductor.

En el equilibrio, el estado de carga de los estados de su-

perficie vendrá regido por el nivel de Fermi del interior del semiconductor. Puede concebirse entonces que los estados de superficie cargados creen una zona de carga de espacio en el semiconductor, aún sin campo eléctrico externo aplicado.

Cuando además hay un campo externo, las líneas de fuerza del campo terminan en parte en los estados de superficie y en parte en la zona de carga de espacio.

I.1.3. Contacto metal-semiconductor.

Podemos considerar el contacto metal-semiconductor como el caso límite de una superficie del metal y otra del semiconductor que se acercan progresivamente /9/.

En la figura 4 están representadas las energias electrónicas, en las distintas etapas de la formación de un contacto metal-semiconductor tipo-n.

En la figura 4(a), el metal y el semiconductor no están en contacto, y el sistema no está en equilibrio térmico. Si permitimos , de alguna manera, que haya intercambio de portadores, se establecerá el equilibrio térmico y los niveles de Fermi de ambos lados se igualarán (Fig. 4(b)).

El potencial eléctrico del semiconductor habrá disminuido respecto al del metal en una cantidad:

$$V_{\rm bi} = \phi_{\rm m} - \chi - V_{\rm p} \qquad (I-7)$$

que es el llamado potencial de contacto.

Cuando la separación disminuye (Fig. 4(c)) el campo eléc-

Figura 4 - Diagrama energético de formación de la barrera de potencial metal-semiconductor /9/ , sin estados de superficie.

- (a) metal y semiconductor separados.
- (b) se establece el equilibrio termodinámico.
- (c) aproximación progresiva de las superficies.
- (d) contacto metal-semiconductor formado.

trico aumenta, la superficie metálica se carga negativamente y el semiconductor positivamente, estableciéndose una zona límite de carga de espacio.

Cuando la separación se anula entre el metal y el semiconductor (Fig. 4(d)), desaparece la barrera que representaba el vacio para los portadores, quedando solamente la barrera metal-semiconductor propiamente dicha, de altura

$$q \phi_{\mu_{n}} = q \left(\phi_{\mu} - \chi \right) \tag{I-8}$$

o sea que la barrera de potencial en un contacto ideal es, simplemente, la diferencia entre el trabajo de extracción del metal y la afinidad electrónica del semiconductor. En la tabla II se representan los valore de $\beta_{\rm Bn}$ obtenidos con la ecuación (I-8), tomando los valores experimentales de $\beta_{\rm m}$ de la tabla I y la afinidad electrónica del silicio $\chi = 4.01 \, {\rm eV}$, /11/.

Estos valores se pueden comparar con los valores experimentales obtenidos por las distintas técnicas que permiten determinar $\phi_{\rm Bn}$ directamente sobre el contacto ya formado.

Observamos que si bien (I-8) predice una gama extensa de alturas de barrera posibles, los resultados experimentales presentan unas alturas de barrera todas ellas comprendidas entre 0.5 y 0.9 eV.

Se ha propuesto una esplicación suponiendo la presencia de una capa de óxido residual entre el metal y el semiconductor, en la cual habria una caida \triangle V del potencial eléctrico. La altura de la barrera valdria entonces

$$\phi_{Bn} = \phi_{m} - \chi - \Delta v \qquad (I-9)$$

Esta esplicación convendria a las alturas de barrera excesivamente débiles, pero no puede esplicar las alturas de barrera excesivamente elevadas, como ocurre en el Aluminio.

Por otra parte, cabria esperar que con distintos procedimientos pudiera eliminarse la capa de óxido, con lo que el razonamiento no podria aplicarse.

BARDEEN /12/ señaló la importancia que podian tener los estados de superficie del semiconductor en la definición de la barrera de potencial del contacto metal-semiconductor.

Este autor sugirió que en presencia de una densidad elevada de estados de superficie, el potencial en la superficie del semi-

Metal	$\phi_{Bn} = \phi_{m} - \chi_{Si}$	Ø _{Bn} experimentel
Al	0,19	C,7
Ma	0,20	0,57
Pd	0,79	0,71
Ag	0,38	0,79
Pt	1,29	0,9
Au	0,79	0,8
Gr	0,39	0,57

Table II - Comparación entre los valores teóricos de ^d_{Bn} obtenidos con la ecuación (I-3) y los valores experimentalos (22).

conductor queda totalmente determinado por estos. La barrera de potencial $\oint_m - \chi$ que se crearia al acercar el metal y el semiconductor queda absorbida por el dipolo constituido por los estados de superficie y el metal.

La barrera de potencial resultaria entonces independiente del trabajo de extracción del metal y de la afinidad electrónica del semiconductor. Esta situación se ilustra en la figura 5.

Combinando ambas hipótesis, CROWELL y ROBERTS /13/ y COWLEY y SZE /14/ elaboraron una teoria mas satisfactoria, que justifica, en la mayoria de los casos, las alturas de barrera experimentales.

Según esta teoria, antes de formarse el contacto, el nivel de Fermi en la superficie del semiconductor está totalmente determinado por los estados de superficie cargados, y dista q ϕ_o de la banda de valen-

- Figura 5 Diagrama energético de la formación de la barrera metal-semiconductor en presencia de una fuerte densidad de estados de superficie /10/.
 - a Los estados de superficie definen la altura de barrera semiconductor-vacio.
 - b La altura de barrera se mantiene al aproximarse las superficies.

c - Idem.

d - Contacto metal-semiconductor formado.

cia (figura 6).

Al establecerse el equilibrio entre el metal y el semiconducductor, las diferencias entre el trabajo de extracción q \oint_m y la afinidad electrónica q χ , originan un campo eléctrico que modifica la carga de espacio en el semiconductor, desplazando el nivel de Fermi de la superficie. Los estados de superficie cuya energia pasa a ser superior a la del nivel de Fermi se cargan positivamente.

Los estados de superficie cargados crean, a través de la capa de óxido residual de espesor δ , parte del campo eléctrico total.

Con este planteamiento, se obtiene una expresión general para la altura de barrera /26/ en la que intervienen simultáneamente: el trabajo de extracción del metal hacia el vacio q ϕ_m , la densidad de estados de superficie D, el espesor de la capa de óxido δ y q ϕ_o , la energia del nivel de Fermi en la superficie del semiconductor antes

Figura 6 - Contacto metal-semiconductor en presencia de una fuerte densidad de estados de superficie, según Crowell y Sze /26/.

de formarse el contacto.

En el caso límite de densidades D_{ss} muy grandes, la expresión original se reduce a:

$$q \not \Phi_{Bq} = (\Xi_{q} - q \not \Phi_{q}) \qquad (I-10)$$

donde E es la energia de la banda prohibida.

Cuando la densidad de estados de superficie o bien el espesor de la capa de óxido se anulan, la expresión se reduce a:

- Figura 7 Alturas de barrera de distintos metales formando contacto con Silicio-n representadas en función de los respectivos trabajos de extracción hacia el vacío.
 - 1 Alturas de barrera teóricas $\phi_{Bn} = \phi_m \chi$
 - 2 Alturas de barrera según la teoria de COWLEY y SZE con: $\phi_{o} = 0,33 \text{ eV}$, $D_{ss} = 4 \cdot 10^{13} \text{ estados/cm}^2 \cdot \text{eV}$, $\delta = 5\text{Å}$, $\epsilon_{i} = \epsilon_{o}$

3 - Alturas de barrera en el caso límite N_D

$$q \phi_{Bq} = q(\phi_m - \chi)$$
 (I-11)

que es idéntica a la obtenida para el contacto ideal.

Para los casos intermedios la expresión general indica que parte de la barrera de potencial, debido a la presencia del metal, es absorbida por la caida de potencial en el óxido, justificando así la dispersión reducida de las alturas de barrera en los contactos sobre silicio. Para justificar las distintas alturas de barrera que se observan hace falta suponer unas densidades de estados de superficie de hasta 10¹⁴ estados/cm²; con espesores de la capa de óxido de 4 ó 5 Å. En la figura 7 se compara las alturas de barrera experimentales con las teóricas, para contactos de Silicio con distintos metales. Observamos que la teoria de COWLEY y Sze predice unos valores correctos en la mayorie de los casos.

I.1.4. Dipolo eléctrico de interfase.

Las teorias de la formación de la barrera de potencial de contacto expuestas hasta aquí, no son capaces de esplicar algunas características importantes observadas.

En primer lugar, la dependencia de la altura de barrora con el campo eléctrico que se puede preveer con el efecto Schottky o con el modelo de COWLEY y SZE para los estados de interfase, es inferior a las dependencias observadas experimentalmente, y que tienen como consecuencia una falta de saturación en la corriente inversa.

Por otra parte, al extender los estudios experimentales a los contactos metálicos sobre semiconductores compuestos e incluso sobre aislantes, las teorias expuestas, desarrolladas para esplicar las barreras sobre el Silicio, no son capaces de esplicar las alturas de barrera observadas en estos nuevos materiales /15/, /16/. HEINE ha sugerido /17/ que la contribución principal al dipolo de interfase podria tener su origen en las colas de las funciones de onda electrónicas del metal, que penetran en la banda prohibida del semiconductor en forma de funciones de onda de Bloch, con vector de propogación k imaginario, por lo que su amplitud decrece exponencialmente con la penetración.

Ello se traduce en una densidad importante de electrones del metal que penetran en la banda prohibida del semiconductor, y que junto con la carga positiva en la superficie del metal forman un dipolo eléctrico que determina en gran parte le altura y la forma de la barrera en la interfase.

Los cálculos realizados sobre este modelo por PARKER /46/, PADOVANI /10/, CROWELL /36/ y PELLEGRINI /5/, muestran que el efecto de esta capa dipolar es determinante en los semiconductores covalentes, quedando muy reducida la dependencia de la altura de la barrora con el trabajo de extracción de los electrones del metal, como se comprueba experimentalmente.

Por otra parte la disimetria en la penetración de las cargas tiene como consecuencia el desplazamiento del máximo de la barrera hacia el interior del semiconductor, la forma de la barrera resultante origina una dependencia de ϕ_{Bn} con el campo eléctrico superior a la originada por la fuerza imagen.

Las consecuencias mas importantes que derivan de la presencia de electrones procedentes del metal en la interfase, aparte de su influencia directa en la altura de la barrera de potencial, son:

- Las capas delgadas de óxido interfaciales (<10 %) no tendrian influencia en el comportamiento eléctrico del contacto, ya que serian atravesadas facilmente por los electrones del metal creando un "electrodo efectivo" dentro del semiconductor.

- Los estados de superficie y las impurezas eléctricamente cargadas distribuidas en la zona de interfase ocupada por la carga de túnel, procedente del metal, no tendrian tampoco ningún efecto sobre la altura de la barrera.

Estas previsiones parecen haber sido confirmadas experimentalmente, en parte, por KAR /22/, que observa un comportamiento independiente de los estados de superficie para espesores de óxido inferiores a 10 Å en los diodos Schottky sobre Silicio. I.2. TEORIA DEL TRANSPORTE DE CORRIENTE EN LAS BARRERAS SCHOTTKY.

El transporte de corriente en las barreras metal-semiconductor es debido principalmente a los portadores mayoritarios, tanto en polarizaciones directas como inversas. La contribución de los portadoros minoritarios tiene lugar solamente bajo fuertes densidades de corriente directa /23/, y en estructuras especiales, en las que se producen zonas de inversión /24/.

La primera teoría aparecida para explicar el transporte de corriente es la llamada "teoría de la cmisión termoiónica" /25/ .

1.2.1. Teoría do la emisión termoiónica.

Esta teoría, inspirada en los trabajos existentes sobre la emisión termoiónica en los tubos de vacío, se basa en la hipótesis de que las corrientes de portadores mayoritarios del semiconductor al metal, y viceverse, son debidas a los portadores capaces de atravesar la barrera por excitación térmica.

Esta hipótesis equivale a despreciar los fenómenos de difusión de los electrones durante su recorrido, bién sea con la red, o con impurezas.

Suponiendo la altura de la barrera muy superior a kT, y sin tener en cuenta el efecto de la fuerza imágen sobre la altura de la barrera, se obtiene pera la corriente total la expresión:

$$J = A^{*} T^{2} \exp \frac{-q \phi_{Bn}}{kT} (\exp \frac{q V}{kT} - 1) = J_{ST}(\exp \frac{q V}{kT} - 1)$$

donde J_{ST} es la llamada corriente de saturación, A^{**} es la constante de Richardson, calculada con la masa eficaz m^{**} apropiada al semiconductor en cuestión:

$$A^{\star} = \frac{4\pi q m^{\star} k^2}{h^3}$$

I.2.2. Teoria de la difusión /3/.

Cuando la anchura de la zona de transición es superior al recorrido libre medio de los electrones, la corriente vendrá limitada por los fenómenos de difusión.

La teoria, elaborada por Schottky y Spenke / /, se basa en la resolución de la ecuación de la densidad de corriente para los portadores mayoritarios, tomando como condiciones límite sus concentraciones de equilibrio en la zona neutra y en la superficie del semiconductor.

El resultado es la llamada corriente de difusión de Schot-

$$J = q N_{c} \mu F \exp \frac{-q \phi_{Bn}}{kT} \left(\exp \frac{q V}{kT} - 1 \right) =$$
$$= J_{SD} \left(\exp \frac{q V}{kT} - 1 \right) \qquad (I-14)$$

donde: J es la nueva corriente de saturación

μ es la movilidad de los portadores y

F es el campo eléctrico.

La densidad de corriente de difusión obtenida, depende de la altura de barrera y de la tensión aplicada, de la misma forma que en

la teoria de la emisión termoiónica. Sin embargo, las respectivas corrientes de saturación varian de manera diferente con la tensión aplicada y con la temperatura.

I.2.3. La constante de Richardson efectiva.

Ni la teoria de la emisión termoiónica, ni la de la difusión resultan totalmente satisfactorias. W. SCHULTZ /28/ estableció una teoria que incluye ambas, y que además permite tener en cuenta la reflexión mecanicocuántica de los portadores en la cúspide, y el efecto túnel a través de la barrera /29/, /30/.

Consideremos la barrera de potencial en la interfase. Su forma y orígen se han estudiado en la sección anterior. En la figura 8 se ha representado la barrera correspondiente al contacto metal-semiconductor tipo-n, polarizado en directo con una tensión V.

El pseudonivel de Fermi de los electrones , -q p_n , controla la densidad de portadores y la corriente, en la región $[X_m, V]$:

$$J = -q \mu n \frac{d \phi_n}{dx}$$
(I-15)
$$n = N_c \exp \frac{-q (\phi_n - \Psi)}{kT}$$
(I-16)

dande

En la región $[O, X_m]$ no se puede definir un pseudo nivel de Fermi para los electrones, pero podemos describir el flujo de corriente introduciendo una velocidad efectiva de recombinación para los electrones, v_R, en la cúspide de la barrera de potencial.

La corriente de electrones a través de la barrera será:

$$J = q (n_m - n_o) v_R$$
 (I-17)

$$con: n = N exp \frac{-q \not B_n}{KT} \quad y: n = N exp \frac{-q \not B_n - q \not B_n}{KT}$$

La integración de (I-15) con las condiciones en los límites:

para
$$x = x_{m}$$
, $n = n_{m}$ y $\oint_{n} = \oint_{n} (x_{m})$
para $x = W$, $n = N_{D}$ y $\oint_{n} = V$

y la combinación con la ecuación (I-17) da la expresión para la corriente:

$$J = \frac{q N_{c} v_{R}}{1 + v_{R} / v_{D}} \exp \frac{-q \mathscr{D}_{Bn}}{KT} (\exp \frac{-q V}{KT} - 1)$$
(I-18)

donde :

$$V_{\rm D} = \left[\int_{x_{\rm m}}^{W} \frac{q}{\mu \, \text{KT}} \exp \frac{-q \, (\emptyset_{\rm Bn} \neq \Psi)}{\text{KT}} \, dx \right]^{-1}$$

es una velocidad efectiva de difusión, asociada con el transporte de electrones en la región $[\times_m, W]$.

En esta expresión vemos que si $v_D \gg v_R$, obtenemos la ecuación correspondiente a la emisión termoiónica, a condición de identificar :

$$v_{R} = \frac{A^{*}T^{2}}{q N_{c}}$$

y si $v_R \gg v_D$ obtenemos la ecuación de difusión de Schottky, identificando :

Esta formulación tiene además la ventaja de permitir la consideración de nuevos fenómenos, como son:

En primer lugar la difusión por fonones, de los portadores que han cruzado la barrera. En la regióm $\begin{bmatrix} 0 & & \\ m \end{bmatrix}$ los electrones que han superado la barrera pueden sufrir difusiones con los fonones, siendo algunos de ellos devueltos al semiconductor.

La velocidad de recombinación v_R quedará reducida en un factor f . Este fenómeno es importante cuando el campo eléctrico es débil , y por lo tanto la región [0 , x_m] extensa.

Por otra parte, el paso de la cúspide de la barrera deberia tratarse como un fenómeno cuántico, con lo que se introduce la posibilidad de que haya transmisiones a través de la barrera por efecto túnel, y de que parte de los portadores con energia superior a la de la barrera sean reflejados.

De nuevo, si estos efectos no son importantes, pueden introducirse como una corrección a la velocidad de recombinación en la cúspide , v_R , multiplicándola por un factor f_R que representa la probabilidad de transmisión a través de la barrera.

Para campos eléctricos elevados este efecto pasa a ser principal y no se puede introducir como corrección; es el inicio de la emisión termoiónica por efecto de campo.

La expresión completa de las características J-V teniendo en cuenta f_p y f_0 es :

$$J = A^{*} * T^{2} \exp \frac{-q \not B_{Bn}}{KT} \left(\exp \frac{q V}{KT} - 1 \right) =$$
$$= J_{S} \left(\exp \frac{q V}{KT} - 1 \right)$$
(I-19)

con :

$$A^{*} \stackrel{*}{=} \frac{f_{p} f_{Q}}{1 + f_{p} f_{Q} v_{R} / v_{D}} A^{*}$$

A" es la llamada constante de Richardson efectiva.

Figura 8 - Contacto metal-semiconductor tipo-n polarizado en directo.

V : Tensión de polarización

 $q \Psi(x)$: barrera de potencial

q ϕ_{Bn} : altura de la barrera

q Δ otin : reducción por efecto schottky

q $\phi_n(x)$: pseudo nivel de Fermi para los electrones del semiconductor

W : anchura de la zona de transición

Cuando el campo eléctrico en la barrera de potencial es suficientemente elevado, la transmisión de portadores a través de la barrera puede resultar importante, y debe desarrollarse la teoria del transporte de corriente adecuada para este fenómeno.

Consideremos la barrera de potencial parabólica de la figura 9, que hemos representado muy estrecha, de acuerdo con la hipótesis de la existencia de un campo eléctrico fuerte.

No consideramos aquí el efecto de la carga imagen sobre la altura de la barrera. Suponemos la unión polarizada en directo con una tensión V .

El coeficiente de transmisión cuántica a través de la barrera $\mathcal{T}(E)$, para un portador con energia E contada desde el fondo de la banda de conducción, se calcula, dentro de la aproximación W.K.B., mediante la expresión:

$$\mathcal{T}(E) = \exp\left(-\frac{4\pi}{h}\int_{1}^{W}\left(2\pi^{*}(q\Psi(x) - E)\right)^{1/2} dx\right) = \exp\left(-Q(E)\right)$$

como hemos supuesto una barrera parabólica,

$$q \Psi(x) = \frac{q^2 N_D x^2}{2\epsilon}$$
 y; $E_B = \frac{q^2 N_D W^2}{2\epsilon}$

Sustituyéndolas en la ecuación anterior :

- Figura 9 .- Esquema de una barrera de potencial de un contacto metalsemiconductor tipo-n, polarizado en directo, para el estudio de la emisión termoionica por efecto de campo.
 - E_{Fs} ; nivel de Fermi del semiconductor
 - E ; nivel de Fermi del metal
 - E : energia de un clectrón que atraviesa la barrera por efecto tunc x_1 , W : espesor de la barrera vista por un electron con energia E.
y efectuando la integración:

$$Q(E) = \frac{E_B}{E_{oo}} \quad Z(\frac{E}{E_B})$$
(I-22)

donde :

$$z(E/E_{B}) = (1 - E/E_{B})^{1/2} - E/E_{B} \ln \left(\frac{1 + (1 - E/E_{B})^{1/2}}{(E/E_{B})^{1/2}}\right)$$
(I-23)

E es una constante que depende del dopaje N_{D} del semiconductor, y que determina la importancia relativa de la emisión por efecto de campo.

$$E_{DD} = \frac{qh}{4\pi} \left(\frac{N_D}{m^* \epsilon} \right)$$
 (I-24)

La densidad de corriente total será la diferencia de las corrientes de electrones que atraviesan la barrera en uno y otro sentido:

$$J = C \int_{0}^{\infty} (f_{S}(E) - f_{m}(E)) \zeta(E) dE \qquad (I-25)$$

donde f y f son las distribuciones de electrones en el semiconductor y en el metal. Si la barrera es superior a varios KT, podemos considerar distribuciones de Boltzman , y valen :

$$f_{S}(E) = \exp \frac{-(q \not B_{S} \pm E)}{kT}$$
, $f_{m}(E) = \exp \frac{-(q \not B_{S} \pm E \pm q V)}{kT}$

y la constante C se determina haciendo $\mathcal{T}(E) = 1$ para $E > E_B$ y $\mathcal{T}(E) = 0$ para $E < E_B$; e identificando la expresión obtenida con la expresión de la corriente de emisión termoiónica, deducida en la sección I.2.1. , resulta:

$$C = \frac{A^* T}{K}$$

queda pues :

$$J = \frac{A^{*} T}{K} \left(1 - \exp \frac{-q V}{KT}\right) \int_{0}^{\infty} f_{s}(E) T(E) dE$$
(I-26)

o también

$$J = A^{*} T^{2} \left(1 - \exp \frac{-q V}{kT}\right) \int_{0}^{\infty} \exp \left(-\left(\frac{E}{kT} + \frac{E_{B}}{E_{oo}} Z\left(\frac{E}{E_{B}}\right)\right) \frac{d E}{kT}\right)$$
(1-27)

En esta expresión, el integrando es proporcional al número de electrones que atraviesan la barrera de potencial con una energia dada.

En la figura 10 se observa que, para dopages de 10^{16} cm⁻³, el paso de la corriente se efectúa totalmente por encima de la barrera de potencial, siendo su distribución en energias la correspondiente a la emisión termoiónica. Para dopages de 10^{18} cm⁻³ y superiores, los portadores atraviesan la barrera por efecto túnel, y su distribución energética es aproximadamente gaussiana, con el máximo en la energia:

$$E_{max} = E_{B} \cdot \cosh^{-2} \frac{E_{oo}}{kT}$$
 (I-28)

El cálculo de la corriente J debe efectuarse por integración numérica de la ecuación (I-27).

En este modelo no se ha tenido en cuenta la posibilidad de

Figura 10 - Distribuciones energéticas de los electrones que atraviesan la barrera de potencial para distintos dopages, calculadas segun el integrando de la ecuación (I-27).

reflexión cuántica de los portadores que transitan por encima de la barrera, y además , se ha supuesto una barrera parabólica sin efecto Schottky ni otros tipos de deformación. Al introducir estas correcciones en el cálculo numérico, los resultados no difieren notablemente de los obtenidos /31/ , /32/ .

Tampoco se ha considerado en este modelo la corriente de difusión (hemos supuesto el pseudonivel de Fermi constante), por lo que no resulta adecuado para los dopajes muy bajos.

I.2.5. Corrientes por efecto túnel./27/

Se denomina corriente por efecto túnel la debida a la transmisión de electrones con energias en el nivel de Fermi, a través de la barrera de potencial.

Esta componente de la corriente solo aparece en los diodos Schottky a muy bajas temperaturas, cuando los otros modos de conducción desaparecen por no existir portadores excitados termicamente.

También aparece cuando el dopage del semiconductor es muy elevado, superior a 10^{20} cm⁻³, o sea en los semiconductores degenerados. Entonces el contacto metal-semiconductor presenta caracter ohmico.

Una característica esencial de las corrientes por efecto túnel es su independencia de la temperatura.

CAPITULO II

÷ ...

÷ -

PROPIEDADES EXPERIMENTALES DE LOS DIODOS SHOTTKY

.

II.1. LA CARACTERISTICA DE CONDUCCION EN DIRECTO.

Las características experimentales de conducción directa en los diodos Schottky obedecen una ley empírica del tipo:

$$I = I_0 \exp\left(\frac{q V}{n k T} - 1\right)$$
(II-1)

llamada "ley del diodo Schottky", donde "n" es un parámetro empirico mayor que la unidad y generalmente inferior a 1,5.

El segundo parámetro de la característica, I_o, se llama "corriente de saturación" por analogia con la unión p-n.

Para tensiones superiores a algunos KT, el término exponencial es grande frente a la unidad, y la representación semilogarítmica de las características I-V son perfectamente rectas, figura 10.

Para corrientes elevadas, próximas al límite de funcionamiento del diodo, las características se desvian de esta ley, debido a la caida de tensión que tiene lugar en la resistencia formada por el volúmen del semiconductor.

II.1.1. Corriente de saturación I_o .

I_o es la llamada "corriente de saturación" experimental. De la ecuación (II-1) vemos que puede obtenerse extrapolando la parte recta de la característica I-V semilogarítmica hasta O Voltios.

En la ecuación (II-1) I_0 juega el mismo papel que la corriente de saturación I_s en las expresiones obtenidas con las teorias de difusión y de emisión termoiónica.

Si pretendemos interpretar la ecuación empírica (II-1) me-

diante la teoria de la difusión-emisión termoiónica (sección I.2.3.) que da para la corriente la expresión

$$I = S A^* + T^2 \exp\left(\frac{-q \not Q_{B_{\Pi}}}{kT}\right) \exp\left(\frac{q V}{kT} - 1\right)$$
 (II-2)

vemos que Io deberia obedecer a una ley teórica

$$I_{0} = S A^{*} T^{2} \exp\left(\frac{-q \not B_{B_{1}}}{\kappa T}\right)$$
 (II-3)

Es usual considerar esta expresión de I_0 como exacta, con lo que $atle_{Bn}$ se convierte a su vez en otro parámetro experimental definido precisamente por (II-3).

De la expresión (II-3) se podría deducir $atle_{Bn}$, a partir de las variaciones experimentales de I_o con la temperatura; sin embargo, este procedimiento no es válido en los diodos que presentan un parámetro "n" dependiente de la temperatura. Debido a ello, la altura de barrera $atle_{Bn}$ se deduce normalmente de la expresión (II-3) despejando:

$$\phi_{Bn} = \frac{KT}{q} \ln \frac{S A^* * T^2}{I_0}$$
(II-4)

y tomando un valor medio para A^{**} , que en el Silicio es de : 100 A cm⁻² $\circ K^{-2}$.

En realidad ϕ_{Bn} no cs muy sensible al valor de A^{**} escogido, ya que a la Temperatura ambiente un aumento del 100% en A^{**} causaría un aumento de solo 0.018 Voltios en atual 8n .

II.1.2. El parámetro "n" .

El parámetro "n" de la ley empírica (II-1) se llama "factor de idealidad" en la literatura.

La ley (II-1) se expresa también en la forma :

$$I = I_{o} \exp \left(\frac{q V}{K (T + T_{o})} - 1 \right)$$
 (II-5)

donde T_o , llamado "parámetro de exceso de Temperatura" está directamente relacionado con "n".

El parámetro "n" se obtiene directamente de las características I-V experimentales. En efecto: según la ecuación (II-1) podemos obtener "n" a partir de la pendiente de la parte recta en la representación semilogarítmica de la característica I-V, según la expresión

$$u = \frac{d}{\sqrt{L}} \frac{g(\ln I)}{g(\ln I)}$$
(II-0)

Al comparar la expresión empírica (II-1) con la de la teoría de la difusión-emisión termoiónica (II-2), vemos que el parámetro "n" introduce una dependencia en exceso de la corriente con la tensión de polarización , que en la expresión (II-2) solo puede atribuirse a una dependencia de A^{**} ó de ϕ_{Bn} con la tensión aplicada, o sea con el campo eléctrico en la interfase.

La dépendencia de la altura de la barrera \emptyset_{Bn} con el campo eléctrico aparece teóricamente al considerar el efecto Schottky (I.1.1.)

Con este efecto, la ecuación (II-2) queda

$$I = S A^* * T^2 \exp\left(-\frac{q \not B_{B_0} - \Delta \not P}{kT}\right) \exp\left(-\frac{q V}{kT} - 1\right)$$
(II-7)

donde $\bigtriangleup
otin$ es la reducción de la altura de la barrera por efecto Schot-

Derivando esta expresión obtenemos el valor que la teoria de la difusión-emisión termoiónica permite atribuir al parámetro experimental "n":

$$n = \left(1 + \frac{\partial \Delta \emptyset}{\partial V} + \frac{KT}{q} - \frac{\partial (\ln A^{**})}{\partial V}\right)^{-1}$$
(II-8)

Las variaciones de A^{**} teóricas en función del campo eléctrico, son pequeñas para los campos eléctricos comprendidos entre 10⁴ y 10⁵ V/cm, para los que resulta aplicable la teoria de difusión-emisión termoiónica /34/.

Queda pues el efecto Schottky como único responsable del valor n \neq 1 :

$$n \doteq (1 \pm \frac{\partial \Delta \emptyset}{\partial \nabla})^{-1}$$

Considerando el efecto Schottky clásico, calculado en (I.l.l.) resulta un factor "n" para los diodos de Silicio tipo-n inferior o igual a 1.04 /35/

Si calculamos el efecto del campo eléctrico sobre la barrera de potencial , a partir de la teoria que considera la penetración de los electrones del metal en la banda prohibida del semiconductor, sección (I.1.4.), se obtiene una reducción de la altura de barrera superior a la obtenida con el efecto Schottky clásico y un factor "n" de la conducción directa algo más elevado/36//19/. Cuando el dopage del semiconductor es superior a 10^{17} átomos/ cm³, la teoría de la difusión-emisión termoiónica , no puede dar cuenta del paso de corriente a través de la barrera, debido a que en este caso el campo eléctrico es muy elevado (> 10^6 V/cm) y la corriente es debida, principalmente, a la emisión termoiónica por efecto de campo.

La teoria de la corriente de emisión termoiónica por efecto de campo se ha desarrollado en la sección (I.2.4.). Las características I-V teóricas deben obtenerse, en cada caso, por integración numérica de la expresión (I-27).

Los parámetros I_0 y "n" de la ley empírica (II-1) se obtienen por comparación con la característica I-V teórica, obtenida por cálculo numérico.

Las cracterísticas I-V teóricas para diodos con dopage elevado presentan un factor "n" que depende fuertemente del dopage del semiconductor, pudiendo alcanzar valores muy superiores a la unidad.

En la figura 11 se representan los valores del factor "n" obtenidos al calcular las características I-V para diodos con dopages comprendidos entre 10^{17} y 10^{21} átomos/cm³, y distintas alturas de barrera. En este cálculo no se ha tenido en cuenta la reducción de la altura de barrera por efecto Schottky, que tendria un efecto preponderante para los dopages mas bajos y que hemos visto, dentro de la teoria de la difusión-emisión termoiónica, que conduce a factores n = 1.04.

II.1.3. Características experimentales en polarización directa.

Hemos analizado las características directas de distintas series de diodos Schottky; Cr - Si(n), Mo - Si(n), Au - Si(n), elaborados sobre substratos epitaxiados con dopagos de 10^{14} a 10^{17} átomos/cm³, de pequeña superficie y con anillo de guarda difundido, obtenidos según la técnica descrita en el capítulo IV.

Figura 11 - Valores del parámetro "n" de las características I-V calculadas numéricamente según la teoría de la emisión termoiónica por ofecto de campo/37/.

Estos diodos presentan, en general, características rectificadoras de acuerdo con la ley empírica (II-1) del diodo Schottky.

Los factores "n" experimentales alcanzan valores muy elevados, próximos a n =2, para los dopages mas altos. Lo que, como hemos visto en la sección anterior, se puede justificar con la teoria de la emisión termoiónica por efecto de campo.

Para los dopages bajos e intermedios, los factores "n" deben ajustarse a los calculados mediante la teoria de la difusión-emisión termoiónica con efecto Schottky. Sin embargo, los valores "n" experimentales son sistemáticamente superiores a los previstos por esta teoria.

Además /37/ se observa una dispersión importante en los valores de "n" medidos en distintos diodos procedentes de una misma plaqueta de Silicio.

Los resultados obtenidos en una serie de diodos Cr - Si(n) son representativos de este comportamiento(Tabla III).

Los valores anómalos de "n" y la dispersión para las distintas muestras han sido también señalados por otros autores /38/ para contactos sobre Silicio con oro, plata, cobre, platino, etc. También se ha señalado que en los contactos Schottky en los que tiene lugar la formación de siliciuro y éste actúa de metal de barrera, como ocurre en los contactos Pt - Si , Hf - Si y Pd - Si , los valores de "n" se ajustan notablemente a los teóricos y no presentan dispersión /39/.

Por otra parte, se constata (figura 12) una estrecha correlación entre los valores de I_0 y los de "n" experimentales. Esto implica, a través de la ecuación (II-3), una correlación entre el factor de idealidad "n" y la "altura aparente" de la barrera ϕ_{Bn} .

n° de diodo	n		ø _{Bn}
		I _o	
		× 10 ~ A	Voltios
1	1,05	2	0,555
2	1,09	2,8	0,546
. 3	1,115	4,5	0,534
4	1,08	2,5	0,549
5	1,085	3,3	0,542
6	1,12	3,4	0,541
7	1,24	6,8	0,525
8	1,25	7	0,523
9	1,165	4,8	0,533
10	1,05	2,2	0,553
11 -	1,11	3,4	0,541
12	1,08	2,15	0,553
, 13	1,08	2,5	0,550
14	1,07	2,2	0,553
15	1,08	2,5	0,550
16	1,10	3,8	0,540

Tabla III - Resultados experimentales en una serie do diodos Gr-Si(n)

Figura 12 - Correlación entre "n" e I_0 experimentales a la temperatura ambiente para una serie de diodos Cr - Si(N).

II.1.4. Hipótesis de la presencia de centros profundos en la interfase.

Los valores experimentales observados del parámetro "n", así como la correlación entre $atual_{Bn}$ y el valor de "n", no parece que puedan ser explicados en los diodos con dopage moderado, dentro del modelo de conducción por difusión-emisión termoiónica.

Por otra parte la conducción por emisión termoiónica por efecto de campo, que podria esplicar los factores "n" elevados, no puede tener lugar mas que en los contactos sobre substratos con dopages superiores a 10¹⁷ átomos/cm³.

Una posible solución del problema aparece al suponer que en la proximidad del metal, el semiconductor contiene un dopage elevado, que modifica la forma de la barrera y permite el paso de la corriente por emisión termoiónica por efecto de campo. Esta posibilidad fue avanzada por RIDEOUT /37/.

Podemos, entonces, suponer que el procedimiento tecnológico de preparación del contacto introduce una fuerte densidad de impurezas en la interfase, procedentes de una interdifusión entre el metal y el semiconductor.

Estas impurezas metálicas crearían centros profundos, que pueden ser de tipo dador o aceptor. Si se trata de centros dadores, una vez ionizados aumentan el campo eléctrico, favoreciendo la emisión termoiónica por efecto de campo. La presencia de centros aceptores, en cambio, produciria una compensación del substrato, creando una zona de alta resistividad cerca de la superficie /40/, /41/, /42/.

En la literatura se han descrito efectos notables en las características de conducción de los diodos Schottky, en los que se han introducido impurezas en la interfase, bien sea por difusión /43/, o por implantación iónica /44/, /45/.

II.1.5. Cálculo de la corriente.

Cuando suponemos la existencia de una capa interfacial fuertemente dopada con centros profundos, la corriente directa contiene una componente importante de corriente de emisión termoiónica por efecto de campo, incluso en los diodos con dopages moderados. Ello conduce, como veremos, a unos valores excepcionalmente elevados del factor "n", y a una correlación entre la "altura aparente" de la barrera, ϕ_{Bn} , y el factor "n".

Estas propiedades pueden observarse al calcular la corriente de emisión termoiónica por efecto de campo en un modelo de contacto con centros profundos simplificado, en el que suponemos una distribución con densidad uniforme de los centros profundos, con un nivel discreto de energia situado hacia la mitad de la banda prohibida.

Los centros profundos dadores están ionizados en una región próxima al contacto, limitada por el metal y por la intersección del nivel energético de los centros profundos con el pseudo nivel de Fermi de los electrones.

El espesor δ de esta región se puede calcular si suponemos el pseudonivel de Fermi constante.

El potencial en la zona de carga de espacio viene dado por la ecuación de Poisson:

$$\frac{d^2(x)}{dx^2} = -\frac{qN}{\epsilon}$$
 (II-9)

con $N = N_D$ paraD < x < W - Sy $N = N_D + N_T$ paraW - S < x < W

La energia potencial de la barrera, tomando como orígen de po-

.

tenciales el del fondo de la banda de conducción, y como orígen de abscisas el límite de la zona de carga de espacio, resulta:

$$q\Psi = \frac{q^2 N_D}{2 \epsilon} x^2 \qquad \text{para} \quad 0 < x < W - 8$$

:
$$q\Psi = \frac{q^2 (N_D + N_T)}{2 \epsilon} x^2 - \frac{q^2 N_T}{\epsilon} (W - 8) x + \frac{q^2 N_T}{2 \epsilon} (W - 8)^2$$

La barrera está pues formada por dos parábolas con las concavidades del mismo signo(figura 13).

En la coordenada W -8, este potencial debe valer EB1 :

para W-S<x<W

$$E_{B1} = \frac{q^2 N_D}{2 \epsilon} (W - \delta)^2$$
 (II-11)

donde $E_{B1} = q (\phi_T - \phi_S)$

У

es la diferencia de energias entre el nivel profundo y el nivel de Fermi en la zona neutra.

En la coordenada W, este potencial debe valer E_B , que está relacionado con la altura de barrera por:

$$E_{B} = q(\phi_{Bo} - \phi_{S} - V)$$

De ambas condiciones se deduce el espesor \$ de la zona eléctricamente activa:

$$\mathbf{S} = \left(\frac{2 \varepsilon}{q^2 N_D} E_B - \mathbf{S}^2 \frac{N_T}{N_D}\right)^{1/2} - \left(\frac{2 \varepsilon}{q^2 N_D} E_{B1}\right)^{1/2}$$
(II-12)

El espesor \S depende de la tensión aplicada a través de Eg . Al aumentar la polarización el espesor \S disminuye.

A partir de esra forma de barrera se efectúa el cálculo de la corriente de emisión termoiónica por efecto de campo integrando numéricamente, para cada potencial, la ecuación :

$$J = \frac{A^{*}T}{k} \int_{0}^{\infty} f_{s}(E) \quad T(E) dE \left(1 - \exp\left(-\frac{q V}{kT}\right)\right)$$
(II-13)

Podemos descomponer el intervalo de integración en tres zonas, según la energia de los electrones:

E>EB; EB1<E<EB; O<E<EB1

los límites de estas zonas dependen de la tensión aplicada.

En el primer intervalo, los electrones tienen energias superiores a la barrera, y $\mathcal{T}(E) = 1$, con lo que la integral conduce a la corriente de emisión termoiónica.

En la segunda región, los electrones atraviesan la barrera por efecto túnel, y producen la componente de la corriente de emisión termoiónica por efecto de campo.

En la tercera región, el espesor de la barrera es elevado en los diodos con dopage N_D moderado, y la integración conduce a una corriente prácticamente nula.

Mediante integración numérica de la ecuación (II-13), considerando distintas densidades de centros profundos en la interfase, se obtionen las coractorísticos I - V de la figura 14. Calculando en allas los parámetros "n" y ϕ_{Bn} con las ecuaciones (II-4) y (II-6), obtenemos

la correlación teórica que debe existir entre estos dos parámetros.

En la figura 15 comprobamos que, a pesar de las múltiples aproximaciones efectuadas en el cálculo teórico, la correspondencia con las correlaciones experimentales es excelente. El único parámetro de ajuste empleado es la concentración N_T de centros profundos. Se puede ver que para obtener valores de "n" elevados, hace falta suponer la existencia de centros profundos en la interfase, del orden de 10¹⁸átomos/ cm³.

Por otro lado, volviendo a la ecuación (II-12) observamos que con dopages en la interfase del orden de $10^{18} \pm 000 \text{ sc}/\text{cm}^3$, y con tensiones directas entre 0 y 300 mV, el espesor § en el que los centros profundos están ionizados varía entre 50 y 200 Å, por lo que éste es el espesor que debemos suponer para la capa interfacial fuertemente dopada. Como veremos mas adelante, la difusión de impurezas en un espesor tan débil es perfectamente razonable, incluso en densidades elevadas.

Figura 15 - Correlación entre la altura de barrera Ø_{Bn} y el parametro "n" en los resultados experimentales de la tabla II. En negro: resultados teoricos obtenidos por cálculo numerico con el modelo de la sección II.l.S.

II.2. CONDUCCION EN INVERSA.

La característica inversa de un diodo Schottky está determinada por la corriente inversa y por la tensión máxima que es capaz de bloquear.

De acuerdo con la teoria de la difusión-emisión termoiónica, la corriente inversa debe ser igual a la corriente de saturación I_s de la expresión (I-19), e independiente de la tensión, cuando la tensión inversa sea superior a algunos kT.

Varios fenómenos son capaces de introducir componentes adicionales en la corriente inversa, originando corrientes superiores a la teórica y además , una dependencia con la tensión aplicada (es la llamada falta de saturación).

En primer lugar está el efecto de las corrientes superficiales, localizados en la periferia del diodo, y originados en los fenómenos de conducción asociados a los campos eléctricos intensos existentes en el límite del contacto. Estas corrientes son los primeros responsables del mal comportamiento en inversa de los diodos Schottky. Se caracterizan por ser proporcionales al perímetro del diodo, a diferencia del resto de corrientes, que lo son a su superficie.

Las corrientes superficiales se pueden reducir o eliminar en los diodos mediante un anillo de guarda, en nuestro caso, difundido/72/.

En segundo lugar, las corrientes de generación en la zona de carga de espacio. Estas corrientes, análogas a las de las uniones p-n, son poco importantes en los diodos Schottky frente a las otras componentes, muy superiores.Aparecen en los diodos eleborados sobre substratos de alta resistividad, en los que la zona de carga de espacio ticne un espesor considerable.

En ausencia de corrientes superficiales, la dependencia de la corriente con la tensión inversa aplicada debe atribuirse a una dismi-

nución de la altura de barrera por efecto Schottky, o bién a una disminución de la "altura de barrera aparente".

Al incluir el efecto Schottky sobre la altura de la barrera, la corriente inversa se expresa /26/ :

$$J_{s} = A^{*} T^{2} \exp\left(-\frac{q \not B_{BD}}{KT}\right) \exp\left(-\frac{q}{KT} \left(\frac{qF}{4\pi \varepsilon}\right)^{1/2}\right)$$
(II-20)

donde el campo eléctrico F depende de la tensión aplicada , según:

$$F = \left(\frac{2 \text{ g } N_{\text{D}}}{\varepsilon}\right)^{1/2} \left(V \div V_{\text{bi}} - \frac{\text{KT}}{\text{q}}\right)^{1/2}$$
(II-21)

En general, las observaciones experimentales constatan una variación de la altura de la barrera con el campo eléctrico aún mayor de la prevista por efecto Schottky /46/, /47/.

Por otra parte, las corrientes inversas medidas en los diodos obtenidos de una misma plaqueta de Silicio presentan una dispersión importante, observándose una correlación entre esta corriente y el parámetro "n" de la característica en directo (figura 16), en el sentido de que la corriente inversa es mayor en los diodos con "n" mayor.

El hecho de aparecer asociadas las corrientes inversas excesivas con los parámetros "n" de la característica directa elevados, sugiere la posibilidad de que la corriente inversa en exceso sea debida al paso de electrones por emisión termoiónica por efecto de campo a través de la barrera. Esto requiere, lo mismo que para la polarización directa, la presencia de una capa interfacial con una densidad elevada do centros profundos.

Esta hipótosis pormite, además, justificar cualitativamente

Figura 16 - Características inversas de una serie de diodos Mo-Si(n)

una dependencia de la "altura de barrera aparente" con la tensión inversa, superior a la debida al efecto Schottky. En efecto, en el cálculo de la corriente en (II.1.5.) hemos visto que la importancia relativa de la emisión termoiónica por efecto de campo depende de la polarización, a través de los límites de la integral (II-13).

En cuanto a la tensión máxima que los diodos son capaces de bloquear en inversa, está fijada, teóricamente, por el campo eléctrico de avalancha, lo que se traduce para los diodos Schottky en unas tensiones máximas parecidas a las de los diodos $p^{+}n$ de igual dopage.

Sin embargo, los efectos de borde y los fenómenos expuestos en la próxima sección, limitan en nuestros diodos la tensión inversa de bloqueo a unos 15 Voltios.

II.3. FENOMENOS DE COMMUTACION EN POLARIZACION INVERSA.

En nuestros diodos Schottky hemos observado fenómenos de conmutación biestable en la característica de conducción inversa, análogos a los observados en los diodos Metal-As Ga /49/, Metal-Si /50/ y en las heterouniones Zn Se-Ge /51/, /52/.

Estos fenómenos de conmutación se acentúan en los diodos en los que se ha efectuado una difusión metálica en la superficie, previa a la deposición del metal de contacto.

Las posibilidades de utilizar estos fenómenos para elaborar dispositivos con"efecto memoria" nos han llevado a investigar las condiciones necesarias para su aparición y a analizar su posible orígen.

II.3.1. Inestabilidades observadas en los diodos sin tratamiento térmico.

Los diodos Schottky con contacto de oro, alumínio, o cromo, y con anillo de guarda difundido presentan, a menudo, una ruptura en la característica I-V inversa a tensiones inferiores a las de avalancha, o también algunas veces dentro de la avalancha.

En el trazador de características pueden apreciarse varios tipos de rupturas, ilustradas en la figura 17. A pesar de la variedad de figuras, todas obedecen a un mismo fenómeno: el establecimiento brusco de un modo de conducción de baja impedancia cuando la tensión inversa alcanza cierto valor límite.

Este fenómeno puede repetirse a una tensión mayor, dando lugar a varios estados de baja impedancia.

El retorno al estado de alta impedancia se produce, en algunos dispositivos, cuando la polarización se reduce hasta la tención umbral (figuras 17-a y 17-b); en otros dispositivos hace falta reducir la polarización hasta tensiones considerablemente inferiores para destruir el estado de baja impedancia (figuras 17-c y 17-d). En este último caso, se observa el efecto de resistencia negativa cuando la tensión de polarización se aplica a través de una resistencia (resistencia de carga).

II.3.2. Conmutación y efecto memoria en los diodos tratados térmicamente.

El interés que presenta el estudio de los fenómenos de conmutación descritos, nos ha llevado a investigar qué procedimientos permitirian obtener dispositivos que presenten estos fenómenos de manera reproducible.

Los resultados más notables se han obtenido con los diodos Schottky de pequeña superficie y con anillo de guarda, que han sido sometidos a un tratamiento térmico con el que, presumiblemente, se introduce una densidad importante de impurezas metálicas en la interfase metal-semiconductor.

El procedimiento empleado consiste en depositar una capa metálica de unos 1000 $\stackrel{0}{A}$ de oro,hierro, o cobre, localizada mediante fotograbado, en el lugar del contacto, después de la difusión del anillo de guarda. Se efectúa, seguidamente, un tratamiento térmico a temperaturas entre 400 y 600 $\stackrel{0}{C}$ durante un tiempo relativamente corto, entre 10 y 30 minutos. Posteriormente se disuelve químicamente esta capa metálica, y se deposita en su lugar el metal de contacto, en general cromo.

Las temperaturas y los tiempos de difusión empleados no son suficientes para producir una difusión metálica en el volúmen del semiconductor, pero es de suponer que introducen impurezas metálicas en una capa superficial del semiconductor, bién sea por difusión, o por otros procesos más complejos que pueden estar asociados con las irregularidades cristalinas del semiconductor en su superficie.

Estas estructuras presentan, en directo, una caracteristica

Figura 17 - Fenomenos de conmutación, bajo polarización inversa, observados en el trazador de características. I - V con parámetro "n" muy superior a la unidad. En inverso, presenten una corriente excesiva, y unos fenómenos de conmutación muy acentuados.

En estos dispositivos aparecen dos tipos de fenómenos de conmutación: la conmutación biestable y el efecto memoria.

La figura 18 ilustra la característica inversa, a varias temperaturas, de un dispositivo que presenta una conmutación biestable. Se observa, para cada temperatura, la presencia de dos estados de conducción en inversa, estables.

El estado 1, de alta impedancia, corresponde a la caracteristica normal del diodo en inversa. El estado 2, de baja impedancia, presenta una resistencia dinámica de algunos kilohomios.

La transición del estado l al estado 2 se produce cuando la tensión aplicada alcanza el valor umbral V_s . La transición del estado 2 al estado 1 se produce cuando la intensidad desciende por debajo de un valor umbral, generalmente muy pequeño, que corresponde a una tensión aplicada V_i .

La estabilidad de las características a temperatura constante, del estado 1 y del edtado 2, ha sido comprobada durante varias horas. Tanto el estado 1 como el estado 2 son perfectamente reproducibles a una temperatura dada. El ciclo completo ha sido descrito a una frecuencia de 50 Hz. durante una semana sin presentar ninguna deriva ni desfallecimiento.

Hemos comprobado que bastan impulsos de tensión de 50 ns para provocar los cambios de estado.

El estudio a varias temperaturas de la características eléctricas permite hacer varias constataciones interesantes:

- En el ostado l le corriente aumenta exponencielmente con la temperatura. La energia de activación es del orden de 0.55 eV. - En el estado 2 las características I - V son sensiblemente lineales y poco sensibles a las variaciones de temperatura.

A temperatura ambiente, la tensión V_M es generalmente elevada y próxima a V_S ; al disminuir la temperatura, V_S se desplaza hacia tensiones más elevadas y V_M hacia tensiones inferiores, pudiendo descender, en algunos dispositivos, hasta O Voltios a 77°K. Estos corrimientos hacen que los ciclos de histéresis sean mucho más amplios a bajas temperaturas.

Figura 18 - Fenómeno de conmutación biestable en inversa, observado a distintas temperaturas.

- 1 Estado de alta impodancia.
- 2 Estado de baja impedancia.

La figura 19 ilustra la característica de un dispositivo que presenta conmutación con efecto memoria. Se caracteriza por el hecho de que, una vez obtenido el estado de baja impedancia, es necesario, para destruirlo, el paso de una corriente directa/20/.

Tanto las propiedades referentes a la conmutación del estado l al estado 2, como las referentes a la dependencia con la temperatura, de las características de ambos estados, coinciden con las observadas para los fenómenos de conmutación biestable antes descritos.

También aquí se han observado, en algunos dispositivos, dos estados de baja impedancia estables, obteniéndose el segundo cuando elevamos la tensión aplicada por encima de un valor umbral superior al correspondiente al primer estado de baja impedancia.

Este fenómeno de conmutación con efecto memoria se presenta en los dispositivos sometidos al tratamiento térmico antes descrito, pero si bién la conmutación biestable aparece en casi todos los dispositivos realizados, el efecto memoria aparece con una frecuencia muy inferior, habiéndose observado solamente en unos pocos casos entre varias decenas de dispositivos elaborados.

Es importante señalar, que no se ha observado la aparición de efecto memoria en ningún dispositivo biestable, aún descendiendo la temperatura a 77⁰K.

II.3.3. Interpretación de los fenómenos./55/

Las características de los fenómenos que acabamos de describir sugiern que el mecanismo responsable de la conmutación biestable es de orígen electrónico.

Otros mocanismos de orígen esencialmente térmico descritos en la literatura /53/, no paracen adecuados para explicar estos fenómenos, por razones múltiples:

- Los fenómenos son relativamente insensibles a la temperatura.
- La potencia disipada en la estructura en el momento de la conmutación es muy pequeña.
- Los fenómenos parecen repetirse sin degradación un número indefinido de veces, lo que no es compatible con la creación y destrucción de filamentos conductores de orígen térmico.

En cambio, varias características apoyan la explicación de los fenómenos mediante un mecanismo electrónico:

- La difusión de impurezas metálicas en la interfase favorece la aparición de los fenómenos de conmutación.
- Los fenómenos de conmutación aparecen preferentemente en los dispositivos con un factor "n" de la característica directa excepcionalmente elevado.
- Las medidas de capacidad, desarrolladas en el próximo capítulo, demuestran la existencia de impurezas eléctricamente activas en la interfase del metal-semiconductor.

Por otra parte, la conducción en el estado de baja impedancia está seguramente asociada con la formación de filamentos conductores/21/ esta hipótesis viene apoyada por dos hechos experimentales:

- Las características de la conmutación no dependen de la superficie activa de los diodos, lo que sugiere que el fenómeno está localizado en una región de pequeña superficie, siendo ajeno a él el resto del contacto.
- La aparición consecutiva de varias conmutaciones se explicaría por la repetición del fenómeno en un mismo diodo, en distintos puntos de la superficie del contacto.

El carácter ohmico y casi independiente de la temperatura que presentan las características en el estado de baja impedancia, sugiore una conducción por efécto túnel a través de la barrera de potencial.

Este tipo de conducción coincide, como hemos visto en (I.2.4.), con la conducción por emisión termoiónica por efecto de campo en el caso límite en que la densidad de impurezas ionizadas es muy elevada. Esta observación sugiere la explicación cualitativa siguiente, para estos fenómenos de conmutación biestable:

La conducción en inversa en el estado l sería debida a la emisión termoiónica por efecto de campo debido a la presencia de una capa interfacial fuertemente dopada con centros profundos. Al aumentar la polarización inversa aumenta rápidamente el campo en la interfase, por la ionización de los centros profundo próximos al metal, iniciándose la conducción por avalancha en la tensión de polarización $V_{\rm s}$.

La corriente de avalancha provocaría la ionización del resto de los centros profundos mediante ionización por choque, con lo que aumenta el campo eléctrico en la interfase, reduciéndose consecutivamente la tensión necesaria para mantener el régimen de avalancha.

Esta fenómeno conduce a una característica de conducción con resistencia negativa (resistencia negativa tipo-S o controlada por la corriente). RIDLEY demostró /54/, con argumentos termodinámicos, que este tipo de resistencia negativa produce una conducción por filamentos de corriente, con lo que la ionización de los centros profundos y la avalancha tienden a localizarse en regiones de pequeña superficie; en ellas el campo eléctrico sería muy elevado, y por lo tanto el paso de la corriente se efectuaría por efecto túnel a través de la barrera. Esta sería la forma de conducción en el estado 2, de baja impedancia.

La conmutación en sentido inverso, del estado 2 al estado 1, se produciría para una tensión V_M en la que el campo eléctrico en la interfase soría insuficiente para mantener el régimen de avalancha.

La eparición de varios estados de baja impedancia puede explicarse suponiendo que cada uno de ellos es debido a un filamento de corriente, siendo para cada filamento las tensiones V_s y V_M distintas, debido a las fluctuaciones en la densidad de centros profundos asociadas a las imperfecciones cristalinas de la superficie del semiconductor.

Este modelo no puede dar cuenta, sin embargo, del fenómeno de conmutación con efecto memoria, ya que al pasar por la polarización nula debe desaparecer forzosamente el régimen de avalancha, y con ello, los centros profundos deben volver a su estado de ionización de equili brio.

Figura 19 - Conmutación biestable con efecto "memoria". 1 - Estado de alta impedancia. 2 - Estado de baja impedancia.

CAPITULO III

14

METODOS EXPERIMENTALES PARA ANALIZAR LOS CENTROS PROFUNDOS

EN LA INTERFASE METAL - SEMICONDUCTOR
Los resultados experimentales presentados en el segundo capitulo, referentos a las anomalias en la conducción en los diodos Schottky sobre silicio moderadamente dopado, asi como los fenómenos de conmutación en las caracteristicas inversas, nos han llevado a conceder una importancia especial a la composición quimica y electronica de la región del semiconductor que limita con el metal de contacto, a la que hemos llamado "capa interfacial".

La hipótesis de la existencia de una reacción quimica entre el metal y el semiconductor fue emitida ya en los primeros trabajos sobre los diodos Schottky, para explicar la importancia de los procesos de "formación" mediante tratamientos termicos y tambien para justificar la disparidad en las alturas de barrera observadas.

Actualmente se utiliza la reacción a alta temperatura de algunos metales con el silicio, para formar una capa de siliciuro que actua como un verdadero metal de contacto, obteniendose unos diodos Schottky con propiedades notables , en cuanto a la estabilidad y reproductibilidad de las características.

Se han observado, recientemente, numerosas reacciones interfaciales en los sistemas metal-semiconductor, que tienen lugar a temteraturas muy inferiores a las necesarias para que la reaccion tuviera lugar en el volumen del material.

La primera que se observó fué la rección entre el silicio y una pelicula de oro depositada por evaporación. En este caso, aún sin tratamiento termico la pelicula metalica presenta una adherencia excepcional. Mediante tratamientos termicos en atmosfera oxidante, a temperaturas entre 100 y 300 °C, se observó la formación de SiO₂ sobre la pelicula de oro (62). Investigaciones posteriores (63), han demostrado la formación de una capa intermedia entre el silicio y el oro metalico, con una concentración de oro muy superior a la solubilidad del oro en silicio a alta temperatura.

Unos fenomenos analogos ocurren en las metalizaciones de aluminio sobre silicio (64).

Con los metales que forman siliciuros, se ha observado el crecimiento de capas interfaciales de siliciuro metalico a temperaturas muy inferiores a las de fusión. Se ha observado este fenomeno con Pd a 225°C (65), Cr a 450°C (66), Mo a 550°C y Pt, Hf, Ti a temperaturas superiores (67).

La formación de estas capas con fuerte concentración metálica podria tenér su origen en la excepcional habilidad del silicio para difundir en los metales incluso a temperaturas relativamente bajas; el silicio sogregado posteriormente por el metal formaria una capa cristalina epitaxiada sobre el substrato, que contendria una densidad excepcional de atomos metalicos (68) (69).

Por otra parte, consideraciones termodinamicas (70), predicen la formación de un gradiente de concentración para minimizar la energia libre de las interfases.

Estos fenomenos a baja temperatura tienen para nosotros un gran interés, ya que podrian justificar la presencia de centros profundos en la interfase metal-semiconductor con unas densidades superiores a las originadas por simple difusión del metal de contacto en el silicio.

El analisis de estas reacciones interfaciales se realiza, generalmente, mediante la retrodifusión de iones He⁺ ("Backscattering") o bien por espectroscopia Auger ("A.E.S."). Ambos metodos permiten analizar la composición y el estado quimico de una capa superficial de la muestra. El primero permite un analisis en profundidad hasta un espesor de algunas micras y con una resolución de unos 200 Å, con el segundo se analiza la composición y el estado electronico do una capa superficial de unos 10 Å de espesor y debe acompañarse do una abrasión por haz de iones Argon para analizar la composición en prefundidad.

Estos metodos de analisis son adecuados para detectar la formacion de capas interfaciales, determinar su composición y su espesor, determinar su evolucion en función de los tratamientos termicos, etc.

Estos metodos de analisis proporcionan una señal proporcional al contenido relativo de cada elemento en la muestra, por lo que su sensibilidad dificilmente supera el 1% del componente principal. La falta de sensibilidad y la poca resolucion en espesor les hacen poco adecuados para analizar los gradientes de concentracion que deben existir entre las distintas capas interfaciales y todavia menos para determinar la posible penetración en el interior del silicio cristalino, donde una concentración de impurezas de 10¹⁸ atm./cm³ representa solamente una proporción de un atomo pr cada 10⁵ atomos de silicio.

Nosotros hemos abordado el problema del analisis de los centros profundos en la interfase con los métodos electricos basados en los efectos de las impurezas ionizadas sobre la capacidad dinámica del diodo Schottky. Estos métodos han sido profusamente empleados para la caracterización de los centros profundos en el volumen de un semiconductor, pudiendo detectarse densidades inferiores a 10¹⁴ atm/cm³.

Al utilizar estos metodos para determinar el perfil de densidad de los centros profundos en la interfase, aparecen dificultades debidas a su espesor extremadamente reducido (inf. a 0,1 u) y a la proximidad del contacto metálico.

Por otra parte, el analisis con metodos electricos tiene la ventaja de proporcionar información sobre las impurezas electricamente activas, que son las que pueden afectar las propiedades electricas del diodo.

En este capitulo proponenos algunos motodos de analisis ade-

cuados para estudiar la interfase, que nosotros hemos utilizado para demostrar la presencia de centros profundos en nuestros diodos experimentales.

Concluimos el capitulo con una discusion de las ventajas propias de cada método y de las dificultades quese presentan en su aplicación.

14

III.1. DEPENDENCIA DE LA CAPACIDAD DE TRANSICION CON EL ESTADO DE CARGA DE LOS CENTROS PROFUNDOS.

En una unión metal-semiconductor, polarizada en inverso, se forma una región de carga de espacio o "zona de transición", que se puede considerar, en primera aproximación, desprovista de portadores libres

Al superponer una señal de pequeña amplitud y de alta frecuencia a la tensión de polarización, esta región actúa como el dieléctrico de un condensador plano. El motal por un lado, y la zona neutra del semiconductor por el otro, hacen las veces de armadura del condensador, cuya capacidad vale :

$$C = \frac{\varepsilon S}{2}$$

(III-1)

donde C es la llamada "capacidad de transición"de la unión,

E es la constante dieléctrica del semiconductor,

S es la superficia del contacto,

Y

W es la anchura de la zona de transición.

Por otra parte, la anchura de la zona de transición, W , debe ser tal que la diferencia de potencial entre sus extremos igualo a la suma del potencial de difusión y el potencial inverso aplicado :

$$V \doteq V_{\text{bi}} + V_{\text{a}} \tag{III-2}$$

Esta diferencia de potencial tiene su orígen en la carga de espacio, y se obtiene por integración de la caucción de Poisson :

$$V = \frac{q}{\epsilon} \int_{0}^{2\pi} x \cdot q(x) dx \qquad (III-3)$$

donde x es la distancia al metal, y e(x) la densidad neta de carga de espacio en cada punto de la zona de transición.

La carga de espacio está formada por las impurezas dopantes ionizadas, y por los centros profundos existentes, cuyo estado de ionización puede cembiar según las circunstancias.

Cuando parte de los centros profundos cambian su estado de ionización, la anchura de la zona de transición debe modificarse para seguir manteniendo la diferencia de potencial dada por la ecuación (III-3).

Si la modificación del estado de ionización ha afectado los centros profundos, situados a una distancia x del metal, y distribuidos en un espesor Δ x con una densidad N_T(x), la variación del potencial será :

$$\Delta V = \frac{q}{\epsilon} N_{T} (x) \times \Delta x \qquad (III-4)$$

Este incremento del potencial, ΔV , no puede aparecer en los bornes del diodo, ya que la tensión de polarización está fijada desde el exterior. Resulta compensado, internamente, por el potencial debido a un incremento de la anchura de la zona de transición, ΔV , que viene dado por :

$$\Delta V = \frac{q}{\epsilon} N_{D}(W) W \Delta W \qquad (III-5)$$

donde $N_{D}(W)$ es el dopage en el límite de la zona de transición y W es su anchura.

Igualando ambos incrementos de potencial obtenemos:

$$\mathbb{W} \ \Delta \mathbb{W} = \frac{\mathbb{N}_{T}(\times)}{\mathbb{N}_{D}(\mathbb{W})} \ \times \ \Delta \times$$
 (III-6)

Este cambio Δ ^W en la enchura de la zona de transición se refleja en una modificación de la capacidad de transición que, según la relación (III-1), valdrá :

$$\Delta\left(\frac{1}{c^2}\right) = \frac{2}{(\epsilon s)^2} \frac{N_T(x)}{N_D(y)} \times \Delta x \qquad (III-7)$$

Observamos en esta ecuación que una variación del estado de ionización de los centros profundos, origina una modificación de la capacidad de transición, que es una magnitud facilmente medible en un diodo Schottky y por lo tanto, resulta muy adecuada para investigar la presencia de centros profundos.

III.1.2. Determinación de los centros profundos a traves de la capacidad de transición.

Hemos visto que la medida de la capacidad de una unión es un método eficaz para detectar pequeños cambios en el estado de ionización de los centros profundos situados en la zona de transición.

Para detectar su presencia y medir su densidad, neccsitamos disponer de métodos adecuados para provocar cambios en su estado de ionización. Disponemos para ello de dos procedimientos :

1º - La iluminación monocromática permite establecer un estado de

ionización distinto al de equilibrio, bien sea : provocando transiciones ópticas entre el estado profundo y una de las bandas, con lo que se consigue la ionización del centro; o creando pares electrón-hucco en exceso, mediante fotones de energía superior a la de la banda prohibida,que con copturados por los centros profundos. 2ª - Polarizando momentáncamente el diodo en directo, se inunda la zona de transición con portadores mayoritarios, que son capturados por los centros profundos, de acuerdo con los procesos que tratamos en el Apéndice.

Comparando las posibilidades prácticas que ofrecen los métodos enunciados, podemos concluir :

- La iluminación monocromática permite obtener estados de ionización muy precisos. Es especialmente útil en el estudio de un centro determinado de naturaleza conocida, del que se pretende saber, con precisión, su densidad, sus coeficientes de emisión y de captura, y su nivel energético.

- Los cambios en la tensión de polorización son de realización práctica mucho más simple, son eficaces para detectar la presencia de mayoritarios. Permiten analizar las densidades no uniformes y deducir su perfil

- La iluminación interbandas puede rasultar ventajosa para la detección de trampas de minoritarios.

Los trés métodos tienen la misma sensibilidad, ya que ésta viene dada por la ecuación (III-7), válida igualmente para todos ellos.

Debido a las dificultades que se presentan en la polarización de la unión, especialmente en los diodos comerciales, hemos adoptado como método exploratorio el basado en los cambios de tensión de polarización, aplicable incluso en los diodos encapsulados, reservando el primer método para los diodos experimentales en los que se haya previsto la posibilidad de iluminar la unión.

III.1.3. Pulsos de polarización directa.

Este método consiste en medir la capacidad dinámica H. F. de la diodo, en polarización inversa y a baja temperatura, antes y después de la aplicación de un pulso de polarización directa suficientemente amplio para inundar toda la zona de transición de la unión con portadores mayoritarios.

Suponiendo el semiconductor de tipo-n, los centros profundos dadores de la zona de transición, bajo polarización inversa, estarán ionizados. Durante el pulso directo capturarán electrones, pasando al estado neutro (ver figura 20)

El cambio de estado de polarización se habrá producido para los centros profundos que pueden estar distribuídos en una amplia zona, por lo que el cambio en la capacidad se obtendrá integrando la ecuación (III-7) :

$$\Delta\left(\frac{1}{c^{2}}\right) = \frac{2}{(\varepsilon_{S})^{2}} \frac{1}{N_{D}(W)} \int_{0}^{W} N_{T}(x) \times dx \qquad (III-8)$$

Si la densidad de centros profundos fuese constante en toda la zona de transición, podríamos integrar y obtendríamos:

$$\Delta(\frac{1}{c^2}) = \frac{1}{c^2} \frac{N_T}{N_D}$$
(III-9)

que, para $\Delta C \ll C$ se puede poner:

$$\frac{\Delta c}{c} = \frac{1}{2} \frac{N_T}{N_D}$$
(III-10)

Este no es nuestro caso, ya que debemos suponer una rápida variación del perfil $N_{T}(x)$ en las proximidades de la interfase; la integral no se puede evaluar, y por lo tanto es imposible deducir la densidad de centros profundos a partir de $\Delta C.No$ obstante, cuando por consideraciones de otro tipo podamos hacer hipótesis sobre la forma del porfil $N_{T}(x)$, podremos integrar la ecuación (III-8).

Si suponemos que los centros profundos se encuentran distribuidos con densidad uniforme N_{T} hasta una distancia U del metal, y con densidad nula en el volúmen del semiconductor, la ecuación (III-8) queda :

$$\Delta\left(\frac{1}{c^2}\right) = \frac{1}{(\epsilon s)^2} \frac{N_T}{N_D} \int_0^U x \, dx \qquad (III-11)$$

y análogamente la (III-10) :

$$\frac{\Delta C}{C} = \frac{1}{2} \frac{N_T}{N_D} \left(\frac{U}{W}\right)^2$$
(III-12)

donde aparece el factor $\frac{U}{W}$, que es la fracción de anchura de la zona de transición ocupada por los centros profundos.

Mas realista es, en nuestro caso, suponer una distribución de centros profundos que decrece exponencialmente al alejarse del metal, con una concentración N_{TS} junto al metal y una longitud característica L. La ecuación (III-8) queda :

$$\Delta\left(\frac{1}{c^{2}}\right) = \frac{1}{(\epsilon s)^{2}} \frac{N_{TS}}{N_{D}} \int_{0}^{W} \exp(-x/L) \times dx \qquad (III-13)$$

de donde se deduce

$$\frac{\Delta C}{C} = \frac{N_{TS}}{N_{D}} \left(\frac{L}{W}\right)^{2} \left(1 - (W/L - 1) \exp(-W/L)\right) \qquad (III-14)$$

De las ecuaciones (III-12) y (III-14) podemos deducir las densidades de centros profundos $N_{T}(x)$, si conocemos las longitudes U y L, respectivemente. Este método es pués, adecuado para detectar la presencia de centros profundos, y puede también servir para comparar las densidades existentes en distintas uniones, cuando podemos suponer que están distribuidas con idéntico perfil.

La dificultad que representa la determinación del perfil de densidad de los centros profundos, se puede solventar, en parte, mediante una modificación del método, que analizaremos a continuación.

III.1.3. Pulsos de polarización directa de amplitud creciente.

Al igual que en el método anterior, medimos los cambios de la capacidad dinámica H.F. del diodo bajo una polarización inversa fija, provocados por la aplicación de pulsos de polarización directa. Sin embargo, aquí, aplicamos sucesivamente varios pulsos de amplitudes conocidas, y cada uno ligeramente superior al anterior.

De esta manera conseguimos cambiar el estado de ionización de los centros profundos situados en posiciones progresivamente cercanas al metal, con lo que se puede deducir su perfil de densidad.

La sensibilidad global del método es inferior a la del método anterior, ya que este consiste esencialmente en fraccionar el Δ C total obtenido con un pulso de polarización amplio, en varios Δ C parciales.

Con un razonamiento análogo al de la sección III.l.l, deducimos que los incrementos en la capacidad dinámica del diodo vienon dados por la ecuación (III-7), que podemos también escribir :

$$\frac{\Delta c}{\Delta \times} = \frac{1}{(\epsilon s)^2} \frac{N_{\tau}(x)}{N_{D}(W)} c^3 x \qquad (III-15)$$

Aquí C es la capacidad medida bajo polarización inversa fija, una vez finalizado el pulso directo, y x es la distancia al metal de los centros profundos que han cambiado su estado de carga durante la aplicación del pulso directo. $\Delta C/\Delta x$ es la pendiente de la curva que se obtiene al representar las distintas capacidades C en función de la coordenada x alcanzada en el pulso precedente.

En la ecuación (III-15) vemos que la evaluación de la coordenada x en la que cambia el estado de ionización de los centros profundos, es esencial para deducir la densidad N_T . Según el esquema presentado en la figura 20, esta coordenada es precisamente $W - \lambda$, donde W se puede deducir de la capacidad de la unión durante el pulso directo. Sin embargo, en el cálculo detallado presentado en el apéndice A.3 (figura A4) observamos que cuando el experimento se realiza a la temperatura del nitrógeno líquido, la captura de electrones es muy rápida para centros profundos situados en coordenadas x > W, y progrese después lentamente hacia la coordenada $W - \lambda$, quedándose, con los pulsos de algunos segundos de duración, en una coordenada intermedia que es difícil de determinar.

Esta imprecisión en el valor de \times es importante cuando es comparable con W, o sea cuando analizamos las proximidades del contacto metálico. Los errores en los valores de \times afectan el perfil de densidad N(x) obtenido, ya que representan un desplazamiento en las abscisas, y además intervienen en el cálculo de N en la ecuación (III-15). III.2. VARIACION DE LA CAPACIDAD DIFERENCIAL CON LA FRECUENCIA DE MEDIDA.

La característica C-V de un diodo polarizado en inverso debería ser, en principio, independiente de la frecuencia de medida, mientras ésta sea inferior al inverso del tiempo de relajación del dieléctrico. Lo que supone una capacidad independiente de la frecuencia entre O y 10^{12} Hz.

Cuando existen centros profundos dentro de la zona de transición, la capacidad puede depender considerablemente de la frecuencia de medida, como observaron por primera vez SAH y REDDI /61/ . La capacidad resulta mayor cuando se mide con una señal de baja frecuencia que con una señal de alta frecuencia.

La dependencia de la capacidad de transición con la frecuencia puede explicarse considerando la participación de la carga liberada por los centros profundos cuando éstos se ionizan siguiendo la señal de medida. Estas cargas libres introducen una componente adicional a la capacidad diferencial de la diodo, cuya magnitud es fuertemente dependiente de la frecuencia de la señal de medida, como veremos a continuación.

En la figura 21 representamos nuevamente el esquema de bandas de un contacto metal-semiconductor tipo-n con un dopage $N_{\mbox{D}}$ y con una densidad de centros profundos dadores $N_{\mbox{T}}$. La zona de carga de espacio se extiende desde el contacto metálico hasta una coordenada $\mathbb W$, y los centros profundos se encuentran ionizados hasta una coordenada $\mathbb W$ - λ , de acuerdo con los resultados obtenidos en el Apéndice.

Al aumentar la tensión de polarización V en un incremento ΔV , las coordenadas \Im y $\Psi - \lambda$ aumentan ligeramente. En Ψ aparece una carga incremental $\Delta \Box$ debida al aumento en la extensión de la carga de espacio, y en $\Im - \lambda$ aparece una carga incremental $\Delta \Box$, debida al aumento en la extensión de la carga de espacio, y en $\Im - \lambda$ aparece una carga incremental $\Delta \Box$, debida al aumento en la extensión de la carga de espacio, y en $\Im - \lambda$ aparece una carga incremental $\Delta \Box$, debida al aumento en la extensión de la carga de espacio, y en $\Im - \lambda$ aparece una carga incremental $\Delta \Box$, debida al aumento en la extensión de la carga de espacio, y en $\Im - \lambda$ aparece una carga incremental $\Delta \Box$.

El incremento de carga ΔQ_T tiene lugar a través de los procesos de emisión y de captura de portadores por el centro profundo, regidos por la ecuación

$$\frac{dn_T}{dt} = (c_n n + e_p) (N_T - n_T) - (c_p p + e_n) n_T \qquad (III-16)$$

donde n_{T} es la densidad de centros profundos ionizados, y N_{T} es su densidad total.

En el apéndice, sección A-3, analizemos la evolución del estado de carga de los centros profundos cuando se encuentran fuera del equilibrio y en presencia de concentraciones estacionarias de portadores n y p. La solución de la ecuación (III-15) es, en aquel caso, una evolución del estado de carga exponencial con el tiempo. Aquí, sin embargo, las concentraciones n y p no son estacionarias sino que cambian, siguiendo la señal de medida.

La señal de medida consiste en una tensión sinusoidal, de pequeña amplitud, superpuesta a la tensión de polarización. Debido a ella, el potencial en todos los puntos de la zona de transición oscila elrededor de su valor estacionario. Podemos suponerlo igual a la parte real de :

$$V(x,t) = V_n(x) + V \exp(i\omega t)$$
 (III-17)

donde $V_0(x)$ es el potencial electrostático estacionario, ΔV es la amplitud de la señal de medida y ω es se frecuencia angular.

Las densidades de portadores dentro de la zona de transición oscilarán también, siguiendo el potencial.

Si suponemos que las densidades locales de portadores, n y p , siguen la distribución de Boltzman, vendrán dadas por :

$$n = n_{0} \exp \left(\frac{q}{kT} \Delta V \exp (i\omega t)\right)$$
(III-18)

$$p = p_{o} \exp\left(\frac{-q}{kT} \Delta V \exp(i\omega t)\right)$$

donde n y p son las densidades estacionarias en ausencia de la señal de medida, en cada punto de la zona de transición.

En ambas expresiones podemos desarrollar en serie la primera exponencial, con lo que se obtiene :

$$n = n_0 + \Delta n \exp(i\omega t)$$

$$p = p_0 + \Delta p \exp(i\omega t)$$
(III-19)

donde Δ n y Δ p son los incrementos de las densidades n y p en cada punto, cuando la tensión de polarización es V + Δ V

Los términos de orden superior en este desarrollo no se consideran, ya que introducen solamente armónicos de la frecuencia fundamental, cuyos efectos son filtrados por el medidor de capacidades.

Estas densidades n y p, introducidas en la ecuación (III-16) la convierten en una ecuación diferencial no lineal. para poderla resolver es necesario linearizarla, para lo cual consideramos las variaciones de n_T alrededor de su estado estacionario, n_{To} :

$$n_{T} = n_{T_{0}} + \Delta n_{T}(t)$$
 (III-20)

donde $\Delta n_{T}(t)$ será la densidad de centros profundos ionizados en exceso o en defecto respecto a la densidad estacionaria, n_{To} .

Sustituyendo las expresiones (III-19) y (III-20) en la ecuación (III-16) obtenemos :

$$\frac{d}{dt} \Delta n_{T}(t) = -(c_{n} n_{0} + e_{n} + c_{p} p_{0} + e_{p}) \Delta n_{T} - (c_{n} \Delta n n_{T_{0}} + c_{p} \Delta p n_{T_{0}} - c_{n} \Delta n N_{T}) exp(iwt) - (c_{n} \Delta n + c_{p} \Delta p) \Delta n_{T} exp(iwt)$$

$$(III-21)$$

Para valores suficientemente pequeños de Δn , Δp , y Δn_T , podemos despreciar los términos de segundo órden, con lo que obtenemos una ecuación diferencial lineal :

$$\frac{d}{dt} \Delta n_{T}(t) = -(c_{n} n_{o} + e_{n} + c_{p} p_{o} + e_{p}) \Delta n_{T}(t) - (c_{n} \Delta n n_{To} + c_{p} \Delta p n_{To} - c_{n} \Delta n N_{T}) \exp(i\omega t)$$

(III-22)

Esta ecuación diferencial se puede escribir también :

$$\frac{d}{dt} \Delta n_{T}(t) = -\frac{1}{\tau} \left(\Delta n_{T}(t) - \Delta n_{Tmax} e^{i\omega t} \right)$$
(TTI-23)

donde :

manufer a month of

$$\zeta = \frac{1}{\frac{c_n + e_n + c_p - p_p}{n - c_p - p_p}} \quad (III-24)$$

tiene las dimensiones del tiempo, y donde :

$$\Delta n_{\text{Tmax}} = \frac{c_n \Delta n n_{T_0} + c_p \Delta p n_{T_0} - c_n \Delta n N_T}{c_n n_0 + c_n + c_p p_0 + c_p}$$
(III-25)

es el incremento de carga en los centros profundos que se obtendría al superponer a la tensión de polarización una tensión estacionaria igual a $\Delta\,{\rm V}$.

La solución de la ecuación diferencial es, ahora :

$$\Delta n_{T}(t) = \Delta n_{Tmax} \frac{1 - i\omega T}{1 + \omega^{2} T^{2}} \exp(i\omega t) \qquad (III-26)$$

La parte real de esta expresión :

$$\Delta n_{T}(t) = \Delta n_{Tmax} \left(\frac{1}{1+\omega^{2}\tau^{2}} \cosh \omega t + \frac{\omega \tau}{1+\omega^{2}\tau^{2}} \operatorname{sen} \omega t \right)$$

(III-27)

representa la evolución con el tiempo de la densidad incremental de centros profundos ionizados.

En ella observamos que la carga en los centros profundos cambia con la misma frecuencia que la señal de medida, cualquiera que sea su posición dentro de la zona de transición.

Integrando esta carga a lo ancho de la zona de transición obtenemos la carga incremental total, $\Delta Q_{\rm T}$:

$$\Delta Q_{T} = \Delta Q_{\text{Tmax}} \frac{1 - i\omega \tau}{1 + \omega^{2} \tau^{2}} \exp(i\omega t)$$
 (III-28)

donde Δ 9_{Tmax} es la carga incremental que aparece en los centros profundos al aplicar un incremento estacionario de tensión Δ V superpuesto a la tensión de polarización V.

Estas cargas son transportadas por una corriente que circula por el circuito de polerización, que vale :

$$I = \frac{d Q_T}{dt} = \Delta Q_{\text{Tmax}} \frac{1 - i\omega \tau}{1 + \omega^2 \tau^2} i\omega \exp(i\omega t)$$
(III-29)

y que contiene dos componentes, una en fase y otra en cuadratura, por lo que podemos considerar que los centros profundos originan una capacidad y una conductancia adicionales en el circuito equivalente de la diodo, que vienen dadas, respectivamente, por :

$$G_{T} = \frac{\Delta Q_{Tmax}}{V} \quad \frac{\omega^{2} \tau}{1 + \omega^{2} \tau^{2}}$$
(III-30)
$$G_{T} = \frac{\Delta Q_{Tmax}}{V} \quad \frac{1}{1 + \omega^{2} \tau^{2}}$$
(III-31)

En la figura 22 hemos representado la variación de la capacidad y de la conductancia en función de la frecuencia. Vemos que la capacidad es máxima para las frecuencias de medida mas bajas, y se anula para las frecuencias altas, comportándose inversemente la conductancia.

V

Observamos que es suficiente emplear frecuencias superiores e inferiores en una década a la frecuencia de corte para obtener, con una aproximación del 99% , las capacidades $C_{
m HF}$ y $C_{
m BF}$, correspondientes respectivamente a los límites de frecuencias muy alta y muy baja.

Por otra parte, cualquiera que sea el centro a estudiar, podemos emplear frecuencias fijas para medir C_{HF} y C_{BF} si nos situamos a una temperatura adecuada, ya que según la relación (4) deducida en el apéndice, siempre existirá una temperatura a la que 1/T sea igual a la frecuencia de la señal de medida.

Como veremos a continuación, es suficiente determinar experimentalmente las capacidades C_{HF} y C_{DF} para las distintas polarizaciones de la diodo para poder daducir la densidad y la situación de los centros profundos.

Para calcular C_{BF} y C_{HF} , volvemos a referirnos a la figura 21 si suponemos que las cargas incrementales ΔQ y ΔQ_T están localizadas en las coordenadas W y W - λ , respectivamente, podemos escribir :

$$c_{BF} = \frac{\Delta \alpha + \Delta \alpha_{T}}{\Delta V} = \varepsilon s \cdot \frac{\Delta \alpha + \Delta \alpha_{T}}{\Delta \alpha \cdot v + \Delta \alpha_{T}(v - \lambda)}$$
(III-32)

 $C_{HF} = \frac{\Delta Q}{\Delta V} = E S \frac{\Delta Q}{\Delta Q \cdot W}$ (III-33)

Por otra parte, por ser el pseudonivel de Fermi constante, la longitud λ es independiente de la polarización, y tendremos:

$$\frac{\Delta Q}{\Delta Q_{T}} = \frac{N_{D}(W)}{N_{T}(W - \lambda)}$$
(III-34)

de donde obtenemos :

$$\frac{C_{BF} - C_{HF}}{C_{HF}} = \frac{1 - \frac{W - \lambda}{W}}{\frac{\Delta Q}{\Delta Q_{T}} + \frac{W - \lambda}{W}} = \frac{1 - \frac{W - \lambda}{W}}{\frac{N_{D}(W)}{N_{T}(W - \lambda)} + \frac{W - \lambda}{W}}$$

(III-35)

Esta expresión permite calcular la densidad $N_{\rm T}^{}$ de centros profundos a partir de los datos experimentales $C_{\rm HF}^{}$ y $C_{\rm BF}^{}$, conociendo la densidad del dopage $N_{\rm D}^{}$. La anchura de la zona de transición se calcula a partir de $C_{\rm HF}^{}$:

$$W = \frac{\epsilon s}{C_{HF}}$$
 (III-30)

Consideremos dos casos límites :

1º - Cuando $\lambda \ll "$ se reduce a :

$$\frac{C_{BF} - C_{HF}}{C_{HF}} = \frac{N_T (N - \lambda)}{N_D (N)}$$
(III-37)

corresponde a la situación en que los centros profundos que cambian su estado de carga están situados en el contacto metal-semiconductor. Este es el caso en que se obtiene una variación de la capacidad, $C_{BF} - C_{HF}$, más importante, y por ello una sensibilidad mayor.

2º - Cuando $\lambda \simeq \mathbb{Y}$, entonces queda :

$$\frac{C_{BF} - C_{HF}}{C_{HF}} \simeq 0$$
 (III-38)

es la situación que se obtiene bajo polarizaciones inversas fuertes, en las que la anchura de la zona de transición es muy superior a la profundidad λ en la que los centros profundos cambian su estado de carga. En este caso no se observa dependencia de la capacidad dinámica con la frecuencia, aún existiendo centros profundos en la zona de transicion.

Para determinar el perfil de densidad de los centros profun dos, en el caso general, deben obtenerse las capacidades C_{HF} y C_{BF} para un número suficiente de polarizaciones directas e inversas, para explorar toda la extensión de la zona de transición.

De la característica C_{HF} (V) se puede deducir, entonces, la densidad N_D del dopage, y con ella calcular las densidades N_T, para cada polarización, mediante la ecuación (III-35).

Cuando la dependencia de la capacidad con la frecuencia aparece solamente para las polarizaciones inversas débiles o para polarizaciones directas, podemos suponer que los centros profundos se encuentran localizados en la interfase y podemos emplear la ecuación (III-37) para estimar, sin gran error, la densidad de centros profundos.

Figura 22 - Dependencia de la capacidad y la conductancia debidas a los centros profundos con la frecuencia de la señal de medida. La "frecuencia de corte" vale 1/7.

III.3. Comparación de las posibilidades de ambos métodos.

Los métodos que hemos expuesto en las secciones III.1. y III.2. basados respectivamente en la modificación del estado de carga de los centros profundos, y en su efecto sobre la capacidad medida a bajas frecuencias, son ambos capaces de detectar la presencia de los centros profundos en el semiconductor y, con ciertas limitaciones, deducir su densidad.

El problema particular que nos hemos planteado, es que pretendemos demostrar la presencia de centros profundos en una región próxima al metal, que quizá no supera el espesor de algunas centenos de amstrongs.

En el primero de los métodos, detectamos la carga atrapada en los centros profundos a través del potencial que ésta crea; dobido a ello, el método es menos sensible cuando mas próxima al metal se encuentra la carga atrapada (ecuación III-7).

En el segundo método, el incremento de la capacidad a baja frecuencia es debido, directamente, a la carga atrapada en los centros profundos; por ello su sensibilidad es máxima cuando éstos se encuentran a distancia nula del metal (ecuación III-35). Sin embargo, en este caso límite pueden aparecer dificultades en la medida de la capacidad debidas a la conductancia del diodo en directo.

Ambos metodos poseen, en condiciones optimas, una sensibilidad parecida (ecuaciones III-10 y III-37). Por los argumentos expuestos, parece más adecuado el metodo de la sección III-2 que los de la sección III-1. No obstante, este argumento está compensado en parte por el hecho de que, con la instrumentación disponible, se pueden medir variaciones de la capacidad a la frecuencia fija de l MHz con una sensibilidad $\Delta C / C = 10^{-4}$, miontros que al comperar los capacidades medidos e de sensibilidad C_{HE}-C_{DE} / C_{HE} no supera el 15'.

Por otra parte, los métodos de la sección III-1, operados a la temperatura del nitrógeno lícuido, detectan la presencia de todos los centros profundos, cualquiera que sea su energía dentro de la banda prohibida; mientras que con el método de la sección III-2 hace falta emplear una temperatura adecuada para cada centro profundo.

En resúmen, los métodos basados en los cambios de polarización e baja temperatura son de aplicación muy simple y, salvo en el caso de una distribución localizada en la inmediación del metal, deberían ser capaces de detectar la presencia de los centros profundos cualquiera que fuera su naturaleza. La medida de la variación de la capacidad con la frecuencia, es de aplicación e interpretación mas complejos, pero puede proporcionar mayor información.

III.4. Detorminación de la energía de los centros profundos.

Existen múltiples posibilidades para determinar el nivel energético de los centros profundos, una vez que han sido detectados por su efecto sobre la capacidad, /75/ /76/ /77/ /78/.

Al aplicar un pulso de polarización directa al diodo, el estado de carga de los centros profundos que han copturado portadores mayoritarios evoluciona, una vez finalizado el pulso, tal como estudianos en el apándice, ocuación (A-12). Ello se traduca en un transitorio de la capacidad, hasta la desaparición del incremento $\triangle C$ obtenido con el pulso directo. Estas evoluciones se efectúan con una constante de tiompo ∇ , de la que se deduce directamente el coeficiente de emición de los mayoritarios desde el contro profundo en cuestión (ecucciones A-15 y A16).

Conociendo los coeficientes de emisión a distintes temperaturas, y representándolos en un gráfico de Arrohnius, se obtienn investigtemente el nivel energético del centro profundo. En efecto : El coeficiente de emisión tórmico de los electronos viene dado por : /79/

 $\sigma_n = \sigma_n \Theta_n N_c \exp(E_T - E_c) / kT$

donde σ_n es la sección eficaz de captura para los electrones, Θ_n es la valocidad tórmica de los electrones y N_c es la densidad de estados efectiva en la banda de conducción. Estos factores preexponenciales tienen una dependencia con la temperatura suy inferior a la que representa le exponencial, por lo que la energía de activación deducida del gráfico de Arrebnius coincide con (E_T - E_c).

Los trensitorios de expecidad son, en general, muy lentos a la temperatura del nitrógeno líquido; es necesario entences elevar la temperatura del diodo para obtener transitorios facilmente registrables. El intérvalo de temperaturas en que es conveniente operar, depende del coeficiente de emisión del centre profundo en cuestión.

También se puede deducir el coeficiente de exisión a partir de la frecuencia de corte 1/C (ec. III-24 y III-31) en la dependencia de la capacidad con la frecuencia /80//81//82//83/.

Trazendo las gríficos $G(\omega)$ pero una polarización fija, a distintas temperaturas, podemos deducir $(E_T - E_c)$ a partir de la energía de activación tórmica que presenta la Frecuencia de corte .

III.5. Contros profundos y Estedos de superficie. Pseudonivelos de Fermi.

Los centros profundos en cuestión, localizados corea del metal, podrían confundirse con los estados de superficie, puerte que cotos últimos tembién con copaces de starper pertitiones y caubiar su retado de cargo. En cuento a los efectos sobre el comportamiento del diodo, la diferencia estriba en que los centros profundos, aunque muy próximos al metal, se distribuyen en un cierto espesor del semiconductor, en el que, cuendo están cargados, crean un potencial eléctrico que modifica la forma de la barrera, pudiendo facilitar la conducción por emisión tormoiónice por efecto de campo. Los estados de superficie, en cambio, por ectar situados e distancia nula dol metal, crean un dipolo eléctrico, que puede modificar la altura de la barrera, pero no su forma. La discusión resulta más compleja si suponenos que existe una capa de óxido residual, o bien si consideramos la penetración de los electrones del metal en la banda prohibida del semiconductor.

En cuanto a los métodos propuestos para detectar los centros profundos, los métodos de la sección III-l no deberían ser sensibles a los estados de superficie, ya que éstos, aunque cambien el estado de carga, por estar a distancia nula del metal no deben provocar ninguna modificación en la capacidad. Los métodos de la sección III-2, en combio, si son sonciblos a los estados de superficie /ga/. Sin embargo, se puede distinguir los estados de superficie de los centros profundos, ya que los primeros responden con una constante de tiempo que depende de la polarización, mientras que en los centros profundos, la constante de tiempo depende exclusivamente del coeficiente de emisión.

Queda también por discutir el comportamiento del pseudonival de Fermi de los mayoritarios, puesto que, si bien se ha demostrado que coincide con el nivel de Fermi de la zona neutra /58/ /30/ del somiconductor, no está determinado on qué punto pasa a coincidir con el nivel de Fermi del metal. Dicho de otro modo, persiste la incógnita de si los contros profundos próximos al metal (y los estados de superficie) están en equilibrio termodinémico con la zona neutra del semiconductor o bien con el metal.

CAPITULO IV

CARACTERIZACION EXPERIMENTAL DE LOS CENTROS PROFUNDOS

.

IV.1.DISPOSITIVOS EXPERIMENTALES.

IV.1.1. Dispositivo experimental pare la determinación de centros profundos a través de las variaciones de la capacidad con la polarización. Polarización da la dioda y medida de los incrementos de C .

La realización práctica de esta determineción consiste en descender la temperatura del diodo hasta la del nitrógeno líquido mientras se mantiene una tensión de polarización inversa considerable, 4 voltios como mínimo, reducir la tensión de polarización, normalmente hasta 2 voltios inversa, y medir la capacidad diferencial mediante una señal de alta frecuencia, de pequeña amplitud (unos 10 mV r.m.s.).

Después, se aplican los pulsos de polarización y se mide la variación de la capacidad, después de cada pulso y de haber vuelto la polarización inversa a su valor estacionario.

Las variaciones de capacidad se miden a través de la corriente que circula por un detector de cero de un puente de capacidad que contiene el diodo, y que ha sido equilibrado estando el diodo polarizado en inverso antes de la aplicación de los pulsos de polarización. Esta disposición permite medir la capacidad de la diodo, mediante el puente, y al mismo tiempo detectar variaciones de la capacidad con una sensibilidad de $5 \cdot 10^{-3}$ pF con la corriente del detector de cero amplificada.

El esquema en bloques del montage está representado en la figura 23. El puente está alimentado por un oscilador de 1 MHz que proporciona dos señales de igual amplitud, 10 mV r.m.s. y de fases opuestas.

La corriente que circula por el diodo tiene dos componentes, una en fase con la señal de medida, proporcional a la conductancia del diodo, y ptra en cuadratura, proporcional a su capacidad diferencial.

La segunda rama del puente stá constituida por un condensador variable, calibrado en décimas de picofaradio. Ajustando este condensa-

Figura 23 - Diagrama en bloques del puente de capacidades.

dor se equilibra el puente, de manera que al sumarse las corrientes de ambas ramas, en el amplificador de corriente, la corriente resultante contenga una componente en cuadratura nula. El amplificador de corriente es del tipo "detección síncrona" y está sincronizado en cuadratura con el oscilador, con lo que resulta insensible a la componente conductiva de la corriente del diodo, incluso con Q inferiores a la unidad.

El amplificador proporciona una señal D.C. proporcional a la componente en cuadratura de la intensidad H.F. de entrada, y por lo tanto proporcional a la diferencia entre la capacidad dinámica del diodo y la del condensador variable. Esta señal es introducida en un registrador x-t , lo que permite analizar los incrementos experimentados por la capacidad del diodo, así como sus eventuales derivas.

IV.1.2. Descenso de la temperatura.

Para observar los incrementos de capacidad debidos a los centros profundos, es necesario emplear una temperatura suficientemente baja para obtener estados de carga permanentes en los centros profundos.

En el silicio, resulta cómodo emplear la temperatura dol nitrógeno líquido, 77° K , ya que es suficientemente baja para que los centros profundos presenten constante de tiempo de ionización mayores que la duración del experimento, y en cambio es superior a la temperatura de congelación de los portadores libres sobre los dopantes usucles del silicio.

Por otra parte es una temperatura muy fácil de obtener, con una gran estabilidad, por simple inmersión del diodo en un recipiente con nitrógeno líquido en ebullición.

Para sumergir el diodo en el nitrógeno líquido empleamos el recipiente de latón de la figura 24.El uso de este recipiente es necesario por varias razones :

- Evita los cambios bruscos de temperatura al sumergir el diodo, que acostumbran a provocar su rotura.
- Proporciona, junto con los coaxiales, un blindaje electrostático del diodo.

- Impide la entrada de la luz.
- Evita la condensación de agua sobre el diodo.

Figura 24 - Recipiente explordo para la inmersión de los diodos en nitrógeno líquido. IV.1.3. Dispositivo experimental para la determinación de la variación de la capacidad con la frecuencia y la temperatura.

Hemos determinado la capacidad dinámica del diodo con distintas frecuencias de la señal de medida mediante el puente de capacidades de la marca Boonton Electronics, modelo 75 C . Este puente permite determinar la capacidad y la conductancia a cualquier frecuencia entre 500 Hz y 500 KHz .

El esquema de base de este aparato está representado en la figura 25 ; el puente está constituído por dos ramas, una de las cuales contiene el diodo a medir y la otra contiene un circuíto R - C paralelo, formado por una resistencia y un condensador variables, ambos graduados y calibrados con precisión.

Figura 25 - Escuema básico del puente de capacidades de frecuencia variable.

Un oscilador de frecuencie variable proporciona, a través de un transformador, dos señales idénticas y en oposición de fase que ali-

99

mentan, respectivamente, las dos ramas del puente. La amplitud de la señal se ajusta, para cada frecuencia, a unos 15 mV r.m.s.

El puente se equilibra ajustando, manualmente, el condensador y la resistencia variables hasta obtener una corriente nula a través del amplificador de corriente sintonizado.

En el equilibrio, las impedancias complejas de ambas ramas deben coincidir, con lo que las lecturas de C_e y G_e corresponden respectivamente a la capacidad dinámica y la conductancia de un circuíto R - C paralelo equivalente, a la frecuencia de medida, al diodo incógnita.

IV.1.4. Criostato.

. . .

La determinación de la dependencia de la capacidad con la frecuencia de medida, así como el análisis de los transitorios de la capacidad provocados por pulsos de polarización, deben realizarse a temperaturas diversas, inferiores o superiores a la temperatura ambiente, según los casos. Hemos realizado un criostato especialmente diseñado para esta finalidad, esquematizado en la figura 26.

Los diodos, soldados sobre cápsulas metálicas tipo TO5, están montados en un bloque de cobre suspendido en el centro de un Dewar de acero inoxidable que contiene nitrógeno líquido. El intercambio de calor con el nitrógeno líquido se realiza a través del nitrógeno gascoso que rodea el bloque de cobre, y la aportación de calor se realiza mediante un filamento arrollado a su alrededor que puede disipar una potencia máxima de 40 W.

La temperatura del bloque de cobre está regulada mediante un sistema electrónico proporcional, esquematizado en la figura 27.

Esto sistema está constituído por un microvoltímetro que compara la tensión proporcionada por un termopar soldado al bloque de cobre,

Figura 26 - Criostato.

con una tensión de referencia. La salida del microvoltímetro, proporcional a la temperatura, controla una fuente de alimentación de O a 30 voltios que alimenta el filamento calefactor.

Este sistena pomite regular la temperatura del dioro entre 100⁰K y 450⁰K con une estabilidad de 0.1⁰K , y permite efectuar los cambios de temperatura con relativa rapidez debido a la pequeña masa del bloque de cobre.

IV.2. RESULTADOS OBTENIDOS.

IV.2.1. Diodos Schottky de pequeña superficie y con anillo de guarda.

Estos diodos han sido elaborados con técnicas similares a las empleadas industrialmente para la fabricación de diodos Schottky rectificadores de baja potencia.Estas técnicas están orientadas a la obtención de unas características de conducción óptimas y reproductibles, así como un funcionamiento fiable en condiciones normales.

Estos objetivos conducen al diseño de los diodos Schottky con las siguientes características :

- Una superficie activa del contacto muy reducida, necesaria para disminuir la presencia de dislocaciones del cristal dentro de la unión, y obtener características reproductibles. Una superficie activa reducida facilita también el funcionamiento de los diodos en alta frecuencia.

- El anillo de guarda difundido, que reduce las corrientes de superficie y elimina las avalanchas prematuras al reducir el campo eléctrico en los bordes de la unión. Es imprescindible para obtener unas características de conducción casi-ideales, tanto en directo como en inverso, así como para obtener tensiones de bloqueo en polarización inversa elevadas.

- Una metalización que, además de proporcionar la altura de barrera deseada, presente una buena adherencia y no sufra degradaciones durante el funcionamiento. Para ello es necesario, además de escoger un material que posea una barrera de potencial adecuada, proceder a un tratamiento térmico una vez depositado el metal.

El interés de experimentar con este tipo de diodos radica en el hecho de que, al tener buenas características Intensidad-Tenelón, permiten establecer correlaciones entre las propiedades de conducción y los experimentos de caracterización de las interfases. Por otra parte,
al haber sido obtenidos con un procedimiento tecnológico de tipo industrial, los resultados experimentales obtenidos con estos diodos tienen una incidencia práctica inmediata.

Todos los dispositivos han sido obtenidos por tecnología planar sobre un substrato de silicio epitaxiado, formado por una capa de unas 3 micros de espesor, con una resistividad de 0.5 a $1\Omega \cdot cm$, crecida sobre un substrato de baja resistividad.

La geometría de los diodos, definida mediante las máscaras del fotograbado, está esquematizada en la figura 28.

Figura 28 - Geometría de los diodos.

Las pastillas epitaxiadas comerciales, sufren un ataque químico previo en un baño constituido por:

с н _з соон	H 3ND	FH	H ₂ O desionizada 2		
140 cc	310 cc	30 cc	40 cc		

y un proceso de lavado con:

- Tricloroetileno Hirviente, 5 minutos

- Acetona hirviente, 10 minutos

- NO₃H Hirviente, 3 minutos .

- HF Hirviente, e minutos

- H_O desionizada, 5 a 10 minutos

NO₃H hirviente, 3 minutos
HF hirviente, 3 minutos
H₂O desionizada, 5 a 10 minutos

seguidamente son oxidados en oxígeno húmedo, obteniéndose una capa de óxido de 3000 Å de espesor.

Mediante fotograbado con una máscara anular se abren las ventanas en el óxido, por las que se realizará la difusión tipo-p para los anillos de guarda.

La difusión tipo-p para los anillos de guarda es seguida de una redistribución del dopante, de manera que se forma una unión p-n gradual entre el anillo de guarda y la capa epitexiada.

Durante la redistribución se obtiene, simultáneamente, una nusva capa de óxido en la que, mediante un nuevo fotograbado con máscara circular, se abre una ventana para definir la superficie del contacto.

El proceso de preparación de la superficie del silicio, pravio a la evaporación del metal, es esencial para la obtención de barreras reproducibles y características I-V satisfactorias. A continuación describimos el proceso seguido en nuestros diodos :

Lavado previo a la metalización

Tratamiento	(A'.A.A'.B.C.)	constituído por :
- NO ₃ H	hirviente 10	
- H ₂ 0 a	desionizada	
NHA DI	1 10 ml	
H202	10 ml	hirviente 10'
H ₂ 0 de	sionizada 50 m	1
- H ₂ 0 da	sionizada	
HC1	10 m	1.
H202	10 m	l caliente 5'
H ₂ D do	nsionizado EO mi	1
- H ₂ 0 d	sionizada	

105

Las pastillas de silicio se colocan inmediatamente en la campana de vecio para evitar su oxidación en la atmosfera y se procede a la evaporación del metal de contacto. La evaporacion se efectua en crisol metalico, las condiciones se detallan a continuacion.:

Condiciones de evaporacion

Desadsorcion de gases	3 horas a 100-200ºC		
Vacio durante la evaporacion	2.10 ⁻⁸ Torr		
Velocidad de deposicion	2500 Å/mn.		
Temperatura del substrato	100 a 150ºC		
Espesor de la metalizacion	3000 a 6000 X		

Se ha escogido una velocidad de evaporacion elevada para ovitar, en lo posible, que los gases residuales resulten atrapados durante la deposicion del metal.

La temperatura de 100 a 150ºC del substrato de la evaporacion se mantiene, una vez finalizada esta, durante unos 15' para mejorar la adherencia del metal sobre el silicio.

Las pastillas de silicio se someten, después, a los tratamientos termicos correspondientes, en atmosfera de N₂ o Ar secos.

Después de cortadas, las estructuras tienen forma cuadrada de 0,5 mm de lado, se sueldan a 400ºC sobre cápsulas TD5 con alcación eutectica y se realiza el contacto superior con hilo de oro soldado con ultrasonidos. Los resultados experimentales más interesantes se han obtenido con diodos Cr - Si(n), en los que hemos analizado el comportamiento eléctrico en función de la temperatura de recocido a que se somete el contacto.

La finalidad del tratamiento térmico está en mejorar la adherencia del motal y en obtener unas características de conducción reproducibles. Se ha demostrado que el tratamiento térmico modifica sistematicamente el factor "n" y la altura aparente de barrera $\emptyset_{\rm Bn}$ de la conducción directa en los diodos. Por otra parte mediante los mótodos capacitativos descritos en el capítulo anterior hemos podido evidenciar la presencia de centros profundos en la zone de transición del contacto.

Se han sometido, las estructuras, a recocidos en atmósfera de Ar durante 15° a distintas temperaturas, comprendidas entre 200ºC y 550ºC. Los resultados obtenidos están resumidos en el cuadro 4.

En la figura 29 presentamos las características que conducción directa para los diodos sometidos a los distintos tratamientos. Con temperaturas superiores a los 500ºC los dispositivos no poseen característica rectificadora.

Observamos una variación del parámetro "n" con la temperatura de recocido que se acompaña de una variación de β_{Bn} de acuerdo con las previsiones de la sección II.1.5.

Hemos investigado la presencia de centros profundos en la interfase con el método de los incrementos de capacidad a 77ºK descrito en la sección III.1.2. Los resultados indican la presencia de centros profundos en los diodos sometidos a tratamientos térmicos superiores a 200ºC. Los resultados están recogidos en el cuadro 4, los incrementos en la cepacidad son pequeños, pero dado que sólo aparecen al aplicar polarizaciones en directo, pueden obedecer e la presencia de densidados importantos de contros profundos situados muy próximos al metal.

Figura 29 - Característicos de conducción directa de los diodos sometidos a distintos tratamientos térmicos.

108

Figura 30 - Las características C(V) en inversa de los distintos diodos coinciden entre sí.

ND(<u>1 dV)</u>)	6 × 10 ¹⁵ cm ⁻³	6 × 10 ¹⁵ am ⁻³	6 × 10 ¹⁵ cm -3	6 × 10 ¹⁵ cm ⁻³	
iferencial) ÅC	imperceptible	0,04 pF	0,09 pF	0,21 pF	
Capacidad Di C (—2V, 779K)	5 , 6 pF	5,6 pF	5 , 6 pF	5 , 6 pF	
i en Directo ∳⊟n	0,52 eV	0,54 cV	0,51 eV	0,47 eV	
Conducción "n"	1,25	1,2	1,4	1,7	
Tratamiento térmico	200°C - 15°	, SI - Jaooe	, 97 - Jaose	450°C – 15°	
Tipo de contacto			(U)IC-Ju		,

.

Guadro 4

Un cálculo aproximado se puede basar en el hecho de que los pulsos de polarización que reducen la tensión aplicada a O voltios no producen variaciones de la capacidad en inversa. Ello implica que los centros profundos se encuentran a una distancia del metal inferior a la anchura de la zone de transición a polarización nula.

A partir de la capacidad a O voltios y 77% deducimos que $W_0 = 3.4 \times 10^{-5}$ cm. Con la ecuación (III-12) y supeniéndo los centros profundos distribuidos con densidad uniforme entre el contecto metálico y la coordenada W_0 , obtenenos:

$$N_{T} = 2,7 \times N_{D} = 1,6 \times 10^{16} \text{ cm}^{-3}$$

para el caso del recocido a 450ºC - 15°. Si en lugar de suponer la concentración N_T uniforme entre C y W_0 consideranos que decrace al alejarse del motal, se obtienen concentraciones N_T auy cuperlares.

En les figures 31 a, b y c, estén representadas respectivamente las variaciones de $alpha_{\rm Bn}$, del parámetro "n" y de los incrementos de capacidad Δ C a 77% en función de los temperaturas de recocido.

Con los tratamientos ternicos e la temperatura de 300°C se obtiene una disminución del factor "n" y un aumento de la altura de la barrera $alpha_{\rm Bn}$. Los tratamientos a temperaturas superiores producen el efecto inverso sobre "n" y $alpha_{\rm Bn}$. Con temperaturas superiores a los 500°C los diodos dejan de tener características rectificadoras.

Este fonómeno puede explicarse postulando que los tratamientos a baja temperatura causan la deseparición de una capa de óxido interfacial que quedaría en la deposición del motal, ello puede producir, según hemos visto en el primer capítulo, las variaciones de "n" y $\emptyset_{\rm Bn}$ en el sontido observado. Los tratamientos o temperaturos superiores o 2009C originarían una reacción entre el metal y el semiconductor desepareciendo la capa residual de óxido y creando una capa interfacial fuertemente dopada a causa de la cual "n" y $\emptyset_{\rm Bn}$ avolucionarian en sentido epuesto.

÷

Figura 31 - Variación con la temperatura de recocido del diodo, de: a - el parámetro "n".

- 5 le clitura sparente de barrere, ØBn .
- a los incrementos de capacidad obtenidos al polarizar en directo o 729 K.

Estas hipótesis se confirman con las medidas de capacidad, puesto que demuestran la presencia de centros profundos en la interfese de los diodos tratados a temperaturas superiores a 300°C. También apoyan esta posibilidad los análisis efectuados con sonda iónica (71) y con "backscattering" de iones He⁺ (72), que demuestran la formación, a la temperatura de 400°C, del compuesto Cr Si₂ en el lugar del contacto.

Sería interesante de analizar el perfil y la energía de los centros profundos por métodos capacitativos. Desgraciadamente los incrementos de capacidad obtenidos son del orden de resolución del aparato de medida y no resulta factible un análisis más detallado.

En general, este tipo de diodos Schottky no resultan adecuados para la aplicación de los métodos capacitativos ya que al tener una superficie muy reducida producen capacidades de transición de unos pocos picofaradios. El anillo de guarda difundido representa una dificultad adicional ya que suma a la de la diodo Schottky la copacidad de una unión p-n que presenta una dependencia con la tensión desconocida. IV.2.2 Diodos Schottky de gran superficie y sin anillo de guarda.

Hemos elaborado unas series de diodos diseñados expresamente para facilitar la investigación de los centros profundos en la interfase, mediante las tecnicas estudiadas en el capitulo III. Sus caracteristicas principales son :

- Tienen una gran superficie de contacto (1,5 mm de diametro)
- Carecen de anillo de guarda
- Están elaborados sobre un substrato epitaxiado.

Con estas ceracteristicas, se consiguen varios objetivos que facilitan la interpretación de los resultados :

- Se obtienen capacidades elevadas, con lo que se reducen las dificultades en las medidas.
- No existe la capacidad adicional debida al anillo de guarda.
- Se obtienen resistencias en serie del substrato muy bajas,
 con lo que su influencia sobre las medidas de capacidad y de corriente es pequeña.

En estos diodos se ha efectuado una difusion metalica superficial a partir de la metalización del contacto. Los tratamientos termicos se han efectuado a distintas temperaturas, todas ellas bien inferioros a las temperaturas de difusión de los metales en el silicio.

Sin embargo, los tratamientos termicos a temperaturos superiores a los 300°C, causan una fuerte perturbación sobre la carcteristica I-V de los diodos, la mayoria de ellos se convierten en contactos ohmicos y entre los que conservan la propiedad rectificadora, se observa una gran dispersión en las caracteristicas. Para obtener mejores caracteristicas, hemos disuelto el metal residual y hemos atacado quimicamente la superficie del contacto con el tratàmiento A.A.B.C.C. descrito en la sección anterior, seguidamento hemos depositado, por evaporación, una nueva metalización, que constituyo el contacto definitivo.

Con este procedimiento, algunos de los diodos que presentaben caracteristica ohmica, recuperan la caracteristica rectificadora y se reduce, además, la dispersión entre las caracteristicas.

La mayoria de los diodos. así obtenidos presentan los fenomenos de conmutación descritos en la sección II.3.2. pero con tensiones V y $V_{\rm M}$ elevadas, superiores a los 40 voltios.

Figura 32 - Estructura de un diodo de gran superficie y sin anillo de guarda.

Hemos experimentado, con los diodos que no presentan mayores anomalias, las distintas tecnicas descritas en ol capitulo III.

En la mayoria de los diodos se han observado variaciones en la capacidad, cuando a la temperatura del nitrogeno liquido, conmutamos la polarización de acuerdo con la tecnica de la sección III.1.7. los incrementos de capacidad son importantes (algunos pF) en los diodos conetidos a tratamientos ternicos a temperaturas superiores a 200%C. Las características C(V) y $C^{-2}(V)$ no presentan dispersión con la frecuencia para las tensiones inversas elevadas, pero para las tensiones próximas a cero voltios, se aprecian diferencias notables entre las características medidas a distintas frecuencias, siendo este efecto muy importante para las tensiones directas, donde, en algunos diodos, la copacidad a baja frecuencia llega a ser cuetro veces mayor que la capacidad a alta frecuencia.

En la figura 35-a presentamos las características C(V) obtenidas en un diodo Au-Si(n) con un tratamiento térmico a 450°C durante 30. Las medidas de la capacidad han sido efectuadas a 10°C y con frecuencias de 500KHz, 100KHz, 50 KHz y 5 KHz. En la figura están representadas solamente las medidas a 500 KHz y a 5 KHz.

A partir de estos datos experimentales calculamos las curvas $C^{-2}(V)$, representadas en la misma figura. En ella observamos que los valores obtenidos a partir de las medidas a 500 KHz para polarizaciones inversas, se situan sobre una recta de pendiente 1,4 \cdot 10¹⁵ F⁻² \cdot cm²/Volt, de ella se deduce un dopage del Silicio de 8,2 \cdot 10¹⁵ cm⁻³, que no se contradice con la resistividad de 0,8 Ω \cdot cm medida sobre la capa epitaxiada de la plaqueta original. Obtenemos también, por extrapolación, una tensión V_{bi} = 0,56 Volts, de la que se deduce una altura de barrera $\emptyset_{Bo} = 0,76 \pm 0,01$ Volts, también correcta para un contacto Au-Si(n).

La característica $C^{-2}(V)$ para polarizaciones directas so desvía considerablemente de la recta, incluso a 500 KHz. El orígen de esta desviación no creemos que resida en los centros profundos, sinó en la resistencia que presentan la capa epitaxial, el substrato y el contacto obmico del diodo.

Llamando r a esta resistencia, el esquema equivalente del diodo sería el I de la figura 33, donde C₁ y G₁ representan respectivesente la concepidad dinámica y la conductancia de la zona de transición, y C₂ y G₂ son las debidas a los contros profundos (sección III-2).

Esta resistencia introduce dos errores que deben corregiros.

Figura 33 - I Esquema equivalente del diodo Schottky. II Idea, para la corriente continua. III Idea., determinado mediante el puente de capacidades.

Por un lado la tensión soportada por la carga de espacio, V , es menor que la tensión aplicada, y se cumple:

$$V = V_{a} - rI$$

donde V_a es la tensión aplicada e I es la intensidad que circula. Por otra parte, el puente de capacidades determina una capacidad dinámica C_e y una impedancia G_e correspondientes al circuito paralelo del esqueme III. A partir de C_e y G_e experimentales podemos deducir C₁ + C₂ mediante la relación /74/ :

$$C_1 + C_2 = \frac{C_e}{(1 - r G_e)^2 + (r \omega C_e)^2}$$

En esta expresión, el término $(r \omega C_e)^2$ depende de la frecuencia, y es, para las frecuencias empleadas, muy inferior a la unidad. El tórmino $(1 - r G_0)^2$, independiente de la frecuencia, puede ser importante para las tensiones directes.

Portenes colleptar r, $V(V_r)$ y $G_n(V_n)$ necessries para corregir estos errores, a partir de la característica I(V) en directo. En efecto, para la corriente continua, el csquema equivalente se simplifica, quedando reducido al esquema II.

En este esquema, G₁ es la conductancia del diodo Schottky, que verifica :

$$V \cdot G_1 = I_s \exp(qV/nkT)$$

que corresponde a la extrapolación de la parte recta de la característica. I(V) semilogarítmica.

Comparando esta extrapolación con la característica I(V) experimental deducimos, en este caso, un valor de $r=6\Omega$, y con él podemos calcular :

$$V(V_a) = V_a - r I(V_a)$$

 $G_a(V) = G_1 / (1 + r G_1)$

En la figura 35-b presentamos las mismas características C(V)y $C^{-2}(V)$, una vez efectuedas las dos correccionas mencionadas. Observamos que solamente resultan apreciables estos errores en las medidas de la capacidad bajo polarizaciones directas superiores a 0,2 Voltios, para las que la característica I(V) semilogarítmica se desvía de la recta. Por otra parte, la resistencia en serie r limita las tonsiones directas aplicadas sobre la zona de transición, en este caso, a unos 0,35 Voltios.

En estos diodos, la resistencia r es pequeña, y sus efectos no son apreciables más que para polarizaciones directas fuertos; sin embargo, en los diodos no epitaxiados esta resistencia es del orden de $10^2 \alpha$ a $10^3 \alpha$, y sus efectos pueden ser muy notables.

y -

Las medidas de capacidad a las frecuencias más bajas (5 KHz) difieren de las de alta frecuencia a partir de la tensión de 0,5 voltios en inversa, midiendose, a 40,1 voltios, una capacidad doble con 5 KHz que con 500 KHz.

Para tensiones directas superiores a 40,1 voltios, al modir con frecuencias bajas, la corriente conductiva es muy superior a la capacitativa y nò se puede equilibrar el puente de capacidades modiante el detector de cero. Las capacidades medidas y representadas en la figura 35-a, para estas tensiones, son seguramente erroneas e inferiores a las reales. En estas condiciones, seria seguramente util un montego experimental como el descrito por C. BARRET y A. VAPAILLE /84/ pera la determinación de la capacidad.

A partir de las diferencias entre las capacidades medidas a 5 KHz y a 500 KHz deducimos las densidades de centros profundos $N_T(x)$ mediante la ecuación obtenida en la sección III-2 al suponer cuc : $(W - \lambda)$ W. Las densidades calculadas están representadas en la figura 36, las distintas abscisas se han calculado mediante :

$$x = \frac{\varepsilon s}{c} - \lambda$$

donde S es la superficie del diodo, C es la capacidad a 500 KHz y $\lambda = 0,23$ se ha obtenido mediante los ábacos del apéndice, considerando que el centro profundo en cuestión es el nivel aceptor del oro en cl Silicio, situado a E_c-E_T = 0,54 eV.

Si no consideramos los puntos obtenidos con las polarizaciones de \pm 0,2 y \pm 0,15 voltios, el perfil de densidad N_T(x) obtenido es sensiblemente exponencial y, por extrapolación, tendria una densidad en la superficie de unos 10¹⁸ atm/cm³.

Existen motivos para dudar de la exactitud del valor de λ , un valor erronco para causaria solamente un corrimiento en el ojo de

100

las x, sin modificar las densidades calculadas, sí modificaría, en cambio la densidad extrapolada en la superficie.

Hemos ensayado el efecto de la temperatura sobre la carac-

Figura 36

teristica C(w). Como ya hemos indicado, la mayor diferencia entre las capacidades a 500 KHz y a 5 KHz se encuentra operando a \pm 10°C, por lo que a esta temperatura la frecuencia de corte debe estar situada en los 50 KHz, lo que corresponde a un coeficiente de emisión termico e = 300 s.

La dependencia de la capacidad con la frecuencia, bajo polarización nula desaparece a temperaturas superiores a 45°C y a temperaturas inferiores a -20°C. Este comportamiento se corresponde muy bien con el nivel aceptor del oro en el Silicio, siendo así, deberirmos encontrar una dependencia de la capacidad con la frecuencia, correspondiente al nivel dador del oro, a una temperatura inferior (aproximadamente -100°C), sin embargo no hemos encontrado este efecto aún descendiendo a -210°C.

Hemos analizado, también diodos de 1,5 mm de diametro, sin anillo de guarda, con metalización de cromo, sometidos a recocidos a temperaturas comprendidas entre 200 y 500°C. En ellos aparece también una dependencia de la capacidad con la frecuencia, a temperaturas comprendidas entre -30 y -60°C. Sin embargo este efecto solamente es apreciable bajo polarizaciones directas, en las que el analisis de las capacidades resulta menos exacto que en el ejemplo expuesto.

En los diodos motalizados con cobre y tratados termicamente, no se ha podido observar ningún efecto sobre la capacidad. En estoc diodos, después del tratamiento termico, se ha disuelto el cobre residual y se ha sustituido por una metalización de cromo.

CONCLUSION

A pesar de tener bien establecida la teoría fundamental, el comportamiento de los diodos Schottky resulta un tanto impredictible, en cuanto depende considerablemente de los detalles en el proceso tecnológico.

Les características de conducción pueden explicarse más satisfactoriamente, suponiendo que, aún con dopages moderados en el sem<u>i</u> conductor, la corriente contiene una componente debida a la emisión termoionica por efecto de campo. Ello requiere la presencia de una capa fuertemente dopada junto al metal, que puede tener su origen en la penetración de impurezas durante la formación del contacto.

Esta hipótesis permite explicar, también, los efectos de conmutación biestable observados bajo polarización inversa en algunos diodos. Estos efectos resultan acentuados cuando sometemos los diodos a tratemientos tórnicos a temperaturas elevadas.

Henos comprobado la presencia de centros profundos en las proximidades del metal, empleando métodos eléctricos, basados en la medida de la capacidad dinámica del diodo en diversas condiciones. Estas medidas demuestran la existencia de centros profundos en los diodos sometidos a tratamientos térmicos con temperaturas inferiores a las necesarias para producir la difusión del metal en el volumen del semiconductor.

Los modelos expuestos y los resultados experimentales obtenidos, contibuyen a esclarecer los fenómenos que tienen lugar durante la formación de los contactos metal-semiconductor y que están en el origen del comportamiento experimental del diodo.

Estos fenómenos hen sido objeto de numerosas investigaciones recientes, nosebres consideramos que el empleo de los métodos de anílisis propuestes, permito superar el enfegue esencielmente empírico con qué son llevadas estas investigaciones. con qué son llevadas estas investigaciones.

Dada la importancia de las aplicaciones prácticas que en la actualidad se descubren en los diodos Schottky, y su probable multiplicación en un futuro próximo, será necesario profundizar en este tipo de investigación. Por ello consideramos de interés la prolongación de este trabajo en el sentido de un análisis sistemático de los distintos contactos metal-semiconductor en función del proceso tecnológico de preparación para obtener una visión de conjunto de los fenómenos. APENDICE

A - Estados de carga de los centros profundos.

Los estados electrónicos con niveles profundos dentro de la banda prohibida, pueden cambiar su estado de ocupación capturando o emitiendo portadores, de o hacia las bandas de conducción o de valencia.

Una modificación del estado de ocupación del estado electrónico, se traduce por un cambio en el estado de ionización o de carga del centro correspondiente.

Los procesos de captura o de emisión pueden ser ópticos o térmicos, según el tipo de excitación del portador que cambia de energía. En la figura Al se han representado estos procesos dentro del esquema de bandas.

Banda de valencia

Figura Al - Procesos de emisión y de captura de portadores que modifican el estado de un centro profundo, junto con sus respectivos coeficientes.

Llamamos $c_n y c_p$ a los coeficientes de captura, y $e_n y$ e_p a los de emisión; Los subíndices n y p indican, respectivamente, electrón y hueco.

Llemando NT a la densidad de centros profundos total, y nT

la densidad de centros profundos ocupados por un electrón, podemos escribir la ecuación que rige la variación del estado de ocupación, según Shockley-Read-Hall (SRH), /55/ :

$$\frac{d n_{T}}{d t} = (c_{n} n + e_{p}) (N_{T} - n_{T}) - (c_{p} p + e_{n}) n_{T} =$$

$$= - (c_{n} n + e_{n} + c_{p} p + e_{p}) n_{T} + (c_{n} n + e_{p}) N_{T}$$
(1)

donde n y p son las densidades de electrones y huecos respectivamente.

En régimen estacionario, los diferentes procesos que contribuyen a cambiar el estado de ionización de un centro, se equilibran mutuamente. Podemos obtener este estado de equilibrio haciendo:

$$\frac{d n_T}{d t} = 0$$

Entonces queda:

$$\frac{n_{T}}{N_{T}} = \frac{c_{n} n + e_{p}}{c_{n} n + e_{n} + c_{p} + e_{p}}$$
(2)

Vemos pues que el estado de carga de las impurezas, en régimen estacionario, depende de sus coeficientes de emisión y de captura, y de las concentraciones locales de electrones y de huecos.

Considererenos succesivemente dos casos: el caso de una zona neutra, donde rigen las condiciones de equilibrio termodinémico; y el caso de una zona de carga de espacio, donde las densidades locales de portadores vienen regidas por sua respectivos pseudonivoles de Fermi. 1º - Caso de una zone noutra:

En ella las densidades n y p vienen dadas por:

$$n = n_{i} \exp \left(E_{F} - E_{i}\right) / kT$$

$$p = n_{i} \exp \left(E_{i} - E_{F}\right) / kT$$
(3)

Donde n_i es la concentración intrínseca de portadores, E_i es el nivel intrínseco y E_F es el nivel de Fermi.

En el equilibrio, por el método del valance detallado /56/, se deduce que:

$$e_{n} = c_{n} n_{i} \exp \left(E_{T} - E_{i}\right) / kT = c_{n} n_{1}$$

$$e_{p} = c_{p} n_{i} \exp \left(E_{i} - E_{T}\right) / kT = c_{p} p_{1}$$

$$(4)$$

donde E_T es el nivel de energía del centro.

De las relaciones (3) y (4) deducimos:

con lo que la relación (2) queda:

$$\frac{n_{\rm T}}{n_{\rm T}} = \frac{1}{1 + \cos((E_{\rm T} - E_{\rm F}) / 1cT)}$$
(5)

El estado de carga del centro profundo en la zona neutra, que-

da pues determinado por su posición energética respecto del nivel de Fermi.

Hay que tener en cuenta que la posición del nivel de Fermi, dentro de la zona neutra y en presencia de centros profundos, está a su vez afectada por la densidad de centros profundos ionizados. En efecto, la ecuación de la neutralidad eléctrica se escribe, en este caso:

$$0 = 2 n_{i} \operatorname{senh} (E_{F} - E_{i}) + N_{D} - N_{A} + N_{T} \frac{1}{1 + \exp(E_{T} - E_{F}) / (T)}$$
(6)

donde M_D y M_A son las densidades de dadores y aceptores poco profundos, respectivamente, que se han supuesto totalmente ionizados.

2º - Caso de una zona de transición.

En ausencia de polarización exterior, la zona de transición está también en estado de equilibrio, con el nivel de Fermi definido y constante. Sin embargo, debido al campo eléctrico existente las bandas de energía están curvadas, y con ellas el nivel energético del centro profundo.

La diferencia de energías $E_F - E_T$ depende ahora de la ordenada considerada. Puede ocurrir entonces, que los centros profundos inviertan su posición energética respecto del nivel de Fermi, a partir de una ordenada W - λ , en el interior de la zona de transición, cembiando, según (5), su estado de carga.

Cuando la unión está polarizada, la zona de transición no es de equilibrio, y deja de estar definido en ella el nivel de Fermi.

En este caso las densidades n y p vienen dadas por:

$$n = n_{i} \exp \left(E_{Fn} - E_{i}\right) / kT$$

$$p = n_{i} \exp \left(E_{i} - E_{Fp}\right) / kT$$
(7)

donde E y E son los pseudoniveles de Fermi para electrones y huecos respectivamente.

Es conveniente, aquí, introducir una simplificación que consiste en distinguir entre dos tipos de centros:

- "trampas de electrones", cuando $e_n \gg e_p$ y $n c_n \gg p c_p$

- "trampas de huecos", cuando $e_n \ll e_p$ y $n c_n \ll p c_p$

Estas condiciones las cumplen, respectivemente, los centros profundos de la zona de transición con nivel energético en la mitad superior de la banda prohibida, o en la mitad inferior. En el caso de las trampas de electrones, los procesos de emisión y captura de huecos son despreciables frente a los de electrones. Entonces la ecuación (2) se simplifica:

$$\frac{n_{T}}{N_{T}} = \frac{c_{n}n}{c_{n}n + e_{n}}$$
(8)

Y sustituyendo en ella las relaciones (4) y (7) , se obtiene:

$$\frac{n_{T}}{N_{T}} = \frac{1}{1 + \exp(E_{T} - E_{Fn})/kT}$$

Vemos que el pseudonivel de Fermi de los electrones controla el estado de carga de las trampas de electrones. La ordenada $\Im - \lambda$, en la que éstas cambian de estado de ionización, corresponde al punto en el que el pseudonivel de Fermi de los electrones coincide con la energía del centro.

Unas consideraciones análogas conducen a relacionar el estado de carga de las trampas de huecos con su posición energética respecto del pseudonivel de Fermi de los huecos.

En la figure A2 se ilustra esta situación, para un contacto metal-semiconductor tipo-n polarizado en inverso. Los pseudoniveles de Fermi se han supuesto constantes a través de la zona de transición, hipótesis repetidamente comprobada (ver /58/,/59/, /60/).

No existe, bajo polarización inversa, ninguna región en la que las trampas de minoritarios cambien el estado de carga correspondiente a la zona neutra. Este hecho impide observar las trampas de minoritarios mediente cambios en la polarización inversa solamente. A.2. Cálculo de los valores de λ .

La longitud λ , en la figura A2, corresponde a la enchura de la región en la que los centros profundos de la zona de transición conservan, en el equilibrio, el mismo estado de carga que los centros profundos de la zona neutra. Los valores de λ se pueden calcular teóricamente, conociendo el dopage del substrato $N_D - N_A$ y la energía del centro profundo en cuestión.

De acuerdo con la hipótesis de que el pseudonivel de Fermi de los mayoritarios es constante en la zona de transición, e igual al nivel de Fermi de la zona neutra, el potencial creado por la carga de espacio comprendida entre los coordenadas $W - \lambda$ y W debe igualar al potencial correspondiente a la diferencia de energías $E_F - E_T$:

$$\frac{q}{2\epsilon} \lambda^2 (N_D - N_A) = \frac{E_F - E_T}{q}$$
(9)

donde E_T es la energía del centro profundo y E_F es la energía del nivel de Fermi de la zona neutra, que, conociendo el dopage del substreto, se obtiene a partir de la condición de neutralidad, y se exprese:

$$E_{c} - E_{F} = kT \ln \frac{N_{c}}{N_{D} - N_{A}}$$
(10)

donde N y E son, respectivamente, la densidad de estados equivac c lente y la energía del fondo de la banda de conducción.

Los valores de λ vendrán dados por :

$$\lambda^{2} = \frac{2 \varepsilon}{q^{2}} \frac{1}{N_{D} - N_{A}} \left(-kT \ln \frac{N_{c}}{N_{D} - N_{A}} + (\varepsilon_{c} - \varepsilon_{T}) \right)$$
(11)

Los valores de λ calculados mediante esta expresión, se pueden obtener en los ábacos de las páginas 142y143. Estos ábacos están calculados respectivamente para las temperaturas de 300°K y 77°K y contienen, en abscisas, el dopage del substrato en átomos/cm³, y en ordenadas los valores de la longitud λ en micras. Las energías (E_c - E_T) de los centros profundos figuran como parámetro, y están indicadas en electrón-voltios sobre cada curva.

A.3. Evolución del estado de carga de los centros profundos fuera del equilibrio.

Cuando los centros profundos se encuentran en un estado de carga distinto del estado estacionario, expresado en la ecuación (2), los procesos de emisión y de captura de portadores causan una evolución del estado de carga que, como hemos visto, viene regida por la ecuación (1).

Para obtener la evolución del estado de carga a lo largo del tiempo, debemos resolver esta ecuación diferencial.

Esta ecuación se puede resolver facilmente, cuando se supone que la evolución del estado de carga de los centros profundos no modifica la densidad de portadores, n y p, que figuran en la ecuación. Esto equivale a suponer que los centros profundos están en una densidad débil compareda con el dopage del substrato, que determina por sí solo las densidades de portadores.

Entonces, la solución de esta ecuación diferencial es:

$$n_{T}(t) = (n_{T_{0}} - n_{T_{0}}) \cdot \exp\left(-\frac{t}{\tau}\right) + n_{T_{0}}$$
(12)

con

$$\mathcal{T} = \frac{1}{c_n + e_n + c_p + e_p} \tag{13}$$

$$n_{Te} = N_{T} \frac{c_{n} + e_{p}}{c_{n} + e_{p} + c_{p} + e_{p}}$$
(14)

donde $\boldsymbol{\zeta}$ es la constante de tiempo de la evolución exponencial, n_{To} es la densidad de centros profundos ocupados por un electrón en el instante inicial, y n_{Te} la del estado estacionario que se obtiene después de un tiempo suficientemente largo, y que ya hemos discutido en la sección anterior.

Esta es la evolución que sigue el estado de carga de los centros profundos cuando, por ejemplo, se interrumpe bruscamente una excitación exterior que mantuviera una ocupación distinta de la estacionaria, n_{Te}.

Tiene especial interés para nosotros el estudiar esta evolución en el caso de los centros profundos situados en la zona de transición de una unión metal-semiconductor, que después de una modificación en la polarización, se encuentran en una zona en la que han cambiado, súbitamente, las densidades de portadores n y p.

Esta situación ocurre en los métodos propuestos en la sección III.1, donde polarizamos la unión en directo para modificar el estado de carga de los centros profundos, y volvemos después a la polarización inversa para medir la capacidad resultante.

Hemos considerado el caso de un contacto metal-semiconductor tipo-n, en el que el semiconductor contiene centros profundos, en densidad inferior a la del dopage y que actúan como "trampas de electrones"; con esta simplificación, las expresiones (13) y (14) se reducen a :

$$\zeta = \frac{1}{\frac{c_n n + e_n}{n + e_n}} \qquad y \qquad n_{Te} = N_T \frac{\frac{c_n n}{c_n n + e_n}}{\frac{c_n n + e_n}{n + e_n}} \tag{15}$$

Si en ellas introducimos las relaciones (4) entre los coeficientes de emisión y de captura, quedan:

$$T = \frac{1}{e_{n}(1 + n/n_{1})} \quad y \quad n_{Te} = N_{T} \frac{1}{1 + n_{1}/n}$$
(16)

Por tratarse de una zona de transición, la densidad de electrones n no es una constante, sinó que depende de la posición :

$$n = N_{D} \exp - \frac{q N_{D}}{2 \varepsilon} (W - x)^{2} \frac{1}{kT} \qquad \text{si } x \leqslant W$$

$$n = N_{D} \qquad \qquad \text{si } x \geqslant W$$
(17)

donde x es la distancia al contacto metálico, W es la anchura total de la zona de transición, y N_{D} es la densidad de dopage.

Por otra parte, n₁, densidad de electrones que existiría en la banda de conducción si el nivel de Fermi coincidiera con el nivel energético del centro profundo, se puede expresar:

$$n_1 = N_p \exp - (E_F - E_T)$$
 (13)

donde E_F y E_T son respectivamente las energías del nivel de Fermi y del nivel energótico del centro profundo en la zona neutra del semi-conductor.

Al cociente n/n, obtenido en las expresiones anteriores, le

llamaremos FNL(x,W) .

La densidad de centros profundos ocupados por un electrón será también función de la posición , $n_T(x)$ y además, al cambiar la polarización será función del tiempo; su evolución temporal vendrá dada por la expresión (10).

Al cambiar la polarización, la densidad de centros profundos ocupados evolucionará entre los dos estados estacionarios correspondientes a la polarización inversa y a la polarización directa. Esta evolución será distinta según se trate del paso de la polarización inversa a la polarización directa, o viceversa. En el primer caso, la evolución está dominada por el proceso de captura de electrone, la ecuación (10) queda :

$$n_{T}(x,t) = (N_{T} / (1 + FNL(x,W_{1})) - N_{T} / (1 + FNL(x,W_{2}))) \cdot$$

$$exp (-te_{n} (1 + 1/FNL(x,W_{2})) + N_{T} / (1 + FNL(x,W_{2}))$$

en el segundo caso, la evolución resulta dominada por el proceso de emisión de electrones, la ecuación (10) queda :

(19)

$$n_{T}(x,t) = (N_{T} / 1 + FNL(x,W_{2})) - N_{T} / 1 + FNL(x,W_{1}))) \cdot$$

$$exp (-t e_{n} (1 + 1 / FNL(x,W_{1}))) + N_{T} / (1 + FNL(x,W_{1}))$$
(20)

donde W_1 es la anchura de la zona de transición bajo polarización inversa, y W_2 es la anchura en polarización directa. En estas expresiones se ha hecho uso de la función FNL(x,W) anteriormente definida, y de las expresiones (13) y (14) para τ y n_{Te}.

Hemos calculado estas expresiones para el caso de un contacto metal-semiconductor tipo-n con un dopage $N_D = 10^{14} \text{ átomos/cm}^3$, con un centro profundo en densidad inferior, con $E_c - E_T = 0.4$, y con $1 / e_n = 5 \cdot 10^{-4} \text{ s}$.

Las figuras A3-a y A4-a presentan la evolución de la densidad de centros profundos ocupados $n_T(x,t)$ después de un cambio en la pola-rización que reduzca la anchura de la zona de transición a la mitad.

En estas figuras observamos que en la región $[\mathbb{W}_1 - \lambda, \mathbb{W}_2]$ el proceso de captura de electrones es muy rápido, e independiente de la temperatura. En la región $[\mathbb{W}_2, \mathbb{W}_2 - \lambda]$ el proceso de captura es más lento y avanza progresivamente en dirección al contacto; a la temperatura ambiente, el proceso se completa en l milisegundo. A la temperatura del nitrógeno líquido, hacen falta 10²³ segundos para alcanzar el estado estacionario. Este cálculo muestra, pués, que al polarizar en directo a la temperatura del ntrógeno líquido no se alcanza, con los tiempos normales de experimentación, el estado estacionario previsto en la sección anterior; sin embargo se alcanza un estado relativamente estable, en el que los centros profundos cambian de estado de ocupación de manera igualmente abrupta, pero en una coordenada superior a $\mathbb{W}_2 - \lambda$.

Las figuras A3-b y A4 - b muestran la evolución después de un cambio de polarización opuesto al anterior, con el que la anchura de la zona de transición alcanza de nuevo su valor original W_1 . Los centros profundos en la región $[W_1 - \lambda, W_2 - \lambda]$ que habían capturado un electrón con la polarización directa, al establecerse la polarización inversa lo vuelven a emitir. Este proceso de emisión tiene una evolución exponencial para todos los centros profundos dentro de la región

 $[\mathbb{W}_1 - \lambda, \mathbb{W}_2 - \lambda]$, y su constante de tiempo coincide con la inverse del coeficiente de emisión correspondiente. A la temperatura de nitrógeno líquido, esta evolución resulta totalmente imperceptible durante los

tiempos normales de experimentación. A temperaturas superiores, se manifiesta a través de una evolución de la capacidad de la unión; de ella se deduce entonces fácilmente el coeficiente de emisión e n

and the set
	1	K.F. BRAUN - Ann. Phys. Progg., 153, 556 (1874).
	2	A.H. WILSON - Proc. Royal Soc., A133, 458 (1931).
	3	W. SCHOTTKY - Naturwiss, 26, 843 (1938).
	4	E. SPEMKE - "Les Semiconducteurs Electroniques", Dunot, Paris, (1950).
	5	B. PELLEGRINI - Phys. Rev., 87, 5299, (1973).
	6	J.G. SIMMONS - Phys. Lett., 16, 233 (1965).
	7	I. TAMM - Physik. Z. Sovjet Union, 1, 733 (1932).
×	8	W. SCHOTTKY - Phys. Rev. 56, 317 (1939).
	9	H. K. HENISH - "Rectifying Semiconductor Contacts", Oxford University Press (1957).
	10	A. PADOVANI - Solid State Electron., 11, 193 (1968).
	11	A.G. MILNES y D.L. FEUCHT - "Heterojunctions end Metal Semicon- ductor Junctions", Academic Press (1972).
	.12	J. BARDEEN - Phys. Rev., 71, 717 (1947).
	13	C.R. CROWELL y G.I. ROBERTS - J. Appl. Phys., 40, 3726 (1969).
	14	A.M. CDWLEY y S.M. SZE - J. Appl. Phys., 36, 3212 (1965).
	15	T.C. McGILL - J. Vec. Sci. Technol., II, 6 (1974).
	16	S. KURTIN, T.C. McGILL, y C.A. MEAD - Phys. Rev. Lett., 22, 1433 (1969).
	17	V. HEINE - Phys. Rev., 138,6A, 1689 (1965).
	18	V.S. FORMENKO - "Handbook of Thermoionic Properties" by G.V. SAMSONOV, New York (1966).
	19	J.M. ANDREWS y M.P. LEPSELTER - Solid State Electron., 13, 1011 (1970).

- 20 C. FLASSAYER Thèse de 3^{ème} Cycle, nº 1477, Toulouse (1973).
- 21 C. FLASSAYER, J.L. MORENZA GIL, A. MARTINEZ y D. ESTEVE -Third European Solid State Device Conference, Munich (1973).
- 22 S. KAR Solid State Electron., a publicar.
- D.L. SCHARFETTER "Minority Carrier Injection and Charge Storage in Epitaxial Schottky Barrier Diodes", Solid State Electron.
 8, 299 (1965).
- J. SHWCHUN y R.A. CLARKE Solid State Electron., 16, 213 (1973).
- 25 H.A. DETHE "Theory of the Boundary Layer of Crystal Rectfiers", M.I.T. Radiation Laboratory, Report 43 - 12, (1942).
- 26 S.M. SZE "Physics of Semiconductors Devices", J. Wiley, London (1969).
- 27 R. STRATTON "Tunneling Phenomena in Solids", pag. 123-124, ed. E. Burstein and S. Lundqvist, Plenum press, New York (1969)
- 28 W. SCHULTZ Zeit für Physik, 138, 598 (1954).
- 29 C.R. CRCWELL y S.M. SZE Solid State Electron., 8, 979 (1965).
- 30 C.R. CROWELL y M. BEGUWALA Solid State Electron., 14, 1149 (1971).
- 31 C.R. CROWELL y V.L. RIDEOUT Solid State Electron., 12, 09 (1969)
- 32 V.L. RIDEOUT y C.R. CROWELL Solid State Electron., 13, 903 (1970).
- 33 C. BARRET, R. CASTAGNE y A. VAPAILLE C.R.A.S. Paris, 2739, 23, (1971).
- 34 J.M. ANDREWS y M.P. LEPSELTER I.E.E.E. Solid State Device Conference, Washington D.C., (1968).
- 35 A.M. COWLEY Solid State Electron., 12, 403, (1970).
- 36 C.R. CROWELL J. Vac. Sci. Technol., 11,6 (1974)
- 37 V.L. BIDECUT Ph. D. Theois, Southern California, (1970).

38	F.A. PADOVANI - "Somiconductors and Semimetals", Academic, New York (1971), Cap. 2.
39	C.L. ANDERSOM - Ph. D. Thesis, Southern California, (1973).
40	R. GUILLIEN, B. LEPLEY y S. RAVELET - C.R.A.S. Paris, 2788, 19, (1974).
41	N. NAKAYAMA - Jap. Journal Appl. Phys., 8,4,450 (1969).
42	K. CHINO - Solid State Electron., 16, 119 (1973).
43	G. LUBBERS, B.C. BURBEY, H.K. BÜCHER y E.L. WOLF - J. Appl. Phys., 45, 2180 (1974).
44	J.M. SHANNON - Appl. Phys. Letters, 25, 75 (1974).
45	J.M. SHANNON - Appl. Phys. Letters, 24, 371 (1974).
45	G.H. PARKER, T.C. McGILL, C.A. MEAD y D. HOFFMAN - Solid State Electron., 11, 201 (1968).
47	C. R. CROWELL, H.B. SHORE y E.E. LABATE - J. Appl. Phys., 35, 3843 (1965).
48	N. D. LANG - Phys. Rev., 4, 8 12, 4234 (1971).
49	A. MOSER - Appl. Phys. Lett., 20, (1972).
50	J.W.H. KENNEDY - Appl. Phys. Lett., 12, 4 (1973).
51	H.J. HOVEL - Appl. Phys. Lett., 17 (1970).
52	H. J. HOVEL y J.J. URGELL - J. Appl. Phys., 42, 5076 (1971).
53	S.R. OVSHINSKY y H. FRITZCHE - I.E.E.E. , ED, 20 - 2, (1973).
54	B.K. RIDLEY - Proc. Phys. Soc., 82, (1963).
55	C. FLASSAYER, A.MARTINEZ, J. ESTEVE PUJOL, D. ESTEVE, - C.R. Aced. Sc. Paris, 276, B, 351 (1973).
56	W. SHOCKLEY y W.T. READ - Phys. Rev., 87, 835 (1952).
5 7	C.T. SAH - Proc. I.E.E.E., 55, 654 (1967).

58	CARD y E.H. RHODERICK - J. Phys. D, 4, 1602 (1971).
59	C.R. CROWELL y M. BEGUWALA - Solid State Electron., 14, 1149 (1971).
60	G.I. ROBERTS y C.R. CROWELL - J. Appl. Phys., 41, 1767 (1970).
61	C.T. SAH y V. G.K. REDDI - I.E.E.E. Trans. ED, 345 (1964).
62	T. NARUSAWA, G. KOLIYA y A. HIRAKI - Appl. Phys. Lett., 20, 12 (1972).
63	T. NARUSAWA, S. KOMIYA y A. HIBAKI - Appl. Phys. Lott., 22,8, 389 (1973).
64	J.D. McCALDIN - J. Vec. Sci. Technol., 11,6, 930 (1974).
65	G.Y. ROBINSON y D.J. FERTING - C.R.C. Critical Reviews in Solid State Sciences, 201 (1975).
65	R.W. BOWER y J.W. MAYER - Appl. Phys. Lett., 20, 9, 359 (1972).
67	J.W. MAYER y K.N. TU - J. Vec. Sci. Inchnol., 11,88 (1974).
68	V. MARBELLO, J.M. DAYWOOD, J.M. MAYER y MAA. MICOLET - Phys. Stot Sol., 13, 581 (1972).
69	G. OTTAVIANI, V. MARCELLO, J. W. MAYER, M-A. NICOLET y J.M. CAYWOOD - Appl. Phys. Lett., 20, 323 (1972).
70	J.W. CAHN y J.E. HILLIARD - J. Chem. Phys., 28, 258 (1953).
71	J.M. PEYRIGUIER - Thèse de Specialité, Université de Toulouse, nº 1489 (1973).
72	A. MARTINEZ - Thèse d'Etat, Université de Toulouse, eo 704 (1976)
73	D. ESTEVE - Thèse de Docteur ès - Sciences, nº 339, Toulouse, (1969).
74	S. KAR y W. DALKE - Solid State Electron., 19,221 (1972).
75	C.T. SAH, L. FORDER, L. ROSIER y A.F. TADGH - Solid State Electron., 13, 750 (1970).
di di	

× .

4

÷.

-

76	M.G.	BUEHLER	-	Solid	State	Electro.,	15,	69	(1972)	
----	------	---------	---	-------	-------	-----------	-----	----	--------	--

77 D.L. LOSEE - Appl. Phys. Lett., 21, 54 (1972).

- 78 M. BLEICHER y E. LANGE Solid State Electron., 11, 323 (1993).
- 79 C.T. SAH, L. FORDES, L.L. ROSIER, A.F. TASCH y A.B. TOLE Appl. Phys. Lett., 15,145 (1959).
- 80 Y. ZOHTA Solid State Electron., 16, 1029 (1973).
- 81 E.G. SCHIBLI Solid State Electron., 15, 137 (1972).
- 82 G.I. ROBERTS y C.R. CROWELL Solid State Electron., 16, 29 (1972).
- 83 H. OKALDTD, S. SAKATA y K. SAKAI J. Appl. Phys., 44, 1316 (1973).
- 84 C. BARRET y A. VAPAILLE Solid State Electron., 19, 73 (1976).
- 85 L. PAULING "The Nature of the Chemical Bond", Cornell V.P., Ithaca N Y, 1960.

τ.

Figura A.3 - a - Evolución temporal de la densidad de centros profundos ocupados $n_T(x,t)$ al cambiar la anchura de la zona de transición de W_1 a W_2 debido a un combio en la polarización del diodo (300%).

A.3 - b - Idem de $W_2 \in W_1$ (300%).

Figure A.4 – a – Evolución temporal de la densidad de centros profundos ocupados $n_T(x,t)$ al cambiar la anchura de la zona de transición de M_1 a M_2 debido a un combio en la polarización del diodo (77%).

A.4 - b - Idom do $U_2 = U_1 (7791)$.

