
 
 
 
 

 

 
 
 

 
 
 

 
 
 
 

 
Interactions of electrons with matter 

 
José María Fernández Varea 

 
 
 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
SenseObraDerivada  4.0. Espanya de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – SinObraDerivada  
4.0.  España de Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0. Spain License.  
 



\
Uh ,':;.:x", "

. ",'

-,+¡
.

\-

l)¡v¡�- :�.J ...."
,. ;-, _-,' 1_,0

1 C" \� nu NI"l2 \
UNIVERSIDAD DE BAR�f��"-- 1

Facultad de Física

Interactions of Electrons with Matter

Memoria presentada en la Facultad de
Física de la Universidad de Barcelona por

José María Fernández Varea

para optar al grado de Doctor en Física.

Barcelona, Julio de 1992

lj'lüiiliTiiür
0700561981



FRANCESC SALVAT GAVALDA, Professor titolar de Física Atómica i Nu
clear de la Universitat de Barcelona,

FA CONSTAR que el present treball, "INTERACTIONS OF ELECTRONS
WITH MATTER", dipositat per en José María Fernández Varea, llicenciat
en Ciencies Físiques per la Universitat de Barcelona, ha estat realitzat sota la
meya direcció, en el Departament d'Estructura i Constituents de la Materia de
la Facultat de Física de la Universitat de Barcelona i que constitueix la seva

Tesi per a optar al títol de Doctor en Ciéncies Físiques.

1, per a que consti, d'acord amb la legislació vigent, firma aquest certificat
a Barcelona, a 7 de Juliol de 1992.

Francesc Salvat Gavaldá



Contents

Preface v

1 Elastic scattering

1.1 Introduction .. ......

1.2 Partial wave eross sections

1.2.1 Partial Wave Analysis

1.2.2 Numerieal phase shifts

1.2.3 WKB phase shifts .

1.2.4 Born phase shifts

1.2.5 Simplified ealeulation method

1.3 Sereened Mott eross seetion ..

1.4 Improved high-energy formulas

1.4.1 Nuclear size efIeets

1.5 Concluding remarks .

1

1

2

3

4

6

6

9

15

17

22

24

2 Multiple scattering

2.1 Introduction ...

27

27

30

31

34

38

2.2 Multiple seattering theories

2.2.1 Single seattering difIerential eross sections

2.2.2 The theories of Goudsmit and Saunderson and Lewis

2.2.3 The Wentzel model . . .

1



2.2.4 The Moliere theory .

2.3 A new simulation algorithm

2.4 Simulating with a Wentzel model

2.5 Conclusions .

CONTENTS

42

52

60

66

11

3 Optical-data models

3.1 Introduction ...

3.2 Born approximation

3.3 Free-electron gas ..

3.4 Optical oscillator strength

3.4.1 The Local Plasma Approximation .

3.5 Optical-data models ....

3.5.1 The statistical model

3.5.2 Ashley's model

3.5.3 Penn's model

3.5.4 Shell model

3.5.5 A comparison of optical-data models

3.6 A new optical-data model

3.6.1 Exchange correction

3.6.2 One-electron cross sections .

3.6.3 Analytical formulas for A and S

3.7 Calculation results

3.8 Conclusions ....

67

67

69

72

75

77

80

80

80

81

81

81

85

85

87

88

89

97

4 Energy loss of fast electrons

4.1 Introduction ..

4.2 Collision losses

4.2.1 Schematic Bethe surface

99

99

101

102



CONTENTS 111

4.2.2 Density effect

4.3 Radiative losses . . .

4.3.1 Bethe-Heitler DCS

4.4 Random sampling algorithms

4.4.1 Energy loss in electron hard collisions .

4.4.2 Energy loss in positron hard collisions

4.4.3 Energy loss in hard photon bremsstrahlung emission

4.5 Soft energy loss events

4.6 Conclusions

106

115

115

127

127

129

129

131

134

Conclusions 137

A Legendre functions of the second kind 139

B Random sampling of angular reflections in artificial soft collisions 141

C Folding Theorem 143

D Useful kinematic relations 147

References 149



IV CONTENTS



Preface

The interaction of electrons with matter has been a subject of intense work since the

beginning of the century. Although we know that the interaction is purely electromag
netic, its theoretical description is complicated by two different reasons. On the one

hand, the number of particles that participate in the interaction may be very large.
Even when the target is a single hydrogen atom, the collision is a three body problem
for which only approximate solutions of the wave equation are known. Therefore, the
interaction can only be treated by using approximate many body methods. In partic
ular, scattering of fast electrons by single atoms can be reasonably undertood on the

basis of independent particle models. On the other hand, when the medium where the

projectile moves extends over a large volume, the projectile may interact repeatedly
with the medium. As a consequence, the proper tools to deal with problems involving
electron penetration in matter are multiple scattering theories andjor Monte Carlo

simulation.

The gross features of the interaction of electrons with kinetic energies aboye a few

hundred eV with single atoms are quite welI understood and can be described by using
standard methods. The static field approximation, i.e. partial wave calculations with a

scattering field determined from the atomic electron density, gives an accurate descrip
tion of elastic scattering. This kind of calculations, however, demands a considerable

amount of numerical work that increases with the kinetic energy of the projectile. Par
tial wave differential cross sections have been published only for kinetic energies up

to sorne 500 keV. Inelastic scattering can be described by using the plane-wave Born

approximation suitably corrected for exchange effects. Apart from kinematical factors,
the Born differential cross section is proportional to the generalized oscilIator strength.
This quantity is known in analytical form for the hydrogen atom, but it is difficult

to compute for more complex atoms. The scattering of electrons by molecules can be

analyzed with similar, but more involved, methods.

v



VI Preface

The interaction of electrons with solids, and other extended media, is far more

complicated. First, the periodicity of the solid distorts the outer orbitals of the atoms,
an effect which can only be approximately quantified through involved band-structure

calculations. Second, the low-energy part of the excitation spectrum is strongly in

fl.uenced by the structure of the solid in such a complicate way that a theoretical

description of electron inelastic scattering from first principIes is practieally unfeasible.

Finally, multiple seattering effects can only be aeeounted for by solving the Boltzmann

transport equation, or by means of Monte CarIo simulation. Detailed Monte CarIo

simulation yields to the exact solution of the transport equation (exeept for statistical
uncertainties that are inherent of the this method) for arbitrary geometries. However,
detailed simulation is only feasible for electrons with kinetic energies less than l"'>oJ 100

keV. For higher energies eondensed simulation methods based on approximate multiple
scattering theories must be used. The condensed simulation codes presentlyavailable
ineorporate multiple seattering theories which are only roughly approximate and, in

many situations, do not allow the simulation of actual experiments with enough detail
and aecuracy.

The aim of this thesis is to provide a eonsistent basis for the development of Monte
CarIo simulation algorithms more accurate than the ones presently available. Actually,
a high-energy simulation code based on relevant parts of this thesis is already operable;
and a program to simulate electron transport at intermediate and low energies (say
below 100 keV) is currently being developped from the theory presented in this work.

The reliability of the simulation results obtained with these codes will offer the ultimate

demonstration of the eorrectness and effectiveness of the approaehes described here.

The thesis is struetured in four chaptes. In each chapter we eoneentrate on a

particular aspect of the electron-matter interaction. Owing to the distinct nature of

the eonsidered topies, we have tried to make each chapter self-eontained. In particular
we have used notations aeeording to the standard literature in eaeh field.

Chapter 1 is devoted to the evaluation of reliable single elastie seattering eross

sections for high energies. A numerieal method whieh allows the caleulation of partial
wave eross sections for projectiles with kinetie energies up to l"'>oJ 20 MeV is briefl.y
deseribed. Extensive ealculations with this method have been performed and the results
are used to set up a new semi-analytieal formula whieh yields reliable cross sections for

electrons and positrons with kinetic energy larger than about Z keV.
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Multiple elastic scattering is considered in detail in chapter 2. We offer a SIm

ple derivation oí the popular theory oí Moliere which puts into evidence its physical
content and limitations. A new simulation algorithm, which is valid for any single scat

tering model and is free from the main limitations oí the currently used algorithms, is
described. Finally, this algorithm is combined with a simple analytical cross section

to produce a new simulation method which gives 1) angular distributions as accurate

as those obtained from the theory oí Moliere, and 2) spatial distributions practically
identical to those that would be obtained from the exact solution oí the transport

equation.

Chapter 3 is devoted to the inelastic scattering oí low-energy electrons in solids.

Our treatment is based on the Born-Ochkur approximation, which is well known in

atomic collision theory. The main difficulty here is to determine the generalized oscil

lator strength oí the solido We adopt a generalized oscillator strength model based on

experimental optical data which correctly reproduces the excitation spectrum oí the

solido

In chapter 4 we consider the energy loss oí high-energy electrons and positrons
in matter. Inelastic interactions are described by using the Born approximation on

the basis oí a simple generalized oscillator strength model. Our approach also ac

counts for the so-called shell corrections and Sternheimer's density effect correction.

Bremsstrahlung emission is described by a modified Bethe-Heitler formula which in

eludes screening effects, the Coulomb correction and a low-energy correction. From

the resulting differential cross sections, the random sampling oí the energy loss and the

scattering angle in each inelastic or radiative event can be performed analytically.
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Chapter 1

Elastic scattering

1.1 Introduction

Monte Carlo simulation of high-energy electron and positron transport needs reliable

transport cross sections for elastic scattering that, preferably, should be obtainable

from a numerically simple and computationally fast algorithm. Although much work

has been devoted to the problem of elastic scattering by single atoms, such a general
algorithm remains to be found [SB82].

The evaluation of accurate elastic differential cross sections (DCS) and transport
cross sections requires exact phase shift calculations for the solution of the Dirac equa

tion for the electron or positron in the screened nuclear field [RM75,RL84,Sa91]. How
ever, this kind of calculation demands a formidable amount of numerical work when

the kinetic energy of the electron exceeds a few hundred keV. The numerical effort to

obtain the DCS can be reduced at the expense of using approximate scattering fields

that allow the evaluation of the majority of phase shifts by means of methods which

demand much less work than the direct solution of the radial Dirac equation. Using
this kind of strategy, we have been able to carry out partial wave calculations for en

ergies up to '" 20 MeV. Although these partial-wave methods yield reliable numerical

DCSs, they are still too much complicated to be useful in high-energy Monte Carlo

simulations, where calculation simplicity is as important as reliability. It is, therefore,
necessary to seek simpler approximate methods to obtain the DCS for energies larger
than a few hundred keV.

In this chapter, we present a conveniently simple numerical method to compute the

1



2 CHAPTER 1. ELASTIC SCATTERING

elastic scattering data needed for simulating the multiple scattering of electrons and

positrons. Our starting point is the exact Mott DeS for an unscreened point nucleus

[MM65,DS56,Sh56,VP74] which, for high enough energies, reproduces the large-angle
behaviour of the actual Des. Screening effects are introduced by means of the Born ap

proximation, i.e. through a screening factor [l-Fe(q)]2, where Fe(q) is the atomic form

factor [MM65]. To improve the accuracy of this "screened Mott" DeS we introduce

an empirical correction which modifies it at small angles so as to reproduce the first

transport cross section obtained from partial wave calcuIations. Finally, nuclear size

effects, which influence the multiple scattering distributions of electrons and positrons
with kinetic energies larger than '" 10 MeV, are introduced through the Born approxi
mation assuming a simple nuclear charge distribution [He56]. The DeS so obtained is

accurate except for very small scattering angles, which have no effect on the multiple
scattering distributions.

1.2 Partial wave cross sections

The general theory of high-energy electron scattering has been reviewed by Walker

[Wa71]. For kinetic energies larger than a few keV, exchange and charge cloud polar
ization corrections are negIigible and the cross section can be computed by using the

static field approximation [MM65,Wa71]. In this approximation, the DeS is obtained

by solving the partial wave expanded Dirac equation for the motion of the electron or

positron in the field of the nucleus screened by the atomic electrons.

In this section we use atomic Hartree units (i.e. the reduced Planck constant ñ,
the electron mass m and the electron charge e are taken as unity) unless otherwise

specified. Assuming a point nucleus, the scattering field is given by

V(r) = z [Z - J pe(r') d3r']- zZ ifJ(r),
r Ir - 1"1 r

(1.1)

where z (-1 for electrons, +1 for positrons) is the charge of the projectile and pe(r)
is the density of atomic electrons, which is assumed to be spherically symmetric. The

right-hand side of eq. (1.1) defines the screening function ifJ(r). The electron density
and the screening function are related through Poisson's equation:

(1.2)
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The most accurate screening functions available to date are those obtained from

self-consistent Hartree-Fock computations. These numerical screening functions can

be closely approximated by means of the following analytical expression
3

cP(r) = ¿A¡exp(-a¡r), (1.3)
¡:::1

This analytical form has been extensively used in the past with parameters determined

by fitting different approximate atomic potentials (see e.g. refs. [M047,BS63,SM87a]).
In the calculations described here we use the expression (1.3) with the parameters
obtained by Salvat et al. [SM87a] from a fit of the Dirac-Hartree-Fock-Slater (DHFS)
field. This set of parameters was determined so as to exactly reproduce the radial

expected values (rn) obtained from the DHFS atomic density for n = -1 to 4. This

fitting procedure makes sure that the atomic form factors computed from the numerical

self-consistent electron density and from the screening function eq. (1.3) coincide for

small momentum transfers. As a consequence, the Born DCSs computed from the an

alytical screening function and from the numerical DHFS field are practically identical

(see ref. [SM87a]). Thus, the screened fields considered here are of the form

zZ 3

V(r) = - ¿ A¡ exp( -air). (1.4)
r ¡:::1

1.2.1 Partial Wave Analysis

The DCS per unit solid angle for scattering of unpolarized electrons or positrons,
dO'/dO, is given by

(1.5)
where the direct and spin-flip scattering amplitudes j(O) and g(O) are defined by
[Be63,Sh56]

j(O)
00

¿ FlPl(cos O),
l:::O

(1.6)

00

g(O) = ¿GlP¡(cosO). (1.7)
l:::O

O is the scattering angle, Pl(cos O) are the Legendre polynomials and Pl( cos O) are the

associated Legendre functions respectively,

Fl 2�k {(f + 1) [exp(2ibú) - 1] + e [exp(2i8l_) - 1]}, (1.8)

e, - 2�k {exp(2i8l_)-exp(2i8t+)}, (1.9)
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and Ói-, Ól+ are the phase shifts. k stands for the momentum of the projectile which

is related to its kinetic energy E through

(E2 _ C4)1/2k = -'--__-'---

C
(1.10)

For each value of the orbital angular momentum f (except f=O) there are two

phase shifts corresponding to the two possible values of the total angular momentum

j = f ± 1/2. We follow Walker [Wa71] in using the notation Óia, with a = 2(j - f), for
the phase shifts. These are determined from the solution of the radial Dirac equations

[Wa71]

_ �P _

E - V(r) +2c2QK K'
r c

(1.11)

E-V(r)p �QK + K'
C r

(1.12)

where K == -a(j + 1/2) is the relativistic angular momentum quantum number. These

equations are solved subject to the boundary conditions

(1.13)

The phase shift Óia is determined from the asymptotic behaviour of the radial function

PK(r) for large r ;

(1.14)

where ji and ni are spherical Bessel and Neumann functions respectively.

1.2.2 Numerical phase shifts

In the present calculations, the numerical phase shifts are calculated by solving the

radial wave equations using the RADWEQ package [SM91]. The function rV(r) is

replaced by the natural cubic spline which interpolates the values of this function

for a given grid oí points dense enough to ensure that interpolation errors have a

negligible effect on the computed phase shifts. These are determined by using Bühring's
power series method [Bu65]. This method oí solution has two important advantages
in comparison with the more conventional numerical procedures such as the Numerov,
Runge-Kutta or Milne methods (see e.g. reí. [Fr77]) usually adopted to solve the radial

equations. Firstly, truncation errors are completely avoided and, therefore, the radial
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functions are only affected by unavoidable round-off errors. Secondly, the spacing of the

grid of points where rV(r) is tabulated has no effect on the accuracy of the numerical

procedure (provided the interpolating spline does approach the actual field). The more

conventional numerical methods require the use of grids dense enough to keep the effect

of truncation errors below some reasonable limit and, therefore, the density of the grid
must be increased for increasing energies to maintain the truncation error constant.

The only disadvantage of the Bühring method is its higher cost in computer time.

For high-energy projectiles, the scattering amplitudes peak sharply at 8 = O and,
as a consequence, a very large number of terms in the Legendre series (1.6) and (1.7)
have to be summed before attaining convergence. When the number of computed
phase shifts is not as large as required, the magnitude of truncation errors can be

systematically diminished (at least for not too low scattering angles) by using the

"reduced series" method of Yennie, Ravenhall and Wilson [YR54] to speed up the

convergence of the Legendre series.

The reduced series method is based on the fact that , if the scattering amplitude
f(8) is strongly peaked at 8=0, the function (1 - cos 8)f(8) is smoother than f(8),
and hence its Legendre expansion may be more rapidly convergent. Explicitly, to sum

up a series of the form given by eq. (1.6) which is weakly convergent (i.e. F.t decreases
slowly with .e for large .e) we consider the transformed series

00

1(8) = (1 - cos ot f(O) =EnPI. (cos 8) (1.15)
1.=0

and compute f(O) as (1 - cos 8)-n1(0). The coefficients Fr are given by
-1 .e + 1 -1 .e -1n = FF -

2.e + 3FF+1 -

2.e _ 1 FF-l (1.16)

and, for large .e, they decrease more rapidly with .e than the coefficients F¿ (= :Pi)
of the original series. It is easy to verify that if Fr rv O(.eb), then FF+1 rv O(.eb-2).
In the case of a series in associated Legendre functions such as g(8) in eq. (1.7), the
transformed series is

00

[;(0) = (l-coso)ng(o) = Eg;Pl(cosO)
1.=0

(1.17)
.

with

gn gn-l
.e + 2

gn-l
.e - 1

gn-l ( )1.
=

1.
-

2.e + 3 1.+1
-

2.e _ 1 1.-1' 1.18

For large E, g; decreases more rapidly with .e than the coefficients G.t (= gf). Again,
if gí' f"V O(.eb), then g;+1 f"V O(.eb-2). Evidently, these summation methods cannot be

used when O f"V O.
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1.2.3 WKB phase shifts

The Dirac eqs. (1.11) and (1.12) may be reduced to radial Schródinger form by intro

ducing the substitution

PK(r) = r¡1/2(r)P(r), (1.19)

with r¡(r) = (E - V(r) + 2c2)jc, and eliminating the small radial function QK(r). The

resulting equation is [MM65,Wa71]

d2;�r) + [k2 _ f(fr� 1)
_ 2VK(r)] P(r) = O (1.20)

where the effective Dirac potential

(E) 1 V2 K, r¡' 3 (r¡,)
2

1 r¡"VK (r) = 1 +
c2

V -

"2 -c2 + -2r ry +"8 ry
-

4-r¡ (1.21)

depends on the energy and spin. For large r values r¡ becomes a constant, i.e. P

becomes proportional to PK, and therefore the phase shifts may be computed by solving
the Schródinger eq. (1.20) as in the non-relativistic case. In particular, the WKB

approximation with Langer correction yields [MM65]

(1.22)

where

(1.23)
and ro is the (only) positive zero of Fla(r), i.e. the classical turning point for the radial
motion in the field VK(r).

In the evaluation of WKB phase shifts for the analytical field eq. (1.4), we use a

20-point Gauss quadrature formula [AS74] complemented with a bipartition algorithm
to allow for error' control. The WKB phase shifts are obtained with a relative error

smaller than 10-6•

1.2.4 Born phase shifts

The relativistic form of the first Born approximation for the scattering amplitudes is

[MM65]

[,- '; 1(1_ cosf))] fJB)(f)),
, - 1 .

f) ¡(B)(f))2
SIn JO ,

(1.24)

(1.25)
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where I = 1 + E/c2•
(1.26)

is the non-relativistic Born scattering amplitude, and q = 2k sin( B /2) is the momentum
transfer.

Parzen [PaSO] obtained the following formulas for the relativistic Born phase shifts:

I + 1
L'l (B) +

I - 1
L'l (B)

2 l 2 l+U

I + 1
L'l (B) +

I - 1
L'l (B)

2 l 2 l-U

(1.27)

(1.28)

where

L'l}B) = -2k 1000 V(r) [jl(kr)]2 r2 dr

are the non-relativistic Born phase shifts. It may be shown that

(1.29)

00

f(B) (B) I: F?)Pl(cos B), (1.30)
l=O

00

g(B)(B) - I: G}B)pl (cos B) (1.31)
l=O

with

F(B) � [(1: + 1)82!) + R82�)] , (1.32)l

G(B) � [8(B) _ 8(B)] (1.33)l k l- l+'

For the particular case of the analytical field eq. (1.4) we have [SM87b]

(1.34)

and

(B) ZZ � ( 2/ 2)L'll =

k� AiQl 1 + (Xi 2k ,

1=1
(1.35)

where Ql are the Legendre functions of the second kind. The quantities L'l}B) may be

easily computed by using the recurrence relations satisfied by the Legendre functions

[AS74] as described in appendix A.

WKB and Born phase shifts for 204 keV electrons scattered by mercury atoms are

given in table 1.1. Inspection of these results indicates that the WKB approximation
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is suitable for computing all phase shifts except those of lower orders which take the

larger values. On the other hand, the relative differences between the numerical and

Born phase shifts clearly decrease for increasing orders, becoming smaller than 0.1%

for f=100 at the considered energy.

Table 1.1. Phase shifts for 204 keV electron scattering from Hg atoms.

- Spin up- - Spin down-
f Numerical WKB Born Numerical WKB Born

O 4.415(-1) 3.649(+0) 3.233(+0) 0.000(+0) 0.000(+0) 0.000(+0)
1 -5.095(-1) 2.648(+0) 2.466(+0) -1.134(-1) 3.019(+0) 2.642(+0)
2 -9.552(-1) 2.190(+0) 2.080(+0) -8.047(-1) 2.335(+0) 2.176(+0)
3 -1.240(+0) 1.902(+0) 1.825(+0) -1.151(+0) 1.990(+0) 1.891(+0)
4 -1.446(+0) 1.695(+0) 1.638(+0) -1.384(+0) 1.757(+0) 1.687(+0)
5 1.536(+0) 1.535(+0) 1.490(+0) -1.558(+0) 1.582(+0) 1.529(+0)
6 1.407(+0) 1.406(+0) 1.370(+0) 1.445 ( +0) 1.444(+0) 1.402(+0)
7 1.300(+0) 1.299(+0) 1.269(+0) 1.331(+0) 1.330(+0) 1.297(+0)
8 1.209(+0) 1.208(+0) 1.183(+0) 1.235(+0) 1.234(+0) 1.206(+0)
9 1.130(+0) 1.129(+0) 1.108(+0) 1.153(+0) 1.152(+0) 1.128(+0)
10 1.061(+0) 1.060(+0) 1.042(+0) 1.081(+0) 1.080(+0) 1.060(+0)
12 9.444(-1) 9.439(-1) 9.297(-1) 9.601(-1) 9.596(-1) 9.443(-1)
14 8.496(-1) 8.493(-1) 8.380(-1) 8.625(-1) 8.621(-1) 8.501(-1)
16 7.705(-1) 7.702(-1) 7.611(-1) 7.813(-1) 7.810(-1) 7.713(-1)
18 7.032(-1) 7.029(-1) 6.954(-1) 7 .124(-1) 7.121(-1) 7.042(-1)
20 6.449(-1) 6.447(-1) 6.384(-1) 6.529(-1) 6.527(-1) 6.461(-1)
30 4.403(-1) 4.402(-1) 4.373( -1) 4.448(-1) 4.447(-1) 4.417(-1)
40 3.171(-1) 3.170(-1) 3.155(-1) 3.199(-1) 3.198(-1) 3.183(-1)
50 2.360(-1) 2.360(-1) 2.351(-1) 2.379(-1) 2.379(-1) 2.370(-1)
70 1.400(-1) 1.400(-1) 1.397(-1) 1.410(-1) 1.410(-1) 1.407(-1)
100 7.195(-2) 7 .194(-2) 7.186(-2) 7.237(-2) 7.236(-2) 7.228(-2)
200 1.328(-2) 1.328(-2) 1.334(-2) 1.334(-2)
500 2.648(-4) 2.647(-4) 2.657(-4) 2.657(-4)
1000 6.177(-7) 6.199(-7) 6.198(-7) 6.220(-7)



1.2. PARTIAL WAVE CROSS SECTIONS 9

1.2.5 Simplified calculation method

The numerical work to evaluate the phase shifts for the analytical field eq. (1.4) can now
be considerably reduced. In fact, the numerical solution of the corresponding radial

equations is only required to determine the first phase shifts since those of intermediate

and large orders can be obtained accurately from theWKB or the Born approximations.
The simplified algorithm to compute the phase shifts proceeds as follows:

1. First, Born phase shifts, eqs. (1.27) and (1.28), are evaluated for all orders up to

a value of .e = L large enough to guarantee the convergence of the series (1.6)
and (1.7).

2. Numerical and WKB phase shifts, eq. (1.22), are then computed for increasing
orders; the relative difference between these phase shifts decreases with the order

and for a certain order é
= L1 it becomes smaller than a given value E (=5 X 10-4 in

the present calculations). The evaluation of numerical shifts is then discontinued.

3. For é
> L1, the phase shifts Dia are approximated by the WKB phase shifts which

are computed up to an order .e = L2 for which the relative differences between

the WKB and Born phase shifts become smaller than E.

4. For.e > L2, 6ia is approximated by the Born phase shift.

The accuracy of this scheme is mainly limited by E. Of course, the value of E has to

be at least larger than the relative uncertainty due to round-off errors in the numerical

phase shift; otherwise, the computation of exact shifts could never stop. For scattering
of 204 keV electrons by mercury atoms, the orders at which the numerical and WKB

computation stop are L1 = 8 and L2 = 140 respectively.

The Born approximation may also be used to speed up the convergence of the

partial wave series (1.6) and (1.7). To this end, we write eqs. (1.6) and (1.7) in the

form

f(8)
00

f(B)(8) + L [Fi - F?)] Pi(cos 8),
l=ü

(1.36)

00

g(8) = g(B)(8) + L [Gi- G�B)] Pl(cos8),
i=ü

(1.37)

where we have added the corresponding Born scattering amplitudes (1.24) and (1.25)
and subtracted their partial wave expansions (1.30) and (1.31) on the right-hand side of
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eqs. (1.6) and (1.7). As b��) ---+ bla for large f values, the real parts of the series (1.36)
and (1.37) will be more rapidly convergent than the original series (1.6) and (1.7).
The use of the series (1.36) and (1.37), together with the reduced series method for

scattering angles larger than '" 10, leads to a considerable reduction of the numerical

work.

The total elastic cross section (J' and the first transport cross section (or momentum
transfer cross section) (J'l are given by

(1.38)

and

r d(J'
(J'l = 271'

Jo (1 - cos O) dO sin O dO. (1.39)

Introducing the scattering amplitudes eqs. (1.36) and (1.37), and using the orthogonal
ity of the Legendre polynomials, these integrals may be transformed into the following
senes

(1.40)

and

(B) (B) � f + 1
(J'l = (J'l + (J' - (J' +

20 (2f + 1)(2f + 3)

x { F(.*Ft+I + FtFt+I - 2F}B)F}!i

+f(f + 2) [GiGHl + GlGi+I - 2G�B)G�!�]}, (1.41)

where (J'(B) and (J'lB) are the total cross section and transport cross section obtained

from the first Born approximation. The analysis of the convergence of the Legendre
series (1.36) and (1.37) yields an estímate of the number oí terms that have to be

included in the series (1.40) and (1.41) to ensure its convergence.

Our computer code generates up to 4000 Born phase shifts, which ensure the con

vergence of the series (1.36) and (1.37) (usually with more than four significant digits)
for energies up to '" 20 MeV for all the elements, For larger energies, the convergence

of the Legendre series is so slow that more than 4000 terms are required. With so many

terms, the accumulation oí truncation errors might become appreciable and, therefore,
we have limited the partial wave calculations to E :::; 20 MeV. For higher energies,
approximate methods remain essential.
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For intermediate energies, where other calculations and experiments have been re

ported, our partial-wave DCSs are in good agreement with the most reliable calcula

tions and experimental data available. However, our calculations extend up to much

higher energies than the previous ones and this demands a careful check oí their global
accuracy. Such a check can be easily done for high energies and large scattering an

gles, where screening effects are expected to be small. Then, differences between the

partial wave DCS and thé screened Mott DCS, see eq. (1.60) below, should reduce for

increasing energies. Actuaily, for energies aboye 1 MeV and angles larger than '" 10°,
our DCS and the screened Mott DCS practically coincide. Owing to the slow conver

gence oí the partial wave series for forward scattering, numerical uncertainties tend

to concentrate at small scattering angles. For these angles, the eikonal approximation
is known to give very accurate estimates oí the DCSs [Z064] (since spin effects are

negligible there). For forward scattering, we have found that the differences between

our partial wave DCS and the DCS obtained from the eikonal approximation are less

than 0.1%.

As regards multiple scattering simulation, the relevant quantities are the transport
cross sections UI. defined by [GS40a,Le50]

t" du
a¡ = 211"

Jo [1 - PI. (cos O)] dO sin OdO. (1.42)

We will see in chapter 2 that knowledge oí the first and second transport cross sec

tions are particularly important. In particular, these two quantites suffice to determine

a simulation algorithm which is more reliable than the simulation schemes based on

Moliére's theory. Thereíore, the approximate DCSs adopted in Monte Carlo algorithms
should yield the correct values oí the first and second transport cross sections to ensure

good simulation results.

Partíal wave calculations have been performed for electrons and positrons with

kinetic energy from 1 keV to 20 MeV, and 20 elements covering the periodic system.
For each oí these elements, the DCS and the corresponding first and second transporto
cross sections have been obtained for 41 values oí the energy uniíormly spaced in a

logarithmic scale. Selected results from these calculations are shown in figs, 1.1-1.2.
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Figure 1.1. DCSs for elastic scattering of 204 and 500 keV electrons by mercury atoms as

functions of the scattering angle. The plotted DCSs are the result of the present partial wave
calculation (long-dashed curve), the Mott DCS for the unscreened nucleus given by eq. (1.47)
(short-dashed curve) and the corrected screened Mott DCS, eq. (1.60) (continuous curve).
Circles are experimental data from Kessler and Weichert [KW65].
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computed from the screened Mott cross section, eq. (1.60), and from the corrected screened

Mott DCSs, eq. (1.67), respectively. Partíal wave results from reí. [RM75] are indicated by
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1.3 Screened Mott cross section

The simplest method to estimate the DCS is provided by the Born approximation. The

Born DCS for a spinless electron or positron with kinetic energy E is given by [MM65]

daB
=
{2m,zZe2)2 [1 _ F. { )]2dO q4

e q ,

where m is the electron mass, , = (1 - 132)-1/2 is the energy of the projectile in units

of the rest energy me", and Fe(q) is the atomic form factor. The quantity q is the

momentum transfer, which is related to the linear momentum p = ,mj3c and to the

polar scattering angle B through q = 2psin(Bj2). Notice that, owing to the large mass

(1.43)

difference between the target atom and the projectile, the first can be considered as

infinitely massive, i.e. the scattering angle is always referred to the laboratory frame

of reference. The atomic form factor for the electron density corresponding to the

screening function eq. (1.3) is [SM87a]

(1.44)

The first factor in eq. (1.43) is just the Rutherford DCS

daR (zze2)
2
1 _ 132 1

dO
=

mc2 134 (1 - cos B)2'
i.e. the DCS for scattering of a spinless particle in the Coulomb field

zZe2
Vc(r)=-

r

(1.45)

(1.46)

of the bare nucleus. Screening effects areaccounted for by the factor [1- Fe{q))2, which
vanishes for q=O, thus leading to a finite DCS for forward scattering. For large mo

mentum transfers, this factor approaches unity and the DCS reduces to the Rutherford

DCS, i.e. screening effects become negligible in the limit of large momentum transfers.

Let us now consider the effect of electron spin in elastic collisions. In order to

investigate this effect it is useful to start from the case of scattering by the (unscreened)
Coulomb field of the nucleus, eq. (1.46). Exact relativistic phase shifts for this field

are known analytically [MM65] and the DCS, hereafter referred to as the unscreened

Mott DCS, may be computed with a modest amount of numerical work. We have

[DS56,Sh56,VP74]
(1.47)
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The direct and spin-fiip scattering amplitudes fM(a) and gM(a) can be obtained from

fM(a) - (ñjp) [-i¡-l(F(a) + G(a)] , (1.48)

gM(a) - (ñjp) [i¡-1((1 + cos a)F(a) + (1 - cos a)G(a)] j sin a, (1.49)

where ( = -xj ¡3 with X = azZ and a the fine-structure constant. The complex
functions F(B) and G(B) are defined by

F(B) = Fo(B) + F1(a) (1.50)

G(B) = Go(a) + G1(a) (1.51)

Fo(a) = i r�l- ��� exp [2i(ln(sin(aj2))] (1.52)2r 1 + 2

• 00

F1(a) =.: I)-l)i [eDi + (e+ l)Di+l] Pi(cosB) (1.53)2 i=O

Go(B) = -i(Fo(B) cot2(aj2) (1.54)

with

D _
exp( -Í1rf) r(f - i()

_

exp( -Í1rpi) r(Pi - i() (1.56)i -
e + i( r(e + i() Pi + i( r(Pi + i()'

where r is the complex gamma function and Pi = (e2 - X2)l/2. The Mott DeS, eq.

(1.47), can be given in terms of the functions F(a) and G(a) as [Sh56]

(1.57)

It is customary to write the exact Mott DeS in the form

dOM
=

dUR
R(a)dO dO

. (1.58)

The ratio R(a) of the Mott DeS, eq. (1.47), to the Rutherford Des, eq. (1.45), gives a.

direct measure of the effect of spin on the Des. The computation of R(8) is performed
by using the numerical procedure described by Sherman [Sh56] (see also ref. [VP74]).
For small scattering angles (a < 10°), where the series (1.53) and (1.55) are slowly
convergent, we use the asymptotic formula attributed to Bartlett and Watson [M064]

_ 2 [rn
- i() r(l + i()] .

R(a) - 1 + 11"¡3 (Re
r(t + i() r(l- i() sm(fJj2). (1.59)
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For B > 10°, these series are summed up by using the reduced series method of Yennie,
Ravenhall and Wilson [YR54,Sh56]: instead of summing the original series F1(B) and

G1(B), we sum the transformed series (1- cos B)2Fl(B) and (1- cos B)2G1(B) which are

much more rapidly convergent. We consider a maximum of 200 terms in the series; the

accuracy of the resulting R( fJ) values is usually better than 0.01%.

We note that the spin correction R( fJ) approaches unity for small scattering angles,
as clearly seen from eq. (1.59); it differs from this value only for high energies and not

too low scattering angles, whereas the screening effects are unimportant under these

conditions, i.e. [1 - Fe(q)]2 rv 1. Thus, it is sensible to approximate the exact DCS for

the screened field in the form [Be63,Z064]

(1.60)

where the second and third terms account for spin and screening effects respectively.
Hereafter, the DCS eq. (1.60) will be refereed to as the "screened" Mott DCS.

A comparison of the first transport cross section 0"1 obtained from the screened

Mott DCS eq. (1.60) with our partial wave results shows that the formula (1.60) is

quite accurate for energies aboye 1 keV and low atomic numbers, say Z < 10. For

higher atomic numbers the defficiencies of the Born approximation, which has been

used to introduce screening effects in eq. (1.60), become prominent. In particular, the
first transport cross section obtained from the screened Mott DCS are too large. Our

goal here is to empirically improve the screened Mott DCS, eq. (1.60), so as to reproduce
the correct (partial wave) first transport cross sections, at least for moderately high
energies.

1.4 Improved high-energy formulas

Several "improved formulas" are based on the introduction of a "screening angle" as

proposed by Moliere [M047]. As these formulas are frequently adopted in Monte Carlo

simulations, we feel convenient to discuss here their validity on the basis of our partial
wave results. Moliere [M047] started from the DCS obtained by using the eikonal

approximation and an screening function of the form (1.3) with parameters determined
from the Thomas-Fermi field. Moreover he neglected spin effects so that, within his

approach, the DCSs for electrons and positrons are identical and for large momentum

transfers they go over into the Rutherford DCS. In order to make possible further
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analytical calculations, Moliere considered an analytical DCS which in our notation

reads (cí. eq. (1.43))
dO"

=
dO"R

[1- FW(q)]2df! df!
(1.61)

with the form factor obtained from the Wentzel [We27] model

(ñaW)2Fw(q) = (ñaW)2 + q2
(1.62)

that corresponds to the exponential screening function <jJ(r) = exp (-awr), where

aw = 1.13Z1/3ao1 is the inverse of the Thomas-Fermi radius. The DCS eq. (1.61)
for large scattering angles, and not too low energies, is essentially identical to the

eikonal DCS since the screening effects are then small (q � aw). Differences between

these two DCSs for small momentum transfers are governed by the value of aw, which

may be considered as an energy-dependent adjustable parameter. As regards multiple

scattering theory, this parameter should be determined in such a way that the approx

imate DCS leads to the same value of the first transport cross section as the accurate

(eikonal) DCS. From a numerical fit of essentially the first transport cross section com

puted from the eikonal approximation, Moliere concluded that the screening parameter

may be approximated as

(1.63)

with

(1.64)

Introducing this corrected screening parameter into eqs. (1.62) and (1.61) we obtain

dO"Moliere dO"R. [ q2 ]2df!
=

df!' (ñtMaW)2 + q2
(1.65)

It has been repeatedly claimed that multiple scattering distributions are completely
determined by the value of the first transport cross section [Mo48,Be53,SB82,IS89].
However, stated in this way, this assertion is falseo To be true it must be complemented
with the requirement that the single scattering DCS has the correct behaviour for large
scattering angles where the form factor Fe{q) is small (see chapter 2). For not too large
energies, that is when finite nuclear size effects are negligible, the correct large-angle
behaviour is given by the unscreened Mott DCS, eq. (1.47). This means that Moliere's

DCS is subject to criticism since, for large scattering angles, it goes over into the

Rutherford rather than the Mott DCS. This drawback was remedied by Berger [Be63]
who combined Moliére's approximation for screening with the (unscreened) Mott DCS
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thus obtaining a DeS with the proper large-angle behaviour. Berger's cross section

reads

(1.66)

which is certainly more accurate than Moliére's DeS. However, both approaches share

two important limitations, namely, 1) the Wentzel form factor is too simple to accu

rately represent a real atom, and 2) screening effects are introduced from the eikonal

approximation, which is a small-angle high-energy approximation [Sc68], rather than
from an accurate partial wave calculation, which was unfeasible at that time. Notice

that although eq. (1.66) gives different DCSs for electrons and positrons, the screening
correction factor, i.e. t¡i, is the same for the two kinds of particles.

To overcome the first limitation, we will use the analytical atomic form factors given
byeq. (1.44) with parameters determined from the DHFS density [SM87a], which are

accurate enough for our purposes. As already mentioned, the screened Mott DeS, eq.
(1.60), for large momentum transfers such that Fe(q) � 1 (i.e. large scattering angles,
and not too low energies) is essentially correcto This is evidenced in fig.1.1, where this

DeS is compared with the partial wave Des. Thus, the screened Mott DCS, eq. (1.60),
differs from the "exact" Des only for small and intermediate momentum transfers and

can be improved by means of an empirical correction similar to the one used by Berger,
namely of the form

. drr dO'R [ -1 ]2dO
=

dO R(O) 1 - Fe(t q) , (1.67)

where t(Z, E) is a function of the atomic number and the energy. This quantity is

determined by fitting the first transport cross section obtained from our partial wave

calculations, thus overcoming the second of the aforesaid limitations. We point out that
the scattering fieid used in our partial wave calculations and the form factor adopted
in eq. (1.67) correspond to strictly the same atomic density. As a consequence, our t

correction will exclusively account for the inaccuracies of introducing screening effects

through the Born factor [1 - Fe(q)]2. This is not so in Moliére's treatment where tM
accounts for these inaccuracies and for the changes introduced by the replacement of
the Thomas-Fermi form factor by the Wentzel form factor. It is worth noting that this
correction improves the DCS for the scattering angles which effectively contribute to 0'1,

but it does not suffice to reproduce the PWA-DCS for very small angles. Fortunately,
the details of the DeS at these small angles do not have any in:B.uence on the multiple
scattering distributions.
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It turns out that the correcting factor t(Z, E) varies smoothly with atomic number

and energy, and then it is amenable to be approximated by an analytical expression.
For energies aboye '" Z keV, the formulas

(1 )
0.750

t(-)(Z, E) = 1 + 1.053 (aZ)1.971 + [0.00569 + 0.995 (aZ)1.778] f3
- 1 (1.68)

for electrons, and

( )1.167t(+)(Z, E) = 0.988 + 0.914 (aZ)1.670 + 2.191 (aZ)1.399 � - 1 (1.69)

for positrons, when used in eq. (1.67), reproduce the numerical values of the first

transport cross section obtained from the partial-wave calculation to within less than

1%. For energies less than Z keV the accuracy of the formula (1.67) progresively
deteriorates. However, this formula still yields results substantially more accurate

than those from the screened Mott formula (1.60) if the t factor is evaluated according
to eqs. (1.68) and (1.69) but using the value of f3 corresponding to a kinetic energy

E¿ = 0.25Z keV when E is less than Ec. The results presented below have been

obtained with this prescription.

We would like to stress the fact that the t corrections for electrons and positrons are

different; this is in contrast with the approaches of Berger [Be63] and Moliere [Mo47].
Our screening correction is also superior to the one derived by Nigam et al. [NS59]
which shares the limitations of the second Born approximation on which it was based.

Moreover, the accuracy of our approach improves when the energy increases since then

screening effects concentrate nearer the forward direction.

Fig. 1.2 shows 0'1 as a function of energy for electrons and positrons scattered by
Al (Z = 13), Ag (Z = 47) and U (Z = 92) atoms as computed from eqs. (1.60);.
(1.67) and from our partíal wave calculations. Values from the tables in ref. [RM75]
are also ineluded for comparison purposes. The improvement due to the introduction

of the screening correction factor t, eqs. (1.68) and (1.69), is seen to be remarkable

for intermediate energies and essential for high atomic numbers. As shown in fig. 1.2,
our empirical DeS, eq. (1.67), gives also good estimates of the second transport cross
section 0'2 for energies aboye its limit of validity (E > Z keV).
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1.4.1 Nuclear size effects

At high kinetic energies (say above '" 10 MeV), we should also consider the effect of

the finite size of the nucleus, which may influence the multiple scattering distributions

[Sc63] (but is usually neglected in Monte CarIo simulations of electron and positron

transport). An accurate treatment which simultaneously includes screening, spin and

finite nuclear size effects-is not feasible. Again, we resort to the Born approximation

[MM65] and notice that, within this approximation, the ratio of the DCSs for a finite

nucleus and a point nucleus of the same charge equals the squared form factor of the

finite nucleus. Thus, we set

(1. 70)

where Fn(q) is the form factor of the nuclear charge distribution Pn(r) which reduces

to unity for a point nucleus. To obtain a simple analytical expression for the nuclear

form factor, we adopt Helm's uniform-uniform íolded charge distribution [He56]:

Pn(r) = J PO(r')Pl(r - r')dr', (1.71)

where po nad PI are uniíorm distributions (normalized to unity) over spheres oí radii

Ro = 1.2 X 10-13Al/3 cm, R1 = 2.0 X 10-13 cm, (1. 72)

where A is the mass number oí the considered nucleus. This charge distribution de

creases smoothly at the surface oí the nucleus and, íor spherical nuclei, yields results

more realistic than the cruder uniíorm spherical distribution. The corresponding íorm

factor is

Fn{q) = F(Ro, q) F(R1, q), (1. 73)
where

F(R, q) = (qR�ñ)3 [sin(qRjñ) - (qRjñ) cos(qRjñ)] (1.74)

is the íorm factor for a uniíormly charged sphere. It is well known that the form

factor (1.74) introduces spurious zeros in the DCS which, nevertheless, coincide quite
accurately with the inflexion points oí the experimental DCS for spherical nuclei (see
fig. 1.5).
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The global effect of the finite size of the nucleus is a reduction of the DCS for large
scattering angles, which sharpens the multiple scattering distributions. To give an idea

of the magnitude of this effeet, first transport cross sections for electrons and various

elements and energies computed including this effect and neglecting it are compared
in table 1.2. From these results we conclude that the neglect of the nuclear size effect

gives 0'1 values which are a few percent too high and, consequently (see chapter 2) it

gives multiple scattering angular distributions which are too wide in approximately the
same proportion.

Table 1.2. First transport cross sections for electrons scattered by AL, Ag and U atoms

computed from eqs, (1.67) and (1.70) respectively, Le. neglecting and including finite nuclear

size correction.

Element, Z E (MeV) Al A(M)1

Al, 13 1 4.098(-6) 4.098(-6)
10 9.475(-8) 9.459(-8)
100 1.383(-9) 1.285(-9)

Ag,47 1 5.396(-5) 5.395(-5)
10 1.254(-6) 1.247(-6)
100 1.825(-8) 1.548(-8)

U,92 1 2.250(-4) 2.249(-4)
10 5.190(-6) 5.106(-6)

100 7.416(-8) 5.286(-8)

1.5 Concluding remarks

We have derived a relatively simple formula, eq. (1.67), which offers a reliable descrip
tion of elastic scattering oí electrons and positrons with kinetie energies larger than
,..., Z keV by neutral atoms. The main advantage oí the present approach is that the

first transport eross section, and the large-angle behaviour oí the DCS, obtained from

partial wave caleulations are eorrectly reprodueed with only a modest amount oí nu

merical work. This feature guarantees that the present DCSs will give accurate results

when used in high-energy Monte Carlo simulations.
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The most accurate multiple scattering theory [GS40a,Le50] involve the transport
cross sections O"i, whereas the simpler Moliere [M048] theory only involves 0"1' The

numerical evaluation of the integrals (1.38) and (1.39) can be easily done with the aid

of an adaptive integration routine able to deal with strongly peaked functions. In the

present caleulations, we have used a 20-point Gauss quadrature method eomplemented
with a bipartition algorithm which allows error control. The evaluation of 0"1 and 0"2

takes only a fraction of a second, even with a personal computer. Thus the present
method can be readily used to improve the Moliere [M048] multiple scattering theory
by simply modifying the parameters in this theory so as to reproduce the first and

second transport cross section obtained with the present method (see chapter 2).

It is worth pointing out that the actual DCS for intermediate and high atomic

numbers develops diffraction peaks at low energies [MM65,SM87b] so that it cannot be
reproduced by an expression sueh as our eq. (1.67) which, even for small energies, is a

monotonously decreasing function of the scattering angle. In any case, for energies less

than '" Z keV one should exclusively use accurate partial wave DCSs which can be ei

ther directly computed [Sa91] or interpolated from available tabulations [RM75,RL84].
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Chapter 2

Multiple scattering

2.1 Introduction

Monte Carlo simulation is being used as an efficient method to solve electron (and
positron) transport problems [Be63,NH85,RK76]. The existing simulation algorithms
can be classified in two different kinds, namely detailed simulations and "condensed"

simulations. Detailed simulations, where all the collisions experienced by an electron

are simulated in chronological succession, are feasible when the average number oí col

lisions per track is not too large (say up to a few hundreds). Apart from the inherent

statistical uncertainties, detailed simulation is exact, i.e. it yields the same results as

the rigurous solution oí the transport equation. Experimental situations amenable to

detailed simulation are those involving either electron sources with low initial kinetic

energies (say up to about 100 keV) or special geometries such as electron beams imping
ing on thin foils. For larger initial energies, and thick geometries, the average number oí

collisions experienced by an electron until it is effectively stopped becomes very large,
and the detailed simulation becomes very inefficient. The high energy simulation codes

currently available have recourse to approximate multiple scattering theories, which
allow the simulation oí the global effect oí the collisions that occur in a track segment
oí a given length. Each track is simulated as a moderately small number oí connected

"steps" oí a specified length that is much larger than the mean free path between real

collisions, so that a large number oí collisions takes place along each step, The step

length is either internally determined by the simulation code or specified by the user.

The net displacement, energy loss and change of direction oí the electron after travel-

27
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ing a certain step are evaluated from the multiple scattering theories. The accuracy oí

these condensed simulation methods is thus limited by the approximations introduced

in the adopted multiple scattering theories.

Angular deflections oí the electron tracks are mainly due to elastic scattering with

nudei screened by the surrounding electron doud. As regards Monte Carlo simulation,
elastic scattering and energy loss processes can be considered separately. This is strictly
correct for detailed simulation, and it is approximately valid for condensed simulations

provided we consider only short steps such that the fractional energy loss in each step
is small in front oí the kinetic energy at the beginning oí the step. Owing to this fact,
elastic angular deflections in condensed Monte Carlo simulations can be described by
using a multiple scattering theory that neglects the energy loss in each single step, i.e.

a purely elastic multiple scattering theory. For the sake oí simplicity, we shalllimit our
considerations to this kind oí theories. Corrections to account for the energy loss along
each step can be introduced by using the continuous slowing down approximation as

described by Lewis [Le50] and Berger [Be63].

The usual practice in condensed Monte Carlo simulations is to use the theories due

to Moliere [M048,Be53], Goudsmit and Saunderson [GS40a,GS40b] and Lewis [Le50].
The first two oí these theories give only the angular distribution after a given path
length without any information about the spatial distribution. The approach oí Lewis

[Le50] allows also the calculation oí the first moments oí the spatial distribution. The
main uncertainties in condensed simulations originate from the lack oí detailed knowl

edge on the probability distribution oí the spatial displacement. Each simulation code

incorporates a well-defined algorithm to determine the spatial displacement oí the elec-
.'

tron at the end oí each step. These algorithms are not exact and, thereíore, simulated

spatial distributions, and other related quantities, are influenced by the value oí the

selected step length in a quite unpredictable way. The reliability oí the simulation

results must be therefore checked through a detailed study of their dependence on the

selected step length. Generally, it happens that when reducing the step length the re

sults converge to the correct value but the computation time increases rapidly (roughly
in proportion to the inverse of the step length).

Bielajew and Rogers [BR86] have developped the algorithm PRESTA, based on the

multiple scattering theory of Moliere, which approximately accounts for the differences

between the actual longitudinal displacement and the true path length oí a step. It
also accounts for the lateral displacement in the step and indudes a boundary crossing
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strategy, which ensures that electron tracks are properly simulated in the vecinity oí

interfaces. The work of these authors represents an effective improvement oí the previ
ous condensed simulation procedures. In particular, the dependence oí the simulation

results on the adopted step length is largely reduced. However, the use of the Moliere

theory is open to question [AM91] and, moreover, only the mean values of the longi
tudinal and transverse displacements in each step are considered, i.e. straggling in the

spatial displacement after each step is neglected.

The aim oí the present work is to review briefiy the most habitual multiple scat

tering theories, to discuss their reliability when used in condensed simulations and

to present a new simulation algorithm that overcomes most of the limitations oí the

currently available high-energy Monte Carló codeso Our simulation method takes ad

vantage oí the fact that most oí the collisions experienced by a high energy electron

along a given path length are "soft", i.e. they produce very small angular defiections.
The global effect of these soft collisions can be described by using a "continuous scat

tering approximation", in the same spirit as the habitual continuous slowing down

approximation for inelastic scattering. The moderately small number oí "hard" col

lisions, with large scattering angles, can then be simulated in a detailed way. This

procedure, which can be applied to any single scattering law, does not require any

preselected step length, yields the correct spatial distributions and does not pose any

problem with boundary crossing. Furthermore, when using a single scattering differen

tia! cross section of the Wentzel type [We27] (Le. with the same analytical form as the

one underlying Moliére's theory), our simulation algorithm can be formulated through
a few very simple analytical expressions.

The chapter is structured as follows. In section 2.2 relevant multiple scattering
theories are briefly reviewed. We offer a simple derivation oí the Moliere theory that
serves to point out its physical content and limitations. The new simulation algorithm
is described in section 2.3. In the next section, this algorithm is applied to the Wentzel

cross section [We27] to yield a simulation procedure that, in spite oí its simplicity,
is more accurate than the currently available algorithms based on Moliere's theory.
Useful mathematical information is given in the appendices.
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2.2 Multiple scattering theories

We consider electrons (or positrons) with kinetic energy E moving in a hypothetical
infinite homogeneous medium, with N scattering centers per unit volume, in which they

experience only elastic collisions. We assume that the single scattering differential cross

section (DCS) per unit solid angle du(X)/dn depends only on the polar scattering angle
x, i.e. it is axially symmetric about the incident direction. This assumption is satisfied

as long as the scattering centers are spherically symmetrical atoms or randomly oriented
molecules [MM65]. Moreover, interference effects resulting from coherent scattering by
several centers are assumed to be negligible. As a consequence, the theory is applicable
only to amorphous materials and, with sorne care, to polycrystalline solids. For the sake

oí simplicity, we limit our considerations to single-element materials: the generalization
to compounds is straightforward. Notice that the number oí scattering centers per unit

volumeis given by N = NAP/Aw where NA is Avogadro's number, p is the mass density
oí the material and Aw is the atomic weight.

A class oí Monte Carlo simulation codes uses the multiple scattering theory oí

Moliere [Mo48]-see also reís. [Be53] and [Sc63]. This theory is based on certain as

sumptions about the single scattering DCS and incorporate mathematical approxima
tions that render the final distribution fully analytical. The particular DCS under

lying Moliere's theory is based on the eikonal approximation [Mo47,Sc68], which is a

high-energy small-angle approximation and neglects spin effects. Nigam et al. [NS59]
reíormulated the theory on the basis oí the DCS obtained from the second Born approx

imation and a scattering field oí Wentzel type [We27], i.e. an exponentially screened

Coulomb field. It is well known that the second Born approximation fails for interme

diate and high atomic numbers [Sa91], even for an unscreened Coulomb field [M064].
Moreover, the actual screened field may depart apreciably from the Wentzel one (and
also from the Thomas-Fermi field adopted by Moliere).

More accurate simulation procedures are based on the multiple scattering theory of
Goudsmit and Saunderson [GS40a] and Lewis [Le50], which allows the calculation oí the
exact angular distribution due to multiple elastic scattering after a given path length
by means oí an expansion in Legendre polynomials. This theory does not assume any

particular form oí the single scattering DCS and is essentially exact, i.e. errors in the

computed multiple scattering distributions can always be traced back to inaccuracies

in the adopted DCS.
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2.2.1 Single scattering differential cross sections

The most reliable DCSs available to date are obtained from relativistic (Dirac) partial
wave analysis using a realistic scattering field [RM75,Sa91], which can be obtained from

self-consistent Hartree-Fock atomic calculations. Detailed simulations based on these

differential cross sections have been shown to yield results in good agreement with ex

perimental data for kinetic energies up to rv 100 keV [RK76]. Partial wave calculations
for screened fields are feasible for energies up to rv 20 MeV [Sa91]. For higher energies,
the Mott differential cross section for a point unscreened nucleus [MM65], suitably
corrected to account for screening effects and for nuclear size effects [Be63,FM92], is
accurate enough for simulation purposes.

The DCSs used in the present work, have been calculated by using the procedure
described in ref. [Sa91]. The adopted scattering field is the analytical approximation
(sum of three Yukawa terms) to the self-consistent Dirac-Hartree-Slater field oí ref.

[SM87a], where parameters for elements with atomic number Z from 1 to 92 are given.
This analytical field is accurate enough for simulation purposes and allows the use of

the WKB and Born approximations to compute the majority of phase shifts. Qnly
phase shifts of partial waves with low angular momentum need to be computed from

the numerical solution of the Dirac radial wave equation [SM91]. This procedure allows

the calculation of reliable DCSs for electrons and positrons with kinetic energies from
rv 1 keV up to rv 20 MeV. Hereafter, the DCSs computed in this way will be referred

to as PWA-DCSs.

The mean free path ). between elastic collisions and the single scattering angular
distribution fl(X) are given by

1
).=-,

NO' (2.1)

where

t" dO'(X)
O' = 21r

Jo dn
sin X dX (2.2)-

is the total cross section. Notice that the probability of having a polar scattering angle
between X and X+ dX in a single collision is given by 21rf¡ (X) sinXdX. For our purposes,
it is useful to write f¡ (X) in the form of a Legendre series:

(2.3)
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where P¡ are the Legendre polynomials and

FI. = 27r ¡� h(X)PI.(cosX)d(cosX) = (PI. (cos X)). (2.4)

The quantities
(2.5)

wiil be reíerred to as the transport coefficients. Notice that Fo = 1 and Go = O.

Moreover, the value oí FI. decreases with i due to the faster oscillations oí PI. (cos X)
and, hence, Gl tends to unity when i goes to infinity.

The elastic scattering within a given medium is completely characterized by the

transport mean free paths Al. defined by

-1 GI. (1 dO'(X)Al. = T
= N27r J-1 [1- PI. (cos X)] di1d(cosX). (2.6)

In particular, we have

,-1 _ ! r (1 _ ) dO'(X) d( ) _
1 - (cos X)

Al -

A 1-1
COS X dO

cos X -

A ' (2.7)

and
\ -1 _ ! r �(1 _ 2) dO'(X) d( ) _ � 1 - (cos2 X)
A2 -

A J_ 1 2
cos X dO

cos X -

2 A
. (2.8)

The quantity "l-cos X" can be adopted as a measure oí the angular deflection in single
elastic collisions. It is then apparent that the inverse oí the first transport mean free

path gives the average angular deflection per unit path length. By analogy with the

"stopping power", which is defined as the mean energy loss per unit path length, A11
is sometimes called the "scattering power" [CR83].
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Figure 2.1. Elastic mean free path, >., and first and second transport mean free paths, >'1
and >'2, for electrons scattered by Al and Au atoms as functions oí the kinetic energy of

the projectile, computed with the PWA-DCSs described in the texto The simbols + and x

indicate partial wave results from ref. [RM75].
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The mean free path and the first and second transport mean free paths computed
from the PWA-DCSs are given in fig. 2.1 for Al and Au, as representatives of low and

high atomic number elements. The values obtained from the total and transport cross

sections computed by Riley et al. [RM75] for E � 256 keV, using a different scattering
field, are also included for comparison purposes.

2.2.2 The theories of Goudsmit and Saunderson and Lewis

Assume that an electron starts off from a certain position, which we select as the origin
of our reference frame, moving in the direction of the z-axis. Let f(r, dj s) denote the

probability density of finding the electron at the position r = (x, y, z), moving in the

direction given by the unit vector d after having travelled a path length s. The diffusion

equation for this problem is [Le50]
af A

J[ A, A ]du(x)as +d·Vf=N f(r,djs)-f(r,djs) cindO (2.9)

where X = cos-1(d. dI) is the scattering angle corresponding to the angular deflection
di � d. This equation has to be solved under the boundary condition f(r, dj O) =
(1/7r)8(r)8(1 - cos B), where B is the polar angle of the direction d. By expanding
f(r, dj s) in spherical harmonics, Lewis [Le50] obtained general expressions fOI the

angular distribution, and for the first moments of the spatial distribution after a given
path length s. The angular distribution is given by

J
A OO2l+1

FGs(Bjs)= f(r,djs)dr=¿ 4 exp(-s/Al)Pl(CosB)
l=O

7r
(2.10)

where Al is the l-th transport mean free path defined by eq. (2.6). It is worth noticing
that FGs(B¡ s )dO gives the probability of having a final direction in the solid angle
element dO around a direction defined by the polar angle (J. Evidently, the distribution

(2.10) is symmetrical about the a-axis, i.e. independent of the azimuthal angle of the
final direction.

The result given by eq. (2.10) coincides with the distribution obtained by Goudsmit
and Saunderson [GS40a] in a more intuitive way, which we sketch here to make clearer

its physical meaning. Using the Legendre expansion given by eq. (2.3 and a persistence
property ofthe Legendre polynomials (see ref. [MM65], p. 470), the angular distribution
after exactly n collisions is found to be

00 2l + 1

fn(B)=t; 47r (Fl)"Pl(cos(J). (2.11)
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The probability distribution oí the number n of collisions after a path length s is

poissonian with mean si).., i.e.

P(n) = exp( -s/-\) (s/�)n.n.
(2.12)

Therefore, the angular distribution after a path length s can be obtained as

00 00 2f. + 1 [
00 (s/)..)n 1Fas(8; s) = ?; P(n)fn(8) =E 411" exp( -si)..)?; n! (Fi)n Pi(cos 8),

(2.13)
which coincides with expression (2.10).

From the orthogonality oí the Legendre polynomials, it follows that

(Pi(cos8))as = 211" [11 Pi(cos8)Fas(8; s) d(cos8) = exp(-sl)..i). (2.14)

In particular we have

(cos 8)as = exp( -s/)..1) (2.15)

and
1

(cos2 8)as = 3" [1 + 2 exp( -s / )..2)] . (2.16)

The theory of Lewis [Le50] is superior to that of Goudsmit and Saunderson [GS40a],
since it yields also analytical formulae for the first moments of the spatial distribution
and the correlation function of z and cos 8. Neglecting energy loss, the results explicitly
given in Lewis' paper simplify to

(z) - 211" J zf(r, a, s) d(cos 8) dr = )..1 [1 - exp(-si )..1)] , (2.17)

(X2 + y2) - 211" J (x2 + y2) f(r'� a, s) d(cos 8) dr

41s 1t (2.18)-
- dt exp( -t/)..1) [1 - exp(-uf )..2)] exp( -ul)..1) du,3 o o

(zcos8) - 211" J zcos8f(r,a,s)d(cos8)dr
- exp(-si )..1) loS [1 + 2 exp(-ti )..2)] exp( -t/)..1) dt. (2.19)

The quantites (2.15)-(2.19) are completely determined by the values of )..1 and )..2.

The Goudsmit and Saunderson expansion (2.10) and the results (2.15)-(2.19) are
exacto To compute these quatities for a given single scattering DeS, which usually is

available only in numerical form, we have to evaluate the transport coefficients Gi as
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defined in eq. (2.5). Nevertheless, for not too large path lengths, the convergence oí

the series (2.10) is quite slow [Be63] and a large number oí terms are needed. Due

to the fast oscillations of the Legendre polynomials, the numerical calculation of the

integrals in eq. (2.4 for large f is a very delicate task. The usual practice to avoid

this difficulty consists in replacing the exact single scattering distribution fl(X) by
suitable analytical approximations [Be63,RM75] that allow the easy evaluation of the

transport coefficients G¿ by means of recurrence relations. However, we have not been

able to find any analytical form able to reproduce the PWA-DCS to an accuracy better

than r- 5 %. Therefore, we have computed the transport coefficients from the "exact"

PWA-DCS by numerical integration. The integrals

(2.20)

have been calculated by means of a 20-point Gauss formula complemented with an

adaptive bipartition procedure that allows the control of integration errors, which have

been kept below 0.001 %. In these calculations, the single scattering distribution fl(X)
has been handled by means oí spline interpolation from tabulated values in a grid
dense enough to give a negligible interpolation error. Owing to the length of the

calculation, only the first 300 coefficients have been computed and, consequently, we
will only consider large enough path lengths s such that the Goudsmit-Saunderson

series effectively converges.with this number of terms.

Angular distributions of 15.7 MeV electrons transmitted through gold foils are

shown in fig. 2.2. Theoretical distributions have been calculated from the Goudsmit

Saunderson theory with our PWA-DCSs. The agreement between our results and

the experimental data of Hanson et al.' [HL51] is seen to be satisfactory, although
the theoretical distributions are slightly narrower. This is to be expected since , in the

calculations, we are neglecting inelastic scattering by the atomic electrons, which tends

to widen the multiple scattering angular distribution. For a high-Z element such as

gold, the relative effect of inelastic collisions is small (of the order of 1/Z [Sc63]).
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Figure 2.2. Angular distributions of 15.7 MeV electrons transmitted through gold foils oí

the indicated mass thicknesses. The continuous curves are Goudmit-Saunderson distribu

tions calculated with the PWA-DCSj the dashed curves are the distributions computed from
Moliére's formula, eq. (2.53), with the parameters given by eqs. (2.59) and (2.60). Circles are
experimental results from Hanson et al. [HL51].
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2.2.3 The Wentzel model

The simple scattering model due to Wentzel [We27] has been repeatedly used in con

nection with multiple scattering theory [LeSO]. Here we describe it briefly because

it wiil be useful to derive the multiple scattering theory of Moliere [M048] in a way

that puts into evidence the physical content and mathematical accuracy of this theory.
Moreover, the analytical simplicity of the Wentzel DeS makes it particularly suited as

the basis of fast simulation procedures [LS89,LI90]. In particular, the general simula
tion algorithm described in section 2.3 can be formulated in a completely analytical
way when a DeS of the Wentzel type is adopted (see section 2.4).

The Wentzel approach for describing elastic scattering of particles with charge Z'e

(Z' = -1 and +1 for electrons and positrons, respectively) by atoms of atomic number
Z is based on the simplified scattering potential

ZZ'e2
V{r) = exp(=r]R)

r
(2.21)

where the exponential factor schematizes the effect of screening. The screening radius

R may be estimated from the Thomas-Fermi model of the atom, which yields

R � 0.885 Z-1/3 ao (2.22)

where ao is the Bohr radius. However, it is more expedient to determine R so as to get
agreement with more accurate elastic scattering cross sections; this was the procedure
adopted by Moliere [M048] (see below). The differential cross section is obtained from

the first Born approximation, which gives

da(W){x) {ZZ'e2)2 1
-

dO (pf3c) 2 {2A + 1 - cos x)2' (2.23)

where p is the momentum, f3 is the velocity, in units of the speed of light c, of the

scattered particle and the screening parameter A is given by

(2.24)

The corresponding total cross section is
.

(ZZ'e2)2 7ra(W) = _

(pf3C)2 A{1 + A)
and the single scattering angular distribution is

(2.25)

¡iW){x) = .!. A(1 + A)
7r {2A+ 1- COSXP' (2.26)
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The transport coefficients defined in eq. (2.5) are given by-see appendix A-

G}W) = 1- e [Ql-1(1 + 2A) - (1 + 2A)Ql(1 + 2A)]. (2.27)

The explicit expressions for the first two transport coefficients are

2A[(1+A)In(1:A) -1], (2.28)

G�W) = 6A{1 + A) [(1 + 2A)In (1:A) - 2] . (2.29)

Certainly, the WentzeI DCS, eq. (2.23), with the screening parameter A given by eq.

(2.24), is not very accurate and Ieads to erroneous moments of the multiple scattering
distributions. Improved distributions can be obtained by using a screened parameter
determined in such a way that the first transport mean free path calculated from the

Wentzel DCS,
).(W) = 1
1 -

Na(W)G1W)'
coincides with the value ).1 determined from the PWA-DCS. The value of the screening

(2.30)

parameter is obtained as the root of the equation

1 (ZZ'e2)2 [ (1 + A) 1]).1
= N

{p¡3C)2
211' In ---y-

-

1 + A ' (2.31)

which may be easily shoved, e.g. by Newton-Raphson's method. The Goudsmit-Saun

derson distribution for such a corrected Wentzel model, with the proper value of ).I,
will have its mean equal to that of the "exact" distribution (Le. the one obtained from

the PWA-DCS) but higher order moments may still be in error (cí. eq. (2.16».
In his original paper, Moliere [Mo48], and also Bethe [Be53], used a Wentzel model

with an energy-dependent screening parameter that can be expressed as

(2.32)

where a = 1/137 is the fine-structure constant. This screening parameter agrees with

eq. (2.24) except for the last factor, which accounts for corrections to the Born ap

proximation. Moliere derived eq. (2.32) by fitting the DCS obtained from the eikonal

approximation with the Thomas-Fermi atomic field.

The eikonal approximation leads to a DCS that is very accurate for high energies
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and small scattering angles [Z064] 1 and reduces to the Rutherford DCS

da(R)(x) (ZZ'e2)2 1

dO
=

(pf3c)2 (1 - cos X)2'
for large scattering angles [Mo47] (irrespective of the adopted screening model). As

the Wentzel DCS departs from the Rutherford DCS only for small X, it is clear that,

by using a convenient value of the screening parameter, we can make the Wentzel DCS

almost identical with the eikonal DCS for all angles. Thus, the "optimum" screening
parameter can be determined unambiguously by solving eq. (2.31) with the first trans

port mean free path computed from the eikonal DCS. This procedure is essentially

(2.33)

equivalent to the one followed by Moliere to derive his "screening angle". Therefore,
the screening parameter determined in this way should not differ significantly from

the value given by eq. (2.32). Hereafter, the Wentzel model with Moliere's screening
parameter will be referred to as the WM model.

The adequacy of the WM model to describe the actual scattering process is thus

determined by the combined effect of two different approximations, namely 1) the use

of the Thomas-Fermi atomic field and 2) the eikonal approximation. The statistical

Thomas-Fermi field gives a reasonably good representation of the actual scattering
field except for the elements of low atomic number. The defficiencies of the statistical

model of the atom can be Iargely avoided by using a more realistic self-consistent

field, for instance the analytical Dirac-Hartree-Fock-Slater field [SM87a] adopted in

the calculation of our PWA-DCSs. In any case, the eikonal DCS for such a realistic

field could still be closely approximated by the Wentzel DCS with a convenient value

of the screening parameter. The essentiallimitations of the Wentzel model come from

the Rutherford-like behaviour of the DCS for large scattering angles, which is correct

only when spin and finite nuclear size effects are negligible. However, it happens
that both types of effects modify the single scattering cross section for large angles
[MM65,FM92] with the result that the eikonal DCS, obtained from a realistic scattering
field, may differ considerably from the actual DCS at large angles. As a consequence,

the WM model is only adequate for describing small-angle elastic collisions of high
energyelectrons. The practical consequences oí the erroneous behaviour oí the WM

DCS at large angles will be analyzed below.

lThe accuracy of the eikonal Des for X = o and energies aboye - 100 keV ís surprisingly good.
We have found that the relative differences between the DeSs for forward scattering calculated from

the eikonal approximation and from the partial wave method, with the same screened field, are lesa

than one tenth percent
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As regards Monte Carlo simulation it is important to make sure that the simulated

distributions have at least the correct values of the quantities given by eqs. (2.15)
(2.19). This can be accomplished by simply using an approximate analytical DCS with

the proper values of ),1 and ),2, i.e. those obtained from the PWA-DCS. An obvious

candidate is the Wentzel DCS, which now we write in the form

dO"(a)(X)
_ (W) 1 A(1 + A)

----O" .

dO 7r (2A + 1 - cos x)2 (2.34)

Up to this point, we have only considered the possibility of varying the value of the

screening parameter since we intended to keep the (incorrect) Rutherford large angle
behaviour of the Wentzel DCS. For our present purposes, we can consider A and O"(W)

as adjustable parameters and determine them so that

1 G�W) 1 G�W)
),1

=

),(W)
and

),2
=

),(W) (2.35)

where ),(W) = 1j(NO"(W»). The screening parameter A is given by the root of the

trascendent eq.

�: = [(I+A)ln(I�A) -1] {3(I+A) [(1+2A)ln(I�A) _2]}-1 (2.36)

and ),(W) = ),1G�W). This Wentzel model (hereafter to be referred to as the W2 model)
leads to a DCS wich has the same "average" value as the PWA-DCS in the interval

of angles that effectively contribute to ),1 and ),2 . As the integrands in eqs. (2.7) and

(2.8) vanish for X = O, the Wentzel DCS and the PWA-DCS may differ considerably for

very small angles, but these differences only affect the shap� of the multiple scattering
distributions for short path lengths (see below). Significant differences between the

Wentzel DCS and the PWA-DCS appear also at large scattering angles, but there the
..

DCSs take values that, for high energy electrons, are exceedingly small.

In practice, when condensed Monte CarIo simulation is needed, i.e. for high-energy
electrons, the screening parameter A is small. In this case, the evaluation of the

transport coefficients (2.27) can be simplified by using their limiting form given in

appendix A (eq. (A.I0))

G}W) = l(l + I)A [In (1 �A) - 2q;(l) + 1] + O(l4A2) (2.37)
where

l 1
q;(l) == L -.

m=l m
(2.38)

Expression (2.37) was first derived by Goudsmit and Saunderson [GS40a], and rederived
by Bethe [Be53], using tedious integration methods.
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2.2.4 The Moliere theory

The Moliere theory [Mo48], as reformulated by Bethe [Be53], is based on the assumption
of a single scattering law that has the form (2.23) for small scattering angles and goes

over the Rutherford law, eco (2.33) for large scattering angles. Indeed, the Wentzel

cross section, eq. (2.23) fulfiils this last assumption and, hence, it wiil lead to the

Moliere multiple scattering distribution if the screening parameter A(M) given by eq.

(2.32) is adopted.

Assuming temporarily that a single scattering DCS of the form (34) is a good
approximation, we wiil derive the Moliere multiple scattering distribution on the basis

of the results of the previous subsection. Our derivation foilows the same steps as

that of Bethe [Be53], but it is considerably shorter and emphasizes the fact that the

Moliere theory is essentially the multiple scattering theory of the Wentzel model. A

single scattering DCS having a form different from the Wentzel cross section wiillead

to multiple scattering distributions that differ from the Moliere one (see e.g. [NS59]).
We start from the approximate transport coefficients given in eq. (2.37). First we

replace �(l) by the approximation [Mo48]
1

�(f) = , + ln(f + 1/2) +
24(l + 1/2)2

(2.39)

where v = 0.5772 is Euler's constant, and keep only the first two terms, thus obtaining
the Moliere approximation for the multiple scattering coefficients:

(2.40)

In particular we have

G�M) _ 2A [In (1:A) _ 0.965] ,

G�M) = 6A [In (1:A) -1.987] .

(2.41)

(2.42)

Comparing these results with eqs. (28) and (2.29), we see that the approximations
introduced up to this point are not serious, provided A � 1. However, from eq.

(2.37) it is clear that the approximation G�M) wiil fail for l values such that l2A", 1.

Actually, when l increases from O to 00, the right hand side of eq. (2.40) first increases
from O up to a maximum value '" (1 + A) exp( -2,), which is reached when l = lma:r: '"

(1+A-1 )1/2 exp( -,), and for larger values oflit decreasesmonotonously and eventually
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becomes negative. As the "exact" transport coefficients G}W), eq. (2.27), tend to unity
when 1, goes to 00, it is clear that we should limit the use of the approximation given
by eq. (2.40) to path lengths s that are large enough to make sure that the Goudsmit

Saunderson series, eq. (2.10), for the Wentzel model, converges with less than I,maz
terms.

The remaining task is to avoid the summation of the Goudsmit-Saunderson series,
eq. (2.10). This is accomplished by introducing the following approximation, due to

Moliere [Mo48],

( O )
1/2

Pl(cos O) �
sin O Jo([1, + 1/2]0) (2.43)

and replacing the. summation in the Goudsmit-Saunderson series by an integral over 1,.

Assuming s � )., we have

FM(O; s) = L (Si� O )'/2100(i + 1/2) exp [-(s/x(W»)GjM)] Jo([l+ 1/2JO) di

- 2� (,i:O)
1/'

f yexp[-g(y)JJo(yO)dy (2.44)

where y = 1, + 1/2 and

(2.45)

Introducing the parameters

2,._ s
4AXc = ).(W) , (2.46)

we can write

g(y) = �X�(y2 - 1/4) [b -In (�X�y2)] ,

and, changing to the variable u = Xcy,

(2.47)

1 ( O )
1/2 1

FM(O;s) = - -- -

21!' sin O X�

r : [(u2 x2) lx
Jo uexp - 4-16 (b-In(u2j4)) Jo(uOjXc)du. (2.48)

To facilitate the evaluation of this integral, Moliere set

b = B -lnB, (2.49)
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so that he could write

1 ( f) )
1/2 1 00

[
2

]FM(f);S) = -

-.
- -- { wexp

Xc (B -ln(w2/4))27l" SIn f) X�B Jo 16

x exp [:; ln(w'/4) - w' /4] Jo c;;) dw. (2.50)

Now, we note that eB-jB = eb ,.... s] ).(W) , the average number of collisions in the path

length s. In practice B takes values much larger unity (e.g. B � 3.6 for s] ).(W) = 10,
which is a pretty small path length) and hence, for the values of w that effectively
contribute to the integral in eq. (2.50), we can write

(2.51)

and

exp [�� (B -ln(w2 /4))] � exp(x�B /16).

With all this, we obtain

(2.52)

where

{)=
f)

-

XcJB (2.54)

and

(2.55)

This is exactly the same distribution obtained by Moliere [M048] and Bethe [Be53].
The first term in the series (2.53) is the gaussian distribution

(2.56)

The functions j(I)({)) and J(2)({)) have been tabulated by Bethe [Be53]. In the numer

ical calculations reported below, these functions have been calculated by cubie spline
interpolation from Bethe's tables [Be53] for {) < 6. For {) � 6, we use the expressions

j(l)({)) ,.... 2{}-4 (1 _ 5t?-2) -4/5 (2.57)

j(2)({)) ,.... 16{)-6(ln{) + "t> 3/2) (1 + 9{}-2) - 38{}-8, (2.58)

whieh are accurate to within a few tenths of a pereent.
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With the screening parameter given by eq. (2.32), and assuming it to be much less

than unity, we find

(2.59)

b (2.60)

which coincide exactly with the parameters used byMoliere in his original paper [Mo48].
Therefore, the original form of the Moliere theory is nothing more than an analytical
approximation to the exact Goudsmit-Saunderson distribution for the WM model.

The mathematical approximations introduced in the derivation of the Moliere dis

tribution, eq. (2.53), put certain limits on its range of validity. Firstly, the limiting
form of the transport coefficients given by eq. (2.40) is valid only when the screening
parameter A is small. This limits the applicability of the theory to high energies, for
which the first transport mean free path is much larger than the mean free path. Sec

ondly, we must have b > 1 (otherwise, the parameter B, see eq. (2.49), is not defined).
This means that the path length s must be larger than about 4)'(W) (see eq. (2.46)),
i.e. the scattering must be at least plural. Actually, a restriction of this sort was to

be expected from the very beginning since, when s '" ).(W), the Goudsmit-Saunderson

series is slowly convergent and contributions from terms with l > lma% (see the discus

sion after eq. (2.42)) may not be negligible. As G�M) is not adequate for these high
order terms, the whole theory fails when s '" ).(W). Finally, the approximation given
by eq. (2.43) is very accurate for small angles, it remains good for intermediate angles
and breaks down for values of f) near 180 degrees where the factor (f)1 sinf))l/2 diverges.
This divergence is not important when s � ).�W), since then the angular distribution
is strongly peaked in the forward direction and the only effect oí the divergence is a

very narrow peak in the backward direction with a negligible area. Undesirable effects

of this divergence become prominent when s � ).�W). Under these circumstances, the
distribution (2.53) shows a conspicuous peak in the backward direction and thereíore

differs appreciably from the "exact" angular distribution, which tends to the isotropic
distribution when s » ).1. To avoid this anomalous behaviour, we should limit to path
lengths such that the gaussian part (2.56) of the Moliere distribution has a width less

than 1 radian [Be53] or, equivalently, such that X�B � 1. In conclusion, the Moliere

distribution eq. (2.53) gives a good approximation to the Goudsmit-Saunderson distri-
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bution for the Wentzel model when the conditions

(2.61)

are simultaneously fulfiIled. This is exemplified in fig. 2.3 where the Goudsmit-Saun

derson distributions for 1 MeV electrons in aluminium (Z=13) computed from the

WM-DCS are compared with the distributions obtained from Moliére's formula, eq.

(2.53), for four different path lengths.

Bethe [Be53] used the angular distributions of 15.7 MeV electrons in gold measured

by Hanson et al. [HL51] to iIlustrate the reliability of the original Moliere theory (us
ing the screening parameter given by eq. (2.32)). He found good agreement between

Moliére's and experimental distributions (see fig. 2.2). In spite oí this agreement, the

conclusion that Moliere's theory provides a reliable description of multiple scattering
of 15.7 MeV electrons in gold is by no means legitimate. Taking into account that the

distributions measured by Hanson et al. are quite narrow, the only aIlowed conclusion

is that the WM model gives a good description of small-angle scattering or, to put it

into a more basic form, that the Thomas-Fermi field (from which the Moliere screening
parameter was derived) does not deviate very much from the actual field oí a gold
atom. ActuaIly, there is no reason to expect such a good agreement for other elements

and, more important, even when the Thomas-Fermi field is reasonably good, sizeable
differences between the WM- and PWA-DCS at intermediate and large scattering an

gles are to be expected. Owing to these differences, the first and second transport mean

free paths, Al and A2' obtained from the WM model and from the PWA-DCS wiIl not

coincide. These quantites are given in table 2.1 for different elements and energies.
Indeed, the relative differences between 'first and second transport free paths for 15.7

MeV electrons in gold computed from the MW-DCS and from the PWA-DCS are 14

and 11 percent respectively.
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Figure 2.3. Multiple scattering distributions oí 1 MeV electrons after travelling a length s

(expressed in units oí the first transport mean free path ,\�M) given in table 2.1) in Al. The

continuous curves are Goudsmit-Saunderson distributions for the WM-DCS (A = A(W) =

1.4 X 10-5). The dashed curves represent the Moliere distribution, eq. (2.53), for this WM

DCS, Le. with the parameters given by eqs. (2.59) and (2.60). The average number n =

s/ ,\ (W) oí collisions in each case is also indicated.
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Let us analyze the reliability of the Moliere theory when used as the basis of a Monte

Carló simulation codeo The length of the simulated tracks may be very large (of the
order of the Bethe range) so that the angular distribution at the end of the track can be

quite broad. As seen before, the Goudsmit-Saunderson distribution for electrons in gold
computed from our PWA-DCS is in good agreement with the experimental results of

Hanson et al. and, therefore, we expect that it wiil be reliable also for larger path lengths
and other energies. Of course, for larger path lengths, energy losses should be taken into

account to get realistic calculation results. For the sake of simplicity, hovewer, we wiil

continue neglecting energy loss. This is justified here for we are going to consider only
differences between the theoretical distributions of Goudsmit-Saunderson and Moliere.

Moreover, from the values in table 2.1 we see that the relative difference between the

transport mean free paths obtained from the WM model and from the PWA-DCS

varies very slowly with the kinetic energy and, hence, our conclusions would remain

unaltered when considering that electrons slow down along their track.

Table 2.1. First transport mean free paths and screening parameters for different elements

and energies. Numbers in parentheses are powers of ten that multiply the quoted values, e.g.

9.92(3) == 9.92 x 103. Al is the first transport mean free path computed from the PWA-DCSs.

The screening parameter A of a Wentzel model which yields this first transport mean free

path is given in the fifth column, The Wentzel mode1 with Moliére's screening parameter

A(M), as given by eq. (2.33), yields the values AiM) given in the fourth column, which differ

markedly from Al.

Element, Z E (MeV) Al A (M) A2 A�M)1

Al, 13 0.1 9.92(3) 9.51(3) 3.80(3) 3.68(3)
1.0 3.90(5) 3.59(5) 1.39(5) 1.33(5)
10.0 1.69(7) 1.58(7) 5.88(6) 5.66(6)

Ag,47 0.1 3.32(3) 3.74(3) 1.35(3) 1.51(3)
1.0 1.18(5) 1.24(5) 4.36(4) 4.66(4)
10.0 5.10(6) 5.26(6) 1.81(6) 1.90(6)

Au,79 0.1 2.32(3) 2.97(3) 1.05(3) 1.25(3)
1.0 7.24(4) 8.80(4) 2.83(4) 3.34(4)

10.0 3.13(6) 3.61(6) 1.16(6) 1.31(6)
15.7 7.04(6) 8.04(6) 2.59(6) 2.90(6)
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The Goudsmit-Saunderson distributions obtained from the PWA-DCS and from the

WM and W2 models for 15.7 MeV electrons in gold are shown in fig. 2.4 for four different

path lengths. The distributions corresponding to the WM and W2 models do not differ

appreciably from the distributions obtained using the Moliere formula, eq. (2.53), with
the adequate parameters; we use the Gousmit-Saunderson distributions so as not to

mask the sought differences with unnecessary mathematical approximations. It is clear
from this comparison that the WM model gives quite accurate distributions for short

path lengths, such that the distribution is so narrow that the erroneus Rutherford tail

is not seen on a linear scale. However, when the path length is large enough for the

probability of scattering through large angles to become appreciable, the inaccuracies

of the WM model become apparent in the simulated distribution. In particular we
see that the WM model gives too narrow multiple scattering distributions. This is so

because the first transport mean free path of the WM model is larger than that of the

PWA-DCS (see table 2.1), i.e. the WM model gives a multiple scattering effect that is

too weak. We thus arrive at the conclussion that the Moliere theory with the original
parameters, eqs. (2.59) and (2.60), although apparently accurate for short path lengths
(if we do not look at the distribution tail carefully), is not adequate for path lengths
of the order of O.L\1 and larger (for which the angular distribution has a half width

larger than "'" 20 deg). This has undesirable consequences on practical simulation since,
although Monte Carlo algorithms based on Moliére's theory use short step lengths (so
that small-angle deflections at each step are simulated quite accurately), the accuracy

of the simulated angular distribution progresively deteriorates after each step. Indeed,
anomalies in the results of Monte Carlo simulations based on the Moliere theory have

already been pointed out by other researches. In particular this theory seems to lead to

a depth-dose function for parallel electron beams that is at variance with experimental
measurements [AM91].

As regards Monte Carló simulation, instead of using theWM model, it may be more
convenient to use theW2 model, which leads to the proper values of the first and second

transport mean free paths (and hence of the quantities given by eqs. (2.15)-(2.19). The
W2 model does not give very accurate distributions for short path lengths (although
their first momenta do have the correct values), but the accuracy of the multiple scat

tering distributions obtained from this model improves rapidly when the path length
increases (see fig. 2.4). Actually, for path lengths of the order of O.L\1 the Goudsmit

Saunderson multiple scattering distributions obtained from the W2 model and from
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the PWA-DCS do not differ appreciably. Under many practical circumstances, e.g. in

radiotherapy oriented applications, electron tracks are simulated until the electron has

lost a large fraction oí its initial kinetic energy. This usually implies that the average

angular deflection at the end oí the track is quite large, and hence the W2 model may

yield very accurate simulation results.
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Figure 2.4. Goudsmit-Saunderson distributions of 15.7 MeV electrons after travelling dif

ferent lengths in gold computed from the PWA-DCS (continuous curves), the WM-DCS

(short-dashed curves) and from the W2-DCS (long-dashed curves).
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2.3 A new simulation algorithm

The reliability of condensed Monte Carlo simulations based on a given multiple scatter

ing theory is difficult to analyze since it is determined by two different factors, namely,

1) the adequacy of the adopted multiple scattering approach to describe the angular
distribution after a given path length and 2) the accuracy of the algorithm used to

generate the spatial displacement in each step. It is evident that, to get optimum
simulation results we should use the Goudsmit-Saunderson angular distribution, with
the most accurate single scattering DCS available, and, at the same time, make sure

that the spatial displacements are correctly simulated. The main difficulty of using the

Goudsmit-Saunderson theory is the need of storing the transport mean free paths, eq.

(2.6), as functions of the energy and to sum the Legendre series, eq. (2.10), for each step
length. This represents a great deal of numerical work when the step length is small.

The only way of reducing the numerical effort is to use larger step lengths but this will
lead to larger uncertainties in the spatial displacements. For the sake of simplicity, the
actual DCS could be replaced by the simpler W2-DCS with a loss of accuracy that

is tolerable for most practical purposes. To our knowledge, the only algorithm that

seems to handle the spatial displacements in a stable way (i.e. independently of the

step length) is the PRESTA algorithm of Bielajew and Rogers [BR86], which is based

on the original Moliere theory, i.e. on the WM model. It is worth pointing out that

the PRESTA algorithm, apart from containing some mathematical approximations,
neglects the straggling of the spatial displacement. Furthermore, its implementation
in a form suitable for rapid calculation is not trivial at all.

The most reliable simulation method is' detailed simulation (see e.g. refs. [RK76] and
[MM90]) using the best DCSs available. In detailed simulation, each track is generated
as a succession of connected straight segments or free-flights. Each free-flight ends with
a collision where the particle changes its direction of flight. The change of direction is

determined by the polar deflection cos X, which is sampled from the single scattering
distribution, eq. (2.3), and the azimuthalscattering angle 'P, whichis sampled uniformly
in the interval (0,271-). The length t of the free-flight to the next collision is sampled
from the exponential distribution

p(t) = .-\-1 exp(-ti .-\), (2.62)

which gives the probability that the particle travels a length t before colliding. The

tracks so simulated can be considered as real electron tracks. The simulated spatial
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displacements are "exact", i.e. the resulting spatial distributions coincide with the ones

that would be obtained from a rigurous solution of the transport equation (2.9) with
the same DCSs. Moreover, in detailed simulations, the crossing of boundaries poses no

particular problems [SM86].
Detailed simulation is feasible only when the mean number oí collisions per track

1S small (say, a few hundreds at most). This occurs for electrons with low energy

and for thin geometries. The number of collisions experienced by an electron before

being effectively stopped increases with its initial energy, so that detailed simulation

becomes unfeasible at high energies. Up to date, the only methods to simulate high
energy electron transport are condensed simulation algorithms. At the energies where

these algorithms are required, ),1 � ), so that the average angular deflection in each

collision is small, In other words, the great majority of elastic collisions are "soft"

collisions with very small deflections. We will take advantage of this feature to devise

more accurate simulation procedures for multiple elastic scattering.

We shall consider mixed simulation procedures in which "hard" collisions, with

scattering angle X larger than a given value xs, are individually simulated and soft

collisions (with X < xs) are described by means of a multiple scattering approach. It
is clear that, by selecting a conveniently large value of the cutoff angle Xs, the number

of hard collisions per electron track can be made small enough to allow their detailed

simulation. As the fluctuations in the spatial displacement after a path length s are

mainly due to hard collisions, this mixed procedure will yield spatial distributions that
are considerably more accurate than those from a conventional condensed simulation.

A similar strategy is of common use for simulating energy-loss events (see e.g. refs.

[Be63] and [NH851)j it is difficult to understand why this kind of approach is not rou

tinely applied also to elastic scattering. The only attempt in this direction was the

work of Reimer and Krefting [RK76] who used detailed simulation for collisions with

scattering angles larger than 10 deg. Soft collisions (with X < 10 deg) between two

consecutive hard collisions were assumed to produce only a change in the direction of

movement, which was evaluated according to eq. (2.15) thus neglecting the straggling
of the angle deflection produced by soft collisions. Moreover, differences between the

actual displacement and the longitudinal displacement in the absence of soft collisions

were disregarded, Using accurate PWA-DCSs, this approach was shown to work rea

sonably well for electrons with kinetic energy up to '" 100 keV [RK76]. For higher
energies, however, collisions with scattering angles larger than 10 deg occur very sel-
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dom, with the result that the Reimer-Krefting algorithm must be refined to be useful.

The mixed simulation algorithm proposed here is determined by the value of the

mean free path between hard collisions, which is given by
1 jtr dO"(X) .

A(h)
= N27r

XSm- SlllXdX· (2.63)

The inverse transport mean free paths Al1, see eq. (2.6), for the actual scattering
process can be splitted into the contributions from hard and soft collisions, i.e.

(2.64)

where

(2.65a)

and
1 jtr dO"(X) .

W
= N27r [1- Pl(COSX)] m-slllXdX.Al Xs

(2.65b)

To set the value of the mean free path between hard collisions we use the following
prescription

(2.66)
where C, is a small constant, say less than '" 0.05, which has been previously selected.

For increasing energies, A attains a constant value and Al increases steadily (see fig. 2.1)
so that the recipe (2.66) gives a mean free path for hard collisions that increases with

the energy, i.e. hard collisions are more spaced when the scattering effect is weaker.

The formula (2.66) also makes sure that A(h) will reduce to the actual mean free path
A for low energies. In this case, soft collisions cease to occur and our mixed simulation

becomes purely detailed. It is worth noticing that, when mixed simulation is effective

(i.e. when A(h) > A), the mean angular deflection in a path length A(h) ls-see eq.

(2.15)-
1 - (cos B) = 1 - exp( _A(h) IAl) c:= Cs. (2.67)

Hence, when using the prescription (2.66), the average angular deflection due to a

single hard collision and to the soft collisions in the previous "step" (i.e. in the path
length after the previous hard collision) equals Cs.

The probability distribution function of the step length t between two successive

hard collisions is

( __1_ (h))P t) -

A(h) exp(-tiA . (2.68)
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The inverse transform method [Ru81]leads to the well-known sampling formula

(2.69)

Here, and in what follows, � stands for a pseudo-random number uniformly distributed

in the interval (0,1). The probability distribution of the polar deflection cos X in single
hard collisions is

(2.70)

where en is the normalization constant and 8(x) stands for the step function (=0 if
X < O and =1 if X > O). Random values of cos X from this probability distribution can

be generated numerically by using the inverse transform method [Ru81].

Let us assume that an electron starts off from the origin of coordinates moving in
the direction of the z-axis and undergoes a hard collision after travelling a path length
(step) t. The exact angular distribution produced by the soft collisions along this step
1S

FbSJ(8;t) = f: 21:4+ 1
exp(-t/A�s))Pl(Cos8).

l=O
7r

The average longitudinal displacement at the end of the step is given by (see eq. (17))

(2.71)

(2.72)

where A18) is the first transport mean free path for soft collisions, which is larger than
Al' As the mean free path between hard collisions is much less than Als), the value

t/Als) is, on average, much less than unity. Owing to this fact, the global effect oí
,

the soft collisions in the step, i.e. the change in direction oí movement and the spatial
displacement, can be simulated by using the following simple algorithm (see fig. 2.5)

1. The electron first moves a random distance T, which is sampled uniformly in the

interval (O,t), in the initial direction.

2. Then a single artificial soft collision takes place. The electron changes its direction
oí movement according to the multiple scattering distribution FbsJ(8; t).

3. Finally, it moves a distance t - T in the new direction.
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______ ...l.. __

Z t

Figure 2.5. Simulation of the global effect of soft collisions between two consecutive hard

collisions.

Obviously, this algorithm leads to the exact angular distribution at the end of the

step. Moreover, the average longitudinal displacement at the end of the simulated step
IS

(s) t t (s) [ 1 ( t) 1 ( t )
2

1(z). = - + - (cos B) = t 1 - - - + - - - ...

Slm 2 2 2 Als) 4 Als)
,

which agrees closely with the exact result given by eq. (2.72).

(2.73)

Whenever the cutoff angle xs is small, angular deflections due to soft collisions may

be described with the well-known small angle approximation [Le50]. Notice that xs

can be made as small as desired by selecting a small enough value of Cs' Introducing
the limiting form of the Legendre polynomials

!

1
Pl(cos X) � 1 - ¡f(f + 1)X2 (2.74)

into eq. (2.65a) we obtain

_1_ = N27r f(f + 1) (XS 2 da(x) sin d =
f(f + 1) 1

A (s) 4 Jo X dO X X
2 \(8)

l /\1
(2.75)

i.e., the transport mean free paths A)s) are completely determined by the single value

Als). The angular distribution F;;J then simplifies to

F(S)(ll. ) _ � 2f + 1 [_ f(f + 1) t 1 D ( 8)GS u,t -

L.,¡ exp () íl
COS •

l=O 47r 2 AIs
This expresion may be easily evaluated by a method similar to the one adopted to

derive the Moliere distribution. Using the Moliere approximation for the Legendre

(2.76)
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polynomials, eq. (2.43), and replacing the sum by an integral we find

1 ( B )1/2¡00 [y2-1/4 t]F(s)(B; t) � -

-.
- yexp - Jo(yB) dyGS 271' sin B o 2 A (s)1

(2.77)

where y = f + 1/2. Changing to the variable

( 2t )
t

w =

Als)
y (2.78)

we obtain

1

([ ]1 )1 B 2" t A(s) 00 A(S) 2

F(S)(B;t) � - (-.-) exp [_]_1 r wexp (-w2/4) Jo _1 Bw
GS 271' sin B 8Als) 2t Jo 2t

dw,

(2.79)
which can be easily integrated to give (d. eq. (2.56))

1 ( B )
t A (s) [t A (s) ]F(s)(B;t) = _

-.- _l-exp 1_B2 •GS 271' sin B t 8Als) 2t (2.80)

This distribution does not differ significantly from the gaussian distribution with vari

ance t]Als). This result is accurate whenever t � Als) and xs � 1. It offers a simple
and systematic method to generate the angular defl.ection in artificial soft collisions.

When the result given by eq. (2.80) is applicable, the single parameter A�h) completely
determines the multiple scattering distribution due to soft collisions, i.e. other details
of the DCS for scattering angles less than xs are irrelevant.

Assembling all these pieces we obtain a powerful algorithm to simulate multiple
elastic scattering processes in material structures, which may consist in several regions
of different compositions separated by well defined surfaces (interfaces). Artifical soft
collisions are considered as actual events, although their occurrence is correlated with

that of hard collisions. The path between consecutive events is a stright segmento In

the description of the algorithm we use the symbol f-- in expressions like "a f-- b" to
�

indicate that the value b replaces the value of a. The practical implementation of the

algorithm to generate random electron tracks is as follows

1. Set the initial position r and direction of movement a. of the electron.

2. Sample the length t of the step up to the next hard collision by using the formula

(2.69).
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3. Let the electron advance a random distance r = te in the direction d.: r +- r+rd.

4. If the track has crossed an interface, stop it at the crossing point (i.e. redefine
the value of r as equal to the position of this point) and go to step 2 to continue

the simulation in the new material (or end the simulation of this track when

pertinent conditions are satisfied).

5. Simulate the artifical soft collision. Sample the polar scattering angle e from the

exact Goudsmit-Saunderson distribution given by eq. (2.71), or from the gaussian
distribution given by eq. (2.80) when the small angle approximation is applicable.
Sample the azimuthal scattering angle as cP = 27r( Perform a rotation R(e, cP) of
the vector d according to the sampled polar and azimuthal angles (as described,

e.g. in refs. [Be63] and [SM86]) to obtain the new direction: d +- R(e, cP)d.

6. Let the electron advance a distance t - r in the direction d.: r +- r + (t - r)d.

7. Do as in step 4.

8. Simulate a hard collision. Sample the polar scattering angle X from the distri

bution (2.70). Generate the azimuthal scattering angle as cP = 27re. Perform a

rotation R(X, cP) of the vector d to obtain the new direction: d +- R(X, cP)d.

9. Go to step 2.

The problem of interface crossing merits additional comments. The present algo
rithm handles it in a very simple way that, nevertheless, gives fairly accurate results.

To see this, consider that a hard collision has occurred at the position r in regíon "1"

and assume that the next hard collision occurs in regíon "2". The path length t be

tween these two hard collisions is larger than the distance s from r to the interface (see
fig. 2.6). If the artificial soft collision occurs in regíon "1", the angular deflection in
this collision is sampled from the distribution FbsJ(e; t). Otherwise, the electron arrives

at the interface withouth changing its direction of movement. Assuming t � ,\�s), the
mean angular deflection in a soft collision is

(2.81)
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Figure 2.6. Simulation of a track near the crossing of an interface.

Moreover, when this assumption is valid, lateral displacements due to soft collisions

are small and can be neglected to a first approximation. As the probability for the soft

collision to occur within regíon "1" equals slt, the average angular deflection of the

simulated electron track when it arrives at the interface is

1- (cosO) = � (1- (cosO)(s)) � >.:s) ,1

(2.82)

which practically coincides with the exact mean deviation after the path length s within

region "1", as it must be. Thus, by sampling the position of the soft collision uniformly
in the segment (O,t) we make sure that the electron arrives at the interface with the

correct average direction of movement.

In most practical cases the number of hard collisions per electron track can be made

relatively large by simply using a small value of the paramater Cs-see eq. (2.66). When

the number of steps is large enough, say larger than '" 20, it is not necessary to use the

exact distribution F�sJ(O; t) to sample the angular deflection in artificial soft collisions.

Instead, we may use a simpler distribution, with the same mean and variance, without

appreciably distorting the simulation results. This is due to the fact that other details

of the adopted distribution are washed out after a sufficiently large number of steps and
will not manifest in the simulated distributions. Notice that, within the small angle
approximation, it is necessary to keep only the proper value of the first moment to

get the correct final distributions. However, if the cutoff angle xs is not small enough,
the angular distribution F�Sl(O; t) may become sensitive to higher-order moments of
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the soft single scattering distribution. Thus, by keeping also the proper value oí the

variance, we extend somewhat the range oí validity oí the simulation algorithm, i.e. we

can speed up the simulation by using larger values oí C, (or oí ,\(h)) and still obtain

the correct distributions. A simple procedure to sample the angular deflection in soft

collisions is described in the next section.

Although we aremainly concerned with elastic scattering, the present algorithm also

can be adopted in practical simulations, where the slowing down oí the particle along its
track is taken into account. For the sake oí simplicity, we assume that energy losses can

be described by using the "continuous slowing down" approximation [Be63]. Let S(E)
denote the stopping power, i.e. the mean energy loss per unit path length. When the

slowing down oí the electrons is considered, our algorithm is still applicable provided
the elastic cross section remains approximately constant along the step between two

successive hard collisions or, equivalently, when the fractional energy loss in each step
is small. As the average length oí a step equals ,\ (h), the average fractional energy

loss per step is ,\(h)S(E)jE, which has to be small. This condition is authomatically
satisfied by taking

(2.83)

where I), is a constant with a value oí the order oí 0.05 or smaller. The constants

Cs and Ds determine the mean free path for hard elastic collisions; they playa role

similar to that oí the step length in conventional condensed simulations. When C, =

Ds = O, the simulation becomes strictly detailed. By increasing the values oí these

constants we can speed up the simulation as much as desired. However, both oí them

should be kept relatively small (say, smaller than .......0.05) to ensure the accuracy oí

the simulation results. The step length oí usual condensed simulations is subjected to

similar restrictions.

In the íollowing we will neglect energy losses. Further details on the implementa
tion oí the present algorithm in a Monte Carlo code, which also includes energy-loss
processes, will be given in a íorthcoming paper [FB92].

2.4 Simulating with a Wentzel model

The simulation method described aboye can be applied to any single scattering law. As
realistic DCSs are only available in numerical form, practical simulations based on this
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method will require extensive tabulations of the DCS as a function of the energy and the

scattering angle (a problem which is also encountered in condensed simulations based

on the Goudsmit-Saunderson theory). Approximate analytical DCSs can, therefore,
be of great value for practical purposes. The obvious candidate is a Wentzel model

with properly selected parameters, The Wentzel model is illustrative since it allows

a completely analytical formulation of the simulation algorithm. It is also useful to

reveal sorne aspects of the algorithm (feasibility, stability, ... ) that, even though valid

for more realistic single scattering models, are difficult to put into evidence by general
arguments. Moreover, several standard simulation codes [NR85,BB86] are based on the
Moliére's theory and, as mentioned before, have considerable difficulties to deal with

spatial displacements and boundary crossing properly. Our algorithm with a Wentzel

model provides a simpler and more consistent approach that is free of these difficulties.

Here, to simplify the notation, angular deflections are given in terms of the variable

_

1- cosX
¡.L = 2

' (2.84)
which varies from O (forward scattering) to 1 (backward scattering). The Wentzel

differential cross section, eq. (2.34) can be written in the form

dO'(W) W
-- = 0'( )Pl(¡.L)d¡.L (2.85)

where
A(l + A)Pl(¡.L) = (A + ¡.L)2

is the probability distribution function of ¡.L in a single collision.

The mean free path between hard collisions is determined from the adopted C[J
value by using eq. (2.66), i.e. ,\(h) = max{,\(W), Cs'\�W)} where ,\(W) = 1j(NO'(W)) and
'\iW) = ,\ (W) jGiW) is the first transport mean free path corresponding to the DCS given
byeq. (2.85). The cutoff deflection tis = (1 - cos xs)j2 is obtained from eq. (2.63) or,

(2.86)

equivalently, from
,\(W) (l
,\(h)

= J¡iSPl(¡.L)d¡.L.
This equation can be easily solved to give

,\ (h) _ ,\ (W)
¡.Ls = A

A,\(h) + ,\(W)'

(2.87)

(2.88)
Random sampling of the polar deflection in hard collisions can be performed by using
the inverse transform method [Ru81], which leads to the sampling formula

+
(A + ¡.Ls)e(l - ¡.Ls)

¡.L = tis
(A + 1) _ e(l _ ¡.Ls)· (2.89)
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The first and second moments of the angular distribution due to the soft collisions

along a step oflength t, i.e. the moments of the distribution F�sJ(fl;t) = 47rF�sJ(8;t),
can be computed from the quantities

1

). (s)1

(XS d(}"(W) (X) 2 {JJSN27r Jo [1 - cos X] dO
sin X dX = ).(W) Jo flP1 (fl )dfl

2 [ (flS + A) tis 1).(W)A(l + A) In
A

-

fls + A (2.90)

and

6 [ (flS + A) p-s 1= ).(W)A(l+A) (1+2A)ln A -(1+2A+flS) fls+A
. (2.91)

Using eqs. (2.15) and (2.16), we find

(fl)(s) =
1 -

(c;s 8)(s)
= � [1 _ exp(-ti ).is))] (2.92)

and

(2.93)

As mentioned before, to sample the polar angular defl.ection fl in artificial soft

collisions, we can use any probability distribution Ps(fl) such that

11 flP8(fl)dfl = (fl)(8), and la1 fl2p8(fl)dfl = (fl2)(8)

where (fl)(S) and (fl2) (8) are given by eqs. (2.92) and (2.93). Other details oí the

distribution P8 (fl) are irrelevant provided the number oí hard collisions per track is

statistically sufficient (say larger than I"V 20). In the calculations reported here we have

(2.94)

used the distribution described in appendix B.

When the constant C, is suitably small, the present algorithm leads to angular and

spatial distributions that are virtually exact, i.e. they coincide with the distributions

obtained from the exact solution oí the transport equation with the same Wentzel

DeS. In particular, when the WM model is adopted, the simulated angular distribu
tions practically coincide with those that would be obtained with the original Moliere

theory; accurate spatial distributions, which are difficult to be properly simulated with
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Moliére's theory [BR86], are obtained as a fringe benefit. In any case, the simulation

of each step with the present algorithm is easier than with the Moliere distribution,
eq. (2.53). This ensures the feasibility of practical simulations based on the Wentzel

model.

It is also interesting to investigate the stability of the simulated angular and spatial
distributions under variations in the constant C, (or in the mean free path _\(h) between

hard collisions). To this end, we consider the elastic scattering of 10 MeV electrons in

silver (Z=47) using the W2 model. The parameters of this model, determined from

the first and second transport mean free paths computed from the PWA-DCS given in
table 2.1, are _\(W) = 6.87¡.¡,g/cm2 and A = 4.2 X 108• Simulations have been performed
for a path lengths = 0.lA1 with C, = 0.02, 0.005 and 0.0025 that correspond to 5, 20

and 40 hard collisions per track respectively. The average number of actual collisions

along each track is s/ _\(W) = 7.4 X 104. The simulation results presented here have

been obtained from samples of 100000 tracks; the simulation oí a track with 40 hard

collisions takes 0.0026 seconds in an IBM 3090/600 VF computer. Angular and lateral

displacement distributions are shown in figs. 2.7 and 2.8. The curves in fig. 2.7 are

Goudsmit-Saunderson angular distributions calculated with the PWA- and the W2-

DCS; their difference gives an indication oí the adequacy of using the W2 model. It

should be noted that the region where the differences seem to be important ((} less than
rv 10 deg actually corresponds to a quite small solid angle (rv 0.1 sr). The simulation

algorithm does reproduce the exact angular distribution (i.e. the Gousmit-Saunderson

distribution for the W2 model) when the number oí hard collisions per track is about

20 or larger, Even for a value oí C, as large as 0.02 (5 hard collisions per track)
the simulated distribution is still reasonably accurate. The simulated distribution oí

lateral displacements (b == (X2 + y2)1/2) is also insensitive to the value oí C, whenever
the number oí hard collisions per track is oí the order oí 20 or larger. In any case, the

values oí the quantities given by eqs. (2.15)-(2.19) obtained through simulation with

the W2 model coincide exactly (apart from statistical uncertainties) with the values

computed from the PWA-DCS.
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Figure 2.7. Calculated and simulated angular distributions of 10 MeV electrons in Ag after

a path length s = 0.1),1, where ).1 is the first transport mean free path given in table 2.1.

The dashed and continuous curves are Goudsmit-Saunderson distributions for the PWA- and

W2-DCS respectively. Triangles, circles and crosses are results of Monte Carlo simulations

with n = 5, 20 and 40 hard collisions per track respectively. Error bars represent statísti

cal uncertainties (two standard deviations) in the simulation results for n = 20 (the other

simulations have similar uncertainties).
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Figure 2.8. Distributions of lateral displacements, b = (x2 + y2)1/2, of 10 MeV electrons

after a path length s = 0.1>.1 in Ag simulated with the W2 model. Triangles, circles and

crosses represent results of Monte Carlo simulations with n = 5, 20 and 40 hard collisions

per track. Crosses are joined by linear segments for visual aid.
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2.5 Conclusions

We have considered sorne aspects of multiple scattering theories that are relevant for

Monte Carlo simulation of electron transporto Our derivation of Moliere's theory clar

ifies the physical assumptions and reliability of this theory. In particular, the original
Moliere theory has been shown to yield multiple scattering distributions that differ

appreciably from the exact Goudsmit-Saunderson distribution for an accurate PWA

DCS. The differences arise mainly from the incorrect assumption that the DCS has a

Rutherford-like behaviour for large scattering angles. We have also shown that the W2

model, with the proper values of the first and second transport mean free paths, yields
multiple scattering distributions that are more accurate than those obtained from the

WM model (i.e. from the Wentzel model adopted in the original Moliere theory), at
least for not too small path lengths.

The simulation algorithm described in section 2.3 effectively overcomes most of the
difficulties of condensed simulation schemes. It can be applied to any single scattering
law and requires much less numerical work than algorithms based on the Goudsmit

Saunderson distribution, since the tedious calculation ofmultiple scattering coefficients

and the summation of Legendre series are effectively avoided, The algorithm is com

pletely specified by the first and second transport mean free paths and by the DCS for

scattering angles larger than Xs. Therefore, details other than Al and A2 of the DCS

for scattering angles less than Xs are irrelevant for multiple scattering simulation. Our

algorithm leads also to accurate spatial distributions and ensures the proper simulation

of electron tracks in the vecinity of interfaces.

When applied to the W2 model (or to the WM model), the present algorithm leads

to a very simple simulation scheme that is more consistent than the current algorithms
based on the Moliere theory (e.g. the PRESTA algorithm [BR86]). The information

needed to perform simulations with this simplified scheme reduces to the first and

second transport mean free paths, which can be obtained from PWA calculations or

from high-energy formulas such as those described in ref. [FM92]. Notice, however,
that additional information is not required when the WM model is adopted. Actual

simulations with the W2 model show that our algorithm is very estable under variations

of the parameter cs, provided C, is less than "V 0.05 and the mean number of hard

collisions per track is larger than '" 20. Of course, this conclusion applies also to more

realistic DCSs.



Chapter 3

Optical-data models

3.1 Introduction

During the last decade, a number of "optical-data" models to compute inelastic scat

tering oí electrons in solids from knowledge of the optical oscillator strength (OOS)
have been proposed. The common characteristic of these models is the use oí an OOS

obtained either from experimental optical data or from available calculations, which is

extended into the non-zero momentum transfer region by means of a convenient and

physically motivated recipe--the extension algorithm- thus obtaining a model oí the

generalized oscillator strength (GOS). The most appealing feature oí the optical-data
models lies in the fact that the differential cross section (DeS) for the most probable
excitations (i.e. those involving low momentum transfers, which correspond to small

scattering angles) turns out to be almost completely determined by the OOS. Thus

an optical-data model incorporating an accurately measured OOS should yield a fairly
accurate description oí these excitations.

The origin of recent optical-data calculations is the "statistical" model oí Tung et

aL [TA79] which combines the OOS derived from the Local Plasma Approximation·
(LPA) [JI83] with the Lindhard theory oí the free-electron gas (FEG) [Li54]. The

LPA is based on the assumption that the electrons in each volume element oí the

target respond as if they were in a FEG of the same density and, thus, it allows the

calculation of the OOS from only the knowledge of the local electron density. However,
the LPA is not well motivated from a physical point of view and somewhat ambiguous
in its application [MF91].

67
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Ashley [As82,As88] proposed a optical-data model that incorporates experimental
OOSs, thus avoiding the major limitation of the statistical model, and accounts for ex

change effects in an heuristic way. To facilitate the calculations, Ashley used an exten

sion algorithm of the "one-mode" or "plasmon-pole" type, which is attractive primarily
since it is simple and, moreover, convenient to use in Monte Carlo simulation. This

extension algorithm gives nearly the same dispersion relation as the Lindhard theory of

the FEG. A more consistent approach, which combines "experimental" OOSs and the

exact Lindhard theory for the FEG, has been proposed by Penn [Pe87]. Penn's model
has been extensively used by Tanuma, Powell and Penn [TP87,TP88,TP9la,TP9lb]
to compute inelastic mean free paths for electrons in solids. These theoretical mean

free paths are currently considered as the most reliable for quantitative analysis with

Auger electron epectroscopy and X-ray photoelectron spectroscopy.

Salvat and Mayol [SM90] have shown that optical-data models based on the FEG

theory are not adequate to describe inner-shell ionization since they are not able to

reproduce the ionization thresholds. They have also shown that a simple extension

algorithm, which was first used by Liljequist [Li83], is well suited to describe inner

shell ionization.

It turns out that the relativistic optical-data model proposed by Salvat and Mayol
has strong similarities with the Weizsacker-Williams method of virtual quanta [Ja75],
which is know to yield fairly accurate cross sections for inner-shell ionization [Ko67,
SB82]. The Weizsácker-Williams method exploits the fact that the electromagnetic
field produced by a fast electron at the position of the target atom is equivalent to the

superposition of two pulses of plane polarized radiation which impinge on the target
in directions parallel and perpendicular to the direction of incidence of the projectile.
Each Fourier component of these pulses is interpreted as a flux of virtual photons which
can ionize the atom by the photoelectric effect. In the interaction, the projectile loses

an energy equal to that of the absorbed photons. The cross section for distant inelastic

collisions of a charged particle is thus determined from the photoelectric cross section.

As the photoelectric cross section is proportional to the OOS (see below), the method

oí virtual quanta, which was developped some sixty years ago, can be qualified as the

oldest optical-data model.

In this chapter we consider optical-data models suited for describing the inelastic

interactions of electrons with matter. We limit our considerations to kinetic energies
from >- 10 eV to '" 10 keV, for which relativistic effects are negligible. For higher en-
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ergies, the approach described in chapter 4 is accurate enough for practical purposes.
In this energy region, the computation of inelastic electron scattering is far from triv

ial if one wants to reach an accuracy better than, say, 5-10% in inelastic mean free

path and stopping power. Usually, the validity of a model is analyzed by comparing
these quantities with experimentally measured values. Such a comparison is not com

pletely conclusive since the experimental values are usually determined by the overlayer
method which yields attenuation lengths (i.e. including elastic scattering effects) rather
than inelastic mean free paths (see e.g. ref. [JT90]). It may also be noted that there

seem to be few experimental data on stopping power in the energy region referred to

aboye. This has left open the possibility of sorne doubt as regards the choice of "best"

model. Hence, it is of interest to study in which respect and up to what extent the

results are sensitive to the adopted OOS and extension algorithm [FM92].

We describe a new optical-data model for calculating inelastic DCSs for electrons

in solids. These DCSs permit the straightforward evaluation of important quantities
such as the inelastic mean free path and the stopping power and can be adopted as the

basis of Monte Carlo simulations of electron transporto Excitations of weakly bound

electrons are described by using the FEG theory as extension algorithm, but bound
shell ionizations are described by means of the extension algorithm used in ref. [MS90].
Exchange effects between the projectile and the electrons in the medium have a non

negligible influence in the scattering process [As88] which is evident, for instance, in the

stopping power even for high-energy projectiles. These effects are introduced through a

modified Ochkur approximation [Oc64,Br83] which leads to the non-relativistic Meller
DCS for binary electron collisions. Calculated inelastic mean free paths and stopping
powers for five single element materials, 'for which OOS data are available from the

literature , are presented. Analytical formulas for these quantites in terms of a few

adjustable parameters are also given.

3.2 Born approximation

Inelastic interactions of electrons with kinetic energy E and isolated atoms or molecules

can be described, to the first-order Born approximation, by means of the atomic DCS

[In71]
d2o- 7re4 1 df(Q, W)

dQdW =EWQ dW (3.1)
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where e is the electron charge, W is the energy transfer and Q is defined as (see
appendix B)

q2
Q=-,

2m (3.2)

where q is the momentum transfer and m the electron mass. We may briefl.y refer to

Q as the "recoil energy", but it should be noted that it is equal to the recoil energy

of the target only in the case where the target is a free electron at resto The quantity

df(Q,W)jdW is the GOS, which completely characterizes the target (within the Born

approximation). It may be heuristically interpreted as the "effective number of atomic

electrons" that participate in an inelastic interaction with given values oí the energy

and momentum transfer. The GOS satisfies the Bethe sum rule [In71,MM65]

t" df(Q, W) dW = Z
Jo dW

' (3.3)

where Z is the number of electrons per atom or molecule.

The GOS can be represented as a surface over the plane (Q, W) that is known as

the Bethe surface [In71]. One may, at least roughly, infer the gross features oí this

surface from simple physical arguments. It is well known [In71] that for large values

of W, the GOS vanishes except for Q � W and the Bethe surface reduces to a ridge,
the Bethe ridge, which peaks around the line Q = W. Indeed, in the high-W limit,
binding energies are negligible compared to the energy transfer W and the GOS may

be evaluated by assuming the target electrons free and at rest (i.e. the collision can be

considered as binary). This gives

df��W)
� Z8(W _ Q). (3.4)

Actually, the Bethe ridge has a finite width which arises from the momentum distri

bution oí the atomic electrons. In the opticallimit Q = O, the GOS coincides with the

OOS,
df(Q,W) df(W)
----"-' -�...;...

dW dW ' (3.5)

and the Bethe sum rule eq. (3.3) reduces to the Thomas-Reiche-Kuhn sum rule (see
e.g. reí. [BJ83]). In the limited range oí Q values where this relation holds, the DeS

eq. (3.1) decreases rapidly with Q. It follows that the key quantity to determine the

DeS for low-Q excitations is the OOS.

Alternatively, for condensed media, one may work with the dielectric energy-loss
function Im[-lje:(Q, W)]. The (complex) dielectric function e:(Q, W) of the stopping
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material can be related to the GOS, so that the GOS-which originally is an atomic

concept-can be applied to the solid state and to the homogeneous electron gas. In the

latter case, it is convenient to refer to the GOS per electron rather than per atom, i.e.

the Bethe sum rule eq. (3.3) for the electrón gas GOS adds up to unity rather than to

the atomic number Z. The GOS and the dielectric function describing the response of

any isotropic medium to a small electromagnetic disturbance are related by [In71,Fa56]

df(Q,W)
=

2W
Z. Im [ -1 l.dW 7rD; €(Q, W) (3.6)

Dp is given by
(3.7)

where N is the number of atoms or molecules per unit volume. Dp coincides with the

plasmon energy of an homogeneous electron gas with a density equal to the average

electron density of the stopping material.

The inelastic mean free path .\ and the stopping power S for e1ectrons in a certain

medium are given by
.\-l=NO"o, (3.8)

where 0"0 and 0"1 are the total ine1astic cross section and the stopping cross section

respective1y, which are defined by

{Wmax {Q+ d20"
O"n = Jo

dW
JQ_ dQ Wn

dQdW' (3.9)

The maximum energy loss is Wmax=E and, for a given W, the allowed recoil energies
líe in the interval Q_ :::; Q :::; Q+ given by (see appendix B)

(3.10)

The GOS is known analytically for only the simplest atomic target, namely the

hydrogen atom (see e.g. ref. [In71]). The complex dielectric function of the FEG,
derived from the Random Phase Approximation, has been given in analytical form
by Lindhard [Li54]. GOSs for atoms and ions have been computed numerically by
a number of authors [Ma71,Mc71] using independent electron models. Ashley et al.

[AT79] have calculated electron inelastic mean free paths and stopping powers in solid

aluminum using an electron gas theory, which includes plasmon damping, to describe

excitations of the valence electrons and Manson's atomic GOSs [Ma71] for inner-shell
ionization. In practice, it is very difficult to compute the GOS of solids from first

principles, so that one must rely on approximate GOS models.
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3.3 Free-electron gas

The FEG theory plays a central role in most of the optical-data models proposed to

date. For our purposes, it is convenient to characterize the FEG by the plasmon energy
Ep, which is related to the electron gas density p through

(3.11)

The "one-electron" GOS for a FEG with plasmon energy Ep is given by

2W [ -1 1FL(Ep; Q, W) =
7rE�

. lm
EL(Ep; Q, W)

,

where EL(Ep; Q, W) is the Lindhard dielectric function [Li54,Ri57]. It is worth noting
that the OOS of the FEG (neglecting plasmon damping) reduces to the delta function

(3.12)

(3.13)

The evaluation of one-electron cross sections (3.9) for a FEG with the GOS given
byeq. (3.12) has to be performed numerically and is quite lengthy. To simplify the cal

culations, we wiil use the foilowing two-modes (T) approximation for the one-electron

GOS of the FEG

FT(Ep; Q,W) = [1- g(Q)] ó(W - Wr(Q)) + g(Q) ó(W - Q), (3.14)

where

(3.15)

The particular form of these functions and the values of the parameters A and B have

been determined by requiring the resulting one-electron cross sections to agree closely
with those computed from the Lindhard dielectric function (see below). The adopted
values of the parameters are

At' _(X2)1/2[ 1 1 -1 ((1-X2/3)1/2)]( p) -

3 1 + 2X2/3
+
X(l- X2/3)1/2

tan
X

(3.16)
.

and

(X) 6 EF
B(Ep) = 1 + 2" Se'p (3.17)

where
t:2

(
2 t:

)1/3EF = _n_ (37r2p) 2/3 =!
97r _n_ &4/3

2m 2 16 me4 p (3.18)



3.3. FREE-ELECTRON GAS 73

is the Fermi energy oí the FEG and

X2 == 2_ (Ep)216 EF (3.19)

Evidently, we have

(3.20)

Within a limited region oí small Q, two excitation modes coexisto One mode or branch,
with strength 1 - g(Q), corresponds to plasmon excitation: the other, with strength

g(Q), represents electron-hole excitation. For large Q, g(Q) = 1, i.e. the plasmon
branch disappears, and the electron-hole excitation branch continues into the Bethe

ridge. For small Q, g(Q) decreases to zero roughly as Q3j thus the strength of the

plasmon branch is unity for Q = O. In this way, the T model reflects the two major
and related aspects of the collective behaviour oí the FEG, namely the screening oí the

Coulomb interaction and the occurrence oí plasma oscillations.

The mean free path and the stopping power oí electrons moving in a FEG are given

by ).-1 = PO'o and S = PO'l, where O'n are the one-electron cross sections (3.9). Here,

however, the maximum energy loss is Wmax = E - EF since larger energy losses would

set the incident electron into a state below the Fermi level which is already occupied.
It is worth to notice that the one-electron cross sections (3.9) with the GOS (3.14) can
be evaluated analytically.

The expression (3.16) for the parameter A has been determined so as to exactly

reproduce the mean free path and the stopping power obtained from Lindhard's theory
in the low-energy limit (i.e. for electrons with kinetic energy much less than the plasmon
energy). In this limit, the Lindhard theory allows the analytical evaluation of both ).

and S (see reís. [Ri57] and [LW64]) and the resulting expressions coincide with those

obtained from the T model. The parameter B determines the plasmon dispersion
relation, i.e. the dependence of the plasmon energy with the recoil energy. According
to the Lindhard theory, the plasmon line is given by Wr(Q) = Ep+6EFQj(5Ep)+O(Q2).
The slope oí the plasmon line in the T model, given by eq. (3.17), has been determined

empirically to improve the agreement oí the computed mean free paths and stopping
powers with the results oí Lindhard's theory.

Inverse mean free paths and stopping powers oí electrons in electron gases of dif

ferent plasmon energies, computed from Lindhard's GOS, eq. (3.12), and from our T

model, eq. (3.14), are compared in fig. 3.1. It is seen that the T model yields results

which agree closely with those from the Lindhard theory. The maximum differences
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between both calculations are oí the order oí a few percent and concentrate in the

vicinity oí the plasmon excitationthreshold. In the following we shall use the T GOS

model instead oí the Lindhard GOS.
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Figure 3.1. Inelastic inverse mean free path (a) and stopping power (b) for electrons in free

electron gases with plasmon energies of 5, 15 and 45 eVo Full curves represent the results from

Lindhard's theory; short-dashed broken curves have been obtained from the two-modes model

given by eq. (3.14). The long-dashed broken curves are obtained by using the ó-oscillator,

eq. (3.35).
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3.4 Optical oscillator strength

As mentioned before, the basic ingredients of an optical-data model are the 008 and

the extension algorithm. The calculation of inelastic mean free paths and stopping
powers with the optical-data models requires the knowledge of the 008 for photon

energies from rv 1 eV up to an energy much larger than the binding energy of the K

shell of the target atoms. Experimental information on the low-energy part of the 008
is presently available for many materials, mainly from synchrotron radiation studies.

The "experimental" 008s adopted in the present calculations have been obtained

from available optical data either in the form of the refractive index n and the extinction

coefficient K [Pa85,HG74] or as the photoelectric cross section O"ph [HL82,CC89]. In the

first case, the 008 is evaluated by using the equation

dj(W) 2W [ -1 1dW
=

11',0;
Z . Im

é(W)
, (3.21)

where

é(W) = é(Q = O, W) = (n + iK)2, (3.22)

is the complex dielectric constant. In the second case, the 008 is obtained by means

of the relation [FC68]
dj(W) me

dW
=

2íT2e2ñ, O"ph· (3.23)

Unfortunately, for most materials, experimental optical data currently available ex

tend over limited energy-loss ranges so that the complete 008 can only be obtained

approximately by combining a variety of measured data (usually from different authors,
obtained with various instruments and techniques and on different samples) with the

oretical photoelectric cross sections. For the materials considered in the present calcu

lations, we have constructed the "experimental" 008s by combining

1. optical data (i.e. refractive index and extinction coefficient) from ref. [Pa85] for
W < 30.5 eV,

2. X-ray photoabsorption cross-sections compiled and fitted by Henke et al. [HL82]
for 30.5 eV < W < Wae, and

3. theoretical photoelectric cross-sections of Cullen et al. [CC89] for W > Wae• Here,
Wae stands for the energy of the absorption edge closer to and aboye 1 keV.
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However, in the case of Al we have directly used the complex dielectric constant given by
Smith et al. [SS85] which was obtained from experimental data, and carefully checked

by Kramers-Kronig analysis [SS80]. All these OOSs are given in tabular form; in

the numerical evaluation of integrals involving the OOS we have used the continuous

function obtained by linear interpolation in a log-log representation of the tabulated

values. The experimental OOSs for aluminium and copper are shown in fig. 3.2.

The self-consistency of the adopted OOSs can be checked by means of various sum

rules. Rere we use the Thomas-Reiche-Kuhn sum rule (or f-sum) [BJ83,Pa85]

_!_ {'X> df(W) dW = 1
Z Jo dW ' (3.24)

and the perfect-screening sum rule [PN89,Ma83] (or ps-sum) which, when written in

terms of the OOS, takes the form

O; roo _l_df(W) dW = 1
Z Jo W2 dW

. (3.25)

The main contributions to the ps-sum arise from the region of small energy losses and,
therefore, this sum rule provides a check for the low energy-loss behaviour of the OOS.

The f-sum is more sensitive to medium and large energy losses and, thus, it gives a

global measure of the quality of the OOS in this region. The values of the sums (3.24)
and (3.25), for the OOSs described aboye are given in table 3.1. The reliability of the
OOS for Al [SS85] is supported by the values of the ps- and f-sums.

Table 3.1. Values of sum rules eqs. (3.24) and (3.25), the mean ionization energy and M?ot
for different materials.

Material Z f-sum ps-sum 1 (eV) lBS (eV) Mt�t
Al 13 0.993 0.977 165 166±2 3.08

Si 14 0.999 0.866 169 173±3 3.34

eu 29 0.927 0.964 341 322±10 3.26

Ag 47 1.003 1.093 443 470±10 5.54

Au 79 0.962 1.080 781 790±30 6.20
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The mean ionization energy I, which is the basic parameter in the high-energy
Bethe stopping power formula, can be obtained from the OOS as

InI = [ r df(W) dW]-l f'XJ In W df(W) dW.
Jo dW Jo dW (3.26)

The mean excitation energies obtained from our experimental OOSs are compared with
the values recommended by Berger and Seltzer [BS82] in table 3.1. Following Penn

[Pe87], one may expect that an experimentallywell determined OOS should be the most

reliable to be found. It may however not always be available, so one should also look

for other methods to obtain an estimate of the OOS. Also, it turns out that the OOS

does not, in practice, need to be specified in very great detail, or with high accuracy in

every detail to obtain good estimated of the mean free path and the stopping power.

As compared to extensive tabulations, a simpler representation of the GOS in terms of

a few parameters might be possible and sometimes even more convenient. This kind

of approach [Li83,FM92] is outlined in chapter 4.

3.4.1 The Local Plasma Approximation

In the statistical model of Tung et al. [TA79], the OOS is obtained from the LPA.

These authors considered a single-element scattering medium whose atoms have a

locally varying atomic electron density p(r). The LPA OOS is obtained by assuming
that the response oí the electrons in a volume element dv at r is the same as if they
were in a FEG of density p(r). Neglecting plasmon damping, the one-electron OOS for

a FEG of density p reduces to the delta function (cí. eq. (3.13))

(3.27)

In the calculations reported here, we have used atomic electron densities obtained

from Dirac-Hartree-Slater calculations with Wigner-Seitz boundary conditions. The

LPA then leads to the following OOS

[df(W)] r=
dW

LPA

=

Jo p(r) 8 [W - TEp(p(r))] 47l'r2 dr, (3.28)

where rws is the Wigner-Seitz radius, Ep(r) is the local plasmon energy

(3.29)



78 CHAPTER 3. OPTICAL-DATA MODELS

and r is a constant which Tung et aL set at unity.

The parameter r is introduced in order to obtain the correct mean ionization energy

I computed from accurate experimental optical data. By using the value of r given by

1 t?"ln r = In] -

Z Jo p(r)ln [Ep(p(r))] 47rT2 dr , (3.30)

we make sure that the high-energy stopping power derived from the OOS eq. (3.28)
will agree with the high-energy stopping power given by the Bethe formula (using the

same I value).

In fig. 3.2, the experimental OOSs for Al and Cu are compared with the OOSs

obtained from t�e LPA. The value of r , as given by eq. (3.30), is 1.31 for Al and

1.26 for Cu, The LPA OOSs, with this value of r , have been calculated from the

Dirac-Hartree-Slater atomic densities. The LPA OOSs drop to zero at sorne maximum

energy loss which is determined by the value of the electron density at the nucleus. For

free-electron-like materials, such as Al, the LPA OOS roughly reproduces the plasmon
line (which is located at the lower end of the excitation spectrum) since the density
at the Wigner-Seitz radius nearly coincides with the valence electron density (bound
electrons do not move so far from the nuclei). For other materials, as exemplified by
Cu, the LPA leads to an unrealistic plasmon-like peak due to the non-vanishing value

of p at the Wigner-Seitz radius. This behaviour is different from what is found for gases

[JI83], where the LPA gives an OOS spectrum that starts from W = O (since then the

density decreases smoothly when r goes to infinity). Although the LPA OOS tries to

roughly reproduce even the absorption edges, it differs in shape from the experimental
OOS. In the case of Al, there is a clear excess of the LPA OOS between the plasmon
line and the L absorption edge. The fact that r deviates appreciably from unity also

points to the ad hoc and somewhat unsatisfying nature of the LPA.
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Figure 3.2. OOSs obtained as explained in the text (full curves) and computed from the

LPA (eq. (3.28)) with Dirac-Hartree-Slater atomic densities (dashed curves) for Al (a) and
ce (b).
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3.5 Optical-data models

In this section we briefly review different optical-data models proposed to date and

compare the resulting mean free paths and stopping powers.

3.5.1 The statistical madel

The statistical model of Tung et al. is equivalent to using the following GOS

[df(Q,W)] = roo [df(W')] R (W'· Q W) dW'
dW Jo dW' L" ,

Tung LPA

obtained extending the LPA OOS into the non-zero momentum transfer region with

the Lindhard theory as extension algorithm. FL(W'; Q,W) is the one-electron GOS

(3.31)

for a FEG whose plasmon energy is W', as defined in eq. (3.12).

3.5.2 Ashley's madel

Ashley [As82,As88,As89] uses a similar model which incorporates experimental OOSs,
thus avoiding the major limitation of the statistical model. To facilitate further cal

culations, he introduced the following one-mode approximation fot the one-electron

GOS

(3.32)
As pointed out by Ashley, this one-mode or plasmon-pole (P) approximation gives
nearly the same dispersion relation as Lindhard's theory in the low-Q limit and leads

to the proper higp.-Q limit, W � Q. The GOS obtained with Ashley's model is

[df(Q,W)] = roo [df(W')] R (W'· Q W) dW'
dW Jo dW' p" .

Ash1ey exp

(3.33)

Evidently, this GOS reduces to the experimental OOS in the limit Q=O. Moreover,
the Bethe sum rule (3.3) is satisfied as long as the adopted OOS fulfils the Thomas

Reiche-Kuhn sum rule.

The extension algorithm eq. (3.32), or its more accurate version using the exact

low-Q plasmon dispersion relation [Pe87]' is so far the most extensively used in the

literature. However, for inner-shell ionization, this extension algorithm shifts the ion

ization threshold from Ui, the actual ionization energy of the considered shell, to 2 U,

[MS90].
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3.5.3 Penrr's model

The model proposed by Penn [Pe87] combines the advantages of the two previous mod

els, since it incorporates experimental OOSs and it uses the Lindhard GOS per electron

as extension algorithm. The GOS obtained from Penn's model may be expressed as

[df(Q,W)] = roo [df(lAl')] F1 (W" Q W) dW'
dW Jo dW' L" ,

Penn exp

(3.34)

where FL(W'; Q,W) is the one-electron GOS of a FEG with plasmon energy W' as

defined in eq. (3.12). Owing to the result given in eq. (3.13), the GOS eq. (3.34)
reduces to the experimental OOS in the limit Q=O. Furthermore, the Bethe sum rule

(3.3) is automatically satisfied, provided the adopted OOS fulfils the Thomas-Reiche

Kuhn sum rule. However, this model is not adequate for inner-shell ionization for it

permits energy losses less than the resonance energy W', i.e. it permits ionizations with

energy transfer less than the actual ionization threshold U¡.

3.5.4 Shell model

Mayol and Salvat [MS90] have proposed an optical-data model that is more suited for

describing inner-shell ionization. They used the following extension algorithm

Fó(W'; Q,W) = 8(W - W') () (W' - Q) + b(W - Q) 8(Q - W'). (3.35)

This one-electron GOS was first used by Liljequist [Li83] and is known as a b-oscillator.

The physical picture here is that the interaction typically has either "resonance" char

acter or "free" (binary) character, corresponding to distant and close collisions, respec
tively [Bo48]. The GOS obtained from the shell model is

[df(Q, W)] = t" [df(W')] F (W" Q W) dW'
dW Jo dW' ó" •

MS exp

(3.36)

When the experimental OOS satisfies the f-sum rule, the GOS eq. (3.36) satisfies the

Bethe sum rule. Moreover, it yields the proper thresholds for inner-shell ionization.

3.5.5 A comparison of optical-data models

Differences between the mean free paths and stopping powers computed from these

optical-data models are the combined effect of the differences between the adopted
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OOSs and extension algorithms.

The 8-oscillator can be considered as a rough approximation to the one-electron

GOS for a FEG with plasmon energy equal to the resonance energy W'. The mean

free paths and stopping powers for electrons in FEGs of different plasmon energies,
calculated from the ó-oscillator approximation, are shown in fig. 3.1 for comparison

purposes. It is seen that this approximation fails for incident electron energies about

and below the plasmon excitation threshold, a fault shared to sorne extent with Ashley's
P model. From the results plotted in fig. 3.1 we can get an idea of the magnitude
of the differences between inelastic mean free paths and stopping powers computed
from optical-data models that are based on the same OOS but use different extension

algori thms.

The statistical model and Penn's optical-data model differ only in the adopted
OOS. By comparing the mean free paths and stopping powers computed from these

two approaches, we can elucidate the dependence of these quantities on the adopted
OOS.

Inverse mean free paths and stopping powers for Al and Cu computed from the

statistícal model, eq. (3.31), with the adjusted value of r (see eq. (3.30)) and with

r = 1 and from Penn's model, eq. (3.34), are given in figs. 3.3 and 3.4 as functions

of the electron energy. Expressions (3.31) and (3.34) have been evaluated using the

T model eq. (3.14). For low energies, the LPA results lie below the results of Penn's

modeL This fact indicates that the LPA tends to concentrate the OOS at too high
energy losses.

As a matter of fact, the LPA OOS, eq. (3.28), with the value of r determined

from eq. (3.30) fulfills the Bethe sum rule and, when used in eq. (3.26), it yields
the accepted value of J. These two properties altogether determine the high-energy
stopping power (Bethe formula). Therefore, the good agreement between the stopping
powers computed from Penn's model and from the LPA, with the adjusted r value,
found for energies above 1 keV was to be anticipated. This is not the case for other

quantities, e.g. the mean free path, which fol1ow high-energy formulas determined by
other moments of the OOS which are more or less distorted by the LPA [JI83] (see
below). From the present results it is quite evident that the LPA with r = 1 gives
mean free paths more accurate than those obtained with the adjusted r value. Hence,
the use of the LPA with the adjusted r value should be restricted to stopping power
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calculations (and to energies aboye 100 eV). For the evaluation of inelastic mean free

paths within the LPA it is preferable to use 7 = 1 (as it was done by Tung et al.

[TA79]).
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Figure 3.3. Inverse mean free path in Al (a) and Cu (b) as a function ofthe electron energy

aboye Fermi level. The continuous curves are the results from Penn's model using the OOS

given in fig. 3.2. The short-dashed curves are the LPA results obtained from the LPA OOS

with 7=1.31 for Al and 1.26 for Cu. LPA mean free paths calculated with 7=1 are also given

(long-dashed curves). Experimental data from ref. [TA79].
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3.6 A new aptical-data model

Fernández-Varea et al. [FM92] have compared different optical-data GOS models and

suggested that a combination of Penn's model, eq. (3.34), (for valence electron exci

tations) and the model given by eq. (3.36) (for core electron excitations) could be a

more convenient approach. To a first approximation, it is plausible to apply the T

extension algorithm, eq. (3.14), for resonance energies W' which appear to be mainly
of plasmon (collective) character, and to apply the 5-oscillator extension algorithm,
eq. (3.35), to the rest of resonance energies. Accordingly, we shall adopt the following
recipe to compute the GOS

dj(Q,W)
= t" [dj(W')] F(W" Q W) dW'

dW Jo dW' ' ,

exp

(3.37)

with
, { FT(W'j Q, W) if W' < Wc,

F(W j Q, W) =
F.s(W'j Q, W) if W' > Wc'

The cutoff energy Wc separates the region of low resonance energies W', where the

(3.38)

excitations in the low-Q limit have a collective character, from the high resonance

energy region where inner-shell ionization is dominant. In reality, there is an inter

mediate range of resonance energies where this distinction is difficult to make since,
due to plasmon broadening, collective excitations may extend up to considerably high
resonance energIes.

The DCS given by eq. (3.1) can now be written as

d2(J'
= roo [dj(W')] d2(J'1(W') dW'

dQdW Jo dW' dQdW
'

exp

(3.39)

where
d2(J'¡(W')

=

7l'é _l_F(W" Q W)dQdW E WQ
"

is the DCS per electron with resonance energy W'.

(3.40)

3.6.1 Exchange correction

When the swift particle is an electron, exchange between the projectile and the electrons
in the medium must be taken into account. To our knowledge, exchange effects in

optical-data model calculations have only been considered by Ashley [As88,As89], who
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used an heuristic approach. A more conventional tool for dealing with exchange effects

is provided by the Ochkur approximation [Oc64]. The Born-Ochkur DCS is given by

d2a =7ré_l [l-Q (Q)2]dj(Q,W)dQdW E WQ E
+

E dW (3.41)

and is obtained by considering that the exchange scattering amplitude is approximate

ly given by the leading term of an expansion of the Born-Oppenheimer amplitude in

inverse powers of E [Br83]. Therefore, the Born-Ochkur approximation is essentially
a high-energy approximation. For energies near the ionization thresholds, where op

tically allowed excitations (i.e. excitations with Q � W) dominate, the Born-Ochkur

approximation gives a satisfactory description of exchange effects [HigO]. On the other

hand, collisions with energy loss W much larger than the energies of the electrons in

the target can be described as binary collisions with free electrons at resto The DCS

for binary collisions may be calculated exactly [MM65] and, for projectiles with kinetic

energy much larger than the Rydberg energy, it simplifies to the non-relativistic Meller

DCS
da 7ré 1 [ W (W) 2]dW=EW2 1- E-W+ E-W

. (3.42)

Clearly, this resuIt differs from the limiting behaviour of the Ochkur exchange corree

tion for large W.

We shall introduce exchange effects by using the following one-electron DCS

d2al(W') 7ré 1 [ Q (Q )2] ,

dQdW =EWQ 1- E+W'-W+ E+W'-W F(WiQ,W). (3.43)

The modification introduced here, which is permissible owing to the asymptotic nature
of the Born-Ochkur approximation, agrees with the usual correction given in eq. (3.41)
when W = W' and has the desirable effect of leading to the non-relativistic Meller

DCS, eq. (3.42), when W » W' (since then Q � W). Due to the indistinguishability
of the "primary" and "struck" electrons, we can consider the primary as the most

energetic after the collision. Owing to this convention, in collisions with free electrons

at rest the energy loss of the primary electron cannot exceed the value Wmax = E /2. In
the case of inner-shell ionization, the primary and secondary electrons have the same

kinetic energy when W = Wmax = (E + Eb)/2, where Eb is the ionization energy of

the considered shell. Notice that, by using this value for Wmax, the Ochkur correction

keeps the ionization threshold unaltered.
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The value of the maximum energy loss is also limited by the exclusion principle,
which forbids energy losses larger than E - EF that would lead the projectile into an

occupied state below the Fermi level EF of the medium. EF has been determined from

the total number N; of valence electrons per atom (see table 3.2).

Table 3.2. Number of valence electrons per atom N; and Fermi energy EF for different

materials.

Material Nv EF (eV) Wc (eV)
Al 3 11.7 70

Si 4 12.5 90

Cu 11 34.8 50

Ag 11 27.2 50

Au 11 27.3 50

3.6.2 One-eleetron eross seetions

The exchange corrected one-electron DCSs for W' > Wc-i.e. when the extension

algorithm is the ó-oscillator given by eq. (3.35)-are computed as

1l'é 1 [ Q (Q)2] ,
--- 1--+ - 5(W-W)E WQ E E

1l'é 1 [ W (W )2]+EWQ 1- E+W'-W+ E+W'-W

x 8(W - W'). (3.44)

The first term in this expression corresponds to distant ("resonance") collisions; the
Ochkur correction factor has the usual form given by eq. (3.41). The second term

accounts for close ("binary") collisions; when W' < E - W, it reduces to the non-.

relativistic Meller DCS, eq. (3.42).
In order to get a general recipe which keeps the ionization thresholds unaltered,

the maximum energy loss is taken to be Wmax(W') = min{E - EF, (E +W')/2}. This
is equivalent to considering W' as the "binding energy" of the target electron. This

assumption was also adopted by Ashley [As88] and it is justified by the fact that most

inner-shell excitations occur for W' not much larger than the ionization threshold.
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Electrons that participate in excitations with W' < Wc are treated as if they were

in a FEG with plasmon energy W' and described by using the two-modes GOS model

given by eq. (3.14). Since the Ochkur exchange correction is based on the assumption
of single-electron excitations, it is not justified for plasmon (i.e. collective) excitations
of an electron gas. Therefore, the one-electron DCSs for W' < Wc are splitted into

contributions from electron-hole and plasmon-like excitations:
-

d2al(W') d2aieh)(W') d2aip1) (W')
dQdW

=

dQdW
+

dQdW
. (3.45)

The contribution from electron-hole excitations, including Ochkur's exchange cor

rection, is given by (see eqs. (3.14) and (3.43))

d2aieh)(W')' 11"e4 1 [ Q (Q )2]dQdW =EWQ 1- E-W+ E-W g(Q)8(W-Q). (3.46)

Here the maxium energy loss is taken to be Wmax(W') = min{E - EF, E/2}, i.e. the

"binding energy" is set equal to zero. The one-electron DCS for plasmon-like excitations
is computed directly from eq. (3.40), i.e.

d2 (pl)(w,) 4 1

�QdW = 11"; WQ [1- g(Q)]8(W - Wr(Q)) (3.47)

and the maximum energy loss is Wmax(W') = E - EF•

Final1y, to obtain the inelastic mean free path ). and the stopping power S we have

to compute the integrals

(3.48)

where
,

_ ¡Wmax(W1) ¡Q+ n d2a¡(W')an(W) -

Jo
dW

JQ_ dQ W
dQdW (3.49)

are the one-electron total cross sections which, by using eqs. (3.44)-(3.47), can be

evaluated analytically. The resulting expressions are a bit lengthy, but it is very simple
to code them in a computer programo Thus, the numerical evaluation of ). and S

reduces to a single quadrature.

3.6.3 Analytical formulas for A and S

For practical purposes, it may be useful to have simple analytical formulas for the

inelastic mean free path and the stopping power. We can use the asymptotic formulas
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due to Bethe [In71] as a guide to obtain analytical expressions with a wider range of

validity. The Bethe formula for the mean free path reads

(3.50)

where R=13.6 eV is the Rydberg energy, and

M2 = r (Ji) df(W) dWtot -

Jo W dW

is determined by the OOS. The quantities Ctot and itot are integral properties of the

GOS, which cannot be computed from only the OOS.

(3.51)

The Bethe formula for the stopping power can be written as

(3.52)

where 1 is the mean excitation energy defined by eq. (3.26). The second term in the

right-hand side of eq. (3.52) originates from exchange effects; the computed stopping
power for high-energy electrons would not agree with the Bethe formula if exchange
were neglected.

From the Bethe formulas (3.50) and (3.52) we can expect that, for not too low

energies, the calculated mean free paths and stopping powers may be closely reproduced
by the following expressions

\ -1
=

7re4

[2 (4a1E) 2]/\ N
ER Mtotln -¡¡- + a2(R/E) + a3(R/E) ,

S = N2;4Z [In (�) + �'l -In 2) + a4(R/E) + as(R/E)2] ,

(3.53)

(3.54)

where the dimensionless quantities al, ... ,as are considered as adjustable parameters
to be determined by fitting the mean free paths and stopping powers obtained from

our optical-data model calculations.

3.7 Calculation results

The evaluation of mean free paths and stopping powers is performed by following the

theory described in section 3.6. The only free parameter in this theory is the cutoff

energy Wc, which determines the extension algorithm to be used for each resonance

energy-see eq. (3.38). As indicated before, there is sorne arbitrariness in this value,
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but it is clear that extension algorithms based on the FEG theory should not be

used for resonance energies W' larger than the binding energy of the outer bound

shell. In the present calculations, Wc is taken to be either the lowest absorption edge
observed in the experimental OOS or 50 eV, whichever is smaller (see table 3.2). This

prescription unambiguously determines Wc for free-electron-like materials, such as Al

and Si, which have OOSs with a well-defined plasmon peak. On the contrary, transition
and noble metals have OOSs much less structured and this makes the selection of Wc

more uncertain. The effect of this parameter on A and S is indicated in fig. 3.8 below,
where we compare results obtained with Wc = 25, 50 and 75 eV for Ag. The stopping
power is seen to be quite insensitive to the adopted value of Wc, except when the

kinetic energy E of the swift electron is near the maximum of the curve S(E). Mean

free paths are more strongly dependent on this parameter. This dependence on Wc can

be easily understood from the results plotted in fig. 3.1 and from the global analysis
of ref. [FM92].

Computed inelastic mean free paths and stopping powers for Al, Si, Cu, Ag and

Au are shown in figs. 3.5-3.9 as functions of electron kinetic energy. Kinetic energies
are referred to the Fermi level EF• For comparison purposes, we also give the results

from the optical-data model calculations of Ashley [As88,As89] and of Tanuma et al.

[TP91a]. These authors, however, used OOSs and extension algorithms which are

different from the ones adopted here. Moreover, Ashley used a different approach to

introduce exchange effects, which are neglected in the calculations on mean free paths
by Tanuma et al. The magnitude of the exchange corrections on calculated A and S

is indicated in figs. 3.7a and 3.6b. Exchange effects have a stronger influence on the

stopping power than on the mean free path (since S is more sensitive to the high energy

loss part of the inelastic DCS).

Except for small kinetic energies, our calculation results can be closely approxi
mated by the simple expressions (3.53) and (3.54). The parameters al, ... , as in these

expressions have been determined by numerical fitting of the calculated A and S for

kinetic energies larger than 250 eV for A and larger than Z x lOeV for S. The param

eters so obtained are given in table 3.3. It is not convenient to extend the fit to lower

energies, since A and S have there sorne structure which cannot be reproduced by the

simple expressions (3.53) and (3.54).
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Figure 3.5. Inelastic mean free path (a) and stopping power (b) for Al. Results from the

present optical-data model are represented as full curves. Short-dashed and long-dashed bro

ken curves represent optical-data model calculations of Tanuma et al. [TP91a] and of Ashley
[As89] respectively. Crosses are theoretical results from Ashley et al. [AT79]. Experimental
data from different authors are taken from ref. [DS89].
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Figure 3.6. Inelastic mean free path (a) and stopping power (b) for Si. Results from the

present optical-data model are represented as full curves. Results obtaíned by excluding the

Ochkur exchange correction are represented as long-dashed broken curves. The short dashed

curve represents the mean free path calculated by Tanuma et al. [TP91a]. Experimental data
from different authors are taken from ref. [DS89].
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[DS89].

Table 3.3. Parameters of the fit for eqs. (3.53) and (3.54).

Material al az a3 a4 a5

Al 0.8993 -69.16 650.8 8.286 -22.27

Si 0.8321 -70.02 630.1 8.394 -24.12

Cu 0.8901 -184.7 2211.9 20.48 -115.8

Ag 0.4869 -178.4 1913.4 31.84 -361.2

Au 0.5462 -288.7 3443.4 64.53 -1361

3.8 Conclusions

We have described an optical-data model which provides a consistent picture of in

elastic scattering of electrons in solids. The basic ingredient is the OOS, ideally to

be obtained from experiments. Excitations of collective character and inner-shell ion

ization are described separately by means of simple extension algorithms. Exchange
effects between the projectile and the electrons in the medium are taken into account

by using a modified Ochkur approximation. The calculation results reproduce the gen

eral trends of experimental data in a satisfactory way, and may be accurately fitted

by simple analytical formulas. However, owing to the considerable experimental un
certainties and to the scattering of the data measured by different authors, it is not

possible to extract more definite conclusions about the reliability of the calculations

from a comparison with experimental data.
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Chapter 4

Energy loss of fast electrons

4.1 Introduction

An important aspect of Monte Carlo transport algorithms is the description of the en

ergy loss events which determine the slowing down of energetic electrons and positrons.
The energy released by these particles is directly transferred to the medium or emitted

as electromagnetic radiation. It is customary to speak of collision losses and radia

tive losses. Collision energy losses are understood to include losses due to ionization

and excitation of the atoms, plasmon excitation in metals and emission of Cerenkov

radiation. Radiative losses refer exclusively to bremsstrahlung emission.

The details of the energy loss simulation in the existing Monte Carló codes depend
mainly on the energy range of interest. Detailed simulations, where alI the scattering
events suffered by the particle are described in chronological succession, are only feasible
at low energies [IS81,Li85,MM90]. At high energies, the number of events along each

particle track is very large and detailed simulation is impracticable. A quite usual

practice in high-energy simulations is to combine the detailed simulation of hard events,

involving energy losses larger than a given threshold Wc ("catastrophic" events in'

the terminology of Berger [Be63]), with a continuous slowing down approximation for
soft events with energy losses less than Wc (thus neglecting energy straggling due to

these events). In schemes of this type (see e.g. refs. [Be63,BB86,NH85,IL86]), the
restricted stopping power due to soft events is usualIy derived from the high-energy
Bethe formula [BS84,Fa63]. Moreover, hard collisions are frequently described as binary
collisions with free electrons at rest (through the Meller [M032] and Bhabha [Bh36]

99
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DCSs). As the binding energies of the target electrons are neglected, this procedure
overestimates the initial energy oí delta rays (secondary electrons). These íeatures

limit the validity oí this kind oí simulation to primary particles and delta rays with

energies much higher than the ionization energies oí the target atoms. Other high
energy approaches [Be63,BB86] have recourse to multiple scattering theories such as

those due to Landau [La44], Blunck and Leisegang [BL50] and Vavilov [Va57], which

give the energy loss distribution due to inelastic collisions in a given path length.
The validity oí these multiple scattering theories is also limited to high energies and,

moreover, they do not allow the simulation oí delta ray generation.

The aim oí the present chapter is to describe a set oí analytical DCSs for inelastic
collisions and bremsstrahlung emission suitable for being used as the basis oí Monte

Carlo simulation oí electron transport in materials oí arbitrary composition. The pro

posed DCSs are based on high-energy approximations complemented with semiempir
ical ingredients in such a way that they provide an accurate description oí energy loss

events in a wide energy range. They are characterized by a few readily available pa

rameters and can be easily evaluated with the aid oí a short computer codeo These

DCSs are well suited for detailed Monte Carlo simulations. The random sampling oí

the energy loss in each event can be performed by using purely analytical methods.

Furthermore, when used in high-energy simulations, these DCSs allow easy calculation

oí the restricted stopping power and energy straggling parameter due to soft events,
even when the cutoff energy loss Wc is comparable to the atomic binding energies.

The DCS for collision losses is calculated from a generalized oscillator strength
model defined by the electronic configuration, ionization energies oí the various electron
shells oí the target atoms and the mean excitation energy 1 which enters into the Bethe

formula [BS84,Fa63]. Our approach is similar to those used by Sternheimer [St52] and
Liljequist [Li83] for more restricted purposes. It leads to an analytical DCS which

includes the so-called shell correction and the Fermi density effect correction in an

approximate way and also allows the simulation oí delta ray production.

Radiative losses are described on the basis oí the Bethe-Heitler DCS with expo

nential screening as carried out previously by Schiff [Sc51] and Tsai [Ts74]. Our DCS
includes a high-energy Coulomb correction as well as an empirical correction to com

pensate for the failure oí the Born approximation at 10w energies. The screening radius
is determined from accurate high-energy calculations [SB85,HG80] in a way which en

sures that, in the high-energy limit, the radiative stopping power computed from our
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DCSs). As the binding energies oí the target electrons are neglected, this procedure
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shelIs of the target atoms and the mean excitation energy 1 which enters into the Bethe

formula [BS84,Fa63]. Our approach is similar to those used by Sternheimer [St52] and
Liljequist [Li83] for more restricted purposes. It leads to an analytical DCS which

includes the so-called shell correction and the Fermi density effect correction in an

approximate way and also allows the simulation of delta ray production.
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sures that, in the high-energy limit, the radiative stopping power computed from our
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DCS agrees with the most reliable values available to date [BS84,SB85].

For the sake of simplicity, we consider a single-element medium of atomic number

Z and mass density p. The number of atoms per unit volume is given by

N = NAP, (4.1)A

where NA is Avogadro's number and A is the atomic weight of the material.

4.2 Collision losses

The quantum theory of the energy loss of fast charged particles due to their inelastic

collisions with atoms was initiated by Bethe (see e.g. ref. [In71]). The Bethe theory
applies to separate atoms or molecules, i.e. to gases. The quantum stopping theory
for condensed media was worked out by Fano [Fa63]. The main result of the Bethe

theory is the well-known analytical formula for the collision stopping power Se, i.e.
the average energy loss per unit path length, of high-energy charged particles. For

electrons and positrons with kinetic energy E, the Bethe stopping power formula reads

[BS84,Bi58,RC54]

S(±)(E) = NZ21re4 {In [ELy + 1] + /(±)(I) _ 2C _ b} (4.2)e mv2 12 2 Z

(hereafter, the quantities referring to electrons and positrons will be denoted by su

perscripts "-" and "+" respectively). The quantity 1 is the mean excitation energy,

which has been determined empirically for a large number of materials [BS84], and

/(-)(1) = _!_ -

2, - 11n2 + � (, _1)2 (4.3),2,2 8,
for electrons and

(+)( /32 [ 14 10 4]/ ,)=21n2-1223+,+1+(I+1)2+(I+1)3 (4.4)

for positrons. The term 2C/Z accounts for the so-called shell correction [BS84,Fa63]
and b is the density effect correction [St52,SP71,SB84]. bis negligibly small for non:"

relativistic energies (see below), whereas the shell correction tends to vanish at high
velocities (i.e. much larger than the orbital velocities oí the electrons in the target).
The shell correction is usually disregarded in high-energy Monte Carlo codes, whereas
the density effect correction is evaluated by using the formulas due to Sternheimer and

Peierls [SP71], which give the reduction oí the stopping power due to this effect quite
accurately.
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4.2.1 Schematic Bethe surface

The Bethe formula (4.2) only gives the mean energy loss per unit path length. What

we seek is a more complete description of collision energy losses, preferably aIlowing
the simulation of delta ray emission, at least in an approximate way. With reference to

high-energy Monte Carlo simulations, it would also be useful to have a simple procedure
to compute the restricted stopping power, i.e. the average energy loss per unit path
length due to soft excitations with energy transfers less than a given value of Wc,

Let us first consider the inelastíc interactions of electrons or positrons with an

isolated atom (or molecule) containing Z electrons in its ground state. We start from

the non-relativistic theory and, for electrons, we disregard exchange effects between the
electrons in the target atom and the incident electrón: relativistic corrections (including
the density effect for condensed media) and the effect of exchange wiIl be introduced

latero The DCS for inelastic collisions with energy loss W and recoil energy Q (see
the appendix), as derived from the non-relativistic first Born approximation, can be

written in the form
d2(j 27l'e4 1 df(Q,W)

dWdQ
=

mv2 WQ dW

The function df(Q,W)jdW is the generalized oscillator strength (GOS), which is de

scribed in detail by Inokuti [1n71]. The GOS can be represented as a surface over the

(4.5)

plane (Q,W), which is known as the Bethe surface, This surface contains all the rele

vant information to describe the inelastic collisions of charged particles with the target
system under consideration (within the first Born approximation). Unfortunately, the
Bethe surface is known in analytical form for only relatively simple systems, namely,
the hydrogen atom [1n71] and the free-electron gas [Li54,LW64] and, even in these

cases, it is too complicated for simulation purposes.

In the limit of very high recoil energies, the binding of the target electrons and their
momentum distribution have a negligible effect on the interaction. Hence in the high-Q
region, the target electrons behave as if they were both essentially free and at rest and

the GOS vanishes except for W � Q. The Bethe surface in this region reduces to a.

ridge along the line W = Q, named the Bethe ridge by Inokuti [1n71]. For low recoil

energies, the details of the Bethe surface are characteristic of the considered target.
The GOS for Q = O reduces to the optical oscillator strength (OOS). Experimental
information on the OOS is provided by measurements of either photoelectric cross

sections or dielectric functions [Fa63,CH78].



4.2. COLLISION LOSSES 103

The GOS satisfies the Bethe sum rule [In71]

(JO df(Q, W) dW = Z
Jo dW

' (4.6)

irrespective of the value of Q. The mean excitation energy J, which plays the central

role in the Bethe stopping power formula (4.2), is given by [Fa63,In71]

(4.7)

Except for the shell correction, the non-relativistic Bethe stopping power formula

is determined by the integral properties of the GOS expressed by eqs. (4.6) and (4.7).
In order to obtain analytical expressions for the collision DeS, it is sensible to consider

schematic Bethe surface models which satisfy relations (4.6) and (4.7) in the low-Q
region and reduce to Zó(W - Q) for large Q values. In the present calculations we

adopt a simple GOS model proposed by Liljequist [Li83]. In this model, the response

of the target to inelastic collisions is represented by a limited number M of excitations

(or oscillators) characterized by excitation energies W¡ and oscillator strengths f¡. The

Liljequist GOS can be written as

df(Q,W)
= � f.F(W:'- Q W)dW �J' ", •

,=1
(4.8)

The excitation spectrum F(W¡j Q,W) of the ith oscillator is assumed to be

F(W¡; Q,W) = ó(W - W¡)8(W - Q) + ó(W - Q)8(Q - W), (4.9)

where ó(x) is the Dirac delta function and 8(x) is the Heaviside step function (8(x) = O

if x < O and = 1 if x � O). The corresponding OOS reduces to

df(Q = O, W)
= � f.Ó(W _ W,.)dW �J' "

,=1
(4.10)

which has the same analytical form as the OOS underlying Sternheim�r's calculations

of the density effect correction [St52,SP71,SB84].
In order to reproduce the high-energy stopping power given by the Bethe formula

(4.2), the excitation energies and oscillator strengths must satisfy the Bethe sum rule

(4.6) and lead, through eq. (4.7), to the accepted value of the mean excitation energy

J, i.e.

¿f¡ln W¡ = ZlnJ. (4.11)
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Liljequist [Li83], and Sternheimer [St52], associated a single oscillator to each

atomic shell and set

J¡ = Z¡ and W¡ = «u; (4.12)

where Z¡ is the number of electrons in the ith shell and U¡ is their ionization energy. In

the case of conductors, the excitations of the conduction band are described through a

single oscillator with oscillator strength Jeb, equal to the effective number of conduction
-

electrons per atom, and excitation energy Web• If optical functions or electron energy

loss spectra of the material are known and they show a well-defined plasmon line, Web

should be set equal to the plasmon energy. Otherwise, we can simply take Jeb as the

number of electrons in the target atom that have binding energies less than a few tens

of eV and set Weó = bnp{feb/Z)1/2, where bis a parameter of the order of unity [Li83]
and np is the plasma energy corresponding to the total electron density in the material:

(4.13)

The semiempirical adjustment factor a in eq. (4.12) was introduced by Sternheimer to
obtain agreement with the adopted mean excitation energy and is given by

(4.14)

From simple arguments based on the '" W-3 dependence of the photoelectric cross

section it is concluded that a should be of the order of e1/2 = 1.65 [SB84]. In practical
cases a ranges in the interval1.5-3. The value of the parameter b has no inHuence on

the high-energy stopping power, which is accurately given by the Bethe formula (4.2),
but other quantities (such as the mean free path and the low-energy stopping power)
are more sensitive to the value of this parameter. Liljequist [Li83,Li85] has suggested
the use of additional experimental information to determine the optimal value of b.

If such information is not available, we may simply adopt a value of b which leads,
through eq. (4.14), to a value of the Sternheimer factor a in the interval1.5-3. This

wiIl usually be a good enough approximation for simulation purposes.

This kind of approach is well suited for the simulation of delta ray emission since

the GOS is already split into contributions from the different shells. In reality, there is

a transfer of oscillator strength from inner to outer shells so that J¡ (i.e. the effective

number of electrons in the ith shell) should be smaller (larger) than Z¡ for inner (outer)
shells (see e.g. ref. [SS80]). Owing to the lack of more accurate estimates for most

materials, we shall usually take Ji = Z¡.
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Excitations with Q = W, i.e. those located on the Bethe ridge, nearly correspond
to free (binary) collisions and will be referred to as close collisions, in contrast with

excitations with Q < W which have a resonance-like character and will be referred to as

distant collisions [B048]. The energy loss DeS is defined as the integral of the DeS, eq.
(4.5), over the kinematically allowed recoil energies. It can be split into contributions

from close and distant excitations:

dO'
= [Q+ 21l'é 1 dj(Q, W) dQ =

dO'c dO'd
dW

-

lQ_ mv2 WQ dW dW
+
dW' (4.15)

where Q± are given by eq. (A.7). Introducing the GOS, eq. (4.8), the contribution due

to close collisions reduces to

(4.16)

where
dO'R

=
21l'e4 _1_

dW
-

mv2 W2 (4.17)

is the Rutherford cross section for collisions with free electrons at resto The contribution

to the energy loss DeS due to distant collisions is found to be

dO'd
=

21l'e4 f:A In (Wi) 8(W - Wi).dW mv2 i=l Wi Q- (4.18)

Relativistic corrections can now be introduced in the theory. To this end we closely
follow the treatment of Fano [Fa63]. The relativistic DeS for close collisions is given by
eq. (4.16) with the Rutherford Des replaced by the Born relativistic DeSs for binary
collisions with free electrons at rest [RC54]. These latter cross sections are different

for electrons and positrons and are given by the Meller [M032] and Bhabha [Bh36]
formulas respectively. The relativistic DeS for close collisions can then be written in

the form
dO'c

=
21l'e4 � ji F(±)(E W)8(W _ w'·)8(w' _ W)dW

-

2 LJW2' I max •

mv ;=1
(4.19)

The functions F(±)(E,W) are the ratios of the Meller and Bhabha DeSs to the Ruther

ford DeS and are given by

( )2,.. 2 ,.. ,-1 ,..F(-)(E,W)=1+(-) __ + _ (,..2+_)1-,.. 1-,.., 1-,.. (4.20)
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for electrons and

F(+)(E,W) 1_(,-1)2{2(,+1)2_1K_ K2
-

, ,2 _ 1 (, + 1)2

X [3(1 + 1)2 + 1- 2,(, - 1)K + (, - 1)2K2] } (4.21)

for positrons. Here we have introduced the reduced energy loss K defined by

K = W/E. (4.22)

The maximum energy loss is Wmax = E (Kmax = 1) for positrons. In the case of

electrons, the projectile (primary electron) and the target are indistinguishable; we

consider that the primary is the most energetic electron after the collision and hence the

energy loss W cannot exceed half the initial energy E, i.e. Wmax = E/2 (II':max = 1/2).
The relativistic DCS for distant collisions (see eq. (16) in ref. [Fa63]) may be split into a

"longitudinal" term, which accounts for the interaction through the static unretarded

Coulomb field, and a "transverse" term which arises from the interaction through
emission and reabsorption of virtual photons. The longitudinal term is still given
approximately by eq. (4.18), but now the proper relativistic expression (A.S) of the
minimum recoil energy must be used (together with a smail correction introduced into

the arguments of the logarithms, d. eq. (4.31) below). The transverse term, which

vanishes in the non-relativistic limit, is strongly infiuenced by the dielectric properties
of the medium where the fast electron moves. In particular, the atomic DCSs for media

of the same material but different densities wiil differ.

4.2.2 Density effect

The usual treatment of the density effect is based on the classical dielectric approach,
which leads to results equivalent to those of the Born approximation for low-density
materials. The complex dielectric function e(W) and the OOS are related by [Fa63]

1 [-=!_] = � n� df(Q = O, W)
m

e(W) 2 ZW dW
. (4.23)

The energy loss DCS for distant transverse interactions is given by

dO"t
=

27re4 _!_ df(Q = O, W) [In ( 1 ) _ ¡32 - �(W)].dW mv2 W dW 1 - ¡32 (4.24)
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An explicit expression for the quantity �(W) may be derived from eq. (47) in Fano's

review with the aid of eq. (4.23). Such an expression is not weIl suited for numerical

evaluation with a discrete OOS model such as eq. (4.10). To avoid this difficulty we

simply assume that the density effect reduces the DCS of aIl the oscillators in the same

proportion and accordingly set �(W) equal to b (the density effect correction to the

stopping power, as given by eq. (4.28) below). This approximation wiIl introduce an

error in the distant transverse DCSs of the different oscillators (only at high energies)
but these errors cancel to give the correct stopping power.

Fano [Fa63] has shown that the density effect correction to the stopping power can be

computed as

b = _.!. ['Xl df(Q = O, W) 1 (1 !!_) dW-

z Jo dW
n +

W2
' (4.25)

where L is a real valued function of (32 defined as the positive root of the foIlowing
equation (see eq. (9) in Inokuti and Smith's paper [1S82]):

1 _ (32 = .!,f"\2 roo 1 df(Q = O, W) dW = ·"C'(L)- ZHp Jo W2 + L2 dW
- .r . (4.26)

The function F(L) decreases monotonically with L, and hence, the root L((32) exists
only when 1 - (32 < F(O); otherwise it is b = O. Therefore, the function L((32) starts
with zero at (32 = 1 - F(O) and grows monotonically with increasing (32. With the

OOS, eq. (4.10), we have

(4.27)

and

s = .!, f: f¡In (1 + L22) - L: (1- (32) .

Z i=1 Wi!1p
The DCS for collisions in dense media can then be calculated as

(4.28)

dO'
= � s. (dO'ci dO'di)dW
-

�Jl dW
+
dW

.

1=1
(4.29)

The partial DCS per unit oscillator strength for close collisions with the ith oscillator

is given by (see eq. (4.19))
dO'ci

=

27ré�F(±)(E W)8(W _ w'·)8(w' - W)dW mv2W2' 1 max (4.30)

and the corresponding DCS for distant (longitudinal and transverse) interactions is

dO'di 27ré 1 [ (W¡ Q- +2mc2) (1).2 ldW
=

mv2 W¡
In

Q_ W¡ + 2mc2
+ In

1- (32
- (3 - b b(W - W¡), (4.31)
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where Q_ is given by eq. (A.5) with W = W¡. The argument of the first logarithm
differs from the one in eq. (4.18) due to the relativistic correction for the longitudinal
term (cí. our eq. (4.5) and eq. (16) in ref. [Fa63]).

Expressions (4.30} and (4.31) allow the random sampling of the energy loss by using
purely analytical methods which are described in section 404. To specify the event

completely, we must also determine the recoil energy Q. The probability distribution
function of Q in collisions with a given W is proportional to the corresponding DeS,

d20'j(dQdW), which is considered in detail in ref. [Fa63]. For distant interactions,

longitudinal collisions are more probable than transverse ones and the (unnormalized)
distribution function of Q is approximately given by (see eqs. (16), (22) and (23) in
ref. [Fa63])

if Q_ < Q < W,
otherwise.

(4.32)

For close collisions, Q = W. Once the energy loss and recoil energy have been sampled,
the scattering angle can be determined from eq. (AA).

According to our GOS model, each oscillator W¡ corresponds to a shell with J¡ electrons
and ionization energy U¡. It is then reasonable to assume that in a collision where

energyW is transferred to the ith oscillator, a secondary electron or delta ray is emitted
with energy W - U¡ (W for excitations of the conduction band) in the direction of the

momentum transfer q. We thus have a simple, but still fairly realistic, model for delta

ray production.

The mean free path between inelastic collisions is

rE dO'
>.�l(E) = N

Jo dW
dW. (4.33)

Let us consider that an electron, or positron, with initial energy Eo has travelled a

path length s through the medium and has suffered an energy loss !::lE = Eo - E

(� E) due to inelastic collisions. We assume that s � >'c(Eo) so that the electron has

experienced a large number of inelastic collisions along its trajectory. Both the number

of collisions and the energy loss in each collision are subjected to statistical fluctuations
and hence, the global energy loss !::lE can be considered as a random variable which

follows a certain probability distribution function P(!::lE). The average value (!::lE)
and the variance Var(!::lE) of this distribution increase with path length. The collision

stopping power Sc(E) and energy straggling parameter n�(E) are defined by (see e.g.
reí. [FM91])
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d(L\E)
= N fEW

dO'
dW,-

ds Jo dW (4.34)

n�(E) =
dVar(L\E)

= N t" W2
dO'

dW.
ds Jo dW (4.35)

It is worth noticing that, with the present model, the mean free path, the stopping
power and the straggling parameter can be calculated analytically. The resulting ex

pressions are a bit lengthy but it is very simple to code them in a computer programo
In the limit oí high kinetic energies, we recover the Bethe formula (4.2) including the

density effect correction. The value oí this correction practically coincides with the

values tabulated by Sternheimer et aL [St52,SP71,SB84], who used a similar oscilla

tor model (with slightly different oscillator strengths and excitation energies). At low

energies, our stopping power also accounts approximately for the shell correction.

The results presented here refer to electrons and positrons in aluminium, silver and

gold which are representative oí low, medium and high atomic number elements. The

parameters adopted in the calculations are given in table 4.1. The mean excitation

energies 1 are the ones recommended by Berger and Seltzer [BS84], which are considered
to be the most reliable to date. The excitation energy oí the conduction band, Web, has
been set approximately equal to the position oí the maximum oí the OOS determined

from the optical dielectric data reported in reí. [Pa85], and the oscillator strength Jeb
has been obtained as the number oí electrons in the outer shells oí the atom with

binding energies less than or comparable to Web• For the inner shells we have set

Ji = Zi and adopted the ionization energies given by Bearden and Burr [BB67]. In the

case oí aluminium, we use the effective numbers oí electrons in each shell obtained by
Shiles et al. [SS80] from their analysis oí experimental dielectric data. These numbers

are given in table 4.2 where the transfer oí oscillator strength from inner to outer shells

IS seen.
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Table 4.1. Generalized oscillator strength parameters for aluminium, silver and gold. For

silver and gold, the adopted values of the oscillator strengths Ji of bound shells are the

occupation numbers Z¡. Those of aluminium are given in table 4.2. The ionization energies
of bound shells used in the calculations are those given by Bearden and Burr [BB67]. The

last column gives the values of Sternheimer's adjustment factor a obtained from eq. (4.14).

Element Z 1 (eV) Jeb Web (eV) n, (eV) a

Al 13 166

Ag 47 470

Au 79 790

3.1 15.0 32.9 2.62

11 30.0 61.6 1.86

11 40.0 80.2 1.83

Table 4.2. Oscillator strengths and bound shell ionization energies for aluminium. The

oscillator strengths Ji are the effective numbers of electrons obtained by Shiles et al. [SS80]
from optical data. Bound shell ionization energies are taken from Bearden and Burr [BB67].

Shell Z¡ Ji u, (eV)
1s1/2 2 1.65 1559

2S1/2 2 2.05 117.7

2P1/2 6 6.2 73.2

c.b. 3 3.1

Collision stopping powers for electrons in aluminium, silver and gold obtained from

the present DCSs are compared with sample values from the stopping power tables of

Berger and Seltzer [BS84] for E � 10 keV in fig. 4.1. At these energies, our resuIts
practically coincide with the values in the tables of reference, as couId be expected
from the physical assumptions underlying the present model. Inelastic mean free paths
and stopping powers for low-energy electrons (E = 100 eV to 100 keV) in aluminium

obtained from the present model are compared with experimental data from several

authors in fig. 4.2.
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Figure 4.1. Collision stopping power, Se/p (in eV/(J.Lg/cm2», for electrons in aluminium,
silver (xlO) and gold (xl02) as a function ofthe kinetic energy. The curves are results from

the present model. Circles are values from Berger and Seltzer's tables [BS84].
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Figure 4.2. Collision mean free path and stopping power for low-energy electrons in alu

minium. The plotted curves are p>"c (in J.Lg/cm2, continuous) and Se/p (in eV/(J.Lg/cm2),
dashed). Special symbols are experimental data from the following sources (closed symbols
for mean free paths and open symbols for stopping powers): (.), reí. [Tr74]; (.6), reí. [Ka70];
(o), reí. [GH69]j ( ), reí. [Yo56]j (.6), reí. [Fi74]j ( ), reí. [KS59]j ( ), reí. [AW83].
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Stopping powers of aluminium and silver for positrons obtained from our approach
are compared with values from the Berger and Seltzer tables [BS84] in fig. 4.3. For

comparison purposes, we have also plotted the stopping powers for electrons computed
from the present model. As is well known [RC54], the relative differences between the

stopping powers for electrons and positrons are quite small (of the order of a few per

cent) for energies aboye 1 MeV. For kinetic energies below 100 keV, electron stopping
powers are smaller and.Tn the energy range covered in fig. 4.3, the relative differences

increase with decreasing energy.
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Figure 4.3. Collision stopping power for positrons in aluminium and silver (x 10) as a.

function of the kinetic energy. The continuous and dashed curves are the results from the

present model for positrons and electrons respectively. Squares are values from Berger and
Seltzer's tables [BS84] for positrons.
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The essential ingredient oí our model is the replacement oí the actual OOS by a set oí

oscillators yielding the same stopping power at high energies, which is determined by
the integrals oí the OOS in eqs. (4.6) and (4.7). The inverse mean free path, eq. (4.33),
and the straggling parameter, eq. (4.35), for high-energy electrons are determined by
other integral properties oí the actual OOS [In71] which are not exactly reproduced by
the OOS model and, hence, our estimates oí these quantities are less accurate than our

stopping powers. To partiaily overcome this problem, Liljequist [Li85] has suggested the
use oí several oscillators for each shell so as to mimic the real OOS and Martínez et al.

[MM90,SM85] have proposed approximate OOS which are continuous functions oí W.

Such sophistications may be necessary only under extreme conditions, e.g. to simulate

energy loss spectra with very high resolutions such as those used in electron energy

loss spectroscopy. In practice, we wiil usuaily deal with moderate energy resolutions so

that the deficiencies oí our model wiil be washed out when convoluting the simulated

spectra with a realistic spectrometer profile.

4.3 Radiative losses

Many theories oí the bremsstrahlung process have been developed, each with its own

approximations and range of applicability (see e.g. reís. [Ts74,SB85,M064]). As we

are mainly interested in the simulation oí electron and positron transport, it is not

necessary to account for the angular distribution oí the emitted photons; this aspect oí

the bremsstrahlung process is considered in reís. [BB86,NH85]. In addition, the angular
defiections oí the electron trajectory due to radiative processes are smail and can be

neglected. Hence, we disregard any angular dependence oí the DeS and concentrate

on the simpler problem of determining the dependence of the Des on only the photon
energy.

4.3.1 Bethe-Heitler Des

Our starting point is the high-energy atomic Des for 'arbitrary screening, which was

derived by Bethe and Heitler from the Born approximation [BH34]. This Des is valid

whenever the kinetic energy oí the electron before and after photon emission is much

larger than its rest energy mc2• It is convenient to consider the Des in terms oí the
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reduced energy € of the emitted photon defined such that

W
€ =

E 2 ' (4.36)
+mc

where, as before, W = E - E' is the energy lost by the electron (i.e. the energy oí

the emitted bremsstrahlung photon). The maximum reduced energy oí the emitted

photons is €max = E/(E + mc2). The Bethe-Heitler DCS for electrons can be written

in the form (see formula 3CS(b) in ref. [M064])

d��Il = a5a5Z[Z + 7J]� [(1 + (1 - €)2) «]_)¡ - 4fe) - �(1 - €)(<P2 - 4fe)] , (4.37)

where ao = 5.292 X 10-9 cm is the Bohr radius and a � 1/137 is the fine-structure

constant. The screening functions <PI and <P2 are defined as

<PI _ 4 rmc(q_qo)2[1_F(q)]2d� +4, (4.38).IQO q

<P2 = 4��c [q3-6qq51n(!) +3qq5-4qg] [1-F(q)]2:� + �O, (4.39)

where qo is the minimum momentum transfer which, in the high-energy limit, is given
by

me €

qo= ---
2,1- €

(4.40)

and F(q) is the atomic form factor.

The function fe is the high-energy Coulomb correction derived by Davies, Bethe and

Maximon [DB54]
00

1

fe(Z) = a¿ {n(n2 + a)r '

n=I
(4.41)

This correction is valid only at high energies and, moreover, it has the wrong sign near

the tip of the spectrum. From the analysis given by Seltzer and Berger [SB85], it follows
that the Coulomb correction should not be used when E - W is less than '" 5me2 (see
fig. 5 in reí. [SB85]). Consequently we will set fe(Z) = O when W > E - 5mc2, i.e.
when

E - 5me2
€ > €d =

E + mc2
• (4.42)

This condition "turns off" the Coulomb correction for E < 2.5 MeV and near the tip,
where it is no longer applicable. For convenience in computation, expression (4.41)
may be rewritten as [DB54]

fe(Z) = a [(1 + a)-t + 0.202059 - 0.03693a + 0.00835a2

- 0.00201a3 + 0.00049a4 - O.00012a5 + 0.00003a6 -

•••]. (4.43)
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The quantity TI in eq. (4.37) accounts for the production of bremsstrahlung in the field

of the atomic electrons and it is considered in detail by Seltzer and Berger [SB85].
For the sake of simplicity, we assume that the dependence of the electron-electron

bremsstrahlung DCS on the photon energy is the same as for the screened nuclear DCS,
but let TI vary with the electron energy. Nelson et al. [NH85] and Brun et al. [BB86]
used the same approximation but set TI equal to the high-energy limit obtained by
Tsai [Ts74] and thus disregarded any variation with energy. Seltzer and Berger [SB85]
reported electron-electron bremsstrahlung cross sections for six different elements. By
numerical fit of their data we have found that the variation of TI with E, averaged over
these six elements, may be approximated as

(E/mc2)o.sTI(Z, E) �

(E/mc2)o.s + 2.43 Tloo(Z),

where Tloo is the high-energy limit (see fig. 4.5 below).

To proceed with the derivation of an analytical DCS we must select a suitable approx

imation for the atomic form factor appearing in eqs. (4.38) and (4.39). Conveniently
simple expressions are obtained by using a form factor of the type

(4.44)

I
F(q) = I + (Rq/ñ)2' (4.45)

which corresponds to exponential screening and is known as the Wentzel form factor

[We27]. The screening radius R could be estimated, for instance, from the Thomas

Fermi model of the atom. This procedure was adopted by Schiff [Sc51] (see also ref.

[Ts74]). However, it is more expedient to keep R as an adjustable parameter to be

determined later from available high-energy data. Integrals (4.38) and (4.39) with the

Wentzel form fa�tor of eq. (4.45) can be evaluated analytically and yield the following
expressions for the screening functions in the high-energy limit [Ts74]:

«PI - 2 - 21n(1 + b2) - 4btan-l(b-l) + 4In(Rmc/ñ),
4

.

«P2 -

"3
- 21n(1 + b2) + 2b2 [4 - 4btan-l(b-l) - 31n(1 + b-2)]

+ 4In(Rmc/ñ),

(4.46)

(4.47)

where

b - Rqo
_

Rmc I €
=T

-

-ñ- 2/2 I - €. (4.48)

Bremsstrahlung emission is closely related to electron-positron pair creation (at least
within the Born approximation). In particular (see e.g. ref. [NH85]), the high-energy
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Bethe-Heitler DCS for a photon oí energy E-y to produce an electron-positron pair in

which the electron has a kinetic energy E = €E-y - mc2 can be written in the form

For exponential screening, the functions cl>I and cl>2 are given by expressions (4.46) and

(4.47) with
b - Rqo

_

Rmc mc' 1
=T

-

-ñ,-2E-y €(1- €)" (4.50)

Extensive tables oí pair-production total cross sections, evaluated from accurate atomic

form factors, have been published by Hubbell et al. [HG80]. These tables give the

separate contributions from pair creation in the field oí the nucleus and in that oí the

atomic electrons for Z=l to Z=100 and for photon energies from threshold up to 105

MeV. In the present work, we have taken advantage oí these tables and have determined
the screening radius R and the electron contribution parameter T/oo so that the pair
production cross sections oí Hubbell et al. [HG80] for 105 MeV photons (aíter exclusion
oí radiative corrections, which only amount to about 1% oí the pair-production cross

section) are exactly reproduced by eq. (4.49). The values oí R and T/oo so obtained

are given in graphical form in figs. 4.4 and 4.5. The screening radii in fig. 4.4 may be

compared with the value R = 0.81 Z-I/3ao derived by Schiff [Sc51] from high-energy
DCSs with Thomas-Fermi screening.
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Figure 4.4. Screening radius (in units of Z-1/3ao) for bremsstrahlung emission as a function

of the atomic number.
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Heitler DeS determined as explained in the texto
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To facilitate the random sampling of the energy loss W, the Bethe-Heitler DCS, eq.

(4.37), with the Wentze1 form factor and including a low-energy correction described

below, is written in the form

where

'PI (€)

'P2 (€)

- fl(b) + fo(€),
4

- 3"(1 - €) [f2(b) + fo(E)],

with

fo(€)

fl(b)

f2(b)

_ 41n(Rmcjii) + F2(Z, E) - 4fcB(€d - E),

_ <1>1 - 41n(Rmcjii) = 2 - 21n(1 + b2) - 4btan-1(b-1),
1

- 2" (3<1>1 - <1>2) - 4ln(Rmcjii)

- l- 2ln(1 + b2) - 6btan-1(b-1)

- b2 [4 - 4btan-1(b-1) - 3ln(1 + b-2)] •

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

€d, the cutoff energy loss for the Coulomb eorreetion, is defined by eq. (4.42) and

F2(Z, E) is the aforesaid low-energy correetion.

The Born approximation fails at low energies, where it systematically underestimates

the DCS. The term F2(Z, E) in eq. (4.53) has been introduced to compensate for this

fact. Al-Beteri and Raeside [AR89] have proposed a semiempirical formula, obtained

through a fit of experimental DCS data, whieh eontains a term with the same role.

Such a term serves to eliminate another undesirable feature of the DCS, eq. (4.51),
namely, that it becomes negative for some values of €. In the present work we use the

following correction term:

(
2 4

)
(1.26-0.93aZ)

F2(Z, E) = (2.04 + 9.09aZ) E(E�Cmc2) ,

where the numerical parameters have been determined by fitting the radiative stopping
power data of Berger and Seltzer [BS84,SB85] for E > 50 keV.

(4.56)

The total eross seetion for bremsstrahlung emission is infinite due to the divergenee
of the DCS for small redueed photon energies. Nevertheless,. the eross section for



4.3. RADIATNE LOSSES 121

emission oí photons with reduced energy larger than a given cutoff value We is finite.

The corresponding mean free path is

(4.57)

where fe = We/(E + mc2). The radiative stopping power and the energy straggling
parameter,

(4.58)

(4.59)

are both finite. The numerical evaluation oí these quantities solely requires a single
quadrature. The results presented below have been calculated by using the 20-point
Gauss method, complemented with a bipartition procedure to allow for error control,
with a relative accuracy oí 10-4•

The "scaled" Bethe-Heitler-Wentzel DCSs, (,8/Z)2WdO'�¡¡w /dW, for aluminium and

uranium and electrons with E = 1, 10 and 100 MeV are compared with the values given
by Seltzer and Berger [SB85] in figs. 4.6 and 4.7. The effect oí the Coulomb correction

is clearly shown by the discontinuity in the DCS for 10 and 100 MeV electrons in

uranium. In the vicinity oí this discontinuity, the Bethe-Heitler-Wentzel DCS still

provides a íairly good approximation. The modification introduced by the low-energy
correction F2(Z, E) is indicated in fig. 4.7 for 1 and 10 MeV electrons. The effect oí this

correction is a global shift oí the scaled DCS to higher values, which clearly improves
the DCS. Differences between the present DCSs and those of Seltzer and Berger are

significant only for energies near and below 1 MeV.



122 CHAPTER 4. ENERGY L055 OF FA5T ELECTRON5

20

Al (Z=13)

�

..o

E
e

15
........,

?;
"U
<, 10
b
"U

?;
N

5
�

N
<, MeV
� 10 O

O ��--������--��--��

0.0 0.2 0.4 0.6

W/E
0.8 1.0

Figure 4.6. Scaled bremsstrahlung DCSs, (¡3/Z)2Wd(j�lÍw/dW (in millibarn = 10-27 cm2),
for aluminium and electrons with E = 1, 10 and 100 MeV. The continuous curves are the

Bethe-Heitler-Wentzel DCSs, eq. (4.51). Circles are data. from Seltzer and Berger's tables

[SB85]. Notice that the scale for each curve is the closest to its lettering.



4.3. RADIATIVE LOSSES 123

15

U (Z=92)
10

15

10
•

E=10 MeV
5

E=1 MeV
...
...

...
...

...
...

...
...

...
...

...

......
..

....

o

5
..

......
......

.........
-
......

......
-

.........

o ��--��--�--��--�--���

0.0 0.2 0.4 0.6

W/E
0.8 1.0

Figure 4.7. Scaled bremsstrah1ung DCSs for uranium and electrons with E = 1, 10 and

100 MeV. Details are the same as in fig. 4.6. The dashed curves for E = 1 and 10 MeV

are the Bethe-Heitler-Wentzel DCSs, eq. (4.51), without the low-energy correction, Le. with

F2(Z, E) = O. The discontinuity of the DCS originates from the Coulomb correction.
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Radiative stopping powers of aluminium, silver and gold for electrons are shown as

functions of the kinetic energy in fig. 4.8, which also includes the values given in the

tables oí Berger and Seltzer [BS84]. It is seen that stopping powers computed from

the Bethe-Heitler-Wentzel DeS, eq. (4.51), are in good agreement with the Berger and

Seltzer values for energies aboye 50 keV. For energies oí the order oí 100 MeV and

larger, the relative differences between our stopping powers and those of reí. [BS84] are
smaller than 1%.

10 3

�

O') 10 2

::t
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N

E 10O

>
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<;» 1

�
...

(f) 10 -1

Figure 4.8. Radiative stopping power, Sr/p (in eV/(J.Lg/cm2)), for electrons in aluminium,
silver (xl0) and gold (Xl02) as a function of the kinetic energy. The continuous and

dashed curves are results from the present model, with and without the low-energy correction

F2(Z,E) respectively. Circles are values from Berger and Seltzer's tables [BS84].
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For energies below '" 1 MeV, the present DCSs are not very accurate. However,

they are still useful for simulation purposes since, for these energies, the radiative

stopping power becomes much smaller than the collision contribution (d. figs. 4.1 and

4.8). When more reliable values of the radiative stopping power are available (e.g.
from ref. [BS84]), the accuracy of our model could be somewhat improved by simply
renormalizing the Bethe-Heitler-Wentzel DCS to reproduce these stopping powers.

The DCS for positrons reduces to that of electrons in the high-energy limit, but it
is smaller for intermediate and low energies. According to Kim et al. [KP86], the

DCS for positrons can be obtained by introducing a simple correction factor in the

Bethe-Heitler-Wentzel DCS (for electrons):

d (+) d (-)
O'BHW

= F, (Z E) O'BHW
de p, df' (4.60)

The function Fp (Z, E) can be estimated by interpolation from the table of values given
in ref. [KP86]. In the calculations we use the following approximation:

Fp(Z, E) = 1 - exp( -0.0993t + 0.0144t2 - 0.00316t3), (4.61)

where

( 106 E )t = In 1 +
Z2 mc2 ' (4.62)

which reproduces the values of the table to an accuracy of about 1%. Radiative stopping
powers of aluminium and silver for electrons and positrons are plotted in fig. 4.9,

together with values from Berger and Seltzer's tables [BS84].
The usual practice in Monte Carlo simulations is to consider an energy Ioss threshold

,

We for hard bremsstrahlung emission of the order of a few keV or smaller. The photons
emitted in soft events are then assumed to be locally absorbed and only the emission

of photons with energy higher than We is simulated in a detailed way. Soft events can

then be treated with the continuous slowing down approximation, preferably modified

to include an approximate description of the corresponding energy straggling. The
random sampling of the energy of hard bremsstrahlung photons can be performed
analytically (see below), and the restricted stopping power and straggling parameter
due to soft photon emission (f < fe) can also be computed easily.
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Figure 4.9. Radiative stopping power for positrons and electrons in aluminium and silver

( x 10) as a function of the kinetic energy. The continuous and dashed curves are the results

from the present model for positrons and electrons respectively. Circles and squares are values

from Berger and Seltzer's tables [BS84].
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4.4 Random sampling algorithms

One important advantage of the present DCSs is that they permit the random sampling
of the energy loss W in hard events (W > Wc) by using purely analytical methods.
This feature is of great value in reducing both memory requirements and numerical

uncertainties in the Monte Cado simulations. The sampling algorithms described here

are based on the composition and acceptance-rejection methods [Ru81,KW86]. Similar

procedures, for simpler or less versatile DCSs, have previously been proposed by several
authors [BB86,NH85]. In what follows e stands for a pseudorandom number uniformly
distributed in the interval (0,1).

4.4.1 Energy loss in electron hard collisions

Let us consider the collisions of electrons with the ith oscillator. Notice that the energy

loss in distant collisions is W = W¡ (see eq. (4.31)), and hence, we only need to consider

close collisions. The probability distribution function (PDF) of the reduced energy loss

K = W/E in close collisions is given by (see eqs. (4.30) and (4.20))

Pc�-)(K) = K-2P(-)(E, W)B(K - Kc)B (� - K) , (4.63)

with s¿ = max(W¡, Wc)/E. Here, normalization is irrelevant.

We introduce the distribution

�(-)(K) = (K-2 + 5a)B(K - Kc)B (� - K) ,

!

(4.64)

It may be shown that �(-) > pc�-) in the interval (Kc, �). Therefore, we can sample
the reduced energy loss K from the PDF, eq. (4.63), by using the acceptance-rejection
method with trial values sampled from the distribution of eq. (4.64) and acceptance

probability pc�-) /�(-).
Random sampling from the PDF, eq. (4.64), can be performed by using the composition
method [Ru8!]. We consider the following decomposition of the (normalized) PDF, eq.
(4.64):

(4.65)

where

(4.66)
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are normalized PDFs in the interval (lI:c, �). Random va1ues of 11: from the PDF, eq.

(4.65), can be generated by using the following algorithm:

1. Samp1e e.

2. Set ( = (1 + 5all:c/2)e.

3. If ( < 1, deliver the value 11: = II:c/[l - ((1 - 2I1:c)].

4. If ( > 1, deliver the value 11: = II:c + « - 1)(1 - 2I1:c)/(5all:c).

The rejection a1gorithm for random sampling of 11: from the PDF, eq. (4.63), proceeds
as follows:

1. Samp1e 11: from eq. (4.65).

2. Generate e.

4. Go to step 1.

Notice that, in the third step, we accept the 11: value with probability pc�-) /ip(-), which
approaches unity when 11: is small.

The efficiency of this method, i.e. the probability of accepting the va1ue of 11: in each

trial, depends on the values of the kinetic energy and the cutoff reduced energy loss

II:c, as shown in table 4.3. Notice that, for a given energy and for not too 1arge values

of Wc, efficiency increases when Wc decreases.

Table 4.3. Efficiency (%) oí the random sampling algorithm oí the energy loss in close

collisions oí electrons and positrons, for different values oí the kinetic energy and the cutoff

energy loss II:c•

E (eV) II:c

0.001 0.01 0.1 0.25 DA

103 99.9 99.9 99.8 99.7 99.6

105 99.7 98 87 77 70

107 99 93 70 59 59

109 99 93 71 62 63
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4.4.2 Energy loss in positron hard collisions

To sample the energy loss in positron hard collisions, we use the algorithm described

in ref. [BB86] for generating random values from the Bhabha DCS. Here, however,
excitations of different shells (oscillators) are treated separately. The PDF of the

reduced energy loss I'ó- = WjE in close collisions with the ith oscillator is given by (see
eqs. (4.30) and (4.21))

(4.67)

with l'ó-c = max(W¡,Wc)jE as before. Again, normalization is not important.

Consider the distribution

(4.68)

It is easy to see that �(+) > Pc�+) in the interval (l'ó-c1 1). Therefore, we can sample I'ó- from

the PDF, eq. (4.67), by using the acceptance-rejectionmethod with trial values sampled
from the distribution of eq. (4.68) and acceptance probability Pc�+)j�(+). Sampling
from the PDF �(+) can be easily performed with the inverse transform method [Ru81].
The algorithm for random sampling from the PDF, eq. (4.67), is:

1. Sample I'ó- from the PDF, eq. (4.68), as I'ó- = I'ó-cj[1 - e(1 - l'ó-c)]'

2. Generate a new random number e.

4. Go to step 1.

The efficiency of this algorithm, for given values of the kinetic energy and the cutoff

reduced energy loss l'ó-c, practically coincides with that of the algorithm for electron

collisions described above, i.e. table 4.3 is also applicable to positrons.

4.4.3 Energy loss in hard photon bremsstrahlung emíssíon

The PDF for the reduced energy loss e = Wj(E+mc2) in hard bremsstrahlung processes
is given by (see eq. (4.51))

Pr(€) = ['PI (€)€ + 'P2(€);] e(€ - €c)e(€max - €), (4.69)
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where Emax = E /(E+mc2). Normalization is again irrelevant. Notice that the íunctions

ep¡(E), (i=1,2) attain their maximum values at Ee or ea (see eq. (4.42)).

The distribution oí eq. (4.69) can be rewritten in the form

(4.70)

where

F1(E) = ep1(E)/ep1,max,
2

1I"1(E) = 2 2E,
Emax - Ee

F2(E) = ep2(E)/ep2,max,
1 1

1I"2(E) = -,
ln(Emax/ Ee) E

(4.71)

and
. _ { max{ep¡( Ee), ep¡(Ed)}

if ea > Ee,
epl,max -

() if <epi €e 1 Ed _ Ee·

The íunctions 11"¡(€) are normalized PDFs in the interval (€e, Emax).

(4.72)

Random values

oí E can be easily sampled from these distributions by using the inverse transform

method. In the interval (Ee, Emax), the values oí the íunctions F¡(€) are positive and less

than unity, i.e. they are valid rejection íunctions. The generation oí random values oí E

according to the PDF, eq. (4.70), can then be carried out by combining the composition
and rejection methods [BB86,NH85]. The algorithm to sample € proceeds as follows.

1. Sample the value oí the integer i (=1,2) according to the discrete probabilities
p(l) = aI/(a1 + a2) and p(2) = a2/(a1 + a2).

2. Sample E from 1I"¡(E) according to the formulas (inverse transíorm method):

€ = { [E� + e' (E�ax - €�)11/2 if i=l,

Ee(€max/ ec)e if i=2.
(4.73)

3. Generate a new random number e.

4. If e < F¡(e), deliver E.

5. Go to step 1.

The efficiency oí this algorithm depends on the values of E and Ee and, for a given
energy and a value oí €e which is not too large, it increases when €e decreases (see table
4.4). In practical simulations, efficiencies of about 90% may be obtained by using a

value oí the cutoff energy We oí the order oí a íew keV.
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Table 4.4. Efficiency (%) of the random sampling algorithm of the photon energy in hard

bremsstrahlung emission for electrons and positrons, in gold for different values of the kinetic

energy and the cutoff photon energy ec•

E (eV) fc

10-6 10-4 0.01 0.1 0.5

- 105 97 96 92 89 92

107 91 87 75 63 58

109 93 89 81 72 74

4.5 Soft energy 1088 events

The scattering model described in the previous sections can be directly used in detailed

Monte Carlo simulations of electron transporto However, at high energies, the number

of scattering events in a particle track is enormous so that detailed simulation is not

feasible. The majority of the high-energy simulation codes currently available use

condensed Monte CarIo schemes which take advantage of multiple scattering theories

to avoid the detailed simulation of all the scattering events.

For the present purposes, it is convenient to classify the energy loss events into "hard"

and "soft" events, according to the magnitude of the energy loss W. To this end we

introduce cutoff energies Wcc and Wcr which delimit the energy loss intervals corre

sponding to soft and hard events for collision and radiative losses respectively. These

cutoff energies can be arbitrarily selected. It is evident that, by using large enough
values of Wcc and Wcr, the number of hard events per particle track can be made small

enough to permit their detailed simulation.

The stopping power and the energy straggling parameter due to soft events are given
by

(4.74)

and

(4.75)

where "col" and "rad" stand for collision and bremsstrahlung emission respectively.

In the existing high-energy simulation codes (see e.g. refs. [NH85,BB86,IL86]), soft

energy loss processes are described with the continuous slowing down approximation,
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i.e. the energy 1055 due to soft events in a path length s is obtained as Ss(E)s and energy

straggling is neglected. This approach is well justified when the energy straggling due

to these processes is negligible as it happens when the cutoff energies Wcc and Wcr

are both small so that the fraction of the stopping power due to soft collisions is also

small. As a rule of thumb, this method leads to accurate energy distributions only
when the average number of hard inelastic events is "statistically sufficient" [NR85],
i.e. a few tens along each track in the considered medium. To improve the description
of energy straggling one should reduce the cutoff energies, but this enlarges the number
of hard inelastic events to be simulated along each track and hence the simulation time

mcreases.

The DeSs described in the previous sections yield analytical expressions for the re

stricted stopping power and energy straggling parameter due to soft collisions. Knowl

edge of this latter quantity opens up the possibility of accounting for the energy strag

gling effect due to soft events, thus going beyond the continuous slowing down approx

imation in the description of soft processes. This is an important point, since then

one could considerably increase the cutoff energies Wcc and Wcr, and hence reduce the

simulation time, without distorting the energy distribution.

Let us consider that an electron or positron travels a length s in a medium where

it loses energy only through soft processes. We assume that the average energy loss

Ss(E)s is much less than the initial energy E. 1et F(W; s) denote the probability dis

tribution function of the energy loss W after the path length Sj this distribution can be

approximated as a function of the stopping power Ss(E) and the straggling parameter

O;(E) by using the standard method described in the references [1a44,B150]. F(Wj s)
satisfies the following transport equation [1a44]

(4.76)

with the initial value F(W; O) = 8(W). Here, dO'soft/dW stands for the DeS for

soft processes (inelastic collisions and bremsstrahlung e:mission). The solution of this

integral equation may be obtained by taking the Fourier transform with respect to W

F(w;s) = ¡_: exp(-iwW)F(Wjs)dW.

Eq. (4.76) transforms to

ap(w; s) A roo . dO'soft(W') A

as =F(Wjs)N}o [exp(-zwW')-l] dW' dW'=-F(w;s)g(w) (4.78)

(4.77)
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with F(wj O) = 1. It follows that

F(Wj s) = exp[-g(w)s] (4.79)

and, taking the inverse Fourier transform,

1 looF(Wj s) = - exp[iwW - g(w)s] dw.21l' -00
(4.80)

As only comparatively small energy losses are involved in each single event, we may

expand the exponential in

g(w) = N [00 [1 _ exp( -iwW')] dO'soft(W') dW'
Jo dW'

and write this function in terms of the moments of the DCS dO'soft/dW, i.e.

(4.81)

(4.82)

Now, we proceed as in the Blunck and Leisegang theory [BL50] and neglect the terms

in the series eq. (4.82) with n > 2. This leads to

g(w) � N (iSs(E)w + �0;(E)W2). (4.83)

As long as we are only considering low energy loss processes, this approximation is well

justified (notice that this is not the case when dealing with soft and hard processes

together). Introducing eq. (4.83) in eq. (4.80) and using the convolution theorem, it is

easily seen that the resulting F(Wj s) distribution is

F(Wj s) = b'(W - Sss) ® N(O, O;s) = N(Sss, O;s), (4.84)

where N(¡.t, 0'2) stands for the normal distribution with mean ¡.t and variance 0'2. It is

worth noting that the energy loss distribution in the continuous slowing down approxi
mation is b'(W - Sss). When energy straggling is included, the energy loss distribution

eq. (4.84) results from the convolution of the continuous slowing down approximation
distribution and a normal distribution with mean zero and variance O;s. Thus the

straggling parameter O� gives the increase of variance per unit path length due to soft

processes.

The energy loss distribution will be accurately given by eq. (4.84) only if: 1) the average

energy loss Sss is small enough for the DCS dO'soft/dW to be nearly constant in the

path length s and 2) the approximation eq. (4.83) holds. This last requirement implies
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that the cutoff energies Wcc and Wcr for delta ray production and photon emission

have to be relatively small, otherwise, the actual distribution of soft energy losses after

a given path length may depart substantially from the gaussian profile. In practice,
the distribution eq. (4.84) approaches the actual distribution when its mean value Sss
is much smaller than the initial energy E and its standard deviation (0;8)1/2 is much

smaller than Sst (otherwise there is a finite probability of negative energy losses). Both
conditions are satisfied for path lengths 8 such that

(4.85)

4.6 Conclusions

We have presented approximate analytical formulas for the collision and radiative DCSs

suitable for use as the basis of Monte Carlo simulation of electron and positron trans

port. The reliability of these DCSs has been analyzed and algorithms for their imple
mentation have been described.

The range of validity of the collision DCS is much wider than for previous approaches.
The collision stopping power is accurate for energies down to a few hundred eVo Mean

free paths are also predicted to a reasonable accuracy and the same is expected for other

integrals of the DCS (e.g. the energy straggling parameter). The basic parameter in

the DCS is the mean excitation energy for which we have used the values given by
Berger and Seltzer [BS84]. Of course, if more accurate values of the mean excitation

energy become availablein the future, the DCS could be updated by simply introducing
these values. The main limitation of our collision modellies in the discrete nature of

the DOS, which has direct consequences on the fine details of the simulated energy

loss spectrum. In particular, our DCSs should not be used to simulate highly resolved

energy spectra where the details oí the DOS may become prominent.

The Bethe-Heitler-Wentzel DCS, eq. (4.51), provides a reliable description of brems

strahlung emission for electrons and positrons with kinetic energies aboye a few MeV.

For lower energies, the renormalization procedure based on available stopping powers

can be used to improve it. As the contribution oí radiative losses to the global stopping
power is very small at these energies, the present approach meets all the requirements
oí a general purpose simulation.

The random sampling algorithms proposed here are purely analytical and, thus, they
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are virtually exacto Furthermore, only the parameters which determine the DeS have

to be stored during the simulation. The efficiencies oí these algorithms increase when

the threshold energy Wc decreases (except when Wc takes anomalously large values),
and eventually approach unity.
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Conclusions

Partial wave DCSs for elastic scattering of electrons and positrons by screened Coulomb
fields have been calculated for projectiles with kinetic energies up to '" 20 MeV and

20 elements. These accurate DCSs have been used to derive a formula that allows the

calculation of elastic scattering data needed for Monte Carló simulation. This formula,
which includes finite nuclear size effects, is valid for electrons and positrons with kinetic

energies larger than about Z keV.

A new Monte Carlo algorithm to simulate multiple elastic scattering, which overcomes

most of the limitations of the currently used algorithms, has been described. This algo
rithm may be applied to any single scattering law and leads to simulation results that

are essentially identical to the exact solution of the transport equation. When com

bined with a Wentzel DCS, the simulation procedure may be stated in a completely
analytical formo Simulation with a Wentzel model yields angular distributions as ac

curate as those obtained from the theory of Moliere, and spatial distributions more

accurate than those obtained from existing Monte Carlo codes based on this theory.

Inelastic scattering of low-energy electroas in solids has been considered on the basis

of an optical-data model that includes exchange effects through a modified Ochkur

approximation. Our calculations reveal a certain dependence of the calculated mean

free paths and stopping power on the extrapolation algorithm.

Inelastic collisions oí high-energy electrons and positrons are described by using the

Born approximation on the basis oí a simple generalized oscillator strength model. Our

approach also accounts for the so-called shell corrections and Sternheimer's density
effect correction. Bremsstrahlung emission has been described by a modified Bethe

Heitler formula which includes screening effects, the Coulomb correction and a low

energy correction. These differential cross sections allow the random sampling of the

energy loss and the scattering angle in each inelastic or radiative event in an analytical

137
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way.



Appendix A

Legendre functions of the second

kind

The transport coefficients for the WentzeI differential cross section, eq. (2.23), can be

expressed in terms of the Legendre functions of the second kind Ql(X) [AS74] as

_ 1 - 2A(1 + A) JI Pl(cos X) d(cos X)
-1 (2A + 1 - cos x)2

- 1 -l [Ql-l(l + 2A) - (1 + 2A)Ql(1 + 2A)] . (A.1)

This important result follows from eq. (7.228) in ref. [GR80] and from the properties
of the Legendre functions.

The simplest method to evalúate the Legendre functions of the second kind is to use

their recurrence relation

(A.2)

For x < 1, Ql(X) can be generated starting from

1 IX+ 11Qo(x) = -In -- ,
2 x-1

1 IX + 11Ql(X) = x-In -- -1
2 x-1 (A.3)

and applying eq. (A.2) for increasing values of l. However, for x > 1, the recurrence re
lation (A.2) should be used only for decreasing values of.e to avoid the loss of significant
figures [AS74].
A convenient method to compute all the Ql(X) for x > 1 takes advantage of the relation

(AA)

139
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which holds asymptotically for large fj here 1(0 stands for the modified Bessel func

tion. Using eq. (AA) we can estimate the values of QL(X) and QL-l(X) where L is

a large enough value for eq. (AA) to be approximately valid, but not much larger
than 801 cosh-1(x) to avoid computer underflows. Approximate values of Ql(X) for
f = 0,1, ... , L - 2 are then generated by applying eq. (A.2) for decreasing values of f.

Let Ql(X) denote these quantities. Accurate values of Ql(X) are finally obtained as

Ql(X) = Ql(x)Qo(x)IQo(x). (A.5)

Let us set x = 1 + 2A with A > O, and consider the case A � 1. From the relation [ .. ]

1

(X + 1)
l 1

Ql(X) = -2Pl(X)In -- - L: -Pm-¡(x)Pl-m(x)
X -1 m=l m

(A.6)

and the limiting form of the Legendre polynomials [ .. ]

(A.7)

it follows that

where
l 1

<p(f) = L: -.
m=l m

(A.9)

Introducing the result (A.8), the expression (A.1) simplifies to

(A. 10)
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which holds asymptotically for large ti here ](0 stands for the modified Bessel func

tion. Using eq. (AA) we can estimate the values of QL(X) and QL-l(X) where L is

a large enough value for eq. (AA) to be approximately valid, but not much larger
than 80j cosh-1(x) to avoid computer underflows. Approximate values of Qt(x) for
l = 0,1, ... ,L - 2 are then generated by applying eq. (A.2) for decreasing values of l.

Let Qt(x) denote these quantities. Accurate values of Qt(x) are finally obtained as

Qt(X) = Qt(x)Qo(x)jQo(x). (A.5)

Let us set x = 1 + 2A with A > O, and consider the case A � 1. From the relation [ .. ]
.

1 (X + 1)
l 1

Qt(x) = 2"Pt(x)In -=-1
- L -Pm-l(X)Pt-m(X)

X m=l m
(A.6)

and the limiting form of the Legendre polynomials [ .. ]

(A.7)

it follows that

where
t 1

q>(i) = L -.
m=lm

(A.9)

Introducing the result (A.8), the expression (A.l) simplifies to

(A.I0)



Appendix B

Random sampling of angular
reflections in artificial soft collisions

To simulate the angular deflection in artificial soft collisions we must generate random

values of ¡.¡, = (1- cos (})/2 in the interval (0,1) from a distribution P6(¡'¡') satisfying the

conditions given by eqs, (2.90), i.e. the mean (¡.¡,) and variance var(¡.¡,) = (¡.¡,2) - (¡.¡,)2
of this distribution are fixed by the step length and may take quite arbitrary values.

Moreover, it is necessary that random values of ¡.¡, may be generated in a simple and fast

way. Standard distributions, such as the beta distribution [AS74], are not edequate
since available sampling algorithms are too involved [Ru81]. A distribution that meets

our needs was described in a previous work [FM91]; it is given by

.!. 1 - (¡.¡,) (L)
{1-a)/a

a (¡.¡,) (¡.¡,)
if ¡.¡, � (¡.¡,)

1 (¡.¡,) (1
- ¡.¡, )

(1-a)/a

a 1 - (¡.¡,) 1 _ (¡.¡,)
if ¡.¡, > (¡.¡,)

with a ;::: O. This distribution already satisfies the conditions

(B.1)

(B.2)

irrespective of the value of the parameter a. This parameter is determined by requiring
that

101 ¡.¡,2P6(¡'¡') d¡.¡, = (¡.¡,2).
From this last condition it follows that

(B.3)

3a + [a(a + 8)]1/2
a = ----'''--'-----'-''--

4(1 - a)
with _ var(¡.¡,)

a =

(¡.¡,)(1 - (¡.¡,))
. (BA)
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Random values oí ¡J. distributed according to Ps(¡J.) can be easily generated by using
the inverse transíorm method [RuS1], i.e. each new value oí ¡J. is obtained as the unique
root oí the equation

(B.5)

where e is a pseudo-random number uniformly distributed in the interval (0,1). This

equation can be solved analytically and yields the following sampling formula

{ (¡J.) [e/(1 - (¡J.))¡a
¡J. =

1 _ (1- (¡J.)) [(1- e)/(¡J.)¡a

if e < 1 - (¡J.)

if e � 1 - (¡J.)
(B.6)



Appendix e

Folding Theorem

Let us assume that a particle moves in a medium where it can undergo elastic collisions
of two different types, saya and b, with single-scattering angular distributions J(a) (9)
and f(b)(9) respectively. For instance, these distributions may correspond to scattering
by two different kind of atoms or to soft and hard collisions. Now consider that a

particle, which initial1y moves in the direction 9 = 0, suffers a collision of type a and

a collision of type b. After the two collisions, the probability of finding the particle
moving in a direction in the solid angle dO about the direction 9, <P is given by

(C.1)

with

cos 92 = cos 9 cos 9l + sin 9 sin 9l cos( <PI - <p) (C.2)

The distribution f(a,b) is said to be the result of "folding" the distributions J(a) and

f(b). This operation will be denoted by the simbol 0,

f(a,b) = f(a) 0 f(b). (C.3)

Consider that the single-scattering distributions are expanded in the form of Legendre
senes

00

f(a) (9) = (47r) -1 I)2l + 1 )fJa)Pi(cos 9)
i=O

(CAa)

and
00

f(b)(9) = (47r)-II)2l + l)ft)Pi (cos 9)
i=O

(CAb)
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Using the addition theorem for spherical harmonics [Ar70].
1.

PI. (CoS (2) = PI.(cosO)PI.(COSOI) +2 ¿ Pt(cosO)Pt(cos (1) cos [m(</>- </>1)] (C.5)
m=1

and the ortogonality oí the Legendre functions, the integral in eq. (C.I) is easily eval

uated and directly leads to

00

¡(a,b) (O) = (47rrl ¿(2f + l )¡la) ¡?)PI. (cos O)
1.=0

(C.6)

i.e. the coefficients oí the Legendre expansion oí the resulting distribution are related

to those oí the folded single scattering distributions through

¡(a,b) _ ¡(a) ¡(b)
JI.

- JI. JI. . (C.7)

This result constitutes the folding theorem, which is the key stone oí the Goudsmit

Saunderson multiple scattering theory. From the folding theorem it follows that the

order in which the collisions a and b occur is irrelevant, i.e. J(a) ® J(b) = J(b) ® J(a).

In practical Monte Carlo simulations, the folding oí distributions corresponding to

successive collisions is performed by successively rotating the direction vector el =

(dx, dy, dz), whose coordinates are the direction cosines. The rotation matrix R(X, </»
oí each collision is determined by the polar and azimuthal scattering angles, which are

randomly sampled from the pertinent distribution. Let O and r.p denote the polar and
azimutal angles oí the initial direction

el = (sin O cos 'P., sin O sin r.p, cos O). (C.8)

To obtein explicitly the direction vector el' = R(X, </»el aíter the collision, we first note
that, if the initial direction is along the z-axis, the direction after the collision is

('inxoos
�

)sinx sin </> = Rz(</»Ry(X)z (C.9)
cosx

where z=(O,O,l) and

(
cosx O si�X ) (

cos� - sin </>

nRy(X) = -s�nx
1 and s, ( </» =

Si� </> cos </> (C.10)
O cosx O
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are rotation matrices corresponding to rotations oí angles X and </J about the y- and

z-axis respectively. On the other hand, the rotation Ry( -O)Rz( -c.p) transforma the

vector d into Z. It is then clear that the final direction vector d' can be obtained

by performing the following sequence oí rotations oí the initial direction vector: 1)
Ry(-O)Rz(-c.p), which transforms d into Zj 2) Rz(</J)Ry(X), which rotates Z according
to the sampled polar and azimuthal scattering angles; and 3) Rz( c.p )Ry(O), which inverts
the rotation oí the first step. Hence

(c.n)

The final direction vector is

(sin
X cos </J

)d' = R(X,</J)d = Rz(ep)Ry(B) sinx sin </J

cosx

(C.12)

and its direction cosines are

(C.13a)

(C.13b)

(C.13c)
These equations are not very stable numerically and the normalization oí d' tends to

drift from 1 after repeated usage. This must be remedied by periodically renormalizing
d'. Moreover, eq�. (C.13) become indeterminant when d, � 1, i.e. when the initial

direction is nearly parallel to the z-axis. This may be overcome by cyclic permutation
oí the x, y and z-axis.
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Appendix D

Useful kinematic relations

The kinetic energy E and the momentum p oí an electron or positron are related by

(D.1)

where m is the electron rest mass and e is the speed oí light in vacuum. It is convenient

to introduce the usual quantities

(D.2)

where v is the velocity oí the particle. We have

p = ¡mf3c. (D.3)

Inelastic collisions are determined by the scattering angle () and the energy loss w.

Let p and E be the momentum and the kinetic energy oí the electron just before

the collision, the corresponding quantities after the collision are denoted by p' and
E' = E - W respectively. Evidently, the maximum energy loss is W = E. The

momentum transfer in the collision is q = p - pi. It is customary to introduce the

recoil energy Q defined by [Fa63]

(D.4)

which, in the particular case where the collision is with a free electron at rest, coincides

with the recoil energy oí the target electron after the collision, i.e. Q = W (if the
projectile is an electron we consider it as distinguishable from the target electron).
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The kinematically allowed recoil energies are those in the interval Q_ $ Q $ Q+ with

end points given by eq. (DA) with cos a = ±1:

Q± = [c2(p ± p')2 + m2c4] 1/2 _ mc2

(D.5)

Notice that Q+ > W. When W � E, the expression for Q_ is unsuitable for numerical

evaluation since it involves the subtraction of two similar quantities. In this case it is

more convenient to use the approximation

(D.6)

Finally, we quote the non-relativistic limits of these relations:

Q = q2j2m, (D.7)
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