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Abstract

Electronic energy transfer is widely used as a molecular ruler to interrogate the structure of
biomacromolecules, and performs a key task in photosynthesis by transferring collected
energy through specialized pigment-protein complexes. Förster theory, introduced over 70
years ago, allows linking transfer rates to simple structural and spectroscopic properties of
the energy-transferring molecules. In biosystems, however, significant deviations from
Förster behavior often arise due to breakdown of the ideal dipole approximation, dielectric
screening effects due to the biological environment, or departure from the weak-coupling
regime. In this review, we provide a concise overview of advances in simulations of energy
transfer in biomacromolecules that allow overcoming the main limitations of Förster
theory. We first discuss advances in quantum chemical methods to compute electronic
couplings, their extension to multiscale formulations to include screening effects, and
strategies to treat the interplay between coupling fluctuations and energy transfer
dynamics. We then examine the spectral overlap term, and how this quantity can be
estimated from simulations of the spectral density of exciton-phonon coupling. Finally, we
discuss rate theories that can describe energy transfers in situations where strong coupling
leads to delocalized excitions, a common situation found in closely packed
multichromophoric systems like photosynthetic complexes and nucleic acids.
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INTRODUCTION

Electronic energy transfer (EET) is a ubiquitous process in materials and life sciences, which

describes the non-radiative transfer of electronic excitation energy from a previously sensi-

tized donor (D) molecule to a proximate acceptor (A), up to distances of 10 nm.1 The foun-

dations of our present understanding of EET were settled about 70 years ago by Theodor

Förster,2,3 who introduced an elegant theory based on purely spectroscopic observables. This

theory had an immense impact in a variety of fields. In particular, in chemistry and biology,

the term FRET (Förster resonance energy transfer) is indistinctively used to refer either to

the photophysical process or to the fluorescence-based technique that uses energy transfer as

a spectroscopic ruler to measure distances, given the strong dependence of EET efficiency on

D/A mutual distance and orientation.4 A properly calibrated FRET experiment in principle

allows one to achieve an accurate estimate of the D/A distance, although a recurring prob-

lem is the determination of their relative orientation. For such a reason, FRET data often

have to be complemented by other techniques.5 Molecular simulations have emerged as an

ideal complement to FRET due to its ability to explore the complex energy landscapes of

biomolecules and provide structural models with atomic detail, including the relative D/A

orientation, that can be compared to the information derived from fluorescence experiments.

Since the diffusion of single-molecule detection techniques in the 1990s, the FRET tech-

nique has been key toward the development of a dynamic structural biology able to overcome

the limitations of static structures as those typically inferred from x-ray crystallography, nu-

clear magnetic resonance (NMR) or cryo-electron microscopy (cryo-EM). Indeed, nowadays,

single-molecule FRET (smFRET) experiments allow investigating transient conformations

of biomolecules and the associated interconversion dynamics, even in vivo, with great detail.

The smFRET technique is used, for instance, to investigate the conformations of intrinsically-

disordered proteins or the mechanisms of protein and RNA folding.5,6

Energy transfer plays also a pivotal role in the chain of events that, in photosynthesis,

transport the energy captured by antenna complexes to reaction centers.7,8 Other applica-

tions of EET processes in biosystems are in the mechanisms of photoreceptors9 or DNA

photodamage, given that energy migration can occur along the double helix after photon
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absorption or sensitization.10 Also in these cases, molecular simulations are widely used to

relate the structure of photosynthetic pigment-protein complexes to their light-harvesting

properties, or to rationalize the energy transfer mechanisms.8

In spite of the fundamental role played by the original Förster theory, extensive studies

on bridged molecular dyads, photosynthetic systems, and organic and nanostructured ma-

terials, have identified a number of cases where energy transfer rates significantly deviate

from Förster’s predictions.11 For example, the important interplay between the timescales

of EET and those of the conformational dynamics is a fundamental issue that is not ac-

counted for in standard applications of Förster theory. Moreover, in systems like DNA or

photosynthetic complexes, characterized by short interchromophoric separations, different

assumptions underlying Förster theory need to be overcome.

In this review, we aim at providing a succinct overview of the issues that a computational

chemist should consider when modelling EET in biomacromolecules. Basically, which theo-

retical method should be adopted in order to compute excited states and electronic couplings,

which strategies can be used to account for structural dynamics on EET rates, and in which

situations one needs to go beyond the weak-coupling assumption underlying Förster theory.

Our aim is to provide a unified view of the simulation strategies that are currently pursued

by a variety of laboratories in modelling biosystems as diverse as nucleic acids, protein-ligand

complexes, photosynthetic antenna proteins or fluorophore-tagged biomolecules.

We start by introducing Förster formulation of energy transfer and the ingredients needed

to estimate the rate: the electronic coupling and the spectral overlap factor. We continue

by describing quantum chemical methods aimed at predicting the electronic coupling going

beyond Förster’s main approximations: the point-dipole approximation, the assumption of

a simple environment dielectric screening factor, or the neglect of short-range contributions,

which become important at contact distances or in transfers involving forbidden transitions.

In parallel, we also discuss the interplay between structural dynamics and energy transfer

timescales and suitable strategies to post-process electronic coupling data sets generated from

Molecular Dynamics (MD) trajectories. We then discuss issues involved in the determination

of the spectral overlap factor and the spectral lineshapes, and its relation to dynamic and

static disorder. Finally, in the last section we describe situations where the weak-coupling
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assumption underlying Förter theory breaks down, for example, when a strong coupling leads

to delocalized exciton states, which play an important role in multichromophoric aggregates.

FÖRSTER EXPRESSION OF THE EET RATE

Förster theory describes the rate of energy transfer between a pair of weakly-coupled D and

A molecules based on the Fermi Golden rule, Eq. (1):2,12

kEET =
2π

~
|V |2FCWD (1)

where V indicates the electronic coupling between D/A and FCWD is the Franck-Condon

factor weighted density of states.

Within the original Förster formulation, V is approximated as a dipole-dipole interaction

screened by an environmental factor determined by the inverse of the squared refractive index

(1/n2):

V ≈ 1

n2
Vdd (2)

Vdd =
κµDµA
R3

(3)

κ = µ̂D · µ̂A − 3
(
µ̂D · R̂

)(
µ̂A · R̂

)
(4)

where µD and µA indicate the magnitude of the D/A transition dipole moments, R the

separation between the two dipoles, and the orientation factor κ is given in terms of unit

vectors, indicated by the hat notation.

To proceed further, the FCWD can be rewritten in terms of the spectral overlap fac-

tor obtained from the area-normalized donor emission and acceptor absorption spectra (see

following sections). The spectral overlap ensures the resonance condition in EET, as illus-

trated by Fig. 1, which shows fluorescence transitions from D to multiple vibronic levels of

the ground state, coupled to isoenergetic transitions of A.
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Figure 1: a) Schematic energy-level diagram of an energy transfer process. b) Spectral overlap

between donor emission and acceptor absorption.

An alternative definition of the EET rate (1) is:

kEET = kD

(
R0

R

)6

=
1

τD

(
R0

R

)6

(5)

where kD = 1/τD describes the decay rate of the excited D in the absence of A in terms of

its lifetime τD, and R0 is the so-called critical quenching radius or “Förster radius”, namely

(in nm)

R6
0 =

9(ln 10)

128π5NA

(κ2φD)

n4
I (6)

where NA is the Avogadro constant (in mol−1), φD is the fluorescence quantum yield, and I

the spectral overlap (in M−1 cm−1 nm4). Starting from this definition, the transfer efficiency

can be expressed as

φEET =
kEET

kD + kEET

=
1

1 + (R/R0)6 (7)

From Eqs. (5) and (7) it is evident that the Förster radius represents the distance where

kD and kEET are equal and there is a 50% transfer efficiency.

The power of Förster theory, as given by Eq. (5) and (6), relies on the ability to relate

D/A distances with transfer efficiencies directly from the spectroscopic parameters of the

non-interacting D/A. Typically, transfer efficiencies are obtained from steady-state or time-

resolved fluorescence measurements, so the FRET acronym is often referred to fluorescence(-

detected) resonance energy transfer, although this term could be confusing, as the transfer

process itself is not mediated by fluorescence.12
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In relating the efficiency with a D/A distance, the main source of uncertainty in typical

FRET experiments comes from the value adopted for the orientation factor κ. If both D

and A molecules can freely rotate and are allowed to assume any mutual orientation during

the lifetime of the donor, the isotropically averaged 〈κ〉 = 2/3 value can be used. This is

often referred to as the ”dynamic averaging regime”, and is often fulfilled for small organic

fluorophores attached with flexible linkers to a biomolecule. In some cases, however, the

dynamic fluctuations of D and A cannot explore all possible orientations. In this case,

fluorescence depolarization data can remove some uncertainty regarding the mutual D/A

orientation. On the other hand, for large fluorophores like fluorescent proteins, rotational

dynamics is expected to be slower than the D lifetime, giving rise to a heterogeneous ensemble

characterized by different EET rates. In more complex cases, the timescales of rotational

dynamics and excited-state decay are similar, which requires a more elaborated treatment

of the data. Similar considerations apply to the D/A separation, for which fast fluctuations

over a given distance mean that an average EET rate can be linked to the average 〈R〉

separation (dynamic averaging regime), whereas a static regime can occur if D and A are

slowly diffusing, or EET occurs between slowly interconverting conformations.

Molecular dynamics (MD) simulations have proven to be very useful in generating pos-

sible conformations of the system that help interpreting observed efficiencies in terms of

well-defined D/A separations and orientations.13–38 As it will be discussed in the following

sections, MD simulations also allow investigating the interplay between EET and structural

dynamics by properly post-processing trajectories of electronic coupling values, thus allowing

to generate the expected FRET observables in intermediate situations between the limiting

dynamic and static averaging regimes.

The point-dipole approximation (PDA) in Eq. (3) gives rise to the well-known R−6

distance-dependence of the FRET rate. This approximation, however, breaks down at close

D/A separations, when short-range effects and higher-multipole contributions become im-

portant. Moreover, it can only be applied to electronic transitions for which the transition

dipoles are not null. Finally, the 1/n2 dielectric screening factor assumes a homogeneous re-

sponse of the surrounding environment, and neglects any possible dependence of the screening

on mutual distance and orientation between D and A.
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In the next section, we will discuss computational methods that overcome these fun-

damental limitations on the estimation of electronic couplings. Even with those accurate

estimates of the coupling values, however, the Förster definition of the rate constant has

other intrinsic limitations. The most fundamental one is the assumption that D and A are

weakly coupled, on which the entire golden rule formulation of the rate, Eq. (1), is based.

This assumption holds in an incoherent hopping regime, that is, when the coupling is much

smaller than the reorganization energy of the nuclei.39 In addition, it assumes a complete

equilibration of the donor excitation prior to the transfer event. Finally, the spectral overlap

factor also involves the assumption that the whole spectral broadening is homogeneous and

that D and A are coupled to independent nuclear vibrations. In the following sections, we

will also discuss issues related to the calculation of the spectral overlap factor, as well as

quantum dynamics theories that can be applied to describe the EET rate in the intermediate

and strong coupling regimes. These two situations are common in biomacromolecules orga-

nized as closely-packed multichromophoric systems, like photosynthetic antennae or nucleic

acids.

CALCULATION OF ELECTRONIC COUPLINGS

In general, the electronic coupling should be written as a sum of a long-range (Coulomb)

and a short-range contribution, the latter being dependent on the degree of orbital overlap

between D and A:40

V = VCoul + Vshort (8)

Short-range terms are usually negligible, but they become dominant when the transfer

involves spin-forbidden transitions; in these cases, the alternative electron exchange mecha-

nism formulated by Dexter some years after Förster is used.41 An example where short-range

terms become dominant is in triplet-triplet energy transfer (TEET), which is an overall spin-

allowed process, as the spin is conserved between the initial (3D∗ 1A) and final (1D 3A∗) state,

but the spin-forbidden nature of the involved transitions nullifies VCoul.

For the most common case of spin-allowed transitions, electronic couplings are dominated

by the Coulomb contribution, which reduces to the dipole-dipole term at large distances.
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The Coulomb interaction is strongly screened by a polarizable environment surrounding the

donor and acceptor, an effect described through the 1/n2 screening factor in Förster theory,

as indicated in Eq. (2). When molecules are at distances comparable to their molecular

dimensions, however, higher multipole contributions lead to large deviations from the dipole-

dipole interaction.42

In a symmetric homodimer, with identical D and A molecules, the electronic coupling

can be estimated as one-half the energy splitting of the two electronic states due to their

interaction. This “supermolecule” approach assumes that only one state of the donor and one

of the acceptor mix to generate the two electronic states of the dimer, and it cannot be easily

applied to asymmetric systems.8,43 In the following, we discuss more efficient and flexible

strategies, which allow computing the Coulomb and the environment-mediated screening

contributions from the transition properties of the non-interacting D and A fragments, as well

as diabatization methods that allow estimating both Coulomb and short-range contributions

in general asymmetric systems from dimer calculations.

Coulomb contribution

The (unscreened) coupling between two “bright” singlet excitations is dominated by the

Coulomb interaction between the transition densities of the donor and the acceptor:40,44

VCoul =

∫
dr

∫
dr′ρT∗D (r′)

1

|r− r′|
ρTA (r) (9)

where the transition density ρT(A/D) is the diagonal part of the one-particle density matrix

constructed from the ground and excited-state wave functions:

γT0i (r, r
′) = N

∫
. . .

∫
ψ∗i (r, r2 . . . rN)ψ0 (r′, r2 . . . rN) dr2dr3 . . . drN (10)

ρT0i (r) = γT0i (r, r) (11)

By definition, the total integrated transition density is zero. Thus, the first nonzero

term in a multipole expansion of the Coulomb coupling is that given by the interaction

of the transition dipole moments. In transfers that involve dipole-forbidden transitions,

the coupling can be dominated, for example, by dipole-quadrupole or higher-order terms.45

Moreover, it is well known that the PDA breaks down at “close” separations, when the details

8



of the molecular shape become important. A rule of thumb to define “close” is the spatial

dimension of the molecules, e.g., about 10–20 Å for small organic chromophores. Indeed, for

typical fluorophores used in FRET experiments, it has been found that the PDA performs

well at distances up to 20 Å, provided that the molecules sample an isotropic set of relative

orientations. This performance, however, benefits from cancellation of errors due to isotropic

motions. If such motions are restricted, significant errors can be found at distances as far

as 50 Å.46 Similar deviations at considerable distances have also been found for interactions

between pigments in a variety of photosynthetic complexes.42

In order to overcome the limitations of the PDA, a more robust strategy relies on com-

puting the Coulomb coupling from the transition densities pre-calculated by some quantum

mechanical (QM) method for the non-interacting D and A molecules.47 Early calculations

of the Coulomb coupling were based on semi-empirical Hamiltonians.48–51 The first ab initio

calculations, based on the configuration interaction with single excitations (CIS) method or

time-dependent density functional theory (TD-DFT),52,53 adopted the so-called Transition

Density Cube (TDC) method, where the integral in Eq. (9) is evaluated numerically over two

separate three-dimensional grids representing the transition densities of A and D. A more

recent and more computationally efficient strategy computes the integral in Eq. (9) via an

atomic orbital expansion of the transition densities.47 This strategy, for example, has been

used in combination with different QM methods such as CIS, TD-DFT, complete-active-

space self-consistent-field (CASSCF), second-order approximate coupled cluster (CC2) and

equation of motion coupled cluster (EOM-CC).54–56

An alternative way of computing Eq. (9) that has found widespread use relies on the

transition charge approximation (TrCh), where the transition densities are represented by a

set of point charges located on the atoms of D and A, respectively. Within this framework,

the Coulomb coupling is expressed as the interaction between the D and A transition charges:

V TrCh
Coul =

∑
K,L

qD (K) qA (L)

|RK −RL|
(12)

where the indices K and L run on the D and A atomic positions RK and RL, respectively.

Various definitions of the atomic transition charges have been proposed so far, such as that

based on a Mulliken population analysis of the transition densities.49,57–59 A more accurate
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definition of transition charges is the one based on the fitting to the electrostatic potential

generated by the transition density, as it is typically done to parametrize point charge models

in biomolecular force fields. This strategy, proposed by Renger and co-workers, is known

as TrESP (transition charge from electrostatic potential),60 and represents a widely used

method, in particular when coupled with MD simulations.61,62 Commonly, TrESP charges

are computed once, at an optimized geometry, and used to compute couplings at different

geometries. This scheme is computationally very efficient but it neglects any possible de-

pendence of the transition density on the geometry. The TrESP approximation inevitably

leads to a loss of accuracy if compared to the rigorous calculation of Eq. (9), especially at

short distances.63,64 Nevertheless, it can be sistematically improved by adding higher order

atomic multipoles to better fit the electrostatic potential.65,66

Environment effects

The environment is expected to strongly reduce the Coulomb interaction between D/A tran-

sition densities. This important screening effect is described through the 1/n2 factor in the

Förster expression (2) of the coupling, which leads to a four-fold attenuation of the EET rate

in typical biological environments, where n2 can be approximated to 2,67 e.g. to the optical

component of the dielectric constant of the medium (εopt). This reduction of the dipole-

dipole coupling was obtained by Forster by assuming a continuum dielectric embedding the

two transition dipoles.

A more refined continuum model can be obtained by assuming that the donor and accep-

tor are placed in spherical cavities inside the dielectric: within this framework, a screening

factor ranging from 3/(2εopt + 1) for dipolar transitions to 2/(εopt + 1) for high-order mul-

tipoles is obtained.44 Even more realistic descriptions can be obtained by coupling the QM

description of the chromophores to a modern continuum solvation model, like the Polariz-

able Continuum Model (PCM), in which the molecules are embedded in molecular-shaped

cavities.68 Within this framework, the polarization of the dielectric is represented in terms of

induced charges appearing on the molecular cavity surface. When applied to the calculation

of the EET coupling, the PCM model leads to a further solvent-mediated contribution to be
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added to the (unscreened) Coulomb coupling in Eq. (9):47

VPCM =
∑
k

∫
dr′ρT∗D (r′)

1

|r′ − sk|
qPCMk

(
ρTA
)

(13)

This term represents the interaction between the transition localized at the donor site (and

here represented by the transition density ρTD) and the PCM surface charges qPCM induced

by the transition localized at A (represented by the transition density ρTA ); the same result

is obtained by exchanging D and A. To obtain Eq. (13) it has been assumed that only the

electronic component of the solvent polarization (determined by εopt) can be activated in

the process. The Poisson-TrESP method reported by Renger and co-workers uses a similar

expression based on the TrESP approach, in which the Poisson equation is solved for the

electrostatic potential of the transition charges embedded in molecular-shaped cavities inside

the dielectric.69,70

Application of the PCM model to a set of 100 pigment pairs extracted from the PE545,

PC645, LHCII and PSII photosynthetic complexes showed that screening effects can strongly

depend on the distance and mutual orientation between the chromophores, leading to an

exponential attenuation of screening effects at close separations below 20 Å.71,72 This be-

haviour occurs when the pigments start to form a common cavity inside the dielectric, whose

exposed surface is significantly reduced compared to the previously-separated individual cav-

ities. However, note than in D/A pairs in which this cavity change is small, screening effects

are similar at contact separations.72 Application of the Poisson-TrESP approach to a variety

of pigment-protein complexes have also found a strong dependence of screening effects on

relative D/A orientations, but a weaker dependence on distance.70,73,74

An analogous expression for the solvent-dependent component to the coupling can be

obtained within an atomistic (but still polarizable) model of the environment, such as when

we introduce a polarizable Molecular Mechanics (MMPol) embedding. In fact, if we describe

the environment as a set of fixed atomic charges (or a fixed multipolar expansion) and atomic

polarizabilities, Eq. (13) becomes:75

VMMPol = −
∑
l

∫
dr′ρT∗D (r′)

(r′ − rl)

|r′ − rl|3
· µMMPol

l

(
ρTA
)

(14)

which represents the interaction between the transition density of D and the dipoles µMMPol

induced on each polarizable site of the environment by the transition density of A. By
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introducing such an atomistic detail, the method can properly describe all the heterogeneities

of the environment,76 which are instead not accounted for in a continuum model like PCM.

Recently, this atomistic model has also been combined with a TrESP description of the D/A

transitions.77

Both PCM and MMPol contributions indicated in Eqs. (13) and (14) describe a Coulomb

coupling mediated by the surrounding environment, which typically reduces the overall in-

teraction. In this context, one can define a screening factor from the ratio of the screened

and unscreened Coulomb couplings, and an effective dielectric constant to compare s with

the Förster 1/εopt screening factor:

s =
1

εeff

=
VCoul + Venv

VCoul

(15)

Applications of the MMPol method to the PE545,76 FMO,78 CP29,79 and LH280 photo-

synthetic complexes, to nucleic acids, including RNA β-hairpins, B-DNA, Z-DNA and DNA

G-quadruplexes,81,82 or to protein-ligand complexes,83 indicate that the screening factors av-

eraged over many pigment pairs are similar to those obtained adopting a continuum dielectric

model and an εopt = 2 value, as commonly assumed in biosystems. However, important devi-

ations are observed for some pigment pairs, and effective dielectric constants ranging between

1 and 3 have been reported, depending on the particular orientation among the pigments

and the surrounding environment atoms. This effect can be analyzed by inspecting the con-

tribution of each MMPol atom to the summation in Eq. (14), as shown in the right panels

of Figure 2 for some representative systems. In particular, in Figure 2c,d we show the two

BChl pairs in the LH2 photosynthetic complex, which present completely different screening

factors, depending on the position of the His residues with respect to the BChl planes.80,84 In

addition, structural dynamics of a particular D/A pair can induce large fluctuations of the

screening factor (See Figure 2). Whereas these fluctuations have been found to be small for

photosynthetic complexes, large fluctuations on s values in the range 0.4–0.8 have been ob-

served for the drug flurbiprofen interacting with Trp214 of human serum albumin (Figure 2a)

due to a remarkable flexibility in the binding pocket.83

Overall, these results indicate that particular orientations, distances, and local environ-

ments can lead to important deviations from the 1/εopt screening factor assumed in Förster
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theory and thus also in its distance and mutual D/A orientation dependence. In biomacro-

molecules, where the environment is significantly heterogeneous, correct screening effects can

only be obtained with a polarizable and atomistic model for the environment.

Figure 2: Distribution of dielectric screening factors estimated using the MMPol model along an MD

simulation for different biosystems (left panels) and representation of chromophore transition densi-

ties and corresponding residue contributions (in cm−1) to the environment-mediated coupling term

(right panels). a) (R)-flurbiprofen and Trp214 in human serum albumin (HSA),83 b) PEB50/61C

and PEB50/61D bilin pigments in the PE545 complex,76, c) inter-dimer and d) intra-dimer α-BChl

– β-BChl couplings in the B850 ring of the LH2 complex.80,84

Beyond classical multiscale methods, environment screening effects can also be estimated
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using the extension of subsystem TD-DFT to coupled excitations, in which the couplings

between excitations localized in different subsystems can be selectively activated.85,86 In a

comparison between this method and MMPol, a good agreement in terms of screening factors

was found between the two methods, once a sufficiently large number of solvent excited states

were coupled to the transitions of the dimeric systems studied. Similarly, if electronic cou-

plings are derived from supermolecule calculations using a classical solvation model, screening

effects can only be captured if the model includes the environment polarization response to

the transition density.

Short-range contribution

As commented before, short-range contributions to the singlet EET are generally negligible

as the Coulomb interaction is dominant. On the contrary, in triplet EET, where VCoul

vanishes, only the short-range terms survive. Different QM methods have been proposed

to evaluate these terms. A first-order perturbative expression was developed by Hsu et al.

within a TD-DFT framework. In this approximation, the short-range terms include both an

exchange-correlation and an overlap integral:44

Vshort = Vxc + Vovlp (16)

Vxc =

∫
dr

∫
dr′ρT∗D (r′) gxc (r′, r;ω0) ρTA (r) (17)

Vovlp = −ω0

∫
drρT∗D (r) ρTA (r) (18)

where gxc is the exchange-correlation kernel of the selected DFT functional and ω0 is the

common excitation energy of D and A molecules . The xc term is replaced with the Dexter

exchange integral if a HF/CIS description is adopted.40 Both exchange and overlap terms

decay exponentially with the distance.

A more accurate strategy to evaluate short-range contributions relies on a diabatization

strategy. Starting from a supermolecule calculation of the excited states in the D/A system,

the resulting electronic Hamiltonian is finally transformed into the diabatic basis to extract

the coupling.43 Within this context, the main issue is the definition of the diabatic states

for the energy transfer process.87 Different approaches have been proposed so far which are
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based on wave function or molecular properties,88–90 or constraints imposed on the electron

density through constrained density functional theory (C-DFT).91 Some of these diabatiza-

tion strategies rely on additional operators to define diabatic states.9,43 For example, the

Fragment Excitation Difference (FED) method92 which is based on the Fragment Charge

Difference method developed for electron transfer,93 defines the diabatic states as the lin-

ear combination of the D/A eigenstates that maximizes the degree of “exciton localization”.

The additional excitation difference operator (∆x) is given in terms of “excitation densities”,

defined as the sum of attachment (electron) and detachment (hole) densities:

∆xmn =

∫
r∈D

ρexmn (r) dr−
∫
r∈A

ρexmn (r) dr (19)

ρexmn (r) = ρDet
mn (r) + ρAtt

mn (r) (20)

Assuming a two-state approximation, diagonalization of the FED matrix leads to maxi-

mally localized excitations and to the following coupling expression:

V FED =
(En − Em) |∆xmn|√

(∆xmm −∆xnn)2 + 4(∆xmn)2
(21)

where En and Em are the energies of the starting adiabatic states. The V FED coupling

includes both Coulomb and short-range contributions, as it is based on eigenstate properties.

The FED method has been extended to triplet EET in the Fragment Spin Difference (FSD)

scheme, in which the excitation density is replaced by a spin density, defined as the difference

between α and β electron densities.94 A more general approach, denoted Fragment Transition

Density (FTD), has been introduced by Voityuk,95 which overcomes some limitations of the

FED method, bypassing the definition of the excitation density of Eq. (20), and thus allowing

one to use any QM level of theory that provides transition densities.

The choice of the QM method

The calculation of electronic couplings is quite robust regarding the choice of QM method

and basis set,54,57,58,96,97 contrary to what generally observed for transition energies. In

spite of this robustness, some issues have to be carefully checked in the selection of the QM

description.
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In Figure 3 we show a comparison between mean percent errors in singlet and triplet

EET couplings computed using different QM methods and basis sets.

Figure 3: Mean percent error in absolute electronic coupling computed at different levels of the-

ory for selected systems. a) Singlet EET Coulomb couplings for napthalene, perylene, PEB and

BChl – BPheo pairs computed from QM transiton densities (VCoul) and dipoles (Vdd) compared

to SAC-CI/6-31G reference values.54 b) Triplet EET couplings for ethylene, napthalene, thymine

and adenine pairs computed using the supermolecule approach compared to EOM-CCSD/6-31G

reference values.98

Looking first to singlet EET (SEET), the data are shown for a napthalene, a perylene, a

phycoerythrobilin (PEB) and a bacteriochlorophyll a (BChl) – bacteriopheophytin (BPheo)

pair of chromophores.54 The PEB pair is found in the PE545 antenna of cryptophyte alga

Rhodomonas CS24, whereas the BChl – BPheo pair corresponds to the reaction center of

the purple photosynthetic bacterium Rhodobacter sphaeroides. The results correspond to

Coulomb couplings computed either from the full transition densities (VCoul) or from tran-

sition dipoles (Vdd). Both are compared to SAC-CI/6-31G VCoul and Vdd reference values.

From graph a), it is clear that the basis set has a rather small impact on the calculated cou-

plings which be explained in terms of a weak dependence of the computed transition dipole

strengths on the basis set. The choice of the QM method is instead much more important,

as the length of the predicted dipoles is clearly method-dependent. This is illustrated by

the errors estimated for Vdd values, which show a systematic overestimation for the ZINDO
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and CIS methods, while TD-DFT and CASSCF calculations tend to underestimate them.

If we compare the Vdd and VCoul errors, however, we see that, for CIS and TD-DFT, they

are very similar, suggesting that the difference between CIS and TD-DFT results compared

to the reference SAC-CI values mostly arise from the transition dipole lengths. In these

cases, an effective strategy to achieve more accurate couplings relies on a rescaling which

uses the ratios between the experimental estimates of the D and A transition dipoles and the

computed ones.52 Of course, such scaling is unable to correct inaccuracies in the orientation

of the transition dipole moment or in the overall shape of the three-dimensional transition

densities. The correspondence between Vdd and VCoul errors is instead lost for the ZINDO

values, and, to a lower extent, also for CASSCF results. With the exception of the semi-

empirical method, nevertheless, the errors arising from the choice of QM method on SEET

couplings are relatively small, around 20%.

The triplet EET couplings, on the other hand, display a quite different behaviour. In

graph b) we show TEET couplings for stacked ethylene, napthalene, thymine and adenine

pairs computed using the supermolecule approach compared to EOM-CCSD/6-31G reference

values. In addition to the stacked complexes, with a D/A separation R ∼3.4 Å, we also repro-

duce results obtained at R ∼4.4 Å.98 As expected, at R ∼3.4 Å the ZINDO method, based on

the intermediate neglect of differential overlap (INDO) approximation, significantly underes-

timates by 30% the TEET coupling, whereas CIS and EOM-CCSD results are very similar,

regardless of the basis set adopted. The intrinsic limitations of the ZINDO method, as well

as the limitations of the basis sets adopted in CIS and EOM-CCSD calculations, are however

drastically increased at R ∼4.4 Å. In this case, the ZINDO calculations underestimate the

EOM-CCSD/6-31G reference by ∼80%. The results obtained at the CIS/6-311++G(d,p)

level, however, suggest that even the EOM-CCSD/6-31G reference values are underestimated

by ∼70% due to the lack of diffuse functions, necessary to properly describe orbital overlap

at this distance. Thus, whereas TEET couplings seem to show a much weaker dependence on

QM method compared to singlet EET values, the choice of basis set can be rather important.
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The role of fluctuations

Because both Coulomb and short-range contributions are highly sensitive to the mutual

distance and orientation between the D and A molecules, couplings can display large fluctu-

ations, which are important to describe EET dynamics. The impact of these fluctuations can

be illustrated by two limiting cases, the dynamic and the static averaging regimes. In the

dynamic averaging regime, the coupling fluctuations are much faster than the donor lifetime.

Thus, the rate can be expressed in terms of the averaged squared coupling value, 〈V 2〉. In

the static averaging regime, in contrast, structural changes with timescales slower than the

donor excited-state decay give rise to a distribution of rates corresponding to the different

(static) structures. This problem has been widely discussed in the application of FRET to

measure distances in biosystems, given that the main source of uncertainty is related to the

value adopted for the orientation factor κ.4 In this context, MD simulations have emerged as

a powerful tool to examine the impact of electronic coupling fluctuations on FRET studies

on a variety of biosystems and to aid in the characterization of the structural ensembles un-

derlying static distributions of FRET rates.13–38 For example, simulations have shown some

disagreement with the isotropically-averaged 〈κ〉 = 2/3 value often assumed in FRET stud-

ies, or the occurrence of significant correlations between distances and orientations, neglected

in the isotropic factor by assuming that 〈κ2R−6〉 = 〈κ2〉〈R−6〉.16 MD simulations have also

been used to analyze the role of coupling fluctuations on EET processes in biosystems where

the D/A molecules are constrained to a given conformation, like photosynthetic systems,8

DNA98,99 and protein-ligand complexes.83,100

Overall, simulation studies have shown that singlet and triplet EET couplings display

qualitatively different fluctuations due to their different long- or short-range nature. In

Figure 4 we show some examples of coupling fluctuations calculated using QM/MM methods

along classical MD trajectories for different biosystems. The examples selected for singlet

EET correspond to the flurbiprofen (FBP) – human serum albumin (HSA) complex83 and the

interaction between two chlorophylls in the CP29 photosynthetic antenna,79 whereas triplet

EET couplings are shown for two stacked adenines in DNA98 and between a chlorophyll

and the violaxanthin carotenoid in CP29.101 TEET couplings display much larger variations
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than SEET values, as they are mediated by orbital overlaps, which strongly depend on

the distance. Moreover, the distributions show tails toward large values. This means that

computing TEET couplings for a static structure, for example a structure solved from X-ray

crystallography, can introduce important errors in the prediction of TEET rates,101 and a

better strategy relies on using MD-averaged coupling values, 〈V 2〉. Indeed, different MD-

based studies have shown that structural fluctuations significantly enhance TEET dynamics,

which can be explained on the basis of the tails observed in the coupling distributions.98,100,101

Figure 4: Electronic coupling fluctuations computed for different biosystems. Left panels show

the time series of the couplings and the resulting distribution. Right panels show the geometrical

fluctuations of the donor-acceptor pair that give rise to coupling fluctuations. a) SEET coupling

between (R)-flurbiprofen and Trp214 in human serum albumin (HSA),83 b) TEET coupling between

two adenines in a polyA–polyT DNA sequence,98 c) SEET coupling between chlorophylls a603 and

a609 in the CP29 photosynthetic complex,79 d) TEET coupling between chlorophyll a603 and

violaxanthin in the CP29 photosynthetic complex.101

Regarding SEET couplings, in systems where the D/A molecules are held in a relatively

rigid conformation, for example the chlorophylls in the CP29 complex, the fluctuations dis-
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play a more gaussian distribution, as shown in Figure 4c, and a reasonable estimate of

the rate can often be achieved by computing the coupling from a static structure. For ex-

ample, a number of studies have been able to describe the light-harvesting properties of

photosynthetic complexes based on static structures, although others adopt MD-averaged

values.8,102,103 A recent study on the PE545 complex of cryptophyte algae, for example,

showed that the explicit account of coupling fluctuations led to minor differences in EET dy-

namics compared to simulations based on the average value.104 If one of the chromophores

displays considerable flexibility, however, even SEET couplings need to be averaged over

structural fluctuations. This situation is exemplified in Figure 4a, which shows considerable

fluctuations in the coupling between FBP and Trp214 of HSA. Indeed, the increased flex-

ibility of (S)-FBP compared to (R)-FBP in the binding pocket was shown to explain the

observed ∼40% faster EET dynamics for that enantiomer.83 On the other hand, the distri-

bution of SEET couplings found for the FBP/HSA complex displays a less gaussian shape

compared to the CP29 case, and the coupling values oscillate at slightly smaller values at

longer simulation times, an indication of potential static coupling fluctuations.

In FRET systems where conformational transitions and fluorophore orientational dy-

namics can drastically change the mutual distance and orientation between the D/A chro-

mophores, MD simulations are particularly useful in disentangling dynamic and static cou-

pling fluctuations in the prediction of EET efficiencies.17,19,38 If the coupling fluctuations

along the trajectory are fast compared to the donor excite-state decay (dynamic averaging

regime), the efficiency can be calculated using the averaged rate constant:

φEET =

(
1 +

KD

〈kEET〉f

)−1

(22)

In the opposite limit of slow coupling fluctuations (static averaging regime), there will be

a distribution of energy transfer rates, and the ensemble efficiency can be computed by

averaging the efficiency, rather than the rate, over static conformations:

φEET =

〈(
1 +

KD

kEET

)−1
〉
s

(23)

When both dynamic and static fluctuations are relevant (intermediate averaging regime), the
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efficiency can thus be computed using a double average over static and dynamic disorder:

φEET =

〈(
1 +

KD

〈kEET〉f

)−1
〉
s

(24)

Several groups have reported more elaborated approaches to describe EET in the inter-

mediate averaging regime, in which Markov chain sampling techniques are used to model

D (and eventually A) fluorescence decays in addition to FRET efficiencies from electronic

coupling trajectories.22,24,25,28,29,38 In Scheme 1 we illustrate as an example the approach

proposed by Grubmüller and co-workers.25 In this scheme, first a random donor excitation

instance is chosen from the trajectory. Then, the Markov chain scheme is iterated in time

steps ∆t =1 ps until either photon emission or radiationless decay occurs in the D or A

molecules. At each iteration, the rates for radiation or radiationless decay are assumed to

be constant and derived from the lifetimes and quantum yields of D and A, whereas the

time-dependent EET rate kEET(t) is computed from the electronic coupling in that point of

the MD trajectory. Then, transitions are randomly selected based on the probabilities for

thermal deexcitation pnonrad,X = knonrad,X · ∆t, photon emission prad,X = krad,X · ∆t, EET

pEET(t) = kEET(t) ·∆t, and no state change 1− pnonrad,X − prad,X − pEET(t). In this scheme,

the final EET efficiency can then be computed from the number of photons emitted by the

donor and the acceptor.

Scheme 1: Markov chain sampling technique used to model EET observables.
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THE SPECTRAL OVERLAP

From the FCWD factor to the spectral overlap

To derive the Fermi Golden rule for a molecular system, one has to consider two sets of

vibronic states, v and v′ , belonging respectively to the initial and final states (i and f). In

this case, we have:

kif =
2π

~
|Vif |2

∑
v,v′

p(Ev) |〈v|v′〉|2 δ(Eiv − Efv′) =
2π

~
|Vif |2 FCWD (25)

where the summation runs over the vibrational states of i and f , and contains the Boltzmann

population p(Ev) of the initial state v, and the Franck-Condon factors |〈v|v′〉|2. The FCWD

factor measures the probability that initial and final states have the same energy. Here, we

have assumed the Condon approximation, which allows us to factorize the electronic coupling

Vif out of the summation.

In EET, the initial and final states are localized, respectively, on donor and acceptor.

Assuming that each has its own independent vibrations, states v are direct products of

vibrational states of excited donor v′D and ground-state acceptor vA; likewise, v′ are products

of ground-state donor vibrational states vD and excited-state acceptor states v′A. The FCWD

factor of Eq. (25) can thus be simplified by introducing the FCWD functions for donor

emission and acceptor absorption:

fD(E) =
∑
vDv

′
D

p(Ev′D) |〈v′D|vD〉|
2
δ(E + ∆E0vD,1v

′
D

) (26)

fA(E) =
∑
vAv

′
A

p(EvA) |〈vA|v′A〉|
2
δ(E −∆E0vA,1v

′
A

) (27)

where ∆E0vD,1v
′
D

is the excitation energy of D from its ground state in the vD vibrational

state to its excited state in the v′D vibrational state, and the same definition is used for

∆E0vA,1v
′
A

. The FCWD factor is finally expressed as the spectral overlap of the two separate

FCWD functions of donor (fD) and acceptor (fA):

FCWD =

∫ ∞
−∞

dEfD(E)fA(E) (28)
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Notably, the functions fA(E) and fD(E) are related to the Franck-Condon expressions for

acceptor absorption AA(ω) and donor emission FD(ω) spectra by the corresponding prefac-

tors: AA(ω) ∝ |µtrA |
2
ωfA(~ω), and FD(ω) ∝ |µtrD|

2
ω3fD(~ω). This allows computing spectral

overlaps via Eq. (28) from experimental spectra,1 after dividing each spectrum by its fre-

quency prefactor (ω for the absorption and ω3 for the fluorescence), and normalizing the

functions fA(E) and fD(E). In some cases, i.e. when the initial or final state is dark, or

there are overlapping bands in the acceptor absorption, it becomes necessary to estimate the

spectral overlap by calculating fA(E) and fD(E).

While it is possible to compute the FCWD functions from Franck-Condon calculations,

the donor-acceptor energy difference must be estimated accurately, as spectral overlaps may

be highly sensitive to this difference, and a small deviation in the excitation energies may

result in a large error on the computed rate.105 As an example, we report in Figure 5

the spectral overlap as a function of the vertical excitation energy of the acceptor, while

maintaining all other parameters fixed.
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Figure 5: Spectral overlap between a carotenoid donor and a bacteriochlorophyll acceptor. The

filled curves represent the densities of states fA and fD, whilst the dashed line represents the

value of the spectral overlap J as a function of the vertical excitation energy of the acceptor, in

logarithmic scale.

Sometimes, rather crude estimations of spectral overlaps are found in the literature,

where the FCWD functions are replaced by gaussian functions whose position and width is

estimated from experimental spectra.48,59 A more accurate fitting can be done by express-
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ing the FCWD function as a single-mode vibronic progression. When dealing with triplet

states, the difficulty in obtaining triplet absorption spectra can be overcome by employing

spectral parameters for singlet absorption, and adjusting the excitation energy to match the

triplet energy.101,105 Particular caution should be used when determining spectral overlaps

from experimental spectra, because their lineshape contains contributions from both homo-

geneous and inhomogeneous broadening. The latter is due to static disorder in the excitation

energy and arises from an ensemble of molecules experiencing different environments. Each

microstate of the ensemble is characterized by different excitation energies in both donor and

acceptor, and therefore by the spectral overlap. An effective spectral overlap can be obtained

by averaging over the inhomogeneous distributions of donor and acceptor energies,1,106 which

is analogous to the static averaging discussed in the previous section. At room temperature,

homogeneous broadening usually dominates the lineshape, and the distribution of rates due

to the inhomogeneous energy distribution is rather small.

Spectral density and time-domain formulation of the EET rate

A very effective approach to obtain the FCWD is a time-domain expression based on the

spectral density (SD) of the exciton-phonon coupling.107,108 The spectral density is defined

as the Fourier transform of the quantum autocorrelation function (ACF) of the excitation

energy fluctuations ∆E, calculated on the ground-state potential energy surface (PES):

C(τ) = 〈∆E(τ)∆E(0)〉 (29)

C̃(ω) =

∫ ∞
−∞

eiωtC(t)dt = C̃ ′(ω) + C̃ ′′(ω)

where C̃ ′(ω) and C̃ ′′(ω) refer to the even and odd parts of C̃(ω).

Since C(τ) is a quantum ACF, it has both a real and an imaginary part. In the fre-

quency domain, their Fourier transforms C̃ ′(ω) and C̃ ′′(ω) satisfy the detailed balance con-

dition:107,108

C̃ ′(ω) = coth

(
β~ω

2

)
C̃ ′′(ω) (30)

As C̃ ′(ω) and C̃ ′′(ω) share the same amount of information, we can define the spectral density

as just the odd part C̃ ′′(ω),108 from which all vibronic properties can be obtained, through
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the lineshape function g(t):

g(t) =

∫ t

0

dτ2

∫ τ2

0

dτ1 〈∆E(τ1)∆E(0)〉 (31)

= −
∫ ∞

0

C̃ ′′(ω)

πω2

[
coth

(
β~ω

2

)
· (cos(ωt)− 1) − i (sin(ωt)− ωt)

]
dω

From C̃ ′′(ω) we can also obtain the total coupling to vibrations. This can be quantified in

terms of the reorganization energy λ, defined as:

λ =

∫ ∞
0

C̃ ′′(ω)

πω
dω = − lim

t→∞

d

dt
={g(t)} (32)

Using the properties of the Fourier transform, the FCWD of Eq. (28) can be recast in

the time domain and the EET rate rewritten as:109,110

kEET =
|VDA|2

~2
<
∫ ∞

0

exp {−iωADt− 2iλDt− gA(t)− gD(t)} dt (33)

where λD is the reorganization energy of the donor state, gA(t) and gD(t) are the lineshape

functions of the donor and acceptor, and ωAD is the difference between the vertical excitation

energies of A and D. Equation (33) can be obtained from a generalized master equation, by

treating the electronic coupling VDA as a perturbation.74,110 The time-domain approach is

useful to recover some of the approximations made in the derivation of the FCWD term. For

example, if the modes of A and D are not independent, a new term gAD(t), that accounts

for correlated energy fluctuations, appears in the exponent of Eq. (33). In this condition,

the the FCWD term cannot be expressed as spectral overlap (see Eq. (28)), because now the

integrand in the time domain cannot be factorized.111

A classical MD trajectory can be used to obtain the classical, real-valued ACF of the

excitation energy Ccl(t), which corresponds to the even C̃ ′(ω). The odd part can be recovered

a posteriori, multiplying by a temperature-dependent prefactor, in the so-called Harmonic

approximation:108

C̃ ′′(ω) =
βω

π

∫ ∞
−∞

eiωtCcl(t)dt (34)

where β = 1/kBT depends on the temperature of the classical trajectory. The classical ACF

is calculated from the excitation energies ∆E(ti) along snapshots ti of the MD trajectory:108

Ccl(tj) =
1

N − j

N−j∑
i=1

∆E(ti + tj)∆E(ti) (35)
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Given the size and complexity of biological systems, spectral densities have been normally

computed on the basis of classical MD simulations, where the nuclear trajectory is computed

with a Molecular Mechanics (MM) force field, and the excitation energy evaluated on the

resulting configurations using a quantum mechanical approach. Generally, the effect of the

surrounding environment on the excitation energy fluctuations is taken into account by

employing multiscale QM/MM models. This allows evaluating the coupling of the excitation

to both the modes of the pigments and those of the surroundings.

In order to converge the calculation of Ccl(t), a reasonable sampling is needed. In order to

sample high-frequency modes, the time step between the configurations used for the excited-

state calculations should be rather small (.5 fs),108,112,113 while accurate sampling of low-

frequency modes (i.e. ∼30 cm−1, corresponding to a period of ∼1 ps) requires a time window

of at least 10 ps, that is, long enough to sample several oscillations. Before computing the

spectral density, Ccl(t) can be multiplied by a damping Gaussian or exponential function to

ensure complete decay within the time window108. This is reflected in Gaussian or Lorentzian

broadening of the SD peaks.

It has been questioned as to whether the MD-based approach is accurate enough to de-

scribe excitation energy fluctuations,114,115 the most concerning issue being related to the

quality of the underlying MM-based MD. In fact, the MM Hamiltonian used to generate the

trajectory differs from the QM Hamiltonian used to compute the excitation energies,115–117

leading to inaccurate excitation energy fluctuations 〈∆E(τ)∆E(0)〉. For example, a shifted

equilibrium position of the MM PES with respect to the ground-state QM PES likely leads

to exaggerated fluctuations, and to overestimating the SD peaks,116 whereas an incorrect

curvature of the MM PES leads to errors in the position of the SD peaks and to a redis-

tribution of the SD intensities.114 Indeed, SDs calculated with the MD-based approach are

strongly dependent on the parameters of the force field, rather than on the QM method used

to compute the excitation energies.112,118

The best solution to the force-field issue would be using a QM/MM MD to calculate

the ground-state trajectory,119–121 thus retaining both the accuracy of the QM method for

the chromophore and the effect of the surrounding environment on the ground-state PES.

This approach is not always feasible, given the dimensions of biological chromophores and
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the long time window requested by the sampling (vide supra). A compromise solution can

be the development of ad-hoc force-fields for the chromophores, specifically targeted to the

description of excitation properties,122,123 possibly employing PESs directly interpolated from

quantum chemical data.117,124

An alternative approach to SD calculations is the normal-mode analysis proposed by

Lee et al.114 and applied to FMO, phycobiliprotein complexes,125 and the LH2 system of

purple bacteria.126 Such an approach is based on the analytical expression of C̃ ′′(ω) when

the ground and excited state PESs are described by the same harmonic potential, but with

shifted equilibrium position:

C ′′(ω) = π
∑
k

ωkλkδ (ω − ωk) (36)

where ωk and λk are the frequency and the reorganization energy of the k-th normal mode.

These quantities can be obtained through QM/MM frequency calculations, in which the

chromophore is placed in a frozen environment.114,115 A subsequent calculation of the excited-

state gradient at the Franck-Condon point (vertical gradient, or VG) is used to determine the

reorganization energies λk = f 2
k/2ω

2
k, where fk is the vertical gradient along the direction of

normal mode k. Usually, only the chromophore fluctuations are included in this model. The

effect of protein fluctuations on the SD can be recovered by computing only solvatochromic

shifts along an MD trajectory.114 However, the normal-mode approach does not necessarily

require a molecular dynamics, and can be used directly on a single structure,126 even though

in this case the effect of protein fluctuations can be only added a posteriori.

BEYOND FÖRSTER

The Förster formulation of EET, as described in the previous sections, is based on the

assumption of excitations being localized on one chromophore at a time, while energy transfer

occurs by incoherent “hops” between chromophores.7,39,110,127 However, when the electronic

coupling between donor and acceptor is large, the perturbative Golden Rule expression (1)

is not valid anymore74,127, as the electronic coupling tends to delocalize the excitation over

both chromophores, giving rise to an exciton state. In multichromophoric systems as DNA
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or light-harvesting pigment-protein complexes, the excitation may be shared among several

chromophores. In these cases different formulations have to be introduced as summerized in

the next sections.

The generalized Förster approach

If we assume that the multichromophoric system can be divided in two weakly connected

aggregates, each containing multiple chromophores and that, within each aggregate, the elec-

tronic coupling is strong enough to delocalize the excitation, the EET rate can be recovered

from a generalization of the Forster equation between new “exciton” states corresponding to

the D and A aggregates.

Each “exciton” state K can be written as an expansion over the site-localized states j:

|K〉 =
n∑
j=1

cjK |j〉 (37)

where n is the total number of chromophores in each aggregate. In the basis of the states j

(site basis), the electronic Hamiltonian of the aggregate is written as:

Hel =
n∑
j=1

Ej |j〉 〈j|+
N∑
i 6=j

Vij |i〉 〈j| (38)

where Ej is the excitation energy of chromophore j, and Vij is the electronic coupling be-

tween states i and j. The coefficients cjK are obtained by diagonalization of Hel, and the

corresponding eigenvalues EK represent the excitation energies of the exciton states.

In order to generalize the rate equation (33) to describe EET between exciton states of D

and A, we need to define the lineshape tensors gKLMN(t) and reorganization energies λKLMN

for the exciton states:74,128

gKLMN(t) =
n∑
j=1

c∗
jK
c
jL
c∗
jM
c
jN
gj(t) (39)

λKLMN =
n∑
j=1

c∗
jK
c
jL
c∗
jM
c
jN
λj (40)

Equation (39) shows that the vibrations of site j are now shared among several exciton states.

The lineshape function of K is the diagonal part gK ≡ gKKKK of the lineshape tensor, and

the same is valid for the reorganization energy λK .
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The EET rate between exciton states K ∈ D and L′ ∈ A is described by the Generalized

Förster (GF) rate equation:1,106,129

kKL′ =
1

~2

∣∣∣∣∣∑
i∈D

∑
j′∈A

c∗iKcjL′Vij′

∣∣∣∣∣
2

<
∫ ∞

0

exp {−iωKL′t− 2iλKt− gL′(t)− gK(t)} dt (41)

where the non-primed indices run on D states, and the primed indices run on the A states.

The effective coupling is obtained by transforming the coupling Vij in the basis of the ex-

citon states of D and A, whereas the effective spectral overlap is expressed through the

excitation energy difference ~ωKL′ = (EK − EL′), and through the lineshape functions and

reorganization energies of exciton states.

Closely related to GF is the multichromophoric FRET (MC-FRET), which recovers exci-

ton coherence terms in the effective spectral overlap by defining generalized absorption and

emission tensors.130,131 Both GF and MC-FRET have been successfully applied to the LH2

system of purple bacteria to describe EET between the B800 BChls and the strongly coupled

B850 ring.106,130

Exciton relaxation

When EET occurs within strongly coupled aggregates the GF formulation is no longer valid.

The strong coupling regime is established when the electronic coupling is much larger than

the coupling to vibrational degrees of freedom, which is quantified through the reorganization

energy λ (vide supra).39,74,132

Within the strong coupling limit, the excited-state dynamics of the system consists in

relaxation between exciton states. The relaxation rate between states K and L can be

expressed in the Redfield theory formulation as:74,110

kKL =
n∑
j=1

|cjK |2|cjL|2C ′′j (ωKL)

(
1 + coth

(
β~ωKL

2

))
(42)

where C ′′j (ωKL) is the spectral density of site j evaluated at the energy gap between states

K and L.

The standard Redfield (sR) rate equation (42) describes a relaxation process where one

quantum of electronic energy ~ωKL is released to the vibrational degrees of freedom through
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the vibronic coupling represented by the spectral density, and cannot treat processes where

multiple energy quanta are transferred to the vibrations.110 An alternative formulation of

the exciton relaxation rate is given by the modified Redfield (mR) theory, which takes into

account the FCWD factor between exciton states. The mR rate is given by:74,110,128,133

kKL = 2<
∫ ∞

0

e−iωKLt−2iλKt−gK(t)−gL(t)VKL(t) dt (43)

where VKL(t) is expressed as

VKL(t) = e2gKKLL(t)+2iλKKLLt×

× {g̈LKKL(t)− (ġKLKK(t)− ġKLLL(t) + 2iλKLKK) (ġKKLK(t)− ġLLLK(t) + 2iλKKLK)}

(44)

Here, ġ and g̈ denote first and second time derivatives, and gKLMN(t) and λKLMN are

defined in Eq. (39). Notably, the modified Redfield equation (44) resembles the time-domain

expression of the Förster rate (33), though here the “coupling” term VKL(t) is time-dependent

and cannot be factorized out of the integral.

In the limit of large energy gap between donor and acceptor, initial and final states

become localized on either site, and the Förster equation (33) is exact. In this regime,

contrary to the sR rate, mR exactly recovers the Förster rate109,128. However, when donor

and acceptor have the same energy, the mR rate reduces to the standard Redfield, and never

recovers the Förster rate in the limit of weak coupling.109,128
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Figure 6: Downhill exciton relaxation rates in a D–A dimer, as predicted by the Förster equation

(F, orange lines), modified Redfield theory (mR, red lines), and standard Redfield theory (sR,

blue lines). Solid lines correspond to the model B777 SD,134 while dashed lines correspond to the

calculated B800 SD including high-frequency vibrations.126 The two SDs have total reorganization

energies of ∼100 and ∼220 cm−1, respectively, and comparable reorganization energy for lower

frequencies (.500 cm−1). We used the same SD for donor and acceptor. In (a) and (b) we plot

downhill rates as a function of the energy gap between D and A, for electronic coupling values of

(a) V =100 cm−1 or (b) V =20 cm−1. (c) Downhill rates as a function of the electronic coupling V ,

for energy gap ∆E =100 cm−1. (d) Downhill rates as a function of the total reorganization energy

of the SD. Here we use ∆E =100 cm−1 and an intermediate coupling V =40 cm−1. In all cases the

temperature was fixed at 300K.

To better understand the above discussion, in Figure 6a,b we compare the standard and

modified Redfield theories to the Förster rate equation (33) for varying energy gap between

donor and acceptor. Following Yang and Fleming110, we selected two regimes of strong

(100 cm−1) and weak (20 cm−1) coupling, but we modeled the coupling to vibrations with

more realistic spectral densities: firstly, the so-called B777 SD fitted on high-resolution low-

temperature fluorescence spectra of BChl on the B777 pigment-protein complex (solid lines

in the Figure).134 Dashed lines represent the SD computed with the normal-mode analysis
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on the B800 BChl of LH2126, which contains several high-frequency peaks. In all cases,

mR and sR become identical when the energy gap is much smaller than the electronic

coupling. In the opposite limit, modified Redfield correctly recovers the Förster rate. As it

regards the standard Redfield, the results obtained with the B777 SD closely resemble those

discussed by Yang and Fleming on a different structureless SD and give very small rates.110

Conversely, the structured B800 SD gives non-vanishing sR rates also at larger energy gaps,

due to the high-frequency SD peaks. The sR rates are exactly proportional to the SD

intensity at the energy gap, and “follow” the structure of the SD. The mR rates instead

show a smoother behavior with the energy gap, as mR theory allows relaxation processes

that involve multiple vibrational quanta. Multi-phonon relaxation results in generally larger

rates for mR theory, especially for larger gaps; however, in some regions the mR rates are

smaller than the corresponding sR rates. In pigment-protein complexes, where the effective

rates are averaged over the disorder and over many chromophores, modified and standard

Redfield give similar results on rates and dynamics.74,126

Figure 6c shows the behaviour of mR and sR with increasing coupling, at a fixed energy

gap. Here the Förster rate is proportional to the squared coupling, and unbound. Again, mR

theory reduces to the correct Förster limit for weak coupling, contrary to sR, which overes-

timates the rates by one order of magnitude. However, we recall that, for near degeneracy

between donor and acceptor, mR would overestimate the rates as sR does.128 The incorrect

behaviour of both Redfield formulations for large exciton-vibrational coupling is exemplified

in Figure 6d, where we compute the rates for scaled spectral densities in order to span a large

interval of reorganization energies, for fixed energy gap and coupling. Here, the sR rate is

always proportional to the reorganization energy, and grows without bounds. Even though

the coupling and energy gap values make the excitons quite localized, mR theory fails to

recover the correct Förster limit for large reorganization energies. This is a consequence of

the choice of the electronic wavefunction (see eq. (37)), which is fixed and cannot adapt

to the reorganization of vibrational degrees of freedom.128 Namely, when the reorganization

energy is much larger than the coupling, electronic states should be completely localized,

but in the Redfield theories the degree of localization is independent of the SD.

From the above discussion, it is clear that mR theory can describe an intermediate regime
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between Förster and standard Redfield only when the coupling to vibrations is sufficiently

small. In this case, the main source of localization is static disorder in the energies of the

chromophores, and the electronic wavefunctions are weakly perturbed by the vibrations.

In the presence of static disorder, the average energy gap between chromophores is roughly

proportional to the width of the energy distribution, σ. Therefore, for mR theory to describe

correct dynamics, one has to ensure that either V � λ or σ ∼ λ & V . In the other cases, EET

is likely better modeled by Förster theory, assuming complete localization of the excitation,

or by GF theory, assuming partial localization of the excitation on pre-defined clusters.

Overcoming perturbative treatments

All the methods described above assume that the electronic wavefunctions do not change

upon relaxation of the nuclear coordinates, remaining either delocalized, as assumed in

Redfield approaches, localized on one chromophore (Förster theory), or on a cluster of chro-

mophores, as in GF theory. In some cases, however, the excitation can gradually localize

while the nuclear degrees of freedom relax. This phenomenon is known as dynamic local-

ization, and cannot be described by the perturbative treatments described in the previous

sections.74,128,135 A number of methods have been devised to treat the quantum dynam-

ics of energy transfer beyond the perturbative theories.39 The exact exciton dynamics of

an exciton system can be described through a series of hierarchically coupled equations

of motion (HEOM). The HEOM approach was derived in a reduced form by Ishizaki and

Fleming,132 and is now widely used to consistently describe all ranges of exciton-phonon

couplings121,135–137 and to benchmark the simpler theories.132,138

From the comparison with HEOM dynamics it was shown that Redfield-based theories

easily give qualitatively incorrect dynamics outside of their range of applicability.132,135,138,139

Moreover, Redfield theories incorrectly predict, in the long-time limit, that the populations

will equilibrate to the Boltzmann population of exciton states, regardless of the reorgani-

zation energies.136 The real equilibrium populations, however, will reflect the mixing with

nuclear degrees of freedom, which effectively renormalizes the eigenstates of the full Hamil-

tonian.136,140 Förster and generalized Förster theory describe qualitatively well the EET

rates even when the electronic couplings are not very small, and predict qualitatively correct
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populations at equilibrium.121,132,138,141

To overcome the limitations of the HEOM due to numerical complexity, several implemen-

tations have been devised, including massively parallel implementations,137,141 or stochastic

approaches.142 However, other limitations remain, on the functional form of the spectral

density, and on the number of vibrational modes that can be modeled.141

CONCLUSIONS

Nowadays, simulations of EET processes have achieved a considerable degree of maturity.

In this review, we provided an overview of the main theoretical aspects involved in such

simulations focusing mostly on biological macromolecules. We started by describing the

main approximations in the original formulation of Förster theory. We then presented the

improvements that have been devised to better estimate the electronic coupling, which is the

key quantity determining the EET rate. In particular, methods that go beyond the point-

dipole approximation have been presented and discussed together with models developed to

properly include environment effects. We thus focused on recent advances in continuum and

multiscale QM/MM methods, which show that screening effects can be significantly modu-

lated by the chromophores mutual arrangement as well as the heterogeneous polarizability

of the environment. Indeed, application of QM/MM models to DNA or photosynthetic

antennae has shown changes by a factor up to 4 in energy transfer rates compared to the

continuum dielectric assumption. We have also shown that, especially in biomacromolecules,

the interplay between timescales of the EET process and the fluctuations of the coupling,

the latter caused by chromophore rotational and translational dynamics, is fundamental to

determine EET efficiencies. We thus discussed different strategies to post-process coupling

trajectories and generate EET observables in the static, dynamic and intermediate averaging

regimes. We successively analyzed the spectral overlap term and how this quantity can be

estimated from simulations of the spectral density of exciton-phonon coupling. Finally, we

ended by discussing rate theories beyond Förster formulation that need to be used in closely

packed multichromophoric systems, where strong coupling leads to delocalized exciton states,

a common situation found in biosystems like nucleic acids or photosynthetic complexes. We
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envision that such simulations will play an increasingly important role in the emerging field

of dynamic structural biology, for example in the determination of conformational ensembles

of intrinsically-disordered proteins, as well as in the comprehension of fundamental biological

process like light harvesting in photosynthesis and the mechanisms of DNA damage.
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