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Abbreviations 

A collection of the most relevant abbreviations used in this work is provided below to 

ease its comprehension: 

 

ANS: autonomic nervous system 

APA: American Psychiatric Association 

BBB: blood-brain barrier 

BDNF: brain-derived neurotrophic factor 

CNS: central nervous system 

CRH: corticotrophin-releasing hormone 

CUMS: chronic unpredictable mild stress 

ECC: enterochromaffin cells 

ENS: enteric nervous system 

FAO: Food and Agriculture Organization 

FMT: fecal microbiota transplantation 

GALT: gut-associated lymphoid tissue 

GB: gut-brain 

GF: germ-free 

HPA: hypothalamic–pituitary–adrenal 

IBS: irritable bowel syndrome 

IDO1: indoleamine 23-dioxygenase 1 

LPS: lipopolysaccharides 

MAO: monoamine oxidase 

MDD: major depressive disorder 

MGB: microbiota-gut-brain 



NCHS: National Center for Health Statistics 

PAMPs: pathogen-associated molecular patterns  

PRRs: pattern recognition receptors 

PVN: paraventricular nucleus 

SCFA: short-chain fatty acids 

SPF: specific-pathogen-free 

SSRI: serotonin-selective reuptake inhibitor 

TCA: tricyclic antidepressants 

TDO: tryptophan-2,3-dioxygenase 

WHO: World Health Organisation 
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1 Abstract 

The gut microbiota is integrated by trillions of microorganisms that symbiotically interact 

with the host. During the last decade, researchers have focused on determining its role 

within the gut-brain axis and have suggested a link between their presence and mental 

disorders such as depression. The present bibliographic review gathers current 

knowledge on the microbiota-gut-brain axis, its relationship with depression and the 

use of microbiota as a potential therapeutic strategy. In this context, researchers have 

mainly used molecular tools to characterise the gut microbiota composition and animal 

models to understand the effects of a dysbiosis and establish its links with the 

development of human pathologies. Firmicutes and Bacteroidetes are the two main 

phyla present in our intestines. In addition, three enterotypes have been described in 

humans: Bacteroides, Prevotella and Ruminococcus. On another note, studies have 

proved the microbiota-gut-brain connection to be bidirectional, involving neural, 

endocrine and immunologic pathways. Current research on its contribution in 

depression is still at its infancy but it has recently been observed a correlation with the 

Bacteroides 2 enterotype in depressed patients and a decrease in Dialister and 

Coprococcus genera. Likewise, current knowledge on alternative therapies for 

depression based on microbiota interventions is limited but proposes some species 

from Bifidobacterium and Lactobacillus genera as well as Faecalibacterium prausnitzii 

as potential probiotic therapies. In conclusion, the microbiota-gut-brain axis is 

presented as a possible therapeutic target for depression but still requires further 

investigation. 

 

Resum 

La microbiota intestinal està formada per trilions de microorganismes que 

interaccionen de forma simbiòtica amb l’hoste. Durant l’última dècada, alguns científics 

han provat de determinar el seu rol dins l’eix intestí-cervell i n’han suggerit la relació 

amb malalties mentals com ara la depressió. En aquesta revisió bibliogràfica es recull 

l’actual coneixement sobre l’eix microbiota-intestí-cervell, la seva relació amb la 

depressió i l’ús de la microbiota com a estratègia terapèutica. En aquest context, s’ha 

caracteritzat la composició de la microbiota intestinal mitjançant tècniques moleculars. 

A part, l’ús de models animals ha  permès entendre els efectes derivats d’una disbiosis 

i relacionar-la amb el desenvolupament de malalties. S’ha vist que els principals fílums 

que colonitzen l’intestí son Firmicutes i Bacteroidetes. També s’han descrit tres 

enterotips en humans: Bacteroides, Prevotella i Ruminococcus. Per altra banda, varis 

estudis han demostrat la bidireccionalitat de l’eix microbiota-intestí-cervell, que 

compren rutes neurològiques, endocrines i immunològiques. L’actual investigació 

sobre la contribució de l’eix en la depressió és encara molt incipient, tot i que 

recentment s’ha observat una correlació amb l’enterotip Bacteroides 2 en pacients 

deprimits i una reducció dels gèneres Dialister i Coprococcus. De forma similar, l’actual 

coneixement sobre teràpies alternatives a l’ús d’antidepressus basades en la 

microbiota és limitat. Tot i això, algunes espècies dels gèneres Bifidobacterium i 

Lactobacillus i l’espècie Faecalibacterium prausnitzii s’han proposat com a potencials 

teràpies probiòtiques. En conclusió, l’eix microbiota-intestí-cervell es presenta com una 

possible diana terapèutica en la depressió encara que requereix més investigació. 
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2 Integration of the different fields 

One of the main purposes of this project is to offer an insight into the microbiota-gut-

brain axis and its connexion to psychiatric diseases such as depression. To do so, an 

explanation of the different mechanisms that the gut microbiota uses to signal the brain 

is provided as well as a brief description of the disorder. Hence, this work is mainly 

framed into the physiology and pathophysiology field.  

Moreover, the project is related to two additional fields that are represented to a lesser 

extent: microbiology and pharmacology. The first one is present at the beginning of the 

work, when it comes to understanding the characteristics of the human gut microbiota 

and defining its main functions and taxonomy. The study of the microbiota and its 

interactions with the host is important to understand the impact that gut 

microorganisms can have on the brain and on behaviour disorders. Nowadays, there is 

a general concern about the rise in the rates of depression along with the over-

prescription of antidepressant drugs, which has pushed researchers to investigate 

alternative options to the classic medication. Therefore, at the end of the work, the 

current drug strategies for depression are discussed from a pharmacological viewpoint 

and compared to new proposed techniques based on altering the gut microbiota. 
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3 Introduction 

There is a common expression that says the gut is our body's "second brain". Through 

this term, we allude to the enteric nervous system and indirectly we refer the constant 

communication that exists between the two distant organs. This connection has been 

observed since the early 19th century. One of the first to observe a connection between 

the gut and the brain was an army surgeon who associated mood alterations with 

changes in gastric secretions (1). From there, studies demonstrated how the brain 

could have influence over gut inflammation or chronic abdominal pain and how a stress 

response conditioned changes in the gut, shaping the connections of what we call the 

gut-brain (GB) axis.  

The GB axis is as a communication network that combines neural, immunological and 

hormonal information circulating from the brain to the gut and vice versa. It intervenes 

in gastrointestinal processes such as the production of bicarbonate, acid, hormones 

and mucus as well as in the control of the gut motility. Thus, the main constituents of 

the axis are the central nervous system (CNS), the sympathetic and parasympathetic 

limbs of the autonomic nervous system (ANS), the enteric nervous system (ENS) and 

the endocrine and immune systems. 

It was not until the past decade that experts started paying attention to the role that gut 

microbiota may have inside that complex system, given its strategic location and its 

bulky genetic contribution within the intestine. Therefore, the term microbiota-gut-brain 

axis (MGB axis) was coined and spread across the scientific community with the 

intention of contemplating our gut commensal community as a key participant in this 

communication system. The increasing attention to the trillions of bacteria, fungi and 

other microorganisms that inhabit in our gut led to the National Health Institute to start 

a project called Human Microbiome Project that, similarly to the Human Genome 

Project, aims to get a deeper understanding on the genetic material that resides in our 

gut and how it interferes with our health and diseases. 

The link between the gut and the brain was initially studied for intestinal and metabolic 

diseases like irritable bowel syndrome (IBS), colorectal cancer, diabetes and obesity. 

However, a Canadian study from 2006 analysed a survey from the population of 1996-

1997 and observed that IBS patients had three-fold the prevalence of depression than 

the regular population (2). This set off a growing body of evidence from the last decade 

suggesting the influence of the microbiota-gut-brain axis in shaping behavioural 

disorders such as anxiety or depression.  

The 20th century is known in history as a period where multiple changes that affected 

the whole world were set in a short time. Two World Wars shook the entire population 

and contributed to the rise of nihilistic philosophies in Western societies. Concurrently 

to this scenario, a rise in the prevalence of depression started. But despite the 

pessimistic environment that surrounded last century and seemed to justify the 

increase of depressive disorders, new theories in neurology take the approach of the 

gut microbiota influence on the brain to find a complementary explanation to the 

general increase in depression. In 1989 the importance of the microbiota to our health 

was emphasized through the apparition of the “hygiene hypothesis”. This theory 
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suggests that the lack of contact with microorganisms – accentuated by the 20th 

century migratory movements from rural areas to cities – has contributed to an 

increase of chronic inflammatory disorders like depression (3). Later, at the beginning 

of the new millennium, it was complemented by the “old friends hypothesis” by Rook et 

al (4),which proposes that “our old friends” (i.e. the microorganisms that have lived in 

our body for thousands of years) have been stimulating our T cells and that a deficient 

exposure to them may increase immunoregulatory diseases among the population. 

Also, the general increase of hygiene during the 20th century as a consequence of the 

medical progress and collective consciousness of infectious diseases as well as public 

education in the topic was complemented with an increase in the use of antibiotics and 

a significant shift on dietary habits in Western cultures. All these changes pointed 

towards a restructuring of the habitat where the "old friends", that Rook et al mentioned 

in their study (4), live. And a growing body of evidence is pointing towards gut 

microbiota alterations taking part in mood-associated diseases. Therefore, it is believed 

that all these factors that contributed to change our gut microbiome may influence the 

rise in the prevalence of depression. 

 

Recently, the National Center for Health Statistics (NCHS) of the United States 

detected that in a 15-year span (from 1999 to 2014) the use of antidepressant 

medications amidst the American population increased by 65% (7.7% - 12.7%) (Figure 

1) (5). Yet, not all patients who were prescribed antidepressants were diagnosed with 

major depressive disorder (MDD) because they are also used in generalised anxiety 

disorder, bipolar disorder, panic attacks and obsessive-compulsive disorder. In 

addition, it is estimated that 30-40% of treated patients do not respond to these 

pharmacologic strategies (6). This has led to a general concern with the over-

prescription of antidepressants that carries the consequences of their adverse effects 

and aggravates the problem of polymedication. 

 

 

Figure 1. Illustrative graphic of the antidepressant consumption within the American population from 
NCHS (5). It depicts the increased tendency of use at the beginning of the millennium. 

As a result, it is important to consider new alternatives to the use of classic 

antidepressants and – as it will be examined in this work – researchers are currently 

investigating the gut microbiota as a possible therapeutic weapon.  
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4 Objectives 

The principal aim of this project is to deeply examine the relation between the gut 

microbiota and the brain to later understand its role in mental disorders such as 

depression, gathering data from initial pioneer studies to the latest discoveries and 

present the current knowledge of the topic. Therefore, this work plans on answering the 

following questions to further understand the subject: 

1. What do we currently know about the composition of human microbiota? And 

which tools do researchers use to examine it? 

2. Which are the underlying mechanisms of the microbiota-gut-brain axis 

discovered so far? In addition, is there a connection between gut microbiota 

and depressive disorders? 

3. How do traditional pharmacological therapies used to treat depression and 

anxiety work? Moreover, what do we know about new approaches such as the 

use of “psychobiotics”?  

 

 

 

 

5 Materials and methods 

This project falls in the category of bibliographical research. First, general physiologic 

and anatomic concepts have been consulted in essential books from the field. Then, a 

search using the terms "gut microbiota" "gut brain axis" "depression" “probiotics [AND] 

depression”, “prebiotics [AND] depression”, “FMT [AND] depression” and “diet [AND] 

gut brain axis” has been conducted in databases such as PubMed, Scopus, Nature 

Reviews, Science Direct, ClinicalTrials.gov and Google Scholar to find reviews on the 

subject and gather general information. Afterwards, a research on articles depicting the 

topic during the latest years (2009-2019) has been carried out considering that from the 

1600 articles on the subject listed in PubMed, 99% are from the past ten years, so it is 

considered a recently explored issue. 

 

Besides consulting the previous sources, information from organisations related to the 

field of inquiry has been used. It is the case of the NIH Human Microbiome Project, the 

American Psychiatric Association (AMA), the World Health Organisation (WHO) and 

the Food and Agriculture Organisation (FAO). 
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6 Results 

This section exposes the bibliographical research carried out in this project. It starts by 

describing the gut microbiota and the techniques used to characterise it and to 

elucidate its relationship with the host (6.1 section). Later, the mechanisms that 

intervene in the microbiota-gut-brain connection are dissected (6.2 section), followed 

by a review of its association with depression (6.3 section). Finally, current 

pharmacological treatments are compared with proposed approaches based on 

microbiota modulations (6.4 section). 

 

6.1 The gut microbiota 

The human species has been carrying for centuries in its insides a whole ecosystem 

made of microorganisms. This microscopic community is formed by an estimation of 

100 trillion bacteria, 80% of which resides in our gastrointestinal tract receiving the 

name of gut microbiota. And despite its genetic volume – encoding 150-fold the human 

genome – it has not been until the last decades when we have started giving it 

importance and considering the effects of this symbiotic relation (7,8).  

The commensal ecosystem inhabiting our gut comprises more than 5000 strains of 

microorganisms and is mainly composed of bacteria (around 99% of gut microbial 

genes were found to be bacterial (9)), especially anaerobic. However, fungi, virus, 

protozoa and archaea are also part of the microbiome but in a lower proportion (10). 

Within all this diversity two dominant bacterial phyla arise in the adult human gut: 

Bacteroidetes and Firmicutes, accounting for 70-75% of the population with a 

Firmicutes/Bacteroidetes ratio of 10.9 in adults (11). They are accompanied in smaller 

proportions by Proteobacteria, Fusobacteria, Actinobacteria and Verrucomicrobia phyla 

(12). 

Since the very beginning of life, there is a determinant contact with gut microbiota and, 

from there, it evolves dynamically. Due to the aseptic conditions of the uterus, children 

are microbial-free until birth. New-borns' initial microbiome is influenced by the birthing 

method: it conditions an exposition to their mother's vaginal and fecal bacteria mainly 

acquiring Bifidobacteria spp., Prevotella spp. and Lactobacillus spp. (in vaginally 

delivered babies) or to the maternal skin bacteria, rich in Staphylococcus spp. and 

Corynebacterium spp. (in the case of a caesarean section) (13). During the first two 

years, infants show a rather unstable and variable microbiota composition that can be 

influenced by the lactation method (natural or artificial). It is the introduction of solid 

food what adds diversity to their microbiome. So it’s around the third year when they 

start building a more complex microbiome that resembles the adult one where the 

Bacteroidetes and Firmicutes genera gain importance (11). During adulthood, the gut 

microbial composition is characterised by rather stability compared to the extremes of 

life – infancy and old age – when changes are more dramatic. In addition, the general 

evolution of our microbiome through the lifespan is marked by our genetic 

predisposition and external factors such as antibiotic treatment, use of other drugs, 

infections, diet, stress, etc (8). 
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This means that despite the certain stability that exists in microbiota’s composition 

during adulthood, there are inter-individual variations of around 90% between healthy 

individuals (14). In fact, in 2011 a study was conducted by Arumugam et al (15) to 

understand whether that variability allowed the classification of the population in 

clusters with similar gut microbiota profiles. It analysed the gut microbiota from 

individuals across the world (Europe, America and Japan) and identified three 

enterotypes. In other words, the study proposed the existence of three types of gut 

ecosystems amongst the population that favour the presence of determined bacteria 

genera. These enterotypes are: Bacteroides (Bacteroidetes) or enterotype 1, Prevotella 

(Bacteroidetes) or enterotype 2, and Ruminococcus (Firmicutes) or enterotype 3. As it 

is represented in Figure 2, each enterotype is named after the dominant taxa in the 

cluster. Other studies just distinguish two clusters as the Ruminoccocus enterotype 

appears more discreet and merged with the Bacteroides enterotype (16). 

 

Figure 2. Boxplots obtained from Arumugam et al (15). Each graphic represents the abundance of the 
bacterial genera in each enterotype. 

At the same time, it has been suggested that instead of focussing on the microbiota – 

i.e. the microorganism population – it would be interesting to examine our microbiome 

– i.e. the collection of microbiota’s genetic material – to understand the functional 

aspects of the commensal community.  

Following this line, a study of the Human Microbiome Project shows that there are 

bacterial metabolic processes that are preserved throughout different taxa (17). This 

implies that differences in microbiota taxa amongst the population don’t necessarily 

translate into differences in the microbiota functionality, which means that different 

microbial taxa can perform comparable functions because their bacterial DNA codes 

for similar processes. 

It has been observed that the gut microbiota has an important value for the correct 

functionality of the body: it participates in digestion (fermenting carbohydrates), it is part 

of the intestinal barrier, prevents pathogenic occupation, promotes mucus production 

and the regeneration of cells from gut epithelium, participates in the synthesis of 

neuroactive substances (like short-chain fatty acids) (18), and –  as it will be further 

discussed in 6.2.1 – it plays a key role in the maturation of the immune system and the 

endocrine response thanks to their stimulation in the early stages of life. 

However, an alteration of the gut microbiota composition creates a state known as 

dysbiosis. Studies on gut dysbiosis have found it to be involved in multiple diseases as 

it has been mentioned in section 3, including mental conditions that affect behaviour. 

As a result, scientists have used analytic tools and animal models to characterise gut 
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microbiota changes in disorders such as depression and to understand how these 

variations influence our health. The following section offers a closer look at the current 

methods used to study the microbiota. 

  

6.1.1 Studying the gut microbiota  

Our understanding of the human gut microbiota started with culture-based methods. 

Nevertheless, these techniques are slow and can’t ensure the identification of all 

present bacteria as some can’t grow in laboratory conditions. That is why since 

molecular biology methods were introduced in the 1990s, our knowledge of microbiota 

has exponentially grown. 

Most of these culture-independent methods rely on DNA extraction from fecal samples 

and its following amplification of 16S rRNA genes. This is because 16S rRNA genes 

are enough preserved to assure their amplification but have slight differences that allow 

taxa identification. These methods are powerful enough to prove the diversity of gut 

microbiota and identify and quantify bacterial species. Some of the most used 

techniques are FISH (Fluorescence In Situ Hybridization), DGGE (Denaturing Gradient 

Gel Electrophoresis), next-generation sequencing of 16S rRNA gene, T-RFLP 

(Terminal Restriction Fragment Length Polymorphism) and DNA microarrays (19). 

In addition, it is important to highlight that most studies on the relationship between the 

gut-brain axis and the microbiota take as target luminal bacteria from fecal samples, 

while the microbiota from the biofilm contiguous to the gut mucosa isn't as much 

considered as its analysis usually requires a more invasive procedure. Yet, future work 

on these structures will offer help on understanding the magnitude of their interactions 

with the host (20). 

Up until now, techniques that allow a microbiome characterisation have been 

summarized. However, these methods don't provide us with causational information on 

the possible influence of microbiota in diseases. This issue can be approached from 

two sides: 

On one hand, it can be explored through metagenomics, which study collective 

genomes – in this case from the whole bacterial community of the gut.  Most studies on 

the effects of microbiota in health have focused on its taxonomic composition while 

there is a lack of data about the functional understanding of microbiota genomes. Thus, 

techniques such as microbiome shotgun sequencing provide information on both 

aspects and enable correlations between the status of the microbiota and disorders 

(19). 

On another hand, understanding the influence of microbiota in mental diseases 

requires characterising the underlying mechanisms of the microbiota-brain connection. 

To do so, it's fundamental to develop a model that allows scientists to further explore 

the effects of gut microbiota to the host. In this context, the most important animal 

model in research has been germ-free (GF) mice.  

Germ-free mice, as the word suggests, don’t have any commensal microbiota. 

Therefore, the lack of microorganisms reveals the role they play in the development of 
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body functions. The also-called axenic mice are born through Caesarean sections and 

raised in sterile isolators with germ-free mothers (21). Despite its major importance in 

microbiota research, the model is limited when the objective is to see the effects of 

microbiota alterations. For this purpose, the following strategies are considered: 

- One of the alternatives to the GF mice is the treatment with antibiotics – usually 

non-absorbable antibiotics – which creates a disruption in the microbiota 

community. 

 

- Specific-pathogen-free (SPF) mice assure the absence of certain pathogens so 

its derived diseases don't interfere with the experiment.  

 

- Another technique well used to study the microbiota and its interactions with the 

host is the introduction of external microbiota to a model. It has been applied as 

an exchange of gut microbiotas from two different rodent models (22) to 

observe changes in the receiver’s behaviour associated to the donor’s 

microbiota as it will be further explained in 6.2 but it also has been used to 

introduce human gut microbiota from patients suffering an investigated disease 

to GF and antibiotic-treated mice.  

 

- In addition, probiotics are also used to understand the influence of gut 

microbiota on the host. For example, probiotics are administered to mice 

models with intestinal and central-nervous-system disorders to see if they can 

improve the symptoms. Results from these studies will be discussed in 6.4.2.1.  

In order to study the effects of the microbiota in behavioural diseases, researchers 

have used anxious and depressive-like models to see how changes in their microbiome 

(germ-free state, microbiome transplants, use of probiotics, antibiotics, etc) modulate 

the symptoms. To recreate these animal models one of the strategies used for 

researchers is the maternal separation of the animal during the first weeks of life as it 

induces an anxiety and depressive-like phenotype in the adult along with changes in 

monoamine levels, the HPA axis and immune functions (23). Another frequently used 

model for depression is the chronic unpredictable mild stress (CUMS) model. In this 

case, rodents are chronically exposed to aleatory micro-stressors (water or food 

withdrawal, alteration of the light-darkness cycle, etc) (24).  

Then, to measure the level of depression and anxiety of the rodents undergoing the 

experiments, researchers use a series of tests that put the animals under an aversive 

situation to assess their behaviour. The most used ones are the elevated plus maze, 

the open-field test, the light/dark test or stress induced hypothermia for evaluating 

anxious-like behaviours and the forced swimming test, the tail suspension test or the 

sucrose preference test to measure their depressive-like conduct (25). 

Nowadays, despite having the mentioned tools, the translation of the animal model 

findings to the complexity of the human model is still in its early ages. However, animal 

models have provided most of the current understanding of the mechanisms that 

connect the gut microbiota with the brain, which are discussed in the next section. 
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6.2 Microbiota-gut-brain axis 

As it has been introduced in section 3, the GB axis is a network that uses neural, 

humoral and immune routes to communicate and regulate our physiological functions. 

Recently, the influence of an additional element to the axis has been noticed, the 

commensal microscopic community that lives in our guts, which helps to shape the 

MGB axis. 

The main characteristic of the MGB axis is its bidirectionality. On one hand, it is widely 

accepted that the CNS can induce changes in the intestinal tract (section 3). On the 

other hand, however, it’s less acknowledged the influence that the gut environment 

may have on the brain. Yet, studies on the matter confirm the bottom-to-top pathway.  

It is the case of the research portrayed by Bercik et al (22) mentioned in the last section 

which proved the transfer of psychological phenotypes through microbiota transplants 

(Figure 3). This study used two mice strains with differences in behaviour and in 

microbiota profiles. NIH Swiss mice tend to show a more anxious behaviour than 

BALB/c mice, but when germ-free NIH Swiss mice were colonized with microbiota from 

BALB/c rodents, they manifested a reduction in their anxious conduct – assessed 

through their exploratory behaviour – compared to the conventionally-housed NIH 

Swiss mice. Inversely, germ-free BALB/c mice experienced increased anxious 

behaviour when receiving the microbiota from the NIH Swiss strain. 

  

Figure 3. Graphics from Bercik et al (22). They asses the behaviour from the different mice groups 3 
weeks after microbiota colonisation. On the left, the three NIH Swiss groups are compared: the control 
(SPF mice) with the non-colonised germ-free (white GF +) and the BALB/c-colonised mice (grey GF +). On 
the right, the comparison is with the three BALB/c groups. The two graphics evidence the behavioural 
switch post-colonisation while the non-colonised groups resemble the controls.  

 

This goes to show that alterations in the gut microbiome are likely to influence the 

communication between the gut and the brain. In this sense, the main question arises: 

what are the mechanisms used by gut microbiota to influence the CNS and vice versa? 
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6.2.1 Communication pathways 

The strategies that bacteria use to reach the CNS involve direct and indirect circuits as 

it is illustrated in Figure 4. These include: signalling through neural afferent nerves 

(autonomic nervous system); triggering hormone secretion in the gut like serotonin 

released by enterochromaffin cells (endocrine system); stimulating intestinal immune 

mucosa to produce cytokines capable of influencing the brain (immune system) as well 

as synthesising products that can interact with the mentioned systems.  

 

Figure 4. Schematic illustration of the elements that take part in the microbiota-gut-brain axis and their 
interconnections (modified from Cyan et al (26) and Collins et al (27)). Sympathetic and parasympathetic 
nerves innervate the gastrointestinal tract with efferent and afferent fibres. The efferent terminals 
transduce signals that induce changes in the microbiota environment, while the afferent ones constantly 
keep the brain informed about the intestinal state. Microbiota-derived metabolites can signal close 
endocrine cells or travel to the brain via the vagus nerve or the bloodstream. In addition, the permeability 
of the intestinal barrier eases gut bacterial translocation with a consequent immunologic response and an 

activation of the HPA axis, which simultaneously controls the inflammatory response. 

This section aims to dissect individually the thus far discovered neurobiological 

pathways and communication systems aforesaid with the intention of helping to shed 

light upon the influence of microbiota on CNS functions.  

 

6.2.1.1 Autonomic nervous system 

One of the main connection pathways between the gut and the brain is the nervous 

system which, in a bidirectional manner, receives and sends information from and to 

the gut by the autonomic fibres.  
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The autonomic nervous system controls body functions through the sympathetic and 

parasympathetic branches as well as via the enteric nervous system. 

On one hand, the sympathetic system decreases gut motility and secretion through the 

release of neurotransmitters such as noradrenaline. This system plays a major role in 

the stress response together with the HPA axis (as it will be further discussed in 

6.2.1.2). Therefore, in stressful conditions, the sympathetic branch is activated and the 

signal reaches the intestinal mucosa through the greater splanchnic nerves. Nerve 

terminals stimulate enterochromaffin cells (ECC) from the epithelium. These cells 

respond to the signal by releasing norepinephrine into the lumen where the prokaryote 

community inhabits. Catecholamines and hormones released in stressful situations are 

known to alter gene expression in some bacteria as well as their conjugative 

communication system, favouring the presence of some species – especially 

pathogenic ones – at the expense of others (28). This is one of the multiple 

mechanisms used by the brain to modulate the gut environment. Moreover, the 

reduction in gut motility and mucus secretion alters the bacterial habitat and also 

influences the microbial population.  

However, most of the area of the gastrointestinal system is innervated by the 

parasympathetic limb, especially the vagus nerve. The vagus nerve is also known as 

the 10th cranial nerve, referring to its origin in the brain. Moreover, its Latin-derived 

name means “wandering”, describing its path from the medulla oblongata descending 

to innervate the larynx, lungs and heart until the abdominal viscera, covering the 

majority of the organs. Its main actions in the gut are increasing gastrointestinal 

peristalsis and secretions, counteracting the sympathetic effect and influencing the 

microbiota and its environment (29). 

Vagus ending nerves reach the lamina propria from the gut, crossing all intestinal 

layers except the epithelium barrier. Therefore, the parasympathetic innervation lays 

close to the whole microbiome that lives inside the intestinal lumen. Moreover, 80% of 

its fibres are afferents, so there is an important volume of information about the 

gastrointestinal state being integrated into the brain constantly (30).  

On another note, the ENS also has to be taken into account when thinking about the 

neurologic connection paths between the microbiota and the CNS. It is integrated by 

around 500 million neurons divided into two types of ganglia: the submucosal 

(Meissner) and the myenteric (Auerbach) plexuses. The first one is located in the 

submucosa – as its name indicates – while the second one resides between the 

circular and longitudinal layers of the muscularis. The ENS can operate independently 

from the sympathetic and parasympathetic branches, although it is able to exchange 

information with them (29). 

Both vagal and enteric afferent ends don’t reach the lumen directly because they don’t 

go across the epithelium but are placed close, in the lamina propria. Therefore, lumen-

residing microorganisms can get in contact with these sensory terminals when gut 

permeability increases (in stressful or inflammatory situations) or when epithelial cells 

from the intestine (such as EEC) receive microbiota inputs and transduce the bacterial 

signal to the afferent neuronal terminals located within the lamina propria via paracrine 

mediators such as cholecystokinin, histamine, CRH and serotonin. From there, the 
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signal is transferred via vagus nerve to the brain (31). Below a schematic 

representation of the three nervous pathways is provided (Figure 5): 

 

 

Figure 5. Representation of the sympathetic and parasympathetic pathways from the brain to the gut 
mucosa, where they convey with the enteric innervations from the myenteric and submucosal plexi. Image 
obtained from Campos-Rodrígez et al (32). 

Prove of the ascendant pathway is that GF mice show less excitability of the vagal 

synaptic ends than mice models with microbiota presence (like SPF) and that the 

signal from GF mice sensory neurons increases after colonising them with SPF-mice 

microbiota (33). So as it has been observed, the activity of some microbial species and 

many probiotics over brain function depends on the activation of vagal afferents (34). 

However, Bercik et al (22) saw that vagotomised animals still had microbiota-derived 

effects on brain and behaviour, proving the existence of vagus-independent 

mechanisms of interaction between microbiota and the brain as it will be discussed 

below.  

 

6.2.1.2 HPA axis 

The HPA axis is a complex system of communications subjected to feedback between 

the paraventricular nucleus (PVN) of the hypothalamus, the pituitary gland and the 

adrenal cortex. This neuroendocrine system is involved in homeostasis and regulates 

essential processes like digestion, immune system, emotions, energetic metabolism, 
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sexual conduct as well as controlling the response to stress. This last point is important 

in the neurobiology of emotional conditions as anxiety or depression.  

Following a stressful state, there’s a release of corticotropin-release hormone (CRH) 

from the PVN area of the hypothalamus. The CRH descends through the hypophyseal 

stalk to the anterior pituitary gland and stimulates the secretion of corticotropin (ACTH) 

which enters the bloodstream and targets the cortex of the suprarenal glands to 

produce glucocorticoid hormones (especially cortisol). One of its major functions is to 

adapt the organism to the stressful situation by increasing glycaemic levels, inhibiting 

insulin in order to avoid glucose storage and potentiate its immediate use and, amongst 

other adaptations, inhibiting the production of IL-2, INF-, INF- and TNF- in order to 

prevent inflammation. When cortisol levels are high, the molecule gives a negative 

feedback to the hypothalamus and pituitary gland by binding to glucocorticoid receptors 

of the PNV, the hippocampus and the pituitary gland and inhibiting them in a self-

regulatory manner (29).  However, in a situation of chronic stress, high levels of cortisol 

are sustained, inducing an alteration in the HPA axis that has been linked to 

psychopathologies like anxiety and major depressive disorder (MDD). 

In this neuroendocrine context, the gut microbiota has a bi-directional relationship. The 

currently proposed mechanisms for the interaction are the following: 

Stress-induced cortisol release can modulate gut motility as well as the secretion of 

luminal mucus and therefore affect the microbial community residing inside (35). 

Following this line, cortisol may induce changes in the gene expression profiles of gut 

microbiota as it has been documented in the oral cavity (36). Moreover, it can also 

affect the integrity of the gut epithelium by weakening tight junctions from the intestinal 

barrier and reducing the expression of tight junction protein 2 in the colon (37), leading 

to a situation known as “leaky gut”, that eases the translocation of gut microbial content 

through the enteric barrier (activating the immune system as it is further explained in 

section 6.2.1.3).  

In practice, experiments performed in animals have illustrated the alteration in the 

commensal bacteria community in early ages as well as in adult stages when put under 

stressful environments. For example, in an early study conducted by Bailey et al (38), 

Rhesus monkeys that suffered maternal separation at 6-9 months of age – understood 

as a stress-triggering procedure – already showed a decrease in Lactobacillus spp. 

and 3 days after the separation. Furthermore, initial levels were normalised after 7 

days, confirming the association of the dysbiosis to the stressful situation. In a similar 

manner, the exposure of adult mice to chronic stress resulted in an alteration of 

microbiota characterised by a decrease in the Bacteroides spp. population and an 

increase in the Clostridium spp. community (39).  

 

Moreover, the communication pathway between gut microbiota and the HPA axis has 

also been suggested to work in the opposite direction, i.e. from the gut to the brain. 

One suggested mechanism of action for the bottom-up pathway is an indirect route 

derived from a leaky gut state. An increase in the permeability of the enteric barrier 

allows bacteria to reach the immune mucosal immune system, stimulating the secretion 

of proinflammatory cytokines that can pass through the blood-brain barrier (BBB) and 
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activate a neuroendocrine response by the HPA axis in order to control the 

inflammatory response (40).  

In addition, studies have proved that commensal bacteria such as Campylobacter jejuni 

or Citrobacter rodentium can activate stress pathways through vagal activation. 

Evidence showed that in vagal sensory neurons there was an induction of cFOS – a 

marker for neuronal activation – after infection with C.jejuni, in the absence of immune 

response (34). These findings were complemented with other studies that noticed 

cFOS activation in the brain after administrating C.rodentium  (41), feeding GF mice 

with probiotics (Bifidobacterium infantis) or with a mutated E.coli strain (42). These 

results suggest the implication of not only immune but also neural circuits in the 

microbiota-derived HPA activation. 

 
Over a decade ago Sudo et al (42) observed that GF mice responded with a magnified 

release of ADCH and corticosterone in comparison with SPF mice (controls) when put 

under stress conditions (Figure 6). Nevertheless, their anxiety-like behaviour was 

minimized. Such response was reversed after GF mice received a fecal transplant from 

control animals or were fed with the probiotic B. infantis. In contrast, when associating 

it with an enteropathogenic strain of E.coli the enhanced response to stress was 

potentiated. In addition, the study noticed that the reversibility of the abnormal 

response was greater when the colonisation occurred earlier in the life of the animals 

whereas after 8 weeks it was irreversible. The investigation by Sudo et al (42) was 

replicated in other works, also using probiotics and obtaining positive outcomes (43). 

Thus, the experiment has been translated to human healthy subjects, who showed a 

reduced salivary cortisol awakening response after being fed with prebiotics for 3 

weeks (44).  

 

Figure 6. Graphics obtained from the study by Sudo et al (42) proving the rise in the stress-triggered HPA 

response from GF mice, which is reversed with the administration of the probiotic B. infantis. 

Therefore, such findings indicate that the stress response can be modulated through 

gut bacteria, which either amplify or reduce the HPA axis setting the start to further 

studies on the matter. At the same time, they prove that the intestinal microbiota acts 

as a crucial factor in the maturity and correct function of the HPA axis, highlighting the 

importance for the colonisation of external microbiota to happen within a concrete time 

frame in life – early life – to determine the correct development of the neuroendocrine 

axis.   
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6.2.1.3 Immune system 

Another system that plays a role in the MGB axis is the immune system as it has been 

mentioned while discussing the HPA axis. Our digestive tract has the largest mucosal 

surface of the entire body, comparable to a badminton court (45), which hosts the 

greatest lymphoid tissue of the organism, the gut-associated-lymphoid tissue (GALT). It 

is in this environment where our microbiota lives and given the magnitude of the 

epithelium, the contact area between the prokaryote and the body-constitutive 

eukaryote cells must be taken into account.  

In physiological conditions, enterocytes constitute a layer of cells, closely fixed to each 

other by thigh junctions. If gut microorganisms or its structural molecules such as 

peptidoglycan monomers or lipopolysaccharides (LPS) get to cross the gut wall and 

access immune and neuronal cells from ENS, they will trigger an innate response from 

the immune system of the local mucosa. These pro-inflammatory structures are 

recognised as pathogen-associated molecular patterns (PAMPs) and thus bind to 

pattern recognition receptors (PRRs) and toll-like receptors (TLRs) expressed by 

immune cells unleashing a cytokine-mediated defensive response. 

In physiological conditions, a low-grade and constant stimulation of the gut immune 

system by commensal bacteria determines its maturation, enables its dynamic 

education and improves its function. A study proved that the immune activity of GF 

mice was almost non-existent, but it could be generated after receiving microbiota 

(reviewed in 39). In fact, GF mice have been characterised by the thinner structure of 

their intestinal wall (with reduced Peyer’s patches and lamina propria), decreased 

intestinal levels of CD8+ T cells, CD4+ T cells and Ig A (47) along with limited 

expression of intestinal TLR (48). 

However, this controlled immune response can be disrupted with an excessive or 

chronic translocation of lumen microbiota or its molecules through the gut wall as a 

result of the aforementioned “leaky gut” phenomenon eased by chronic stress 

(explained in 6.2.1.2 section).  

The PAMP-PRR contact induces a local release of proinflammatory cytokines (e.g.: IL-

6, IL-1, IL-10 and TNF) which can reach the brain directly or indirectly. The direct 

humoral response is facilitated by the pathologic existence of permeable regions in the 

blood-brain barrier. The second case happens when these compounds interact with 

cytokine receptors expressed by vagal afferents and activate these ascendant neurons 

(40). 

As it has been discussed in the previous section (6.2.1.2), there is a bidirectional 

influence between the HPA axis and the immune system. In this case, the inflammatory 

state derived from microbiota stimulation can activate the HPA axis, increasing the 

cortisol secretion and creating a positive feedback situation for the leaky gut that could 

exacerbate the condition and worsen microbiota’s environment. 
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6.2.1.4 Neurotransmitters and neuropeptides 

Several signalling molecules been identified which may enable a communication 

between the gut microbiome and the host’s ENS and brain. These substances are 

secreted by gut microbes and include short chain fatty acids (SCFA), bile acid 

metabolites, neuroactive molecules such as catecholamines (dopamine, 

noradrenaline), acetylcholine, GABA, serotonin and tryptophan precursors (49). For 

example, Lactobacillus spp. and Bifidobacterium spp. produce GABA; Escherichia 

spp., Streptococcus spp., Enterococcus spp., and Candida spp. are associated with the 

production of serotonin; Lactobacillus spp. synthesises acetylcholine; Bacillus spp., 

Escherichia spp. and Saccharomyces spp. produce noradrenaline; and Bacillus spp. 

produces dopamine (reviewed in 44). In an indirect way, we could also consider the 

cytokines released by the host's immune system in response to gut microbes. 

Therefore, all the above-mentioned compounds can signal to the brain by binding to 

gut cell receptors or through neural afferents. Not only can microbiota produce some of 

the neurotransmitters, but they can also alter the endogenous production by modifying 

its expression or the receptors’ expression. In fact, recent studies with GF mice 

observed a reduction of brain-derived neurotrophic factor (BDNF) in the brain of the 

animals as well as changes in the expression of NMDA, GABA receptor A and B 

subunits, serotonin 1A and tryptophan. In some cases, changes in the expression of 

these receptors were also associated with behaviour alterations (reviewed in 45). 

This section examines the currently most relevant molecules produced or modulated by 

gut microbiota in order to place them within the MGB scheme. 

 

▪ Serotonin and tryptophan  

95% of the body’s serotonin is synthesized within the gut, mainly by ECC, while the 

rest resides in the CNS. This neurotransmitter is linked to a vast range of functions, 

from regulation of intestinal transit and uptake (peripherally) to modulating mood and 

cognition (in the CNS). This work focuses on the latest as this molecule is one of the 

most important targets of depression disorder therapies. 

Serotonin’s precursor is the essential amino acid tryptophan. As it is illustrated in 

Figure 7, tryptophan can endure a transformation to serotonin that requires a 

hydroxylation and a subsequent decarboxylation of the amino acid or be metabolised 

through the kynurenine pathway which is dependent of two rate-limiting enzymes: 

indoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase (TDO). In 

addition, the activity of these two kynurenine catalysers can be induced by cortisol 

(TDO) and inflammatory mediators (IDO1). However, 90% of the available tryptophan 

undergoes the kynurenine pathway (51). 
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Figure 7. Schematic representation of the tryptophan metabolism pathways obtained from Kennedy et al 
(52).  

It is believed that microbiota participates in modifying CNS serotonin levels in a direct 

and an indirect manner.  

First, some bacteria can directly synthesise serotonin like Escherichia spp., 

Streptococcus spp., Enterococcus spp., and Candida spp (reviewed in 44).  

Then, it is proposed that they can modulate the levels indirectly using different 

strategies. On one hand, microbiota can release SCFA which stimulate serotonin 

production in ECC (53). On the other hand, they may condition the transformation of 

tryptophan towards the formation of kynurenine or to 5-OH-tryptophan formation. The 

second metabolite can go through the BBB and thus be used in the CNS for 

synthesizing serotonin but the first one can’t. Consequently, if too much tryptophan 

undergoes the kynurenine pathway, 5-HT levels in CNS may be lower (52).  

Marrying all the aspects together, these studies prove the ability of microbiota to induce 

changes in the serotoninergic system of the CNS. 

 

▪ GABA 

GABA is the principal inhibitory neurotransmitter in our body and it derives from 

glutamate metabolism. An alteration in GABA has been related to the pathogenesis of 

some diseases like depression and anxiety. 

 

Interestingly, it has been discovered that some bacterial strains modulate GABA levels. 

For example, some Lactobacillus and Bifidobacterium genera can metabolize 

glutamate into GABA (54). Another study suggests that microbiota-synthesised GABA 

can pass the BBB and enter the CNS (55). It is also proposed that some microbes’ 

signalling through gut vagal afferents alters the expression of GABA receptor in brain 

areas related to stress such as the hippocampus. It is the case of Lactobacillus 

rhamnosus, whose presence alters GABA receptor population in mice through the 

vagus nerve and reduces their anxious and depressive behaviours (56). This indicates 

that gut bacteria can influence the brain by regulating this neurotransmitter. 
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▪ Brain-derived neurotrophic factor (BDNF) 

The brain-derived neurotrophic factor (BDNF) is a protein (neurotrophin) expressed in 

the CNS. Its main actions rely on neuroplasticity, neural differentiation, and surveillance 

as well as enabling the synapsis formation.    

Animal studies in mice stress models noticed the association of stress and depression 

with low brain BDNF levels (in the hippocampus) and that antidepressants restored the 

basal levels (22). Later, experiments noticed a reduction of BDNF mRNA in animals 

infected with Trichuris muris that was restored after the administration of the probiotic 

Bifidobacterium longum (57).  

In GF mice, changes in BDNF levels have been documented in comparison with 

control animals. Yet, when focusing on the hippocampus of GF mice, results are 

inconsistent: some studies point to an increase and others to a decrease in BDNF 

hippocampal expression (as it has been reviewed in (21)).  

However, the conclusion that can be drawn so far from these investigations is that gut 

microbiota has an influence over the expression of BDNF in CNS. Defining how these 

alterations affect the brain and its pathologies still needs clarification. 

 

▪ Short-chain fatty acids (SCFA) 

In our diet we ingest variable amounts of fibre. Once the fermentable fibre we eat 

reaches the gut it can be converted into short-chain fatty acids (SCFA) by colonic 

microbiota. The three major SCFA molecules are acetic, propionic and butyric acid. 

These metabolites have a wide amount of properties: they are anti-inflammatory and 

antitumorigenic, modulate gut permeability and have the ability to activate epithelial cell 

signalling mechanisms (50).   

It has been proposed that these compounds interact with the brain through different 

pathways. Once they are synthesised in the intestine, they can cross the BBB and 

reach the hypothalamus, where they modulate GABA and glutamate levels (58).  

In addition, it is known that they benefit the intestinal and the blood-brain barrier 

through modulation of the thigh junctions, thus reducing the “leaky gut” consequences 

and limiting the access of intestinal metabolites to the brain (59,60). 

Another proposed mechanism by which these compounds can transduce their signal to 

the brain is by binding to G-coupled receptors from enteric cells (61). Enteroendocrine 

cells and neurons of the submucosal and myenteric ganglia have SCFA receptors and 

contribute to their signalling (62). Consequently, the gut stimulus can reach the brain. 

 

To sum up, as it has been dissected in this part, gut microbiota uses multiple pathways 

to access the brain. This leads to scientists questioning if its impact on the CNS could 

also affect our behaviour. As a result, in the following section, it will be analysed how 

changes in the MGB axis may influence our mental health, focusing the investigation 

on depression. 
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6.3 Depression 

According to the American Psychiatric Association, depression is considered a mood 

disorder in which a feeling of sadness and/or a loss of pleasure in activities that once 

were considered enjoyable for the person happens during 2 or more weeks and is 

accompanied with at least 5 of the following symptoms that impair their daily life: weight 

loss, fatigue, feelings of worthlessness or guilt, insomnia, difficulty of concentration, 

changes in appetite, recurrent thoughts of death (63). 

 

Depression is the leading mental disease worldwide. Also, it is considered the first 

cause of disability in the world by the World Health Organisation and it is important to 

highlight that people with mood disorders have higher rates of mortality due to suicide 

and a lower life expectancy compared with the average of the population (64). Hence, 

the upsurge of its prevalence during the last century has increased the interest to find 

appropriate therapies. 

 

Nevertheless, the cause of such diseases still isn’t enough defined. For what is known 

so far, pathophysiology of major depressive disorder (MDD) essentially is related to the 

following three aspects: abnormal function of the brain as a result of an imbalance of 

neurotransmitters and dysfunction on the neural circuitry as well as in neuroplasticity; 

dysregulation of the HPA axis (patients usually present increased cortisol and CRH 

levels); and a chronic low-grade inflammatory response involving pro-inflammatory 

cytokines (65). There have also been links with genetic and environmental factors but 

in the last decade, some studies have switched the attention to the role that microbiota 

can play within the disease. Therefore, the next section examines these investigations. 

 

6.3.1 Studies on the influence of the microbiota in depression 

One of the first studies to suggest that gut microbiota can be involved in the 

pathogenesis of depression was conducted by Kelly et al (66) in GF rats who received 

a transplant of fecal microbiota from depressed patients, resulting in a change of 

behaviour towards an anxious-like mood in the colonised animals along with anhedonia 

and irregularities in the metabolism of tryptophan. This experiment was carried out five 

years after Bercik et al (22) already hinted the influence of the microbiota in 

behavioural traits (as it is explained in 6.2). 

From the beginning, animal studies have procured most of the data we have nowadays 

about the gut microbiota-depression relationship, meaning the relationship has mostly 

been characterised in rodents and it still lacks human data.  

A growing body of evidence suggests the influence of gut microbiota on the 

susceptibility of developing depression in a bidirectional manner that resembles the 

bidirectionality of the MGB axis itself. This means depression exacerbating gut 

dysbiosis but also gut alterations impacting brains’ health. 

As it has been reviewed in 6.2.1 section, a state of dysbiosis is linked to an alteration of 

the MGB axis pathways including irregularities in inflammation, HPA axis functionality 
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and an abnormal regulation of the neurotransmitters (66). These three features are 

also related to the physiopathology of depression and are proposed as possible 

mechanisms for gut microbiota to influence depression. 

One of the mechanisms starts with stress – whether organic or psychologic – 

increasing the permeability of the gut epithelium (67). In this sense, stress-related 

disorders such as depression have shown an increase of bacterial translocation 

through the intestinal wall (68). The increased translocation leads to an immune 

activation that triggers a cytokine release (as explained in 6.2.1.3 section). The 

perpetuation of a pro-inflammatory state - with proinflammatory cytokines such as 

interferon- – can disrupt the activity of metabolic neurotransmitters and origin 

symptoms linked to mood changes, fatigue or depression (40). In fact, some 

antidepressants block these inflammatory cytokines (69). In addition, the work from 

Berk et al (70) suggested that the chronic, low-grade inflammatory state related to 

depression may be associated with the “leaky gut” state. In support of that hypothesis, 

a study in human subjects showed higher concentrations of IgA and IgM against LPS 

of commensal gram-negative gut bacteria in depressed patients than in healthy 

individuals (71). Also, a study found an increase of TLR-4 expression and detected 

intestinal bacterial DNA in plasma from depressed patients (72). Therefore, the 

participation of the microbiota within this scheme gains importance.  

 

The HPA axis is another key element in mood regulation. In depression, it has been 

reported an alteration in the HPA axis function. The sensitivity of glucocorticoid 

receptors located in the hippocampus and pituitary gland is impaired and thus the 

negative feedback is reduced. In this scenario, there is an increase in the production of 

cortisol (73), which could induce changes in the microbiota composition. Moreover, 

considering that the microbiota can influence the HPA axis (as it exposed in 6.2.1.2), a 

dysbiosis may exacerbate the disease.  

The third proposed mechanism is an abnormal neurotransmitter signalling. Changes in 

levels of BDNF, serotonin, noradrenaline, dopamine, plus alterations in GABA and 

NMDA receptors have been associated with anxiety and depressive-like behaviour in 

animals (50). These molecules play a role in the MGB axis. In this sense, the 

aforementioned studies in 6.2.1.4 show experimental evidence of the neurotransmitter 

changes that follow gut dysbiosis, which strengthens the correlation with mental 

disorders.  

Despite all the research on the field, current evidence of the relationship between gut 

microbiota and depression is still poor and diffuse. For example, there isn’t a firm 

consensus over the composition of the gut microbiota in depression yet.  

A review conducted by Cheung et al (74) at the beginning of 2019 gathered the results 

of all published human studies on gut microbiota in mood disorders and noticed a 

change in microbial diversity and taxa in comparison to healthy groups. However, the 

authors of the review stated that present studies have limitations that don’t allow a 

consensus about the most relevant bacterial taxa in depression, starting with the 

reduced number of the samples, the heterogeneity of the population included in the 

studies and the presence of depressed patients that were taking antidepressants and 

thus biasing results. 
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Interestingly, shortly after, it was published a study by Valles-Colomer et al  (75) that 

overcame some of the problems outlined by Cheung et al (74). This study carried out a 

DNA sequencing of feces from 1054 participants in order to establish a link between 

the present microbiota taxa with the quality of life and depression of participants. 

Afterwards, results were validated with an independent cohort (n=1063). Researchers 

found the genera Coprococcus and Dialister to be reduced in depressed patients even 

after suppressing from the study the possible bias induced by antidepressant use. In 

addition, Faecalibacterium and Coprococcus – two butyrate-producing genera that 

reduce intestinal inflammation and strengthen the intestinal barrier – were associated 

with a better life quality (represented in Figure 8. Moreover, It was also noticed the 

correlation between the quality of life and the bacterial synthesis of a dopamine-derived 

metabolite (3,4-dihydroxyphenylacetic acid, also referred to as DOPAC). Interestingly, 

it must be highlighted that it was described for the first time the association of mental 

health with an enterotype: the Bacteroides enterotype 2, which appeared more 

frequently within the depressed population (as it is illustrated in Figure 8A).  

This study has been published recently and still no other investigations have replicated 

it or further explored the obtained outcomes. However, the results are promising and 

set a possible direction to explore in future investigations. 

 

Figure 8. Results obtained from Valles-Colomer et al (75). A: increment of Bacteroides enterotype 2 (B2) 
in depressed patients opposed to healthy individuals. (B1: Bacteroides enterotype 1; B2: Bacteroides 
enterotype 2; P: Prevotella enteorype; R: Ruminococcaceae enterotype); B: It depicts the association 
between quality of life scores (QoL) and depression with presence of bacterial genera. In blue it is 
represented the elevated taxa in the non-depressed group whereas in red the increased ones in subjects 
with a worse QoL. 

In most of the existing research examining the microbiota composition in depression, 

the obtained results lack causal evidence and are just a correlation of observations that 

happen concomitantly (i.e. changes in microbiota and depression). Not to mention the 

heterogeneity in the methodology of the different studies or the limited sample sizes 

that, as Cheung et al (74) claimed, doesn’t allow a proper meta-analysis of the 

literature. In addition, the recent publication by Valles-Colomer et al (75) cannot prove 

a cause and effect relationship either. Yet, due to its meticulous experimental design, it 

A B 
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offers the clearest results for now on microbiota taxa alterations in depression, thus, 

leaving the door open for future studies examining the effects of Coprococcus spp. and 

Dialister spp. as probiotics in depressed patients. 

 

6.4 Comparison of therapies 

Given the increasing evidence supporting the link of microbiota with depression, a key 

question should be considered: can treatments that target the MGB axis be used as 

therapeutic weapons against mood-related disorders? Hence, in the last years, this 

proposal has been examined and compared with current depression treatments with 

antidepressants. 

Inhere we compare current knowledge of both classic and new proposed therapies 

based on the MGB axis, considering efficacy and side effects related to both strategies. 

 

6.4.1 Classic strategies 

Therapeutic approaches for depression usually use psychotherapy and medications.  

Also, in resistant cases, brain stimulation therapies have been considered an option. In 

this section, we digress about the traditional and still currently leading pharmaceutical 

therapy based in antidepressants. 

 

6.4.1.1 Antidepressants 

Nowadays, the common therapeutic approach for depression treatment is based on the 

monoaminergic hypothesis, which states that depression’s origin is found in the 

imbalance or lack of monoamine neurotransmitters (i.e. noradrenaline, dopamine, 

serotonin). That theory arose in the 1950s when an anti-tuberculosis drug – iproniazid 

– was seen to produce euphoric effects on patients. Later it was proved that iproniazid 

inhibits an enzyme called monoamine oxidase (MAO) which metabolises biogenic 

amines (like serotonin and catecholamines) by deamination, so it elevates their levels. 

This lead to the development of the first antidepressant group: the MAO inhibitors 

(MAOIs). However, MAOIs present dangerous consequences like lethal hypertension 

and risky interactions with numerous drugs.  

Further research facilitated the appearance of tricyclic antidepressants (TCA), which 

inhibited norepinephrine and serotonin reuptake. These groups were considered the 

first generation of antidepressants. They are effective thanks to their action increasing 

serotonin or noradrenaline levels (or both). However, TCA also have antihistaminic and 

anticholinergic properties and antagonise 1 receptors, unleashing a series of negative 

side-effects such as dizziness, constipation, drowsiness, dry mouth and weight gain.  

From these discoveries and the increasing research on the serotonin’s participation in 

depression, the development of drugs followed a rational design focused on serotonin-
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specific reuptake inhibitors (SSRI) like fluoxetine as well as targeting multiple receptors 

(the case of venlafaxine, bupropion, trazodone, mirtazapine, etc). These new 

generations of antidepressants got rid of some of the antihistaminic and anticholinergic 

side-effects thanks to their specific receptor binding. 

Besides their effects on the metabolism of monoamines, some antidepressants also 

modulate another key factor of depression: inflammation. To do so they potentiate IL-

10 cytokine (76) and block pro-inflammatory ones like interferon- (69). 

Interestingly, some recent studies point to the antibiotic effect of several 

antidepressants as one of their possible mechanisms of action, putting as an example 

isoniazid, the first antidepressant to be discovered, and others as sertraline, fluoxetine, 

escitalopram or imipramine that have been found to also have antimicrobial effects 

(77). Hence, proposing a link between their mechanisms and the MGB axis. 

Today there are still important limitations in the antidepressant therapy. First, the onset 

of action of these drugs is delayed for a few weeks and usually comes together with 

undesirable side-effects. Then, around 30-40% of all treated patients do not respond or 

show unsatisfactory results to the treatment (6). This could be due to the narrowed 

monoaminergic approach which doesn’t consider the multi-cause idiosyncrasy of the 

disease.  

However, despite the aforementioned weakness of these drugs, the rate of 

antidepressant consumption is increasing at an alarming rate (5). Therefore, it is 

suggested that future research should focus on targeting multiple hypotheses of 

depression for a wider therapeutic approach. 

 

6.4.2 New approaches 

New proposed therapies include different methods that alter gut microbiota composition 

such as the so-called “psychobiotics” (probiotics and prebiotics), fecal microbiota 

transplantation (FMT) or dietary habits which are discussed below. These are studied 

as alternatives to classic antidepressant drugs given the current problem with the rise 

in their prescription. 

 

6.4.2.1 Probiotics 

Probiotics are defined by the WHO as “live micro-organisms which, when administered 

in adequate amounts, confer a health benefit on the host” (78). Initially, they were 

found to be helpful in the treatment of IBS condition and recently, their possible 

beneficial effects in depression and behavioural disorders have started to be analysed.  

In order to influence the CNS, probiotics use the proposed pathways of connection of 

the MGB axis (depicted in section 6.2.1). In addition, they improve the gut epithelium 

permeability (increasing tight junction proteins’ expression) and mucus secretion 

(through regulation of mucin expression). These are two gut defence mechanisms that 
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prevent microbiota from accessing the lamina propria. Hence, its improvement 

ameliorates the “leaky gut” state (79).  

Pioneer studies on the therapeutic benefits of probiotics in mental disorders were 

conducted in animal models. For example, treatment with specific probiotic strains 

improved depression- and anxiety-like behaviour in adult mice (56) or reversed the 

depressive behaviour generated by maternal separation in rats (80). In this last study, 

separated rats were put in two different groups and treated with an existing 

antidepressant (citalopram) or the probiotic B. infantis. A closer look to their results 

shows that the probiotic treatment reversed all the negative effects caused by the 

maternal separation (increased immobility behaviour in the forced swim test, reduced 

norepinephrine brain levels, increased expression of CRH in amygdala and secretion of 

proinflammatory cytokines as IL-6). Moreover, when comparing the results between the 

probiotic and the antidepressant group they found no significant differences in terms of 

cytokine and corticosterone levels as well as in the behaviour in the swimming test as 

seen in Figure 9.  

 

Figure 9. Behaviour of the animals from the study Desbonnet et al (80) assessed in the swim test. Non-
treated maternal-separated mice (MS) showed an increased anxiety-like behaviour than the groups treated 

with citalopram (MS/Cit) or B. infantis (MS/Bif). 

Another publication compared citalopram with another probiotic strain – Lactobacillus 

helveticus – obtaining similar results than in the previous study (81).  

However, there are some contradictory results, because when L. rhamnosus was 

tested against another antidepressant (fluoxetine) it showed antidepressant and 

anxiolytic activity on BALB/c mice but not in Swiss Webster mice (82). 

It is also interesting to highlight an interesting study from this year that observed a 

potential use for Faecalibacterium prausnitzii as a psychobiotic. It is worth to mention 

that this species has the biggest population within the gut and it represents around 5% 

of the bacterial microbiota. In this study the animal model used was under CUMS 

conditions and the probiotic administration prevented and treated the CUMS-derived 

depressive- and anxious-like behaviour with a parallel increase of SCFAs cecum 

levels, anti-inflammatory cytokines (IL-10) – which has also been observed in 

antidepressants – and inhibited the corticosterone effects and the release of 

proinflammatory IL-6 as well as C-reaction protein (83). 
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As it has been exposed, the relationship with probiotic intake and its impact on animal 

behaviour has been assessed in multiple preclinical studies. However, clinical research 

in humans is still limited. 

Two double-blind, placebo-controlled clinical trials were conducted on healthy subjects, 

fed with probiotics (L. helveticus and B. longum in the first study; probiotic-containing 

milk in the second) versus placebo, showed that people under probiotic treatment felt 

less depressed symptoms (84,85). Then, Wang et al  (86) examined 38 studies on the 

effects of probiotics to the CNS on humans and animals – 9 of which evaluated 

depression symptoms –, finding that the most effective species in improving depressive 

symptoms were Lactobacillus casei, L. rhamnosus, L. helveticus, Bifidobacterium 

breve, B. infantis and B.longum. These are results that reaffirm the outcome of 

previous studies in mice. 

Nevertheless, a review from Nadeem et al (87) that examined studies of probiotic use 

in depression up to 2018 found evidence of their effect on anxiety and depression but 

the volume of samples coming from psychiatric patients was relatively small compared 

to the healthy group to draw firm conclusions, arguing the need of more participants 

and longer treatment duration. On a positive note, they concluded that the effects that 

probiotics produce on patients with depressive disorders are more significant than in 

healthy populations.  

Besides testing the efficacy of probiotics in depressed individuals it is important to 

assure the security of the therapy. It is worth mentioning that, as opposed to 

antidepressants, probiotics have insignificant side effects in non-immunocompromised 

people, usually limited to gases. This is a positive asset for probiotics in a moment 

when there's a need for finding novel therapeutic strategies for depression and anxiety. 

Yet, there are reports pointing out that patients with immunosuppression, those who 

are critically ill or have undergone surgery could have serious side effects such as risky 

infections associated with probiotic usage (88).  

In conclusion, probiotics are interesting candidates for depression treatment – whether 

as monotherapy or adjuvant therapy with traditional strategies – as they present a safer 

profile than prevailing drugs. However, further clinical studies in depressed patients are 

required to better characterise their effects and to investigate the potential role as 

probiotics of bacterial strains with interesting outcomes in pre-clinical studies (like 

Dialister and Coproccocus genera mentioned in 6.3.1). 

 

6.4.2.2 Prebiotics 

The Food and Agriculture Organisation (FAO) describes a prebiotic as a “non-viable 

food component that confers a health benefit on the host associated with modulation of 

the microbiota” (89). Prebiotics include monosaccharides (like fructose), disaccharides 

(as lactose), oligosaccharides (fructo- and galacto-oligosaccharides), polyols and 

FODMAPs (like inulin) (90). Once we ingest these products, they escape intestinal 

absorption and reach the colon, where they feed the commensal bacteria that live in 

there – including Lactobacilli and Bifidobacteria. As they promote the growth and 
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function of beneficial bacteria, they are proposed as possible treatment strategies for 

depressive and anxious conditions.  

However, the first quantitative analysis of all data relative to prebiotics associated with 

depression has been carried out this year examining 5 prebiotic trials with depressed 

patients and found no significant differences with the controls (placebo) (91). 

 

6.4.2.3 Fecal microbiota transplantation 

A fecal microbiota transplant is a procedure in which feces from a donor are collected, 

dissolved in a solution and relocated into the colon of another individual. The use of 

FMT has had promising results in patients infected with Clostridium difficile and has 

also been applied to other diseases like IBS, Crohn’s disease and ulcerative colitis 

(92).  

However, little do we know about the consequences of a microbiota transplant in the 

context of psychiatric conditions. Studies with microbiota transplants have been carried 

out in animals to further understand the mechanisms of the MGB axis – like the 

experiments from Bercik et al (22) and Kelly et al (66) aforementioned – concluding 

that with the transference of the microbiome, some phenotypical characteristics of the 

donor’s behaviour can also be transferred to the receiver.  

To date, no clinical trials are found using FMT in depressed groups. However, a study 

conducted by the Psychiatric Hospital of the University of Basel is currently in its 

recruitment phase to later assess the effects of oral frozen FMT capsules in severely 

depressed patients (93). Nowadays, evidence is presented as documented cases from 

individual patients. For example, this year, there was a reported case of a depressed 

old patient that after not improving with a 6-month treatment of escitalopram, flupentixol 

and melitracen tablets combined with probiotics and digestive enzymes received a 

FMT that reverted her initial symptoms six months afterwards (94). 

All in all, due to the low evidence level of the studies, it’s still too early to draw firm 

conclusions about its therapeutic potential but it is another option worth to be explored. 

However, outcomes from the clinical trial lead by the University of Basel will hopefully 

shine some light on the issue. 

 

6.4.2.4 Diet 

Our dietary habits are closely related to the composition of our gut microbiome. For 

example, it has been studied that the enterotype of people who follow a diet with big 

proportions of meat and animal fats has greater levels of Bacteroides spp. (enterotype 

1) whereas individuals more prone to consume fiber in their diets have higher levels of 

Prevotella spp. (enterotype 2) (16). Also, fermentable fibre intake conditions the levels 

of SCFA as well as the number of bacteria thanks to their prebiotic qualities. 
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In this sense, studies have observed that diets catalogued as unhealthy and that 

include refined foods, industrially processed aliments, excessive sugars, saturated fats 

and/or additives disrupt the microbiota and create an imbalance in the gut immune 

system with a resulting increase in proinflammatory cytokines and neuroinflammation 

than can increase the host’s susceptibility of developing a depressive phenotype (95). 

Hence, a Mediterranean diet is likely to protect while a Western diet is related to an 

increased risk of depression development. 

Considering these findings, we conclude that by controlling our intake products we can 

modify our intestinal microorganisms, but further research is needed to establish if 

taking specific dietary habits could lead to substantial changes to our mental health.  
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7 Concluding remarks 

The principal conclusions obtained from this work are summarised below: 

- The main organisms inhabiting the gut are bacteria, especially from the 

Firmicutes and Bacteroidetes phyla. The microbiota is a dynamic entity. Its 

composition is variable throughout the different life stages and is conditioned by 

genetic as well as external factors such as birthing method, dietary habits, use 

of antibiotics, stress or infections. Moreover, 3 enterotypes have been 

described amongst the population: Bacteroides (enterotype 1), Prevotella 

(enterotype 2) and Ruminococcus (enterotype 3). 

 

- On one side, molecular techniques allow us to describe gut microbiota 

composition from fecal samples. Further strategies point to the direction of 

metagenomics in order to get further insight into the collective functionality of 

the microbiome rather than the taxonomic aspects. On the other side, germ-free 

animals are the current major model to study the effects of dysbiosis within the 

MGB axis.  

 

- The MGB axis is integrated by neural, endocrine and immunologic pathways 

that connect in a bidirectional manner the brain and the intestinal lumen. The 

literature suggests that in mood-related disorders there is an alteration of the 

MGB axis constituents.  

 

- Recent studies show a decrease in Coprococcus spp. and Dialister spp. 

concurrently with an increase of the Bacteroides 2 enterotype in a depressed 

population. However, current findings still are correlations and lack of a causal 

association. 

 

- The most studied alternative for classic antidepressant therapy based on the 

MGB axis has been the use of probiotics. Their beneficial effects on depression 

may be related to a decrease in proinflammatory cytokines, in gut epithelium 

permeability as well as to GABA alterations and HPA modulations.  Potential 

probiotics for depression treatment proposed by different authors include 

Bifidobacterium (B. infantis, B. breve, B. longum), Lactobacillus (L. helveticus, 

L. rhamnosus, L. casei) and Faecalibacterium prausnitzii. The effects of 

probiotics are more significative in depressed patients than in healthy 

individuals. At the same time, probiotics present a safer profile of side effects as 

opposed to antidepressants. Hence, its study as an adjuvant therapy for 

depression may be of interest.  

 

To sum up, research on the effects of the gut microbiota in depression it is still in its 

infancy and thus requires additional studies before drawing firm conclusions. Finally, 

positive findings obtained so far justify further research in the field considering the 

major impact it could have on public health. 
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