

Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica

Universitat de Barcelona

JUPYTER NOTEBOOKS AS A DEVELOPMENT

AND DOCUMENTATION TOOL FOR

SUPPORTING COMPUTER PROGRAMMING

LEARNING AMONG ADOLESCENTS: A CASE

STUDY IN A K-18 SCHOOL

Ferran Mañà Marín

Director: Sergio Sayago

Realitzat a: Departament de

Matemàtiques i Informàtica

Barcelona, 1 de febrer de 2018

Keywords:

Jupyter notebooks, Computational narratives, Literate programming, Code

learning

Abstract
This Treball Fi de Grau (TFG) reports on an exploratory case study aimed at

facilitating computer programming learning in a K-18 school through

Jupyter Notebooks, to test their usability for this user group, and find

possible improvements to the interface. Over a period of 4 months, we were

in charge of running an extracurricular activity intended to train a team of

students to participate in a competition of code challenges, HP Code Wars,

thereby adopting a learning-service approach (aprenentatge servei). Within

this context, we looked into different aspects of the use of computational

notebooks, which were not used in the educational institution, and came up

with some possible features to add to the user interface of Jupyter

Notebooks to serve better our students’ needs and encouraging good

programming practices. From these results we designed a variable inspector

for Jupyter, and co-designed an extension that allows the user to add a

second dimension to the narrative, where students seemed to agree on a cell

folding/grouping approach for a multi-layered structure. The evaluation

activities yielded positive results, with students preferring the use of

notebooks over interpreters, and documenting their work in an explanatory

narrative.

Resum
Aquest Treball de Fi de Grau (TFG) informa d’un cas d’estudi exploratori per

a facilitar l’aprenentatge de programació en una escola 3-18 a través de

Jupyter notebooks, examinant la seva usabilitat en aquest perfil d’usuaris, i

trobar possibles millores a la interfície. Al llarg d’un període de 4 mesos, vam

estar a càrrec d’organitzar una activitat extraescolar en la qual hem

preparat un equip d’estudiants per a participar en una competició de

reptes de programació, HP Code wars, adoptant així un enfocament

1

d’aprenentatge servei. En aquest context, hem analitzat diferents aspectes

de l’ús d’aquests notebooks computacionals, que no s’utilitzaven en

aquesta institució, i vam pensar en possibles funcionalitats per a afegir a la

interfície de Jupyter Notebooks, tot ajustant-nos a les necessitats dels

aprenents i incentivant bones pràctiques de programació. A partir

d’aquests resultats hem dissenyat un inspector de variables per a Jupyter, i

co-dissenyat una extensió que permet a l’usuari d’afegir una segona

dimensió a la narrativa, en la qual els estudiants semblaven estar d’acord

en un model basat en agrupació/plegament de cel·les per aconseguir

aquesta estructura de diverses capes. Les activitats d’avaluació han donat

resultats positius, amb els estudiants preferint l’ús de notebooks per

damunt d’intèrprets, i per a documentar la seva feina en una narrativa

explicatòria.

Resumen

Este Trabajo de Fin de Grado (TFG) informa de un caso de estudio

exploratorio para facilitar el aprendizaje de programación en una escuela

3-18 a través de Jupyter notebooks, examinando su usabilidad en este perfil

de usuarios, y buscando posibles mejoras en la interfaz. A lo largo de un

período de 4 meses, estuvimos a cargo de organizar una actividad

extraescolar en la que hemos preparado un equipo de estudiantes para

participar en una competición de retos de programación, HP Code wars,

adoptando así un enfoque de aprendizaje servicio. En este contexto, hemos

analizado diferentes aspectos del uso de estos notebooks computacionales,

que no se utilizaban en esta institución, y pensamos en posibles

funcionalidades para añadir a la interfaz de Jupyter Notebooks,

ajustándose a las necesidades los aprendices e incentivando buenas

prácticas de programación. A partir de estos resultados hemos diseñado un

inspector de variables para Jupyter, y co-diseñado una extensión que

permite al usuario añadir una segunda dimensión a la narrativa, en la que

los estudiantes parecían estar de acuerdo en un modelo basado en

agrupación / plegamiento de celdas para conseguir esta estructura de

2

varias capas. Las actividades de evaluación han dado resultados positivos,

con los estudiantes prefiriendo el uso de notebooks por encima de

intérpretes, y para documentar su trabajo en una narrativa explicatòria.

3

I would like to thank Sergio Sayago for his implication in this project

Salva, Dani, and the rest of the TAC department for their help,

and some very special thanks to:

Guillermo

Jara

Marc

Eva

Jordi

Xavi

For their huge commitment and support during the activities

4

Table of contents

1. Introduction 7

2. Objectives 10

3. Context and related work 11
3.1. The role of Computer Science in education 11

3.1.1 Our case: Daina Isard K18 school 14
3.2. Programming environments for a first contact 17

3.2.1. Our case: HP CodeWars 22
3.3. Research activity: first contact with Python 24

3.3.1. Choosing an interface to evaluate 31

4. Notebooks and computational narratives 32
4.1. Literate programming and computational narratives 32
4.2. Project Jupyter 33
4.3. Related work 35
4.4. Research activity: using Jupyter as an IDE 38
4.5. Research activity: using Jupyter to make programming notes 44

5. Software design 51
5.1. Requirements 51
5.2. Co-designing activity for bi-dimensional notebooks 53
5.3. Prototyping and relevant art for variable inspection 57

6. Conclusions and future work 59

7. References 61

5

1. Introduction

In a time where digital technologies are taking over many aspects of daily

life, the concept of code literacy is on the table of engineers and educators

alike. Being literate in code means that you can read and understand

computer code, but also write it, opening up software development and use,

something which, like in other cases in history, has serious implications in

society [25]. This interest in code literacy is related to other concepts, such as

computational thinking, and how it can help to understand technology as

well as other disciplines; or software democratization, which enables

unexperienced programmers to customize commercial products through

coding, or the construction of complex digital platforms, for example, using

frameworks, which are gaining traction. In this regard, studies have shown

that most Computer Science undergraduate students have taken some kind

of programming course in high school, often it being extracurricular [16]. This

renders teenage years as crucial for engaging students of all conditions in

these career choices, in order to meet society’s technological needs and to

promote income and gender equality in increasingly more areas [3], and puts

technologists and software engineers under the spotlight, for them to design

according to this new population which is educated on computers and

programming, as well as deciding how to open and present the content that

they will leave for non-professionals to tweak with, or that educators will use

to teach coding skills to new generations. Furthermore, the transition

towards this model has to take into account the current motivation of

students for learning programming, the interest of their tutors, and the goals

and methods of teachers.

In this project we will look into a currently widespread method for

distributing computational and statistical knowledge, in the form of

computational notebooks, which take at their heart literate programming

[4]. In particular, we will focus on Jupyter Notebooks, which are becoming

widely spread and recently awarded (2017 ACM Software System Award)[8].

There are other computational notebooks, such as RStudio, ObservableHQ,

6

Mozilla Iodide, or Codestrates, but they are not as widely used as Jupyter and

most of them do not support the programming language that we chose,

which is Python.

Jupyter notebooks combine cells of code and formatted text; allowing to

build computational narratives that break down and atomize code, while

keeping it verbalized and understandable. Apart from the cells, the other

main “new” feature that notebooks introduce is markdown notation for the

code’s documentation, also known as explanation. More specifically, we will

check to which extent these features students have a deeper understanding

of their code through a narrative and explanatory scheme, if they do use

them.

The research part of this project has been done in the form of a weekly

activity about code learning with Python, and three occasional activities

involving Jupyter notebooks with a group of students from a high school

institution in Olesa de Montserrat, Catalunya. The students in this group,

aged 15 to 16, have taken an optional extra-curricular activity, in which they

learn high-level programming for problem solving and learning about

computers and algorithms, with the end goal of participating in the HP Code

wars competition. This was done with consent from the school and the

students. The activities were designed to clarify some concerns of

researchers about the use that is given to the Jupyter interface. These

include: to which point users document their code with text cells, how much

of the exploratory process involving data science and other script-based

disciplines is supported by the interface, how is the code structured, and how

it is supposed to be navigated through. Additionally, there is interest in what

are the different ways people use notebooks and the purpose that they give

them. This evaluation of the interface was done through two use cases of

notebooks given the circumstances: using them to develop solutions to the

challenges of the competition, and using them to document what they learn

for lookup during the competition. The first activity, which focuses on the

exploratory part, has been done with all the students at once, while the other

one, focusing on explanation, was done separately with two students,

7

watching their behavior while using the interface in a pair programming

setup.

The resulting notebooks show how they generate interest in students, who

use cells to type and test their code by parts, and that they preferred this

approach to a single text file to execute. However, students who followed an

imperative programming paradigm tended to concentrate algorithms in

only one cell, using other cells to test different inputs or output methods for

that same algorithm. In terms of usability, the interface proved to be simple

and intuitive enough. For the explanatory part, students were able to craft

documents with a reasonable structure and purpose, but made little use of

the text cells. Support for multi-dimensionality, and visualization of the

current state of variables in notebooks could help them become more

enriching and better represent what the students want to annotate.

These results have served as a foundation for a software design process with

the objective of implementing some of the improvements that came out of

the study, one more related to code development, and another to navigation

through the narrative. We also included a co-design activity with some of the

involved students.

8

2. Objectives

1. Find relevant aspects of notebook interfaces to evaluate them in a

school environment.

2. Contextualize the setting that we are going to work with in order to

find what to look for, and extract relevant conclusions from the study.

3. Effectively implement a software solution for the students

participating in the competition.

4. Investigate on whether these interfaces, specifically Jupyter

notebooks, can make a positive difference for novice programmers.

5. Design or co-design improvements for the interface.

9

3. Context and related work

In this section we cover the background necessary to support the activities

carried out with computational notebooks, covering the context, which is

secondary education in Catalonia, and one specific high school with a

robotics and programming itinerary; studying interfaces with a similar

purpose, and the activity that encompasses the fieldwork.

3.1. The role of Computer Science in education

Nowadays, there is a growing interest in teaching Computer Science (CS) in

K-12 and K-18 schools. [20]. A number of reasons account for this interest,

ranging from job opportunities in a labor market where digital technologies

play a key role, to the benefits or potential of CS. Nevertheless, STEM

(Science, Technology, Engineering and Mathematics) career paths are

expected to grow in demand (see Figure 1), so encouraging teenagers to pick

a career in these areas, and more specifically in Computer Science, is bound

to be a priority for most administrations [2]. Computer programming is an

important part of Computer Science, and seems to be the link to all other

disciplines, since most university curriculums of STEM degrees include

programming.

(Figure 1) Graph showing the projected Annual Growth of STEM Job Openings from

2010 to 2020 [10]

10

However, there is something about Computer Science that makes it useful

and appealing for educators beyond the labor factor. In a way, a computer

and the act of programming it is not something to be learned per se, it is

something to create with, which can be used to solve problems, encode and

visualize information, and share those creations [15]. Programming is a great

way of simulating real-world problems and situations where you can see the

output of what you have developed, along with the process of making it

behave in the way you wanted. This means that Computer Science has the

potential to become a core subject. This calls for programming

environments which are not focused on software engineering, but on

exploiting these properties of Computer Science in order to develop useful

skills for a variety of fields and situations. Some of these skills are

summarized under the umbrella of computational thinking, conceived of as

a thought process that formulates a problem and expresses its solution so

that a computer can carry it out. In the same way that studying our language

or mathematics helps us understand aspects of the world, computational

thinking allows us to understand what goes on behind the software that we

use or that is used around us, and provides us with resources to break down

problems. In this sense, computers and how they are used are secondary:

humans also compute [26].

We can establish a connection with the definition of computer science [1]

and computational thinking; for instance, in the idea of abstraction, which is

key in both concepts. Apart from that, computational thinking has been

defined in terms of how other disciplines can incorporate algorithmic and

programming elements. One good example is biology, which has seen the

rise of a new field, bioinformatics. Besides, considering how CS is intrinsically

mathematic in nature, we can also state a strong relationship between

mathematical thinking and computational thinking. This goes against the

idea that teaching programming is only useful for those that will end up

taking Computer Science as their major, or software development as their

career. This generalistic idea of computation shows how intertwining

computer science with other subjects makes sense on its own, without

having to picture a scenario of necessity in a computer-run and

11

algorithm-governed world: that would only be one more incentive. Another

incentive could be how effective learning through programming proves to

be.

In Catalonia, where this project takes place, the education department of the

regional government classifies programming (in the secondary school, 12-16)

along with robotics in the “digital” curriculum, and establishes a relation of

“study and use” with the mathematics and technology curriculum, and a

“learning through use” with science [12]. The “robotics and programming”

skill is also linked with the following cross-curricular skills:

- Selecting, configuring and programming devices according to the

tasks to complete.

- Developing new personal knowledge through information treatment

strategies with the support of digital applications.

- Carrying out group activities while using tools and virtual

environments of collaborative work.

The network of the catalan school community, created to share learning

resources, provides mainly robotics initiatives, many having to do with

Arduino. The ones centered in computers are either about Scratch or App

Inventor [13]. A part from these guidelines and resources, it is up to each

center how and to which extent they teach programming during high

school years [7].

12

3.1.1 Our case: Daina Isard K18 school

The work done in this project is focused on the context of a school in Olesa

de Montserrat named Daina Isard (Figure 2), located in the province of

Barcelona, which covers education from 3 to 18 years. The study plan

integrates programming at different levels from early on, with the end

objective that all students finish school knowing how to code.

(Figure 2) The school’s logo and view.

We have had access to the study plan that this institution has on robotics

and programming, and it contains activities from very early on and up until

15-16 years of age (Figure 3), at which point all activities become optional and

extracurricular. We have classified these according to the approach taken

(Table 1), whether it is using code to achieve some other task or project

besides programming a computer, or, by contrast, learning to program

through an environment that is more or less enriched, in order to provide a

relevant and satisfactory experience for beginners. Lighter and in italics are

those activities which are extracurricular or optional.

(Figure 3) Slide of the presentation for the 3-18 project.

13

Ages Supporting projects with
code

Programming for the sake of
programming (Computer
Science)

3-6

 BEE-BOT: a programmable
bee that executes previously
programmed movements in
either four directions

6-8

Lego WeDo, making a toy
(Robotics)

Scratch, making a
videogame (Videogames)

ROBO-TIC workshop

8-12

Lego Mindstorms, building
an “eco-city” (Robotics,
multi-disciplinary)

ROBO-TIC workshop

Scratch, various challenges

12-13

Drone challenge
(Technology, Swift)

Snap4Arduino, domotics in
a house model
(Multi-disciplinary)

ROBO-TIC workshop

Swift Playgrounds:
controlling graphical agents,
first contact with textual code

13-14

Arduino, working with the
board (Electronics,
Technology)

ROBO-TIC workshop

14-15

First Lego League
(Robotics)

ROBO-TIC workshop

15-16

Arduino, Picaxe
(Electronics)

3D printing

App Inventor, Android app
development

14

Kodu (Videogames)

ROBO-TIC workshop

Video Games workshop

HP CodeWars, problem
solving through scripts with
python

16-18 Video Games workshop

(Table 1)

The activity highlighted in blue is the one that was introduced for this

project, and its end goal is to be able to demonstrate the mastery of a

general-purpose language such as Python or C++ when solving several

problems programmatically, designing and applying algorithms.

From the plan’s detail and the activities, as well as conversations with the

TAC (Technologies applied to knowledge) team, we can extract that the

motivation behind this itinerary is that students develop a programmatic

problem-solving ability, through computational thinking. In this sense, they

view these skills as part of a process which starts at analyzing the problem,

and synthesizing it, that is, extracting the relevant parts and making sense of

them.

The students that we will be working with in this project have not gone

through this exact itinerary. The main differences, though, are in the K8 span,

so, in principle, them having interacted with Lego’s solutions, as well as

Scratch and Swift, gives us a good approximation of the students under this

plan. The activity that they will take part in is optional, which means that the

students taking part in the study are interested in learning to program and

participating in the contest.

The next step is to study the tools that these students have worked with to

find patterns and peculiarities in their design, and the principles they follow.

One of them is Scratch, a web application or desktop program by the MIT

Media Lab, aimed at children. The other is Swift Playgrounds, an app for the

iPad for learning different uses of Apple’s Swift programming language.

15

3.2. Programming environments for a first contact:

Scratch and Swift Playgrounds

We can draw a line of progressive abstraction from the beginning of

electronic computation, in the 1960’s until now, both in programming

languages and programming languages with educational purposes.

Languages like BASIC or Logo allowed people that did not know about a

computer’s architecture to run simple programs in it. What Logo introduced

was the ability to show the result of the program with turtle graphics: the

program controls a cursor, the turtle, which draws on the screen in a

sequential manner (Figure 4) [17].

(Figure 4) A screenshot with some version of the logo programming language.

Both Scratch and Swift Playgrounds implement turtle graphics in a sort of

way, as they preserve the idea of watching the output of your program as it

progressively unfolds in a canvas (Figure 5).

(Figure 5) At the left, a screenshot from a Swift Playgrounds lesson, (Figure 6), at the

right, shows the web interface of Scratch 3.0

16

Software for learning to program often enables users to build programs in a

safe and limited context, so that afterwards students can move on to

general-purpose languages [18]. Seymour Papert, the creator of the Logo

programming language, set three conditions for a good first-contact

programming experience: it must have a low floor, as in, it must be easy to

get started with it; a high ceiling, meaning it can reach a high level of

complexity and sophistication; and finally, another MIT professor, M. Resnick,

added the concept of wide walls: “kids must be able to explore multiple

pathways from floor to ceiling”, so that they can have personal experiences,

which are individually meaningful to them [19]. We will use this criterion to

assess the validity of the two pieces of software that we will be evaluating

prior to the investigation with notebooks.

Low floor

Scratch’s approach for writing a program is visual programming. More

specifically, Scratch introduced the concept of blocks that connect with one

another vertically, only being able to combine blocks that are compatible,

thus removing all syntax errors and leaving only the semantic ones. By

having all possible commands (blocks) in sight, and restricting their

compatibility, students do not need to memorize them, or learn what are

they compatible with: it is visually evident by seeing their in and out shapes.

Also, the blocks’ color differentiates them according to their purpose:

statements, routines, input, output… (Figure 7)

(Figure 7) An example of a Scratch script, made with connecting blocks.

17

Scratch is renowned for being widely used and having a social component,

as it allows its users to share their creations, and ‘remix’ each other’s

programs. This way, they can get ideas, communicate, and generate deep

and meaningful experiences through coding. This is easily done through

scratch’s website. The recent addition of a web editor makes the software

more accessible to students around the world.

(Figures 8, 9) Some screenshots from Scratch’s remix system

In Swift Playgrounds, on the contrary, learners undertake a guided process

(Figure 11), where there is a desired output, and they often have to fill in the

gaps of a piece of code in order to get there. The options they have to fill

these gaps can be drawn from a selection menu that contains all the

statements and functions which are relevant for the lesson. Also, there are

different “playgrounds” - which are thematic boxes in the form of courses,

stories or games; and each of these can require a different knowledge of

programming, which can be none (Figure 10).

(Figures 10, 11) Swift Playgrounds’ “store”, and an example of a lesson involving code

and explanation.

18

High ceiling

In Scratch, because it is thought of as a sort of sandbox, or IDE, in which

there are usually no restrictions on how the program should behave, there

are no right or wrong answers, and the result can always be improved or

tweaked. The program is thought for continuously trying, failing, going back

and fixing the code, as well as computing what the code should do mentally,

which are all useful programming practices. Animations, videogames and

applets can easily grow in complexity without the need for mathematical or

algorithmic knowledge. There is some debate on visual languages and the

amount of code they can fit while maintaining healthy practices like

scalability and modularity (see Deutsch limit). In this sense, one could say

that space is a limitation for Scratch.

In Playgrounds there are limitations to what you can do inside a specific

lesson, so in this case it would depend of how complex lessons - and the

coding implied - can get. However, one can also choose “Starting points”,

including one called “Blank”, where users can freely write code in Swift and

see the output. Some starting points include Shapes, for visualizing

geometry, Answers, for mapping inputs to outputs to create chatbots or

quizzes, or Puzzle World, to experiment with moving agents around obstacle

courses or mazes - a sandbox version of some of the Learning to Code

courses (Figure 12).

(Figure 12) Some examples of Swift playgrounds’ sandboxes: “Starting points”

Since these environments offer an endless experience with a

general-purpose language with graphics, physics and graphing libraries,

among others, and allow the user to tweak aspects of their code to a

considerable extent, a high ceiling for Swift Playgrounds is also justified.

19

Wide walls

Among all the things one can do with Scratch we can list animations,

videogames and applets, and all these visual and interactive experiences

count as different ways of getting to complex creations [9]. At the same time,

the different playgrounds available let the user choose many different paths

towards complex and meaningful programming creations and knowledge.

20

3.2.1. Our case: HP CodeWars

After meeting with two members of the TAC team in the school and

informing them of my interest in taking part in some of their code learning

activities, they offered us the possibility to teach some programming

language to a group of 6 students in order to participate in the HP CodeWars

competition (Figure 13) [11]. Three of them had participated in the previous

edition, without any previous training, and the remaining three had not. We

gladly accepted the task. In total, we ran 13 “classroom” hours - one hour a

week. The teachers of the TAC department were also available and willing to

exchange information about their work, in the form of a conversation about

their motivations and goals with programming, and providing us with the

detail of their programming and robotics plan for the school, summarized in

table 1.

(Figure 13) The competition’s graphic art.

HP CodeWars is an event held in Barcelona since 2015 by the Spanish

division of Hewlett-Packard, with the aim of raising interest in STEM careers

in students. It consists of a competition where teams of three members are

given a list of 30 problems that they have to solve using a programming

language like Java, Python, or C++. These problems require increasingly more

algorithmics skills, as well as a deep knowledge of the language’s resources.

Every problem is specified with an explanatory text that gives it a context, a

specification of the input that the judges will type, a specification of the

output that is expected, and then an example of one possible input and its

corresponding output (Figure 15).

21

(Figure 14) A photo during a competition of a previous edition of HP Code wars.

(Figure 15) The first problem of the 2018 edition of the competition

22

3.3. Research activity: first contact with Python

Introduction

This fieldwork reports on an ongoing extracurricular activity taking place at

the Daina-Isard school in Catalonia, with teenagers with ages from 15 to 16,

who are interested in participating in the HP Code wars competition.

During the first two months of the activity, we were in charge of teaching the

Python programming language and problem-solving skills to the students,

without any specific interface in mind. This work is the predecessor of the

following studies involving notebooks, and seeked to gather information

about the usability, needs and motivations of students when using Python

for learning how to code, and the code challenges provided by the previous

HP Code wars competitions as a guideline.

23

Related work

Since its early stages, Python has always been praised as a good language for

novice programmers, although it is not always the preferred option [24]. Its

simple syntax, which allows a high level of abstraction, and avoids curly

braces and semicolons, has proved to be easy to learn, which lets learners

focus on creating more complex algorithms. It being interpreted and easy to

work through scripts also helps at learning the basics of coding.

Objectives

During these sessions, we will look for problems, motivations, and other

particularities at:

- Understanding Python’s syntax.

- Working with the interpreter.

- Debugging their code.

- Following good code practices.

Methodology

The activity started on October the 9th 2018, and took place every tuesday

from 2 pm to 3 pm. The class usually followed this structure:

- Some discussion or lesson on algorithms and/or python using either:

- The blackboard, to graphically model problems, data, computer

science and algorithms, enabling participation from the

students.

- Jupyter notebooks we brought prepared with interesting

python functions, which the students had to interpret (execute

mentally), and collaboratively discuss, suggest possible

changes, or come up with other ideas.

- Solving problems of the competition in groups of 3, pairs or

individually.

- They were free to choose the grouping.

24

- We followed the order of the competition, so the problems

increased in complexity each class.

From the first session, students started coding with repl.it, an online

interpreter for multiple languages, as it provided a quick access to the

language, optimized for quick scripts, and with no need to install anything in

the computer, and we set it to python 2.7 or 3.x. The interface is simple

(Figure 16), it has one side for code and another one for execution (input and

results) [6]. We observed whether any aspect of the interface could be

relevant for the task, or if it could be improved.

(Figure 16) Repl.it’s interface

Results

On using the competition’s problems as a guideline: we could say that the

HP Codewars as a learning context does have a “low floor”, because the

students did not have many problems understanding and setting out to

coding the solutions to the problems. Python’s simple and readable syntax

also plays a role, but, for example, the competition does not specify which

software the students should be using to develop their solutions, and does

not provide resources and materials for the competition, so it was up to us to

find a suitable software and extract the necessary knowledge from the

problems to be able to teach how to solve them. For those students who

want to go further than what is taught in the class, the problems of the

competition go up to a very high level, involving algorithms with

25

2-dimensional mazes, graph algorithms (such as Dijkstra’s), or string metrics;

which sets a “high ceiling” for the challenge.

On showing them interesting algorithms: we got to install the Anaconda

Python distribution in one computer that was not protected, and we used it

to show the students pre-crafted notebooks with functions that they could

find interesting (Figure 17), which they did. Students then tried to replicate

some of the code practices they had seen in the notebooks.

(Figure 17) One of the algorithms they were shown.

On discussing computer science topics: on one occasion, we showed them

a map of computer science to talk about its different areas and how they

relate to each other (Figure 18). Students were interested in cyber-security,

and we talked about complexity and problems where algorithms like A* can

be applied, such as TSP or SAT solving.

26

(Figure 18) The resource we worked with when discussing the different fields of

Computer Science.

On using repl.it: Students quickly got used to the interface, since they were

already familiar with this way of coding where one button executes all the

visible code from the first line to the last one, (they had seen it in Scratch,

Swift Playgrounds and Arduino). Soon they learned the syntax for variables,

conditionals, loops and functions.

Repl.it has debugging capabilities, but students did not want to learn to use

them after seeing how they worked, for several reasons:

- Considering the size of the code they were working with, mental

debugging was realistic and more enriching than using the debugger.

- Students were solving specific problems, but they were also

experimenting, meaning students kept commenting out lines and

trying different commands to see what happened with each one.

Which brings us to the next point:

- Debugging is slow, compared to repeatedly executing the program.

Other concepts we tried to instill are imperative and functional

programming, to see which could be easier to conceive, and work with.

Thinking in terms of “what should happen to the data”, modifying it through

expressions and functions until it has the desired form, against “what should

the computer do”, specifying through statements which steps to take and

how. Every program incorporates both paradigms, but it was a matter of

seeing the dominant one. This lesson was also done in hopes that it would

help them visualize when to create a function and when not to, by seeing

what they are done for: for example, we saw the implementation of some of

python’s built-in functions, like sum(), all(), any()... (figure 19).

27

(Figure 19) An extract of the documentation for the Python programming language

that we analyzed.

Discussion

During the process of learning python’s syntax, students did not find it

difficult to understand it, but the many ways to do things python offers

probably confused them, and they receded back to doing things in the style

of C/C++. When using this imperative approach, python’s abstract features

were of no use. For example, when having to use the range function for

going through list indices whenever looping a list over their elements (for

element in list…) was not enough. However, without comparing the same

methodology with another language, it is difficult to see if Python really is

too complex when it comes to functionalities. What is more clear, though, is

that its minimalistic syntax makes it more readable and easier to write.

The simplicity of the interpreter allowed the students to focus on the code.

They did not use any of the functionalities, like the debugger, or the code

completion utility. This supports the idea that all that a software for learning

to program needs is a quick and straightforward access to the programming

environment, to repeatedly execute and tweak programs.

28

The general progress they made through solving the problems of the

competition validates the use of these problems to work on computational

thinking simultaneously with learning the programming language.

29

3.3.1. Choosing an interface to evaluate

As we worked on problems from previous competitions and read about the

rules and the way we would divide the work, we started finding some

requirements for the software that the students should be using. First,

according to the rules of the contest, students cannot go online to look up

anything. Instead, they can bring any code and documentation they want, as

long as it is brought offline. This meant finding a way to put relevant snippets

of code that they could use to solve the challenges, classified in a way that

they can look for them easily and, once they find them, understand them so

that they can modify the code accordingly.

Furthermore, when analyzing the strategy that they would use to work on

the different problems, ranging in different difficulty, the students needed a

flexible interface that allowed them a quick access to the language to use it

as a test bench, as well as the ability to be working in several problems at

once, as they would have only one computer for three people, and they may

parallelize the solving of problems.

We thought that Jupyter Notebooks could be a way of accomplishing those

things, and the reception of the interface had been positive, so we asked the

staff of the school to install the software in all the computers of the class.

In a meeting with this project’s tutor, we validated the idea of introducing

Jupyter notebooks in the activity.

30

4. Notebooks and computational

narratives

In this section we will grasp the current state of the art regarding

computational notebooks such as Jupyter Notebook, which is the software

that we have worked with, in two specific activities with their respective

reports and posterior discussion.

4.1. Literate programming and computational narratives

Computational notebooks are documents that combine fragments of

executable code, intertwined with text that explains the thoughts behind the

process towards the end result, explaining the code in a sort of narrative.

What summarizes this concept is literate programming [5], a concept

introduced by Donald Knuth, which is the idea that code should follow the

logic and flow of the programmers’ thoughts, combining source code with

natural language. While documentation is extracted from source code, when

following the paradigm of literate programming, source code is extracted

from documentation [4]. Some well-known pieces of software comply to this

idea, such as Wolfram’s Mathematica, or the Jupyter project - the software

that we are going to focus on in these research activities. (Figure 20)

31

(Figure 20) Elements of a computational notebook in Jupyter’s interface

4.2. Project Jupyter

Project Jupyter is an open-source project evolved from the IPython initiative

in 2014. Its main product is Jupyter Notebook, a web application that allows

the user to create documents with interactive code cells (Figure 21), which

can be set to over 40 languages, as well as cells narrative text, equations and

visual content. The project also features and is supported by tools for running

individual notebooks online with no need for installing anything, such as

nbviewer or binder, as well as the resources to set up a server which can run

a multi-user hub, so that everyone who has access can run code on the same

cloud-based kernel, JupyterHub.

(Figure 21) Screenshot of the Jupyter notebook interface, with cells of code, text, and

equations.

In Jupyter’s interface, the user can append cells of either code (in R, Python

or Julia) or Markdown notation. Cells with code can be executed

independently, since all three languages are interpreted, and the output is

displayed under the cell. The resulting notebook can be saved in the .ipynb

format, or it can be exported to .pdf, .html for reading, and .py, in the case of

python, for executing [14]. Jupyter notebooks combine code, visualization,

and text, making them easy to maintain and share. This methodology is

32

increasing in popularity, and progressively being adopted by researchers and

data scientists to elaborate and present their work [23].

Some characteristics that are attributed to Jupyter notebooks are [23][21]:

- Easy to share, or be structured as a deliverables, as one file contains all

the work: code, documentation and results.

- Promotes modular, atomized code; as it makes it easier to execute it

by parts, making tests and benchmarking. This is specially useful in

fields like scientific research, data analysis, or machine learning.

- Being a web-based technology, as it runs on a browser and uses

HTML5, it features a familiar and simple interface, that allows the user

to focus on the content.

4.3. Related work

A recent study has analyzed millions of notebooks that were posted on

GitHub and found that most of them incorporated little to no text, thus

missing the narrative part, something referred to as explanation. Some

studies confront explanation to exploration, which is the process of

experimentation involved when working with data. Evidence of a exploratory

process leaves a “messy” notebook, which has no purpose of being stored,

and so analysts do not bother annotating it [22].

(Figure 22) HIstograms for the number of cells, lines of code and words of text of

Github notebooks.

33

(Figure 23) Location of text, and code to text proportion throughout notebooks.

Notebooks made specifically for a divulgatory or educational, like those used

as a class presentation or prepared as a deliverable, do not have this

problem. In our case, though, students are to work on external resources -

the set of problems, and, from there, both work out code from scratch to find

the solution to each problem (the equivalent to exploration), and prepare

notebooks for further consultation (which would be the explanation).

Besides the explanation to exploration proportion, studies also point at

linearity: whether the notebook reflects the thought process of the project in

its original order (linear), or if instead it is cleaned and sorted afterwards,

recording only important decisions and information out of the actual

workflow (non-linear). The world linear is also used to determine the order in

which the notebook should be read and executed. Dependencies from

preceding cells force a linear execution order, but not all of them follow this

approach [21]. Most of these studies agree that notebooks could be

redesigned to further encourage and enable users to write more compelling

narratives and be more willing to share their notebooks, and supporting

non-linear structures that could enable multi-dimensionality.

34

In Rule’s study, many users, which were mainly scientists, reported that

notebooks were a development tool for them, and most of the resulting

documents were disposable. This concern could be classified as the purpose

of notebooks and what is done with them after their use.

Other concerns of research involving notebooks are, for instance, IDE

features like Version Control, State Inspection or Debugging. However, we

did not focus on these so much, as most of them are not relevant for users

who are just learning to code, plus the specific use that they were to give

them was not advanced enough. Along with the tutor, we compiled which

aspects to validate during the evaluation of the user experience of the

students, and carried out two separate activities, one focused on the

exploratory use of notebooks, and another one on the explanatory side.

35

4.4. Research activity: using Jupyter as an IDE

Introduction

During this session (2 hours long), we addressed the use case of solving

simple mathematics/programming problems using Jupyter Notebooks with

the Python programming language. This research activity has taken place in

the Daina Isard school, with a group of 6 adolescents ranging in age from 15

to 16, interested in preparing for and participating in the HP Codewars

competition, which consists on solving a list of problems programmatically.

Their knowledge of programming at the start of the activity was limited, and

worked one hour every week between October and January.

The main goal of this activity was to register the students’ exploration of

programming solutions when using an interface with semi-independent

cells of code. Through observation and posterior analysis of the notebooks

they left behind, we found evidence of a decent utilization of the interface’s

features, as well as a positive reception of the introduction of this software.

36

Methodology

1. Since it is going to be their first time using the software, it would be

worth watching their behavior while they are setting up the

workspace, and if any doubts or errors come up. In classes, students

will be using MacOS, as it is the operating system of the computers in

the room that we were assigned, while during the competition they

will use Windows.

2. Observing their use of the interface. To see whether programming

with cells represents an improvement, if they take advantage of them

to better atomize the code and making it more scalable or modular,

&c.

3. Given that the challenge involves teamwork and sharing the work

done, observing what they do with their work after using the

software could be relevant as well.

4. Gathering comments on their experience with an interview, specially

comparing them to their previous interface, repl.it.

5. Analyzing the resulting notebooks.

- Counting the number of cells used per problem.

- Whether they use them to separate different parts of problem

solving.

- If they organized their code with functions.

- Any other particularity we find.

The problems that they had to solve were the following:

- Inverting the case of every character of a string

- Comparing two lists

- Filling a square matrix with booleans, Trues in the diagonal and

Falses everywhere else.

- Uniquifying a list

The details of the implementation, input and output were not specified, so

that they would focus on finding a correct algorithm which solved the

problem. Some problems were missing details on purpose (comparing two

37

lists according to what?), so that they would experiment and choose the

criterion they could implement best. Two of the students worked on their

own, while four worked in pairs, sharing the same computer.

After the session, we asked them the following questions:

- Do you think Jupyter is better than repl.it to develop your solution?

- What about presenting your solution? Which format do you prefer?

- Did you find any difficulties when using the cells?

- Why did you (not) save the result? Do you think of it as disposable?

Results

1. Watching their behavior while they are setting up the workspace

All of the students were able to follow the steps previously showed on the

screen of the teacher’s computer, without looking at any document or

having to repeat the walkthrough. This means that the platform is quite easy

to access, once installed. In Windows it is even easier, because Jupyter

Notebook appears as an executable program and there is no need to open

the command prompt.

2. Observing their use of the interface

Students used as little as 2 cells and up to 4 cells for every problem. One

student and one pair managed to solve the first one and then made

improvements and variations to the code, and the other student and pair

were able to solve two problems in total.

One of the pairs used markdown cells to put a title to each group of cells

according to the problem they solved, despite not being told to do anything

in particular with text cells, only their existence.

38

3. Observing what they do with their work after using the software

None of the students saved their notebooks afterwards, but four of them

saved their solutions on Google Keep.

4. Gathering comments on their experience

Do you think Jupyter is a better interface to develop your solution compared

to repl.it?

All the students agreed that it is better, as it lets you organize the code and

work on several things at the same time, for example, making quick tests.

They found the interface more comfortable and quicker than repl.it. One

student also mentioned that there was no need for internet connection as a

good thing, and another one praised the aesthetics of Jupyter.

Most students, after the first part of the session, decided to give it a try to

install it in their personal computers. They said that the process was slow and

you had to download many things.

What about presenting your solution? Which format do you prefer?

Four students said they would prefer Jupyter for showing a solution to

someone else or saving it for themselves, while two others reported that they

would rather present it and save it as a plain text file, as it is

format-independent.

Did you find any difficulties when using the cells?

None of them had found any.

Why did you (not) save the result? Do you think of it as disposable?

39

Students who worked in pairs saved their result in Google Keep, to be able to

access it for both of them. Meanwhile, students who worked alone did not

think of saving their code, and if they had to they would probably have saved

it in some format that can be opened from anywhere.

5. In the following table, with the notebooks that they left, we gathered the

following data, where S1 to S6 are the students, some in pairs (Table 2):

 S1 S2 S3 S4 S5 S6

Number of cells 3 2 + 1 3 3+4

Used individual cells to test individual
operations (functions, operators) Yes No Yes Yes

Used separate cells for input No 1 + 0 Yes Yes

Used separate cells for output Yes 1 + 0 Yes Yes

Auxiliary functions 0 1 1 0

Number of problems solved 1 2 1 2

(Table 2)

Conclusions

The first thing to highlight from this activity is the fact that, unexpectedly,

students that had a powerful and personal enough computer at home tried

to install the software for their own use, after doing the first part of the

session. In some universities, they set up a cloud-based kernel so that

students all work with the same version of the language and libraries, and

they access it, for example, using binder. This could be a good solution for

students who don’t have powerful enough computers to install the whole

python environment.

40

The overall feeling about notebooks for supporting code exploration is

positive, both in terms of user experience and effectiveness. For being a first

contact, and being used to a simpler interface, they all have put the cell

system to us, with positive results.

At the same time, though, students did not make an effort in leaving a

presentable notebook and saving it in the .ipynb format. It is true that they

had no instructions, and the activity was posed as an exercise for practice.

When analyzing the resulting notebooks, we find that most students did not

separate one same algorithm in different cells, except in two cases, where

they created an auxiliary function in a different cell, and another one who

separated different statements and expressions. The student who did the

last one was following the declarative/functional paradigm, where data was

modified through expressions and functions, which may have encouraged

the more intensive use of cells. We could do another session to deepen on

this correlation of notebooks with functional programming.

41

4.5. Research activity: using Jupyter to make

programming notes

Introduction

During this session we have addressed the use case of writing down useful

functions about specific topics in mathematics and computer science using

Jupyter Notebooks with the Python programming language. This research

activity has taken place in the Daina Isard school, working individually with

students from a group of 6 adolescents with ages ranging 15 to 16, interested

in preparing for and participating in the HP Codewars competition. They had

the task to craft a notebook covering some subject for future use during the

competition. Our supervision during their activity was mainly to remind

them of the purpose of the notebook: that they will not be the only ones

consulting it, and that it is better not to take knowledge for granted. Through

posterior evaluation of the notebooks, we did not find straightforward

evidence of students being interested in documenting their code using cells,

but we did find some other requirements

42

Methodology

This activity was done individually, in a pair programming setup, to a total of

2 students, and for each student we followed the following steps:

1. Choosing a suitable subject for the student’s knowledge and interest.

2. Preparing a corpus with information and requirements for the

student to fill, in the order they think is optimal. This could contain

definitions, pictures, and snippets of code, as well as links to

documentation pages and encyclopedic articles.

3. Observing their use of the interface while crafting the notebooks.

How many cells of text for every cell of code? Do they use comments

as well? How deep is the text they write? How is the document

structured in terms of dimensions and linearity?

4. Gathering comments on their experience with a conversation on the

format they would rather use for these documents, and their overall

assessment of the interface.

Results

Student 1

(1) We decided to make a notebook with practical list operations. It may not

be the most relevant subject, since most of this information is present in the

documentation, but we thought of it as a summary. Making a more complex

subject would have supposed too much intervention from the supervisor.

(2) For this session, we decided to cover the creation of lists (empty list or list

with fixed size), access, assigning, removing (by element and by index) and

finding (checking for existence and finding the index).

(3) The student used text cells as a title for the cell below. They did not

explain the nature of lists in comparison with other data structures or what

they can be used for. Instead, they created variables with neutral names.

They also followed a narrative structure, making cells below dependent to

43

having run cells above. The problems they encountered is when trying to

follow a non-linear path: most titles reflected variants of the same problem,

and they also wanted to have different ways to solve the same problem

represented, but not all having the same ‘importance’. This is when they

explained that when taking notes, they copy everything and highlight what

they think is important.

Their notebook ended with the following characteristics (Table 4):

Linear No

Linear execution Yes

Total code cells 8 (+ 3 discarded but not deleted)

Code cells avg length (bytes) 40

Total text cells 5 (+ 1 to indicate discarded cells)

Text cells avg length 8.2 words

Text cells purpose Informing of the operation that the
following code cell executes or the
problem that it solves

(Table 4)

Their process writing the document encouraged exploration, since they had

some basic atomized problems and they had to think of the best way to

showcase their solution. They often changed the order of cells, and quickly

got used with the interface’s up and down arrows.

(4) When the notebook was finished, we discussed on which format they

would use during the competition: ipynb, pdf, html. They did not know, so we

tried both options and html worked better for them, because it preserves

text format so that they can copy, and leaves code for the notebook they will

be using to develop their solution.

44

The student, who has a beginner’s guide on python printed out and brings it

to class, reported that this would be better than consulting the

documentation, because it is more straightforward and practical.

Student 2

(1) Going through some problems, we detected the need for a notebook

about input methods: obtaining individual values, groups of them, definite

and indefinite successions and matrices, from the user’s input.

(2) We made a progression of cases in increasing complexity, starting from

obtaining a string, to casting it to several types, including integer, float,

boolean, and finally a finite iterable: tuple. Then they had to explain how to

obtain a succession of elements (of any nature), filling a list or some other

data structure, covering the case of asking for input for a previously given

number of times, or until some input was entered.

(3) This student also encountered the problem of not having a specific

situation to model, in order to decide the variables’ names, the protocol

expected for the input, or how they would process it. Their solution was to

make every cell independent from previous and posterior cells, as well as

leaving comments where extra code should be inserted in order to

customize the algorithm.

These are the values extracted from the resulting notebook (Table 5):

Linear No

Linear execution No

Total code cells 7

Code cells avg length (bytes) 160

45

Total text cells 7

Text cells avg length 11.1 words

Text cells purpose Informing of the purpose of the
algorithm or expression shown
below

(Table 5)

The student also used comments in code cells to go into the specifics of the

language syntax. They managed to cover all cases of input for the

competition, in an increasing order of complexity and multiplicity, thus

giving the document a logical order, which was different from their

exploration - they changed order of cells once.

(4) In the posterior discussion, they were shown the different alternatives for

saving the notebook, and they reported HTML is the best option for the

competition.

Talking about the use of the interface that we suggested, they gave a

positive feedback, describing it as “useful”, and “versatile”, and an effective

way of recording useful snippets for the competition.

Discussion

Despite putting the students in context and telling them the uses of what

they were going to build, they seemed to prefer letting code speak for itself,

using in-line comments, and only using text cells to entitle what is in the cell

below. In the text, they could have talked about which situations could

demand that specific code to be used, or the computational thought process

behind it. Instead, they just used it as sort of a cheat sheet. Several reasons

could account for this: the lack of deep knowledge, confidence, and practice

documenting code may reflect in short, safe text. Besides, the more simple

subjects covered may make it unnecessary to explain thoroughly what is

going on in the code. The activity they had to carry out is not conceptually

different from one they already do on the daily: taking notes from the topics

46

covered in their classes, or making a diagram summarizing them. It is the

first time that they have to do this with code though, and Jupyter may have

helped in it, in contrast with the only note-taking they had done before:

in-line comments, and saving relevant pieces of code in Google Keep notes.

This application is more general-purpose, but it is available in all the

platforms these students use, is easy to access, use, and it allows them to

share it amongst themselves. Jupyter lacks these features, and it would be

relevant testing to which extent the richer explanatory potential makes up

for the less accessible and shareable format. Once the activities are put in a

favorable context, like ours, in which they will be working offline with a

computer that will have the python environment installed, Jupyter

represents a clearly superior solution. In other cases, like the context of a

class, they could have a server-based solution that allowed them quick

access to cloud-based notebooks, and the shareability and accessibility

concern would disappear.

Explanation was poor in both cases, but we can look at other aspects of the

notebook such as dimensionality. Both students were covering different

problems, and one found that some things could be done in different ways,

something that is bound to happen when creating educational content, as it

has to dive into the specifics of how a problem is solved, something which

would not happen in a data science dissertation (one would not expect a

data scientist to code two different cells showing two ways of accomplishing

the same thing). Meanwhile, the other student struggled in making a

general enough algorithm that does not adhere to one specific problem, but

can be easily changed. Maybe, in a bi-dimensional approach, they would

have made several examples that showed how each algorithm can be

applied to different cases.

Concerning linearity, defined as leaving the exploration process unchanged

in order, this activity was bound to create non-linear results, as it was

designed to make a document that was optimized for lookup and learning.

When it comes to navigating the notebook, one of the students made it

necessary to follow its order to a certain point, whereas the other made the

47

cells linear on purpose, sacrificing the connection they could possibly have

between them, such as showing how one same input/result is transformed

differently by different statements or expressions.

48

5. Software design

5.1. Requirements

The first step of the design process is to decide what do we want the

software to accomplish: its requirements. In our case, instead of redesigning

the Jupyter interface from the ground up, we opted for thinking of ways for

extending it. These new features or extensions are based in the results of the

investigation we have carried out, and their purpose has to fit the profile of

the users we have worked with, as well as their context, in hopes that these

same improvements are also useful in similar situations. From the reports of

the activities, we can extract the following relevant thoughts, and put them

in the form of a requirement:

(Requirement 1)

This functionality (Requirement 1), when making a notebook that showcases

different mutations you can perform to a specific piece of data, will decrease

the probability to pick a wrong execution order, and will make the user

conscious of how their execution path is affecting the final output. Knowing

this, students can design notebooks with “wider walls”. A real-life example of

this could be in the case of the first activity. The student showed how to

create an empty list, and a list with hardcoded elements, and then used the

latter to see how it can be modified - with deletions, value changes, or

insertions; and which expressions could be called on it: accessing, searching,

slicing... If they could keep track of the state of the list, the students who

navigated through that notebook could predict how each operation is going

49

to affect it, and how it ends up doing it, without adding print statements

before and after each line

(Requirement 2)

As we commented in the discussion section for the second research activity,

this would mean adding a second dimension to the now one-dimensional

narrative structure of the notebooks (Requirement 2). This would not mean

enabling a tree-like structure, but a multi-layered one. For one same cell,

there would be more than one alternative, accomplishing the same task.

50

5.2. Co-designing activity for bi-dimensional notebooks

In order to meet the needs of the students when designing the extension for

the Jupyter interface that would fulfill requirement 2, we took the following

approach:

Methodology

Using an interactive screen, we put an image with a fragment of Jupyter’s

interface, on top of which the students could draw and explain their ideas for

designing the feature that would allow them to make more than one cell for

one same level, concept, to present different alternatives or examples, and so

on. We did this with a total of three students, and they did it separately, not

to get ideas from the previous participants.

Results

The results were the following:

(Figure 24) The first student’s drawing.

51

In this design, the user would be able to group cells in “supercells”, the

behavior of which could be specified. The user, when executing, would be

able to choose executing one or more sub-cells, or executing the super-cell.

(Figure 25) The second student’s drawing.

In this design, the student suggested folding cells, with a title for when they

were minimized. This way, you could group them, and unfold them all at

once, thus making it visible that they belong to the same concept, making

every group or non-grouped cell a unit of the underlying narrative.

(Figure 25) The third student’s drawing.

52

In this approach, the single narrative would be broken into multiple

narratives, selected from the general view with tags. This way, tags could be

combined to make some cells appear in several of these sub-narratives.

When visualizing alternative cells, users would see them all at once, but they

would be seeing less cells in total because the rest would be filtered. This

means that navigation also has a second component. The student drew a

horizontal menu for tags, to click on them and filter the cells below.

Conclusions

The three students’ solutions had these traits in common:

- Alternative cells were always seen together, not hidden and excluding

each other.

- All of them thought of some kind of grouping of similar cells, which

the user would have to specify. That is, to link similar cells to a group.

Here is our assessment of each idea:

1. Making executable groups of cells could be helpful to guide

exploration and in some specific cases, but to the point that it seems

oddly specific and unrealistic.

2. Cell folding is useful to economize vertical space, and grouping cells

can be visually helping. The only thing this would lack is some way of

visualizing that execution of cells is

3. This more general feature, which would change the current

vertical-only structure of notebooks, can be used to make alternative

narratives with an intelligent use of tags. It takes a bit more work to

design these paths, tagging all cells, but it is an interesting path to

explore.

53

After this activity, rather than adding a horizontal slider for alternative cells,

we see that students would rather group them according to categories, and

make them collapsible. This way, the top to bottom narrative is preserved

and cells can be in an outer or inner level (Figure 24).

(Figure 24) Our proposed solution.

54

5.3. Prototyping and relevant art for variable inspection

Designing a GUI for keeping track of variable values is a challenge that most

IDE developers face. It is typically integrated in a debugging system, where

the value of variables is updated after each step of the debugging process.

The most widely spread concept displays the variable’s name, its type and its

value in a list. The programmer has to explicitly mark the variables they want

to follow (Figure 25).

(Figure 25) The variable inspector in Gnome’s Builder

One approach could be to automatically print all the variables involved in a

cell’s code, if they have changed. However, according to what we have seen,

this has some disadvantages:

- It keeps variable evaluation in the last executed cell, concentrating all

the attention there, and disencouraging students to navigate the

notebook freely if they want to see the value they are about to change

and how it changes.

- As more variables are involved, running code would take up more

space.

A better option would be to automatically add the variables as they are

added to the environment, in a separated container which floats above the

main page (Figure 26).

55

(Figure 26) An example of the floating container embedded in Jupyter’s interface

Implementation

These features could be implemented as extensions of Jupyter. In fact, they

already exist unofficially, under the names “variable inspector” and

“collapsible headings”. According to their documentation , the Jupyter team 1

warns the users of front-end extensions, as “the notebook front-end and

Javascript API are not stable (...) any extension written for the current

notebook is almost guaranteed to break in the next release“.

1 https://jupyter-notebook.readthedocs.io/en/stable/extending/

56

https://jupyter-notebook.readthedocs.io/en/stable/extending/

6. Conclusions and future work

At the end of the project, taking into account the current guidelines from the

Departament d’Ensenyament and the school’s objectives, we can say that

implementation of computer science learning in high school is viable, and

the general reception of the activities introduced is positive, so developing

software for supporting learning of computer science for the sake of itself is

an area to explore from the perspective of UI design, and achieving code

literacy.

From the experience of the activities we can extract that Jupyter notebooks,

and thus similar computational notebooks, are a good way of developing,

editing, and presenting code for learning purposes, from adolescents’

perspective, at least. The ease with which the students used the interface

shows that it could be applied to other subjects, like mathematics or physics,

allowing for a mix between code and explanation that is more

straightforward and clear than just code. In this sense, we would

recommend the school the use of this interface to implement all sorts of

projects of different nature, one of which could be computer science, or

other fields which do not require external peripherals like robotics do.

When it comes to more specific aspects of the use of the notebook interface,

it seems that explanation of code is not a priority for students, who prefer

code to speak for itself. In fact, they were more interested in enriching their

cell execution experience or narrative, by showing alternative code cells for a

same concept, or seeing how variables change along the execution. This

renders notebooks good for filling up, for example, as deliverables; or for

teachers to use as notes or slides for the students. Jupyter now allows the

creation of slides from a notebook, to use as presentation, keeping the code

and explanation structure. They have also been proved to be a nice tool for

developing scripts to solve problems, but if the students’ approach is more

imperative than functional, students will end up using it as an interpreter of

57

source code, so this duality is relevant when further studying these

interfaces.

Documentation is directly linked to reusability and shareability, which are

also concerns of investigators regarding notebooks. In this aspect, we have

seen that making notebooks in hopes of showing others your work, reusing

their code, and reading the documentation of it, can indeed be positive, but

it is a good practice which does not come up naturally when novice

programmers use the interface. This project has ended before the

competition, so we can not know yet if the notebooks they (and we) prepare

will be really effective for the competition, but simulated tests in class have

proven them to be very useful.

In the design and co-design activities, the investigations’ requirements and

subsequent features both already exist as extensions of the Jupyter interface,

so, in a future iteration of the experience, these could be installed along with

Jupyter to see whether the students actually use them and if it helps them

code better or have a better user experience.

58

7. References

[1] Aho, Al., 1994. Foundations of Computer Science.

[2] Beth Gardiner (2014) ‘Adding Coding to the Curriculum’, The New York

Times, March 2014. Visit at this link.

[3] Casado, C. (2017) ‘Aprendre a programar a l'escola trenca barreres socials

i de gènere’, Universitat Oberta de Catalunya news portal. Visit at this link.

[4] Dominus, M., 2000. ‘POD is not Literate Programming’. Perl.com blog.

March 2000. Visit at this link.

[5] Donald Knuth. 1984. Literate programming. The Computer Journal, 27, 2

(Feb. 1984)

[6] Farmer, J., 2014. ‘Teaching Novice Programmers How to Debug Their

Code’. Code Union blog. September 2014. Visit at this link.

[7] http://ensenyament.gencat.cat/.../funcions-atribucions/. Departament

d’Ensenyament de la Generalitat de Catalunya.

[8] https://awards.acm.org/software-system/award-winners

[9] https://scratch.mit.edu/discuss/topic/245/. Scratch forum, discussion.

[10] http://www.exploringcs.org/archives/resources/cs-statistics

[11] http://www.hpcodewarsbcn.com/. HP Code wars Barcelona website.

[12] http://xtec.gencat.cat/ca/curriculum/eso/curriculum/ - Àmbit Digital -

Àmbits Curriculars. Xarxa Telemàtica Educativa de Catalunya.

59

https://www.nytimes.com/2014/03/24/world/europe/adding-coding-to-the-curriculum.html
https://www.uoc.edu/portal/ca/news/actualitat/2017/264-programacio-escola.html
https://www.perl.com/pub/tchrist/litprog.html/
http://blog.codeunion.io/2014/09/03/teaching-novices-how-to-debug-code/
http://ensenyament.gencat.cat/ca/departament/inspeccio-educacio/estructura/funcions-atribucions/
https://awards.acm.org/software-system/award-winners
https://scratch.mit.edu/discuss/topic/245/
http://www.exploringcs.org/archives/resources/cs-statistics
http://www.hpcodewarsbcn.com/
http://xtec.gencat.cat/ca/curriculum/eso/curriculum/

[13] http://xtec.gencat.cat/ca/recursos/tecnologies/programacio/.

Xarxa Telemàtica Educativa de Catalunya.

[14] Jupyter team. Jupyter Quick Start Guide. Visit at this link.

[15] Kafai, Yasmin B., 2014. Connected Code - Why Children Need to Learn

Programming. Cambridge, Massachusetts: The MIT Press.

[16] Lewis, S. (2014) ‘Should Everybody Learn to Code?’, Communications of

the ACM, February 2014

[17] Lewis, S. (2014) ‘Should Everybody Learn to Code?’, Communications of

the ACM, February 2014, chapter 2.

[18] Lewis, S. (2014) ‘Should Everybody Learn to Code?’, Communications of

the ACM, February 2014, chapter 8.

[19] Manderson (2016). ‘Low floor, high ceiling, wide walls in ELA classrooms’.

Schools & Ecosystems, December 2016. Visit at this link.

[20] ‘Més de 1.500 alumnes adquireixen bases de programació, electrònica i

mecànica a l'aula’, Ara.cat, October 2014. Visit at this link.

[21] Rule, A. (2018). Design and Use of Computational Notebooks. UC San

Diego.

[22] Rule, A. (2018). Exploration and Explanation in Computational

Notebooks. ACM CHI Conference on Human Factors in Computing Systems,

April 2018.

[23] Shen, H., 2014. Interactive Notebooks: Sharing the Code. Nature.

November 2014.

60

http://xtec.gencat.cat/ca/recursos/tecnologies/programacio/
https://jupyter-notebook-beginner-guide.readthedocs.io/
https://schoolecosystem.org/2016/12/28/low-floor-high-ceiling-wide-walls-in-ela-classrooms/
https://www.ara.cat/societat/Mes-adquireixen-programacio-electronica-mecanica_0_1229877206.html

[24] Stajano, F., 1999. Python in Education: Raising a Generation of Native

Speakers. AT&T Laboratories Cambridge.

[25] Vee, A., 2017. Coding Literacy. Cambridge, Massachusetts: The MIT Press.

[26] Wing, Jeanette M., 2014. ‘Computational Thinking Benefits Society’,

Social Issues in Computing, January 2014. Visit at this link.

61

http://socialissues.cs.toronto.edu/index.html%3Fp=279.html#_ftn1

