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Abstract: We describe and report the status of a neutrino-triggered program in IceCube that gen-
erates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes
(MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously,
high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be
observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of
neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger
data during potential neutrino flaring activity, which can increase the discovery potential and con-
strain the phenomenological interpretation of the high-energy emission of selected source classes
(e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals
and its operation are presented, along with first results of the program operating between 14 March
2012 and 31 December 2015.
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1 Introduction

Observations of astrophysical neutrinos may help to answer some of the most fundamental ques-
tions in astrophysics, in particular the mystery of the source of cosmic rays (for a general discussion
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see [1]). For neutrinos in the TeV range, prime source candidates are Galactic supernova rem-
nants [2]. Neutrinos in the PeV range and above are suspected to be produced by active galactic
nuclei (AGN) and gamma ray bursts (GRB) with many AGN models predicting a significant neu-
trino flux [3–5]. However, the recent results from the IceCube Collaboration strongly disfavor
GRBs as sources of the highest energy cosmic rays [6]. Recently, the IceCube Collaboration has
also reported the first observation of a cosmic diffuse neutrino flux which lies in the 100 TeV to
PeV range [7]. Individual neutrino sources, however, could not be identified up to now. While
many astrophysical sources of origin have been suggested [8], there is not yet enough information
to narrow down the possibilities to any particular source or source class.

Gamma-ray observations by imaging atmospheric-Cherenkov telescopes (IACTs) such asVER-
ITAS [9], HESS [10] or MAGIC [11] have also a potential to find hadronic γ-rays from the neutrino
directions and to identify neutrino sources [12, 13]. The expected neutrino flux from observed
high-energy gamma-ray fluxes of blazars in their brightest states (e.g. the flares of Markarian 501
in 1997 [17] and 2005 [18], Markarian 421 in 2000/2001 [19] and 2008 [20] and PKS 2155-
304 in 2006 [21]) can be at the level of the neutrino flux detected by the high-energy neutrino
telescopes [14–16].

For sources which manifest large time variations in the emitted electromagnetic radiation, the
signal-to-noise ratio can be increased by searching for periods of enhanced neutrino emission (a
time-dependent search). Of special interest is the relation of these periods of enhanced neutrino
emission with periods of strong high-energy gamma-ray emission. However, IACTs have a duty
cycle limited to the clear, dark nights (roughly 10% of total time), such correlation studies are
not always possible after the neutrino flare has occurred. Therefore, it is desirable to ensure the
availability of simultaneous neutrino and high-energy gamma-ray data for periods of interest. This
can be achieved by an online neutrino flare search that alerts the partner IACT experiments when
an elevated rate of neutrino events from the direction of a source candidate is detected. Such a
Neutrino Triggered Target of Opportunity program (NToO), using a list of pre-defined sources,
has been developed and has been operating since 2006 using the AMANDA neutrino telescope to
initiate gamma-ray follow-up observations by MAGIC [24, 25].

Similarly, one can conduct a search for neutrinos from short transient sources (with a time scale
of 100 seconds), such as gamma-ray bursts (GRBs) (see e.g. [27]) and core-collapse supernovae
(SNe) (see e.g. [28]). These sources aremost accessible in X-ray and optical wavelengths, where one
can observe the GRB afterglow or the rising SN light curve, respectively. Similarly to IACTs, the
field of view and observation time of X-ray and optical telescopes are limited. Since identification of
a GRB or SN is only possible within a certain time range (a few hours after a GRB and a few weeks
after a SN explosion), it is important to obtain electromagnetic data within these time frames. To
accomplish this, a NToO program triggering optical and X-ray follow-up of short neutrino transients
has been operating since 2008 [29, 30]. Upon observing multiplets of neutrino candidates (at least
two within 100 seconds and within 3.5◦ (angular resolution), from any direction) alerts are sent to
the Robotic Optical Transient Search Experiment (ROTSE) [31]1 and the Palomar Transient Factory
(PTF) [32] for optical observations, and to Swift [33, 34] for X-ray follow-up, depending on the
multiplet’s significance.

1ROTSE was used from 2008-2014 and it is not operational anymore.
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We present here a refined and enhanced implementation of the NToO system using the IceCube
Neutrino Observatory (see also [26]). An important goal of this program was to establish and
to test procedures to trigger promptly the gamma-ray community to collect high-sensitive VHE
data from specific sources during periods of time when IceCube measures a potential increase in
their neutrino flux. The program is based on a multi-step neutrino selection that is applied online
at the South Pole. An alert is sent to the partner telescopes MAGIC and VERITAS in the case
that a statistically significant cluster of neutrinos is observed from any of the monitored sources.
If the source were to be found in an enhanced flux state by the IACT follow-up observation, the
combination of the neutrino observation and the very high-energy gamma-observation could help
to establish the discovery of neutrino point sources. Furthermore, combining the two observations
would increase the potential insight into the physical processes in the source that lead to the flare.

The structure of the paper is the following: section 2 defines the sources used in the NToO
system. Section 3 focuses on the short description of the IceCube and IACTs detectors and their
detection principle. In section 4 the NToO neutrino event selections and the properties of the final
neutrino sample are shown. section 5 describes how the significances of neutrino clusters in the
NToO are calculated. Sections 6, 7, 8 describe the technical design and implementation of the
NToO system. In section 9 we present first results of the program operating between 14March 2012
and 31 December 2015. In section 10 recent and upcoming improvements of the NToO system are
discussed. Finally, in section 11 a short summary is given.

2 Selection of target sources

The probability of discovering extraterrestrial neutrino point sources varies with the phenomenology
of the accelerators and of their emission mechanisms. Coincident observation of gamma rays
and neutrinos might be possible for sources where charged and neutral mesons are produced
simultaneously from hadronic p-p or p-γ interactions. These hadronic processes may be present in
variable extragalactic objects such as BL Lacs or flat-spectrum radio quasars (FSRQs), as well as
in Galactic systems like microquasars and magnetars.

Blazars, a subset of radio-loud active galactic nuclei with relativistic jets pointing towards the
Earth [41] are commonly classified based on the properties of the spectral energy distribution (SED)
of their electromagnetic emission. The blazar SED features two distinctive peaks: a low-energy
peak between IR and X-ray energies, attributed to synchrotron emission of energetic electrons,
and a high-energy peak at gamma-ray energies, which can be explained by several and possibly
competing interaction and radiation processes of high-energy electrons and high-energy nuclei [42].
It has been suggested that blazar SED follow a sequence [43–45] in which the peak energy of the
synchrotron emission spectrum decreases with increasing blazar luminosity. Accordingly, blazars
can be classified into low synchrotron peak (LSP), intermediate synchrotron peak (ISP) and high
synchrotron peak (HSP) objects, a classication scheme introduced in [46]. A second classifier is
based on the prominence of emission lines in the SED over the non-thermal continuum emission of
the jet. FSRQs show Doppler-broadened optical emission lines [47], while in the BL Lac objects
the emission lines do not exist, or are hidden in a strong continuum emission.

The probability for detection of an individual AGN neutrino flare can be estimated based
on the predictions of different mechanisms for the observed electromagnetic emission at high
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energies [3, 4]. A common feature of several models is that the class of high-energy peaked HSP
is expected to have lower gamma luminosity as compared to low-energy peaked LSP and FSRQs,
if the observed high-energy gamma-ray emission is largely the result of interactions of protons
with ambient or self-produced radiation. With high target matter density, the neutrino yield can be
highest when the very high-energy gamma-ray emission is strongly attenuated by internal absorption
(although the cutoff energy is somewhat uncertain). In the case of pp-dominated scenarios, the
conclusions are different [4], favoring LSP to FSRQs. In all cases, the availability of simultaneous
information on high-energy gamma-ray emission and neutrinos is crucial for distinguishing between
different production models.

The most interesting targets for gamma-ray follow-up observations triggered by IceCube alerts
are promising sources of TeV neutrinos, which are either known to exhibit a bright GeV flux in
gamma rays and show extrapolated fluxes detectable by IACTs, or are already detected by IACTs
and are variable. We consider two different target source lists. One list was selected based on the
the second Fermi-LAT point-source catalog [36]2. The following criteria were applied:

• Redshift < 0.63

• Fermi-LAT variability index > 41.64 (corresponding to the 99% confidence level of the
source being variable, see [36] for the definition of this quantity)

• Power-law spectral index as observed with Fermi-LAT < 2.3 (BL Lacs only4)

• Fermi-LAT flux [1–100GeV]> 1 · 10−9 ph cm−2 s−1 (BL Lacs only)

• Fermi-LAT flux [0.1–1GeV]> 7 · 10−8 ph cm−2 s−1 (FSRQs only5)

These selection criteria result in 21 sources on the list in total (three FSRQs and 18 BL Lacs). This
list of target sources was combinedwith lists provided by the partner experiments (currentlyMAGIC
and VERITAS) covering the Northern Hemisphere (declination δ > 0◦). All known potentially
variable VHE sources and all sources in the Fermi-LATmonitored-sources list [39] with declination
larger than 0◦ are used. In total 109 sources are included in the follow-up program for the 2012/2013
IceCube season, see table 6 in appendix. As we can see from this table 43/(31) sources are present
only in the VERITAS/(MAGIC) list and 35 sources are in the list for both experiments. From
November 2013 to December 2015, the number of sources were reduced6 to 83 i.e. 5 for MAGIC;
65 for VERITAS, and 13 sources are present in both lists, see table 7 in appendix. In principle, the
neutrinos could also come from unknown sources anywhere in the sky. However, such an all-sky

2The third Fermi-LAT point-source catalog [37] or catalog of hard Fermi-LAT sources [38] would have been more
suitable, but it was not available when the selection criteria were established and the program started.

3The MAGIC and VERITAS telescopes have recently detected sources with z ∼ 0.94, PKS 1441+25 [40, 48] and
B0218+357 [49]); therefore this selection criterion (“cut”) will be extended to z = 1 for the next IceCube observing
season 2016/2017.

4As shown in [4] for pp-scenario only BL Lacs with the spectral index below 2.2–2.3 are promising candidates for
IceCube detection, see figure 2 in this paper.

5As shown in [3] for p-γ-scenario only FSRQs can be effective for interpretation of gamma-ray fluxes up to GeV
energies.

6For MAGIC, the number of sources was reduced in order to fit to amount of observation time that was granted by
MAGIC time allocation committee.
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search was not feasible at the time the program was started due to limiting computing resources
at the South Pole. Furthermore, an all-sky search suffers from large trial factors compared to the
pre-defined source list search.

3 The IceCube detector and IACT partners

The IceCube Neutrino Observatory [54–56] is located at the geographic South Pole and was
completed at the end of 2010. The goal of the detector is to serve as a neutrino telescope, allowing
observations of neutrinos of astrophysical origin in the TeV and PeV energy range. Cherenkov light
produced by the secondary leptons from neutrino interactions in the vicinity of the detector is used
to detect these neutrinos. IceCube is also sensitive to downward-going high-energy muons and to
neutrinos produced in cosmic-ray-induced air showers. These events represent a background for
most IceCube analyses.

For the studies presented here, only events produced by charged-current interactions of muon
neutrinos are considered, because of the long range of the secondary muons which allows for
reconstructing the arrival direction of these events with good accuracy. The pointing information
relies on the secondary muon direction, which at energies above a TeV differs from the original
neutrino direction by less than the angular resolution of the detector.

The program presented in this work sends alerts to IACTs for follow-up observations.
IACTs detect photon-induced air showers by means of the Cherenkov light from the highly

relativistic charged particles in the shower. Due to the interplay between the emission geometry
and the altitude dependent index of refraction, the Cherenkov light flash (∼ 10 ns duration) is
mainly concentrated in a light pool with a radius of ∼ 120m (for gamma or electron showers) on the
ground. A telescope located inside the light pool can reflect the light into a PMT camera. Cherenkov
images of the showers are used to differentiate between gamma-ray signal and background, and to
reconstruct the energy and the incoming direction of the gamma rays.

The MAGIC telescope array is located on the Roque de los Muchachos Observatory (28.8◦ N,
17.9◦ W; 2200m above sea level), at the Canary Island of La Palma (Spain). The MAGIC array
consists of two telescopes, placed 85m apart, each with a primary mirror of 17 m diameter. The
MAGIC telescopes, with a field of view of 3.5◦, are able to detect cosmic gamma rays in the range
50GeV-50 TeV. The latest performance of MAGIC is reported in [22].

VERITAS is an array of four 12-mdiameter imaging atmospheric-Cherenkov telescopes located
at the Fred LawrenceWhipple Observatory in southern Arizona (31◦40′N, 110◦57′W) at an altitude
of 1.3 km. Each of the individual telescopes have a 3.5◦ field of view. Full details of the VERITAS
instrument performance and sensitivity are given in [23].

4 Neutrino event selection

This section describes the online neutrino selection that is the basis for the NToO system. As the
computing resources at the South Pole are limited, different types of software triggers are applied
to lower the data event rate. The most important for the purposes of this work is the Simple
Multiplicity Trigger (SMT8) which requires eight triggered optical modules (i.e. four coincidence
pairs) anywhere in the detector within 5 µs. Most of the events which are selected by this trigger are
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Table 1. Summary of IceCube data taking periods (seasons) used by NToO searches

IceCube data taking period Start End
IC-2011 2011 May 13 2012 May 16
IC-2012 2012 May 16 2013 May 3
IC-2013 2013 May 3 2014 May 5
IC-2014 2014 May 5 2015 May 18
IC-2015 2015 May 18 2016 May 20

composed of muons produced by cosmic rays in the atmosphere above the detector (about 2.5 kHz
at trigger level in the 86-string configuration). As the data volume produced at trigger level is still
too large to be transferred via satellite, a first selection has to be applied directly at the South Pole
by using the so-calledMuon Filter. This filter aims to select well-reconstructed muon tracks of any
direction, i.e. from the full sky.

The event selection takes place in several steps, called “levels” in IceCube. The Muon Filter
constitutes the first filtering level. It is a standard IceCube filter and not specific to the program
presented here. The subsequent Online Level 2 Filter is based on the input from the Muon Filter
and was specifically developed to enable online analyses. Currently the Online Level 2 Filter forms
the basis of the optical and X-ray follow-up program and the NToO system presented in this work.
Based on cut variables calculated from the Online Level 2 Filter, an online neutrino event selection
was implemented. The main goal is to achieve a high efficiency for valid neutrino events with the
highest possible rejection of background.

4.1 Muon Filter

The Muon Filter event-selection algorithm is the basis for many standard IceCube muon-neutrino
analyses, e.g. the searches for neutrino point sources, searches for neutrinos from gamma-ray bursts
and measurements of the atmospheric muon-neutrino flux. The input to the Muon Filter is all
of the events that trigger the SMT8. All events triggering the SMT8 are reconstructed with the
Linefit first-guess algorithm as described in [57]. The result from this track fit forms the input to a
single-photoelectron (SPE) likelihood fit [51, 57], which uses only the time and charge of the first
hit on each DOM. The Muon Filter decision is based on variables calculated from the SPE fit.

The track reconstructions and cuts applied in the Muon Filter have been stable over several
years. However, improvements to reconstruction algorithms, changes in the available satellite
transfer bandwidth, or changes in the data serialization format lead to small adjustments from
season to season. The IceCube seasons important for this work are listed in the table 1. For
example, in the IC-2012 season an improved Linefit algorithm was used, which uses a linear fit with
reduced weights for outliers [58].

The Muon Filter divides the sky into two regions in which different selection techniques are
applied to remove background events. In the first region (defined by the zenith angle θ ≥ 78.5◦)
the background events are down-going muons mis-reconstructed as up-going (or slightly above the
horizon), which in fact originate from cosmic-ray-induced air showers. The main discriminants to
remove these events are parameters characterizing the reconstruction quality of the event. In the
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second region (zenith angle θ < 78.5◦) both signal and background events have the same signature,
namely high-energy muon tracks. As the energy spectrum of muons in cosmic-ray air showers
(Φ(E) ∼ E−3.7) is much steeper than the expected signal spectra, cuts on energy-related variables
are an efficient way to reduce this background. However, as the current NToO is only implemented
for zenith angles θ > 90◦ the event-selection cuts in the second region will not be described in
detail.

In the first region the Muon Filter uses a cut variable derived from the value of the likelihood
of the SPE track fit. The definition of the cut variable is similar to the scaled log-likelihood of the
fit. All events which are reconstructed with a zenith angle θSPE ≥ 78.5◦ and that fulfill

− log10(maxLSPE)/(NDOM − 3) ≤ 8.7, (4.1)

where maxLSPE is the maximum value of the likelihood function of the SPE track fit and NDOM

denotes the number of triggered DOMs in that event, passed the filter. The efficiency of the
Muon Filter for atmospheric neutrinos is about 87% with respect to SMT8. Neutrinos following
a spectrum of the form Φ(E) ∼ E−2 are selected with an efficiency of approximately 93% with
respect to SMT8. The cuts remained unchanged between the different IceCube seasons i.e. from
IC-2011 to IC-2014. The total event passing rate of the Muon Filter amounts to approximately 45
Hz, out of which about 18Hz consists of events reconstructed with zenith angle θSPE > 90◦.

4.2 Online Level 2 Filter

While theMuon Filter provides a sample of candidate neutrino events it is still heavily background-
dominated (compared to the atmospheric-neutrino rate of about 10mHz at the trigger level). In
order to apply further cuts with a high signal efficiency, more elaborate reconstructions with an
improved angular resolution are needed. As an example, the multi-photoelectron (MPE) likelihood
function, which uses the temporal and amplitude information of the PMT pulses, is applied after
several iterations of SPE likelihood fit. The MPE algorithm includes a probability distribution
function (PDF) that describes the scattering of photons in the ice, and is fully described in [57].
Further reconstructions that estimate the angular reconstruction uncertainty are also helpful for
subsequent analyses. This combination of additional reconstruction and event-selection cuts is
referred to as the Online Level 2 Filter.

The SPE fit used as an input to the Muon Filter has limited angular resolution compared to
an MPE fit. During the first season of running the IceCube in its full 86-string configuration (IC-
2011), the limited CPU resources at the South Pole prohibited applying more resource-intensive
reconstructions to all events that passed the Muon Filter. Therefore, it was necessary to apply
event-selection cuts to the events passing the Muon Filter before additional reconstruction could
be performed. The computing resources at the South Pole were expanded prior to the second full
season of IceCube in its 86-string configuration (IC-2012). This expansion made it possible to run
some reconstruction (a double-iteration SPE fit and the MPE fit) before applying the Online Level
2 cuts.

In the up-going region, themain criteria to distinguish themis-reconstructed atmospheric-muon
background from the neutrino events are quality parameters of the reconstructed track. Several
variables derived from the single-iteration SPE fit were used to identify these well-reconstructed
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tracks and to suppress mis-reconstructed air-shower muons during the IC-2011 season. During the
IC-2012 season these variables were derived from the MPE fit. The most important variables are:

The Scaled Log-Likelihood. In a maximum-likelihood fit the value of the likelihood at the
maximum divided by the number of degrees of freedom of the fit can measure the fit quality. The
scaled likelihood of the track fit is

SLogL(x) =
− log10(maxL)

NDOM − x
, (4.2)

where NDOM is the number of hit DOMs, and x the numbers of parameters determined by the
fit, usually five: two angles, and three coordinates. However, it has been shown empirically that
SLogL(5) is energy-dependent for the track fits employed in IceCube. Thus, a cut on SLogL(5)
variable introduces a bias against well-reconstructed low-energy events. In order to reduce this
energy dependence bias, the different values of x is used i.e. x = 3.5 for NToO and x = 4.5 for
for optical and X-ray follow up. This variable is especially useful for identifying mis-reconstructed
muon tracks.

Number of Direct Hits (NDir). Another measure of the track quality is the number of DOMs that
have registered a hit with a very small time residual tres ∈ [−15 ns, 75 ns] with respect to the arrival
time expected for Cherenkov emission from the reconstructed muon track. Such hits are called
“direct hits”. The number of direct hits NDir is calculated using only the first registered photon
in each DOM. A photon causing a direct hit has undergone less scattering in the ice and thus can
contribute more information to the directional reconstruction. The number of direct hits is therefore
related to the quality of the track reconstruction.

Direct Length (LDir). The distance between the projected direct hits onto the reconstructed track
is referred to as the “direct length”, LDir. The hits defining the direct length result from the least-
scattered photons and hence contribute the most to the reconstruction. If LDir is large, the lever
arm for the reconstruction is longer, generally resulting in smaller reconstruction errors. Therefore,
selecting events with larger LDir selects the events most valuable for a point-source analysis.

The cut variables described above have been combined to achieve good background rejection
as well as reasonable signal efficiency. Events that are reconstructed as up-going (zenith angle
θSPE > 82◦) and fulfill

SLogL(4.5) ≤ 8.3 or log10

(
QTot
p.e.

)
≥ 2.7

or
(

LDir[m]
160

)2

+

(
NDir

9

)2

≥ 1 (4.3)

where QTot is the total charge of the event in photoelectrons (p.e.), are selected by the Online Level
2 Filter. The pre-selection criterion based on the number of direct hits (NDir) and the direct length
(LDir) in eq. (4.3) is called the “direct ellipse” cut. The background atmospheric-muon events tend
to have short direct lengths and a small number of direct hits since, if they are mis-reconstructed
as upward-going muon tracks, the hit pattern tends to match poorly. The direct ellipse cut keeps
∼ 74% of atmospheric neutrinos and ∼ 76% of astrophysical neutrinos while rejecting ∼ 93% of
atmospheric muons.
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Quality parameters of the track reconstruction. A critical parameter in amaximum-likelihood-
based search for neutrino point sources is the error of the reconstruction for each event. As this
can only be determined on an event-by-event basis with simulated data, an estimate has to be
used for experimental data. Two different approaches are applied in IceCube: the Paraboloid fit
and the Cramér-Rao Resolution Estimate. The Paraboloid fit scans the likelihood space around the
minimum determined in the track fit by varying the fit parameters. The resulting points in likelihood
space are fitted with a parabola [52]. Due to the repeated evaluation of the likelihood function this
method can be too slow to be used in the online filtering, especially for high-energy events with
a large number of hit DOMs. The Cramér-Rao Resolution Estimate is the uncertainty on the
reconstructed track direction given by the log-likelihood-based track reconstruction estimated by a
method based on the Cramér-Rao inequality [53]. As the calculation involves no minimization of a
likelihood it is considerably faster (and have a similar performance) than the Paraboloid fit and thus
is the preferred method to be used in online analysis, also in NToO. Since the likelihood used in
the track fit fully describes the Cherenkov light emission and propagation, both angular uncertainty
estimates, the Paraboloid fit and the Cramér-Rao method, show an energy-dependent bias in the
ratios of the estimated to the true angular uncertainty. This bias can be calibrated using Monte
Carlo events to derive a correction factor which is a function of the reconstructed event energy.

The event rate after application of the Online Level 2 Filter is reduced to approximately 2Hz
(in the up-going region). More than 99% of well-reconstructed signal neutrinos (i.e. reconstructed
within 3◦ from their true direction) from an E−2 energy spectrum are retained, with respect to the
number which pass the Muon Filter.

In subsequent analysis steps, more-computationally-intensive reconstructions can be per-
formed, including angular-resolution estimators, energy estimators and likelihood fits applied to
different subsets of the recorded photons.

4.3 NToO selection variables

The background rejection of the Online Level 2 Filter is still not sufficient for NToO data analyses,
since the sample is still dominated by mis-reconstructed atmospheric muons. Only approximately
1 out of every 1000 events is a neutrino. Thus, based on variables from the Online Level 2
Filter reconstructions the final event sample is selected by employing additional quality cuts. The
following additional cut variables are used.

Split Fits. The track reconstruction for a correctly-reconstructed up-going track should be sta-
ble against changes to the set of DOMs used for reconstruction. On the other hand, for two
coincident down-going muons wrongly reconstructed as one up-going track, or for other cases of
mis-reconstruction, changes to the DOM set will have a much larger impact on the reconstructed
direction. This is the rationale for splitting the DOM set used in the reconstruction into two parts
and subsequently performing a maximum-likelihood fit on each part separately. Different criteria
can be used to split the DOM set:

– 9 –



2
0
1
6
 
J
I
N
S
T
 
1
1
 
P
1
1
0
0
9

• geometrical splitting divides the hits according to their position with respect to the center of
gravity (COG) of all hits. The center of gravity is calculated as

~xCOG =

∑NDOM
i=1 qi × ~xi∑NDOM

i=1 qi
(4.4)

where ~xi are the positions of the individual hit DOMs and qi the charge of each hit DOM. The
center of gravity ~xCOG is then projected onto the track obtained with the MPE fit, yielding the
point ~xprojCOG . Each hit location is then also projected onto the track, and compared to ~xprojCOG .
Hits whose projections lie on one side of ~xprojCOG are sorted into one set, hits whose projections
lie on the other side are sorted into a second set.

• time-based splitting divides the hits into two sets by comparing each hit to the mean of all hit
times tmean. Hits that fulfill ti ≤ tmean are sorted into one set, hits that fulfill ti > tmean are
sorted into another set.

For each of the four subsets of hits a standard Linefit is performed which acts as a seed for a
two-iteration SPE maximum-likelihood fit. The zenith angle θi resulting from the SPE fit, when
only the time and charge of the first hit on each DOM are taken into account in the reconstruction,
is used to define the cut variable

∆Split/SPE = max
i∈split fits

(cos θi − cos θSPE) . (4.5)

Bayesian Likelihood Ratio. The probability that an event selected by the Online Level 2 Filter
and reconstructed as up-going (i.e. zenith angle θSPE > 90◦) is truly a neutrino-induced muon and
not a mis-reconstructed air-shower muon is very small (∼ 10−3). A useful additional cut variable
can be derived by forcing a down-going track fit and calculating the likelihood ratio to the SPE
fit. This cut is motivated by a Bayesian approach [61] to event reconstruction. Bayes’ Theorem in
probability theory states that for two assertions A and B,

P(A | B) P(B) = P(B | A) P(A),

where P(A | B) is the probability of assertion A given that B is true. Identifying A with a particular
muon track hypothesis µ, and B with the data recorded for an event in the detector, we have

P(µ | data) = LSPE(data | µ) P(µ),

where we have dropped a normalization factor P(data), which is a constant for the observed event.
The function LSPE is the regular SPE likelihood function, and P(µ) is the so-called prior function,
which is the probability of a muon passing through the IceCube detector, and is given by

P(µ) = 2.50 · 10−7 cos θ1.68 · exp
(
−

0.78
cos θ

)
, (4.6)

This function is a fit to the simulated zenith-angle distributions of down-going cosmic ray muons
triggered by IceCube, see also [62, 63] for more details. By accounting in the reconstruction
for the fact that the flux of down-going muons from cosmic-rays is many orders of magnitude
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larger than that of up-going neutrino-induced muons, the number of down-going muons that are
mis-reconstructed as up-going is greatly reduced.

The difference of the logarithms of the SPE likelihood fit and the Bayesian-fit likelihood

∆SPE/Bayesian = log10 LSPE − log10(LSPE(data | µ) P(µ)) (4.7)

is another useful cut variable, especially for events that have been reconstructed with a zenith angle
close to the horizon.

4.4 NToO cut optimization

For neutrino searches, muons produced in cosmic-ray-induced air showers are the dominant back-
ground in IceCube for tracks coming from the Southern Hemisphere. They trigger the detector with
a rate 106 times higher than atmospheric neutrinos. Tracks from the Northern Hemisphere originate
mostly from atmospheric neutrino interactions that produce muons. BOTH of these background
components are simulated using Monte Carlo studies.

Cosmic-ray air showers are simulated using a patched version of CORSIKA [64]. The spectra
of cosmic-ray primaries are sampled from the phenomenological Polygonato model [65] and the
background datasets were produced with the Sybill [66] hadronic-interaction model. A sizable
fraction of events in the IceCube detector include several muons from distinct air showers. These
so-called coincident air-shower events are simulated as well.

Neutrino events are simulated based on the Monte Carlo generator ANIS [67]. ANIS generates
neutrinos, propagates them through the Earth and finally forces them to interact in a volume around
the detector. As different primary neutrino spectra are needed by different analyses, one usually
simulates a generic primary spectrum dN/dEµ ∼ E−γν where γ = 1 or γ = 2. The events can be
re-weighted to the desired spectrum for each analysis. The output of the neutrino generator in
the case of a charged-current νµ interaction is a muon produced at the interaction vertex and the
accompanying hadronic cascade. The cascade is not simulated in detail.

The simulation of the muon propagation and the muon energy loss is essential to obtain
the light distribution in the detector. A software package called PROPOSAL [68] is employed
for that purpose. PROPOSAL calculates the continuous energy loss of the muon as well as
the stochastic losses due to bremsstrahlung, pair production, photonuclear interactions and delta
electrons. Finally, the detector simulation is concerned with the response of the PMTs to detected
photons, the digitization of the PMT waveform in the DOM, and the trigger system. This is done
by the IceCube software framework called IceTray [69].

In order to achieve the best possible sensitivity, the cuts on the variables described in the
previous section have been optimized together in independent zenith-angle regions. For each
combination of cut values, the rate of remaining data events was used as the approximation for the
background rate. The rate of signal events for a given flux was estimated from neutrino simulations,
assuming a neutrino flux with a spectral index γ = 2 . This is motivated by the fact that diffuse
shock acceleration leads to power-law spectra with a spectral index around 2 [72, 73] and neutrinos
originating in cosmic rays interactions near the source are expected to follow a similar spectrum.

The cut optimization was repeated for flares of different durations ranging from 1 day to 20
days; as an example see figure 1. As traditional minimizers like MINUIT [59] were found to
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converge on local minima a particle swarm optimization algorithm was used [60]. For simplicity
the minimization assumes that the flare time window is known.

In the binned point-source method the radius of the on-source bin is a free parameter. The
optimal bin size as a function of zenith depends on the angular resolution and the background rate of
atmospheric neutrinos at each zenith angle. The search-bin radius has also been optimized together
with the cut variables to yield the best sensitivity.

0.0 0.2 0.4 0.6 0.8 1.0
sin(δ)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
S
e
n
si

ti
v
it

y
 [ 1

0−
7

G
eV

cm
−2

s−
1
]

Figure 1. Simulated IceCube sensitivity as a function of source declination to a neutrino flux with dN/dE ∼
E−2 for a neutrino flare length of 10 days and for the IC-2012 data set. The sensitivity did not change
significantly for other IceCube data seasons. The sensitivity is defined as the flux required for a 3 sigma
detection with a probability of 90%.

The first set of the NToO cuts was optimized using the IC-2011 season, and later redefined
using data from the IC-2012 season. Only the cut on the Bayesian likelihood ratio was changed.

The final set of smooth cuts resulting from the cut optimization is listed in table 2 and the
optimal search-bin radius as a function of declination angle (δ > 0◦) has been parametrized as

r = 1.2◦ + 1.4◦ · sin(δ) . (4.8)

Table 2 shows also the influence of each selection cut on event rate for data, simulated atmo-
spheric neutrinos and muons.

The experimental data sample, after application of the Online Level 2 Filter (Cut Level 0),
consists of 4.3 × 107 events acquired within a total livetime of 332.36 days. At this level, see
table 2, atmospheric muons dominant the contribution to the measured data sample. However,
these mis-reconstructed events being truly down-going and reconstructed as up-going are almost
removed by our selection criterion, i.e. the passing rate is reduced by 99.9925% with respect to
Cut Level 0. We also see that at the final selection cut the data rate reach the level of atmospheric
muon neutrinos, i.e. about 2mHz, and selection criterion keeps about 52% of the signal events
(with respect to Cut Level 0) for an E−2 signal neutrino spectrum of astrophysical neutrinos.

The same set of cuts was used for the next IceCube seasons: IC-2013 and IC-2014 thanks the
very stable behavior of the IceCube detector and its performance.
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Table 2. IceCube neutrino selection cuts and corresponding passing event rate for the IC-2012 season. At an
final selection an event has to fulfill all cut criteria to pass the selection (i.e. a logical AND condition between
the cut levels is applied). The atmospheric-neutrino flux is based on the prediction by Honda [71], but
atmospheric-muon rate is calculated from CORSIKA simulations. The event rate for IceCube data stream
corresponds to the total livetime of 332.36 days. The astrophysical neutrino flux is estimated assuming
dN/dE = 1 · 10−8 GeVcm−2s−1( E

GeV )−2. (Atms. = atmospheric, Astro. = astrophysical)

Cut Level Selection criterion Atms. µ Data Atms. νµ Astro.
(mHz) (mHz) (mHz) ×10−3 (mHz)

0 cos θMPE ≤ 0 1010.5 1523.81 7.166 6.23
1 SLogL(3.5) ≤ 8 282.49 504.44 5.826 5.62
2 NDir ≥ 9 8.839 22.01 3.076 4.06
3 ((cos θMPE > −0.2) AND (LDir ≥ 300 m)

OR 1.124 4.30 2.313 3.69
(cos θMPE ≤ −0.2) AND (LDir ≥ 200 m))

4 ∆Split/MPE <0.5 0.100 2.15 1.899 3.26
5 ((cos θMPE ≤ −0.07)

OR 0.080 2.08 1.880 3.25
((cos θMPE > −0.07) AND (∆SPE/Bayesian ≥ 35)) )

6 ( (cos θMPE ≤ −0.04)
OR 0.075 2.06 1.875 3.24

((cos θMPE > −0.04) AND (∆SPE/Bayesian ≥ 40)))

4.5 Properties of the neutrino sample

The event selection results in an event rate of about 2mHz and a median angular resolution of 0.5 ◦

for an E−2 signal neutrino spectrum. Figure 2 depicts the median angular resolution of the final
neutrino sample as a function of neutrino energy and as a function of neutrino declination angle.7

Figure 3 depicts the effective area for muon neutrinos as a function of neutrino energy in
different declination regions. It is worthwhile to note that the effective area reaches only about
1 m2 at 103.2 GeV. For events with declination between 10◦ and 30◦ the effective area reaches a
maximum of about 1000 m2 at 106.5 GeV and begins to drop above 107.5 GeV due to absorption of
neutrinos in the Earth. For neutrinos very close to the horizon (0◦ ≤ δ ≤ 10◦) and for neutrino
energies greater than 108 GeV the effective area can reach 104 m2.

The efficiency of the event-selection cuts with respect to the Online Level 2 Filter is depicted
in figure 4 for all events (dashed) and for events that have been reconstructed within angle ∆Ψ < 3◦

of their true direction. Well-reconstructed events are selected with an efficiency of more than 60 %
above 1 TeV; while the overall peak efficiency of about 80 % is reached between 100TeV and 10 PeV.

As we already mentioned above, the main selection cuts are optimized for a neutrino power-law
spectrum with a spectral index γ = 2 . However, several Galactic gamma-ray sources have energy
spectra with energy cutoffs at a few TeV [74], supporting the idea that Galactic neutrino spectra
may present cutoff spectra as well [75, 76]. Also, recent IceCube results show that the astrophysical
neutrino flux has a neutrino spectrum softer than E−2. The IceCube neutrino flux can be well
described by an unbroken power law with best-fit spectral index 2.50 ± 0.09 [70].

7IceCube is located at the South Pole, so the relation between zenith angle and declination is given by simply
transformation: θ = δ + 90◦.
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Figure 2. IceCube median angular resolutions based on Cramér-Rao Resolution Estimator for the final
selected neutrino sample as a function of (true) neutrino energy (left panel) and declination (right panel),
assuming in simulation a primary neutrino spectrum with Φ(E) ∼ E−2. The error bars depict the 16th
and 84th percentile of the angular resolution. Neutrino angular resolution defined as the median of the
point-spread function of the true neutrino direction and the reconstructed muon direction.
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Figure 3. Simulated IceCube effective area as a function of the (true) neutrino energy for the final neutrino
selection derived from the 2012/2013 data set. The strongly energy dependent neutrino-nucleon cross section
leads to the observed behavior of an effective area that is generally increasing with energy, until neutrino
absorption dominates. For larger declinations the effect of neutrino absorption sets in at lower energies due
to the longer path through the Earth. The acceptance is similar for other IceCube data seasons.

Therefore in table 3 the efficiency of neutrino selection for softer spectral indexes (e.g. 2.5 and
2.7) is also shown. As we can see, for softer spectra, the performance of NToO cuts is about 20 %
worse, but the signal efficiency is still above 50% for well-reconstructed events.
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Table 3. Efficiency (from simulation) of the neutrino selection cuts with respect to the Online Level 2 Filter
(in %). The efficiencies for well-reconstructed events (defined as events with ∆ΨMPE < 3◦) are given in
parentheses.

E−2 (∆ΨMPE < 3◦) E−2.5 (∆ΨMPE < 3◦) E−2.7 (∆ΨMPE < 3◦)
52 % (73 %) 43 % (63 %) 39 % (59 %)

1 3 5 7 9
log10(Eν [GeV])

0.0

0.2

0.4

0.6

0.8
C

u
t 

e
ff

ic
ie

n
cy

 w
.r

.t
. 
O

n
lin

e
 L

e
v
e
l 
2

All events
∆Ψ<3 ◦

Figure 4. Efficiency of the neutrino-selection cuts for IceCube with respect to Online Level 2 for all events
(blue, dashed line) and events with angular reconstruction error, ∆Ψ < 3◦ (green, solid line).

5 The time-clustering algorithm

The timescale of a neutrino flare is not fixed a priori and thus a simple rolling-time-window approach
is not sufficient to detect flares. The time-clustering approach that was developed for an unbiased
neutrino flare search [50] looks for any time frame with a significant deviation of the number of
detected neutrinos from the expected background. The simplest implementation uses a spatially
binned approach where neutrino candidates within a fixed radius around a source are regarded as
possible signal events.

Figure 5. Schematic of the time-clustering algorithm. For an IceCube event in an on-source bin detected at
time t7 the significances of all clusters formed with events detected up to 21 days back are calculated.

If a neutrino event is detected at time ti from the search bin around a given source, the expected
background N i, j

bg is calculated for all other events j within a time window ∆t j = t j − ti around that
bin (see figure 5). To calculate N i, j

bg the detector efficiency as a function of the azimuth angle and
the uptime has to be taken into account. The number of expected background events N i, j

bg in a time
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window [ti, t j] for a source at a certain declination is given by

N i, j
bg = ti, jup Ṅ (θ)ε (Φ(t)) (5.1)

where Ṅ (θ) is the zenith-angle-dependent rate of data used as background events, ti, jup uptime in
a time window [ti, t j] and ε (Φ(t)) the normalized azimuth distribution of IceCube events (see
figure 6).

The Poisson probability of observing the multiplet (i, j) by chance is then calculated according
to

pobs =
∞∑

k=N
i, j
obs−1

(N i, j
bg )k

k!
e−N

i, j
bg (5.2)

where Nobs is the number of detected on-source neutrinos between t j and ti. Nobs must be reduced
by one to take into account the bias introduced by the fact that the background is measured in the
time window defined by the j th event. Most very high energy flares detected so far have a duration
up to several days, thus we constrain our search for time clusters of neutrinos to 21 days so as to
minimize the statistical trial factor penalty.

The probability pobs is often expressed in terms of the distance to the center of a normal
distribution measured in units of standard deviations that results in the same cumulative probability
in the right tail (e.g. a probability of log10 (pobs) = −2.87 is often quoted as 3σ). If the cluster with
the highest significance exceeds a certain threshold (e.g. corresponding to 3σ) the detector stability
is first checked and, if appropriate, an alert is sent to a partner experiment (atmospheric-Cherenkov
telescope) to initiate a follow-up observation.

The physical layout of the IceCube, with the instrumented strings positioned on a hexagonal
grid, results in an increased trigger rate for events that propagate along the symmetry axes. Therefore,
the expected number of background events in a time window for a source at a certain right ascension
depends on the azimuth-angle range covered during that time. This natural azimuth dependence
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Figure 6. The normalized distribution of IceCube events as a function of azimuth. The dependence is caused
by the hexagonal layout of the grid of IceCube strings that produces symmetry axes.
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is reinforced by cut variables that favour events that pass close to many strings (e.g. direct hits
and direct length). For time-integrated point-source searches, the azimuth dependence is usually
neglected because it is smoothed in right ascension by the rotation of the Earth over long integration
times. However, in a time-dependent analysis the azimuth dependence becomes important for
timescales shorter than ti − t j < 2 days.

The stable uptime between ti, jup in a time window [ti, t j] is calculated using the online detector
stability monitoring (described in section 6) and combined with information about the start and stop
times of the data-taking runs.

5.1 Alert rate, detection probability

Since the NToO aims at the discovery of neutrino flares from astrophysical sources, it is important
to define what astrophysical neutrino flux level would trigger an alert.

In figure 7 (A) we show the flux as a function of declination that results in a trigger probability
of 50% for significance thresholds corresponding to 3.0σ and 5.0σ for a flare duration of 10 days,
while in figure 7 (B) the probability of triggering an alert as a function of the neutrino flux, assuming
a spectral index γ = 2 and a flare duration of 10 days, is shown for alert thresholds corresponding
to 3σ and 5σ for a source at a declination δ = 28.0◦. As we can see from these plots, a signal flux
of the formΦ(E) = 6 · 10−8 GeVcm−2s−1( E

GeV )−2 will on average trigger an alert with a probability
of 50% for an alert threshold of 3.0σ.
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Figure 7. (Left panel) Neutrino flux required by IceCube at a given source declination to trigger an alert with
a significance of 3σ (solid line) and 5σ (dashed line) with a probability of 50%.The neutrino spectrum is
assumed to be an unbroken power law with a spectral index of 2; the flare duration is 10 days. (Right panel)
Probability to trigger an NToO alert as a function of flux for flares with a duration of 10 days at a declination
δ = 28.0◦, for alert thresholds of 3σ (red, solid line) and 5σ (blue, dashed line). The upper axis shows the
number of required events needed for neutrino flux for alert with given significance.

The number of accidental background alerts also needs to be estimated in order to calculate
the total significance of all the alerts generated by the program, as well as to set sensible alert
thresholds such that the partner observatory is not overwhelmed by follow-up requests. The number
of follow-up requests allowed in a given time period is fixed by the Time Allocation Committees of
the partner experiments. Figure 8 shows the number of accidental background alerts as a function
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Figure 8. Expected IceCube fake alert rates for the NToO caused by atmospheric neutrinos for different
source declinations as a function of alert significance.

of the alert significance threshold. For a threshold of 3.2σ (MAGIC) this would result in a fake
alert rate of about 0.1 alerts/(source · year). Thus, given the number of sources (around 70) in
this program for the MAGIC experiment this results in about 3 background alerts per year.8 This
number is calculated taking into account that a source is on average visible with a probability of
40% by a partner observatory (i.e. if the source rises at least 30 degrees above the horizon for at
least 30 minutes during dark time, the current phase of the Moon is less than 0.5 and the source
distance to the Moon is larger than 60◦). For VERITAS, a higher alert threshold (3.6σ) leads to
one expected background alert per year.

6 Data stability monitoring

A dedicated monitoring system was implemented to minimize the rate of false alerts caused by
problems with the detector itself, the data acquisition (DAQ) or the filtering software. IceCube has
very extensive DAQ monitoring, and processing results which are available with a certain delay
after data-taking. However, the monitoring does not provide information on the detector stability
with high granularity but declares a whole run, with a usual duration of eight hours, as either good
or bad. Problems such as a few strings of the detector dropping out of the data taking shortly before
the end of a run do not render the data taken up to that point invalid. To ensure that alerts are
issued during stable running conditions, a simple but effective online stability monitoring scheme
has been developed. The scheme is based on the continuous monitoring (in 10 min time bins) of
several trigger and filter event rates, representative of different event topologies from atmospheric
muons and neutrinos.

8Since November 2013 the number of MAGIC sources was lowered to 18 and since April 2014 the alert threshold
was set to 3.6σ, therefore the expected number of alerts decreased to one alert per two years.
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6.1 Rate measurements and data quality assessment

The trigger rates of the detector, and the filter event rates of the online filters, are quantities that are
both sensitive to problems affecting the data quality and simple to measure, record and evaluate.
Trigger event rates (e.g. the SMT8) are sensitive to low-level problems, such as possible errors in
the trigger configuration or an incorrect DOM calibration. Filter event rates can also be affected
by these issues but, additionally, they give information about the stability of the filtering chain.
Problems that affect event reconstruction or distributions of cut variables used in a filter would also
change the corresponding filter event rate.

All trigger and filter event rates are measured by a central server using a dedicated software
module. Events are counted in time bins of 600 seconds and the corresponding rates and time-bin
meta data (e.g. start and end of the time bin) are inserted into a relational database.

This database is mirrored to the Northern Hemisphere to be easily accessible for offline studies.
Storing the data in a relational database makes it convenient to retrieve any trigger and filter event
rate for longer time scales such as hours or days. For each of the trigger and filter event rates
approximately 5 · 104 measurements are recorded in the database in a full year.

The NToO selects νµ-induced muon tracks to detect time-variable point sources of neutrinos.
Any problem that affects the detection and reconstruction of these muons would therefore have an
impact on this program. Thus the inputs derived from the rate monitoring for the NToO should be
related to the muon-related triggers and filters that form the basis of the neutrino event selection.
The following trigger rates, filter event rates and ratios are used to check the stability:

• Simple Multiplicity Trigger event rate

• Muon Filter event rate

• Online Level 2 Filter rate

• Ratio of Online Level 2 Filter event rate to Muon Filter event rate

• Ratio of Online Level 2 Filter event rate to Simple Multiplicity Trigger rate

A combination of these rates and ratios form a stability score, which will be described in
section 6.2.

As the final neutrino event selection is performed in a different subsystem, the final-level event
rate is not recorded in the database. Due to the very low atmospheric-neutrino rate of about 2mHz
at the final cut level, the statistical error on the rate measurement with the default time binning of
10 minutes would be very large. Recording this rate with a different binning and combining it with
the other rates would make the system much more complicated. Therefore, the final neutrino level
event rate is not used as an input in the rate-based detector stability monitoring.

6.2 Stability-score calculation

The atmospheric-muon rate depends on the development of the air shower and thus on the atmo-
spheric density profile. As seasonal temperature changes of the atmosphere influence this density
profile, the atmospheric-muon rate measured in the detector shows a pattern of seasonal variation,
see figure 9. On top of these slow seasonal variations, changes in the IceCube trigger rate on the
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Figure 9. IceCube rate of events passing the Online Level 2 Filter over the complete IC-2012 season. The
solid red line depicts the moving average of the Online Level 2 Filter event rate; the blue lines show the 1σ
exponential standard deviation around the average. Each dot corresponds to a 10 min time bin.

time scale of hours to days are apparent. This background of atmospheric muons dominates all
trigger and filter event rates used for the online stability monitoring. Therefore, a simple stability
decision based on the deviation from fixed reference rates cannot be used.

A common method to predict a time series of (potentially noisy) measurements is a moving-
average filter. The filter smooths noisy data to either produce smoothed data for presentation
purposes or to make forecasts of the time series. Three different averaging methods are usually
employed, simple moving averages, weighted moving averages or exponential moving averages.

An N-period simple moving average weights the last N measurements equally to produce the
smoothed prediction. In doing this, the average always lags sudden changes in the data. This can
be overcome by applying a weight to each measurement in the averaging process, depending upon
how long ago the measurement was taken. This requires two inputs, the number of measurements
N to average over and the weight function. In the case of the stability monitoring one would assign
higher weight to more recent measurements so that recent measurements such that the average reacts
faster to changes of the rates caused by a changing muon rate.

Another way to achieve this fast adaptation is an exponential moving average. Given measure-
ments of a quantity x (e.g. a filter event rate) at time steps i (denoted as xi) the exponential moving
average S at time step i is calculated as

S1 = x1 (6.1)

Si = αxi + (1 − α)Si−1 ; for i > 1 . (6.2)

The parameter α determines how fast the weight given to past measurements decays; higher
α gives more weight to recent observations and reduces the impact of past measurements more
rapidly. The step width is given by the 600-second time-bin width of the rate monitoring.
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Analogously to the exponential moving average, an exponential moving standard deviation σ
can be defined as

σi =

√〈
x2〉 − Si · Si . (6.3)

Here
〈
x2

〉
denotes the exponential moving average (see eq. (6.2)) of x2. To update the

exponential moving average only the most recent calculated value of Si is needed. This is in
contrast to the simple and weighted moving averages, where the past N data points need to be kept
for updates of the average. Therefore, an exponential smoothing has been chosen in the stability
monitoring in order to simplify the implementation of the moving-average calculation.

6.3 Implementation of the stability-score calculation

The stability score provides a metric to compare the current detector trigger and filter event rates in
time bin i to an exponential moving average of these rates up to that point in time. The averages and
standard deviations are calculated for the filter event rates and ratios with the parameters α = 0.01 .9
In order to judge the detector stability in a time bin i, a combined score ξi is calculated as

ξi =
∑
j

|x j
i − S j

i−1 |

σ
j
i−1

(6.4)

where j enumerates the filter event rates and ratios and Si−1 and σi−1 are the exponential moving
averages and standard deviation, respectively, prior to the time bin i. If ξi is below a certain
threshold ξthresh the time bin i is considered to be of good quality and the averages and standard
deviations are updated according to eq. (6.2) and eq. (6.3). If ξi is above the threshold the data
quality in this time bin is judged to be bad. In this case, all final-level events in that time bin are
discarded, the time bin is counted as detector dead time and the averages and standard deviations
are not updated with the rates from time bin i.

The threshold employed in the NToO is ξthresh = 8 . For this threshold, comparisons of the
online stability monitoring with the more extensive offline quality checks show that the online
system reliably identifies unstable detector conditions.

As an example, for IC-2012 the data taking season started on 15 May 2012 at 10:05:48 UTC
and ended on 2 May 2013 at 09:48:49 UTC. Of the 351.98 days between the season start and end,
322.17 days are marked as good by the stability monitoring. This results in an uptime fraction of
91.5%. Typical IceCube offline analyses for this season report an uptime fraction of around 95%.

7 Technical design of the alert system

The NToO system runs online at the South Pole with minimal human intervention. In order to
maximize the uptime of the system it has to be very stable. The main design driver was that the
failure of any of the sub-components should not lead to the loss of the online program’s data.
Therefore all components have been separated as much as possible and intermediate results are
stored frequently. The basic components of the NToO are depicted in figure 10.

9Until 25 November 2012 α = 0.005, which gave more weight to past measurements. In order to be better able to
cope with fast rate variations due to weather changes the value of α was changed to 0.01.
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Figure 10. Schematic of the design of the IceCube NToO.

In the first step, the selection of neutrino candidate events happens inside the IceCube data-
processing system at South Pole. Each event is serialized to the text-based and human-readable
JSON (JavaScript Object Notation) format and written to a dedicated directory on disk. The event
directory is checked for new events every 30 seconds by the daemon that runs the time-clustering
algorithm. This daemon keeps a list of events detected in the last 21 days from each of the monitored
sources and adds new events to the appropriate list if the detector was stable when the event was
detected. For each new event that falls into the search bin of one of the monitored sources the
time-clustering algorithm for that particular source is run.

If the significance for an evaluated event cluster exceeds a certain threshold (see below), an alert
message containing the source name, event positions, event times and the significance of the cluster
is generated. The alert message is then sent to the University of Wisconsin via the IceCube Teleport
System (ITS) which uses the network of Iridium satellites. This low-bandwidth connection allows
short messages to be sent from the South Pole without any significant delay. Once the message
arrives in the North it is checked to see whether it represents a real alert or a test alert from a
monitoring source (see next section for an explanation of the difference). If it is a real alert, the
alert is forwarded to the respective partner experiment, MAGIC or VERITAS or to both of them
if the alert significance is above the threshold for MAGIC and VERITAS. Currently the alerts are
forwarded via email and follow-up observations are initiatedmanually. The total time delay between
the (latest) neutrino event detected by IceCube and the moment that alert is forwarded to the partner
experiment is on average 12 minutes.

8 Monitoring of alert system

The low rate of accidental background alerts from atmospheric neutrinos (see figure 8) makes it
necessary to add additional monitoring to the system in order to ensure that all components are
working as expected. Ideally, this monitoring should cover the whole chain, from the event selection
and stability monitoring, to the generation, sending and receiving of alerts. In order to reach this
goal, so-called test alerts can be generated at the South Pole using the same event sample as used
by the NToO. To achieve a sufficiently large rate of test alerts the number of source positions that
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are monitored should be high. Thus, 1000 random positions were chosen as test sources, with a flat
distribution in cos θ. The threshold for sending a test alert should be lower than the corresponding
threshold for the physics alerts in order to achieve a high number of test alerts. Thus, the threshold
for test alerts was set to pobs = 0.1 (see eq. (5.2)).

Using the same original neutrino event sample for both the physics alerts and for the test alerts
would unblind additional positions in the sky. The usual way to test point-source analyses in a
way that preserves blindness is through scrambled data sets. The event times are shuffled and new
sky coordinates are calculated for each event. Due to the location of the IceCube exactly at the
geographic South Pole, only the right ascension is affected by this procedure. In the case of the
NToO, however, a continuous stream of events must be shuffled while preserving properties such
as the azimuth and time distribution of the events.

To randomize the event coordinates in right ascension for the blind generation of test alerts one
could, in principle, assign each event a random azimuth angle. This would, however, destroy the
pattern due to the azimuth-dependent efficiency of the detector, see figure 6. In order to preserve
this pattern in the scrambled dataset, the conversion of local coordinates (zenith and azimuth) to
sky coordinates (right ascension and declination) for each event is done not with its original event
time, but with the time of the previous neutrino event. The first event after the startup of the
event-selection process is assigned a random right ascension. As the rate of atmospheric-neutrinos
is about 2mHz this results in a random shift of each event by several degrees on average.

The test alerts generated from the blinded event sample are collected and analyzed. To aid
the interpretation of these alerts a web page was created that displays each alert. The web page is
automatically updated upon receiving a new test alert. In addition to each individual test alert, the
global properties of all test alerts received to date are shown, e.g. the rate of test alerts, their zenith
distribution and their significance distribution. Each alert is displayed on a web page showing the
distribution of events contributing to the alert both in time and space (see figure 11). In the case of
an alert for an astrophysical source this allows for a rapid inspection of the event properties.

As an example, figure 11 depicts a high-multiplicity test alert, consisting of 8 events, issued
on 7 July 2012. It corresponds to the test alert with the highest significance in the IC-2012 data
taking season with − log10(pobs) = 4.85. The contributing events were detected over a duration of
10.2 days.

For each alert the weighted-average direction is calculated as

xavg =
∑
i

∑
j σ

2
j

σ2
i

xi (8.1)

where the σi are the resolution estimates of the individual events (i.e. Cramér-Rao Resolution
Estimate) and the xi are their directions described by the right ascension and declination. The
weighted average is displayed as a full triangle in the spatial event plot, the individual event weights
(1/(σ2

i /
∑

j σ
2
j )) are represented as the height of the bars in the temporal plot.

Plots of the global properties of all monitoring alerts received to date can be used to monitor
the stability of the operation of the whole alert system. For example, changes in the total test-alert
rate can indicate problems with the event selection or uptime calculation. Long delays between
the detection of the events and the arrival of the test alerts in the North can be a sign of problems
with the data processing, the stability-monitoring database or the transfer of test alerts to the North.
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Figure 11. Left panel shows spatial distribution of IceCube events (marked by stars) contributing to a
test alert. The circles describe the estimated angular error for the reconstructed tracks. The dashed circle
indicates the size of the on-source bin. Right panel shows the temporal distribution of eight events depicted
in the left panel. The height of the bars in right panel corresponds to the event weights derived from the
angular reconstruction uncertainties. The weights are used to calculate the weighted average direction of the
events, shown as an inverse full triangle in the left panel.

Figure 12 shows some of the quantities derived from the test alerts which allow the alert system to
be monitored.

An important quantity to monitor is the rate of received test alerts (figure 12(a)). The regular
arrival of test alerts in the North is used as a “heartbeat” for the overall system. If no test alert is
received for more than six hours, a warning email is issued to a list of people so that the cause can
be investigated. Warning emails are reissued every two hours if no new alert has been received in
the meantime. This threshold of six hours for warning emails is rather conservative, as can be seen
in figure 12(b). This figure shows the histogram of the wait times between subsequent test alerts.
It follows the expected exponential distribution reasonably well. A time difference of six hours is
well within the range of expected waiting times. However, to enable timely interventions, an early
warning is preferred. Figure 12(d) depicts the distribution of the significances of the test alerts.

9 Results of NToO program

The IceCube follow-up programs such as optical, X-ray follow-up and NToO have been running in a
stable fashion for a few years and are taking high-quality data from both IceCube and the follow-up
instruments. The results are the subject of a forthcoming publications. Only a short status report
will be given here, highlighting the most important results.

For the optical and X-ray follow-up, no significant excess of multiplets was found since the
inauguration of the program in December 2008. One neutrino triplet was found in the data in
February 2016, this result will be subject of a forthcoming IceCube publication. In March 2012,
the most significant alert during the first three years of operation of the optical and X-ray follow-up
program was issued by IceCube. In the follow-up observations performed by the PTF, a Type IIn
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(d) Significance of test alerts

Figure 12. Monitoring information derived from the test alerts for the IceCube NToO. See text for a
description.

supernova PTF12csy was found 0.2◦ away from the neutrino alert direction [35]. The supernova
has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc, and the
Pan-STARRS1 survey shows that its explosion time was at least 158 days (in the host-galaxy rest
frame) before the neutrino alert, implying that a causal connection is unlikely [35].

From the inauguration of the NToO program, on 14 March 2012, to 31 December 2015, 14
alerts were sent: 4 in 2012, 2 in 2013, 6 in 2014 and 2 in 2015. The program continues, and alerts
during 2016 and beyond will be reported elsewhere. From the above-mentioned 14 alerts issued, 8
of those were forwarded and 4 (out of 8) were followed-up by MAGIC or VERITAS observations.
Another 6 alerts (out of 14 issued) were not forwarded due to bad observing conditions or the
partner experiment was not operational.

Table 4 gives an overview of all of the alerts generated by the NToO up to 31 December 2015.
Below, only the alerts forwarded to the partner experiments are discussed in more detail.

The most interesting alert (alert #4 in table 4 ) was generated on 9 November 2012, consistent
with position of the source SBS 1150+497 (located at zenith angle θ = 139.5◦, with respect to
IceCube). The alert comprised six events observed during 4.169 days. The spatial and temporal dis-
tribution of these events is shown in figure 13. The Poisson probability (pre-trial) for this observation
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Table 4. Overview of the IceCube alerts generated by the NToO up to 31 December 2015; see text for
more details.Time of alert corresponds to the time when alert was received at North. (Follow-up Instrum.=
Follow-up Instruments; numbers in brackets correspond to the followed alert during the next few days, ∗ -
known VHE source, ∗∗ - existing VHE limit in [77]).

alert Source Time − log10(pobs) Nobs Duration Follow-up Observed
ID (UTC) (days) Instrum. yes/no
1 PG 1424+240∗,∗∗ 2012-04-14 23:47 3.47 6 7.617 No -
2 GB6 B1310+4844 2012-08-20 09:53 3.75 6 6.344 No -
3 4C15.54 2012-09-13 01:52 4.06 2 0.001 MAGIC No
4 SBS 1150+497 ∗∗ 2012-11-09 07:28 4.64 6 4.169 VERITAS Yes
5 RGB J0152+017∗ 2013-04-29 06:36: 4.07 8 15.801 No -
6 RGB J0505+612∗∗ 2013-09-12 20:00 3.31 (4.10) 7 (10) 11.790 (20.73) MAGIC Yes
7 1ES 2344+514∗ 2014-02-19 23:18 4.07 (4.23) 8 (9) 12.844 (16.40) VERITAS Yes
8 1ES 1959+650∗ 2014-03-09 10:28 3.40 9 20.944 MAGIC No
9 B3 1708+433 2014-06-22 02:42 4.34 3 0.118 No -
10 PKS 1717+177∗∗ 2014-09-24 13:47 3.20 2 0.007 No -
11 MG4 J200112+4352∗ 2014-10-05 15:05 4.05 9 18.631 VERITAS Yes
12 B3 1343+451 2014-11-16 17:00 3.64 (5.04) 3 (4) 0.301 (0.576) VERITAS No
13 AO 0235+164 ∗∗ 2015-04-27 04:55 3.97 8 16.395 No -
14 CGRaBS J0211+1051 ∗∗ 2015-07-05 00:06 4.09 4 1.205 VERITAS No
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Figure 13. Left panel shows position of events (star symbols) and related uncertainty (circles) from the
alerts that were sent to VERITAS on 2012 November 9. The weighted average of the contributing events is
calculated using an event-by-event angular resolution estimator. The dashed circle indicates the size of the
on-source bin. Right panel shows the temporal distribution of eight events depicted in the left panel.

is − log10(pobs) = 4.64, the post-trial probability − log10(pobs) = 2.60, making it the most signif-
icant alert sent during this IceCube season (IC-2012). The alert was forwarded to the VERITAS
collaboration and resulted in a follow-up observation. Due to poor weather and bright moonlight
conditions, VERITAS observations were not possible until 12 November 2012, at which point the
source was visible at low elevation at the very end of the night. A further observation was made on
the following night giving a total exposure time of 71.5min. No evidence for gamma-ray emission
was seen from the position of the source, giving an integral flux upper limit (99% confidence) above
300GeV of 3.0 × 10−10 cm−2s−1 for an assumed differential spectrum with spectral index γ = 2.5.
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Another high-significance alert was sent to VERITAS on 19 February 2014, followed by
a second alert on 23 February 2014, spatially coincident with the source 1ES 2344+514 (alert
#7). The first of these was triggered by 8 neutrinos observed over a period of 12.844 days,
with − log10(pobs) = 4.07. An additional event, observed 3.6 days later, increased the p-value to
− log10(pobs) = 4.23, the post-trial probability − log10(pobs) = 2.31, which resulted in the second
forwarded alert for this source. The source was barely visible to VERITAS (zenith angle > 60◦), and
weather conditions were poor. The online VERITAS analysis showed no evidence for gamma-ray
emission (no excess was detected), indicating that the source flux was likely not exceptionally high
above a few TeV.

During the next IceCube season (IC-2014) another two alerts were sent to VERITAS. The
first, generated on 5 October 2014 corresponded to the source MG4 J200112+4352 (alert #11),
which had been recently reported as VHE emitter by the MAGIC collaboration [78]. A one-hour
observation was performed, but under extremely poor weather and bright moonlight conditions.
No conclusion regarding the gamma-ray flux state is possible with these data. The second alert
was issued by the NToO system for the source B3 1343+451 on 16 November 2014 (alert #12),
but the source was again barely visible (zenith angle larger than 60◦) and so follow-up observations
were not performed. The last alert was sent to VERITAS on 5 July 2015 for the source CGRaBS
J0211+1051 (alert #14), but at this time VERITAS was undergoing its annual summer shutdown,
and so no observation was made.

For MAGIC, the first alert was sent on 14 April 2012, spatially coincident with the source
4C15.54 (alert #3). However, as the MAGIC telescope was in a commissioning phase, the alert
could not be followed up. Then, a series of four alerts were issued by the NToO from 12 September
2013 to 21 September 2013 for the source RGB J0505+612 (alert #6). The alert resulted in
a follow-up observation by MAGIC (1 hour), which showed no statistically significant evidence
for gamma-ray emission. The computed integral flux upper limit (99% confidence) at energies
> 200GeV is 1.57 × 10−11 cm−2s−1. The last alert forwarded to MAGIC was generated on 9
March 2014 for the source 1ES 1959+650 (alert #8), but the low elevation of the source precluded
observations.

10 Recent and upcoming improvements

The currently deployed neutrino event selection in the NToO employs simple cuts on a number of
variables that discriminate between signal neutrinos and the atmospheric-muon background. The
cuts on these parameters have been optimized to achieve best sensitivity. However, further improve-
ments in signal and background separation should be possible through the use of more sophisticated
discrimination algorithms, such as boosted decision tree (BDT) [79] and multivariate learning ma-
chines. The aim is to replace the present NToO selection by developing a new event selection, which
could also be used by other IceCube follow-up programs. This new event selection is comparable
to offline point-source samples and will cover the entire sky. Here, a short description of the new
BDT selection is presented, which has been implemented for the IC-2015 data-acquisition season.

For the new BDT selection scheme, the multivariate cuts were based on 14 observables
obtained by choosing parameters with low correlation in the background event sample, but with
high discriminating power between signal and background. Observables specifying the geometry
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Figure 14. (Upper panel) IceCube distribution of BDT score for the ensemble of trees trained with an E2

spectrum. Vertical dashed line corresponds to the optimized BDT cut (Northern Hemisphere). (Lower panel)
The BDT score as a function of cos(zenith angle). The red line keeps approximately an equal rate per zenith
bin (' 10−4 Hz). A piecewise polynomial function is then fitted to the red curve (black curve).

and time evolution of the hit pattern, as well as the quality and consistency of the various track
reconstructions and the number of strings with signals are used. The BDT training was done
with simulated signal events for a soft neutrino spectrum of E−2.7 and for an E−2 spectrum. As
an example, figure 14 depicts results of the BDT training for an E−2 spectrum. A set of real
data provided the background sample for training. Additionally, for the simulated signal, the
reconstructed track was required to be within of 5◦ of the simulated direction in order to train the
BDTs with only well-reconstructed events. The final selection cut on the BDT output variable was
optimized to provide the best discovery potential for an E−2 neutrino flux, which results in a BDT
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Table 5. Data and atmospheric neutrino muon for different cut progression in IceCube. The signal efficiency
for an E−2 neutrino spectrum and for well reconstructed events with ∆Ψ < 5◦ with respect to the Online
Level 2 Filter is also shown.

Cut Level Data rate Atm. νµ rate E−1 Eff. E−2 Eff. E−2.7 Eff.
(mHz) (mHz) (%) (%) (%)

Northern Hemisphere
Simple Cuts 2.0 1.9 79 69 54
BDT E−2.0 1.9 1.7 86 81 72

Southern Hemisphere
BDT E−2.0 2.1 0.06 78 45 35

score value of 0.106. This final cut leads to a rate of 2 mHz for the final sample and, as shown in
table 5, to a better signal efficiency (with respect toOnline Level 2 Filter efficiency) than the original
NToO cuts. The BDT-based event selection leads to an improvement in the signal efficiency of
about +12(+18)% for an E−2 (E−2.7) spectrum with respect to the simple cuts.

The BDT selection was also used for the Southern Hemisphere (zenith angle θ < 90◦).
However, instead of a single BDT-score cut value, a zenith-dependent cut was applied in order
to select a constant number of events per solid angle, as shown in figure 14 (Lower panel). This
zenith-dependent cut was also optimized with respect to sensitivity and discovery potential for an
E−2 neutrino spectrum. The optimized cut described by a polynomial fit (figure 14 (Lower panel))
leads to a total data rate of 2.1mHz for the South only and an average signal efficiency of about 45
% (with respect to the Online Level 2 Filter), see also table 5.

The first step in establishing the NToO program was to demonstrate its technical feasibility
and to prove that a time-dependent point-source search can be run stably and reliably over long
periods of time at the South Pole. Therefore a simple search technique like the binned method was
implemented first. However, current offline IceCube searches for neutrino point sources usually
employ unbinned maximum-likelihood methods [80] to increase the discovery potential. Such an
approach has now also been implemented for the NToO,10 which allows the alert significance to be
calculated by taking into account an event-by-event angular reconstruction uncertainty estimation
and an energy estimation of the event.

Upgrading the NToO with a BDT-based event selection and a subsequent likelihood analysis
leads to an increased sensitivity in the Northern Hemisphere of 30-40%, yielding a comparable
sensitivity to the standard offline point-source analysis [81]. It also opens up the possibility of
observing neutrino flares in the Southern Hemisphere and to forward these alerts to the H.E.S.S.
collaboration [10], with whom a memorandum of understanding has been established.

In previous years of operation of the NToO systems, neutrino candidate event selections,
multiplet selection and alert generation all took place within the data-acquisition system at the
South Pole. This system was found to be somewhat inflexible and difficult to expand. To address
these shortcomings, the NToO systems are currently transitioning to a new approach. Instead of
selecting the neutrino candidates at the South Pole, a BDT-selected stream of single high-quality

10At the moment the unbinned maximum likelihood is implemented as a standalone cpython module, which will be
be included in the next forthcoming upgrade of the NToO system.
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neutrino events is transmitted to the North via a rapid satellite communication channel. Follow-
up processes in the North now evaluate the neutrino candidates, and generate alerts for external
observatories; see [81] for a more detailed description. Until December 2015, alerts were sent to the
partner experiments privately. However, in the future we plan to distribute alerts to the full multi-
messenger astrophysics community (ANTARES, KM3NeT, Auger, H.E.S.S./CTA, LIGO/VIRGO,
etc.) via the Astrophysical Multimessenger Observatory Network (AMON) [82].

11 Summary and Conclusions

In this work we described a NToO program, which uses IceCube to monitor a list of predefined
source candidates for neutrino flares. An important goal of this program was to establish and
to test procedures to trigger promptly the gamma-ray community to collect sensitive VHE data
from specific sources during periods of time when IceCube measures a potential increase in their
neutrino flux. These periods of elevated emission (“flares”), both in gamma rays and neutrinos, are
of particular interest to identify the sources of astrophysical neutrinos, and to understand the source
emission mechanisms. The second goal of the NToO is to increase the discovery potential for
time-variable point-sources of neutrinos with IceCube. The detection of a high-energy gamma-ray
flare with an IACT triggered by an alert from IceCube can help to establish the neutrino signal,
even if it is not significant enough on its own to qualify as a discovery. The NToO is the first online
analysis in IceCube searching for neutrino flares from point sources on time scales longer than a few
minutes. We have shown that such an analysis can be done efficiently and reliably, and presented
the first results from this program.
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A List of sources used by Neutrino Triggered Target of Opportunity

List of sources used by NToO for IC-2012 season (table 6) and for IC-2013 and IC-2014 season
(table 7). In the table the source name, the declination (DEC), the right ascension (RA), search bin
radius, and threshold for sending alerts is listed. The last column indicates if the source belongs
only to the MAGIC list or VERITAS list or if the source is present in the list for both experiments
(BOTH).

Table 6. List of sources used by NToO from November 2013 to December 2015. In the table the source
name, the declination (DEC), the right ascension (RA), search bin radius, and threshold for sending alerts
is listed. The last column indicates if the source belongs only to the MAGIC list or VERITAS list or if the
source is present in the list for both experiments (BOTH).

L.P. Source DEC RA Search radius Threshold Exper.
(deg) (deg) (deg) (σ)

1 PMN J0948+ 0022 0.3740 147.2390 1.21 3.63 VERITAS
2 BL 0414+ 009 1.0900 64.2187 1.23 3.16 BOTH
3 PKS B0906+ 015 1.3600 137.2920 1.23 3.63 VERITAS
4 RGB J0152+ 017 1.7779 28.1396 1.24 3.63 VERITAS
5 3C 273 2.0525 187.2779 1.25 3.16 BOTH
6 BL 0323+ 022 2.4208 51.5583 1.26 3.16 MAGIC
7 MG1 J050533+ 0415 4.2650 76.3950 1.30 3.63 VERITAS
8 J123939+ 044409 4.7000 189.9000 1.31 3.63 VERITAS
9 HESS J0632+ 057 5.8056 98.2429 1.34 3.63 VERITAS
10 1 ES 1212+ 078 7.5347 183.7958 1.38 3.16 MAGIC
11 4C + 09.57 9.6300 267.8900 1.43 3.63 VERITAS
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12 PKS 0754+ 100 9.9400 119.3100 1.44 3.63 VERITAS
13 PKS 1502+ 106 10.4940 226.1040 1.46 3.63 VERITAS
14 CGRaBS J0211+ 1051 10.8600 32.8050 1.46 3.63 VERITAS
15 PKS 2032+ 107 11.0000 308.8600 1.47 3.63 VERITAS
16 PG 1553+ 113 11.1900 238.9292 1.47 3.16 BOTH
17 RGB 0847+ 115 11.56389 131.8038 1.48 3.16 MAGIC
18 CTA 102 11.7310 338.1520 1.48 3.63 VERITAS
19 BL 1722+ 119 11.8708 261.2679 1.49 3.16 MAGIC
20 1ES 1440+ 122 12.0111 220.7010 1.49 3.63 VERITAS
21 M87 12.3975 187.6970 1.50 3.63 VERITAS
22 PKS 0528+ 134 13.5320 82.7350 1.53 3.63 VERITAS
23 4C 14.23 14.4200 111.3200 1.55 3.63 VERITAS
24 RGB 0648+ 151 15.2736 102.1983 1.57 3.16 BOTH
25 4c15.54 15.8594 241.7775 1.58 3.16 MAGIC
26 3C 454.3 16.1480 343.4910 1.59 3.63 VERITAS
27 AO 0235+ 164 16.6164 39.6621 1.60 3.16 BOTH
28 RGB 0250+ 172 17.2025 42.6579 1.61 3.16 MAGIC
29 PKS 0735+ 178 17.7053 114.5308 1.62 3.16 MAGIC
30 OX 169 17.7300 325.8980 1.63 3.63 VERITAS
31 PKS 1717+ 177 17.7517 259.8042 1.63 3.16 BOTH
32 HB89 0317+ 185 18.7594 49.9658 1.65 3.16 BOTH
33 MG2 J071354+ 1934 19.5830 108.4820 1.67 3.63 VERITAS
34 1ES 1741+ 196 19.5858 265.9908 1.67 3.16 BOTH
35 OJ 287 20.1108 133.7033 1.68 3.16 BOTH
36 RGB 1117+ 202 20.2356 169.2758 1.68 3.16 MAGIC
37 1ES 0229+ 200 20.2881 38.2025 1.68 3.16 BOTH
38 RGB 0521+ 211 21.2142 80.4412 1.71 3.16 BOTH
39 PKS1222+ 21 21.3794 186.2270 1.71 3.16 BOTH
40 Crab Pulsar 22.0140 83.6330 1.73 3.63 VERITAS
41 RGB 0909+ 231 23.1867 137.2529 1.75 3.16 MAGIC
42 RGB 0321+ 236 23.6031 50.5000 1.76 3.16 MAGIC
43 PG 1424+ 240 23.8000 216.7517 1.77 3.16 BOTH
44 1ES 1255+ 244 24.2111 194.3829 1.77 3.16 MAGIC
45 0827+ 243 24.2200 127.4900 1.77 3.63 VERITAS
46 1ES 0647+ 250 25.0500 102.6938 1.79 3.16 MAGIC
47 RGB 1417+ 257 25.7236 214.4858 1.80 3.16 MAGIC
48 W Comae 28.2331 185.3821 1.86 3.16 BOTH
49 Ton 599 29.2460 179.8830 1.88 3.63 VERITAS
50 HB89 0912+ 293 29.5567 138.9683 1.89 3.16 MAGIC
51 ON 325 30.1169 184.4671 1.90 3.16 BOTH
52 1ES 1218+ 304 30.1769 185.3413 1.90 3.16 BOTH
53 B2 1520+ 31 31.7370 230.5420 1.94 3.63 VERITAS
54 4C 31.03 32.1380 18.2100 1.95 3.63 VERITAS
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55 CGRaBS J1848+ 3219 32.3170 282.0920 1.95 3.63 VERITAS
56 B2 0619+ 33 33.4360 95.7180 1.97 3.63 VERITAS
57 HB89 1721+ 343 34.2994 260.8367 1.99 3.16 MAGIC
58 1ES 0120+ 340 34.3472 20.7867 1.99 3.16 MAGIC
59 B2 2308+ 34 34.4200 347.7720 1.99 3.63 VERITAS
60 RGB 0706+ 377 37.7433 106.6321 2.06 3.16 MAGIC
61 NVSS 232914+ 3754 37.9042 352.309167 2.06 3.16 MAGIC
62 1633+ 382 38.1350 248.8150 2.06 3.63 VERITAS
63 Mkn 421 38.2089 166.1138 2.07 3.16 BOTH
64 B3 2247+ 381 38.4103 342.5238 2.07 3.16 BOTH
65 RGB 0136+ 391 39.1000 24.1363 2.08 3.16 MAGIC
66 0FGL J1641.4+ 3939 39.6660 250.3550 2.09 3.63 VERITAS
67 Mkn 501 39.7603 253.4675 2.10 3.16 BOTH
68 IC 310 41.3247 49.1792 2.12 3.63 VERITAS
69 TeV J2032+ 4130 41.5100 308.0830 2.13 3.63 VERITAS
70 NGC1275 41.5117 49.9504 2.13 3.16 BOTH
71 1ES 2321+ 419 42.1831 350.9671 2.14 3.16 BOTH
72 BL Lac 42.2778 330.6804 2.14 3.16 BOTH
73 B3 0814+ 425 42.3800 124.5500 2.14 3.63 VERITAS
74 1ES 1426+ 428 42.6725 217.1358 2.15 3.16 BOTH
75 3C66A 43.0356 35.6650 2.16 3.16 BOTH
76 B3 1307+ 433 43.0847 197.3563 2.16 3.16 MAGIC
77 B3 1708+ 433 43.3120 257.4210 2.16 3.63 VERITAS
78 MG4J200112+ 4352 43.8814 300.3038 2.17 3.16 BOTH
79 B3 1343+ 451 44.8830 206.3880 2.19 3.63 VERITAS
80 GB6 B1310+ 4844 48.4750 198.1810 2.25 3.63 VERITAS
81 1ES 1011+ 496 49.4336 153.7675 2.26 3.16 BOTH
82 1150+ 497 49.5190 178.3520 2.27 3.63 VERITAS
83 1ES 0927+ 500 49.8406 142.6567 2.27 3.16 MAGIC
84 BL 1ZW187 50.2194 262.0775 2.28 3.16 MAGIC
85 1ES 1028+ 511 50.8933 157.8271 2.28 3.16 MAGIC
86 1ES 2344+ 514 51.7050 356.7700 2.30 3.16 BOTH
87 1ES 0806+ 524 52.3000 122.4542 2.31 3.16 BOTH
88 BZU J0742+ 5444 54.7400 115.6660 2.34 3.63 VERITAS
89 4C55.17 55.3828 149.4092 2.35 3.16 MAGIC
90 RGB 1903+ 556 55.6772 285.7983 2.36 3.16 MAGIC
91 RGB 1058+ 564 56.4697 164.6570 2.37 3.16 BOTH
92 RBS 1409 56.6569 219.2404 2.37 3.16 MAGIC
93 PG 1246+ 586 58.3414 192.0783 2.39 3.16 MAGIC
94 exo 0706+ 5913 59.1389 107.6250 2.40 3.16 BOTH
95 1ES 0033+ 595 59.8347 8.9692 2.41 3.16 MAGIC
96 S4 1030+ 61 60.8520 158.4640 2.42 3.63 VERITAS
97 RGB 0505+ 612 61.2267 76.4950 2.43 3.16 MAGIC
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98 LSI + 61 303 61.2290 40.1310 2.43 3.63 VERITAS
99 1ES 1959+ 650 65.1486 299.9992 2.47 3.16 BOTH
100 S4 0954+ 658 65.5653 149.6967 2.48 3.16 MAGIC
101 CGRaBS J1849+ 6705 67.0950 282.3170 2.49 3.63 VERITAS
102 RGB 1136+ 676 67.6178 174.1254 2.49 3.16 MAGIC
103 1ES 0502+ 675 67.6233 76.9842 2.49 3.16 BOTH
104 GB6 J1700+ 6830 68.5020 255.0390 2.50 3.63 VERITAS
105 HB89 1749+ 701 70.09750 267.1367 2.52 3.16 BOTH
106 Mkn 180 70.1575 174.1100 2.52 3.16 BOTH
107 S5 0836+ 71 70.8950 130.3520 2.52 3.63 VERITAS
108 S5 0716+ 714 71.3433 110.4725 2.53 3.16 BOTH
109 S5 1803+ 78 78.4680 270.1900 2.57 3.63 VERITAS

Table 7. List of sources used by NToO for IC-2013 and IC-2014 season.

L.P. Source DEC RA Search radius Threshold Exper.
(deg) (deg) (deg) (σ)

1 PG 1553+113 11.1902 238.9418 1.47 3.16 BOTH
2 PKS 1424+240 23.9750 216.7597 1.77 3.16 BOTH
3 PKS 1717+177 17.7425 259.8300 1.63 3.16 BOTH
4 RBS 0413 18.8266 49.9094 1.65 3.16 BOTH
5 RBS 0958 20.2269 169.3050 1.68 3.16 MAGIC
6 RX J0805.4+7534 75.5878 121.3421 2.56 3.16 MAGIC
7 S5 0716+71 71.3496 110.4757 2.53 3.16 BOTH
8 TXS 1055+567 56.48010 164.6656 2.37 3.16 BOTH
9 W Comae 28.2391 185.3740 1.86 3.16 BOTH
10 1ES 1215+303 30.1093 184.4672 1.90 3.16 BOTH
11 1ES 1959+650 65.1572 300.0204 2.47 3.16 BOTH
12 1ES 2321+419 42.2001 350.9539 2.14 3.16 BOTH
13 3C 66A 43.0358 35.6617 2.16 3.16 BOTH
14 GB6 J1542+6129 61.4887 235.7294 2.43 3.16 MAGIC
15 GB6 J1838+4802 47.9939 279.6958 2.24 3.16 MAGIC
16 MS 1458.8+2249 22.6388 225.2749 1.74 3.16 MAGIC
17 Mkn 421 38.2134 166.1199 2.07 3.16 BOTH
18 Mkn 501 39.7631 253.4814 2.10 3.16 BOTH
19 PMN J0948+0022 0.3740 147.2390 1.21 3.63 VERITAS
20 BL 0414+009 1.0900 64.2188 1.23 3.63 VERITAS
21 PKS B0906+015 1.3600 137.2920 1.23 3.63 VERITAS
22 RGB J0152+017 1.7779 28.1396 1.24 3.63 VERITAS
23 3C 273 2.0525 187.2779 1.25 3.63 VERITAS
24 MG1 J050533+0415 4.2650 76.3950 1.30 3.63 VERITAS
25 J123939+044409 4.7000 189.9000 1.31 3.63 VERITAS
26 HESS J0632+057 5.8056 98.2429 1.34 3.63 VERITAS
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27 4C +09.57 9.6300 267.8900 1.43 3.63 VERITAS
28 PKS 0754+100 9.9400 119.3100 1.44 3.63 VERITAS
29 PKS 1502+106 10.4940 226.1040 1.45 3.63 VERITAS
30 CGRaBS J0211+1051 10.8600 32.8050 1.47 3.63 VERITAS
31 PKS 2032+107 11.0000 308.8600 1.47 3.63 VERITAS
32 CTA 102 11.7310 338.1520 1.48 3.63 VERITAS
33 1ES 1440+122 12.0111 220.7010 1.49 3.63 VERITAS
34 M 87 12.3975 187.6970 1.50 3.63 VERITAS
35 PKS 0528+134 13.5320 82.7350 1.53 3.63 VERITAS
36 4C 14.23 14.4200 111.3200 1.55 3.63 VERITAS
37 RGB 0648+151 15.2736 102.1983 1.57 3.63 VERITAS
38 3C 454.3 16.1480 343.4910 1.59 3.63 VERITAS
39 AO 0235+164 16.616 39.6621 1.60 3.63 VERITAS
40 OX 169 17.7300 325.8980 1.63 3.63 VERITAS
41 MG2 J071354+1934 19.5830 108.4820 1.67 3.63 VERITAS
42 1ES 1741+196 19.5858 265.9908 1.67 3.63 VERITAS
43 OJ 287 20.1108 133.7033 1.68 3.63 VERITAS
44 1ES 0229+200 20.2881 38.2025 1.69 3.63 VERITAS
45 RGB 0521+211 21.2142 80.4413 1.71 3.63 VERITAS
46 PKS1222+21 21.3794 186.2271 1.71 3.63 VERITAS
47 Crab Pulsar 22.0140 83.6330 1.72 3.63 VERITAS
48 0827+243 24.2200 127.4900 1.77 3.63 VERITAS
49 Ton 599 29.2460 179.8830 1.88 3.63 VERITAS
50 1ES 1218+304 30.1769 185.3413 1.90 3.63 VERITAS
51 B2 1520+31 31.7370 230.5420 1.94 3.63 VERITAS
52 4C 31.03 32.1380 18.2100 1.94 3.63 VERITAS
53 CGRaBS J1848+3219 32.3170 282.0920 1.95 3.63 VERITAS
54 B2 0619+33 33.4360 95.7180 1.97 3.63 VERITAS
55 B2 2308+34 34.4200 347.7720 1.99 3.63 VERITAS
56 1633+382 38.1350 248.8150 2.06 3.63 VERITAS
57 B3 2247+381 38.4103 342.5238 2.07 3.63 VERITAS
58 0FGL J1641.4+3939 39.6660 250.3550 2.09 3.63 VERITAS
59 IC 310 41.3247 49.1792 2.12 3.63 VERITAS
60 TeV J2032+4130 41.5100 308.0830 2.13 3.63 VERITAS
61 NGC1275 41.5117 49.9504 2.13 3.63 VERITAS
62 BLLac 42.2778 330.6804 2.14 3.63 VERITAS
63 B3 0814+425 42.3800 124.5500 2.14 3.63 VERITAS
64 1ES 1426+428 42.6725 217.1358 2.15 3.63 VERITAS
65 B3 1708+433 43.3120 257.4210 2.16 3.63 VERITAS
66 MG4J200112+4352 43.8814 300.3038 2.17 3.63 VERITAS
67 B3 1343+451 44.8830 206.3880 2.19 3.63 VERITAS
68 GB6 B1310+4844 48.4750 198.1810 2.25 3.63 VERITAS
69 1ES 1011+496 49.4336 153.7675 2.26 3.63 VERITAS
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70 1150+497 49.5190 178.3520 2.26 3.63 VERITAS
71 1ES 2344+514 51.7050 356.7700 2.30 3.63 VERITAS
72 1ES 0806+524 52.3000 122.4542 2.31 3.63 VERITAS
73 BZU J0742+5444 54.7400 115.6660 2.34 3.63 VERITAS
74 exo 0706+5913 59.1389 107.6250 2.40 3.63 VERITAS
75 S4 1030+61 60.8520 158.4640 2.42 3.63 VERITAS
76 LSI +61 303 61.2290 40.1310 2.43 3.63 VERITAS
77 CGRaBS J1849+6705 67.0950 282.3170 2.49 3.63 VERITAS
78 1ES 0502+675 67.6233 76.9842 2.49 3.63 VERITAS
79 GB6 J1700+6830 68.5020 255.0390 2.50 3.63 VERITAS
80 HB89 1749+701 70.0975 267.1367 2.52 3.63 VERITAS
81 Mkn 180 70.1575 174.1100 2.52 3.63 VERITAS
82 S5 0836+71 70.8950 130.3520 2.52 3.63 VERITAS
83 S5 1803+78 78.4680 270.1900 2.57 3.63 VERITAS
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