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ABSTRACT: We present a systematic computational study of Mg-MOF-74, CuBTC and 

zeolite 13X for CO2 separation from multi-component flue gas mixtures. The impurities’ 

impact was evaluated at the molecular level and process conditions. Adsorption isotherms 

and isosteric heats of adsorption of pure (CO2, N2, O2, H2O, SO2 and NO2) components, 

binary and ternary mixtures were obtained from Grand Canonical Monte Carlo 

simulations. Working capacities, purities, recoveries and exergetic performances were 

evaluated for VSA/PSA/TSA processes. Results show that NO2 has a negligible effect in 

the studied range. For H2O and SO2 the energy requirements are reduced as the impurity 

content increases and recovery and purity increase up to an “optimal” point where a 

competition for CO2 preferred adsorption sites produces a sharp drop in purity and the 

energetic index grows exponentially. The minimum energy requirement were obtained for 

TSA at a desorbing temperature of 443K in the three materials, with impurities of 1% H2O 

for CuBTC, 0.5% H2O for Mg-MOF-74 and 0.02% H2O for 13X, obtaining values of 1.13, 

0.55 and 0.58 GJ/tCO2, respectively. Hybrid VTSA processes with impurities content in 

the feed mixture and CCS specifications achieve energy performances of 0.36 GJ/tCO2 

and 0.46 GJ/tCO2 with Mg-MOF-74 and 13X, respectively. Mg-MOF-74 stands up as an 

attractive material for VTSA processes, presenting higher working capacities, purities and 

second-law efficiencies, with lower energy consumptions, also showing a better “buffer” 

behavior than zeolite 13X when trace impurities are present. This work represents the first 
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quantitative assessment of the process performance of MOFs adsorbents in swing 

adsorption process for CO2 capture considering impurities effects. Results reinforce the 

validity of molecular simulations for guiding the optimization of these processes. 

KEYWORDS: post-combustion CO2 capture; Mg-MOF-74 and CuBTC; zeolite; Monte 

Carlo simulation; impurities; swing adsorption processes. 
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1. INTRODUCTION 

In the context of sustainable development and clean energy production, one of the 

most important alternatives to mitigate anthropogenic CO2 emissions is to capture and 

separate CO2 (CCS) from diluted sources, such as gases emitted from fossil fuel 

combustion and other industrial processes.1,2 CCS is already done at different industrial 

processes, depending on the targeted final use of the CO2. In this sense, absorption by 

amine solvents has been long used in industry for gas removal due to the high CO2 

selectivity achieved at the chemisorption solvent process.3 However, chemical absorption 

is an energy intensive process in which more than 30% of total energy is consumed for 

evaporation/thermal regeneration: the amine absorption/stripping technology from a 

conventional coal-fired power plant requires around  3-4 GJth/tonne-CO2 4 with an overall 

cost of the capture process between 51–82 US$/tonne-CO2.5 Besides, this process presents 

some disadvantages such as low contact area between gas and liquid, losses due to 

evaporation and tendency to induce corrosion and degradation in the presence of 

oxygenated compounds, among others.6 Hence, finding alternative methods for efficiently 

separating CO2 from a gas stream at a large scale remains an area of active research.  

Among the alternative methods for CO2 separation, the selective isolation of the 

gases near room temperature, known as Swing Adsorption Processes, can reduce the 

dependence of the less efficient energy processes in specialized applications and 

represents a revolutionary advance in order to achieve a more dynamic production at 

industrial level. These swing adsorption cycles have attracted a great attention since the 

theoretically minimum energy required for recovery of CO2 from a flue gas and 

compression up to 150 bar is about 0.75 GJ/tonne-CO2.5 
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 In order to develop efficient adsorption processes, an appropriate adsorbent 7,8 

should satisfy the following conditions: (1) high CO2 adsorption capacity, (2) high CO2 

selectivity, (3) low heat capacity, (4) low-cost raw materials, (5) fast kinetics and (6) 

thermal, chemical, and mechanical stabilities under extensive cycling and impurities. A 

variety of solid adsorbents have been proposed to take into account structures and 

compositions, adsorption mechanisms and regeneration. Traditionally, both zeolites and 

activated carbons have been used for gas adsorption and separation. For instance, zeolite 

13X provides high CO2 adsorption capacity at room temperature although high energy 

requirements can be needed for the regeneration of the absorbent.9 

Metal-Organic Frameworks (MOFs) have been one of the fastest growing fields in 

chemistry and materials science during the past decades, with the number of publications 

growing exponentially.10 MOFs present a vast structural and chemical diversity, allowing 

potential applications in gas storage, ion exchange, molecular separation and 

heterogeneous catalysis,11,12,13,14 as well as promising alternatives adsorbents for carbon 

dioxide capture application.15,16,17  

The adsorption capacity of MOF materials at higher pressures is much greater than 

that observed in benchmark zeolite 13X. Several authors18,19,20 have reported MOFs with 

high CO2 adsorption capacity. Among them, CuBTC or HKUST-1 [Cu3(BTC)2(H2O)3, 

(BTC: benzene-1,3,5-tricarboxylate)], first reported by Chui et al., 21 is one of the most 

studied MOFs for gas adsorption and storage. The reported CO2 adsorption capacities are 

in the range between 8.0 mol/kg and 10.2 mol/kg at 298K and 15bar.18,22 Differences are 

due to slightly different structural properties depending on the synthesis method.23 An 

interesting contending, especially at lower pressures, is the so-called Mg-MOF-74.24 This 

MOF currently displays one of the best adsorption performances for many gas molecules, 

with CO2 uptakes as high as 8.1 mol/kg at 298 K and 1.0 bar. Such a high performance for 



 

 

6 

CO2 capture is mainly attributed to strong interactions between CO2 molecules and metal 

sites in the framework.25,26 

A large number of MOFs studies have examined single-component CO2 

adsorption,7,15 but limited amount of binary mixtures and multi-component calculations 

with MOFs have been published27,28,29 providing limited data to be used for process design 

and integration at industrial conditions. In addition, only few studies have been devoted to 

the effect of moisture and/or impurities.30,31,32,33,34,35,36,37,38 Those contaminants may 

significantly influence the performance of the adsorbent material.39,40 For instance, 

Yazaydin et al. 30 reported CO2 uptake and selectivity over N2 and CH4 in CuBTC, which 

significantly increased by the presence of water molecules coordinated to open-metal sites 

in the framework. Also, Liu et al. 28 studied adsorption equilibrium of CO2/H2O vapor and 

rates of CO2 adsorption in CuBTC and Ni/DOBDC. Further efforts at understanding the 

effect of water on CO2/N2 separations in MOFs have more recently focused in Mg-MOF-

7425,41 with encouraging results related to its implementation in industrial processes. In 

addition, not only high CO2 capacity, but also the resistance to flue gas components such 

as SO2 and NOx is quite important for a good sorbent for industrial 

applications.31,32,37,42,43,44,45 However, to our knowledge, a systematic study on the effect of 

co-existing impurities in the mixture behavior and the quantitative evaluation of these 

changes in the energetic performance of the process under operational conditions has not 

been performed yet, which is the purpose of this work.  

In general, and thanks to the high speed of today’s computers, Grand Canonical 

Monte Carlo (GCMC) simulations can be used as a screening method for adsorption 

properties, providing valuable data such as uptakes, heats of adsorption and mixture 

behavior.19,46,47 Hence, the goal of this study is to understand and quantify the influence of 

impurities on the energy requirements for capture and separation of CO2 in post-
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combustion mixture using CuBTC and Mg-MOF-74, compared to zeolite 13X. The 

election of these two MOFs is based on previous encouraging results obtained by us48 and 

some other authors24,28, and also on their commercial availability nowadays of these 

adsorbent materials. Zeolite 13X is used for comparison as a benchmark because of its 

industrial use49.  

The study has been performed in a systematic way. First GCMC simulations were 

used to evaluate adsorption capacities and isosteric heat distributions at an early stage of 

the process design. The force fields used for these simulations were conveniently validated 

with experimental data from literature in order to determine the accuracy of the model for 

pure components as well as the quality of the predictions for multicomponent mixtures. 

The effect of water and other coexisting impurities such as SO2 and NO2 traces in flue gas 

on CO2 separation performance were quantified at different concentrations. Thus, the most 

suitable operating conditions for separation by swing adsorption processes for each 

material were found by calculating working capacities at process conditions, and 

complemented with energetic requirements evaluation. Finally, the VSA, PSA and TSA 

processes (and combinations of them) were compared and assessed based on equilibrium 

process parameters such as purity, recovery and exergetic analysis. Conclusions are 

presented in the final section. 

 

2. METHODOLOGY  

2.1. Adsorbent structures 

Figure 1 shows a 2D projection of the crystallographic structures of the three 

adsorbents studied in this work: CuBTC, Mg-MOF-74 and zeolite 13X, generated for a 
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similar simulation box with dimensions ~30Å (size pores of the materials can be seen in 

Figure S1 of the Supplementary Material).  

In the CuBTC framework, two octahedrally coordinated Cu atoms are connected to 

eight oxygen atoms of tetra-carboxylate units. Each benzene-1,3,5-tricarboxylate (BTC) 

ligand holds three Cu-paddle wheels forming two different microporous sites within the 

framework: a system of tetrahedral-shaped cages accessible through small windows 

(~3.5Å in diameter) and large cavities connected through square shaped windows with a 

diameter of ~9Å.50 The partial positive charges on the metal sites in CuBTC are 

responsible for enhancing adsorption properties, as previously discussed in literature.51,52  

Mg-MOF-74 (also known as CPO-27-Mg or Mg2(DOBDC)), contains 2,5-dioxido-

1,4-benzenedicarboxylate (DOBDC)53 ligands and forms honeycomb-like structures with 

large one-dimensional pores of approximately 12Å diameter. Further, this MOF is based 

upon helical chains of an octahedral (consisting of Mg2+−O coordination) that are located 

at the intersections of the honeycomb. Each Mg2+ ion in the structure bears an open-metal 

site, which is a highly favorable sorption site for various guest molecules. 
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Faujasite type zeolites are aluminosilicates classified as microporous materials 

with pore diameters between 6 and 12Å. Zeolite 13X, the most used faujasite structure has 

a molecular formula [Si104Al88O384]-88Na+88 for its crystal structure. Depending of the 

desired adsorption and catalytic performance, Si/Al ratio can be altered by randomly 

replacing aluminum atoms by silicon,54 but prohibiting Al-O-Al linkages in the zeolitic 

framework. The representative structure with Si/Al ratio = 1.18 (i.e., 88 aluminum atoms 

per unit cell) is used in this work. It should be noted that most of the sodium atoms are 

located in pores with size diameter smaller than 6Å, keeping the other pores available for 

adsorption. 

 

2.2. Simulation details 

Molecular models for the three adsorbent materials were taken from single-crystal 

X-ray diffraction structures reported in literature: CuBTC reported by Chui et al.,21 Mg-

MOF-74 from NMR spectroscopy by Queen et al.55  and zeolite 13X from Olson.56 

The structures were replicated and orthogonalized to facilitate simulations and 

subsequent analysis. Solvent molecules were deleted, providing the so-called activated 

structures. All adsorption simulations were performed using GCMC techniques 

implemented in the Materials Studio57 commercial software. GCMC simulations allows 

exchanging atoms or molecules with a reservoir at a constant temperature  , volume   

and chemical potential  .58 Then, the amount of molecules adsorbed was calculated using 

a statistically averaged approach after the equilibrium stage for every single pressure 

point, allowing the construction of adsorption isotherms.  

The common GCMC movements (i.e., insertions/deletions, translations and 

rotations) were attempted with equal probability to ensure microscopic detailed balance. 
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At each pressure (chemical potential) condition, 1.0x106 MC moves were performed, 

5.0x105 to equilibrate the system and then additional 5.0x105 MC moves were used for 

data collection (1.0x107 MC moves were used for simulations involving water). For more 

details on the implementations of the GCMC simulations for these types of studies the 

reader is referred to our previous work48 and references therein. 

All adsorbent frameworks, including the sodium cations of the zeolite, were treated 

as rigid structures with atoms fixed at their crystallographic positions. It should be noted 

that MOFs can be more flexible than zeolites, and several authors have explicitly 

considered the flexibility in their simulations.59,60 Nevertheless, it has been found that 

rigid structures are appropriate when predicting adsorption of small gas molecules at non-

extreme pressure conditions.61 

A force field model for gas molecules was used with rigid geometrical structures, 

where only the nonbonded interactions were taken into account. Moreover, the pairwise 

interactions between the framework atoms have been excluded, since the structure was 

treated as frozen. Hence, the total energy of the system was calculated as the sum of the 

adsorbate-adsorbent and the adsorbate-adsorbate interaction energies at each step, 

modeled as a combination of Lennard Jones (LJ 12-6) and Coulomb potentials: 

          
   

   
 
  

  
   

   
 
 

  
 

    
    

   
 (1) 

where     is the potential energy (or energy of interaction) between a pair of atoms   and   

at a distance    ;   ,    are the partial charge of atom   and  , respectively     and     are 

the LJ potential well depth and diameter, respectively, and    is the vacuum permittivity. 

Lennard-Jones parameters for zeolite and MOFs were taken from Watanabe et 

al.,62 DREIDING63 and UFF64 force fields. Charges for CuBTC, Mg-MOF-74 and zeolite 
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13X atoms were obtained from the works of Castillo et al.,33 Pham et al.65 and Jaramillo et 

al. 66, respectively. Parameters for gas molecules were taken from the literature in a 

transferable manner, allowing accurate reproduction of the condensed phase properties.67 

CO2, N2 and O2 were modeled using the TraPPE force field:68 CO2 molecules were 

modeled as rigid and linear. A linear three-site model was also used for the diatomic N2 

and O2 molecules, with partial charges at the atoms and at the center of mass (fixed bond 

lengths of 1.16 Å, 1.10Å and 1.21Å for CO2, N2 and O2 molecules, respectively). One of 

the most accurate models for water, the TIP-4P/2005 model,69 was used to represent the 

H2O molecule in order to evaluate the moisture effects in the mixture, while NO2 and SO2 

molecules were modeled from the works of Ketko et al.70 and Bourasseau et al.71 

respectively. 

The full set of van der Waals parameters used is listed in Table S1 (See 

Supplementary Material). A cutoff radius of 12.5Å was applied to the Lennard–Jones 

interactions, and the long-range electrostatic interactions were calculated by using Ewald 

summation. Lorentz–Berthelot combining rules were used to calculate the 

adsorbate/framework and the Lennard–Jones crossed parameters, and the Peng-Robinson 

equation of state 72 was used to relate pressure with chemical potential. 

The force fields were conveniently validated with adsorption isotherms 

experimental data from literature (when available) in order to determine the accuracy of 

the model for pure components adsorption isotherms calculated by GCMC (represented as 

excess amount adsorbed), as well as the quality of the multicomponent mixtures 

predictions.  

 

2.3. Adsorption isotherms and related parameters 
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In addition to adsorption isotherms, GCMC simulations were also used to calculate 

other key properties for adsorption processes. The isosteric heat of adsorption,    , is one 

of the most important thermodynamic quantities for understanding the thermal effects 

related to adsorption and the cost of desorption/regeneration. The isosteric heat depends 

on the surface coverage, and from energy/particle fluctuations using molecular 

simulations,     can be calculated as: 73 

       
            

          (2) 

where  ,   and   stand for the total potential energy of the system per molecule, the 

number of molecules adsorbed and the gas constant, respectively. The brackets      

denote an average in the GCMC ensemble.  

Moreover, another very important property that is often used as evaluation criteria 

in Swing Adsorption processes is the working capacity (   ) of the targeted component in 

the mixture. The working capacity is generally more relevant than the total uptake, since it 

determines the amount that can be recovered -for further use- at each 

adsorption/desorption cycle. This quantity is defined as: 

                  (3) 

 

where   is the targeted component (e.g., CO2) and        and        are the uptakes under 

adsorption and desorption conditions (i.e., CO2 from mixture at adsorption condition, and 

almost pure at desorption conditions). When the material is not highly selective for one 

component of the mixture -or the adsorbed composition is lowered due to poisoning by 

other component-, instead of simply using the amount removed from the adsorbent 



 

 

14 

material,       , from pure isotherms,24,74 a good option is to multiply this pure isotherm 

for the adsorbed molar fraction, as implemented by Prats et al.54 

2.3.1. Impurities  

Whereas CO2 and N2 account for about 90% of the flue gas composition and can 

reach up to 95-97% before entering its final separation stage,75 understanding the effect  of 

traces gases is critical to properly evaluate any material for use in a realistic CO2 capture 

process.7,76 If these unwanted species are not completely removed in previous separation 

stages, they can compete for the adsorption sites on the adsorbent material and hence, the 

adsorption properties and final performance can be drastically affected. According to this, 

studies on the influence of coexisting trace compounds in the mixtures or possible 

“poisoning” of the adsorbent materials allow assessing the final performance of the 

material at process conditions, where these impurities may be present. 

In order to quantify the effect of impurities on the performance of the selected 

materials for CO2 capture, simulations were carried out maintaining a CO2 composition of 

15% in the flue gas and varying for different impurities compositions (nitrogen was used 

as the surplus). Concentrations as high as 1% (i.e., 10,000 ppm) of H2O, SO2 and NO2 in 

the mixture were evaluated in order to magnify the effect of these traces in the flue gas 

may be present due to inefficiencies in the previous removal systems.  

 

2.4. Energy requirements for regeneration of the bed adsorber 

One of the requirements for the industrial application of these materials is to have 

an effective and less energy-consumed regeneration of the CO2 captured adsorbents. The 

most common regeneration techniques for swing adsorption processes include: (1) adsorb 
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at pressures above the atmospheric (PSA), (2) desorb at vacuum conditions (VSA) (3) 

desorb by increasing temperature (TSA) or (4) by using electricity (ESA), among others.77 

In order to assess the validity of the present study for practical applications, we provide 

next some insights into the understanding of the physical phenomena governing the 

behavior of the materials when adsorbing the different compounds present in the mixture, 

while including important equilibrium quantities often used as evaluation criteria in an 

early stage of design.78 

The simplest configuration was considered for the swing adsorption process, 

including only two fixed beds in parallel, also called the 4-step Skarstrom’s79 cycle. While 

one bed is adsorbing, the other bed is desorbing (without including heat integration, 

pressure equalization and purge/rinse steps). The shortcut method described by Chung et 

al.80 was adopted for the calculations, since it allows a simple description of PSA 

processes based only on equilibrium parameters obtained on the high and low pressure 

levels regardless of the rate. Chung et al.’s methodology is extrapolated to VSA and TSA 

processes in this study, serving as a screening tool in the early stage of the process design.  

Energy requirements for compression/vacuum, as well as for heating, were included as a 

way to represent the costs associated in the different processes. Global balances were 

performed at equilibrium adsorption and desorption conditions (non-differential, as the 

ones presented in the short-cut methods of Chan et al.81 and Joss et al.82). 

The adiabatic energy requirement for compression/vacuum was calculated in a 

similar way as Chaffee et al.83 and Riboldi et al.84 using the following equation: 

    
 

    
     

   
    

    
 
   
 

    (4) 
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where   = 0.85 (compressor/blower efficiency),   is the polytropic parameter (  =1.28 and 

1.40 for pure CO2 and air, respectively),    is the temperature,      is the pressure at 

adsorption conditions and      is the pressure at desorption conditions.  

  is the total number of moles where the work is effectuated, and varies from one 

process to the other. It should be noted that, depending on whether PSA or VSA processes 

are considered, the amount of pressurized or expanded substance differs. In VSA, the 

complete bed is subjected to a vacuum. Conversely, for PSA, the amount compressed will 

be higher and mainly depends on the working capacity of CO2 at the feeding stream 

conditions, since purge/rinse has not been taken into account in this study. Hence,   is 

calculated as follows for PSA and VSA processes: 

      
     

         
         

             
 

         

 (5) 

A value for void fraction of   = 0.4 (i.e.,   = (bulk density)/(framework density)) was used 

and a bed volume   of 1 m3. When comparing among different materials, both the total 

volume of the column and the fractional voidage were held constant. Therefore, the total 

mass of the adsorbents used is governed by the framework density of the adsorbent 

materials,   .  

The thermal regeneration energy,         , is the energy required for heating and 

desorption in TSA processes. This total thermal regeneration energy involves two main 

contributions: (i) the energy required to heat the adsorbent material, and (ii) the energy 

required to overcome the endothermic desorption process. This energy can be calculated 

as:85,86  



 

 

17 

                        
 

          (6) 

where    and       are the heat capacity of the adsorbent and the isosteric heat of 

adsorption, respectively. Note that       is often expressed as an average value for the 

entire surface coverage; we have used different values in this work depending on the 

amount adsorbed in each adsorption and desorption condition. Therefore            

becomes          
               

        . In addition, densities and heat capacities 

were held constant and taken from the work by Huck et al.85  

Moreover, thermal energy and electrical energy have been compared based on 

exergetic -energy quality- analysis. In this case, since thermal energy can be supplied in a 

power plant by diverting steam from the power cycle (thus reducing the power generation 

of the plant),          must be multiplied by the Carnot efficiency and the efficiency of 

the gas turbine.87,88 

Two additional equilibrium process parameters used in this work are recovery and 

purity: the first one is defined as the relationship between working capacity and the 

uptake, while purity is related to the working capacities of all components. 

Furthermore, it is known that for transportation through a pipeline network, CO2 

product stream must be compressed above 150 bar,89 which is generally accomplished 

through a multi-stage compressor train with intercooling to compress the stream. 

Transportation and injection costs have not been included as they are out the scope of the 

current study.  
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3. RESULTS AND DISCUSSION 

Results presented are divided into three parts: (1) simulations for pure components, 

validating the force fields and providing insights into the adsorptive capacity of the 

materials (2) simulations for CO2 in flue gas mixtures with and without impurities, 

assessing the effect of the impurities on the adsorption and selectivity, and (3) energetic 

performance calculations for different VSA/PSA/TSA conditions, quantifying the 

energetic requirement for each of the processes with the three materials and the specific 

impurities concentrations. 

 

3.1. Adsorption behavior of pure gases 

The accuracy of the force fields was first compared with experimental pure gas adsorption 

curves from literature.9,23,24,28,30,90,91,92,93,94 As shown in the Supplementary Material (see 

Figures S2 to S4), GCMC simulations agree with the experimental results, validating the 

force fields used and the simulation procedure followed. Note that simulated adsorption 

isotherms were mainly validated with experimental data for pure CO2, N2, O2 and water, 

while comparison with experiments was not completely performed for SO2 and NO2 due 

to lack of data.34,44 All force fields were used in a transferable manner for multicomponent 

mixtures, the predictions made for SO2 and NO2 might involve uncertainties. 

As can be inferred from Figures S2-S4 (Supplementary Material) pure adsorption 

isotherms in CuBTC and Mg-MOF-74 obtained with GCMC for water using the TIP-

4P/2005 do not adjust as well as nitrogen and carbon dioxide to the experimental data, 

issue previous found by Bahamon and Vega48 and Peng et al. 95 Nevertheless the TIP-
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4P/2005 is, among the available models for water at this level of approximation, the one 

that best describes the liquid–vapor density curve and the critical water conditions, 

capturing what should be observed in adsorption processes when the material is saturated, 

and condensation becomes important. Hence, the comparison is good enough to provide 

more than qualitative trends in all cases, allowing elucidating the influence on the process 

under real operating conditions. In addition, note that water molecules were not fixed into 

the CuBTC structure in the simulations, as done in previous studies by some other 

authors.30,33 

In terms of water stability, while CuBTC and Mg-MOF-74 were found to be 

highly stable in water vapor for some authors,96,97,98 other studies have observed a decrease 

in their specific surface area or water capacity at certain range of operation,41,99,100 

However, this should not be a limitation for the study carried out here, as most of the 

water should be separated in an earlier stage (only traces will remain), and the working 

operation composition is very low, up to 1% in the feed stream. 

Individual adsorption isotherms simulated for the studied compounds are provided 

in Figure 2. Values are presented in volumetric units as the true exchange between 

materials should not affect the dimensions of an operative adsorption column27,48 

(gravimetric comparison can be found in Figures S5 and S6 in the Supplementary 

Material). In order to make a realistic comparison for gas stream at process temperatures 

conditions, a stream at 313K (i.e. 40°C) was selected as the feed gas stream and these are 

the results presented from now on. As expected, the amount of CO2 adsorbed is higher in 

MOFs at higher pressures. The low pressure range is beneficial for zeolites which more 

easily attract the quadrupole of CO2. However when the operating pressure reaches values 
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above 5-10 bar, zeolite 13X shows lower uptake capacities than MOFs due to smaller pore 

volumes. 

The two MOFs frameworks have clearly different adsorption behavior: for 

instance, CO2 adsorption capacity for CuBTC shows poor performance at lower pressures 

but higher uptakes as the pressure increases (e.g., note that the uptake around 5-10 is very 

similar than in zeolite 13X and Mg-MOF-74). In contrast, Mg-MOF-74 exhibits 

exceptional CO2 storage capacity at low pressures and high pressures. It is known that N2 

and O2 molecules present weak interactions with zeolites and these two MOFs,31 awarding 

good selectivity towards CO2. Contrarily to the previously discussed compounds, 

simulations for water adsorption show that zeolite 13X is a more hydrophilic adsorbent 

than CuBTC and Mg-MOF-74. However, H2O adsorption reaches saturation in all three 

materials in the low pressure region, indicating a strong guest-host interaction for all of 

them. Moreover, it is also interesting to note that SO2 uptakes are also higher in MOFs 

than in the zeolite, and all materials have similar volumetric capacities for SO2 and CO2 

molecules at the highest pressure calculated in this work. A different effect is observed for 

NO2, where weaker interactions with the materials as compared to carbon dioxide were 

observed. 

Isosteric heats are related to the slope of the increasing part of the adsorption 

isotherms: a sharp increase at low pressures means high     values, while a small 

    value implies lower adsorption capacity for a given pressure, but better regeneration 

cost.101 The calculated isosteric heats of the pure components obtained by GCMC are 

comparable to those reported in literature: the simulated heats of adsorption in zeolite 13X 

were 39 kJ/mol for CO2, 20 kJ/mol for N2 and 82 kJ/mol for H2O. The experimental heats 

of adsorption are in the range between 40 and 45 kJ/mol for CO2,7,9,18,24,102 and between 70 
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and 80 kJ/mol (i.e. 1500-1800 BTU/lb) for water.103 The calculated      values for CO2, N2 

and H2O in Mg-MOF-74 were 46, 21 and 78 kJ/mol respectively, in good agreement with 

results available in the literature26,31,34 (45, 24 and 80 kJ/mol, respectively). Hence, a high 

similarity between zeolite 13X and Mg-MOF-74 with higher energy values is observed.  

Regarding the other two trace impurities considered in this work, DFT-based 

calculated isosteric heats for SO2
34 in Mg-MOF-74 suggest that our GCMC results 

underestimate SO2 adsorption at low pressures (e.g., a value of           75 kJ/mol, 

compared to our         obtained of 58 kJ/mol). The same underestimation is observed for 

NO2.34 However, to our knowledge, there are no experimental data to make a direct 

comparison for these two impurity traces and the calculated values. Alternatively, CuBTC, 

shows an isosteric heat value for CO2 30% lower than the one reported in zeolite 13X (i.e., 

25 kJ/mol) and higher capacities at higher pressures, becoming very attractive when 

regeneration costs are included in the study. A compilation of the calculated isosteric heats 

of adsorption for all species in all three structures can be seen in Figures S7 and S8 in the 

Supplementary Material, together with a brief explanation on the property behavior 

depending on the specific molecular interactions.  

Calculations of pure component behavior provide insights about how certain gas 

mixtures will behave, and hence, qualitative information can be extracted about the 

species that will imply more competitive effects when working with impurities. According 

to this, three different cases have been selected in this work: an impurity with much higher 

adsorption energy than CO2 (i.e., H2O), other with a slightly higher energy of adsorption 

than CO2 (i.e., SO2), and one that affects adsorption in a lesser extent (i.e., NO2). Although 

a prediction of the mixture behavior can be obtained by parametrization of the isotherms 

and the use of the Ideal Adsorbed Solution Theory (IAST),104 the applicability of the IAST 
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would fail when preferential location at the intersections of framework are present,105 as it 

is the case of zeolite 13X and Mg-MOF-74, two highly selective materials for CO2-over-

N2. Besides, there are many factors in mixtures able to alter the expected results from 

IAST due to interactions of new particles competing to be adsorbed, and which may 

provoke inhibition problems or, contrarily, to enhance adsorption, as it happens with some 

gases. This is one of the advantages of using GCMC simulations, as they allow calculating 

interactions between molecules in a direct manner, where competitions for adsorption are 

explicitly included, as will be discussed in the next sections. 
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3.2. CO2/N2 mixtures behavior without and with impurities 

In an industrial post-combustion stream, in addition to nitrogen, CO2 is 

accompanied by other compounds; hence, it is necessary to investigate the adsorption 

behavior in the presence of these contaminants for an accurate assessment of the 

performance of the material at process conditions. A typical composition for a post-

combustion flue gas from coal-fired power plant contains 70–75% N2, 15% CO2, 3-4 % 

O2, 5–7% water and traces of other species106 (500 ppm NOx and up to 2,000 ppm SO2 

when burning high-sulfur coals107). After previous impurity removal stages, the final 

temperature and pressure conditions are maintain close to 313-333 K and 1 bar, 

respectively, and some impurities remain as traces108. In this study, H2O, SO2 and NO2 

impurities concentrations were varied from a few tenths ppm up to 1%, keeping CO2 in 

15% and N2 as the surplus. Since oxygen showed very similar behavior than nitrogen 

when adsorbed onto all three structures, O2 was neglected for mixtures simulations.  

Figure 3 shows CO2 adsorption isotherms for CuBTC, Mg-MOF-74 and zeolite 

13X, and their different behavior under several evaluated conditions: as pure component, 

for binary mixture and for 0.1% (i.e., 1,000ppm) of impurity (H2O, SO2 and NO2) in the 

stream. Since water shows the strongest affinity, 0.01% H2O composition was also 

included. 

As shown by some authors, the presence of unsaturated metal sites in CuBTC 

enhances the separation of CO2 as water molecules coordinate with the metal clusters.30,32 

This behavior can be seen for the ternary mixture with 0.01% H2O in the flue gas, where 

the adsorption isotherm of CO2 in CuBTC shows an increase after a total water 

coordination at a pressure of 8bar (see Figure 3). Nevertheless, the induced enhanced 

selectivity results in competition sites between water and CO2, and finally, with more 
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water molecules adsorbed at higher pressures (e.g. at 20bar), the competition leads to the 

decrease of the CO2 adsorption capacity compared to the binary mixture. In addition, 

when CuBTC is exposed to 0.1% H2O, its CO2 adsorption capacity in mixtures 

significantly decreases. For instance, at 10bar the uptake reduction is about 55% (from 4.9 

to 2.1 kmol/m3).  

A complete different behavior is observed for zeolite 13X: as H2O molecules are 

pre-adsorbed in the pores, the CO2 capacity decreases with the decrease of adsorption sites 

available on the porous surface. At 0.1% H2O, the material becomes completely useless 

for CO2 separation: water precludes any adsorption of CO2 and N2. Conversely, 

compositions of water in the stream affect the CO2 uptake on Mg-MOF-74 in less extend 

than for CuBTC and 13X, being more notorious at higher pressures. For instance, for a 

mixture with 0.1% H2O in the flue gas, a visible reduction in the isotherm is obtained for 

pressures above 2bar. 

Regarding the other two impurities, SO2 reduces the CO2 capacity in 13X in 

greater manner than in the two MOFs structures, while the presence of NO2 in the 

mixtures has almost no effect in the adsorption process: the maximum reduction for CO2 

uptake is seen in CuBTC, where the value decreases from 3.5 kmol/m3 in the binary 

mixture to 3.3 kmol/m3 in the presence of 0.1% of NO2 at 10bar. 

As above-mentioned, the isosteric heat of adsorption is an important property to be 

considered to assess the performance of the materials. For multiple molecules adsorbed at 

different sites of the structure, relatively different energy values will be obtained for each 

one, allowing a sampling assessment. Therefore, to identify adsorption features on the 

frameworks, distribution profiles of the isosteric heats were calculated at pure and mixture 

conditions for the different gas molecules. 
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Figure 4 depicts the adsorption energy profiles for the different components 

studied in three ternary mixtures including impurities of H2O, SO2 and NO2, respectively, 

compared to those in the pure state. Note that the mean value of each dotted histogram is 

the value presented in section 3.1. A displacement to lower energies with respect to the 

pure isotherm values is observed in most cases. For instance, the mixture behavior of 

carbon dioxide on CuBTC shows a higher peak related to the adsorption in the octahedral 

side pockets. Furthermore, it is important to notice that the mean adsorption energy 

obtained for carbon dioxide in CuBTC with mixture including 0.01%H2O slightly shifts to 

higher energy values, reflecting the improved adsorption by the presence of water. 

Furthermore, SO2 presents a radical change in energy distribution in CuBTC that can be 

explained by its competition with CO2, being this MOF more attractive to the sulfur 

compound. 

A shift in the maximum peak is also detected for N2 in zeolite 13X. As two 

adsorption sites are differentiated for nitrogen in this material, this shift means a change in 

pore sizes where the molecule is adsorbing: N2 prefers to be adsorbed in the interstices 

with intermediate diameter where it has greater interaction with the material. However, 

with the inclusion of competing species, nitrogen molecules tend to locate in the larger 

pores. Since CO2 molecules are able to compete against water in a mixture with 0.01% 

H2O in zeolite 13X, the CO2 isosteric heat distribution is similar to the pure component, 

and water molecules are displaced to occupy lower energy sites. All these changes in 

isosteric heat will be taken into account for the calculation of energetic performances in 

the next section. 

In addition to the results presented in this section, a comparison between the 

isosteric heat distributions of the molecules in all three materials for pure compounds and 

for the binary CO2/N2 mixture were also calculated and results are provided in Figure S9, 
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while selectivity for CO2-over-N2 for binary 85%N2/15%CO2 and ternary 

15%CO2/84.9%N2/0.1%H2O mixtures as function of pressure are shown in Figure S10 of 

the Supplementary Material. Results for the simulated adsorption isotherms of ternary 

mixtures at different conditions for the three materials can also be found in the 

Supplementary Material, Figures S11-S17. 

 

3.3. Implications for the application in PSA, VSA and TSA processes. 

Swing adsorption cycles can be manipulated to meet a variety of demanding 

requirements. For instance, same working capacities can be obtained by changing the 

adsorption/desorption conditions. Nevertheless, the most cost-effective material will lead 

the best selection for the CO2 capture process.85,109,110,111 The aim of this section is to test 

different conditions in order to be able to select, for each structure, those conditions that 

minimize the energy requirements for CO2 capture. The chosen model has some idealized 

conditions that it is relevant to highlight: experimentally, there are changes in temperature 

during the adsorption/desorption steps, and also along the column. Besides, the maximum 

removal is achieved with no determined desorption time, and crystal activation of 

structures may not be always the same. These features are not considered in the simplified 

modeling used here hence, the results presented are for an ideal system, with higher purity 

and lower specific energy consumption values predicted than in the real case. However, 

the general trends obtained in this work should be maintained for practical 

implementations, as inferred from the agreement with parametric studies in the literature 

with similar adsorption/desorption conditions (see Figure S18 in the Supplementary 

Material). 

Figure 5 summarizes different values for carbon dioxide working capacity in VSA, 

PSA and TSA processes, including all the mixtures evaluated in the previous section.  
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Six operating conditions are shown (two for each process), corresponding to 

10bar→1bar and 20bar→1bar for PSA, 1bar→0.1bar and 1bar→0.05bar for VSA, while 

the TSA operating conditions under study were 383K→313K and 443K→313K. Constant 

condition of 313K was set for VSA and PSA, and pressure at 1bar for TSA. 

For VSA conditions, zeolite 13X shows higher working capacities than CuBTC 

and Mg-MOF-74, especially when the pressure at the desorption step is lowered to 0.05 

bar. However, when it comes to water traces in the mixture, MOFs structures show better 

performance. CO2 working capacities decline after water sorption in almost all cases, 

being more noticeable in the zeolite, as already explained for the adsorption capacity. 
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Figure 4. Isosteric heat distribution curves for pure (dotted line) and ternary m
ixtures (solid line) including 0.01%

H
2 O

 (top), 0.1%
SO

2  (center) and 0.1%
N

O
2  (bottom

) 

at a total pressure of 1bar and 313K
, in CuBTC, M

g-M
O

F-74 and zeolite 13X
. 



  

32 

  

 

Figure 5. Calculated w
orking capacities of CO

2  for sw
ing adsorption processes at different flue gas conditions: a) binary 15%

CO
2 /85%

N
2 , b) ternary w

ith sulfur 

dioxide, 15%
CO

2 /84.9%
N

2 /0.1%
SO

2 , c) ternary w
ith w

ater, 15%
CO

2 /84.99%
N

2 /0.01%
H

2 O
, d) ternary w

ith nitrogen dioxide, 15%
CO

2 /84.9%
N

2 /0.1%
N

O
2 , and, e) 

0.42

5.25

4.17

0.43

5.07

3.12

0.42

5.21

2.77
3.51

10.12

8.11

2.91

9.06

5.83

3.58

9.50

4.15

5.92

11.47

8.72

3.94

9.99

6.33
5.63

10.31

3.81

0.42

5.25

4.17

0.43

5.07

3.12

0.42

5.21

2.77

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 2 4 6 8 10 12

C
uBTC

M
g-M

O
F-74

Zeo 13X
C

uBTC
M

g-M
O

F-74
Zeo 13X

C
uBTC

M
g-M

O
F-74

Zeo 13X

.
.

Working Cap. (kmol/m3)

W
C

, VSA 5
W

C
, VSA 10

W
C

, PSA 1000
W

C
, PSA 2000

W
C

, TSA 383
W

C
, TSA 443

w
.0.1%

SO
2

w
.0.01%

H
2 O

B
inary

0.42

5.25

4.17

0.42

5.24

4.11

0.47

5.01

0.03

3.51

10.12

8.11

3.34

10.01

7.98

1.95

6.94

0.0

5.92

11.47

8.72

5.18

11.33

8.57

2.62

6.07

0.0
0.42

5.25

4.17

0.42

5.24

4.11

0.47

5.01

0.03
0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 2 4 6 8 10 12

C
uBTC

M
g-M

O
F-74

Zeo 13X
C

uBTC
M

g-M
O

F-74
Zeo 13X

C
uBTC

M
g-M

O
F-74

Zeo 13X

.
.

.

Working Cap. (kmol/m3)

w
.0.1%

H
2 O

B
inary

w
.0.1%

N
O

2



  

33 

ternary 15%
CO

2 /84.9%
N

2 /0.1%
H

2 O
. G

reens, blues and reds colum
ns represent PSA

, V
SA

 and TSA
 processes, respectively: light green for PSA

 10bar→
1bar, dark 

green for PSA
 20bar→

1bar, light blue for V
SA

 1bar→
0.1bar, dark blue for V

SA
 1bar→

0.05bar, brow
n for TSA

 383K
→
313K

 and red for TSA
 

443K
→
313K

. The uptake values at adsorption conditions of each one of the processes are show
n as transparent colum

ns above the w
orking capacities. 



 

 

34 

It is worth mentioning that, while Mg-MOF-74 and zeolite 13X show high 

uptakes for VSA, the amount of CO2 remaining in the adsorption bed at regenerating 

conditions is also high (e.g., at 0.1bar, the remained amount of CO2 in both structures is 

3.7 and 2.9 kmol/m3 respectively). Note also that desorption pressures below 0.10 bar 

are achievable in experiments,112 while vacuum above 0.2-0.3bar can imply net values 

of working capacities of almost zero for Mg-MOF-74 and zeolite 13X (see Figure S19 

in the Supplementary Material). 

Moreover, working capacities in MOFs almost doubled the zeolite 13X behavior 

in all cases when the feeding pressure at adsorption conditions is raised from 10 to 

20bar. For instance, CuBTC and Mg-MOF-74 present working capacities values in the 

binary mixture of 4.7 and 4.1 kmol/m3, respectively (operating between 20→1 bar), 

compared to 1.7 kmol/m3 for zeolite 13X. Moreover, Mg-MOF-74 offers the best results 

in PSA processes with impurities content, demonstrating that this material can be 

appropriate for this type of separation in spite of presenting slightly higher isosteric 

heats. 

In some singular cases, see for instance, PSA 10→1bar with 0.1% SO2 in 

CuBTC, and VSA 1→0.1bar with 0.01% H2O in zeolite 13X, the working capacity 

value obtained is higher than the one from the binary mixtures. This is mainly due to a 

larger reduction in nitrogen than carbon dioxide adsorption capacity for competition 

with impurities. 

CO2 purity at the outlet of the adsorber is another important variable to consider, 

depending on the conditions required for its storage or different applications and the 

investment associated to it. Figures 6 and 7 show CO2 purity (%) as a function of the 

recovery achieved (%). Each color line corresponds to a swing adsorption process 
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whether PSA, VSA or TSA, and the shape depends on the results obtained for a range of 

impurities up to 1% of SO2, NO2 and H2O in the inlet flue gas (see also Figure 5). 

It can be seen that recovery increases monotonically with purity in all three 

structures as the impurity content is increased, to a point where purity reaches its limit 

and shows a sharp drop in its value (or increase in some cases). The sudden change in 

that point is governed by the amount of carbon dioxide and the amount of nitrogen and 

impurities contained in the adsorption bed: a reduction in the CO2 working capacity due 

to the uptake of competing components yields lower purities, while negligible N2 

working capacities allow higher purities. 
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Figure 6. Curves of recovery evolution with purity for the evaluated swing adsorption 

processes, in the three studied adsorbents: CuBTC (top), Mg-MOF-74 (center) and zeolite 13X 

(bottom). Simulations performed at 313 K, assuming a packed bed with a void fraction of   = 

0.4 and SO2 as impurity in a range from 10ppm (i.e., 0.001%) to 10,000ppm (i.e., 1%). Colors 

correspond to the processes mentioned in Figure 5. 
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Figure 7. Curves of recovery evolution with purity for the evaluated swing adsorption 

processes, in the three studied adsorbents: CuBTC (top), Mg-MOF-74 (center) and zeolite 13X 

(bottom). Simulations performed at 313 K, assuming a packed bed with a void fraction of   = 

0.4 and water and NO2 as impurities in a range from 10ppm (i.e., 0.001%).to 10,000ppm (i.e., 

1%). Mixtures with H2O in filled symbols and with NO2 in open triangles. Colors correspond to 

the processes mentioned in Figure 5. 
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The increase in purity is not as substantial as the recovery for Mg-MOF-74 and 

zeolite 13X in the monotonically part of the curves. On the contrary, curves of CuBTC 

exhibit a more rounded shape and lower inflection points, as a consequence of its low 

CO2-over-N2 selectivity. To achieve CCS purity specifications for utilization, extreme 

desorption conditions would be needed for this material. 

It can also be seen that VSA and TSA processes allow obtaining higher CO2 

purities than the PSA ones, because N2 and impurities working capacities in PSA 

conditions are much higher and affect the composition at the outlet of the adsorber.  

Surprisingly, impurities increase the curve inflection point, and the effect is 

more pronounced in mixtures with water than with SO2 or NO2, i.e., the higher the 

molecule affinity for all three materials and the difference with the isosteric heat of 

CO2, the higher the inflection point that can be obtained in purity/recovery curves. In 

this study, the maximum inflection point is obtained for TSA at a desorbing temperature 

of 443K in all three materials, and with impurities compositions in the mixture of 1% 

H2O for CuBTC, 0.5% H2O for Mg-MOF-74 and 0.02% H2O for zeolite 13X. For sulfur 

dioxide, the maximum point is achieved for mixtures including 1% SO2, 1% SO2, and 

0.1% SO2 for CuBTC, Mg-MOF-74 and zeolite 13X, respectively, but around 10-15% 

lower values in recovery are obtained. 

Furthermore, since according to Figures 5 to 7, TSA allows recovering higher 

amounts of CO2 than the other two processes, with higher purities, this process emerges 

as the most convenient so far. Nevertheless, the energy requirements for regeneration 

must be taken into consideration, as will be discussed in the next section. 
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3.3.1. Energetic requirements for the different processes  

For fair comparison of energetic cost, PSA/VSA/TSA processes are compared 

for conditions with purities above 80% of CO2. All three materials can reach this 

condition, according to the previous discussion, although only TSA and VSA processes 

can achieve recovery and purities above 90%, values commonly required for CCS 

specifications.113 The additional fixed bed parameters used in swing adsorption 

processes simulations are provided in Table S2 in the Supplementary Material. 

The higher the desorption temperature in TSA or the lower the desorption 

pressure in VSA, the higher the thermal energy or adiabatic work required. Decreasing 

the regeneration pressure in VSA processes from 0.1 to 0.05bar increases the adiabatic 

work per cycle by 30-40% approximately, but can be compensated with the extra 

amount of CO2 recovered. In addition, desorption temperature significantly affects both 

the CO2 working capacity and the thermal regeneration energy.86 Consequently, there 

must be a tradeoff between energy costs and increased working capacities. Figures S19 

to S21 (see Supplementary Material) show the variation of working capacity and energy 

required per cycle calculated by means of Eqs. (4) to (6), as a function of desorption 

condition. 

The variation of purity, recovery and specific energy consumption with 

desorption pressure in VSA processes, adsorption pressure in PSA processes and 

desorption temperature in TSA processes are presented in Figures S22-24 in the 

Supplementary Material. Parameters implication on the process performance can be 

found elsewhere for mixtures without impurities and are omitted here.39,84,109,110,112  

The evolution of the specific energy consumption (i.e., the required energy per 

tonne of CO2 captured and separated) with the increase of impurities percentage in the 
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mixture, is shown in Figure 8. The presence of H2O, SO2 and NO2 as impurities with a 

percentage between 0.001% and 1% were considered, while the increase of the impurity 

is in detriment of the same N2 percentage. Notice that, in order to compare TSA with 

pressure processes, an exergetic comparison was used, and further compression of the 

rich-CO2 stream to supercritical fluid for transportation was not included in the 

calculations. 

With these assumptions, TSA specific energy consumptions are the lowest in 

Mg-MOF-74 and zeolite 13X for impurities content lower than 0.5% and 0.02% 

respectively. Notice that although one of the best options for all three adsorbent 

materials is VSA with regeneration at 0.05bar, it is really difficult to expand in practice 

at so low pressure values, and therefore it may not be viable in certain plants. 

As inferred from Figure 8, it is clear that zeolite 13X is more appropriate for 

VSA and TSA processes. However, the energy requirements increase as impurities are 

explicitly considered in the mixture, the change being sharper for impurities with higher 

isosteric heat, (i.e., higher affinity); in this case, the increase in the slope follows the 

tendency H2O > SO2 > NO2, (marked by the arrows in Figure 8). Although it was 

expected that H2O and SO2 carry out a negative influence in the total CO2 recovery cost, 

at so low percentages, SO2 does not exert a decisive influence in the process, since the 

quantity of adsorbed CO2 is not drastically reduced below 0.1%. 

It is remarkable that, in some cases, the addition of impurities reduces the 

energetic requirement per tonne of CO2 captured. For instance, the requirements for 

VSA 1→0.1bar with Mg-MOF-74 shows a reduction from 4 GJ/tonne-CO2 in the binary 

mixture to 2.7 GJ/tonne-CO2 including 0.1% H2O. SO2 also shows this reduction, but is 

lesser than the one obtained for a more affinity species, while the minimum value is 
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achieved at a higher impurity concentration than water (shown by the arrows). The same 

behavior is observed for TSA processes in CuBTC. 
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Figure 8. Calculated energy quality (exergetic) requirem
ents per tonne of CO

2  captured as im
purity content function for sw

ing adsorption processes: light green for PSA
 

10bar→
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In addition, GJ/tonne-CO2 values obtained with NO2 as impurity show almost 

constant specific consumption energy within this concentration range. 

Even though MOFs are more appropriate than zeolite 13X for PSA systems due 

to a higher CO2 uptake, the obtained purity and recovery values are lower and the 

energy requirements are the highest of the three technologies evaluated. In this case, 

their values are basically constant over the entire concentration range since it does not 

depends on the working capacity of other species besides CO2, due to the “no purge” 

assumption. Nevertheless, impurity content above 1% in all three materials makes this 

technology competitive. 

The minimal energy consumption and the maxima productivity (understood in 

this context as working capacity) do not coincide, in general, in the same operating 

point. Instead, there exists a so-called frontier zone where local minimum and maximum 

can be obtained for these two parameters. Multiple swing adsorption devices can be 

coupled with slightly beneficial effect on the purity of the recovered product.114,115 

However, this comes at the expense of recovery and an increase in power requirement 

(energy penalty). An analysis of these effects lies out of the scope of this study. 

3.3.2. Combined swing adsorption cycles 

TSA is a particularly promising process for post-combustion CO2 capture, owing 

to difficulties with compressing or applying a vacuum to large volumes of flue gas 

streams.24,116,117 It is a very versatile process in terms of cycle design and ability to adapt 

to changes in feed gas conditions (recovery, purity, energy consumption). However, the 

longer time required for extreme heating/cooling (and therefore productivity) may limit 

its application for CO2 capture at large scale. Dynamic/kinetic performance is out of the 
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scope of this study, but just to mention that the cycle time will increase with increasing 

the desorption temperature, and hence, the productivity obtained will be lower. The 

same is expected for extreme pressurization and/or evacuation conditions. 

Convenient procedures for CO2 adsorption could be processes in which the 

adsorption step takes place at moderate pressures above atmospheric conditions, where 

expensive compression units are not required, and desorption is performed also under 

moderate vacuum conditions or a small heating of the system.118,119 These hybrid 

processes are called VPSA, PTSA and VTSA, according to the combine techniques, and 

are even more attractive for their commercial implementation because of the low energy 

demand. Recently, some researchers have studied the use these hybrid processes to 

improve the CO2 capture.45,116,120,121 

A detailed study of the energy consumption of these hybrid processes has been 

also performed for the materials investigated in this work. Figure 9 shows a comparison 

of contour maps of specific energy quality consumption for VTSA processes, as a 

function of the desorption conditions Tregen (in the x-axe) and Pregen (in the y-axe). VPSA 

and PTSA processes are not included in the main body of the manuscript because they 

achieve lower purities and recoveries than those required for CCS specification and 

higher specific energy consumptions. Results including parameters such as specific 

energy requirements, working capacity, purity and recovery of these hybrid cycles can 

be found in Figures S25-S27 of the Supplementary Material. 

 The exergetic parameters of CuBTC, Mg-MOF-74 and 13X are compared 

without impurity content and for three different conditions with impurities in VTSA 

processes; the impurities content where chosen from Figure 8 in the range showing 

lower specific energy consumption presented in section 3.3.1, but maintaining a 
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reasonable purity and working capacity. According to this, the evaluated conditions 

were: 0.1% H2O and 0.1% SO2 in CuBTC, 0.1% H2O and 0.1% SO2 in Mg-MOF-74, 

and 0.01% H2O and 0.01% SO2 in zeolite 13X. 

As expected, higher working capacities and higher specific energy consumptions 

are achieved for operating conditions presenting a large cyclic capacity,117 however, as 

mentioned before, a tradeoff must be achieved between these two parameters. Hence, 

highlighted squares in each contour map depict the hot spot regions where high working 

capacities can be obtained, purities and recoveries above 80-90%, and without incurring 

in extremely high energetic requirements. It is also interesting to note the change in 

shape of the contour maps when impurities are considered. Moreover, the minimum 

obtained in most cases improves the binary performance by increasing the purity and 

recovery achieved. 

Specific energy (i.e., exergy) consumption close to 1 GJ/tonne-CO2 that 

maximizes working capacities and purities in all three structures were found. For 

CuBTC, a proposed condition is to desorb at 0.15bar, 343K, and with 0.1% SO2. With a 

working capacity of 0.38 kmol/m3, specific energy consumption of 1.21 GJ/tonne-CO2, 

81% purity and 92% recovery, this condition enhances the working capacity by 40%, 

and purity in more than 30%, with an increase in only 15% on the energy required, 

compared to the same conditions in the binary mixture. 

For Mg-MOF-74, an attractive point is to desorb at 0.2bar and 423K, obtaining a 

working capacity of 3.5kmol/m3, specific energy consumption of 0.36 GJ/tonne-CO2, 

98% purity and 86% recovery for binary mixture.  
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Figure 9. Contour m
aps of energy required per tonne of CO

2  captured as a function of desorption pressure and tem
perature conditions in V

TSA
 

processes: CuBTC (top), M
g-M

O
F-74 (center) and zeolite 13X

 (bottom
). Com

parison betw
een binary m

ixture (left), ternary m
ixture w

ith SO
2  traces 

(center) and ternary m
ixture w

ith H
2 O

 traces (right). 
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In this case, the inclusion of traces when adsorbing in Mg-MOF-74 reduces all 

parameters, and therefore the recovery is not encouraging. Lastly, for zeolite 13X, the 

selected point is to desorb at 0.6bar, 413K, and with SO2 traces. The working capacity, 

specific energy consumption, purity and recovery obtained are 2.5 kmol/m3, 0.46 

GJ/tonne-CO2, 92% and 82% respectively, with changes in -19%, +17%, +10% and 

+4% in all four parameters. 

To compare this “optima” conditions with the ones obtained for regular 

PSA/VSA/TSA processes in the previous section, Figure 10 shows the performance of 

the best conditions in terms of specific energy consumption (i.e., exergy) and working 

capacity for the processes achieving CCS specifications. The diameter of the bubble is 

referred to the purity obtained. It can be seen that higher working capacities with lower 

energy consumptions are achievable with Mg-MOF-74, while the energy consumption 

can be lowered by more than 30% with respect to zeolite 13X (and up to 10% including 

impurities).  

In addition, the efficiency of the processes were calculated according to Zhao et 

al.:111,122 the minimum work was obtained by calculating the mixture entropies and the 

composition that showed the best performance in each material (flue gas conditions: 

T=313K, P=1bar). Values obtained are as high as 35-40%, obtained specifically for the 

improved VTSA processes, and even higher than the typical values reported in the 

literature112 (i.e., between 10 and 30%). 
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Figure 10. Specific energy consumption vs. CO2 recovered for selected swing adsorption 

processes showing the better performance in each material. VTSA processes shown as 

highlighted bubbles. For comparison, energetic performance range for amines are in the range 

between the dotted lines (marked in grey). 

 

In addition to 13X, the selected processes were compared with absorption 

processes based on the heat duty of the stripper: for the classical monoethanolamine 

(MEA) solvent,4,123 the exergetic requirement of the process is between 0.9–1.0 

GJ/tonne-CO2. Value as low as 0.5 GJ/tonne-CO2 can be achieved by industrial pilot 

tests based on DMX process124, or with a mixture of amines as solvent.125 The minimal 

value obtained in this work is similar to these values, in the range of the one obtained by 

Chaffe et al.83 with VSA, but with higher purities and recoveries, and, in addition, 

significantly lower (almost 50%) than a reported 6-step TSA cycle117 and a PVSA110,114 

based on zeolite. Adsorption processes are, however, close but not as mature as 

absorption processes yet for large scale CCS. Nevertheless, this study reinforces the 
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need to explore impurities species that can reduce the energy consumption, but increase 

the working capacity, purity and recovery only by modifying the trace composition as a 

step forward so that these technologies are competitive for CO2 capture at large scale.  

4. CONCLUSIONS 

Molecular simulations and macroscopic thermodynamics were combined in this 

work to develop a model to account for the effect of impurities on two MOFs, CuBTC 

and Mg-MOF-74, on the performance of PSA, VSA and TSA processes, compared with 

zeolite 13X. The materials were chosen based on promising results from the literature 

regarding their performance for CO2 capture and separation and also because they are 

already available in the market, while detailed studies regarding their implementation at 

process conditions were still missing. Adsorption and separation behavior towards 

carbon dioxide from nitrogen, with and without including impurities such as water, SO2 

and NO2, were evaluated in this work. The first part of the study was carried out using 

GCMC simulations for the purpose of identifying key structural properties for selective 

adsorption from a post combustion stream. The force fields used for the simulations 

were validated versus available experimental data for pure components and used in a 

predictive manner for multicomponent study. The ability of the adsorbent materials was 

checked by comparing mixture isotherms and isosteric heats, while the evaluation for 

potential material for purification was comprehensively examined by working capacities 

and energy performance in the mentioned swing adsorption processes. Hot spot regions 

for each process and materials were identified considering where high working 

capacities can be obtained, purities and recoveries above 80-90%, and without incurring 

in extremely high energetic requirements. 
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Results reveal that zeolite 13X become useless with less than 0.1% of water 

content in the mixture, and just a 0.01% of moisture in the adsorbent is able to 

significantly reduce the CO2 adsorption capacity. Conversely, it was found that even 

with a concentration of SO2 and NO2 in the flue gas as high as 1,000ppm (i.e., 0.1%), 

the energy performance (GJ/tonne-CO2) in the flue gas mixtures remains essentially 

unaffected. In addition, purity and recovery can be highly increased with slightly lower 

working capacities, attributed to the introduction of a certain amount of competitive 

molecules in the flue gas. Moreover, these impurities traces can be beneficial and 

reduce the exergetic requirements per tonne of CO2 captured up to a certain inflection 

value where the increase in energy cost becomes exponential. The minimum energy 

requirement inflection points were obtained for TSA at a desorbing temperature of 

443K in all three materials, and with impurities compositions in the mixture of 1% H2O 

for CuBTC, 0.5% H2O for Mg-MOF-74 and 0.02% H2O for zeolite 13X (with values of 

1.13, 0.55 and 0.58 GJ/tCO2, respectively). 

After considering operating conditions and with respect to the results presented 

here, Mg-MOF-74 stands up as one of the most promising materials to be used in 

TSA/VTSA processes for its great performance and “buffer” behavior with the 

inclusion of lower amounts of impurities. Moreover, CuBTC emerges as a good 

candidate for separation when higher moisture or impurity content above 1% is present 

in the mixture, and purity is not a determinant factor.  

This study represents a first quantitative assessment of the process performance 

that can be achieved including impurities effects onto novel adsorbent materials in 

VSA/PSA/TSA process for CO2 capture. Further studies will include detailed modeling 
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by solving the differential equations describing the different steps of the adsorption 

processes, to account for time-dependent phenomena inside the adsorption beds. 

 

NOMENCLATURE 

BTC  Benzene-1,3,5-tricarboxylate 

    heat capacity of the adsorbent material [kJ/kg-K] 

DOBDC 2,5-dioxido-1,4-benzenedicarboxylate 

   total energy of the system [kJ] 

     potential energy between a pair of atoms   and   [kJ/mol] 

GCMC  Grand canonical Monte Carlo 

IAST  Ideal Adsorption Solution Theory 

LJ  Lennard-Jones 

MOF  Metal organic framework 

   adsorbed molecules (mol) 

           amount adsorbed per mass [mol/kg] or per volume [kmol/m3] of adsorbent 

   pressure [bar] 

PSA  Pressure swing adsorption 

         energy requirement for heat [kJ] 

    partial charge of atom   

      isosteric heat of adsorption [kJ/mol] 

   gas constant [8.314 kJ/mol-K) 

     distance between a pair of atoms   and   [Å] 

   temperature [K] 

TSA  Temperature Swing Adsorption 
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   total volume of packed bed [m3] 

VSA  Vacuum Swing Adsorption 

   adiabatic energy requirement for compression/vacuum [kJ] 

   mole fraction of component k in the adsorbed phase 

   mole fraction of component k in the gas phase 

Greek symbols: 

          working capacity [mol/kg] 

   voidage of bed 

      Lennard-Jones potential well depth [kJ/mol] 

    vacuum permittivity [F/m] 

   polytropic parameter of gases 

   feeding/vacuum blower efficiency 

    framework density [kg/m3] 

     Lennard-Jones potential diameter [Å] 

   total number of moles where compression or vacuum is effectuated [mol] 

   chemical potential [kJ/mol] 

Suscripts: 

         adsorption or feeding conditions 

            desorption or regeneration conditions 

    species in the gas mixture (              ) 

 

APPENDIX A. Supplementary Material 
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Figures of the different pore sizes in CuBTC, Mg-MOF-74 and zeolite 13X 

frameworks, molecular parameter values for the force fields, comparison of calculated 

pure adsorption isotherms with experimental data, isosteric heat distribution profiles for 

pure components and their changes with coverage, as well as adsorption isotherms 

behavior for binary (CO2/N2 at different conditions), and ternary (CO2/N2/H2O, 

CO2/N2/SO2 and CO2/N2/NO2) streams for the three materials. In addition, profiles with 

energetic performance including energy requirements behavior under different 

desorbing conditions for swing adsorption processes, as well as combined VPSA, PTSA 

and VTSA processes. 

This data, associated with this article, can be found in the online version.  
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