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Abstract 
 

Studies of the feeding ecology of the European wildcat (Felis silvestris silvestris) 

demonstrate that leporids, mostly European rabbit (Oryctolagus cuniculus), dominate 

their diet in regions where they are present. The remains of wildcats have been found 

at Pleistocene and Holocene archaeological sites, raising the possibility that they 

actively accumulated leporid bones in caves and shelters shared with other terrestrial 

carnivores, raptors and humans. We present the first taphonomic study of rabbit 

remains consumed by this terrestrial carnivore, with the ultimate aim of understanding 

their role in bone accumulations at archaeological sites. An experimental study was 

carried out with a wildcat female, who was fed with nine complete rabbit carcasses. 

Non-ingested remains and scats were recovered for the analysis of anatomical 

representation, breakage and bone surface modification. This revealed that non-

ingested remains and scats of the European wildcat can be discriminated from most 
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other agents of accumulation. The referential framework provided will permit the 

discrimination of hominids and wildcats as agents of fossil accumulations of rabbits. 
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1. Introduction 

 

The wildcat Felis silvestris is a medium-sized carnivore that ranges over Africa, Europe 

and central Asia to India, China and Mongolia. It is the most common and widely 

distributed wildcat species in the world. In contemporary Europe, the European wildcat 

(Felis silvestris silvestris) presents a rather fragmented geographic distribution, ranging 

from the Iberian Peninsula to the eastern part of the continent (Stahl and Artois 1991; 

Sunquist and Sunquist 2002).  

Wildcats consume a large diversity of prey from rodents to small ungulates, with a diet 

that varies geographically and is dependent upon prey availability (Lozano et al. 2006). 

Diet studies show that throughout its range, small rodents (mice, voles, rats, dormice) 

are the wildcat's primary prey; however, birds and reptiles may also be consumed. 

Most studies also evidence that in areas where abundances of leporids are high, 

normally European rabbits (Oryctolagus cuniculus) are preferred to other prey, 

constituting up to 70-90% of their diet (Condé et al. 1972; Gil-Sánchez et al. 1999; 

Sunquist and Sunquist 2002; Malo et al. 2004; Lozano et al. 2006; Lozano 2008). 

Wildcats can use small caves and rock shelters for sheltering and resting (Lozano 

2008), and during breeding seasons in particular, they will accumulate prey leftovers 

and scats containing prey digested teeth and bone fragments within these dens.  

The wildcat is first recorded in the fossil deposits of the Middle Pleistocene 250ky ago, 

during the Holsteinian Interglacial period (Wolsan 1993). The remains of wildcats have 

been found at many Pleistocene and Holocene archaeological sites, raising the 
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possibility that these carnivores were active accumulators of rabbit bones in caves and 

shelters that they shared with other terrestrial carnivores, raptors and humans. Thus, 

taphonomic studies on rabbit remains consumed by this terrestrial carnivore are 

essential in order to identify its role as an agent responsible for rabbit remains 

assemblages on archaeological sites.  

In the last decades, numerous taphonomic studies examining the role of small 

carnivores as possible agents of bone accumulation in archaeological deposits have 

been published (Schmitt and Juell 1994; Sanchis 2000; Mondini 2002; Cochard 2004; 

Gómez and Kaufmann 2007; Lloveras et al. 2008a; Mallye et al. 2008; Sanchis Serra 

and Pascual Benito 2011; Alvarez et al. 2012; Lloveras et al. 2012a; Stiner et al. 2012; 

Rodríguez-Hidalgo et al. 2013; Krajcarz and Krajcarz 2014; Rodríguez-Hidalgo et al. 

2015; Amstrong 2016). They are especially relevant to the discussion about 

subsistence strategies and ways of life of hunter-gatherer communities. Particularly, in 

areas were European rabbits are present (Iberian Peninsula and Mediterranean 

regions), this prey is usually the most abundant taxon in the zooarchaeological record 

(Aura-Tortosa et al. 2002; Hockett and Haws 2002). Distinguishing anthropogenic and 

other predator accumulations is thus imperative, in order to assess the importance of 

small game exploitation in the past. Despite this fact, taphonomic studies on rabbit 

remains consumed by the European wildcat do not exist and its role as an agent 

responsible for bone accumulations at archaeological sites is unknown. The aims of 

this study are: firstly, to study the taphonomic patterns left by the European wildcat on 

non-ingested and scats rabbit remains and secondly, to put forward a series of criteria 

that can be used in archaeological samples to separate assemblages produced by 

wildcats from those accumulated by people or other predators. 

 

2. Materials and method 
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To achieve our goals an experimental study was conducted with a wildcat female kept 

at the Wildlife Recovery Center of  Vallcalent (Lleida, Spain), which was fed with 9 wild 

rabbits. The rabbit remains used in this study come from a farm specialized in breeding 

wild rabbits. The animals chosen were sub-adults with an average weight of 

approximately 1.5 kg. During February of 2013, the wildcat female, which was isolated 

in a naturalized enclosure of 150 m2, was fed with the complete rabbit carcasses. The 

rabbit leftovers not-ingested during feeding as well as the scats were collected and 

reserved for posterior analysis (Fig. S1). 

All scats were rehydrated, water screened and disaggregated in a 1,5 mm. mesh. Non 

ingested remains, were still anatomically connected and attached to the skin of the 

rabbit so to facilitate removal of any remaining soft tissue, carcasses were boiled and 

cleaned under running water. The material was then ready for analysis.  

The analytical methodology used in this study follows the same criteria applied in 

previous works that were carried out with leporid assemblages originated by different 

predators (Lloveras et al. 2008a, 2008b, 2009, 2012a, 2012b, 2014a, 2014b). The 

variables considered within each of the analytical parameters studied are presented 

below. 

 

2.1 Anatomical Representation 

The Number of Identified Specimens Present (NISP), Minimum Number of Elements 

(MNE) and Minimum Number of Individuals (MNI) were calculated as well as relative 

frequencies. Relative abundance was calculated using the formula advocated by 

Dodson and Wexlar (1979). In addition, proportions of skeletal elements were 

evaluated using the following ratios (Andrews 1990): 

(a) PCRT/CR – the total number of postcranial elements (limb elements, vertebrae and 

ribs) compared with the total number of cranial elements (mandibles, maxillae and 

teeth).  



 5 

(b) PCRAP/CR – the total number of limb elements (long bones, scapulae, 

innominates, patellae, metapodials, carpals, tarsals and phalanges) compared with 

the total number of cranial elements (mandibles, maxillae and teeth).  

(c) PCRLB/CR – the total number of postcranial long bones (humeri, radii, ulnae, 

femora and tibiae) compared with the total number of cranial elements (mandibles 

and maxillae). 

Loss of distal limb elements was shown by two indices (Lloveras et al. 2008a):  

(d) AUT/ZE – autopodia (metapodials, carpals, tarsals and phalanges) compared with 

zygopodia and stylopodia (tibiae, radii, ulnae, humeri, femora and patellae);  

(e) Z/E - zygopodia (tibiae, radii and ulnae) compared with stylopodia (femora and 

humeri).  

A further index compared anterior to posterior limb elements:  

(f) AN/PO – scapulae, humeri, radii, ulnae and metacarpals compared with 

innominates, femora, tibiae and metatarsals. 

2.2 Breakage 

The breakage pattern was described by the maximum length of all identified skeletal 

elements. Percentages of complete elements, isolated teeth and articulated elements 

were calculated. For immature individuals, the diaphyses of long bones with unfused 

epiphyses were considered complete elements. Bone fragments were categorised 

depending on bone type:   

- Patellae, carpals, tarsals and ribs were classified as complete (C) or fragmented (F). 

- Phalanges were recorded as complete (C), proximal (P) or distal (D) fragments. When 

the distinction between proximal or distal was not possible, they were recorded as 

fragment (F). 

- Vertebrae were registered as complete (C), vertebral body (VB), vertebral epiphysis 

(VE) or spinous process (SP). 



 6 

- Breakage of teeth was calculated separately for isolated and in situ elements 

(Fernández-Jalvo and Andrews 1992) and they were classified as complete (C) or 

fragmented (F). 

Breakage categories for long bones, metapodials, mandibles, crania, scapulae and 

innominates are fully described and illustrated in Lloveras et al. (2008a, Fig. 1).  The 

presence of long bone cylinders (fragments of long bones with snapped ends resulting 

from consumption), and V-shaped and helical fractures (Villa and Mahieu 1991) were 

also recorded. 

2.3 Bone surface modifications 

All of the skeletal remains were examined both macro- and microscopically. Damage to 

the bone surface was observed under light microscope (x10-x40 magnification) with an 

oblique cold-light source. 

2.3.1 Digestion damage 

Different categories of digestion damage were applied to bones and teeth (Fernández-

Jalvo and Andrews 1992; Lloveras et al. 2008a, 2008b, 2014c). Five categories of 

digestion were distinguished: null (0); light (1); moderate (2); heavy (3); and extreme 

(4). These were valued separately for bones and dental remains 

2.3.2 Tooth marks 

Damage to bone surfaces caused by teeth were noted and counted. Marks were 

classified as scoring, notches, tooth punctures/tooth pits and crenulated/fractured 

edges (Haynes 1980; Binford 1981; Brain 1981). Punctures and pits were also 

classified by their number (isolated or multiple) and distribution (unilateral – i.e. located 

on one surface – or bilateral) (Sanchis Serra et al. 2014). 

2.4. Density-mediated attrition 

Differential survival in relation to bone density was evaluated using the bivariate 

Spearman’s rho correlation (Grayson 1984), taking into account the rabbit bone density 

data provided by Pavao and Stahl’s (1999). 
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3. Results 
 
3.1 Anatomical representation 

Table 1 shows the anatomical composition of the identified remains for both non-

ingested (NI) and scat (SC) remains samples. A total of 1544 bones and teeth were 

determined, 1457 coming from NI sample and 87 from scats. 

In the NI sample the estimated minimum number of individuals (MNI) was nine. The 

entire skeleton was represented except for the scapula. In absolute numbers 

phalanges (27.6%), vertebrae (14.5%), carpal/tarsal bones (11.9%) and upper molars 

(7.3%) were the most numerous elements (N%). The relative abundance of skeletal 

elements (RA%) is also shown in Table 1 and Fig. 1. The mean value (75.2%) was 

high, indicating a low loss of bones in the assemblage. The best-represented elements 

were the cranium, metatarsus, calcaneum, astragalus, femur and incisors; all of which 

displayed values of 100%. Most skeletal elements (77.3%) showed RA values over 

75%. Scapula, ribs and humerus were less well represented (0%, 3.2% and 11.3% 

respectively). 

The relative proportions of skeletal elements are shown in Table 2. Results indicate 

that there was a deficiency in the numbers of postcranial compared to cranial remains. 

Among the long bones, parts of the lower appendicular skeleton were more numerous 

than upper limb bones, with 1.3 times more elements from the hands and feet than the 

upper parts. The same goes for the relationship among zygopodium and stilopodium 

limb bones: there were 1.5 as many radii/ulnae/tibiae than humeri/femora. Posterior 

limb elements suvrived better than anterior elements. 

 

In the SC sample the estimated minimum number of individuals (MNI) was only two 

individuals, indicating a loss of 77.8% of the individuals originally consumed. The best-

represented elements were the scapula, forelimb bones and cranial remains (Table 1). 

Some vertebrae, ribs, metacarpals and phalanges were also registered; other skeletal 
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elements were absent.  The relative abundance of skeletal elements (RA%) is also 

shown in Table 1 and Fig. 1. The mean value (15.2%) was very low indicating an 

important loss of bones in the assemblage. The best-represented elements were the 

scapula (100%), humerus/radius/ulna (50% each) and cranium (50%). 

Proportion indices reveal that the scat sample contain more postcranial than cranial 

remains, more long bones than autopodium and more forelimb than hindlimb bones 

(Table 2); this pattern is the reverse of that seen in non-ingested remains. 

 

3.2 Breakage 

Breakage was limited in the NI sample, with 65% of specimens recorded over 10mm in 

length. The percentage of complete bones was 92% and almost 24% of long bones 

were complete. The ulna, radius and humerus were the elements most affected by 

breakage (Fig. 2). Breakage categories are shown in Table 3. 

- The most common complete long bones were the femur (47.2%) and the tibia 

(36.1%), while the humerus was never complete. The shaft plus distal epyphysis 

was most common among the fractured portions of humerus, radius and ulna. On 

the contrary, femur and tibia fragments were mostly repsented by proximal 

epyphysis portions. Most long bone fractures were mechanical, V-shaped and 

helical. Diaphyseal cylinders were not recorded in the assemblage. 

- Metapodials were well preserved, 85.9% of the metacarpals and 83.9% of the 

metatarsals were complete. All the recovered frafments were parts of distal 

epyphysis.  

- 19.2% of skulls survived complete and the most common fragments were parts of 

the neurocranium and maxillary bone. 

- Mandibles were recovered fully intact in 48% of cases. Condylar process and body 

fragments with the incisive part had a higher rate of survival than other fragments. 

- 73.9% of the innominates were complete. Among the fragments, only parts of the 

ischium were recovered. 
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- Scapulae fragments were not recovered.  

- Most of the vertebrae were complete (82.9%). Fragments were represented mainly 

by the vertebral body and vertebral epiphyses. 

- The ribs were scarce, they were intact in 57.1% of the cases. 

- Carpals, tarsals and phalanges were complete in percentages above 94% in all 

cases. 

- All teeth were placed “in situ” and they were always complete. 

 

In the SC assemblage breakage was very high. This sample comprised mainly very 

small fragments, only 1.2% of bones displayed length values over 10 mm and only 

11.5% of bones were complete. In addition, no complete long bones were recovered. In 

fact, the only complete bones were some phalanges and carpals (Fig. 2). Breakage 

categories are shown in Table 4. 

- The long bones were only represented by fragments of humerus, radius and ulna. 

The proximal epyphysis was the most common among the fractured portions 

recovered. 

- Metapodials were scarce and they were never complete. 

- The skull was only represented by parts of the neurocranium.  

- For the mandible only one fragment of the condylar process was recovered. 

- Scapulae fragments always comprised the glenoid cavity (GC and GCN).  

- The vertebrae were never complete. Fragments were mainly represented by 

vertebral body and spinous process. 

- The ribs were fragmented in all cases. 

- More than 47% of phalanges appeared complete. Only one complete carpal was 

recovered.  

 

3.3 Bone surface modifications 

3.3.1 Digestion damage 
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In the SC sample 98.6% of remains presented digestion damage with 47.9% exhibiting 

‘extreme’ digestion and 39.7% exhibiting ‘heavy’ digestion damage; light digestion 

damage was recorded rarely (1.4%, Fig. 2 and Table 1). Different bones were altered 

in similar proportions although vertebrae were damaged to a slightly greater extent. 

Normally, the entire surface of the bones was affected by digestion corrosion (Fig. 3) 

as a result of the high degree of breakage. 

 

3.3.2 Tooth marks 

In the NI sample, tooth marks were observed on 87 specimens (6% of the sample). 

The most common form of damage was fractured edges (N=79, 76.7%), followed by 

punctures (N=8, 7.8%), pits (N=6, 5.8%), crenulated edges (N=6, 5,8%), and scoring 

(N= 4, 3.9%) (Table 1, Fig. 4). On the whole, 1.2% of bones displayed tooth pits and/or 

punctures. 

Tooth marks were mostly documented in the radius (25.2%) and vertebrae (18.4%). 

Tooth pits and punctures were recorded on: the mandible fossa; the shaft and distal 

epiphysis of the radium; the proximal epiphysis of the femur; the acetabulum and ilium 

of the innominate; and the vertebral body. In many cases different types of tooth marks 

were documented in the same specimen.   

In the SC sample, as a consequence of the high degree of breakage and digestion 

damage, tooth marks were not found.  

 

3.4. Density-mediated attrition 

There was no statistically significant correlation between bone mineral density and the 

frequency of rabbit skeletal portions recovered in the NI and SC samples (rho=0.21, p= 

0.429 and rho=0.1, p= 0.703 respectively). This indicates that preservation of rabbit 

remains acummulated by the wildcat are generally unaffected by structural density 

mediated attrition (after Pavao and Stahl’s 1999). 

 



 11 

4. Discussion 

 

The taphonomic signal of the European wildcat has not been characterized in previous 

works. Results obtained in this study show that this small carnivore only removes a 

specific number of skeletal elements during feeding, with large parts of prey remaining 

unconsumed. Such behaviour can generate important accumulations of non-ingested 

bones that according to the data collected in the present study are characterized by: 

the lack or scarcity of scapulae, humeri and axial skeletal remains; the prevalence of 

cranial elements and greater survival of hindlimbs over forelimbs; high frequencies of 

whole bones; and scarcity of tooth pit/punctured bones.  

The scat sample comprised only 87 identifiable remains, bones from scats were scarce 

and difficult to identify. Although the sample is small, bone assemblages accumulated 

from wildcats scats appear to be characterized by: an abundance of scapulae and 

forelimb bones; a prevalence of postcranial elements and greater survival of forelimbs 

over hindlimbs; high frequencies of small-sized fragmented bones; and almost 90% of 

remains affected by extreme and heavy digestion corrosion without the presence of 

tooth pit/punctured bones. This evidence demonstrates that wildcat rabbit 

accumulations may differ significantly, depending on the the origin of the assemblage 

(Tables 1 and 2).  The fact that skeletal remains in wildcat scats are rare and highly 

fragmented reduces the liklihood that they will be recovered archaeologically.  

It is clear that working with captive animals permit a major controll of different variables 

afecting experimentation. However, it has been pointed before for other larger 

carnivores, that captivity may influence predator behavior and how they modify faunal 

assemblages (Gidna et al. 2013). To take into acconunt the context in wich 

assemblages are originated is essential. Taking this in mind, we are aware that some 

bias may be produced concerning our results as they derive from a captive wildcat. 

Also the small size of the scats sample implies the need to be cautious with the results 

from ingested elements. Nevertheless, this research is the first in wildcat modifications, 
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and this results are a first approach that may be very useful to researchers analising 

archaeological leporid assemblages.  

 

4.1. The wildcat and other predators 

 

The results of this research demonstrate that the taphonomic pattern left by wildcats on 

rabbits differs from other predators. To facilitate comparisons, Table 5 presents a 

summary of results obtained from different European rabbit predators, where the data 

have been collected using the same methods. 

 

4.1.1 Comparisons of anatomical representation profiles 

Values of anatomical representation indices obtained for the wildcat differ from 

nocturnal and diurnal raptors. In the wildcat NI remains sample, most skeletal elements 

display higher Relative Abundance than in all the raptors samples (Fig. 5). However, 

there are a few skeletal elements (e.g. the humerus and scapula) that are less well 

represented in the wildcat sample, than in raptor assemblages. In contrast, in the 

wildcat SC sample most skeletal elements are less well represented than in the raptor 

assemblages with the exception of scapulae and forelimb long bones, which are more 

abundant in the wildcat accumulation (Lloveras et al. 2008b, 2009, 2014b).  

Comparisons with other terrestrial carnivores also show differences in anatomical 

representation such as the higher representation of cranial remains in the NI wildcat 

sample (Fig. 6). Long bones, particularly the femur, were also much better represented. 

Profiles of RA for wildcat, lynx and fox show that wildcats consume little of the rabbit 

skeleton, whereas the red fox destroys most bones and the Iberian lynx is situated in 

an intermediate position. While inter-specific differences are less clear in the scat 

sample, they are still evident (Fig. 6). Lloveras et al. (2012a) reported that red fox 

accumulations were characterised by high values for the relative abundance of cranial 

remains and upper limb bones from both anterior and posterior limbs. All these 
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elements are visibly scarcer in the wildcat SC sample. Chi-square test of independence 

were used for comparing survivorship of skeletal elements or their fragments showing 

that differences in the relative abundance of both taxa are statistically significant (χ2 = 

117.9, P < 0.01, df =12). Comparison with the taphonomic signature of Iberian lynx scat 

samples also shows significant differences (χ2 = 268.1, P < 0.01, df =12). Lynxes tend 

to accumulate larger numbers of cranial remains, innominate and hindlimb bones 

(Lloveras et al. 2008a). The scapula is the only skeletal element that is noticeably 

better represented in the wildcat scat accumulation. 

These differences observed in the anatomical representation profiles of wildcat prey 

reflect the feeding behaviour of this carnivore. When feeding on rabbits, wildcats start 

consuming the meat located around the axial skeleton, forelimb bones and crania, and 

only a few fragments of bones are ingested (observed by researchers from Wildcat 

Breeding Center of Vallcalent).  

 

4.1.2 Comparisons of breakage patterns 

Observation of breakage patterns reveals a low degree of fragmentation in the wildcat 

NI sample: 65% of remains were over 10 mm and the percentage of complete bones 

was 92%. These values indicate that the wildcat fragmented non-ingested remains less 

than diurnal and nocturnal raptors nests, where the percentage of remains over 10 mm 

were 45-50% and the percentage of complete bones 38-75% (Schmit 1995; Lloveras et 

al. 2009, 2012b, 2014b; Table 5). However, this trend is reversed with forelimb long 

bones. The ulna, radius and humerus were the elements most affected by breakage 

(the humerus was never recovered complete) in the wildcat sample with an average of 

2.2% of complete elements (Table 3). This average was much higher in all raptor nest 

assemblages: 40% for eagle owl; 50% for Bonelli’s eagle; and 33.4% for golden eagle 

(Schmit 1995; Lloveras et al. 2009, 2012b, 2014b). 
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The scat sample was more affected by breakage than raptor accumulations, even than 

those originating from pellets which are always constituted of more fragmented 

elements. The percentage of complete bones and complete long bones obtained in the 

present study (11.5% and 0%) is lower than the values recorded for Bonelli’s eagles 

(59.6% and 15.4%) and Spanish imperial eagles (27% and 0%) pellets. 

With regards to terrestrial carnivores, wildcat, Iberian lynx and red fox leporid 

assemblages of NI remains are characterised by a low degree of fragmentation. The 

percentage of remains over 10 mm, complete elements and complete long bones are 

similar for all carnivores. In fact, given that these completeness values can vary slightly 

as consequence of intraspecific variabiles (age of the prey, age of the predator, rabbit 

abundance, etc.) (Lloveras et al. 2012a; Rodríguez-Hidalgo et al. 2013, 2015), values 

obtained for different carnivores could overlap, making any distinction difficult. 

Breakage patterns are also similar in wildcat, fox and lynx scat assemblages.  Rabbit 

fragments from wildcat scats are slightly smaller than in scats of Iberian lynx and fox. 

Equally, the percentage of complete elements is higher in the lynx sample but 

practically the same in the red fox (Table 5). However, more studies of wider wildcat 

scat samples are required to confirm these subtle differences.  

 

4.1.2 Comparisons of bone surface modifications 

Different types of predators produce similar kinds of teeth/beak damage when feeding 

on rabbit carcasses. This study shows that in the NI sample, the percentage of bones 

with tooth damage (6%) is similar to those recorded in raptor nest accumulations such 

as the Bonelli’s (4.1%) eagle or the Egyptian vulture (7.5-10.4%) (Lloveras et al. 2014a, 

2014b; Sanchis Serra et al. 2014). The percentage of tooth pits/punctures (1.2%) is 

lower than the beak pits/punctures registered in European eagle owl nest 

accumulations (2%) but higher than values obtained for Bonelli’s eagle (0.8%). 

However, values are too close to distinguish predators. The innominate, vertebrae, 

femora and mandibles were commonly affected by surface modifications in these 
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studies. These bones were also affected in the wildcat sample, but most marks were 

documented on the radius (25.2%). The presence of different types of tooth marks 

registered in the same specimen (related to gnawing damage) is uncommon in raptor 

accumulations. 

Distinguishing the damage produced by different terrestrial carnivores is more 

challenging. The percentage of tooth pits/punctures has been defined as one of the 

best characteristics to discriminate between Iberian lynx and red fox leporid 

accumulations Different studies show that lynxes produce much less damage (0.8-

1.8%) than foxes (9.5-19%) (Cochard 2004; Lloveras et al. 2008a; Sanchis Serra and 

Pascual Benito 2011; Lloveras et al. 2012a; Rodríguez-Hidalgo et al. 2013, 2015).  

On the whole, in the wildcat NI sample 1.2% of bones displayed tooth pits and/or 

punctures. This low percentage also places the wildcat far from the red fox but in the 

same range of damage expected for the Iberian lynx. One possible difference to 

explore between both carnivores could be the location of tooth marks. As noted above, 

in the wildcat most of marks were documented in the radius (25.2%) and vertebrae 

(18.4%), however in the lynx samples the tooth marks occurred most commonly in 

innominates (26%) and tibiae (20%). 

Regarding digestion damage, the percentage of digested remains in the wildcat SC 

sample (98.6%) is higher than values obtained for raptor nest accumulations (i.e. 

68.8% for Eagle owl, 31.2% for Bonelli’s eagle, Table 5), but similar to the percentage 

of digested bones in some raptor pellets (i.e. 98% for Spanish imperial eagle) and other 

terrestrial carnivore scat assemblages (where almost 100% of remains exhibit digestion 

damage). However, in the wildcat sample digestion damage is clearly more 

pronounced than in the raptor samples, with a higher percentage of remains affected 

by an extreme degree of damage (47.9% vs 5.6%). Digestion corrosion damage is also 

stronger in the wildcat sample than in the red fox and Iberian lynx scat accumulations 

(47.9% vs 25% and 19.3%, Table 5). 
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5. Conclusions 

 

In this study we provide the first detailed taphonomic observations on rabbit remains 

accumulated by the European wildcat. The results obtained help to identify and classify 

the most important characteristics of rabbit bone assemblages created by this 

carnivore. Identifiable rabbit remains are scarce in scats. Non-ingested material is 

characterized by the lack/scarcity of the scapula, humerus and axial skeleton remains, 

whereas the scapula and forelimb bones are the most abundant elements in scats. 

Non-ingested remains are much less fragmented and show a high percentage of 

complete bones. Rabbit remains in scats are affected by extreme and heavy digestion 

corrosion. Tooth marks are scarce and only evident on non-ingested remains. 

Comparisons between the taphonomic signature of European wildcat and other rabbit 

predators showed that there are great similarities especially between wildcats and 

other terrestrial carnivores. Nevertheless, damage caused by wildcats on rabbits differ 

sufficiently from modifications produced by foxes and Iberian lynxes. The biggest 

difference lies in the anatomical representation profile. The frequency of tooth marks 

also differs from foxes, which can generate much larger numbers of tooth 

pits/punctures than the wildcat, although it is close to the values obtained for the 

Iberian lynx.  

On archaeological sites, assemblages dominated by non-ingested remains are the 

most likely to be encountered, however; results may vary depending on the relative 

proportion of remains derived from scats. In fact, archaeological assemblages most 

often result in complex palimpsests of depositional history, mixing debris from 

prehistoric human occupations with those from other processes, both geological and 

faunal (Enloe 2012). The use of the reference data obtined in this study and others of 

the kind, is one way of deciphering portions of complex depositions. The taphonomic 

pattern obtained with fossil assemblages will rarely match exactly to the taphonomic 

signature here described, precisely as a consequence of the existence of palimpsests 
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that mixt signatures originated by different agents. However, the criteria presented in 

this study for both types of accumulations (scats and non-ingested) can help to assess 

the potential contribution of European wildcats in accumulating fossil rabbit remains on 

archaeological sites. 
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