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The Transforming Growth Factor-beta (TGF-β) family plays relevant roles in the regulation

of different cellular processes that are essential for tissue and organ homeostasis. In the

case of the liver, TGF-β signaling participates in different stages of disease progression,

from initial liver injury toward fibrosis, cirrhosis and cancer. When a chronic injury takes

place, mobilization of lymphocytes and other inflammatory cells occur, thus setting the

stage for persistence of an inflammatory response. Macrophages produce profibrotic

mediators, among them, TGF-β, which is responsible for activation -transdifferentiation-

of quiescent hepatic stellate cells (HSC) to a myofibroblast (MFB) phenotype. MFBs are

the principal source of extracellular matrix protein (ECM) accumulation and prominent

mediators of fibrogenesis. TGF-β also mediates an epithelial-mesenchymal transition

(EMT) process in hepatocytes that may contribute, directly or indirectly, to increase

the MFB population. In hepatocarcinogenesis, TGF-β plays a dual role, behaving as a

suppressor factor at early stages, but contributing to later tumor progression, once cells

escape from its cytostatic effects. As part of its potential pro-tumorigenic actions, TGF-β

induces EMT in liver tumor cells, which increases its pro-migratory and invasive potential.

In parallel, TGF-β also induces changes in tumor cell plasticity, conferring properties of a

migratory tumor initiating cell (TIC). The main aim of this review is to shed light about the

pleiotropic actions of TGF-β that explain its effects on the different liver cell populations.

The cross-talk with other signaling pathways that contribute to TGF-β effects, in particular

the Epidermal Growth Factor Receptor (EGFR), will be presented. Finally, we will discuss

the rationale for targeting the TGF-β pathway in liver pathologies.
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INTRODUCTION

The liver shows an unique regenerative response to injuries produced by physical or toxic
treatments, which induce tissue damage (1–3). Liver injuries can be classify depending on their
persistence or duration and can develop acute and chronic liver diseases. Acute liver injuries can
be completely restored, without any evidence of the injury, only withdrawing the damaging agent
in a short period of time. In these cases, the liver architecture and function remain stable. However,
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long-time exposure with the damaging agent generates
progressive liver damage, parenchyma alterations and vascular
architectural distortion, which eventually results in liver fibrosis,
cirrhosis, and ultimately, hepatocellular carcinoma (HCC),
which is the end-stage of most chronic liver diseases (4, 5).

Chronic liver diseases are characterized by a parenchyma
damage with a continued wound healing response, tissue
remodeling, inflammatory environment and an alteredmolecular
signaling pathways. Strong evidences point out the relevant
role of the Transforming Growth Factor beta (TGF-β) signaling
during all phases of the development of liver fibrosis and
hepatocarcinogenesis. Perturbation of signaling by TGF-β
family members is often seen in different diseases, including
malignancies, inflammatory and fibrotic conditions (6). Under
physiological conditions, TGF-β has a cytostatic and pro-
apoptotic role in adult hepatocytes, which is critical for the
control of liver mass. Loss of these functions may result in
hyperproliferative disorders and cancer (7–9). Indeed, in early-
stage carcinomas, TGF-β exerts tumor-suppressing activities,
inducing cell cycle arrest and apoptosis. However, in late-
stage carcinomas, once cells acquire resistance to its suppressive
effects, TGF-β actions switch to pro-oncogenic, conferring
cell survival, inducing cell migration and invasion, mediating
immune alterations and microenvironment modifications (10,
11).

Recent evidences suggest that many of the pathological TGF-β
effects could be related with its capacity to regulate cell plasticity,
contributing to modifications in the phenotype of different liver
cell populations. Cell plasticity refers to the interconversion of
different stem cell pools, activation of facultative stem cells, and
dedifferentiation, transdifferentiation or phenotypic transition
of differentiated cells within a tissue (12) and is related with
the ability of cells to reversibly change their phenotype and to
take on characteristics of other cell types (13). The most studied
and classic event related with cell plasticity is the epithelial-
mesenchymal transition (EMT) and the opposite mesenchymal-
epithelial transition (MET) (14). After specific stimuli, the cells
suffer genetic and epigenetic changes, as well as cytoskeleton
remodeling, which alter their phenotype and functions. TGF-β
induces EMT in hepatocytes (15) and it is responsible for
activation of hepatic stellate cells (HSC) to myofibroblasts (MFB)
(16), both effects contributing to liver fibrosis. Moreover, during
hepatocarcinogenesis TGF-β could also mediate an EMT process
in liver tumor cells. This review will update recent evidences
indicating the relevance of TGF-β signaling pathway in the
regulation of the cell plasticity during the progression and
pathogenesis of liver chronic diseases, as well as the molecular
mechanisms involved. Finally, we will discuss the rationale for
targeting the TGF-β pathway in liver pathologies.

TGF-β SIGNALING PATHWAYS

In humans, the pleiotropic TGF-β cytokine superfamily includes
different members, such as bone morphogenetic proteins
(BMPs), growth and differentiation factors (GDFs) and TGF-β
isoforms (TGF-β1, TGF-β2, and TGF-β3). TGF-β signaling

pathways regulates different cellular processes playing essential
roles in proliferation, migration, differentiation, or cell death.
These processes are essential for the homeostasis of tissues and
organs and TGF-β signaling deregulation contributes to human
disease. TGF-β1 (TGF-β from now on) has essential roles in liver
physiology and pathology and contribute to all stages of disease
progression: from liver injury through inflammation, fibrosis,
cirrhosis and HCC (7, 8).

Most of the functions of the cells involved in the fibrotic
tissue and in the tumor microenvironment are under the control
of TGF-β: promotes MFB differentiation, the recruitment of
immune cells, affects epithelial and endothelial cell differentiation
and inhibits the anti-tumor immune responses (17, 18). Besides
TGF-β responses could be different depending on the cell type,
its receptors are expressed on most of the cells and its signaling
pathway is very similar in all of them (6). All TGF-β isoforms are
synthesized within the cell as pro-peptide precursors containing a
pro-domain, named Latency-Associated peptide (LAP), and the
mature domain. This latent form is secreted to the extracellular
matrix (ECM) and stored as a fast and available pool of TGF-β,
without a novo synthesis (19). By different mechanisms, TGF-
β is cleaved and the bioactive form signals via binding to its
specific kinase receptor at the cell surface of target cells. Stored
TGF-β could be activated by the cell contractile force, which is
transmitted by integrins (20, 21). Specific integrins and matrix
protein interactions could be required for activation of the latent
form of TGF-β. Integrins αv are the major regulators of the local
activation of latent TGF-β and in this activation it is required
the RGD (Arg-Gly-Asp) sequence (21). Integrin αv deletion in
HSC protected mice from CCl4-induced hepatic fibrosis (22).
A recent review summarized the crosstalk between TGF-β and
tissue extracellular matrix components (23).

TGF-β binds to its receptors triggering the formation of a
heterotetrameric complex of type I and type II serine/threonine
kinase receptors, in which the constitutively active type II
receptor phosphorylates and activates the type I receptor. There
are several types of both type I and type II receptors, but
TGF-β preferentially signals through activin receptor-like kinase
5 (ALK5) type I receptor (TβRI) and the TGF-β type II receptor
(TβRII). In addition, endoglin and betaglican (TβRIII), also
called accessory receptors, bind TGF-β with low affinity and
present it to the TβRI and TβRII. Activated receptor complexes
mediate canonical TGF-β signaling through phosphorylation of
the Receptor Associated SMADs (R-SMADs) at their carboxy-
terminal. Humans express eight SMAD proteins that can be
classified into three groups: R-SMADs, Cooperating SMADs
(Co-SMADs) and Inhibitory SMADs (I-SMADs: SMAD6 and
SMAD7). Among the R-SMADs, SMAD2 and 3 mediate the
TGF-β1 branch of signaling (6, 8). After phosphorylation,
R-SMADs form a trimeric complex with SMAD4, which
translocates to the nucleus and associates with other transcription
factors in order to regulate gene expression (7, 8). In addition
to the canonical SMAD pathway, TGF-β is able to use non-
SMAD effectors to mediate some of its biological responses,
including non-receptor tyrosine kinases proteins such as Src and
FAK,mediators of cell survival (e.g., NF-kB, PI3K/Akt pathways),
MAPK (ERK1/2, p38 MAPK, and JNK among others), and Rho
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GTPases like Ras, RhoA, Cdc42, and Rac1. Interestingly, these
pathways can also regulate the canonical SMAD pathway and
are involved in TGF-β-mediated biological responses (Figure 1)
(8, 24–26).

LIVER FIBROSIS

Liver fibrosis is a common pathological chronic liver disease,
consequence of a continued injury with a huge accumulation
of extracellular matrix proteins, mainly enriched in fibrillar
collagens, due to a multiple reparative and regenerative
processes (5, 27, 28). After liver damage, reparative mechanisms
are triggered to replace necrotic and apoptotic hepatocytes,
generating wound healing and inflammatory responses
that are essential for liver regeneration (5). However, if the
damage persists over a long time, the excessive accumulation
of extracellular matrix proteins (collagens I, II, and III,
undulin, fibronectin, laminin, elastin, proteoglycans and
hyaluronan) could replace parenchymal areas leading fibrosis
to a cirrhotic state. In advanced stages, it develops an abnormal

liver architecture, altered vascularization and fibrotic septa
surroundings with regenerative nodules. Liver systemic failure,
portal hypertension, high susceptibility to infection and high
risk to develop HCC are the main clinical consequences of
cirrhosis (28, 29). Interestingly, multiple clinical reports have
reported that liver insult eradication can regret liver fibrosis in
huge number of patients, mostly during the first stages (29–32).
In the development of liver fibrosis, TGF-β plays crucial roles
regulating the different stages of the disease, among them, the
control of cell plasticity of different liver cell populations, which
is summarize in the Figure 2 and we detail in the next chapters.

TGF-β REGULATES MACROPHAGE
PLASTICITY DURING LIVER FIBROSIS

Inflammation plays a key role in liver fibrosis development.
After injury takes place, infiltration of immune system cells
-macrophages, lymphocytes, eosinophils, and plasma cells-
arises to the damaged place. Lymphocytes produce cytokines

FIGURE 1 | Canonical (Smad-dependent) and non-canonical (Smad-independent) TGF-β signaling pathways. Both converge in transcriptional-dependent and

independent effects on cell proliferation, differentiation, apoptosis/survival, migration, etc., in a cell and context-dependent manner.
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FIGURE 2 | Role of TGF-β in the cell plasticity of hepatic stellate cells and macrophages during liver fibrosis. Different routes followed by TGF-β signals to mediate

activation of HSC into MFB (left) or polarization of macrophages to a M2 state (right), which contribute to sustain a fibrotic and immunosuppressive environment,

favorable to the initiation of a hepatocarcinogenic process.

Frontiers in Oncology | www.frontiersin.org 4 September 2018 | Volume 8 | Article 357

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Fabregat and Caballero-Díaz TGF-β-Induced Cell Plasticity in Liver Diseases

and chemokines, which activate macrophages. Activated
macrophages stimulate inflammatory cells such as lymphocyte,
among others, over-activating andmaintaining the inflammatory
environment (33). During fibrosis, macrophages produce pro-
fibrotic factors such as TGF-β and platelet derived growth
factor (PDGF), control ECM turnover by regulating the balance
of various matrix metalloproteases and tissue inhibitors of
metalloproteinases (TIMPs) (27, 34, 35) and are found very close
to collagen-producing MFB (36–38) suggesting the macrophages
relevance in the activation of MFB. In this sense, hepatic
macrophages have been described as a potential targets against
fibrosis (39, 40).

Macrophages represent a heterogeneous cell population
with a huge cell plasticity, where diverse microenvironment
stimuli polarize them into different phenotypes (41). There
are mainly two sources of hepatic macrophages: liver resident
macrophages, also called Kupffer cells (42), and circulating
monocytes (inflammatory recruited macrophages) (43). Besides
the origin, both could play significant roles in the development of
fibrosis. In vitro and in vivo studies described that both Kupffer
cells and monocyte-derived macrophages can activate HSC
and induce their transdifferentiation by paracrine mechanisms,
including TGF-β (44–47). Resident hepatic macrophages secrete
the chemokine CCL2 (a potent chemoattractant) in order to
recruit monocytes which could increase and promote fibrosis.
Although, it was described that the pro-fibrotic functions
of these resident macrophages remain functional even when
recruited macrophages are pharmacologically inhibited using
CCL2 antagonists (48). Transgenic rats that express a mutated
form of the CCL2 (acting as a negative-mutant), and tail
vein injection of adenovirus that overexpress a truncated form
of TGF-β receptor II (acting as a negative-receptor mutant)
attenuate liver fibrosis in a DEN-induced fibrosis model in
rats (49), suggesting the relevance of inflammation and TGF-β
pathway during this disease.

In the early stages, activated macrophages secrete pro-
inflammatory cytokines and produce reactive oxygen
species (ROS), while in late stages macrophages have been
associated with release of anti-inflammatory factors, attenuating
inflammation and promoting tissue regeneration (43, 50).
Macrophages are classify into M1, also known as classical
or pro-inflammatory; and M2, also known as alternative or
anti-inflammatory macrophages (51, 52). It is not easy to strictly
separate both liver macrophage populations, since they could
show common gene expression, and even more M2macrophages
are classify also in different subclasses. For that reason, it
has been proposed that could be more adequate to separate
them according to their functions: defensive, restorative and
regulatory macrophages (53). In the classical classification, M1
macrophages are associated with inflammatory diseases due to
microbicidal activity (through their capacity to produce ROS and
their phagocytic functions), antigen presentation and antitumor
activity. M1 macrophages prevail during the onset of injury
(54) and are related with the release of metalloproteinases that
degrade ECM and promote EMT/Endothelial-to-mesenchymal
transition (EndMT). On the other hand, M2 macrophages
secrete anti-inflammatory factors such as IL-10, arginase,
TGF-β, and HO-1. Their polarization is promoted by IL-4 and

IL-13, and are characterized for the expression of Arg1, Ym1,
and Fizz, secretion of angiogenic factors such as IL-8, VEGF,
and EGF4 and increased mannose receptor (CD206), with
lower ROS production (47, 50). M2 macrophages stimulate
an anti-inflammatory environment and promote regeneration
and wound healing. However, if injury becomes chronic, M2
macrophages take up a pro-fibrotic role secreting pro-fibrotic
factors such as TGF-β, PDGF, among others (47).

Nowadays it is clear that macrophages are essential players
in the regulation of liver fibrosis and they are an important
source of TGF-β but, could this cytokine regulate the phenotype
between M1 and M2 macrophages and their functions? Recent
data described that TGF-β could induce M2-like macrophage
polarization via SNAIL (55). SNAIL-overexpression in human
THP-1 macrophages promotes M2 markers (such as CD206),
induces the expression of the anti-inflammatory IL-10 and
inhibits pro-inflammatory M1-related cytokines (TNF-α and
IL-12). By contrast, SNAIL knockdown by siRNA technology
abolishes TGF-β-M2-induced phenotype and partly restores
M1 polarization through up-regulation of pro-inflammatory
cytokines. The canonical SMAD2/3 and the non-canonical
PI3K/AKT signaling pathways are crucial for TGF-β-induced
SNAIL overexpression in THP-1 cells. The blockade of TGF-
β/SNAIL signaling restores the production of pro-inflammatory
cytokines. Likewise, TGF-β also stimulates murine BMDM
macrophages to display an M2-like phenotype characterized
by high levels of IL-10 and low levels of IL-12p70, and M1-
specificmarkers. Macrophages isolated from fibrotic mouse livers
show higher balance of M2/M1 macrophages in comparison
to control mice (56). In other fibrotic animal models, such as
lung fibrosis, TGF-β could modulate M2 responses (57); and in
kidney, TGF-β/Smad3-dependt pathway could transdifferentiate
M2-macrophages to myofibroblast favoring kidney fibrosis
(58). Moreover, TβRII–/– mice show a defective polarization
to M2-macrophages (59). Fibrosis-induced model in rats by
thioacetamide show that both M1 and M2-macrophagues
polarizations occur during development of the disease (60).
Overall results show up that M2-activation/polarization has a
relevant role in the development of fibrosis in mice and patients
with liver fibrosis (61). However, due to the heterogenicity
and higher plasticity of macrophages and the complexity of
their study in vivo models in liver, further works are needed
in order to clarify the molecular mechanisms whereby TGF-β
pathway promote the polarization and the pro-fibrotic functions
of macrophages in vivo models. Current data seems to indicate
that both hepatic and recruited macrophages play relevant roles
in the progression and reversion of liver fibrosis. Targeting both
and the reorientation of their phenotypes are arising as attractive
therapies (62).

TGF-β REGULATES LIVER EPITHELIAL
CELLS PLASTICITY DURING LIVER
FIBROSIS

“Activated” fibroblast or MFB are the main producing cells
of fibrogenesis mediators and ECM components, participating
actively in their accumulation (63). In the liver, the most
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fibrogenic MFB are endogenous and their origin is controversial
and still unclear, but nowadays there are accepted different
sources (63–65), among them, portal and resident fibroblasts
(66), activation and differentiation of HSC (more details in the
next section) (16, 67), bone marrow-derived fibrocytes (68), liver
epithelial cells (hepatocytes and cholangiocytes) that undergo
EMT (69–71), endothelial cells that undergo EndMT (66, 72),
vascular smooth muscle cells and pericytes (73).

EMT-clear example of cellular plasticity- is a process that
drives a de-differentiation of epithelial cells to a mesenchymal-
like phenotype increasing their migratory and invasive properties
(13, 14, 74, 75). The reverse process is called as MET and
allows cells to differentiate into different organs and tissues.
In a tumorigenic context, mesenchymal migratory tumor cells
undergo MET to metastasize (76). The EMT process includes
loss of epithelial genes, such as E-cadherin and cytokeratins
(8, 18 and 19), and up-regulation of mesenchymal genes, such as
N-cadherin, alfa-Smooth Muscle Actin (α-SMA, ACTA2 gene)
which correlate with the expression of EMT transcription factors
(EMT-TFs) Snail (SNA1 gene), Slug (SNA2 gene), Twist and ZEB
(74, 75). Intermediates states are also found between EMT and
MET (77). Partial EMT is described for cells that co-express
both epithelial and mesenchymal markers. Even more, EMT
is classified into different subclasses related with the biological
context (78): Type 1 EMT is involved in development stages;
type 2 EMT concerns regenerative process and organ fibrosis; and
type 3 EMT is related with metastatic process.

During liver fibrosis, type 2 EMT plays a relevant role in
the appearance of a pro-fibrotic fibroblast phenotype. Bipotent
adult hepatic progenitor cells, which possess the cell plasticity to
differentiate into hepatocytes and cholangiocytes after different
stimuli (79), are able to undergo EMT in response to liver injury
during cholestatic liver fibrosis. Hepatocyte plasticity could play
relevant roles during the progression of chronic liver diseases.
Mouse hepatocytes that survive to the apoptotic effects of TGF-β,
could regulate -in a TGF-β dependent manner- the expression
of fibrosis-related genes, such as Connective Tissue Growth
Factor (CTGF) or fibronectin, and EMT-related genes, such
as Snail, and β-catenin (15, 71, 80), with downregulation of
epithelial markers (81). Even more, primary adult hepatocytes
could transdifferentiate to a more fibroblastic-like phenotype
with loss of cell–cell contacts and polarity, after TGF-β treatment
(80). Indeed, hepatocyte-derived fibroblasts are an additional
and significant lineage of mesenchymal cells that contribute to
progression of liver fibrosis. Zeisberg and collaborators elegantly
demonstrate that adult hepatocytes can undergo an EMT process
after TGF-β stimuli, contributing to the in vivo pool of fibroblast
during liver fibrosis (82). The role of hepatocytes during liver
fibrosis in vivo related with TGF-β was also previously described
in a transgenic animal model which overexpress SMAD7
(inhibitor of the pathway) specifically in hepatocytes. These
transgenic animals have attenuated the TGF-β signaling and
EMT, with less ECM depositions and improved CCl4-dependent
liver damage and fibrosis (83). Bone morphogenetic protein-7
(BMP-7), a member of the TGF-β family which plays opposite
roles to TGF-β, induces MET. Primary rat hepatocytes treated
with TGF-β upregulate the expression levels of fibrotic markers,

whereas BMP-7 treatment upregulated E-cadherin and decreases
SMAD2/3 phosphorylation levels. Even more, in CCl4-treated
rats treated with TGF-β, which show advanced fibrosis with
higher expression of α-SMA and lower E-cadherin, the fibrotic
situation was rescued after BMP-7 treatment (84). Moreover,
cholangiocytes -another epithelial cell population- activate,
proliferate and change into a more fibroblastic phenotype,
increasing the expression of pro-fibrotic cytokines and factors
such as TGF-β, PDGF and CTGF (85). These results open new
ideas about how epithelial liver cells, through an EMT process,
could generate mesenchymal/fibroblastic cells, which could be
relevant in the progression of the fibrotic diseases.

RELEVANCE OF TGF-β AND HSC
DIFFERENTIATION DURING LIVER
FIBROGENESIS

In the normal liver, HSC (around 5–8% of the cells in the
liver) are in a quiescent phenotype hosted in the space of
Disse between hepatic epithelial and the sinusoidal endothelial
cells (86). HSC are characterized by the store of vitamin
A, lipid droplets and the expression of a large number of
adipogenic genes and neural markers. After liver insults, different
paracrine and autocrine signals are triggered promoting the
HSC activation -transdifferentiation- from a quiescent state to
an activated myofibroblastic phenotype. MFB are characterized
by the expression of α-SMA, loss of retinoids and lipid
droplets and de novo expression of receptors for mitogenic,
fibrogenic and chemotactic factors, leading an increase in
proliferation and survival, enhanced synthesis of matrix proteins
(predominantly fibrillar collagens) and inhibitors of matrix
degradation TIMPs, and secretion of pro-inflammatory cytokines
and chemokines. This provokes the progressive scar formation
and the development of liver fibrosis (29, 32).

HSC activation is one of the most important steps during
liver fibrosis and is mediated by different signals, such as growth
factors (PDGF and CTGF, among others), lipidic mediators,
as well as ROS and cytokines produced by hepatocytes,
cholangiocytes, endothelial cells, macrophages (Kupffer
cells) and immune cells (67, 86). Among these cytokines,
TGF-β plays a master role in the activation of the HSC to
MFB (16). In fact, some of the previous factors stimulate
the expression, production and activation of TGF-β, which
at the end is responsible for the activation of HSC (87).
Furthermore, MFB demonstrate a growth stimulatory effect
in response to TGF-β (88), which also contributes to the
maintenance of their myofibroblastic phenotype (89). SMAD3
has been identified as the main mediator of the TGF-β-
induced fibrogenic transcriptional program, particularly the
up-regulation of collagen expression (7, 8, 30, 31). HSC isolated
from SMAD3 knock-out mice showed lower expression of
Collagen1A1 mRNA mediated by p38 MAPK (30). Interestingly,
it has been proposed that TGF-β activates the p38 MAPK
pathway, further leading to SMAD3 phosphorylation at the
linker region in the cultured MFBs, which promoted hetero-
complex formation and nuclear translocation of SMAD3 and
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SMAD4 (31). These results would indicate that non-canonical
activation of the SMAD3/SMAD4 transcriptional activity
accounts for SMAD3-dependent extracellular matrix production
in MFBs.

During liver fibrogenesis, activated HSC express CTGF, which
acts downstream of TGF-β modulating the ECM production.
CTGF mRNA expression is under the control of the canonical
TGF-β/SMAD3 and non-canonical ERKs, JNK, p38, and STAT3
pathways (90, 91). Moreover, receptor for activated C-kinase
1 (RACK1), a scaffold protein involved in numerous cellular
processes and signaling pathways, is another TGF-β downstream
target involved in the HSC activation. RACK1 is able to
induce pro-fibrogenic pathways in a TGF-β-dependent manner,
contributing to differentiation, proliferation, and migration of
HSC (92, 93). Indeed, in this migratory phenotype and in
remodeling of the cytoskeleton in TGF-β-activated HSC is also
involved the role of Rho guanosine triphosphatase (Rho GTPase)
signaling (94). TGF-β also regulates the expression of TRPM7
(transient receptor potential melastatin 7) in a SMAD3-depend
manner, which inhibition attenuates TGF-β-induced expression
of MFB markers (95).

Mild to moderate liver fibrosis may be reversible. The
reversion process is related with the elimination of the damaging
stimuli. During liver fibrosis reversion, activated HSC (or
myofibroblast) reverted to an inactivated phenotype. In this
state, inactivated HSC decrease the expression of fibrogenic
genes (including COL1A1 and ACTA2) and up-regulate the
expression of some quiescence-associated genes like PPARγ (96,
97). Furthermore, inactivating some of the TGF-β downstream
signals, such as ROS production, allows the reversion of the
myofibroblast phenotype (89).

ROLE OF ROS DURING HSC ACTIVATION
BY TGF-β

Oxidative stress plays a relevant role in the sequence of events
following TGF-β activation of HSC. Actually, antioxidants can
inhibits HSC transdifferentiation into MFB (98, 99). In both
normal physiological and pathological conditions, ROS are
critical intermediates. Oxidative stress plays a role during both
initial inflammatory phase and its progression to fibrosis (100).
Oxidative stress markers have been detected in experimental
liver fibrosis/cirrhosis animals and in the biopsy and serum
samples from liver cirrhotic patients (101). It is well known that
ROS may act upstream and downstream of the TGF-β pathway.
Upstream, ROS, through LAP activation and subsequent TGF-β
release, promote fibrosis activating latent TGF-β (102) and/or via
matrix metalloproteinases activation (103). Indeed, LAP/TGF-β
complex has been suggested to function as an oxidative stress
sensor (104). Furthermore, in many cell types such as HSC and
hepatocytes, ROS may up-regulate the expression and secretion
of TGF-β in a positive feedback loop (105, 106). ROS may
be generated in the liver by multiple sources, including the
cytochrome p450 family members, peroxisomes, mitochondrial
respiratory chain, xanthine oxidase, and nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases. Worthy to note,

accumulating evidence indicates that NADPH oxidases (NOX)-
mediated ROS have a critical role in HSC activation and hepatic
fibrogenesis (101) mediating TGF-β actions.

NOX enzyme family generate ROS, either hydrogen peroxide
or superoxide as the primary species, during oxygen catalytic
metabolism for arrange of signaling functions and host defense.
There are described seven NOX isoforms in mammalian
cells (NOX1-5, DUOX1, and DUOX2). Liver cells (either
parenchymal and non-parenchymal) express different members
of the NOX family. Hepatocytes and HSC express NOX1,
NOX2, NOX4, DUOX1, and DUOX2; endothelial cells express
mainly NOX1, NOX2, and NOX4; and Kupffer cells express the
phagocytic NOX2 (101, 107). NOXs proteins could be playing
relevant roles during liver fibrosis development (101, 108). Both
NOX1- and NOX2-deficient HSC had decreased ROS generation
and failed to upregulate collagen and TGF-β in response to
angiotensin II (109). Of relevance, NOXes mediate TGF-β
activation of HSC to MFB process (89, 110). In different organs,
such as heart, the main mediator for the activation of MFB is
NOX4, downstream from TGF-β (111), lung (112) and kidney
(113). In in vivo models of liver fibrosis, the levels of NOX4
are up-regulated, as well as in patients with chronic hepatitis C
virus derived infection, increasing along the fibrosis degree. HSC
respond to TGF-β inducing NOX4-derived ROS (105), which
play a key role in hepatic MFB in both in vivo and in vitro (89,
114). In NOX4 knock-out animals and in NOX4 downregulated
cells the TGF-β-transactivation of HSC is attenuated (89,
114), and even more, the myofibroblastic state could also be
reversible (89). During liver fibrosis, NOX4 is required for both
HSC activation and maintenance of the activated phenotype
in MFB in a TGF-β-dependent manner and mediates the
TGF-β pro-apoptotic response in hepatocytes, which might
be relevant to blunt regeneration and create a pro-fibrogenic
microenvironment. In this sense, apoptotic hepatocytes after
liver injury generate apoptotic bodies which were described to
promote HSC survival (115). HSC can engulf and clear apoptotic
hepatocytes bodies inducing their activation in JAK1/STAT3-
dependent pathway and a NOX-dependent PI3K/Akt/NF-κB
induction pathway, concomitant with a production of ECM
components (115). Recent evidences show up the dual role
of NOX1/NOX4 pharmacological inhibitors in decreasing both
the apparition of fibrogenic markers and hepatocyte apoptosis
in vivo (114, 116), highlighting the relevance of NOX1 and
NOX4 in liver fibrosis and opening new perspectives for
its treatment. Actually, NOX1 and NOX4 signaling mediates
hepatic fibrosis through activation of HSC (114, 117). Indeed, it
was recently described that NOX4, downstream TGF-β, would
play a role in the acquisition and maintenance of the MFB
phenotype (89). Deficiency of NOX1 and NOX4 attenuates liver
fibrosis in mice after CCl4 treatment. Activated HSC and ROS
generation are also attenuated in HSC lacking NOX1 and NOX4,
suggesting NOX1 and NOX4 play important roles in liver fibrosis
and injury through regulating inflammation, proliferation and
fibrogenesis in HSC (117). Therefore, targeting NOX1/4 is
emerging as a new and attractive therapy for liver fibrosis in
order to impair the pathological effects of TGF-β over this
disease.
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HUMAN HEPATOCELLULAR CARCINOMA
(HCC)

HCC is a major public health problem worldwide with almost
800,000 new cases each year and its incidence is increasing in
Europe and worldwide. In 2015 reports from World Health
Organization, liver cancer is the second leading cause of cancer-
related deaths, following lung cancer (118). HCC is the most
common primary liver malignancy in adults. Intriguingly, there
are significant differences on the incidence when considering
the gender, being the male to female ratio estimated to be 2.4.
This difference is mainly attributed to the different exposition
to risk factors, as well as the influence of androgens and
oestrogens on HCC progression (119). Exposition to risk factors
also determines the incidence of liver cancer regarding age or
ethnicity and the highest incidence of HCC is found in Asia
and sub-Saharian Africa (120–122). In most cases, HCC develops
within an established background of chronic liver disease.
Progressive hepatic fibrosis frequently evolves to cirrhosis, which
is the largest risk factor for developing liver cancer. Up to 90% of
cases of HCC arise in the setting of advanced fibrosis or cirrhosis
regardless of etiology (121, 123–125).

During hepatocarcinogenesis, a complex multistep process,
many signaling cascades are altered as a result of genetic and
epigenetic changes that contribute to a heterogeneous molecular
profile. Furthermore, cellular plasticity increases the complexity
of the cellular heterogenicity. Indeed, tumor heterogeneity in
HCC is impressive: it can be observed between patients, between
nodules in the same patient (i.e., second primary tumors after
curative treatment or synchronous multifocal tumors of different
clonality) and even within a single tumor nodule (126). Many
molecular mechanisms are known to be clearly involved in
HCC (127). Signaling pathways are related mainly with cell
proliferation, angiogenesis, invasion, and metastasis. IGF-1,
Epidermal Growth Factor (EGF), PDGF, Hepatocyte Growth
Factor (HGF), VEGF, as well as TGF-β, are the most frequent
growth factors and cytokines involved in HCC development.
(128). The role of the microenvironment in tumor initiation
and progression in HCC is critical and HCC cells could acquire
an abnormal phenotype due to tissue remodeling altering their
biological behavior (129, 130).

ROLE OF TGF-β DURING
HEPATOCARCINOGENESIS

As it was mentioned before, TGF-β signaling -in the liver-
participates in all stages of disease progression, from initial
liver injury through inflammation and fibrosis, to cirrhosis and
cancer (7, 8). During early stages of tumorigenesis TGF-β acts
as a tumor suppressor, while in late stages it acts with a pro-
tumorigenic role, promoting invasiveness and metastasis once
cells become resistant to its suppressor effects (8, 131). In
non-transformed hepatocytes and HSC, the cytostatic effects of
TGF-β are often dominant over the opposing mitogenic signals;
however, carcinoma-derived cells are usually refractory to growth
inhibition by this cytokine. Activation of the TGF-β pathway

induces antiproliferative responses due to the regulation of the
cell cycle at G1-S by inhibiting c-MYC and cyclin-dependent
kinase complex (CDK)-1-6 and 7 and regulates cycling inhibitors
such as p21 and p15 (132–134). Smad4 –/– mice could develop
head and neck cancer demonstrating the role of the TGF-β
pathway as cytostatic regulator (135). Other proteins involved in
the regulation of the pathway, such as β-II spectrin, which plays
a role as scaffold for SMAD3 and SMAD4 and their subsequent
activation after TGF-β. Sptbn2 heterozygote mutants develop
HCC indicating that TGF-β signaling and β-II spectrin suppress
hepatocarcinogenesis, potentially through cyclin D1 deregulation
(136). TGF-β pathway also activates the NRF2 transcription
factor which is involved in the expression of many cytoprotective
genes which are relevant in the protection of the cells against
toxic insults, and its depletion increases tumorigenic process
(137). These data show up the relevance of the cytoprotective
and suppressor role of TGF-β pathway, which could be altered
during the carcinogenesis process. Malignant cells surpass the
suppressive effects of TGF-β either through inactivation of core
components of the pathway (such as TGF-β receptors and/or
SMADs) or by downstream alterations repressing the tumor-
suppressive arm. In late stages, liver cancer cells take advantages
from the TGF-β-dependent pathways to acquire capabilities that
contribute to tumor progression, such as production of autocrine
mitogens, release of pro-metastatic cytokines and chemokines
and up-regulation of receptors that mediate the response to them
(10, 138–140). In this sense, different evidences suggest that
TGF-β plays a dual role in hepatocarcinogenesis. On one side,
as commented above, TGF-β inhibits proliferation and induces
apoptosis in hepatocytes and liver tumor cells (141, 142), but
simultaneously, it activates survival pathways, such as Akt, and
induces an increase in the expression of anti-apoptotic BCL-
2-related proteins (143–145), a process that is related to the
capacity of TGF-β to transactivate c-Src and EGFR pathways,
among others (146). Interestingly, the inhibition of the EGFR
increases the apoptotic response to TGF-β (146, 147). In fact,
in hepatocytes, TGF-β-induced apoptosis could be counteracted
by EGF (an important survival signal) (141, 148) a process
that requires activation of the PI3K/Akt axis to counteract
TGF-β-induced upregulation of the NOX4, oxidative stress and
mitochondrial-dependent apoptosis (149, 150). Another member
of the NOX family, NOX1, is involved in this anti-apoptotic
role. TGF-β-mediated activation of NOX1 promotes autocrine
growth of liver tumor cells through the activation of the EGFR
pathway, via upregulation of EGFR ligands expression through
a c-Src (151) and NF-κB (152) dependent mechanism. The
autocrine loop of EGFR activated by TGF-β in non-transformed
hepatocytes and liver cancer cells requires the activity of the
metalloprotease TACE/ADAM17 (142, 146) in a Caveolin-
1/Src/NOX1 dependent manner (153, 154). This proliferation
can be impaired by the addition of the NOX inhibitor VAS2870
(155). Moreover, TGF-β is able to mediate the production of
EGFR ligands, which eventually confers resistance to its pro-
apoptotic effects in hepatocytes (149, 152) and HCC cells (156).
Importantly, the capacity of hepatocytes to survive to TGF-β
is also dependent on their differentiation status (157). Thus,
rat hepatoma cells respond to TGF-β inducing survival signals,
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whereas adult hepatocytes do not (142). In the same way,
different features of HCC cell lines, like the activation of the
EGFR or MEK/ERK pathways, may provoke different outcomes
after TGF-β exposure (156, 158).

Once cells overcome the cytostatic and apoptotic effects of
TGF-β, this cytokine regulates cell plasticity, a fact that has been
elegantly evidenced in a study by Coulouarn and col., where they
proposed different liver TGF-β gene signatures, defining a cohort
of genes related to its tumor suppressor capacity and another
cohort of genes related with its tumor promoting effects: the early
and the late TGF-β-signatures. The “early” TGF-β signature is
associated to genes involved in growth inhibition and apoptosis,
whereas the termed “late” TGF-β signature is associated to
EMT, migration and invasion (159). Of relevance, this study
also discriminated HCC cell lines by degree of invasiveness.
Interestingly, the early response pattern is associated with longer,
and the late response pattern with shorter, survival in human
HCC patients. In addition, tumors expressing the late TGF-β-
responsive genes displayed invasive phenotype, increased tumor
recurrence and accurately predicted liver metastasis. In the
development of liver hepatocarcinogenesis, TGF-β plays crucial
roles regulating the different stages of the disease, some of these
roles are summarize in the Figure 3 and we detail in the next
chapters.

TGF-β PROMOTES EMT IN HCC

Tumor cells that overcome the suppressor effects of TGF-β
become ready to respond to this cytokine inducing other
effects, such as EMT, processes that contribute to either fibrosis
and/or tumor dissemination (160). Neoplastic transformation
of hepatocytes and progenitor cells, which both are epithelial-
like, to a mesenchymal-like phenotype boost heterogeneity in
HCC (75).

TGF-β is one of the strongest inducers of EMT under both
physiological and pathological context (161), regulating
the expression and activity of EMT-TFs (14). Different
in vitro studies support the idea that TGF-β induces EMT
in non-tumorigenic epithelial cells, transforming them into a
fibroblast-like phenotype. For example, alveolar epithelia cells
via FoxM1/Snail1 can undergo EMT after TGF-β exposure
(162, 163); mammary epithelial cells undergo EMT in a
TGF-β/PI3K/mTOR pathway (164, 165). After liver insult,
non-transformed hepatocytes can undergo EMT as an adaptative
response to move and scape from damaged, inflammatory,
hypoxic and redox-activated microenvironment allowing them
to find better conditions (166). Moreover, TGF-β induces
anti-apoptotic signals in transformed hepatocytes, through
the activation of the EGFR pathway (143, 146), and liver
cells that overcome TGF-β pro-apoptotic effects undergo
EMT in a Snail1-dependent manner conferring resistance
to apoptosis (15, 71, 142, 156). Besides apoptotic resistance,
mesenchymal-like phenotype increases migratory properties
in HCC cells through activation of the CXCR4/CXCL12 axis
in TGF-β-dependent manner (139), a mechanism that would
contribute to tumor progression in HCC patients (167).

Interestingly, CXCR4 is localized in the migratory front of the
tumors and is coincident with TGF-β signaling overactivation,
suggesting this pathway as a future prognostic factor to
predict patient response to TGF-β therapies. MicroRNAs
(miRNA) are also involved in the regulation of EMT and in
the progression and development of HCC. MiR-181, which
is regulated by TGF-β, is overexpressed in HCC samples
and is associated with and EMT phenotype (168–170). In
hepatocytes, miR-181 induces an EMT-like response and mimics
TGF-β-effects, upregulating MMP2, α-SMA and vimentin,
downregulating E-cadherin and inducing morphological
changes.

UponHCC development, the excessive growth of transformed
cells also generates hostile nodules for cancer cells due to
oxygen depletion in internal areas (hypoxic environment)
(171) as compared to tumor stroma borders, which induces
tumor cell necrosis. Malignant hepatocytes or progenitor cells
could undergo EMT as an option to escape from these
places and to move toward a cytokine/chemokine better
and enriched microenvironment, as well as a resistance
mechanisms of survival to cell death stimuli (172, 173). In
addition, hypoxic factors, such as HIF-1α, could stimulate
EMT in hepatocytes in a TGF-β-dependent manner due to
hypoxic hepatocytes secrete enzymes that activate latent TGF-β
(174).

TGF-β REGULATES CANCER STEM CELL
PLASTICITY

The variability in the prognosis of HCC patients suggests that
it may comprise several distinct biological phenotypes, but
individuals with HCC who shared a gene expression pattern
with foetal hepatoblasts showed to have a poor prognosis
(175). Several evidences provide insight into the role of
TGF-β in regulating the cancer stem cell niche (176), much
less is known about the potential crosstalk between TGF-β-
induced EMT in the HCC cells and the acquisition of stem
cell properties (74, 177). It is proved that liver epithelial
cells that undergo a TGF-β-dependent EMT process show
a less differentiated phenotype. Chronic TGF-β treatment in
rat and human fetal hepatocytes, as well as in human HCC
cells, promotes a mesenchymal-like phenotype concomitant
with decreased expression of specific hepatic genes and the
appearance of stem cell features, reminiscent of a progenitor-
like phenotype (156, 177, 178). Cancer stem cells (CSC) or
tumor-initiating cells (TICs) in the liver could derive from
hepatic progenitor cells exposed to chronic TGF-β-exposure
during hepatocarcinogenesis (179). TGF-β is involved in the
neoplastic transformation of liver progenitor cells, through
a miR-216a/PTEN/Akt-dependent pathway (179), concomitant
with FOXO3a nuclear exportation. FOXO transcription factors
are implicated in a huge cellular events and are also related
with the neoplastic phenotypes linked to PI3K/Akt activation
(180).

It is suggested that the expression of stem-related genes
could also be mediating the acquisition of an EMT phenotype.
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FIGURE 3 | Role of TGF-β in regulating EMT of liver tumor cells. Cross-talk between the TGF-β and the EGFR pathways in liver tumor cells, which rescues cells from

TGF-β-induced apoptosis and allows them to respond to it undergoing a partial or full EMT, which increase their migratory/invasive and stemness properties.

In this sense, the stem-related CD44 or CD133 are not only
involved in the acquisition of stem properties, but also in the
switch to a more mesenchymal, migratory phenotype (181,
182). TGF-β-mediated mesenchymal-like phenotype is regulated
by CD44, and its overexpression provokes down-regulation in
E-cadherin expression and up-regulation of vimentin, which
correlate with higher phospho-SMAD2-positive nuclei and poor
prognosis in HCC patients (181, 183). Moreover, intermediate
EMT states have recently been identified as crucial drivers
of organ fibrosis and tumor progression (14). During partial-
EMT stage, both epithelial and mesenchymal stem genes can
be expressed. In this sense, it is worthy to mention that in
certain HCC cell lines, TGF-β-treatment induces the expression
of mesenchymal genes, such as VIM (vimentin), and the
mesenchymal-related stem-related genes CD44 and CD90, but
simultaneously, they express E-cadherin and the epithelial-
related stem genes EPCAM or CD133 (177). Interestingly, this
partial EMT phenotype confers to the HCC cells the highest

stemness stage concomitant with an increasedmigratory/invasive
capacity (177).

CSCs could contribute to the failure of therapies to abolish
malignant tumors. In pre-clinical assays, cancer stem-like spheres
from de-differentiated HCC-derived cell lines show increased
expression of stemness markers (CD44), and higher resistance
to anticancer drugs (184). Furthermore, the acquisition of some
mesenchymal properties and the expression of CD44 impair the
HCC cell response to sorafenib-induced apoptosis (183). For
this, novel strategies are focused to target CSC development. It
is interesting to mention that treatment with inhibitors of the
TGF-β pathway, such as Galunisertib (LY2157299–a selective
ATP-mimetic inhibitor of TGF-β receptor I) decreased the
stemness related genes of mesenchymal HCC cells and their
ability to form colonies, liver spheroids and invasive growth
(185). Resminostat, a novel orally histone deacetylases inhibitor,
has been demonstrated as a good therapy in the SHELTER
study (a phase I/II clinical study) in mono and combination
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therapy with sorafenib (186). The combination therapy revealed
an advantage in terms of overall survival and time to progression.
In HCC cells with a mesenchymal phenotype, caused by
autocrine expression of TGF-β, resminostat sensitizes them to the
apoptotic response induced by sorafenib (187). Mesenchymal-
related gene expression was decreased in resminostat-treated
HCC cells. This event is concomitant with an epithelial-related
gene expression increase, more organized tight junctions and
lower invasive growth. Indeed, resminostat down-regulated
CD44 expression is coincident with a decrease in the stemness
properties. These results reinforce the strong impact of the TGF-
β-induced mesenchymal/stemness phenotype on HCC drug
resistance.

LIVER CANCER STROMA CELL
PLASTICITY AND TGF-β

TGF-β display multiple effects on the microenvironment (188),
which plays a relevant role inHCC development and progression.
In the stroma, TGF-β induces microenvironment changes,
including generation of cancer-associated fibroblasts (CAFs)
(23) that play a relevant role in facilitating the production
of growth factors and cytokines, which contribute to cell
proliferation, invasion and neoangiogenesis, being related with
poor prognosis (189–192). Different origins are described, but
in the liver CAFs could be originated from epithelial cells–
hepatocytes, cholangiocytes- and HSC that undergo an EMT
process. To promote their tumoral functions, CAFs need the
expression of EMT-TFs. Indeed, Snail expression in CAFs is
necessary for their response to TGF-β, increased production
of fibronectin and stiffness of the ECM (23). CAFs are also
a potent source of TGF-β and are described to promote the
migration and invasion of HCC cells in vitro and facilitate the
HCC metastasis to the bone, brain and lung in NOD/SCID mice
(193).

In HCC microenvironment anti-tumor response is impaired
due to various immune suppressive elements, such as Tumor
Associated Macrophages (TAMs) and regulatory T cells (Treg)
(194–196). Similarly to that occurs with macrophages in fibrosis,
during HCC progression, TAMs are mainly polarized toward
an M2 phenotype, due to the higher levels of TGF-β (among
others factors) (197). M2-like macrophages are major players
in the connection between inflammation and cancer, involved
in functions such as: promotion of tumor cell proliferation,
ECM turnover, inhibition of adaptive immunity, among others
(198, 199), TAMs are correlated with angiogenesis, metastasis,
and poor prognosis (200, 201). Moreover, TAMs can promote
cancer stem cell properties in a TGF-β-dependent manner
(202). CAFs can also educate Natural Killer (NK) cells (203),
dendritic cells (204) and upregulate the production of Treg
in a TGF-β-dependent manner (205). CAFs promote Treg
cell induction, through upregulation and activation of the
human B7 homolog 1(B7-H1)/programmed death 1 (PD-1)
signaling, which are involved in immunosuppressive functions in
a mTOR/Akt dependent-manner (206). Accumulating evidence
indicates that the immune system microenvironment plays key

roles in the development of HCC (207, 208). CD4+ naïve
T cells show an enormous cell plasticity and under TGF-β-
treatment could differentiate into Treg cells (209). Poor prognosis
in HCC patients is associated with infiltration liver tissue
prognosis in HCC patients. Treg cells -Foxp3-positive cells-
are involved in immune homeostasis, peripheral tolerance and
prevention of autoimmunity (210, 211). TGF-β induces the
expression of the transcriptional factor Foxp3 involved in the
conversion of naïve CD4+CD25T cells to CD4+CD25+ Treg
cells with potent immunosuppressive potential (212). Blocking
TGF-β signaling with SM-16 (TGF-β inhibitor) significant
decreases the percentage of Treg cells in liver tissue concomitant
with an attenuation of the hepatocarcinogenesis process in a
DEN-model (213). Interestingly, addition of exogenous TGF-
β restores the expression level of Foxp3 and the presence of
Treg cells. Exogenous addition of TGF-β normalizes Treg cell
numbers and promoted their cell differentiation. Moreover, In
HCC patient samples, the expression of both genes, TGFB1
and FOXP3, correlate positively and are involved in tumoral
progression. (213). On summary, TGF-β promotes tumor
immune escape and survival by maintaining natural Treg levels,
inducing Treg cell differentiation and TAMs polarization into
M2-phenotype.

NEW THERAPIES TO INHIBIT THE TGF-β
PATHWAY

Developing an effective therapy to target the TGF-β pathway in
liver pathologies requires a better understanding of its complex
role in this organ, considering its pleiotropic effects on cell
proliferation, death and differentiation of different liver cell
types, its ability to induce EMT in epithelial cells or EndEMT
in the endothelial ones, as well as its capacity to act as an
immune modulator. In spite of this, targeting TGF-β was
proposed a good approach to delay the progression of liver
diseases and, in particular, of HCC (9, 214, 215). Indeed, first
experiments indicated that inhibiting the TGF-β pathway inHCC
cell lines blocked migration and invasion of HCC cells by up-
regulating E-cadherin and down-regulating CXCR4 (167, 188),
as well as inhibiting the upregulated levels of CTGF induced by
TGF-β, reducing the stromal component of the microtumoural
environment and slowing the HCC growth in vivo (216). These
data suggested that there could be a mechanistic use for targeting
TGF-β in HCC clinical trials.

Several different strategies have been proposed to inhibit
the TGF-β pathway in liver pathologies, including the use of
chimeric proteins, monoclonal antibodies, peptide inhibitors,
small molecules that inhibit the receptors’ kinase activity and
antisense oligonucleotides (217). First studies demonstrated the
efficiency of potential peptide inhibitors of TGF-β1 (derived
from TGF-β1 and from its type III receptor) in vitro and
in vivo in reducing liver fibrosis (218, 219). These peptide
inhibitors were proved to be also useful in enhancing the efficacy
of antitumor immunotherapy (220). To increase the delivery
efficiency, in a recent study, one of these peptides (P-17) was
loaded separately into folic acid-functionalized nano-carriers
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made of bovine serum albumin. Cellular studies demonstrated
the targeting efficiency of the hybrid carriers (221).

In the last years the interest has been focused on the TβRI
kinase inhibitor Galunisertib, developed by Lilly (LY2157299,
a selective ATP-mimetic inhibitor of TβRI) that has proved
more efficient than neutralizing humanized antibodies, such
as D10 against TβRII, in blocking the canonical TGF-β
signaling in HCC cells, experiments that supported the
use of this drug in preclinical and clinical trials (9, 222).
Despite limited antiproliferative effects, Galunisertib yielded
potent anti-invasive properties in HCC models and in ex
vivo tumor tissue samples from patients (223). Worthy to
note, in combination, Galunisertib potentiated the effect of
sorafenib efficiently by inhibiting proliferation and increasing
apoptosis. Galunisertib also reduced the expression of stemness-
related genes, such as CD44 and THY1, in vitro and in ex
vivo human HCC specimens, overcoming stemness-derived
aggressiveness (185). Furthermore, it also showed antitumor
activity through the activation of CD8+ T-cell antitumor
responses (224). Recent studies have also suggested the
potential efficiency of Galunisertib as antifibrotic drug. In
ex vivo studies, using both healthy and cirrhotic human
precision-cut liver slices, Galunisertib reduced fibrosis-related
transcription, which correlated with a significant inhibition in the
production and maturation of collagens (225). Furthermore, in
an experimental preclinical model (Abcb4ko mice) the treatment
with Galunisertib decreased the expression of several fibrogenic
genes, such as collagens (Col1a1 and Col1a2), Tgfb1 and Timp1,
and reduced the ECM/stromal components, fibronectin and
laminin-332, as well as the carcinogenic β-catenin pathway
(226).

A phase II clinical trial using Galunisertib in patients with
advanced HCC to test safety, time to progression and overall
survival (OS) is ongoing (NCT01246986 http://clinicaltrials.
gov). Preliminary data show that patients with higher levels of
circulating TGF-β1 are more likely to respond to therapy with
Galunisertib. TGF-β1 reduction in response to the treatment
is related to improvement in OS when compared to patients
with non-TGF-β1 reduction. Some efforts are being made
in optimizing the delivery of Galunisertib in form of novel
polymeric nano-micelles, to avoid acidic pH of gastrointestinal
tract, colon alkaline pH and anti-immune recognition (227).

Once it is proven the safety and the benefit of using
Galunisertib in HCC, biomarkers will be extremely useful
in the proper selection of patients who might benefit from
receiving the drug. In this sense, high TGFB1 expression
in HCC patients, concomitant with high expression of the
genes that mediate its invasive effects, such as PDGF, CXCR4,
or CD44, (167, 177, 228) would anticipate a benefit for
the use of Galunisertib. Furthermore, a recent study has
proposed SKIL and PMEPA1 as strongly downregulated by
Galunisertib, correlating with endogenous TGFβ-1 (185, 229).
These target genes identified may also serve as biomarkers for
the stratification of HCC patients undergoing treatment with
Galunisertib. Since biopsy is not frequent in HCC patients,
new areas of research must be focused on the improvement

of liquid biopsies in these patients to develop the possibility
that this kind of analysis may be done in tumor circulating
cells.

Finally, new approaches to interfere not only the TGF-β
canonical, but also the non-canonical pathways must be
developed in the next future, as previously mentioned, the switch
from tumor-suppressive to pro-oncogenic TGF-β actions could
be directed by its crosstalk with Receptor Tyrosine Kinases,
in particular, EGFR. So, interference with EGFR signaling, by
employing approved targeted drugs, in TGF-β/SMAD-positive
HCC patients might be effective in improving the effectiveness
of Galunisertib.

CONCLUDING REMARKS

TGF-β plays unique actions in modulating cell plasticity,
and the liver reveals as a tissue where these actions would
be very relevant during the response to injuries that cause
chronic diseases. In general terms, TGF-β-induced changes
in cell plasticity may converge in transdifferentiation toward
a different phenotype, such as the case of activation of
HSC to MFB or the dedifferentiation/acquisition of stem
cell properties in hepatocytes and liver tumor cells. But it
may also proportionate to the cells new capabilities, such
as cell survival or increase in migratory/invasive properties
that the liver tumor cells acquire when they undergo EMT
in response to TGF-β. And, worthy to note the essential
role that TGF-β plays inducing Treg cell differentiation and
TAMs polarization into M2-phenotype, which promotes tumor
immune escape and survival. Despite all current knowledge,
there are still many gaps that need to be clarify. However,
these evidences point toward the use of tools that target
the TGF-β signaling pathway to counteract liver disease
progression.
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