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Abstract: A review of non-perturbative effects in Quantum Mechanics is presented. We pay
special attention to the exact and uniform WKB methods. The double well potential is considered
as a motivating example due to its physical modeling relevance. The first terms of the ground-state
energy trans-series for this potential are calculated as a direct application of the uniform WKB
method.

I. INTRODUCTION

Quantum mechanics is one of the cornerstones of mod-
ern physics. Despite its countless applications, very few
cases can be solved exactly by means of ordinary func-
tions. Instead, we need to turn to approximation tech-
niques. A widely used method is perturbation theory,
known as Rayleigh–Schrödinger theory when we consider
time independent problems, on which we will focus.

However, some subtleties may arise in perturbation
theory, such as non-convergence or undetectable effects.

Some illustrative examples of non-converging ground
energy corrections, E − E0 =

∑∞
n=1 an(g)n, for different

systems would be:

• Zeeman effect: an ∼ (−1)n(2n)!

• Stark effect: an ∼ (2n)!

where g denotes the coupling associated to the perturba-
tion.

This divergence problem, among others, challenges the
intuitive idea that the physics from QM should be cap-
tured by analytic functions of the couplings.

The issue becomes extremely relevant when we con-
sider g = ~. This was studied in the early days of
quantum mechanics, which led to the WKB (Wentzel,
Kramers & Brillouin) approximation.

The WKB method consists of approximately solv-

ing the Schrödinger equation − ~2

2m∆Ψ + V (x)Ψ = EΨ
through an ansatz of the form

Ψ(x) = C(x)e
i
~φ(x) (1)

Imposing some reasonable assumptions on φ(x)′′, we ob-
tain the approximate solution

Ψ(x) ≈ C√
p(x)

exp

{
± i

~

∫ x

p(x̃)dx̃

}
(2)

where p(x) =
√

2m
(
E − V (x)

)
and C is the normaliza-

tion constant. Notice that Ψ(x) is not analytic in ~, and
in fact presents an essential singularity for ~ = 0.
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The WKB ansatz has proven to be remarkably useful
in countless problems, although it only provides us with
an approximate solution to the problem and yields no
further understanding on the topic.

A more insightful view was developed in the 70′s by
the physicists C. Bender, T. Wu, A. Voros and J. Zinn-
Justin, known as exact WKB, which tries to unveil the
geometric background behind the WKB approximation
[1], [2]. An alternative approach to the problem is that of
uniform WKB, which tries to approximate the solution
by perturbing the solutions of the harmonic oscillator
rather than plane waves, as the usual WKB approach
does [3].

The mathematician J.Écalle provided a solid mathe-
matical basis for such developments in the early 80′s,
referred as resurgence theory [4], [5], which relies heavily
on complex analysis techniques.

In the next section, the need for this framework will
be illustrated through a simple example, followed by a
discussion of the main points of exact WKB and resur-
gence. To conclude, there will be a review of the example
through this new perspective.

II. DOUBLE-WELL: NON-PERTURBATIVE
CORRECTIONS

Let us first consider an introductory example, the
double-well potential as in [8], §36:

H = −~2

2

d2

dx2
+

1

2
x2(1−√gx)2 (3)

where g is a small parameter. By performing a change of
variable x 7→ x√

g and multiplying the Hamiltonian by g,

we obtain

gH = −~2g2

2

d2

dx2
+

1

2
x2(1− x)2 (4)

Thus, identifying g~ as a redefined Planck’s constant, we
get the Hamiltonian for V (x) = 1

2x
2(1− x)2 times g.

The potential associated to (3) has two minima, one
at the origin and one at 1√

g , and admits a reflection sym-

metry R around the axis x = 1
2
√
g .
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We shall focus on studying the ground state of this
problem. We might try to find the ground state by ex-
panding from the unperturbed quantum harmonic oscil-
lator (g = 0). However, such perturbative expansion
fails for two separate reasons. First, the ground energy
expansion is not convergent, as aforementioned. The first
terms, up to fifth order in

√
g, are

E0(~,
√
g) =

~
2
− ~2g − 9

2
~3g2 +O(g3) (5)

Second, the expansion does not yield a splitting of the
ground energy, as required for 1-D potentials in Quantum
Mechanics (see [6] Prob. 2.42 for non-degeneracy in 1-D
QM). Intuitively, any state of the unperturbed harmonic
well should split into two different eigenfunctions with
well defined parity and satisfying E− > E+, where the
subscript denotes the parity with respect to R. Let us
focus on the energy splitting, following the work of [7] .

The cornerstone of this approach is the Herring’s for-
mula (see [7] Appendix A), which characterizes the en-
ergy splitting of an approximate solution of energy E0

∆E = 2~2Ψ

(
1

2
√
g

)
Ψ′
(

1

2
√
g

)
(6)

where the formula holds for the wave function evaluated
at the reflection point p which satisfies ψ(p − x)=ψ(p +
x). Similarly to the WKB ansatz of eq. (2), we can
approximate our wave function as

Ψ(x) ≈ C√
p(x)

exp

{
± i

g

∫ x

p(t)dt

}
(7)

Fixing 1
2
√
g as the integral base point, we find that the

energy splitting can be approximated as

∆E ≈ 2~2

g
C2 (8)

So we are just left with calculating the normalization
condition of Ψ. In order to estimate C we shall make use
of the Hamiltonian in (4) and calculate the normalization
constant of the ground state of the Hamiltonian

H = −~2

2

d2

dx2
+

1

2
x2(1− x)2 (9)

by requiring that our wavefunction matches the ground
state solution of the quantum oscillator in the overlap-
ping region

ψ0(x) =
1

4
√
π~
e−x

2/2~ (10)

In the overlapping region we can approximate the mo-
mentum by p(x) =

√
x2 − c2 where c corresponds to the

turning point V (c) = E and can be neglected when sub-
stituting it in 1√

p . Thus, we claim

Ψ(x) =
C√
p(x)

exp

{
1

~

∫ 1/2

x

p(t)dt

}
≈ C√

x
exp

{
1

~

∫ 1/2

c

p(t)dt+
1

~

∫ c

x

√
t2 − c2dt

}

The second integral on the r.h.s can be solved exactly

1

~

∫ c

x

√
t2 − c2dt = −x

√
x2 − c2
2~

+
c2

2~
ln

(√
x2 − c2 + x

c

)
(11)

Since the harmonic part dominates, it is reasonable to
assume c ≈

√
~ and that c << x so that c/x is small.

Taylor-expanding the r.h.s of eq. (11) we get

1

~

∫ c

x

√
t2 − c2dt ≈ −x

2

2~
+

1

4
+

1

2
ln

(
2x

~

)
+O

(
1

x2

)
(12)

Thus, we are left with

Ψ(x) ≈ C
(

4e

~

)1/4

e−x
2/2 exp

{
1

~

∫ 1/2

c

p(t)dt

}
(13)

Comparing equations (13) and (10), we deduce that

C ≈ 1
4
√

4πe
exp

{
−1

~

∫ 1/2

c

p(t)dt

}
(14)

Substituting in eq. (8), and using the fact that the po-
tencial is symmetric around 1/2, we get

∆E ≈ ~2

g

1√
eπ

exp

{
−1

g

∫ 1−c

c

p(t)dt

}
(15)

where the integral of p(t) is the one associated to the
Hamiltonian (4). Notice that eq.(15) depends on c, which
is also unknown to us. An elaborate computation allows
us to evaluate this instanton correction [7].

Removing the extra factor g on eq.(4) and restoring
natural units, the final result takes the form

∆E ∼ 2
√
πg
e−

1
6g (16)

This result can be derived in a completely different frame-
work, that of instanton mechanics (see [8] §36), which is
how it was originally obtained.

It is important to note that this is not in any case the
full answer. However, it should suffice to convince the
reader that there is an energy splitting, and that it is of
non-perturbative nature.

III. EXACT WKB AND RESURGENCE

The reader should now feel confident that non pertur-
bative terms can be essential in capturing the physics in
QM problems. However, the question of what type of
non-perturbative effects should be considered arises.

There is mathematical foundation (see [5]) that en-
sures us that considering perturbations in the form of
trans-series should be enough. Trans-series are the main
object of study in resurgence, which illustrates that our
dependence on the coupling should be of the form

f(g) =

∞∑
i=0

∞∑
j=0

j−1∑
k=0

ci,j,k g
i
(
e−

c
g

)j
lnk
(
± 1

g

)
(17)

2
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rather than just analytic functions (power series) of g,
where ci,j,k, c are smooth functions of the generalized co-
ordinates.

The first standard approach to obtain such trans-
series, which correspond to a more careful treatment of
the WKB approach, is known as exact WKB. The basic
idea, which we will just sketch, is that exact results for
observables can be obtained from suitable continued ex-
pressions for the periods of an auxiliary Riemann surface.

In what follows, we shall consider complex variables
and functions instead of real-valued ones, since all con-
sidered functions can be extended reasonably in a unique
way. In fact, the mathematical foundations of resurgence
makes extensive use of the notion of holomorphicity, in-
trinsic to complex analysis.

A. Exact WKB

In the complex setting, the ansatz (1) is rewritten as

Ψ(z) = exp

{
i

~

∫ z

ψ(z̃, ~)dz̃

}
(18)

which, when plugged into the Schrödinger equation, leads
to the Riccati equation

~
i

dψ

dz
+ ψ2 = E − V (z) (19)

This equation does not admit a solution in terms of usual
functions, but can be written down as a formal power
series in ~.

ψ(z) =

∞∑
n=0

pn(z)~n (20)

It can be proven that the odd terms of such a solution
will not contribute to the integral in eq. (18). Thus, and
by imposing normalizing conditions, we obtain an exact
solution to the Schrödinger equation in terms of formal
power series

Ψ(z) =
1√
P (z)

exp

{
i

~

∫ z

P (z̃, ~)dz̃

}
(21)

P (z) =

∞∑
n=0

p2n(z)~2n =

∞∑
n=0

qn(z)~n (22)

Notice that p0(z) = p(z) =
√

2m
(
E − V (z)

)
.

In virtue of equation (19), the meromorphic differential
P (z)dz defined in equation (22) can be regarded as a
curve in the two dimensional Riemann surface ΣWKB

w2 = 2m
(
E − V (z)

)
(23)

seen as a section of T ∗Σ, where Σ is the coordinate man-
ifold. We will assume Σ = P1

C. Because of this, the

natural objects to study are the periods of P (z)dz along
the cycles γ ∈ H1(ΣWKB):

Πγ(~) :=

∫
γ

P (z)dz (24)

Similarly to P (z)dz, Πγ is defined as a formal power
series in ~:

Π(n)
γ :=

∫
γ

qn(z)dz Πγ(~) =

∞∑
n=0

Π(n)
γ ~n (25)

We would expect Πγ(~) to be an analytical function of ~,
thus making sense of Ψ as a wave function, which would
be a solution to the Schrödinger problem. However it can
be proven that the formal power series in eq. (25) has a

zero radius of convergence, with growth Π
(n)
γ ∼ n!.

In order to make sense of the WKB periods, we in-
troduce the Borel and Laplace transforms, which are
what will give rise to the instanton (e−1/x) and quasi-
zero mode (ln(1/x)) corrections .

B. Borel and Laplace transforms

The Borel and Laplace transforms will only be pre-
sented, without much further comment. Further discus-
sion can be found in [5].

The Borel transfrom acts on formal power series as
follows. Given a formal power series S =

∑
n≥0 ang

n, we
define its Borel transform by

B
(
S
)
(ξ) =

∞∑
n=0

an
n!
ξn (26)

A remarkable aspect of the Borel transform is that it
guarantees us that the Borel transform of our WKB peri-
ods will define a holomorphic function in a neighborhood

of 0, as long as the growth condition Π
(n)
γ ∼ n! holds. By

means of analytic continuation, we can extend B(Πγ) to
a larger open set.

The Laplace transform is a widely used tool in analysis
and admits several definitions. We shall use a particu-
lar case that suits us due to our index choices and the
complex setting we are working with. Let f(z) be an a.e.
integrable function whose growth is dominated by eAz at
infinity. Then, the Laplace transform of f is defined as

Lϕ(f)(ξ) =
1

ξ
lim
t→∞

∫ teiϕ

0

f(z)e−z/ξ dz (27)

The Laplace and Borel can be viewed as inverse of each
other, due to the fact that any holomorphic function f on
C, whose growth is dominated by eAz at infinity, satisfies

B
(
L0(f)

)
(z) = L0

(
B(f)

)
(z) = f(z) (28)

Remarkably, this procedure can provide us with some
interesting new results to sum divergent series whenever

3
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the previous growth condition is not met. In the context
of exact WKB, we define the Borel sum of a period as

sϕ(Πγ)(~) = Lϕ
(
B(f)

)
(~) (29)

and say Πγ is summable if sϕ(Πγ) is well-defined for a
small enough ~.

The instanton corrections appear whenever sϕ(Πγ) is
ill-defined and one needs to take lateral re-summations.
In that case, they are related to the quantity

discϕ(Π) = lim
δ→0

sϕ+δ(Πγ)− sϕ−δ(Πγ) (30)

IV. DOUBLE-WELL: REVISITED

Let us reconsider the example of §2 from an exact per-
spective. Whilst exact WKB provides the conceptual
framework to understand the WKB in order to actually
carry out computations, we will resort to uniform WKB,
detailed in [3]. The uniform WKB studies the problem of
the double-well by making use of the parabolic cylinder
functions

− d2

dz2
Dν(z) +

z2

4
Dν(z) = ν + 1/2 (31)

rather than perturbating a plane wave, like the usual
WKB method. Notice that parabolic cylinder functions
when ν ∈ N are related to the solution of the nth energy
state of the harmonic oscillator by

ψn(x) =
1√
n!

4

√
mω

π~
Dn

(√
2mω

~
x

)
(32)

In the case of the double well, by performing the trans-
formation y =

√
gz, our ansatz for the wave function is

Ψ(y) =
1√
u′(y)

Dν

(u(y)
√
g

)
(33)

where ν is given by some global conditions which we
will discuss in the next subsection. Plugging Ψ in the
Schrödinger equation and making use of eq. (31) we ob-
tain the differential equation

g
(
ν+

1

2

)
+
g2

2

√
u′
( u′′

(u′)3/2

)′
−u

2(u′)2

4
= 2gE−y2(1−y)2

(34)
which can be solved recursively in terms of g, in the same
way we did with eq.(19). Although this expansion might
seem more complicated to work with than (19), uniform
WKB offers some advantages in front of exact WKB. If
we set n = ν + 1/2, the first terms of the energy expan-
sions are

E(g) = n− g
(

3n2 +
1

4

)
− g2n

(
17n2 +

19

4

)
+ . . . (35)

Notice that if we take ν = 0, the quantization condition
of the unperturbed oscillator, we obtain the same expan-
sion (5) which had been calculated through Rayleigh-
Schrödinger perturbation theory.

A. Quantization condition

When first studying the double potential it was ar-
gued that there should be a splitting of the energy and
that the corresponding wave eigenfunctions should have
well defined parity, the even wavefunction having lower
energy.

The uniform WKB method allows us to derive a quan-
tization condition for our problem. But in order to fully
capture the essence of this, it is necessary to use the
resurgent expansion of the parabolic cylinder functions,
which can be calculated for the different regions of the
complex plane as explained in §III.B. and becomes rele-
vant whenever ν /∈ N. According to the NIST function
database [9],

Dν(z) ∼ zνe−z
2/4F1(z2) + e±iπν

√
2π

Γ(−ν)
z−1−nez

2/4F2(z2)

(36)
with

F1(z2) =

∞∑
k=0

Γ(k − ν
2 )Γ(k − ν−1

2 )

Γ(ν2 )Γ( 1−ν
2 )k!

(
−2

z2

)k
F2(z2) =

∞∑
k=0

Γ(k + ν+1
2 )Γ(k + ν+2

2 )

Γ(ν+1
2 )Γ(ν+2

2 )k!

(
2

z2

)k
which can be related to the hypergeometric function
of the first kind through the reflection formula of the

Gamma function: Γ(z)Γ(1− z) =
π

sin(πz)
.

The parity condition can be translated in terms of the
value of the wavefunction or its derivative at the critical
point. Thus, an even function will fulfill Ψ′

(
1
2

)
= 0 whilst

an odd function will be characterized by Ψ
(

1
2

)
= 0.

Using the expansion (36), and performing some calcu-
lations, we arrive at

1

Γ(−ν)

(
2e±iπ

g

)−ν
= (−1)(1+PΨ)/2 ξH(ν, g) (37)

where PΨ is the parity eigenvalue of Ψ, and

ξ =
1
√
πg

exp

{
− u0

2(1/2)

2g

}
(38)

H =

(
u2(1/2)

2

)ν+1/2 F1

(
u2(1/2)

g

)
F2

(
u2(1/2)

g

)
× exp

{
− 1

2g

(
u2(1/2)− u0

2(1/2)
)}

(39)

with u0 the zeroth order term of eq.(34), which is given
by

u2
0(u′0)2 = 4V =⇒ u2

0(y) = 4

∫ y

0

√
2V dy (40)

4
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with V (y) = y2(1 − y)2. Evaluating for the double well,
we get

u2
0

(
1

2

)
=

1

3
=⇒ ξ =

1
√
πg
e

−1
6g (41)

The reader will immediately realize that 2ξ = ∆E from
§II. This follows from the parity dependence of (37).

B. Energy trans-series

Let us end this dissertation by giving the first terms
of the trans-series of what has been our main topic of
discussion: the ground state energy of the double well
potential.

First, recall the Taylor expansion [9]

1

Γ(−x)
≈ −x+ γx2 +

1

12

(
π2 + 6γ2

)
x3 +O(x4) (42)

where γ is the Euler-Mascheroni constant.
The strategy will be to approximate the quantization

condition (37) around zero in terms of the instanton fac-
tor ξ by taking δν =

∑
k akξ

k. Take σ± = ln
(

2
g

)
± iπ

and H0 = H(0, g), H
(i)
0 = di

dνiH(0, g). By (42), we get∑
i

Pi(σ±)δνi+1 = (−1)(1+PΨ)/2 ξ
∑
i

1

i!
H

(i)
0 δνi (43)

where the Pi are polynomials in σ±, the first three being

P0(σ±) = −1
P1(σ±) = γ + σ±

P2(σ±) =
π2

12
− 1

2
(γ + σ±)2

Solving for δν, we get

δν = βξH0 + ξ2

(
H0H

(1)
0 + (γ + σ±)H2

0

)
+ . . . (44)

where β = −(−1)(1+PΨ)/2. All that remains is to replace
n = 1

2 + δν into the expansion (35) with δν as previously

stated. Thus, the first terms of the energy trans-series of
the ground state are

E(g) =
1

2
− ξH0 + ξ2

(
H0H

(1)
0 + (γ + σ±)H2

0

)
− g
(

1 + 3ξH0

[
1− ξH0(1 + γ + σ±) + ξH

(1)
0

])
(45)

since β = −1 as the ground state is even. The provided
tools would allow us to continue expansions (44) and (45)
algorithmically to any order, yielding an expansion of the
form of (17), in agreement to the previous statements.

V. CONCLUSIONS

The Schrödinger equation gives rise to non classi-
cal phenomena which can not be captured by standard
means of perturbation theory, but their physical signifi-
cance can be captured through instanton and quasi-zero
mode corrections in the form of (17).

Our study has led us to two different approaches on
how to calculate such generalized corrections. Exact
WKB presents itself as the more geometric approach to
the problem and allows us to investigate the conceptual
nature behind such phenomena. The paper [2] points out
how this more conceptual understanding has allowed to
relate trans-series with problems in the theory of inte-
grable systems.

In contrast, uniform WKB can easily be used to derive
the precise coefficients of the trans-series expansion algo-
rithmically for a given potential, as it has been done for
the double well potential. Geometrical and topological
information can also be obtained through this method,
as explained in [3].
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