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Abstract: We study the GPS data set of a collection of 260 students from up to 10 schools in
the Barcelona Metropolitan Area on their trip from house to school. Participants collected the data
with the help of a mobile application. After visualizing and cleaning the data, the main dynamical
properties have been studied. We firstly study the diffusion of the movement and then we describe
the instantaneous velocity with a log-Normal distribution, proposing a stochastic process to model
it. We also obtain two typical stopping times for participants’ stops duration. In addition, we
calculate the orientation of the movement for each school and for the entire data set. Finally, we
describe the change of orientation with a family of symmetric distributions on the circle, comparing
the results for the different schools. We thus provide a first analysis to very valuable data to model
pedestrian mobility with specific origin-destination journeys. Results found can also help to improve
urban planing in the schools surroundings.

I. INTRODUCTION

The study of complex systems has grown significantly
in recent years, becoming a popular scientific research
field [1]. Many multidisciplinary research groups com-
posed by physicists, among others, build models trying to
explain human behaviour or even financial markets [2,3].
In particular, the study of human mobility has aroused
great interest in the last years due to the wide range
of applications that it has. It allows improving the life
quality of citizens, in terms of traffic jams, urban plan-
ning or excess of pollution, among other relevant issues
that citizens face in their daily life [4,5].

The topic of this work is pedestrian mobility, with the
aim of studying the movement of a collection of students
on their journey to school. The work is based on a Citizen
Science [6] project called Bee-Path, carried out by the
research group OpenSystems UB, Dribia Data Research
and Eduscopi [7].

In order to obtain the GPS positions, participants
used a mobile application called Bee-Path, developed by
OpenSystems UB and Dribia Data Research, available
for Android and iOS. It has been used previously in dif-
ferent contexts, for example in the neighbourhood of Les
Corts (Barcelona) [8] or at Barcelona’s annual science
festival [2]. This way of collecting data is not very com-
mon in human mobility studies, hence we are dealing
with very valuable data.

Participants jointly decided to track the path from
their houses to the school with the same experimental
protocol. Although they also used transport methods
such as underground, bus or car; we only focus on the
pedestrian mobility. After analysing the collected data,
we study several dynamical patterns by means of a sta-
tistical analysis. Concerning to the spatial part we focus
on diffusion, velocities and we look for the duration of
stops. We work with the module of the variables in the
two-dimensional space. In reference to the polar part,
we study the direction of the movement and the change

of orientation. The study seeks to understand how stu-
dents move to get to school, providing the main statisti-
cal features for building a pedestrian mobility model in
a future work. The results could also be used to improve
the urban planning and the quality of life in the schools
surroundings.

II. RESULTS

A. Data acquisition and visualization

The collected data is composed by an anonymized user-
name, date-time, latitude and longitude of every partic-
ipant. The application is designed to collect data every
second. After cleaning up the data by removing the out-
liers and non-pedestrian users, we ended up with 57,535
GPS locations corresponding to 104 participants from
9 schools of the Barcelona Metropolitan Area. Table I
shows the number of points collected from each school.

School Points Participants

Institut Montjüıc 3, 458 6

Institut Verdaguer 2, 074 5

Col·legi Sant Gabriel de Viladecans 17, 792 32

Institut Pau Claris 3, 255 8

Col·legi Sagrada Famı́lia Sant Andreu 6, 247 10

Institut Juan Manuel Zafra 7, 921 17

Escola Virolai 2, 890 6

Institut Bellvitge 5, 929 10

Institut Ferran Tallada 7, 969 10

TABLE I: Number of GPS points and individual
journeys from each school.

In order to have a first approximation to the data,
GPS positions are projected on maps to see how the
students arrived at their respective schools. An exam-
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ple is shown in figure 1. The trajectories distribution of
FIG.1(a) seems fairly uniform. On the case of FIG.1(b),
almost all the trajectories start from the same region due
to the fact that Montjüıc mountain constrain the space
mobility on one side.

(a) (b)

FIG. 1: Projected trajectories of (a) Col·legi Sagrada
Famı́lia Sant Andreu (Sant Andreu) and (b) Institut

Montjüıc (Sants-Montjüıc).

B. Diffusion

We understand the students movement as a 2-
dimensional random walk defined by successive discrete
random steps of ∆t = 1s and length r > 0 [9]. An im-
portant quantity used to measure the spatial extend of
random motion is the mean square displacement (MSD).
It measures the deviation of the position of a pedestrian
with respect to a reference position over time. The scal-
ing of MSD with time, shown in Eq. (1), can be used to
categorize the type of diffusive motion. D is the diffu-
sion coefficient and d the spatial dimension (d = 2). If
γ = 1, MSD scales linearly with time and ordinary Brow-
nian motion is obtained (normal diffusion). On the other
hand, if γ < 1 the motion is classed as sub-diffusive and
if γ > 1 as super-diffusive.

MSD =< r2(t) > − < r(t) >2= 2dDtγ . (1)

We define r(t) as the module of the distance between
the position of a pedestrian in a certain time (after n time
steps of ∆t = 1s) and the initial position when t = 0:
r(t) = |~r(t) − ~r(t = 0)|. Then, MSD in a certain time
is obtained as the variance of r(t), with the ensemble-
average over all pedestrians. We compute the MSD for
the first 150 time-steps of ∆t = 1s, which we consider
that is statistically enough time to study how MSD scales
with time. The shape of MSD variance in a log-log scale
shown in figure 2 can be fitted by two lines using Eq.
(1), obtaining a super-diffusive motion: up to about 60
seconds with γ = 1.71 ± 0.01 and D = 0.46 ± 0.002 m2/s
and after that, with γ = 1.934 ± 0.008 and D = 0.171
± 0.007 m2/s. This might be modelled with a correlated
random walk or with a non-Gaussian model. So next
natural statistical feature would be to look at the velocity
module.

FIG. 2: MSD as a function of time in a log-log scale, for
the first 150 seconds of movement, fitted with Eq. (1).

The inset shows it in a normal scale.

C. Instantaneous velocity

Velocity is obtained dividing the distance of two con-
secutive points by the time difference (∆t = 1 s) between

them: v = |∆~r|
∆t . Figure 3 shows the probability density

function of the instantaneous velocity obtained from the
data points of all the schools. We propose a log-Normal
distribution in order to fit the data, based on a study
which shows that in several human activities where ex-
ists a desired target to be reached by repeated choices,
a log-Normal behaviour is found [10]. Eq. (2) shows the
proposed fit, where µ and σ are respectively the mean
and the standard deviation of the logarithm of the vari-
able.

FIG. 3: Probability density function of instantaneous
velocity, fitted with Eq. (2). The inset shows it in a

log-log scale. The arithmetic mean value is v = 1.49 ±
0.06 m/s and the standard deviation is σ = 0.7 m/s.

p(v) =
1

v · σ
√

2π
e−

(ln(v)−µ)2

2σ2 . (2)

Obtained parameters are σ = 0.365 ± 0.004 and µ =
0.393 ± 0.004. The fit adapts quite well starting from a
speed of 0.75m/s approximately. Below this value, GPS
values may overestimate velocity. In Eq. (3) we propose

Treball de Fi de Grau 2 Barcelona, June 2019



Main statistical features for building a pedestrian mobility model Ferran Larroya Paixà

a possible equation to model velocity called Ornstein-
Uhlenbeck process, a stochastic process regularly used
in financial mathematics [11]. It is the simplest known
log-Normal model. We work with the logarithm of the
velocity, thereby we define v = eu.

du = −α(u− uo)dt+ κdWt. (3)

Wt is the Wiener process and α, κ > 0 are constants.
Over time, the process tends to drift towards its long-
term mean becoming a stationary Gaussian-Markov pro-
cess, with mean µ = uo and standard devation σ =
κ2/2α. The Ornstein-Uhlenbeck process can be associ-
ated to a noisy relaxation process (for example a Hookean
spring) fluctuating stochastically around its mean value.

D. Stops duration

Another interesting aspect to investigate is the stop
duration statistics. We define a stop at a give moment
when the distance between two points separated by two
time steps (of ∆t = 1s) is less than L = 1.8 m (see Sect.
IV B). Then, we obtain the duration time of each stop.
The de-cumulative distribution function for the occur-
rences of stops duration time can be observed in figure
4. It can be well fitted by a weighted double exponential
law with two different characteristic decaying times, as
Eq. (4) shows.

Ψ(t) = Ae−t/a + (1−A)e−t/b. (4)

Contrary to other studies [2], too long stops are not
expected for the activity of going to school, since the
goal is to reach a place at a certain time. From the
fit we obtain A = 0.74 ± 0.02, a = 2.95 ± 0.08 s and
b = 14.2 ± 0.6 s. We believe that b could be the typical
time of stops at traffic lights to cross the street, or when
someone waits for a friend to go together. On the other
hand, a is related to the reorientation of the movement
when walking to school.

FIG. 4: De-cumulative distribution function of stops
duration fitted with Eq. (4). The inset shows the

representation in a log scale.

Finally, Eq. (5) shows the mean stopping time ob-
tained from the fit equation.

< t >=

∫ ∞
0

Ψ(t)dt = Aa+ (1−A)b = 5.9 ± 0.3 s. (5)

E. Orientation

Going into the polar part of the work, we obtain the
instantaneous direction of the movement by calculating
the angle between the x-axis and each vector formed by
two consecutive points. Figure 5 shows the polar his-
togram of orientation for every school. East is given by
0◦, North by 90◦, West by 180◦ and South by 270◦.

The figures can provide information on the structure
of the streets and reveal possible difficulties in accessing
schools due to the space constraints. In fact, in many
schools we can see a privileged axes of movement. For
example in FIG.5(e) there is a peak around 315◦ and
in FIG.5(f) the direction of the movement seems fairly
uniform (cf. figure 1).

F. Reorientation

We obtain the change of orientation angle of every con-
secutive vector by computing the difference of angles be-
tween two consecutive orientations, getting the set of an-
gles in the range of [−π, π].

Turning angle memory is a main feature for modelling
random walks. Two well-known probability distributions
used in movement modelling of animals are von Mises and
wrapped Cauchy [12], both depend on a random variable
whose values are angles. In Von Mises there is a preferred
orientation and adapts better to Gaussian shapes. On the
other hand, wrapped Cauchy is more peaked and has fat-
ter tails, which implies different long-term consequences
such as a power law decay or a log-Normal behaviour.

We fit the data to a probability distribution called
Jones-Pewsey family of symmetric distributions on the
circle [13], shown in Eq. (6), which includes both von
Mises when ψ = 0 and wrapped Cauchy when ψ = −1.
P1/ψ(z) is the associated Legendre function of degree 1/ψ
and order 0, µ is a measure of location and κ measures
the concentration. Both κ and ψ are related to the de-
gree of pedestrians orientation when exploring a given
space. We can see the result of the fit for all the data set
in figure 6. The obtained parameters are ψ = −0.94 ±
0.02, κ = 2.34 ± 0.02 and µ = −0.003 ± 0.001.

p(θ) =
(cosh(κψ) + sinh(κψ) cos(θ − µ))1/ψ

2πP1/ψ(cosh(κψ))
. (6)

A physics student obtained ψ = −0.5 (closer to von
Mises) and κ = 3.43 (more concentrated around the
mean) in his work on an experiment in a neighbourhood
of Barcelona [8]. Hence our result shows a movement less
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(i) (j)

FIG. 5: Polar histogram where radial component
measures the probability of an orientation at the

corresponding angle. (a) Institut Bellvitge (L’Hospitalet
de Llobregat), (b) Institut Ferran Tallada

(Horta-Guinardó), (c) Institut Juan Manuel Zafra (Sant
Mart́ı), (d) Institut Pau Claris (Ciutat Vella), (e)

Institut Montjüıc (Sants-Montjüıc), (f) Col·legi Sagrada
Famı́lia Sant Andreu (Sant Andreu), (g) Col·legi Sant

Gabriel de Viladecans (Viladecans), (h) Institut
Verdaguer (Ciutat Vella), (i) Escola Virolai

(Horta-Guinardó) and (j) All schools.

oriented. In fact, our data follows practically a wrapped
Cauchy distribution (ψ = −1). Fatter tails imply that
the probability of extreme angles is higher compared to
a Normal or Von Mises process, and therefore a less ori-
ented movement. This result may be due to the street
furniture and the structure of the streets, decreasing the
direct orientation towards the school.

Table II shows the values of ψ and κ obtained for each
school separately. We obtain µ ∼ 0 and a behaviour
closer to wrapped Cauchy for every school. Then, paying
attention to the value of concentration κ, we can compare
in a qualitative way what schools are easier to access. A
higher value of κ implies a more concentration around
µ ∼ 0 and therefore a more oriented movement. This
can be seen with the two schools in figure 1, where in
FIG.1(b) (κ = 2.66) the movement is more oriented than
in FIG.1(a) (κ = 1.97).

FIG. 6: Probability density function of the
instantaneous reorientation fitted with Eq. (6). Two
limits have been included (von Mises and wrapped

Cauchy). The inset is in a log-log scale.

School Ψ κ

Escola Virolai −1.51 ± 0.08 1.64 ± 0.03

Institut Bellvitge −1.13 ± 0.03 2.13 ± 0.03

Col·legi Sagrada Famı́lia S.Andreu −1.07 ± 0.03 1.97 ± 0.02

Col·legi Sant Gabriel de Viladecans −0.89 ± 0.02 2.41 ± 0.03

Institut Juan Manuel Zafra −0.87 ± 0.02 2.15 ± 0.03

Institut Pau Claris −0.81 ± 0.02 2.38 ± 0.03

Institut Montjüıc −0.80 ± 0.03 2.66 ± 0.06

Institut Verdaguer −0.77 ± 0.02 3.1 ± 0.1

Institut Ferran Tallada −0.72 ± 0.02 2.58 ± 0.03

TABLE II: Values of ψ and κ obtained for each school.

III. CONCLUSIONS

We have provided the main statistical features for
building a pedestrian mobility model in the particular
case of students in their journey from house to school. A
super-diffusive behaviour for the pedestrians motion have
been found. We have been able to explain instantaneous
velocity by means a log-Normal distribution, proposing
a Ornstein-Uhlenbeck process that is a Gaussian and
Markovian model (with exponential decay). In addition,
we have described the duration of the stops with a dou-
ble exponential law, obtaining two typical stopping times.
We have also studied the orientation of the movement and
the turning angles (reorientation) for each school and for
the whole data set. Orientation may provide a glimpse
of possible difficulties in accessing schools. Reorientation
has been described with a family of symmetric distri-
butions on the circle, resulting practically in a wrapped
Cauchy. In some schools the resulting movement is more
oriented than in others, hinting at the difficulties of ac-
cessing schools due to the structure of the streets and
the urban furniture. All these statistical features shall
be taken into account when considering new pedestrian
models for mobility.
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IV. APPENDIX

A. Data processing

Python programming language has been used for data
processing, using libraries such as GeoPy to calculate the
distance between geographical points, NumPy to perform
operations and functions, Matplotlib for plotting the data
and SciPy for fitting functions to experimental data using
the last squares method. We decided to compute the
average of every three instantaneous velocities in order
to avoid possible errors due to the lack of precision of the
GPS, getting smoothed results.

B. Stop determination

Due to the uncertainty associated to GPS locations, we
can not define a stop situation when the distance between
consecutive points is zero. For this reason, we propose
to fix a point with coordinates of latitude and longitude
(φ0,λ0), and compute the distance between that point
and another one situated k steps (of ∆t = 1s) before it
(φk,λk). If that distance is less than a certain value L,
called stop threshold parameter, the fixed point will be la-
belled as a stop. It is not trivial to choose an appropriate
value for L and it may be linked to a certain arbitrari-
ness. For this reason we study the stop frequency as a
function of L, as shown in figure 7.

Significant difference between k = 1 and larger k’s al-
lows us to consider that k = 2 is good enough to describe
the stopping or moving situations while keeping a robust
statistics. In the inset of figure 7 we fit k = 2 to an ana-

lytical function to study the turning points (i.e. a change
in function behaviour) that could give a good value for L.
The chosen function for the fit is a third degree polyno-
mial: Ψ(L) = aL3+bL2+cL+d. From the fit parameters
we obtain a turning point in L = 1.8 ± 0.1 m with the
second derivative test, which we consider that would be
a reasonable value for L.

FIG. 7: Stops fraction as a function of the stop
threshold parameter L for the five first values of k. As

expected, stop frequency is lower as the value of k rises.
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