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111
PREFACE

Theoretical and observational data on galaxy clustering suggest an increasingly
accepted trend on how cosmic objects form and evolve. According to this

view, there is a hierarchy in structure formation that starts with early, low
massive objects and finishes with late, massive ones, these latter arising from

the gravitational clustering of the former.

It is generaly believed that the first objects, as well as their subsequent clus
terings, have their origin in small amplitude density inhomogeneities which

have grown by gravitational instability as the universe expanded. Several
mechanisms have been proposed to explain the genesis and properties of pri
mordial fluctuations. The theory of inflation predicts the generation of adi
abatic density perturbations with a spatial Gaussian distribution completely
characterized by the correlation function. Topological defect models claim

that the motion of cosmic strings is able to imprint non-Gaussian isocurvature

density perturbations in the matter.

In the early univers, the tight coupling between baryons and photons in

hibits the growth of barionic density perturbations until the epoch of recombi
nation (Zrec � 1000). Since then, the perturbation amplitude grows exclusively
driven by gravitation, The situation changes drastically if a great amount

1



2 Chapter 1. PREFACE

of non-barionic dark matter is considered. As this matter does not interact

with radiation, its density perturbations starts growing much earlier, espe

cially when the univers enters the matter dominated era (zeq � Zrec for high
n). After recombination baryons 'fall into' dark matter fluctuations so that

baryonic perturbations rapidly catch up non-barionic ones . The existence of

a large fraction of non-baryonic dark matter seems to be confirmed from both

galaxy clustering data.

The evolution of density inhomogeneities in an expanding univers passes

through two distinct stages. In the linear regime the perturbation expands
while its amplitude increases. Owing to the independence of the Fourier modes,
the set of equations governing the amplitude evolution can be solved analiti

cally. For high amplitudes the perturbations enter the non-linear regime (the
Fourier modes are coupled together), begin to collapse and finally virialize giv
ing rise to a newborn object. Unfortunately, this latter regime has no general
exact solution, and the only accurate way to follow the non-linear evolution

of perturbations is by means of numerical simulations. But this procedure
does not provide a modeling of gravitational clustering because of two reasons.

On one hand, N-body and hydrodynamics methods use up large amounts of

CPU time, preventing one from the probe of the whole parameter space. On
the other hand, the present state-of-the-art numerical simulations have not

reached yet a sufficient wide dynamic range to properly study the clustering
process.

Observational data on the distant univers are rapidly becoming numerous

and detailed. Comparison with those avalaible on the nearby univers harbors

important information on the formation and evolution of cosmic objects. Our
capability of interpreting these observations and extracting accurate cosmolog
ical implications depends on the existence of a detailed model of gravitational
clustering. This long-standing necessity was alleviated by the seminal work of
Press & Schechter (1974; hereafter PS), who proposed an innovative method,
founded on features of the linear density field, capable of giving the mass dis
tribution of collapsed objects. Although their forrnalism is poorly justified, the
derived mass function fits the corresponding quantity from N-body simulations
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reasonably well. This amazing outcome suggests that the PS formalism is able

to describe the real clustering process, fact which has motivated a series of

papers devoted to properly justify the method. The most popular of them has

been the solution brought by Bond et al. (1991; henceforward BCEK), known
as the excursion set formalismo Recently, based on this formalism, Lacey &
Cole (1993) have calculated sorne interesting quantities related to the growth
history of collapsed objects, such as the merger and accretion rates and the

survival and formation times, which complete the gravitational clustering view.

But the hierarchical clustering picture drawn by the PS formalism assumes

all points of the linear density field as seeds of relaxed objects at sorne epoch.
However it is expected from the simple spherical collapse model that maxima

of the density field (peaks) are physically better motivated seeds. A detailed

modeling of the gravitational clustering in the peak model framework would

therefore be more justified than that given by the PS formalismo The con

struction of such a model is the main goal of this work.

The construction of such a model is the main goal of this work. The
idea arised as a natural consequence of the theoretical work developed by the

Cosmology Group of the University of Barcelona on the morphological seg
regation of galaxies. Its chief contribution to this topic has been made from

the evolutive viewpoint (Solanes, Salvador-Solé, & Sanromá 1989, Salvador
Solé, Sanrorná, & Jordana 1989, Sanroma, & Salvador-Solé 1990, Solanes, &
Salvador-Solé 1992), which suppose that galaxies change their shape due to

interactions with the environment. Nonetheless, it was deemed interesting
to tackle with the genetic approach, which assumes that shapes are not al
tered but already determined by the environment before galaxy formation. In
order to model an innate morphological segregation, it is necessary to intro
duce a specific formation scenario; the most suitable and simplest one is the
biased galaxy formation, which states that earlier galaxies arise from higher
peaks of the linear density field. With the aid of the statistics of maxima in

three-dimensional Gaussian fields developed by Bardeen et al. (1986; hereafter
BBKS), Manrique (1992) computed the population fraction between disk and

elliptical galaxies as a function of the density in non-relaxed environments.
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The extension of the model to relaxed objects required an accurate specifica
tion of their physical and statistical properties. Since at that moment there

was no justified quantity available in the peak model framework, the irnme

diate task was to build a formalism which would permit us to carry out this

enterprise. As the work went on, it turn out to be that our formalism was

powerful enough to account not only for the derivation of the mass function,
but for a complete description of the hierarchical clustering. This definively
set off the topic of my Ph. D. Thesis.

What was born as a necessary tool to model the morphological segrega
tion in relaxed environments has turn into a new research line, which has

already yielded three papers in refereed journa.ls (Manrique, & Salvador-Solé

1995a, Salvador-Solé, & Manrique 1995, Manrique, & Salvador-Solé 1995b),
and with a great amount of applications. It is expected that it will serve to

set, on a physical ground, dynamical quantities roughly determined, such as

the collapse threshold for galaxies of different shapes, fact which will give new

insights into the morphological segregation phenomenon. On the other hand,
it will complement the interesting work that is being currently developed by
our group on the detection and characterization of substructure (Sanrorná, &
Salvador-Solé 1989, Salvador-Solé, & Sanroma 1989, Salvador-Solé, Sanroma,
& González-Casado 1993, Salvador-Solé, González-Casado, & Solanes 1993,
González-Casado, Solanes, & Salvador-Solé 1993, Gonzalez-Casado, Mamon ,

& Salvador-Solé 1994, Gonzalez-Casado, Serna, Alimi, & Salvador-Solé 1995),
playing a key role in the cosmological implications.

In Chapter 1 we review the foundations of gravtinsta the
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COSMOLOGICAL

PERTURBATIONS

This chapter is devoted to show the cosmological framework in which struc

tures form and evolve. It approximately follows the lines developed in § 2 and

§ 3 of the review by Varun & Coles (1995). It contains a brief description of

the unperturbed univers, a general discusion on the linear evolution of den

sity perturbations, and sorne insight in the non-linear regime by means of the

spherical collapse model. Finally, a simple formalism to obtain the statistics of

virialized objects from the linear field is presented. The reader is encouraged
to consult the textbooks on Cosmology by Weinberg (1972), Misner, Thorne,
& Wheeler (1973), Zel'dovich & Novikov (1983), and Peebles (1993) as funda

mental sources for further information about these subjects.

2.1 FRW Models

Modern Cosmology is founded on the Cosmological Principle and Einstein's
field equations. The Cosmological Principle assumes that the univers is spa-

.5
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tially homogeneous and isotropic, in other words, physical properties do not

change with position or direction. Homogeneity seems to be confirmed by
measurements of peculiar velocities of galaxies on very large-scales, as well as

radio sources count studies. On the other hand, the high degree smoothness

of the Cosmic Background Radiation (CBR) is an unmistakable signature of

an isotropic universo

According to Einstein's equations, the dynamics of the whole universe is

linked to its energy content

(2.1 )

where GJ.LV (¡;" v = 0,1,2,3) is a tensor formed by the metric 9J.LV and its two

first derivatives, and TJ.LV is the energy-momentum tensor. The line element

associated to the metric for a homogeneous and isotropic univers in comoving
polar spherical coordinates and cosmic time has the general form 1

(2.2)

where a(t) is a unknown function of time called the cosmic scale factor and k
is a constant which determines the space curvature and takes the values -1,
0, and 1 for the hyperbolic, euclidian (flat) and spherical cases respectively.
This kind of metric is known as the Robertson- Walker metric.

The universe as a whole can be approximately regarded as a perfect fluid.
In this case the energy-momentum tensor adopts a diagonal form, with com

ponents Too = p, TOI(3 = -P801(3 (a, ¡3 = 1,2,3), being p the energy density and
P the pressure. This brings the Einstein equations to

3� = -47l"G(p + :3P) + A,
a

ii ü2 k
- + 22" + 22" = 47l"G(p - P) + A,
a a a

(2.3)

1As usual, the velocity of light e is set to unity.
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where A is the cosmological constant. Eliminating a in the former equations
and taking into account the Bianchi identities, equations (2.3) are equivalent
to

(0,)2 k 87rG A
- +-- -p+-
a a2

-

3 3'
d
_(pa3) = -3Pa2•
da

(2.4)

(2.5)

Where equation (2.5) is the energy conservation equation. Equation (2.5)
allows one to obtain the energy density p as a function of the scale factor a

provided a relation between the variables p and P (an equation of state) is

supplied. If the energy density of the universe is dominated by relativistic

particles (radiation dominated era.) , the relation P = pj3 holds and (2.5)
gives p ex: a-\ whereas if the energy density is dominated by non-relativistic

particles (matter dominated era), then P = O a.nd p ex: a-3• Using these

results in (2.4), we can precisely determine the behavior of the scale factor for

all time. The set made up by equations (2.4), (2.5), and the equation of state

is known as Friedman's equations, and models based on this set are named

Friedman-Robertson-Walker (FRW) models.

It is possible to explore the evolutive history of the univers by studying the

sign of the time derivatives of the scale factor even without specifying a definite

equation of state. For instance, taking A = O the first of equations (2.3) states
that acceleration aja is negative as long as (p + 3P) > O. Since a > O by
definition and observation tell us that aja> O (the univers is expanding),
then the function a(t) must have reached the zero value at sorne finite time

in the pasto If we take a(t = O) = O, then the present time to, i.e., the time

elapsed since this singularity, measures the age of the universo To see the role

played by the constant k, equation (2.4) can be rewritten (with A = O) as

• 2 k
87rG 2

a + "= --pa .

3 (2.6)

Provided that the pressure P does not become negative, the density p decrease
with increasing scale factor, being a-3 the least favorable decaying law, so when
a -+ 00, the right hand side of (2.6) tends to zero at least as fast as a-l. For
k = -1, the square velocity 0,2 is positive definite and a(t) is a monotonic
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increasing function with asymptotic behavior

lim a(t)=t
t-HX)

(2.7)

(open univers). For k = O (flat univers) 0,2 is still positive definite and a(t) goes
on increasing but slower than t. Finally, for k = 1 the scale factor increases

with time, stops growing when the expansion velocity becomes zero and begin
to decrease owing to the negative acceleration (closed univers).

2.1.1 Cosmological parameters

We have already introduced the cosmologica1 constant A which was initially
invoked by Einstein to obtain a static universo Nowadays it is called on to solve

several timing problems such as the age of the univers or the onset of struc

ture formation. In the context of quantum field theory, a positive cosmological
constant corresponds to a vacuum energy density. To see the gravitational ef
fects driven by the cosmological constant, let us imagine the univers uniformly
filled with an ideal "vacuum fluid" , with energy density pvac and pressure Pvac.
The equation of state for such a fluid is (Weinberg 1992) Pvac = - Pvac, which
means that (Pvac + 3Pvac) < O, and, according to the first of equations (2.3),
a > O. So, we have found that the gravity of a vacuum is not attractive, as

for ordinary matter, but repulsive. Such repulsion arise from the fact that
the vacuum pressure is negative and participates in the the gravitational intr
eraction as another component. Therefore, adding a cosmological constant to
Einstein's equations causes the expansion rate of the universe to slow down.

Another relevant parameter in Cosmology is the Hubble parameter, defined
as H = aja, which measures the expansión rate at a given epoch. It has
dimensions of invers time, so H-1 sets a characteristic time, and H-1 times
the velocity of light sets a characteristic 1ength. The Hubble time gives the

typical age of the univers, and The Hubble length the scale of the observable
univers (the distance covered by a light signa1 since the initia1 singularity 2).

2This quantity it is also known as the particle horizon in apure FRW universo
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At the present epoch, galaxies, which take part in the overall expansion,
are moving away from us at a velocity Vr = Har, where Ha is the Hubble

constant (the Hubble parameter at t = ia) and r is the distance to the galaxy.
Due to the recessional velocity, the light emitted by these galaxies experiences
a shift towards low frequencies. If this redshift is interpreted as Doppler effect
then 3

Z =

T
= Vr, (2.8)

so z = Har, and the Hubble constant can be determined by measuring dis

tances and redshifts. Unfortunately, the estimates of the Hubble constant

are still quite uncertain owing to the dificulty in establishing the absolute

distance to an object. Since the time of Hubble, who obtained Ha = 550

kru/s/Mpc, the value has been lowered by a factor of ten. Current measures

yield values between 50 km/s/Mpc and 80 km/s/Mpc. Methods using Type la

supernovae as standard candles favour the first value, whereas methods based

on the Tully-Fisher relation for spirals calibrated by observations of Cepheid
variable stars in several nearby galaxies favour the second value. In order to

manage this uncertainty, which is propagated to physical quantities depending
on the expansion rate, it is usual to express the Hubble constant in terms of

the dimensionless factor

h =
Ha

100 km/s/Mpc (2.9)

The third parameter playing a key role in the dynamics of the univers is

the density parameter n, defined as

n _ P
_

87rGp
H =

Pcr
-

3H2
. (2.10)

3This is a simplified interpretation, because the light frequency is also affected by the

gravitational field of the universo The deviation from apure Doppler redshift is more marked
for increasingly distant objects. In terms of the scale factor,

�). ao
Z =
T

=

a(t)
- 1.
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It gives the energy density of the umvers (associated to matter, radiation,
and cosmological constant) in units of the criticaI density Pero For a vanish

ing cosmological constant, Per is the density that leads to a flat univers (see
equation [2.6]). At the present time, the energy density associated to relativis

tic particles (i.e., radiation plus massless neutrinos) is no,r = 4.210-5, while
the baryon density derived from Big Bang nucleosynthesis models and ob

servations indicating primordial abundances of light isotopes spans the range
0.01 � nbh2 � 0.02, so the current density parameter only have significant
contribution from matter (and possibly from the cosmologicaI constant).

Several methods are employed to directly evaluate the density parameter.
The most straightforward one is to measure the luminosity of galaxies and esti

mate the ratio MIL. Given the average luminosity density .c in the waveband

used to determine the mass-to-light ratio, the mass density of visible matter

is simply given by

(2.11 )
This method gives 0.002 � nvish � 0.006 for galaxies. Comparing this interval

with the one corresponding to nb, it turns out to be that a great amount of
baryonic matter in galaxies does not emit. The existence of dark matter matter
in the univers is kown since the 1930's, when Zwicky pointed out that more
mass than the visible one was needed to mantain galaxy clusters bounded.

Methods relying on dynamics allow estimates of the mass density on large
scales. On galaxy clusters scales, the most usual method of estimating masses

and MIL ratios has been to apply the virial theorem, which states that Mtot ex:

(v2)/(r;j) where (v2) is the velocity dispersion of the galaxies in the cluster,
and rij is the separation between them. This method assumes that galaxies
trace the cluster mass and the galaxy velocity distribution is isotropic. Typical
inferred values of thematter density in galaxy clusters imply ncluster '" 0.1-0.2.
It is well known that clusters of galaxies contain great amounts of hot gas. If
the gas is in hydrostatic equilibrium, it can be used to directly map the cluster
mass distribution

Mtot(r) = _

kT(r) (dlnn + dlnT) ,

GJ17np dln r dln T'
(2.12)
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where J1 is the mean molecular weight of the gas, and n(r) and T(r) are

the gas density and temperature profiles. Cluster masses inferred from X

ray observations are comparable to but about 30% less than virial estimates.

On scales of order 50 h-1 Mpc, cosmic density estimates are based on the

comparison between the density perturbation field and the peculiar velocity
field, sampled in the same volume (Dekel 1994). If both arise gravitationally,
then the proportionality between them depends on the growth rate of density
perturbations, which in turn depends on D (see § 2.2). This method gives
values greater than 0.5 for the density parameter. Notice that in this case

sorne sort of non-baryonic dark matter is needed to account for the value of D.

Other methods devised to estimate mass distributions are based on gravi
tationallensing. On small scales, microlensing effects are expected to uncover

the presence of a large quantity of MACHOS (Massive Compact Halo Ob

jects) which would be responsible for dark matter in galactic halos (Alcock et

al. 1993; Aubourg et al. 1993; and Udalski et al. 1993). On larger scales,
observations inside galaxy clusters of gravitational ares and arclets, produced
by the defection of light emitted by foreground sources, are allowing the map

ping of the matter distribution which make up the gravitational lens (Fort &
Mellier 1994; Kneib et al. 1995).

There is a strong theoretical prejudice that favours the value Do = 1 for
the current density parameter. Although observations clearly point towards
values lower than unity, they are only one order of magnitude away from
the preferred one. This fact mean s that at nucleosynthesis epoch the density
parameter must have been unity with an accuracy of 10-17. Theorists cannot

stand this amazing fine-tunning and called on inflation 4 (Guth 1981) as an

effective mechanism to produce a flat universo The discrepancy between Dm
and Do (assumed to be one) can be alleviated by introducing the cosmological
constant. At the present epoch equation (2.4) adopts the form

k 8ITG A

a5
+ 1 =

3HJ Pm +
3H6" (2.13)

4Besides, inftation is able to explain the causality problem and the generation of small

density perturbations with Gaussian probability distribution.
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For a flat univers k = 0, and defining nA = A/3HJ we are lead to

(2.14)

In order to mantain the usual notation, no and Po will stand hereafter for

the matter contribution to the density parameter and cosmic density at the

present time.

2.1.2 The Age of the Universe

Solving equations (2.4) and (2.5), with the aid of an equation of state, we

can obtain the current cosmic time too Since at this epoch the universe is

completely dominated by matter, the pressure can be neglected in front of the

mass density. At the present instant both quantities are given by equations
(2.3)

Po
3 (k A)- -+H2 __

87rG a6 o 3
'

1 [ k 1-- - + H2(1 - 2qo) - A
87rG a6 o , (2.15)Po =

where qo = (-aa/á2)0 is the deceleration parameter, which measures the rate

at which the gravitational attraction of the matter is slowing down the overall

expansion at t = too Taking into account that in a matter dominated univers
P = 0, then the second of the equations leads to the relation

k
2

2
= (2qo - 1 )Ho + A,

ao
(2.16)

and substituting this expresion for the l..)a5 term in the first of equations (2.15)
we obtain

po 2 A
- = 2qo + --2'
PCT 3 l/o (2.17)

The dynamics of the univers at the matter-dorninated era is governed by
the Friedmann equation (2.4) with the density P proprtional to a-3. If the
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cosmological constant vanishes, then this equation can be solve analytically.
Therefore, we initially consider this case in order to get close expressions for to,
and later on we will discuss the effects caused by the inclusion of a cosmological
constant. The first step is to write equation (2.4) in terms of the present density
po and the ratio aola( t)

(:or (�)2 + (:or � = (:or 8�G po. (2.18)

We use equations (2.16) and (2.17), to write the latter equation in terms of

the Hubble constant and the density parameter

(0,)2 2 2 (ao)-;; + (no - l)Ho = noHo -; . (2.19)

Isolating dt and integrating both sides with the initial condition t(alao � 1) =
O leads to the following formal solution

1 loa/ao ( no)-1/2t = - dx 1 - no - -

Hi, o x

In particular, the age of the univers can be obtained for alao = 1. The explicit
solutions for the closed, flat, and open cosmological models are respectively

(2.20)

2(no�o 1)3/2 [cos-1 (�o -1) - �o )no -1] ,

2

3' (2.21 )

toHo
2(1 _n�0)3/2 [�o )1 - no - cosh-1 (�o - 1)] .

These results show that the age of the univers increases monotonically with

decreasing density parameter, reaching the limit to = H01 for no = o.

The inclusion of a positive cosmological constant crucially alters the ex

pansion history of the univers, in such a way that the scale factor a increases

very slowly at the present time. The solution for the spatially flat model has
the form

(2.22)
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At later times, when the matter density becomes negligible, it approaches the

exponential de Sitter solution, a(t) "" exp( ¡¡:i3 t) (see [2.4] with k = O). This
fine-tuning in the increasing behavior of the scale factor causes the age of the

univers to be greater than in the A = O case. For values in the intervals k :::; O,
O :::; no :::; 1, and no - 3nA/7 :::; 1 an accurate approximation is

(2.23)

where na = no - 0.3 (no + nA) + 0.3.

From the practical viewpoint, three methods have been used to estimate

the age of the univers: nuclear cosmochronology, the cooling of nearby white
dwarfs, and the dating oí the older globular clusters oí the galaxy. The first
method is based on the radioactive decay of heavy elements formed in super
novae by rapid neutron capture. Measures of element abundance ratios lead to

an age of the univers ranging between 10 and 20 Gyr, but there is large uncer

tainty owing to the unknown element history. Age estimates from the cooling
of white dwarfs in the neighborhood of the Sun are based on the existen ce
of a lower limit to their temperature. A1though cooler white dwarfs can be

detected, none have been found yet. This fact suggests that they have not had

enough time to cool to lower ternperatures, which implies an estímate oí 9 Gyr
for the age of the Galactic disk (about 11 Gyr for the age of the univers). The
last method takes advantage oí the fact that, since stars in globular clusters
formed at the same time, their evolution is only sensitive to the initial mass
distribution. Then the age oí globular clusters can be inferred by studying
their stellar populations. This method gives a lower limit for the age of the
univers in the interval 11 to 15 Gyr. Although the dating oí globular clusters
may be affected by uncertainties in the distance determination or the possible
stellar mass 1088, it is expected that these effects only reduce the former limit
in 1 Gyr.
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2.2 Gravitational Instability: Linear Theory

The FRW equations describe an unperturbed univers, but it is widely believed
that the complex cosmic structures we observe and analize today would not

have existed without the presence of primordial small density perturbations.
Those sites in which the density was greater than the average had gravitational
potentials slightly stronger, causing the surrounding matter to stream towards

them. In this way, overdense regions became more overdense and underdense

regions more underdense. This is the basic idea of gravitational instability.
Therefore, it is extremely interesting to introduce small departures from ho

mogeneity and isotropy which are suposed to be the seeds of future galaxies
and other structures. First, we should select the reference frame in which the

perturbations are physically characterized. We choose time-orthonormal coor

dinates (the synchronous gauge) as the most appropriate for the description
of perturbations in a homogeneous and isotropic cosmological model. In this

construction, we can imagine a set of observers, each attached to a comoving
point, and each equipped with a dock synchronized relative to the neighboring
observers. An event is labeled by three spatial coordinates xc. (O' = 1, 2, 3)
corresponding to the position of the observer who passes through the event

and the time t = XD displayed by the observer's dock. In this context, p(x, t)
is the record of densities kept by the observer located at x.

In the synchronous gauge, the line element describing a perturbed univers

adopts the form

(2.24)

where 0', f3 = 1,2,3, and dS}RW is the FRW line element given by eq. (2.2).
The relativistic treatment of gravitational instability involves the selection of a
set of hypersurfaces upon which the perturbations are measured, the derivation
of the background equations for the densities of the different species of matter
contributing to the Friedmann equa.tion which gives a(t), and the derivation of
the perturbed transport equations for all the fluid present (photons, baryons,
cold dark matter, massless and massive neutrinos). In the case of a flat back

ground metric, the formal solution turns out to be feasible, because perturba-
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tion equations can be expanded in plane waves. This decomposition is a great
simplification since perturbations are characterized by wavenumbers, and can

be applied to open or close cosmologies provided the length scale is below the

global curvature scale k-1 � 3000 (1 - O)1/2h-1 Mpc (Bond 1989).

The relativistic treatrnent of gravitational instability outlined aboye is un

avoidable when we deal with perturbations exceeding the Hubble length or

streaming motions with relativistic velocities. Here, we will follow the lin

earized approximation, which assumes that perturbations in the metric are

small hOl{3ha{3 � 1, and their sizes are always smaller than the horizon scale

AH � 2t. In this case the gravitational potential is weak enough to develop
gravitational instability using Newtonian mechanics. If the mean free path
between collisions of a particle is small, matter can be treated as an ideal fluid

which satisfies the mass conservation equation

(2.25)

and the Euler equation of motion

(2.26)

where <I> is the gravitational potential that verifies Poisson's equation

(2.27)

r and u are respectively the position and velocity of a fluid element measured
in an inertial frame.

In an expanding univers it is better suited to use comoving coordinates
x = r/a(t) instead of the inertial coodinate system. In the new reference
frame the velocity field can be written as

u=Hr+v(x,t), (2.28)

where vis the peculiar velocity relative to the velocity imprinted by the general
expansiono At this level, it is convenient to introduce the density contrast ti
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that informs about the fractional departure of the mass density from the mean

value around a point x at a given epoch

l:( ) =
p(x,t) - Pb(t)

u x, t
( )

,

Pb t (2.29)

where Pb(t) is mean background density at a time t. As noted aboye, little in

homogeinities in the matter distribution cause variations in the gravitational
potential. To distinguish between these perturbations and the mean gravita
tional potential, generated by a homogeneous distribution of matter, we will
use the greek letter cP to denote the first and the capital greek letter <I> to

denote the second.

With the change of position variables to comoving coordinates, the time

derivative at fixed r, and the gradient along the r direction at a fixed t have

respectively the form

(i) - �x. \7
at

x
a

x, (2.30)

Applying these tranformations to equations (2.25)-(2.27) and after sorne al

gebra, we are led to the analog equations in the comoving frame expressed in

terms of the density contrast, the peculiar velocity and the perturbed part of
the gravitational potential

a(ay) 1

-a- + (y. \7x)Y
= --\7xP - \7xcP,

t P

ap a 1

at
+ 3�p + �\7x(PY) = O,

\7�cP = 4íTGa2(p - Pb) = 4íTGa2PbÓ,

(2.31 )

(2.32)

(2.33)

We can compute Ó and y in linear perturbation theory by considering only
small amplitude perturbations in the mass density, which leads to small stream

ing motions and small values of the gravitational potential cP. This is equivalent
to expand perturbatively the density field, the velocity field, and the gravita
tional potential in equations (2.25)-(2.27), cut at first order the expansion,
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and work out the equations containing only first order terms. The result of

these operations leads to the following expressions

os 1
-+-\7 ·v=O
at a

x , (2.34)

aval 1
- + -v + -\7xcP = --\7xP,
at a a pa

\7�cP = 47rGa2 Pbb,

(2.35)

(2.36)
for the continuity, Euler and Poisson equations respectively.

2.2.1 Pressureless Fluids

Let us start considering an expanding ideal fluid with negligible pressure, e.g.,
the univers in the matter dominated era. In this case the linearized equations
describe the evolution of small density perturbations under the exclusive action
of gravity.

Perturbation Growth in an Einstein-de Sitter univers

We obtain a second-order differential equation for the time evolution of density
contrast by eliminating the peculiar velocity from equations (2.34) and (2.35),
and using Poisson's equation

.. a·
8 + 2-8 - 47rGpb8 = O,

a
(2.37)

In the Einstein-de Sitter model (A = O, n = 1) the scale factor increases
as a(t) oc t2/3, and the background density decreases as Pb(t) == PCT oc C2.
Therefore, equation (2.37) can be rewritten as

.. 4· 2
8 + -8 - -8 = O

3t 3t2 (2.38)
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This second-order diferential equation admits two solutions: a growing mode,
proportional to t2/3 (ex: a), and a decaying mode, proportional to r+. For

perturbations with amplitude b = bi at an initial time ti that begin to grow
from rest [8(ti) = O], the solution is a linear combination of increasing and

decreasing modes

(2.39)

From this equation we see that the growing mode contributes 60% to the

density contrast at the initial time, whereas the decaying mode contributes 40

%. Due to the monotonous amplitude decrement as the time proceeds, the
decaying mode goes to zero asymptotically, Because it does not actually play
any role in structure formation, we hereafter deal only with the growing mode.

Perturbation Growth in Open and Close Models

Here we will follow the development done by Sahni & Coles (1995) to cal

enlate the growing solution in a general cosmological model. These authors
note that the decaying mode is always proportional to the Hubble parame

t�r. On t�e other hand, the Wronskian of equation (2.37), defined as W(t) =
D+D_ -D_D+ (being D+, D_ the growing and decaying mode respectively), is
proportional to a-2• Once the decaying mode is known, and given the previous
relation between the two modes, it is possible to find a differential equation for
the growing one. Taking into account the Wronskian definition, we can write

(2.40)

Isolating D+ (t) and integrating over t we have

(2.41)
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It is preferable to use the redshift z instead of the scale factor as the integration
variable. Given the relation between both variables and the expression for H (z)

a(z)
H(z)

ao (1 + zt1,
1

H¿ (1 + z) (1 + !loz) 2 , (2.42)

equation (2.41) turns into

(2.43)

The integral of (2.43) admits an analytical solution that leads to

( ) _

1 +2!l0+3!loz
3n (1 +z)(l +!loz)t¡(!l )D+ z -

11-!l012
+ o

11-!l01�
o,z, (2.44)

where

¡(!lo, z) _� 1 [(1 + !loz)t + (1 -

!lo)t]og 1 1 ,
2 (1 + !loZ)2 - (1 - !l0)2

(2.45)

for the cases !lo < 1 and !lo > 1, respectively. In the simpler case where

!lo = 1, we have

(2.46)
We focus our attention on open comological models. In this case a good fit of
the increasing mode solution is given by

(2.47)

From this equation we find that for redshifts much greater than !l01 the grow
ing mode is proportional to z-1, whereas for redshifts much lesser than nol
the growing mode becomes constant. This behavior is well understood in the
context of the expansion history in an open model. At early epochs the scale
factor always increases as a( t) ex t2/3 regardless of the value of the density
parameter, and thus, it is expected tha.t the growing mode resembles to that



2.2. Gravitational Instability: Linear Theory 21

of a flat universo To see this, substitute the second line of equation (2.42),
giving the variation of the Hubble parameter in terms of the redshift, in the

definition of the density parameter (equation [2.10]). The result is

n(z) = no(l + z)
1 + noz. (2.48)

Then, at high redshifts the density always approaches the critical value. How

ever, at low redshifts (z <{:: no) the expansion rate is experiencing an accelera

tion, owing to the increasing dominance of the curvature term in the equations
of motion (2.3), causing the density perturbations to freeze out.

Perturbation Growth in Models with Cosmological Constant

We follow the same strategy than as in the previous case, but taking into

account that the dynamics of the univers is now affected by the presence of a

cosmological constant. As before, the decaying mode is proportional to H(a),
and the growing mode is given by equation (2.41). For a spatially flat univers
(no + nA = 1)

H ( a) ex a
- � (1 + �:)

}
,

and the integration of equation (2.41) leads to

(2.49)

(2.50)

where
nAa3

x =

no + nAa3' (2.51)

e is an arbitrary constant, and Bx(0', ¡3) is the incomplete Beta function.

In models with cosmological constant , the expansión rate passes through
two distinct stages. As the density of matter clecreases (Pm ex a-3) the expan
sion rate growth experiences a deceleration, which leads to an almost constant
scale factor with time. This happens when the repulsive force, driven by
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the cosmological constant, and the gravitational attraction, driven by matter,
cancels out. During this epoch density perturbations grow increasingly faster

approaching the exponential Jeans rate, characteristic of a non-expanding uni

verse. At later times, when the dynamics is completely dominated by the

cosmological constant, the scale factor begins to grow again and tends to the

value a(t) = exp( fAi3 t). The acceleration in the expansion rate keeps the

perturbation amplitude from growing. From equation (2.50), we see that the

growing mode becomes a constant for Z » ZA = (DA/Do)1/3 - 1.

Perturbation Growth in Models with Two Components

Let us consider the univers filled with presureless matter and radiation, the
first component contributing with Pm and the second one contributing with pr
to the total density. In the case of a flat cosmology, and assuming that the

radiation component is not perturbed 5, the resulting equations are

(0,)2 S7rG S7rG
�

= -3-(Pm + Pr) = -3-Ptot. (2.52)

After changing the time variable to T = Pm/pr ex: a(t), the second-order differ
ential equation can be rewritten as

d28
+

(2 + 3T) d8
_

3
8 = o.

dT2 2T(1 + T) dr 2T(1 + T)

The growing solution of this equation is D+(T) ex: 1 + 3T/2. We find that for
T � 1 the growing mode becomes constant , so fluctuations do not grow. This
behavior results from the existence of radiation which dominates the dynamics
at early times causing the scale factor to evolve as t1/2• As the time goes on, its
contribution to the total energy density diminishes rapidly, and thus the matter
takes its place as the preeminent component. Since the scale factor increases

(2.53)

5primordial adiabatic perturbations affects radiation as well as matter. However, this
simplification leads to the correct qualitative result
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as t3/2 during the matter dominated era, it is clear that the expansion rate

experiences an acceleration throughout the transition. Therefore, the growth
of density perturbations is suppressed as long as Pr � Pm.

Peculiar Velocities

To see how perturbations in the Hubble ftow evolve with time, we only need

to consider the linearized continuity equation with P = O, Poisson's equation,
and the solution of the second-order differential equation governing the density
contrast growth. Since the growing mode is the dominant part of the general
solution of equation (2.37), we are allowed to write 5(x, t) = A(x)D+(t). Sub

stituting this result in equation (2.34) we have

a5 D+
VX • v = -a - = -a5- = -a5Hf

at D+
' (2.54)

where the dimensionless velocity factor is

f = 2_ D+ =
dlog5

::= ng.6 +
nA (A + no) .

HD+ dloga 70 2 (2.55)

Using Poisson's equation to isolate the density contrast , equation (2.54)
writes

Vx·v= -v. (4:ba Vx�),
and the integration of which leads to

2f const

v=-3nHaVx�+ a(t)
.

(2.56)

(2.57)

The linearized equations show that the peculiar velocity field associated with
the growing mode can be exclusively expressed in terms of a velocity potential
(i.e., the ftow is irrotational) v = - VX�,)a. In this case

(2.58)
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This interesting property of the velocity field has been applied to several cos

mological topics such as analytical approximations to the non-linear regime
(Zel'dovich 1970) or reconstruction techniques devised to obtain the density
field by measuring peculiar velocities (Bertschinger and Dekel 1989; Dekel,
Bertschinger and Faber 1990; Dekel et al. 1993).

The presence of gravitational forces gives rise to an acceleration field of

magnitude g = -\1x<p/a. Taking the constant of integration equal to zero in

equation (2.57), we get

(2.59)

This means that the peculiar velocity is parallel to the acceleration. In the

Einstein-de Sitter model, with negligible cosmological constant and density
parameter equal to unity, we have f = 1 and H = 3/2 el. Then the peculiar
velocity field adopts the simple form y = g t. In the absence of a gravitational
field (<p = O), the linearized Euler equation for presureless fluids writes

ay á 1 a(ay)
- + -y = --- = O
at a a at ' (2.60)

and any initial peculiar velocity decays as a-1(t).

2.2.2 Pressure Effects

So far we have consider the simple case of a presureless fluid. However, there
are scales, at given epochs, on which pressure cannot be neglected. Then , the
next step is to see what happens on these scales by introducing the pressure
term in the linearized equations. Assuming that the pressure is just only a

function of the density, and remembering that the sound speed is defined as

es = (dP/dp )1/2, the pressure force in an expanding fluid writes

(2.61)
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Coming back to the linearized equations, the substitution of the former result

in the Euler equation (2.35) leads to

av á 1 e;
- + -v + -\lx<P = --\lx8.
at a a a

(2.62)

Following the same steps as in the presureless case, we arrive at the perturba
tion equation

(2.63)

It is convenient to expand the density contrast in Fourier series

8 = 2.:::: 8k exp( -ik . x),
k

(2.64)

where k = [k] = 27raj A is the comoving wavenumber. Then the amplitude
8k(t) associated with the wavenumber k satisfies the second-order differential

equation
(2.65)

This is the damped oscillator equation with a damped factor equal to 2H and
a proper frequency

2 (kcs)
2

Wk = -;;:
- 47rGp,

According to equation (2.65), density perturbations are damped owing to the

expansion of the univers as long as the frequency w� remains positive. When
it becomes negative we have to abandon the damped oscillator interpretation
and reconsider the solutions for a presureless fluid. The limiting case is given
by the condition w� = 0, which defines the so-called Jeans length

(2.66)

(2.67)

On scales A > AJ perturbations do not feel the influence of pressure and keep
on growing as in a presureless fluid, whereas on scales A < AJ pressure gradi
ents force perturbations to oscillate as acoustic waves with steadily decreasing
amplitude. This behavior can also be discussed in terms of characteristic times.
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From equation (2.67), we see that, for a Jeans length, the characteristic time of
gravitational growth (rv �) is comparable to the crossing time of pressure
waves (rv }..J/cs). On scales larger than the Jeans scale, the crossing time is

longer than the gravitational growth time for the density contrasto Therefore,
pressure effects can be neglected. On scales smaller than the Jeans scale, the
opposite trend is true, and the density contrast behaves as a damped oscillator.

From equation (2.67), it follows that the Jeans length is very sensitive to the

sound speed within the fluid. During the radiation dominated era, electrons

are tightly coupled to radiation via Thomson scattering in such a way that we

are allowed to consider the mixture as a single fluid with an adiabatic speed
of sound

1 (3Pm )
-1/2

Cs = - -- + 1
v'3 4P'"Y

(2.68)

Taking into account that Pr � Pm and Pr ex: r+, then the Jeans length is

proportional to t. In other words, during radiation dominated epoch the Jeans

length scales with cosmological horizon. During recombinaton, the coupling
between electrons and radiation breaks down, and pressure becomes supported
by neutral hydrogen atoms instead of radiation. This change in the physical
properties of the fluid is responsible for an abrupt decrease in the value of
the sound speed. If the mass associated with Jeans length at recombination
is MJ � 9 x l016(nh2t2M8 (the same order than that of superclusters of

galaxies), the corresponding value after recombination drops to MJ � 1.3 x

105(nh2ttM8' which is comparable to the mass of a globular cluster.

Just before recombination, another phenomenon start playing a relevant
role on the evolution of density perturbations. As recombination approaches,
the mean free path of photons increases due to the progressive weakening of
the coupling between matter and radiation. As a result, photons are able
to escape from the potential wells created by overdensities, and carry with
them still tightly coupled electrons. This free-streaming causes an effective

damping of perturbations in the photon-baryon mixture on scales smaller than
a characteristic length known as the Silk length. The associated Silk mass at

recombination is M¿ � 1.3 x l012(nh2)-3/2M8 similar to that of a galaxy.
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2.3 The Spherical Collapse Model

In this section we will discuss the simplest class of non-linear approach: the

spherical collapse model. It assumes a univers spherically symmetric about one
point filled with presureless matter that behaves as an ideal fluid. This means

that, in the real density field, any tidal effect of neighbouring perturbations
upon the evolution of the perturbation, and any deviation frorn sphericity of

the potential well due to the distribution of matter inside the volume element

are neglected. The model also suposes that the density profile of the pertur
bation is monotonously decreasing in order to avoid shell crossing and, hence,
ensure mass conservation inside evolving spherical shells. Under these sim

plifying assumptions an exact analytical treatment of the non-linear stage of

gravitational instability is possible.

2.3.1 Energy Balance and Maximum Expansion Ra

dius

We suppose that at an initial time i, the spherical density inhomogeneity
centered on a point r is moving with the general expansion, and is not affected

by peculiar velocities. Consider a spherical shell of initial radius R¡ around r

containing a mass
6 M = Pb(l + 8¡)( 4/3)7TRr, where 8¡ is the initial overdensity,

and Pb is the density of the background. At early times the expansion of the

shell is virtually indistinguishable from that of the rest of the Universe so that
the velocity of the shell relative to the center is ir_¡ = H¡R¡, being H, the

Hubble pararneter at an initial time. Thus, the kinetic energy per unit mass

6We assume that the shell has a flat density profile

p( r) = Pb (1 + (\ ) for r :s R¡)

p(r) = Pb for r > R;.

with 8¡ the real mean density contrast interior to the shell of radius R¡. Notice that the

collapse dynamics is governed by the interior mean density, indeed.
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at a distance R¡ from the center is K,
per unit mass can be expressed as

HlR¡ /2, and the potencial energy

47rG
( ) 2 2 T

U¡ = -GM/R¡ = -

3J{fPb 1 + 8¡ H¡ R¡ = -n;1\¡.
,

(2.69)

Conservation of energy guarantees that the sum of the kinetic and potential
energies is a constant. In particular, at the initial time we have

E = K, + U¡ = /{¡ni[nil - (1 + 8¡)]. (2.70)

The requirement for a shell to be gravitationally bounded is that its total

energy must be negative. In this case, the shell keeps on expanding until it

reaches a maximum radius, turns around and begins to collapse. Accorcling
to equation (2.70), the conclition ensuring E < O is 1 + 8i > nil. Taking into

account that the initial time ti corresponds to a given redshift z, the former

condition can be rewritten as

-1 1 - no
8(z) > o. (z) - 1 =

o. ( )o 1 + z
(2.71 )

In an open univers, where no < 1, if the initial density contrast is less than
a critical value, the energy is positive ancl the shell never stops expanding.
For flat and closed cosmological moclels, with no = 1 and no > 1 respectively,
any infinitesimal positive initial density perturbation gives rise to collapsed
objects.

For gravitationally bound shells, it is straightforward to relate the maxi
mum expansion radius to its initial values R;, and 8i [equivalently R(z) and

8(z)]. Owing to the monotonous clecreasing clensity profile of the spherical
perturbation, a shell with a given radius cloes not cross with other shells, so

the mass containecl remains constant with time. On the other hand, the shell

velocity at turnarouncl is Rita = O. Then, only potential energy contributes to

the total energy at turnarouncl

GM R; TE = []¡ = -- = --1\·0.·(1 + c.)a

R R
l' u, .

ta ta
(2.72)
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Equating this equation and (2.70) we obtain the relation

[ ]-1Rta 1 + b; 1 - no
--¡¡;

=

b; _ (ni1 _ 1)
== [1 + b(z)] b(z) -

no(1 + z)
(2.73)

2.3.2 Motion of a Mass Shell

The radius R(t) of a spherical shell comprising mass M satifies the equation
of motion

CAl
2

.

r
(2.74)

Its first integral leads to the energy equation

(2.75)

where the constat of integration 2C is just the total energy. Taking e <

o (e > O) we recover the case of a gravi tationally bounded (unbounded)
sphericall shell. The solution of equations (2.74) and (2.75) can be expressed
in a parametric form

R = A (1 - cos O) t = B( O - sin O) (2.76)

for the case e < O, and

R = A(coshO-1) t = B(sinh O - O) (2.77)

for the case e > O. The constants A and B are not idependent, but related
trough A3 = CMB2• As we have noted above, the dynamical evolution of
an spherical mass shell is similar to that of the whole universe. In fact, the
corresponding pararnetric solution for a clase univers is (see Peebles 1980)

(2.78)

and for an open univers

(2.79)
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If we assume that a(t) = Rb(t), then the spherical portion of the univers

contaíns the same mass as in the shell, and the constraín between Ab and Bb
just writes At = CMBl-

At this point we are able to compute the density contrast in each mass

shell. Since mass is conserved we get, using M = 47rR3pj3 and eq. (2.76),

3M
p(t) = 47rA3(1 - cosfJ)3 (2.80)

In a spatially flat matter dominated Universe the background density scales as

1
(2.81)

So, from the definition of the density contrast in terms of the ratio p(t)jPb(t),
and using equations (2.80) and (2.81), we have

8(fJ) = p(t) _1=�(fJ-sillfJ)2_1-

Pb(t) 2 (1 - cos 0)3
, (2.82)

for gravitationally bounded density perturbations, and

8(fJ)=9(O-sinhO)2 -1
2 (cosh O - 1)3 (2.83)

for unbounded density fiuctuations.

Constants A and B can be expressed in terms of the maximum expansion
radius and the time at whích it is reached. According to equation (2.76),
maximum expansion occurs for O = 7r. Then, for thís specific value of the

developing angle, constants A and B are

(2.84)

However, these relations are only valid for gravitationally bounded shells.
More general expressíons can be achieved using initial quantities instead of
"turnaround' quantities. This is achieved by applying equation (2.73), the
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constrain A3 = CMB2 and expressing the constant mass M in terms oí R;
and Pi. The final result is

A

(2.85)B =

Bearing in mind that initial conditions are set in an early epoch, it is reasonable
to assume bi � 1. Then, in a flat cosmological model equation (2.85) becomes,
Universe,

R
A� -+,20·z

(2.86)

From equations (2.82) and (2.86) we recover the density contrast limit for small
() (or small t):

lim b( (}) �
3(}2

� � (6t)
2/3

= �b. (!_)
2/3

0 ......0 20 20 B 5' ti
'

indicating that only 3/5th oí the initial amplitude is in the growing mode. In

view oí equation (2.87) the critica] condition (2.71) turns into bi > 3(n;1-1 )/5.

(2.87)

2.3.3 Turnaround and Collapse

For bounded shells the spherical model provides us with a variety oí relations

between quantities computed at turnaround (() = 71") and at collapse (() = 71")
times. We consider a flat background cosmology with negligible cosmological
constant. From equation (2.76) we have that the collapse time tco/l is twice
the turnaround time tta. From equation (2.82) we find that b((} = 71") � 4.6
at the maximum expansion radius, whereas at collapse the overdensity tends
to infinity due to the fact that the radius becomes zero. In fact bco/l � 00

is never achieved since exact spherical collapse breaks down as the density
perturbation starts the collapse. Physical processes, such as shell crossing and

rebounding, and the subsequent violent relaxation, ensures that the system
reaches virial equilibrium at a finite density. The typical radius oí the virialized
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perturbation can be estimated by means of energetic arguments. At the instant
of turnaround, only the potential energy contributes to the total energy of the

spherical shell. After relaxation, the system satisfies the virial theorem, i.e.,
2K = IWI. Energy conservation leads to

U(R = Rta) = E = U(R = Rvir)/2, (2.88)

being U(R) = -G /¡JI/R. Since the shell mass is conserved along the process,

then the final virial radius Rvir is twice the turnaround radius Rta' This result
assumes that the uniform density profile is preserved during the relaxation

process. But virialized objects exhibit the characteristic King profile instead

of a flat one. In this case the the final potential energy does not take the same

form than that the turnaround epoch, and consequently relation 2Rvir = Rta
does not hold. Then, for realistic density profiles the following calculations

should be taken as raw estimations. Bearing in mind this warning, let us

compute the typical overdensity of a virialized object 6vir = Pvir/Pvir -1 where

Pvir is the background density at the epoch of virialization. From the previous
results, we know that

pvir = 8Pta = 8Pta(4.6 + 1) (2.89)

Taking into account that the background density scales as r+, and assuming
that tvir � tcoll � 2tta then 6vir = 8 5.6 4 -1 = 178.2. From here, it is easy
to calculate the density of the relaxed system in terms of the present mean

density and the collapse redshift Zvir

(2.90)

Sometimes it is interesting to know extrapolated values of the density con

trast assuming that the perturbation always evolves in the linear regime. This
is equivalent to consider the limit of equation (2.82) for small values of the

developing angle () (small t). Remember that we have set initial conditions at

an early epoch; in this way the linear behavior of the perturbation is ensured.

So, the extension of the limit (2.87), only valid for times close to the initial

one, to any epoch gives the wanted extrapolation. Equations (2.76) and (2.86)
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bring this limit to

(2.91 )

In particular, ÓL( 7r) � 1.063 for the linear density contrast at turnaround, and
óL(27r) � 1.686 at recollapse. In an Einstein-de Sitter univers, perturbations
in the linear regime grow as the scale factor [a(z) ex (1 + Z)-l]. Then, known
the linear density contrast of a given spherical perturbation, the corresponding
true redshifts at which the perturbation reached the maximum expansion and

collapsed are, respectively,

1 + Zta

(2.92)1 + Zcoll

But the spherical collapse model is founded on strong assumptions. It

can only be applied to a very limited range of astrophysical problems. The
most and better studied one is the spherical infall of matter onto an initial

overdensity (Fillmore & Goldreich 1984, Bertschinger 1985). Nonetheless, the
model is far from giving a trustful description of the collapse of protogalaxies
or protoclusters, since, as proved by Lin, Mestel & Shu (1965), departures from
spherical simmetry get amplified once the almost spherical density perturba
tion starts collapsing. During this stage the perturbation develops non-radial
motions which invalidates the applicability of the spherical model. However,
this phenomenon can be incorporated to the analysis by modeling the col

lapsing perturbation as a homogeneous ellipsoid of ideal fluid with negligible
pressure. Classical studies on the motion of homogeneous spheroids, neglect
irrg the tidal field of surrounding matter , show that collapse occurs along the
minor axis, at a faster rate than that of an equivalent spherical overdensity,
while the other axes tend to contract or expand in finite magnitudes, so the

perturbation finally reachs a pancake configuration.



34 Chapter 2. COSMOLOGICAL PERTURBATIONS

2.4 Statistics of Relaxed Objects

The most interesting processes giving rise to the present cosmic structure take

place during the non-linear stage of the evolution of density perturbation. A

detailed theory explaining how objects form and cluster would allows us to

compare between quantities of the observed univers (e.g., number density of

quasars, damped Lyrnan-o clouds, and galaxy clusters at different redshifts)
and predictions in specific scenarios of structure formation. Nonetheless, this
task is not an easy one because the exact treatrnent of perturbation growth in

the non-linear regime requires the use of huge numerical simulations. Moreover,
these complex calculations are not completely satisfactory due mainly to the

excessive cost in CPU time and lirnitations in the avalaible dynamical range.

The spherical collapse model allows us to relate linear density perturbations
to relaxed objects in a more or less simple way. In this section we will go
one step beyond, and will show how to obtain statistics of highly non-linear

structures from the linear density field through the use of this simple rnodel. In

particular, we will deal with the multiplicity or mass function, which informs
about the number density of relaxed objects with mass in an infinitesimal range
at a given epoch and, therefore, gives sorne clues about clustering history of

objects. But sorne kind of statistical description is required before undertaking
this topic.

2.4.1 Statistics of Primordial Density Fluctuations

The primordial density field 8(x) can be mathematically described as a homo

geneous and isotropic three-dimensional scalar Gaussian random field, as long
as perturbation amplitude remains small. There are physical and statistical

argurnents which support the Gaussianity assumption. The physical argument
relies on inflation. According to this theory, small amplitude curvature pertur
bations generated by quantum fluctuations in the inflationary phase are very

likely to be Gaussian. The statistical argument is based on the central limit
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theorem, which states that the superposition of a large number of independent
random variables (all drawn from the same distribution) gives rise to a new

random variable whose probability distribution is Gaussian. We have seen that

the density field ó(x) can be written as an infinite sum with coeficients ó(k),
which are statistically independent in the linear regime and come from the

same distribution. Furtherrnore, the phases between the different modes are

suposed to be random and uniformly distributed from O to 27f, unless density
fluctuations arise from gravitational fal! into topological defects such us cosmic

strings.

For statical purposes, it is convenient to express the density field in the

Fourier space by using the Fourier tranform

ó(X) = _1_ J (Pk ó(k) e-ik.x
(21l-)3

, (2.93)

which has inverse

(2.94 )

Remember that, in k-space, the Dirac delta function admits the fol!owing form

(2.95)

The most relevant quantity in the statistical description of the density field
is the two-point correlation function or autocovariance function defined as the

volume average of the product of the function b(x) evaluated at points x¡ and
X2 = x¡ + r

7

(2.96)

where we have used the fact that the field is homogeneous and isotropic (i.e.,
invariant under translations and rotations), which means that the covariance

function only depends on the relative dista.nce between points. Developing

7Since random Gaussian processes are ergodic, volume averages are equivalent to ensem

ble averages. Hereafter, angular brackets mean averages over a large number of realizations.



36 Chapter 2. COSMOLOGICAL PERTURBATIONS

equation(2.96) in the k-space and taking into account the reality of 8(x), we
have

where P(k) is the power spectrum, defined as
8

(2.98)

The Dirac delta function is introduced because modes of different spatial fre
quency are statistically independent (and thus have vanishing covariance) in
a homogeneous universo On the other hand, isotropy implies that the power

espectrum should depend on the modul of k and not on its direction. When
the condition k¡ = k2 is enforced, we obtain the expression P(k) = (18(kW)
sometimes used as a definition of the power espectrum. The relevan ce of the

two-point correlation function, or its Fourier transform the power spectrum,
comes from the fact that, in Gaussian processes, it is the only quantity required
to fully characterize the random field.

Many physical properties of the primordial density field can be related to

the power spectrum. For example, the mean square density fluctuation is
defined as the average (8(x) 8(x)), so from equations (2.96) and (2.98) we get

((6;)') = (6(x)6(x)) = 2�2f dkk'P(k). (2.99)

In hierarchical scenarios of structure formation the linear density field contains

perturbations on aU scales. If we are interested in singling out a given scale the

SThis expression is equivalent to
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usual procedure is to smooth the density field using a spherically symmetric
window with the appropriate size. The filtering operation brings equation
(2.99) to

(2.100 )

where lV(kR) is the Fourier transform of the filter function used to smooth the

density field in real space. It tends to unity for smaIl values of the argument,
and falls off rapidly beyond the value k¿ """ 1 jR suppressing the contribution

to the filtered density field from modes of wavelength smaller than the size of

the smoothing function. The most usecl filters are the top hat or spherical, the
gaussian and the sharp k-space, which have the following form in the real and

Fourier space

top hat

W(r; RT) (47f R3 )
-1

O ( __
r

)3 TH 1
R. TH

W(k;RT)
sin( kRT) - kRT cos(kRT)3

(kRT)3
;

Gaussian

W(r; Ro)
1 (r2 )(27r )3/2 R'b

exp -

2Rb

W(k; Ro) ( Á:2Rb)exp ---
2

Sharp k-space

W(k; RT) sin(rjRs) - r ]Rs cos(rjRs)
27r2r3

(2.101)

(2.102)

W(r; RT) = 0(1 - Á:Rs), (2.103)

where O(x) is the Heavyside step function. The rms fluctuation can be inter

preted as the zero-order spectral moment. It is straightforward to extend the
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definition (2.100) to include moments of higher order

(2.104 )

Quantities such as the mean square velocity smoothed on a scale R and the

mean square gravitational potential fluctuation can be calculated by using the

linearized continuity equation and Poisson 's equation expressed in the Fourier

space. The contribution of this quantities, along with the mass fluctuation,
per logarithmic interval of wavenumber is

d(J"2

dlog k

d(J"2
v

dlog k

d(J"�
dlog k (3 2 2)2 P(k)471" 2noH a -k-' (2.10.5)

In order to complete this statistical description, we should specify the fluc

tuation spectrum. Inflationary theories predict an scale-invariant power spec
trum with a power-law form

(2.106)

usually with index n = 1. This special case, known as the Harrison-Zel'dovich

pouier specirum ; results also from assuming that density fiuctuations on any
scale enters the horizon with the same amplitude. Unfortunately, the shape
of the primordial spectrum is not conserved even in the linear regime because,
after horizon entry, the grow of density perturbations is affected by collisional

processes (see § 2.2.2). The so-called iransjer [unciion is introduced to account

for the changes in the primordial power spectrum,

P(k,t¡) = T2(J..:,t¡)P(k,ti) (2.107)

When perturbation evolution is only driven by gravity, the transfer function

adopts the simple form T( k, t¡) ex D+ (k, t ¡ )). Transfer functions depend on the
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matter content of the univers and the values of the cosmological parameters.
If the dynamics of the univers is driven by weak interacting massive particles
which left the relativistic regime at a very later epoch, then we should apply
the Hot Dark Matter (HDM) transfer function, which get rid of power on small

and intermediate scales. If the matter content of the univers is dominated by
weak interacting massive particles non-relativistic in all epochs of interest,
then we should a apply the Cold Dark Matter (CDM) transfer function, which
gently bends the primordial power-Iaw power spectrum from n = 1 on large
scales to n � -3 on small scales. Expressions of these tranfer functions are

given in Appendix G of BBKS.

The primordial amplitude A is usually determined empirically. The first

attempts were based on galaxy counts on scales large enough to ensure linear

regime. One approach uses the statistics J3, which is the integral of the two

point correlation function �(1') times 1'2. In terms of the power spectrum J3
becomes

J3(R) = {R �(1')1'2d1' =
47r

R3 t" dk k2W2(kR)P(k).Jo 3 Jo
The variance of galaxy counts-in-cells is easily related to the power spectrum
by means of equation (2.100). Measures seem to indicate that perturbations
on scales of 8h-1 Mpc are currently entering the non-linear regime. However,
this result assumes that galaxies trace the mass, and there is no evidence that
this has to be true. It is believed that fluctuations in galaxy counts can be

proportional to mass perturbations

(2.108)

(2.109)

with the bias factor b likely dependent on the scale. Taking into account this

proportionality, the norrnalization condition writes

(2.110)

Another method to normalize the primordial amplitude of the fluctuation

spectrum is based on the level of the CMBR anisotropies. It can be shown
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(see e.g. Sahni & Coles 1995) that the quadrupole moment, which appears

after the expansion of temperature fluctuations in spherical harmonics, can

be expressed in terms of the primordial power spectrum. The measure of the

quadrupole moment by the DMR aboard COBE has allowed the use of this

theoretical relation to obtain a reliable spectrum normalization.

2.4.2 The Press &; Schechter Formalism

At this point we have the necessary tools to present a method capable of

retrieving an analytical mass function of relaxed objects in terms of properties
of the initial density field. The derivation is basically founded on the linear

extrapolation, for the growing mode, of the growth of density fluctuations with
limit given by the spherical collapse. This method was originally devised by
PS and, therefore, is commonly referred as the PS formalismo As usual, all
the scales and densities will be henceforth expressed in comoving coordinates.

To turn comoving lengths into physical ones, we should multiply by the scale

factor a( t).

According to the spherical model, the collapse time for a shell of radius R
around the center, located at r, of a spherically symmetric, outwards decreas

ing (to avoid shell crossing), linear density fluctuation at ti only depends on the
mean value of D inside it. More exactly, the value of the average density con

trast for collapse at t in an Einstein-de Sitter universe is De(t) = Dca a(ti)/a(t)
with Dca = 1.686. Of course, the collapse of the shell of radius R represents
the appearance, at t, of a virialized object of mass equal to 4rr /3 POR3 to üth
order in De9• This therefore suggests that anypoint in the real density field at ti
smoothed with a top hat filter of scale R with density contrast above a positive
linear threshold De should tend to collect matter so to reach, at a time t related
to De through the previous expression, a mass M larger than 4rr /3 POR3• Since
we are dealing with a Gaussian density field, the probability that a given point

9Since the mean density within the spherical perturbation is p = Po(l + 6e), then the
actual mass contained inside a radius R is M (R) = 41T/3 Po (1 + 6e) R3.
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has density contrast above sorne critical value Óc when the field is smoothed

on the scale R adopts the simple form

1 (XJ dó exp [_ ---:-�_21�O"o(R) ls: 20"o(R)
1 [ Óc 1-erfc
2 V2O"o(R) (2.111)

where O"o(R) is the linear rms fluctuation on scale R given by equation(2.100).
According to the PS formalism, this probability can also be interpreted as

the probability that a given point has ever been embedded in a collapsed
object on scales greater than R. This assumes that if a point has a density
contrast exceeding Óc on a given scale, then it will reach the value Óc when
filtered on sorne larger scale and will be computed as a distinct object of the
larger scale. In other words, it assumes that the only objects which exist at

epoch tare those that have just collapsed. But, what happens to underdense

regions which seems to contain half of the univers matter? PS argued that
the matter of underdense regions was efficiently accreted by overdense regions,
and therefore, the correct probahility was obtained by adding a factor 2.

The probability P( Ó > óc, R) gives the volume fraction occupied by points
with overdensity above the threshold Óc when the density field is smoothed on

scale R with a top hat window. Consequently, by differentiating this prob
ability over M one should obtain the volume fraction contributing at t with

objects of mass between M and M + dM, and by dividing the result by M/Po
to the number density of such objects

N(M,t)dM = 2Polap(ó>óc,R)ldRdMM o« dM

(2.112)
{2 po s, Id In 0"0. [ó� 1V 9; M2 0"0 dIn R Ibl·ggl exp -

20"5
dM.

Since every particle in the universe must be at any time t within sorne

virialized object with the a.ppropriate ma.ss, then the mass function has to



42 Chapter 2. COSMOLOGICAL PERTURBATIONS

verify the normalization condition

foOO dA1 M N(A1) = po. (2.113)

The factor 2 in the right-hand member of equation (2.112) is the one added

to account for the underdense regions and, in fact, leads to a mass function

correctly normalized.

Another quantity closely related to the mass function is the mass fraction

contained in objects of mass M

f(M)dM =

M
N(M)d_M

Po

1 {2 EJe I
d In 0"0 I [EJ� 1 dM

M V 9; 0"0 d In R
exp -

20"6 (2.114)

For a power-law power spectrum P(k) ex k" and the top hat filter, the rms

fluctuation on scale R is O"o(R) ex R-(n+3)/2, or in terms of the mass O"o(M) ex

M-(n+3)/6. Let us define the characteristic mass M* as the mass for which the
rms fluctuation is equal to the threshold value O"o(M*) = EJe or EJe = M:(n+3)/6.
In this case the mass function and the mass fraction of objects in an infinites

imal interval of the variable M/_M* have the respective forms

Notice that for a scale invariant power spectrum the mass fraction when ex

pressed in terms of the variable Al/M* is time invariant, as it is expected in
self-similar models of structure evolution.

But the PS mass function is not fully satisfactory. The origin of the "fudge
factor two" is unclear and the disappearance of objects of any given mass

swallowed by previously collapsed ones owing to cloud-in-c1oud configurations
is not accounted fOL In addition , the real density field is not spherically



2.4. Statistics of Relaxed Objects 43

symmetric and outwards decreasing around any point. As a consequence, the

growth of density fluctuations leaving the linear regime deviates from spherical
collapse and involves complicated non-local, nonlinear, dynamics. Therefore, it
is by no means obvious that the PS prescription can provide a good description
of the formation of bound virialized objects. In particular, small changes in

those aspects the most strongly connected with the spherical collapse model

might be suitable. This leads to the following questions. What is the filtering
window that better reproduces the clustering of objects? What is the mass

to be associated with the filtering scale R? What overdensity does really
correspond to the collapse time t? Finally, there is no reason for every point
aboye the threshold overdensity to tend to accrete matter. This is expected
to happen rather onto density maxima or "peaks" (Doroshkevich 1970; Kaiser
1984; Doroshkevich & Shandarin 1978; Peacock & Heavens 1985; Bardeen et

al. 1986, herein BBKS; Bernardeau 1994).

Yet, the PS mass function gives very good fits to the "empirical" mass

function inferred from N-body simulations (Nolthenius & White 1987; Efs

tathiou et al. 1988; Efstathiou & Rees 1988; Carlberg & Couchman 1989;
White et al. 1993; Bahcall & Cen 1993; Lacey & Cole 1994). For this reason

numerous authors have tried to properly justify it by introducing slight modifi
cations if necessary. The origin of the fudge factor two and the cloud-in-cloud

problem have been solved by Bond et al. (1991) by means of the powerful
"excursion set formalism" and the use of the k-sharp window (see § 2.3.3 for
a detailed discussion). Jedamzik (1994) got rid of the cloud-in-cloud prob
lem by only considering isolated regions, defined as those regions lying aboye
the threshold on a given scale, and lying below the threshold for any larger
scale. He obtained a correctly normalized mass function that seems to agree
much better with mass distributions derived from N-body simulations than the
PS one. The effects of the departure from spherical collapse have also been

studied. Monaco (1994) used the Lagrangian equations of motion of a cold
and irrotational fluid in single stream regime, and characterized non-spherical
perturbations by means of the shear determined non-locally by all the matter
field. But all these improvements only apply to the PS original prescription
dealing with undefined regions aboye the threshold overdensity, while there is
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no satisfactory derivation of the theoretical mass function for peaks as seeds

of virialized objects. Furthermore, none of the former studies has supplied a

well justified relation between the window used to filter the density field and

the mass of the collapsed object , or the one between the critical overdensity
and the time of collapse. We will return to these open questions in Chapter 4.

2.4.3 The Excursion Set Formalism

The PS formalism applies only to hierarchical scenarios where structure evolves

in time from small to large scales under the action of gravity. Therefore, the
filtering of the primordial density field is fundamental to single out the scales of

the future objects. This is done by convolving the linear field with a spherically
symmetric smoothing function W(r, R) on resolution scale R

8(r, R)

8(k, R)
J d3r'W(r - r') 8(r, O)

liV(kR) 8(k, O)

(2.116)

(2.117)

where the second equation comes from applying the Fourier transform to both
sides of the first one. The other key element in the PS formalism is the critical

overdensity which controls the collapse time. The regions of the linear density
that lies above the threshold when the field is smoothed on a scale R are known
as excursion regíons, and the set including all the excursion regions is named
the excursion sei, So the PS method is basica.lly founded on the determination
of excursion sets.

Instead of considering the filtered density field 8(r, R), let us focus our

attention on what happens to a fixed point when the smoothing radius is
varied. For physically interesting power spectra and window functions, the rms

fluctuation O'o(R) vanishes asyrnptotically as the smoothing radius R tends to

infinity. This behavior reflects the fact that , for a infinite radius, the density
field around the point is averaged over the whole universo For finite radii, the
function 8(r, R) is expected to vary randornly owing to the contributions from
overdense and underdense regions to the averagecl clensity field. So, equation
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(2.116) can be interpreted as the equation of a trajectory 8(R), and the plot
of this function is known as the 8-R diagram. (Examples of this trajectories
can be found in Figure 3 of BCEK). Statistical properties of the trajectories
are obtained by averaging over different realizations of the linear density field.

For the case of a k-sharp window, the trajectory is a Brownian random walk

because the transition from one filter to a smaller one is obtained by adding
statistically independent random field. The most interesting consequence of

this is that Brownian trajectories can be described by mean s oí a simple diffu

sion equation when the scale R is expressed in terms of the variance 0"6(R) = 5,
known in this context as the resolution,

fJQ 1 fJ2Q
fJS :2 fJ82

' (2.118)

where Q(8,5) is the number density of trajectories at resolution 5 in the
interval 8 to 8 + d8. All the trajectories begin at the point (0,0) in the 8-S

diagram and difusse away as the resolution increases.

In the framework oí the excursion set forrnalism, the cloud-in-cloud problem
that affects the PS mass íunction is sol ved in an ellegant way. Let us consider
the trajectory 8(R) for a generic point. It may happen that íor a given scale
the trajectory upcrosses the threshold 8c, so the point belong to an object oí
mass, let us say, MI, and for a greater scale the trajectory crosses through
the threshold again, so the point is included in another distinct object oí mass
M2 > M1• This situation can be avoided by selecting the maximum scale for
which the trajectory 8(R) crosses through the line 8 = 8c(t). In this way,

regions which are aboye the threshold when averaged over this scale will be
below the threshold when averaged on larger scales. In terms oí the diffusion

equation, this is equivalent to put an absorber barrier at 8 = 8c( t) which
absorbs trajectories as they try to cross through it. The probability that a

trajectory is absorbed by the barrier in the interval S to S + dS must be equal
to the reduction in the number of surviving trajectories below the barrier

a tic

[1 aQ]
tic

fs(S,8c) = -

as loo Q( 8, S)d8 = -

27M
-00

(2.119)
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1s(S, Óe) is the probability that a trajectory crosses through the threshold in

the interval S to S + dS, that is, the probability that a point is within an

object of scale in the interval S to S + dS or, equivalently, the mass fraction

in objects of mass M associated with resolutions in the interval S to S + dS.
Chandrasekhar (1943) found that the difussion equation with the absorbing
boundary condition admits a unique solution

1 { (Ó2) [(Ó-2Óe)2]}Q(ó, S, óe) = J2; S exp -

2S
- exp -

2S
dó. (2.120)

Substituting this expression in equation (2.119) we get

1s(S, óe) dS = �c / exp (- óS�) dS.
2íT S3 2 2 (2.121)

which becomes the PS mass fraction once the variable S == 0"6 (R) is expressed
in terms of the mass. Note that equation (2.121) naturally includes the factor

2, since the absorbing barrier solution takes into account underdense regions
at resolution S which exceed the threshold at a lower resolution.

Other interesting quantity that can be derived in this context is the condi
tional probability that an object of mass MI in the interval MI to MI + dMI
at a time tI ends up in an object of mass M2 at time t2 > u. In terms

of Brownian trajectories this is equivalent to place two absorbing barriers at

Óel = óe(tt) and Óe2 = óe(t2) (Ócl > Óc2) and calculate the density of trajectories
crossing through the line Ócl knowing that previously they have crossed trough
Óe2' This is the same situation as before, but with the source of trajectories
moved from the origin to the point (S2, Óc2)

f (S Ó IS Ó ) dS
Ócl - Óc2 [ (Ócl -

ÓC2)2]51 ¡, el 2, c2 I =

J2;(SI _ S2)3/2
exp -

2(SI _ S2)
dSl,

where SI == O"o(R1) and S2 == O"o(R2) By manipulating this equation, we can

calculate the probability that a object of mass MI at time tI has merged to

form an object of mass between M2 and M2 + dA12 at time t2

(2.122)
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(2.123)

This conditional multiplicity function was used by Lacey & Cole (1993) to

derive quantities related to the gravitational clustering of objects, such as the

merger rate, the survival time, and the formation time.

It is noteworthy to mention that this simple derivation is only valid for

the k-sharp window. For the top hat and Gaussian windows the trajectories
build up by adding correlated random fields, so the difussion representation
does not work, and the mass function has tú be derived numerically by using
Monte Carlo simulations.
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STATISTICS OF PEAKS IN

3D GAUSSIAN FIELDS

The PS formalism considers any positive perturbation as the seed of sorne

object at a given epoch. These overdense regions evolve linearly until their

density contrast reachs a value about unity and then experience a collapse
analog to that of a perfect spherical, isolated inhomogeneity. This picture
implies a rapid transition from linear to non-linear regime and a good corre

spondence between overdense regions and final objects. In other words, in the

PS formalism, any point with density contrast aboye a critical value when the

density field is smoothed on a specific scale is able to give rise to a collapsed
object with the appropriate mass at t. This means that, somehow, points
have to efficiently accrete the surrounding matter in order to achieve the mass

corresponding to the filtering raclius at the appropriate collapse time.

However, this view is not accurate enough. Numerical simulations claim
that only the most overdense regions in the linear density fielcl end up in

collapsed objects at any given epoch (BCEK). This result suggests that a per
turbation cloes not evolve as fast as to avoid the interactions incluced by other
neighboring perturbations. Thus, points of tbe smoothecl density field do not

49
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fulfill the requirements demanded by the simple collapse picture on which the

PS formalism is based. Fortunately, there is a physically better motivated

candidate as seeds of present objects. Maxima of the density field (peaks)
are supposed to be efficient accretion sites, less influenced by the surround

ing distribution of matter. Furthermore, high amplitude peaks have rounded

shapes, and it has been proved (Bernardeau 1994) that for steep power-Iaw
power spectra (n < -1) and moderate heights (v == 8/(70 2:: 2) the non-linear

evolution of these peaks is well described by the spherical collapse. Therefore,
it is highly convenient to develop a formalism capable of giving the mass func

tion (and possibly other quantities related to the gravitational clustering) of
relaxed objects by dealing with maxima of the linear density field. We put off
this topic until Chapter 4, and focus here our attention on the characterization

of peaks.

The statistics of peaks in Gaussian random fields has been developed in a

series of papers (Doroshkevich, & Shandarin 1976, Peacock, & Heavens 1985,
BBKS Couchman 1987, Heavens, & Peacock 1988, Coles 1989) and in the

classical textbook by Adler (1981). Here we will review the general theory
concerning the derivation of number densities, and will present sorne extensions
to the classical calculations.

3.1 Basic Theory

Along this chapter we will consider a homogeneous and isotropic Gaussian
random field 8(r) characterized by a. power spectrum P(k). If the random
field describes the primordial density field, then the power spectrum gives
information about the distribution of density perturbations as a function of
the scale. Since we are interested in those cosmogonical scenarios which lead to
a hierarchical gravitational clustering, the corresponding spectra have power
on all scales. In order to pick out a specific one, the density filed has to be

mathematically filtered with a smoothing function. The additional dependence
on scale should be always born in mind, although sometimes it will not be
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explicitly specified (for the sake of notation).

3.1.1 The Joint Probability Function

In § 2.3.2, we have used the fact that the density field is a random Gaussian

field to calculate the probablity of finding a point aboye a threshold when

the field is smoothed on a given scale (equation [2.111D. In that case, the

probability density writes

P(O) do = � exp ( 022) do.
CTo 2CTo

(3.1 )

The extension of the distribution probability function to two points separated
by a distance r requires the use of the covariance function � (r), because the

values of the density field at different points are not statistically independent.
Then the probability that one of the points has density contrast in the interval

01 to 01 + dol, and the other point has density contrast in the interval 02 to

02 + d02 is

1 1 [ 0?+oi-2W(r)0102]P(OI, 02) dold02 = --2
J

exp -

2[ 2( )]
do1d02

21l"CTo 1 - w2(r) 2CTO 1 - w r

(3.2)
where w(r) = �(r)/CT5 is the scaled correlation function. Notice that if the

points were not correlated [�(r) = O] the aboye probability would be simply
equal to the product P(OI) P(02). It is easy to generalize the former Gaussian

joint probability distribution for m points

(3.3)

(3.4)

where we have taken the means of random variables (Oi) = O. In this case,

only the covariance matrix Mij == (Oi8j) = �(rij) is required to specify the
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distribution. Since the successive derivatives of a random Gaussian field are

Gaussian random fields, expression (3.4) for the joint probability function not

only holds for the values of the density field at different points, but also for

values of its derivatives.

3.1.2 The maximum constraint

The characterization of maxima for one-dimensional functions reduces to find

those points with null first derivative and negative second derivative. In the

case of a Gaussian random field, we need the joint probability function for the

value of the field 8, and its first 8' = n ; and second 8" == ( derivatives at a given
point. By enforcing r¡ = O, and ( < O .the integration over these variables in

the appropriate domains leads to the probability of finding a maximum at the

point with density contrast in the interval 8 to 8 + d8. However, this procedure
cannot be applied because the set comprising those points with r¡ = O has null

measure, so the corresponding probability seems to be zero. Fortunately, it is
possible to substitute dr¡ for 1(ldx 1, being x the spatial coordinate, because,
owing to ergodicity, the integral over x is equivalent to the integral over the
probability distribution. In this way, the measure problem is avoided and a

peak number density, instead of a probability, is achieved once we divide by
dx.

In three-dirnensional Gaussian random fields (as the one depicting the den

sity field}, the strategy to follow for characterizing peaks is the same than in
one dimension, but now taking into account that first cartesian derivatives of
the field involve three components, r¡i = \1 iD, (one for each possible direction),
and second derivatives (ij = \1i \1 j8 make up a symmetric 3 x 3 matrix with
six independent components. Therefore, the probability of having a maximum

lThe Taylor expansion of the first derivative of the field in the neiborghood of a maximum
located at xp writes
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at a given point with density contrast in the range from 8 to 8 + d8 is

(3.5)

integrated over the domain for which the second derivatives are negative. To

overcome the problem of null measure sets, we turn the ensemble average into

a volume average. The Jacobian of the transformation is just J = det (, then
the probability (3.5) becomes

Ppk(8) d8 = d8 d3r J ¿>(I det (IP( 8,11 = O, (). (3.6)

By dividing both sides by the volume element d3r we obtain the number density
of peaks per infinitesimal range of height '. Owing to the homogeneity and

isotropy of the Gaussian field, the probability (number density) of peaks does

not depend on the position. For simplicity, we will hereafter evaluate the joint
probability functions at r = o.

The express ion (3.6) can also be derived considering a point process. In

this case the number density of of points P selected to be maxima of the field

8(r) is

(3.7)
p

where 8(3) is the three-dimensional Dirac delta function. The following step is

to express this point process in terms of the random field and its derivatives.

To do so, let us expand the field and its gradient in Taylor series around the
maximum located at rp

8(r)

1]i(r) � L (ij(r - rp)j.
J

(3.8)

If the matrix ( is non-singular then we can write

� C1(rp)11(r),
I det ((rp)18(3)[11(r)]. (3.9)

2In peak statistics jargon, the density contrast is also referred as the peak "height".
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Notice that the 8-function picks out all of the points satisfying 1}(r)= O. By
the moment, only we can obtain the number density of extrema

(3.10)

In practice, only the ensemble average of expression (3.10) can be calculated.
This average involves the joint probability function P( 8, 1}, O evaluated at

r = o. Integrating over the domain where ( is negative we get the number

density of peaks with height in the interval 8 to 8 + d8

(npk(8))d8 = .u J (l"(1 det (IP(8,1} = 0,0· (3.11 )

3.2 The Number Density of Peaks

3.2.1 Evaluating the Maximum Constraint

The notation used in this chapter folIows the one introduced by BBKS. There
fore, N'pk(lI)dll, with 11 = 8/(J'o(R), denotes the number density of peaks per
infinitesimal range of height, and npk{lIc) denotes the number density of peaks
with height aboye the value IIc. Both quantities also depend on the scale R,
which works as a parameter. Sometimes we wilI inelude it as an argument, to
explicitly stress the dependence.

In order to evaluate the joint probability function P( 8, 1}, O, we need the
correlations between the different fields. Even though correlatíons between
variables are strictly convolution products, owing to ergodicity, they can be
also calculated as ensemble averages over different realizatíons of the field.

Therefore, ít ís conveníent to perform these calculations in the Fourier space,
in which the smoothed field 8(r, R), its gradient 7]i(r, R), and its second-order
cartesian derívatives (ij(r, R) have the form
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77i(r, R) (2�P J d3k (-iki)8(k) W(kR)e-ik.r,

(2�P J d3k (-kikj) 8(k) W(kR)e-ikr.

(3.12)

In order to simplify the notation, we wiU not show explicitly the dependence
on the point and scale in the field variables. From the definitions of the power

spectrum (equation [2.98]) and the spectral momenta (equation [2.104]), it can
be shown that

(88) = (16,
(877i) = O,

(12
(8(··) -

__18··'J
-

3 'J'

(12
(77i 77j) = -t8ij,

(77i, (jk) = O, (3.13)
(12

((ij (kl) = 1� (8ij8kl + 8ik8jl + 8iI8jk).

The covariance matrix M has dimension 10 since it ineludes correlations
between the field, its three first derivatives and its six independent second

derivatives. It is almost diagonal apart from one 3 x 3 box involving the

second-order derivatives. We label them (A, where subscript A ranging from

1 to 6 refers to ij = 11, 22, 33, 12, 13, 23. The Gaussian joint probability
P does not depend on the form of the variables chosen to characterize the
random field. By using variables x, y, and z, defined as

(12X = -\128 = -((1 + (2 + (3), (12Y = -�((l - (3),

(12Z = -�((1 - 2(2 + (3), (3.14)
instead of (1, (2, and (3 we achieve a diagonal covariance matrix. If we also
introduce the variable v = 8/(10 the corresponding non-zero correlations adopt
the simple form

(3.15)

where I = (1i!((10(12) is a measure of the bandwith of the power spectrum.
Once we have the covariance matrix M we are able to calculate the quadratic
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form Q

(3.16)

with z , = ,v.

Other relevant step aimed to simplify calculations consists of selecting a

suitable reference frame. This procedure is always allowed because the corre

lations given by (3.15) are independent of this choice. Since the matrix (ij is

symmetric, then we can find a rotation which diagonalizes it: diag(>l1, ).2, ).3) =
-R( Rt, where ).i (i = 1,2,3) are the eigenvalues of the matrix -(ij, and R

and Rt are the rotation matrix and its transpose repectively. We can select the

principal axes along the direction of the eigenvalues ).i; thus (A = -).A (A =

1, 2, 3). In this way, we have used up three degrees of freedom. The other

avalaible three permits to fix the orientation of the orthonormal eigenvectors
of the matrix by means of the Euler angles 0:1, 0:2, 0:3.

AH these choices introduce changes in the volume element associated to the

space defined by the second-order derivatives

dnS3 = sin 0:2 d0:2 d0:1 d0:3,
3 2
TI d).A = -O"� dx dy dz.
A=:: 1 3

(3.17)

(3.18)

dnS3 is the volume element on the surface of the three-sphere. Since the
whole space is avalaible (there is no constraint on the Euler angles), then its

integration yields 27r2• The factor 6 dividing arises because the eigenvalues are

not ordered. In the new variables, the joint probability function becomes

d311P(v,11,x,y,z)dvd311dxdydz = F12y(y2 - z2)le-Qdvdxdydz -3'
0"0

(3.19)
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To make sure that matrix (ij is negative definite we order the eigenvalues
just as

(3.20)
and impose A3 > o. In this case we have to drop the factor 1/6 in the first

of equations (3.17). The eigenvalue ordering causes the variables x, y, and z

to be constrained in such a way that the integration only picks out positive
values for the A'S. The solution of the inequation system leads to two different

domains

o < x,
x

O < y < -,- -

4
x x
- < y <-
4

- - 2'
O < x, 3y - x ::; z ::; y (3.21)

The peak density for maxima of height Vo is given by the average

(3.22)
which involves the integration of the joint probability function over the vari

ables T/i and Ai (or x, y, z) taking into account the corresponding constraints.

It is valuable to consider the number density of peaks with pararneters v and
x 3per infinitesimal range. This is done by introducing additional D-functions

in equation (3.22). The result is

e-v2/2 f(x) [ (x x )2]Npk(v,x)dvdx = (27r)2R� [27r(1-,2)P/2
exp -2(1--�2) dvdx (3.23)

where R* = J3ud0'2 is a measure of the characteristic coherence length of

the field, and f(x) contains the outcome of integrating the joint probability
function over the variables z and y

(3.24)

3Notice that in this case we cannot strictly say that these points are peaks since the

variable x can be positive or negative. We think of peaks because we bear in mind that

x> O.
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Taking into account the asymptotic behavior of f (x) for the limi ts x � O and

x � 00, this function can be reasonably approximated by

x8
fapp(x) = 13.2 (1 + 5x2j8)

for x < 1.5,

3 4.08
fapp(x) = x - 3x + -2X

for x � 1.5.

Finally, the integration over the variable x (x > O) leads to the number

density of peaks with height in the interval v to v + dv

(3.25)

where the numerical function

(3.26)

has been accurately fitted by BBKS (see their equations [4.4] and [4.5]) in the

range 0.3 < I < 0.7 and z , > 1.

In the peak model framework, it is assumed that collapsed objects arise
from peaks of the smoothed density field with height above a specific threshold.
Thus, we can compute the number clensity of these objects by integrating the
differential density (3.25) over the variable u constrained in the interval (ve, (0)

(3.27)

3.2.2 The conditional number density

In hierarchical scenarios the evolution of density fiuctuations on a given scale
can be altered by the presence of fiuctuations on larger scales. The most no

table example is the forementioned cloud-in-cloucl problem. Furthermore, we
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observe regions of the space almost devoided of galaxies (voids), and regions
with galaxy density greater than that of the background. This effect can be

easily interpreted in the peak model framework. Since present objects are sup

posed to arise from peaks of the density field aboye a global critical height,
the presence of a background field is able to boost the object formation in

those sites where the background density is higher than the average (due to

the decrement of the local threshold) and supress it in those sites where the

background density is lower than the average (because the local threshold is

increased). In practice, the peak and the background fields are generated by
smoothing the same random density field 8(r) on two different scales that we
denote R, and Rb respectively. Instead of writing explicitly the scale depen
dence, we will use subscripts s and b to refer to quantities concerning the peak
and the background fields.

To quantify this effect we need the number clensity of peaks on backgrounds
with a specific height. We begin with the calculation of the conditional prob
ability P(vblvs, x) dVb, which gives the probability that the background field

has height Vb = 8b/O'Ob in an infinitesimal range subject to the constraint that
there is a peak with Vs = 8s/O'os and scaled Laplacian x 4. According to BBKS,
conditional probabilities involving Gaussian variables adopt a Gaussian form
with mean equal to

(3.28)
and dispersion equal to

(3.29)
The angular brackets indicate ensemble averages. The tensor product notation
YB 0 YA just builds a m x n matrix out of the vectors rB, of dimension m, and

YA, of dimension n. In this particular case we have YB = Vb and YA = (vs, x).
We have already found the correlation between the peak variables (v x) = ,.
The other non-vanishing correlations appearing in the calculations are

(3.30)

4It is not necessary to introduce more variables to characterize the peak because the

background variable l/b does not corre late with y. z, and (A, A = 4, 5, 6.
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with the cross-momenta defined as

100
dk Pi+l

O}h = 2 P(k) W(kRs). W(kRb)
o 211"

(3.31)

The parameters € and TI = O"ih 0"6s / (0"6h O"rs) accounts for the correlations be

tween the peak and the background fields resulting from the fact that both

are obtained by smoothing the same random field on two different scales. For

physically interesting power spectra an filtering functions, this kind of corre

lations decreases asymptotically to zero as the background smoothing radius

increases. For instance, a power-Iaw power spectrum filtered with a Gaussian
window leads to

= (RsRb)
(n+3l/2

--t (2Rs)(n+3l/2€

R� Rb'

where R� = (R� + R;)/2. The limits hold for n; � n;

Finally the wanted conditional probability can be written as

(3.33)

with mean Vb and dispersion t:..Vb given respectively by

(3.34)

The second step consist of calculating the joint density of points with height
Vb when the field is smoothed on scale Rb, and height Vs and scaled Laplacian
x when it is filtered on scale Rs. This quantity is easily derived from the
differential number density Npk(vs, x) (see equation[3.23]) and the conditional

probability P(vblvs,x)

(3.35)
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By integrating this expression over x, with the constraint x > O, we make sure

that the points with height Vs are peaks

(3.36)

The tilde variables 1', x* = l' ¡; have been introduced to express the integral in
a closed form

The conditional number density Npk(vslvb) dt/; of peaks with height in the

interval Vs to Vs + du, in backgrounds with height Vb is derived by dividing the

joint density Npk(Vb, vs) by the probability of finding a background. Taking
into account that this probability is Gaussian the wanted conditional number

density just writes

(3.38)

If we are interested in the density of peaks exceeding a given threshold at a

point where the background field has height Vb, we have to integrate the above

expression over V» with the constraint Vs > Ve

(3.39)

Finally, the effect produced by a background field on the peak population can

be quantified by means of the enhancement factor, which is defined as the ratio

(3.40)



62 Chapter 3. STATISTICS OF PEAKS IN 3D GAUSSIAN FIELDS

3.3 Extensions of BBKS Theory

3.3.1 Disappearing Peaks

So far we have dealt with points which are peaks on a specific scale, but what
happens to a given peak when the random Gaussian field is smoothed on a

slightly different scale? One possiblity is that this peak disappears because

any of the maxirnum constraints is not fulfilled on the new scale. With the

help of the tools presented in the preceding sections we plan to characterize

the disappearing peaks and calculate the corresponding number density.

From the Taylor series expansion of the gradient of the density contrast

smoothed on scale R, 1], around the location rp of a neighboring peak we have

(to first order in Ir - rpl)

(3.41)

with Ai > O the eigenvalues of the second order cartesian derivative tensor (ij
changed of signo Since there is at most one peak in the neighborhood of any

point the density of peaks around r is

(3.42)

But Tli and A; are random Gaussian variables. So the typical density of peaks
on scale R around an arbitrary point r is given by the mean

(3.43)

for the joint probability of the random variables involved, with Ai strictly pos
itive. This is the scheme we have folJowed for obtaining the density N'pk(V, R)
du of peaks with scaled density contrast v in an infinitesimal range.

Let us consider a peak at rp on scale R. When the Gaussian random field
is smoothed on scale R + t:.R, with t:.R positive and arbitrarily small, the
point rp may not be a peak, but it ca.n be found one in the neighborhood of
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rp' In fact, it can be proved that there cannot be more than one peak on scale

R + !:l.R in the neighborhood of any point which was a peak on scale R. Let

us assume that there are two peaks located at rp� and rp� on scale R + !:l.R

with [r; - rpl I � O(!:l.R), j = 1, 2. Expanding the gradient around the point
]

rp and scale R, and bearing in mind that there is a peak at rp on scale R, we
are led to the following expressions for each point

o

O (3.44)

Therefore, both peaks must be the same to first order in !:l.R. According to

this result, we will say that a peak at rp on scale R disappears in reaching the

scale R + !:l.R provided only this is the first scale larger than R with no peak
in the neighborhood Ir - rpl � O(!:l.R) of the former peak (see § 4.2.1 for the
exact justification of this statement). From the Taylor series expansion of 11 at

the nearest point rpl with 11 = O on scale R + !:l.R around the peak rp on scale

R we have

(3.45)

Thus, on the new scale R+!:l.R there is sorne peak in the neighborhood Ir-rpl �
O(!:l.R) of the old peak on scale R provided only that all A¡ are of order unity
(this also guarantees that all A¡ are positive at rp' on scale R + !:l.R). Strictly,
sorne A¡ could be of order !:l.R or smaller , if the corresponding OR1J¡ were too.

But the probability for this to happen is negligible as compared to the more

general preceding case. Therefore, for that condition to be broken for the first
time at R+!:l.R, sorne eigenvector Ai must become of order !:l.R or, equivalently,
must vanish at R ± !:l.R.

Consequently, the density of peaks on scale R at an arbitrary point r dis
appearing at R' in the neighborhood of R, with R' > R, is given by the mean

(8(3)(r - rp)), with all eigenvalues A¡ positive, as in BBKS, and the smallest
one satisfying the relation

, A¡
R-R::::::1oRA¡I' (3.46)
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But condition (3.46) implies, at the same time, that the smallest eigenvalue
A; also vanishes in the neighborhood of r'

p
on scale R. Thus, in neglecting

second order terms in equation (3.41) the term in that component Ai must be

neglected, too. Accordingly, were we interested in calculating the density of

peaks disappearing at R' in the neighborhood of R, we should take for that

component of r - rp the relation

(3.47)

instead of (3.41). So, (ó(3)(r-rp)) will involve now the mean for this component
i of the values of ORr¡i on scale R at both points r, and rp'

To perform this calculation it is convenient to use the scaled variables 1/, x,

y, and z (see their definition in § 2.2.1), and the new variables X = (}';;10R((}'2X),
y = (}';;loR(O'2Y)' and Z = O';;loR(O'2z). Por simplicity of the notation we

will also write I, for ORr¡i. Por a Gaussian window the non-null correlations

involving the new variables are (see equation [3.14] for the rest)

(3.48)

(}'2
(1/ X) = -- R

0'0

(}'2
(r¡. 1) = _ _2 R! 1

:3

and ((¡) = O'U15, A = 4, 5, 6 (A = 1, 2, 3, 4, .5, 6 stand for ij = 11, 22, 33, 23,
13, 12), while they all have null mean. The covariance matrix M asso ciated to

variables 1/, x, X, y, Y, z , Z, n., 11, in. 12, r¡3, h, (4, (s, (6 is therefore nearly
diagonal. The only non-null components, apart from those concerning (A for
A = 4,5,6, are in small 2 x 2 boxes, for each couple of variables denoted by
the sarne small and capital (roman 01' greek) letter, except for one 3 x 3 box
for variables 1/, x, and X, all of them along the diagonal. Thus we can readily
calculate the square root of the deterrninant of the covariance matrix M and its
asso ciate quadratic form Q entering in the expression of the joint probability
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function for these Gaussian random variables. The result is

(3.49)

and

with

(3.51)

being u¡(R) the ith order spectral momenta, and D == (1 - ,n1/2U4/U2 R,
r = '1'3(1 - ,i)/[(1 - ,i)(1 - ,�)P/2, �x == x - (x - x*)(l - ,2)-\ with

,1 = uf! (uo (2) = 1, 12 = uV (Ul (3), 13 = uV (U2 U4).

Now we can take advantage of the fact that the covariance matrix M

does not depend on the orientation of the coordinate axes, and assume them

orientated along the orthonormal eigenvectors of tensor -(¡j. This makes

A¡ = -(¡ -(ii to write in terms of x, y, and z, the other three degrees of

freedom, associated to the nul1 components (A for A = 4,5,6, being absorbed
in the values of the Euler angles fixing the triad orientation. So, making use

of the relation

(3.52)
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where dDs3 is the volume element on the surface of the three-sphere 53 we

can integrate the joint probability function P over the Euler angles. This

reduces the initial set of variables by three. Notice that, once the coordinate
axes are fixed, there is no more freedom left, and we cannot further assume

the eigenvectors of the tensor (ij on scale R + tlR also well orientated. So

ORAi introduce, in principle, the whole set of 6 independent variables OR(A.
Fortunately, the different orientation of the triads of eigenvectors of tensors

(ij on scales R and R + tlR is very small because arising from the small

increment tlR, and by neglecting second order terms in tlR we have that the
same expressions for Ai as linear combinations of x, y, and z, are also valid for

ORAi in terms of X, Y, and Z. So we do not actually need to introduce the

variables OR(A for A = 4,5,6.

For simplicity in the calculations we will require that A2 be the smallest

eigenvalue, and Al � A3. With this ordering (making the factor 6 dividing the
left hand side of equation [3.52J unnecessary; see BBKS) to guarantee that all

Ai are positive we must simply require A2 > O. So after the integration over

the Euler angles (the integral over !1s3 giving 2rr2) the joint probability for the
remaining variables subject to the above ordering conditions writes

(3.53)
It is also convenient to transform the variables z and Z to z' - 3A2/0"2 = X - 2z
and Z' == 30RAd 0"2 = X - 2Z. This is readily achieved through the relation

P( ... , z', ... , Z') ...dz' ...dZ' = (ó(z' - x + 2z) ó(Z' - X + 2Z)) ...dz' ...dZ', (3.54)

with the mean in angular brackets for the joint probability (3.53). Finally,
taking into account relations (3.46) and (3.47) both for i = 2, and (3.41) for the
two remaining components we are led to the fact that the mean density of peaks
on scale R disappearing within the next dR, with variables 1/, x, y, z', X, Y, Z'
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taking values VD, XO, Yo, zb, XO, Yo, Z� in infinitesimal ranges is

N;tS(vo, Xo, Yo, z�, Xo, Yo, Z�, R) dv dy dz' dX dY dZ' dR = (3-10"2IZ'1
x8[I2 - I2(r)]IA1A318(7]t) 8(7]3) 8(�R - z' /IZ'I) B(z') 8(vo - v)8(x - xo)

x8(y - yo)8(z' - z�)8(X - Xo)8(Y - Yo)8(Z' - Z�)) dv dy dz' dX dY dZ' dR,

(3.55)
with B the Heaviside unit function, Al = 0"2(X + 2y - z'/3)/2, and A3 =

0"2(X - 2y - z' /3)/2, and with the mean in angular brackets for the joint prob
ability (3.54) (subject to the aboye ordering conditions) times the probability
of finding 12 at r (subject to no constraint., in particular, on 7]2(r)). Strictly,
since rp is a peak instead of the joint probability (3.54) we should use the

conditional joint probability given that 7]2 is null at this point. But this makes

no difference at all in the final probability function.

After dropping the subindexes O and performing the averages over 1], 1, and

I2(rp), we arrive to the following expression

35/257/2
N;tS(v, x, y, z', X, Y, Z', R) du dx dy dz' elX dY elZ' dR =

25/2 (27r)9/2 R:_ D3 R

0"1 8(z' - IZ'I�R) Zt2IF(x, y, 2") Ix exp( -Q) d el del' d.X elY elZ' dRX

0"3 (1 _,2)1/2 (1 _ P)1/2 (1 _ ¡i)1/2
u X Y z ,

(3.56)
where

(3.57)

with Z; == X -2Z* = X - (x - 2") (O"VO"�) R, the function F(x, y, z') defined as

y[y2 _ (x - z')2/4][(3x - Z')2 /4 - 9y2], and X equal to 1 if the constraints in the

x, y, z' domain are satisfied, and O otherwise. In this concern, such constraints

are equivalent to O::; z', z'::; x, and O::; y::; (x - z')/2.
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The integrals over Y and z' can be readily performed. Then, neglecting
higher order terms in /:}'R, and rearranging terms we obtain

. 3253 (JI e-v2/2
N;¡/(IJ, x, R) du dx dR =
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for x > O. And after integration over x, Z', and y we are finally led to

(1 _ ,/)3/2
___

2
__ Npk(lJ, x, R) dv dx

,2

(J2
x (T+/:}.2X)g(x)f(x)-%RdR,

(J2

(3.58)

(3.59)

with Npk(lJ, x, R) du dx the analog normal density of peaks given in equation
(3.23),

g(x) f(x) = ]s; {e-5x2/8 [1 - 1�5 X2 + � C85 X2rJ - e-5x2/2},
and T == [(1 - 5r2 /9)/(5r2 /9)]/[(1 - (2)h2].

(3.60)

Finally, integrating over x, we obtain the density of peaks with height lJ

(on scale R) in an infinitesimal range which disappear in the next dR,
2

Npd�S(IJ, R) dv dR = Npk(v, R) du K,dis(-y, x*) (J; R dR,
(J2

with
(1 rv

2 )3/2Vdis( )
-

/2
(A 2 ) ( )r-: 'Y, z , = < T + Ll. X 9 X >,

'2

where the angulars brackets denote now the mean defined as

(3.61 )

(3.62)

(3.63)
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According to equation (3.61), we see that the density of peaks wich disap
pears in a neighborhood óR from R is of order óR greater than the expression
(3.25), which does not inelude this contribution. Indeed, in performing the av

erage (3.43) for all components, disappearing peaks with the smallest Ai of
order óR yield a null contribution. In other words, these densities only in

elude those peaks robust enough for their continuity to be guaranteed in a

range of scales around R.

3.3.2 Densities of Peaks with Specific Values of Ran

dom Variables

In next Chapters we will be concerned with densities of peaks with values of
different random Gaussian variables with null mean, Vi (i = 0,1, ... , n with n

arbitrarily large), in infinitesimal ranges. All these densities can be inferred

from the density of peaks with va = u and VI = X on scale R in infinitesimal

ranges Npk(lJ, x, R) di: dx (see equation [3.23]). One must simply apply the
recursive relation

Npd Va, VI, ... , Vn-l, R) dvO dVl, ...dVn-l
x P(Vn, RIVo, VI, ... , Vn-l, R) dvn, (3.64)

with P(w, Rlvo, VI, ... , Vn-l, R) dw the conditional probability of finding the
value of w in an infinitesimal range given that Va, VI, ... , Vn-l take sorne given
values. As we have seen in § 2.2.3 this conditional probability adopts a Gaus
sian form

(3.65)

with

-

- M M-1 Vtw -

wv vv

2
_ ,2 M M-1 MtO'w -< tu > -

wv vv WV' (3.6§)
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where Mwv and Mvv are the 1 x n and the n x n correlation matrixes of

w with Vi, (w Vi), and Vi with themselves, (Vi Vj), respectively, V stands for

the 1 x n matrix of components Vi, and t denotes transpose. Note that the

conditional probability (3.65) refers to points in general, the positive value of

x guaranteeing by itself that they can be peaks. Indeed, the null values of the

three components of "., in peaks make them be possible to ignore in practice.
From equation (3.65) it is clear that if Vn does not correlate with any of the

previous variables Vi the conditional probability P(Vn, Rlva, Vl, ... , Vn-l, R) do;
is simply equal to the Gaussian probability P(Vn, R) dVn of finding Vn on scale

R in sorne infinitesimal range. Thus, the only densities of peaks with non

trivial distributions of the variables involved are those for variables correlating
with v (or 8) and x on scale R, 01' any other explicit variable correlating with

them.

Let us consider the series of variables Va = u , Vl = z , and

1 i-2
Vi =

0"2i Ri-l 8R[0"2(i-l) R Vi-l] (3.67)

(i ::::: 2), involving all order scale derivatives of the density contrasto The

correlations among them take, for the Gaussian window, the general form,
2

(vivj)(_1)i+j+80i+80J O"i+j
0"2i 0"2j

(3.68)

(i,j ::::: O), with 8ij the Krónecker delta. We must remark that, although
the notation used in equations (3.64) to (3.68) presumes all variables defined

on scale R, they are also valid for variables defined on different scales. In

particular, were any variable, say Vi, defined on another scale R', one would be
led to just the same expression for the correlations as in equation (All) but

with a; and O"i+j replaced by O"i == O"i(R') and O"i+j h == O"i+j [JO.5 (R2 + R,2)] ,

respectively. This will be used in Appendix A. From equations (3.64) to (3.68)
one can readily calculate the density function Npk of peaks at a fixed scale R

per infinitesimal ranges of i/, x, and any other set of the previous variables Vi

(i ::::: 2).

Moreover, following the same scheme starting from the conditional density
analogous to the normal density in equation (3.23) but for peaks subject to
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any given constraint (e.g., a background of height IIb on scale Rb) one is Ied to

the relation

N'pk(va, ... , Vn, RllIb, Rb) dvo, ...do¿ N'pk(va, ... , Vn-l, RllIb, Rb) dvo, ...dVn-l
x P(Vn, Rlvo, ... , Vn-l, R) dvn. (3.69)

Thus, all the conditional densities can be derived from the one with values of

11 and x in infinitesimal ranges

e-V2/2 exp [-(;(�:�n
(271-)2 R�s J21r (1 - 102)

x f(x)dlldx.
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/41
THE MASS FUNCTION IN

THE PEAK MODEL

4.1 Introduction

The success of the PS mass function in matching the results of N-body sim

ulations is the key proof for supporting its ability to properly describe the

real gravitational clustering. Despite this fact, it is not well understood how

present objects can arise from points of the smoothed density field, the contrast
density of which exceeds a given value. Peaks are the best seeds of virialized

objects we can think about right now, and certainly physically better moti

vated than the undefined volumes used in the PS prescription. Since there is
no satisfactory derivation of the theoretical mass function in the peak model

framework, it is valuable to make an effort to builcl a consistent one.

The first step consist of stablishing the conexion between peaks of the lin
ear density field and collapsecl objects. This is done by means of peak model

ansatz, which states that objects at a time t emerge from peaks with clensity
contrast equal to a fixed linear overdensity be in the smoothed, on any scale R,
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density field at the arbitrary initial time ti. The critical overdensity is assumed

to be a monotonous decreasing function of t, while the mass M of collapsing
clouds associated with peaks is assumed to be a monotonous increasing func

tion of R. (The collapsing cloud associated with a peak is simply the region
surrounding the peak with total mass equal to that of the final virialized object
at t.) Therefore, the evolution, with shifting density contrast, of the filtering
scale of peaks at ti is believed to trace the growth in time of the mass of ob

jects. Of course, this is just an ansatz whose validity has to be assessed, a

posteriori, by comparing the clustering model it yields with N-body simula

tions. Note, in particular, that peaks might be good seeds of virialized objects
and the mass of their associated collapsing clouds not be just an increasing
function of R (see, e.g., Bond 1988) 01' the time of collapse of such clouds not

be just a decreasing function of the smoothed density contrast. These assump
tions intended to constrain the freedorn left by the unknown dynamics of the

collapse of density fluctuations are, nonetheless, very reasonable. They are

suggested by the spherical collapse model, approximation which is particularly
well suited when dealing with peaks. On the other hand, they are much less

restrictive than the specific relations be( t) and M (R) preclicted by that simple
model. So there is much room left for any actual departure from it. Finally,
there is the extra freedom arising from the filter used, which can be different
from the top hat one.

The direct extension of the PS prescription to the peak model suggests
itself. The resulting mass function is (Colafrancesco, Lucchin, & Matarrese

1989; Peacock & Heavens 1990)

N(M t)dM = A_1 lo[npk(bc,R) Mpk(bc,R)] I dR dM (4.1),
M 8R dM'

where A is a normalization factor, npk( be, R) is the number density of peaks
with density contrast aboye the threshold be in the density field smoothed on

scale R, and Mpk( be, R) is the average mass of objects emerging from these

peaks (when divided by p, equal to the mean volume subtended by the corre

sponding collapsing clouds). Note that since peaks included in npk( be, R) do
not have, in general, density contrast equal to be, the average mass of their

collapsing clouds, Mpk(be, R), will differ from .M(R). The aboye mentioned
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problem with the normalization of the PS mass function and the cloud-in

cloud effect is reflected in the variety of expressions found in the literature

for the factor A and the function Mpk(Óe, R) in equation (4.1). A more seri

ous problem, however, is that this equation states that the mass in objects
emerging from peaks with density contrast upcrossing Óc in the range of scales

between R and R + dR is equal to the variation from R to R + dR of the mass

associated with peaks with density contrast above óc' It is therefore implicitly
assumed that 1) the total mass associated wi th peaks (wi th Ó > O) is conserved
with varying scale, and 2) the density contrast of peaks is a decreasing function
of scale. Both points seem to follow, indeed, from the peak model ansatz. But
this is actually not true. As shown below, point 2 crucially depends on the

shape of the window used, while the frequent discontinuities in peak trajecto
ries in the Ó vs. R diagram yielded by mergers invalidate point 1 and, hence,
equation (4.1) in any evento

Before we proceed further, one brief comment on the notation used through
out the paper is in order. Rather than the integrated density of peaks on scale

R, npk(óc, R), appearing in equation (:3) we will use the differential density
of peaks on a fixed scale R with scaled density contrasts II == Ó/uo(R) in an

infinitesimal range, Npk(v, R) du, In addition, we will introduce the differen
tial density of peaks with fixed density contrast Ó on scales in an infinitesimal

range, denoted by Npk(R, ó) dR. Caution must be made in not mixing up these
two densities, as well as their respective conditional forms.

Thus, the only reliable strategy to derive the mass function of objects
in the peak model framework is to directly count the density of peaks with

density contrast Óc in infinitesimal ranges of scale, Npk(R, óc) dR, and then
transform it to the mass function of objects at the time t, N(M,t)dM, by
using the appropriate M(R) and óc(t) relations. Unfortunately, apart from
the uncertainty about these latter two relations and the filter to be used, as

well as the cloud-in-cloud effect which is always present, this strategy faces
a new important drawback: the differential density of peaks is well-defined
for a fixed filtering scale, not for a fixed density contrasto In other words, we
only know the form of Npk(I), R) di) while we need that of Npk(R, 8) dR. Bond
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(1988) proposed the following "reasonable, although not rigurously derivable",
expression for the scale function of peaks at fixed density contrast,

(4.2)

with Npk(v, R) calculated in BBKS. Soon after, this same author (Bond 1989;
hereafter B89) attempted to formally derive the wanted scale function. The

expression found, identical to that independently obtained by Appel & Jones

(1990; hereafter AJ), recovers equation (4.2) as an approximate relation valid

in the limit of rare events, i.e., for peaks with t/ � 1. But in these deriva

tions it is assumed, for simplicity, that points which are peaks on a given scale

keep on being peaks when the scale is changed, which is obviously not true

in general. In changing the scale, the spatial location of peaks also changes.
As a consequence, there is no obvious connection between peaks on different
scales and, what is more important, between their respective density contrasts.
More recently, Bond & Myers (1993a, 1993b) have proposed a new method,
the so-called "peak patch formalism", to obtain the mass function of objects.
This follows the correct strategy for peaks, the c1oud-in-c1oud effect is cor

rected for, and a more accurate collapse dynamics than the spherical model
is used. However, this new method involves complex calculations including
Monte Carlo simulations and, hence, does not provide us with any practical
analytical or semianalytical expression for the mass function as wanted.

In the present paper we give a ful1y justified formal derivation of the the
oretical mass function of objects relying just on the peak model ansatz. This
derivation draws inspiration from (and, in fact, is very close to) those fol
lowed by B89 and AJ. The main differences are: 1) we do not assume that
the spatial locations of peaks remain fixed when the scale is changed, but let
them vary, and 2) we provide a consistent way to correct the resulting scale
function for the nesting of collapsing c1ouds. These improvements as well as
the determination of the only consistent filtering window and M (R) and bc( t)
relations to be used are possible thanks to the development, in § 4.2, of a new

formalism, hereafter referred to as the "confluent system forrnalism" (see also
Salvador-Solé & Manrique 1994), which is able to follow the filtering evolution
of peaks. In § 4.3 we apply this formalism to derive the scale function of peaks
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with fixed density contrast, and to correct it for the cloud-in-cloud effect. In

§ 4.4 we determine the form of the M (R) and 8c( t) relations which are consis

tent with the peak model for different power spectra of the density field in an

Einstein-de Sitter universe. Finally, we derive, in § 4.5, the mass function of

objects in these cosmogonies. Other important quantities connected with the

detailed growth history of objects are calculated in the next Chapter.

4.2 The Confluent System Formalism

In gravitational clustering one can make the practical distinction between ac

cretion and merger. Accretion is, by definition, a continuous and differentiable

process in time. For any accreting object of given mass M another object of
mass M + dM can be found which subtends the former. In contrast, merger is
a discontinuous evento There is a diserete gap ÓM in mass values in which no

object subtending the matter of some given initial one ean be found. This gap
delimits the merging object whose mass evolution is being followed from the

object resulting from the merger. Aecording to the peak model ansatz enun

ciated aboye, peaks in the smoothed clensity fielcl rearrange, with decreasing
overdensity, essentially as objects do in time through aecretion and mergers.

Therefore, we can identify events analogous to aeeretion and merger in the

filtering process in a very straightforward way by means of the eorrespondence
between objects with increasing mass along the inereasing time t and those

peaks tracing them at ti with deereasing clensity contrast 8 when the filtering
scale R is increased.

4.2.1 Filtering Accretion

A point which is a peak on scale R is not so, in general, on scale R + ÓR,
with ÓR positive ancl arbitrarily small. To guarantee that a peak on scale
R + ÓR traces the same accreting objeet as tbe peak on the initial scale R
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at the times corresponding to their respective density contrasts the separation
between both points must be, at most, of the order of t1R. In this manner,

the collapsing doud associated with the peak on scale R + t1R will indude

the volume (mass) subtended by the collapsing doud associated with the peak
on scale R. Furthermore, this proximity condition is not only necessary for

the identification of peaks on contiguous scales, but also sufficient. Indeed, as
readily seen from the Taylor series expansion of the density gradient around
a density maximum, there cannot be more than one peak on scale R + t1R in

the neighborhood of any point which was a peak on scale R. (See § 4.2.2 for

the case that no identification is possible for a given peak of scale R.)

This identification allows us to draw a Ó vs. R diagram similar to that

obtained by Bond et al. (1991) in the excursion set formalism but for the fact

that, in our diagram, each trajectory ó(R) is attached to one individual object
or, what is the same, to the changing peaks tracing it in the filtering process
instead of to one fixed point. To construct this diagram we must find all peaks
on a given scale R in sorne arbitrary volume, increase the scale by t1R, find the
new peaks on the scale R+t1R, and identify each of them with one of the peaks
on scale R, repeating the process from the largest scale reached at each step as

many times as necessary. The continuous curves ó(R) determined by each series
of identified peaks (disregarding their changing spatial location) represent the
trajectories followed by peaks "evolving" through filtering accretion and trace

the time evolution of the mass of bound virialized objects as they accrete

matter.

The density contrast of an evolving peak on scale R + t1R is, to first order
1Il t1R, simply given by Ó + ORÓ t1R in terms of the values of the random
variables Ó and ORÓ at the same evolving peak on scale R. To see this one must

simply take the Taylor series expansion of the density contrast of the former

peak around the position r and scale R of the latter and take into account

that, according to our identification criterion, we have O(It1rI2) :S O[(t1R)2].
Notice that there is, indeed, no first order term in t1r in that series expansion
owing to the null density gradient in peaks, We therefore condude that the
total derivative dó/dR of a peak trajectory in the ó vs. R diagram coincides



4.2. The Confluent System Formalism 79

with the partial derivative oRb of the respective peak currently at (R, b).

We are now ready to check the self-consistency of the peak model ansatz

on which the previous natural identification criterion among peaks on differ
ent scales is based. As accreting objects evolve in time their mass obviously
increases. But the mass is an increasing function of R, while the time a de

creasing function of the density contrasto Consequently, peaks on scale R+ tlR

must, for consistency, have smaller clensity contrast than those identified with

them on scale R or, equivalently, the total derivative dbjdR of peak trajectories
must be negative. Let us see whether this is really satisfied.

By writting the scale derivative of the density contrast smoothed with

any spherical window W(¡-2 jR2) of scale R, b(r, R), in terms of the Fourier

transform of the unfiltered field, 8(k, O), we have

(4.3)

with J(PR2) equal to -2 [oW(PR2)jo(k2R2)] and W(PR2) the Fourier trans
form of the smoothing window. Relation (5) can be rewritten in the form

(4.4)

with J(¡-2 jR2) the inverse Fourier transforrn of J(PR2) and * denoting the con

volution producto For a Gaussian window, i.e., W(¡-2 jR2) = exp[-¡-2 j(2R2)],
we have J( k2R2) = W( k2R2) and equation (4.3) leads to the equality oRb(r, R)
= R'V2b(r, R). This implies that oR8(r, R) aud, consequently, d8jdR are au

tomatically negative for peaks as needed. However, for any other window

J(PR2) is different from W(k2Rol) and the sign of 'V2[8(r, O) * J(102 jR2)] is

not determined by that of 'V2[8(r, R)], but depends on the particular density
distribution around each point r. Thus, conclition d8jdR = oR8(r, R) < O is
not guaranteecl for every peak. We are therefore led to the conclusion that the

shape of the window used is crucial for the self-consistency of the peak model
ansatz: only the Gaussian window is able to recover such a fundamental prop
erty of gravitational clustering as the systematic growth, by accretion, of the
mass of objects in any realistic density field. This might explain the good be
havior of the Gaussian window in N-hocly simulations of structure formation
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from peaks (Mellot, Pellman, & Shandarin 1993; see also Katz, Quinn, & Gelb

1993). It is interesting to note that the characteristics of the density distri

bution in the real universe causing the departure from spherical collapse also

make the peak model ansatz inconsistent with the filtering by means of a top
hat window. If such a density field were spherically symmetric and outwards

decreasing around r, then the condition oR8(r, R) < O would be cIearly fulfilled
by the top hat window (and many others depending on the particular density
profile). However, in the real universe, the Gaussian window is the only one

that guarantees this condition. Herafter, we adopt tbis particular filter.

4.2.2 Filtering Mergers

As a peak evolves through filtering accretion the volume of its associated col

lapsing cloud increases. Provided there is full coverage of space by collapsing
clouds associated with peaks of fixed overdensity, that volume in crease makes

peaks progressively become located inside the collapsing clouds of others with
identical density contrast but larger filteriug scale. This is but the well-known
cloud-in-cloud effect which must be corrected for if we want the scale function
of peaks at a fixed overdensity to reftect the mass function of virialized objects
at the corresponding time. Notice that , the non-nested peaks that remain at

each fixed overdensity will provide the exact coverage of space since just those
causing the excessive coverage of space at any 8 have beeu removed. Hereafter,
we focus on the filtering evolution of non-nested peaks, as efficient tracers of
virialized objects.

The nesting-corrected 8 vs. R diagram contains a set of continuous peak
trajectories suddenly truncated when their respective evolving peaks become
located inside the collapsing cloucl associated with any other peak with iden
tical density contrast but a larger filteriug scale. Since the volume (mass) of
the collapsing cloucl associatecl with an accreting peak which becomes nested
is covered by that of the host peak, we can think about the forrner as evolving
into the latter (becoming part of it) through a discrete horizontal jump in the

nesting-corrected 8 vs. R diagram. Such discrete jumps among peak trajecto-
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ries towards larger scales along the line of fixed density contrast reftect discrete
mass increases, at a fixed time, of the virialized objects they trace. Therefore,
the nesting of, until then, non-nested peak trajectories can be naturally iden

tified with mergers. Notice that the key assumption in this identification has

been that collapsing clouds associated with non-nested peaks of given fixed

density contrast yield the exact coverage of space. This is ensured by the peak
model ansatz i tself: an incomplete (or excessive) coverage of space by collaps
ing clouds associated with non-nested peaks is not alIowed because this would

overestimate (underestimate) the densi ty of objects at the corresponding t in

ferred from counting their respective seeds. Thus, our identification of filtering
mergers also directly follows from tbe peak model ansatz.

But, apart from becoming nested, peak trajectories in the nesting-corrected
8 vs. R diagram can also disappear or appear. This is due to the fact that, as
pointed out in § 4.2.1, the identification among peaks on different scales is not

always possible. An infinitesimal increase in R can make a continuous peak
trajectory disappear (there is no peak on scale R + 6.R in the close neighbor
hood of the peak on scale R) or a new continuous peak trajectory appear (there
is no peak on scale R in the close neighborhood of the peak on scale R + 6.R).
When a peak appears without being nested (otherwise the event would go un

noticed in the nesting-corrected 8 vs. R diagram] sorne peaks wi th identical

density contrast and smaller scale automatically become nested into it. These

filtering events therefore trace the formation of new virialized objects from
the merger of smalIer ones. However, when a peak disappears before becom

ing nested (otherwise we could ignore the event) the volume (mass) associated
with it will be necessarily covered by that of collapsing clouds associated with
other peaks with identical density contrast and smaller scale. This will pro
duce the split of the former peak into the latter ones. N-body simulations also
find sporadic splits in the gravitational evolution of peaks (van de Weygaert &
BabuI1993). However, gravitational splits of peaks take place prior to colIapse,
while filtering splits of peaks refer to virialized objects. Thus, this latter kind
of filtering events has no natural counterpart in the gravitational evolution of

virialized objects. Moreover, these are not the only unrealistic events we can

find in the filtering evolution of peaks. Nested peaks can also leave their host
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clouds yielding, in this manner, a different kind of split of peak trajectories.
Thus, in contrast with virialized objects which tend to progressively cluster

with each other without exception, peaks tend to come together as we dimin

ish the critical overdensity but they also sporadically split into pieces. This

reflects the limitations of the peak model to provide an exact description of

the growth history of individual objects. Yet, we are not concerned with the

detailed evolution of individualobjects, but rather in the statistical descrip
tion of the clustering process they follow. In fact, for the confluent system
formalism to provide an acceptable clustering moclel we only need that both

the net amount of peaks becoming nested (after substraction of those leaving
their host clouds) and the net amount of peaks appearing as the resul t of merg
ers (after substraction of those disappearing ancl breaking into small pieces)
are positive at any location of the nesting-correctecl {j vs. R cliagram. In the

present paper, we focus on obtaining the scale function of non-nestecl peaks
at a fixed density contrasto In Chapter 5, we calculate those net amounts and

show the statistical validity of the confluence system formalism, at least for
density fields leading to hierarchical clustering, i.e., those with 0"0 a clecreasing
function of R.

4.2.3 The Confluent System Diagram

The nesting-corrected {j vs, R cliagram of such a hierarchical clustering looks
like the iclealizecl one plottecl in Figure 1. To avoid crowding we have drawn

just a few trajectories to illustrate the general behavior of the diagram one

would obtain from a fair sample volume of the universe. As can be seen, this

diagram differs from the analogous one obtainecl in the excursion set forrnalism

(BCEK) in three main aspects: 1) all trajectories have the same monotonous

trencl of clecreasing clensity contrast with increasing scale, 2) they all have a

finite continuous extent limitecl by mergers, ancl :3) the number of trajectories
clecreases with increasing filtering scale. Mergers reduce, incleecl, the total
number of surviving peaks. At R = O we have a large, usually infinite, number
of trajectories, while for R tencling to infinity we end up with just one trajectory
approaching to {j = O. This is the reason why we call this cliagram the confluent
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system of peak trajectories. From Figure 4.1 i t is apparent that the variation

in the density of peaks aboye 8c between scales R and R + I:1R is not equal
to the density of peaks upcrossing the 8c line in this range of scales nor is the

mass of the collapsing clouds associated with them. Large horizontal skips
along the R axis direction caused by mergers also contribute to this variation,
which invalidates equation (3). Note also that, owing to these horizontal skips,
there are peaks missing on every scale R making the integral of the average
mass of collapsing clouds associated with peaks at a fixed scale be different
from the mean density of the universe.

R

Figure 4.1: Idealized confluent system o[ peak trajectories ior a limited sample
volume. In fullline, tbe continuous filtering evolution oi peaks tracing acere

tion by tlie corresponding vitielized objects. In deslied lines, discontinuities

tracing mergers o[ similarly tuessive objects.

We want to stress that, as clearly stated at the begining of this section, the
distinction between accretion and merger in gravitational as well as in filtering
evolutions is a practical one which makes only sense from the viewpoint of any
particular evolving object or peak. In particular, what is a merger for one object
can be either a merger or an accretion process for any other object partaking



84 Chapter 4. THE MASS FUNCTION IN THE PEAK MODEL

of the same evento This is shown in Figure 4.1. Peaks resulting from mergers

can be either evolving through continuous accretion or forming depending on

whether or not they can be identified with peaks at an infinitesimally larger
8. This reflects a well-known fact in gravitational clustering: if sorne object
is massive enough relative to any other merger partner its relaxed state is

not essentially altered by the event and one can keep on identifying it with
the resulting object. Thus, from the viewpoint of such a massive object, the
merger is a simple accretion. Conversely, from the viewpoint of the srnall

accreted object which is destroyed in the event, the process is seen as a true

merger of that object with a much more massive one. Of course, this latter

phenomenon also has its counterpart in the filtering evolution of peaks: the

exact coverage of space by collapsing clouds guarantees that the increase, with
decreasing 8, of the volume (mass) of clouds associated with any accreting peak
is made at the expense of the volume (mass) of the collapsing clouds associated

with those peaks which become nested into it. (This alternate interpretation
of accretion is not systematically represented, however, in Fig.4.1 since this

would yield a continuous crowd of horizontal dashed lines starting from very
small scales.) In other words, the analogy about mergers, accretion, and their

interconnection, between gravitational and filtering evolutions is complete. It
is irnportant to note that the ambivalence of some processes of mass increase

depending on the viewpoint of the particular object whose evolution is followed
far from being a drawback of the conftuent system formalism is at the base

of. its great potential. For example, in the excursion set formalism where

there is no such ambivalence, accretion can only be treated as a series of

mergers with very tiny objects (see, e.g., Lacey & Cole 1993). But, then,
one cannot naturally distinguish such importaut events as the formation or

the destruction of an object because there is no clear difference, from any

viewpoint , between the mergers which characterize those notable events and
all the mergers which constitute of the accretion process experienced by the

object during its life. Thus, the possibility of following the mass increase of any
given object by making the natural distinction between accretion and merger
events is an important characteristic of the conftuent system forrnalism with
notable practical applications (see next Chapter ).
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4.3 The Scale Function

4.3.1 The Scale Function of Peaks with Fixed Density
Contrast

To compute the density of peak trajectories upcrossing the óe line in infinites

imal ranges of scale we must calculate the clensity of peaks on scale R with

density contrast larger than óe which eooloe into peaks with clensity contrast

equal to 01' lower than that value on scale R + 6R, with 6R positive and

arbitrarily small. That is, we must compute the density of peaks on scale R

satisfying: óe < Ó and s, 2: Ó + dó/dR 6R. From the results of § 4.2 we have

that these two constraints can be expressed as

(4.5)

This coincides with the procedure followed by B89 and AJ. The difference

between both approaches is that, contrary to these authors, we do not assume

that points which are peaks on scale R keep on being peaks on scale R + dR.

We have just taken into account the identification criterion among peaks on

different scales (wi th different locations, in general). This determines (see §
4.2) the density contrast of any peak at R + 6R in terms of that of the peak
at R identified with it and, hence, the condition for any evolving peak to cross

the threshold óe•

Now, following § 3.2.1 step by step, we can readily calculate the mean

density of peaks on scale R satisfying the constraint given by equation (4.5)
by taking the mean for the joint probability function P(Ó,11 = O, (A) of the
full random density field of these peaks. Variables r¡i ancl (A (A = 1, 2, 3,
4, 5, 6 stand for ij =11, 22, :3:3, 2:3, 1:3, 12, respectively) are the first and
second order cartesian derivatives of the mass density field smoothed 011 scale

R,respectively. To calculate tha.t mean it is convenient to use the new variables
lJ == ó/ao, x - -((1 + (2 + (3)/a2, y == -((1 - (3)/(2a2), and z = -((1 - 2(2 +
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(3)/(20"2), with O"j the jth spectral momentum

lOO
dk P(j+l)

O"J2(R) = 2 P( k) exp( _k2R2),
o 271" (4.6)

where P(k) is the power spectrum of the density field. The only difference

with respect to the usual procedure is that we must include the extra factor

D(X - xo) in the calculation of the mean density of peaks in order to obtain a

function of the variables Vo and Xo (:ro > O). This leads to

exp(-v2/2) [ (X-,V)2]Npk(v,X, R)dvdx= (271")2R�[271"(1-,2)]1!2f(x) exp -2(1-,2) dvdx

(4.7)
(dropping subindexes O), with f(x) the function given by equation [3.24],
, - 0"i!(0"00"2), and R* == y130"t!0"2' The density function of peaks satisfy
ing condition (7) is therefore

1

100 '1I1c+[<T2(Rl!<TO(Rl]XRLlRNpk(R, De) = lim
AR

dx dv Npk(ll, X, R),LlR_O U O �

(4.8)
with Ve = De/O"o(R). By integrating over I1 and X and dividing by �R we finally
obtain at �R --t O

N ( ')d H(¡,X*)ex)(_II;)0"2(R)RdRpk R, Ve R =

(271")2 R�
1

2 0"0 ( R)
, (4.9)

(4.10)

The scale function (4.9) coincides with that gíven by B89 and AJ (in the
latter case, except for a factor two in the expression finally quoted). It is
also similar to the expression given by equation (4.2) initially proposed by
Bond (1988). Indeed, an alternate expression for equation (4.9) in terms of
the density function Npk(ve, R) equal to the integral of Npk(llc, X, R) over the
whole range of positive values of X is
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Figure 4.2: Comparison between tlie seaIe funetion of peaks derived here (full
line), and tbe one guessed by Bond (1989) (dashed line) corresponding io tbe

present epoch in a univers with n = 1, A = 0, and a density fieId endowed

witiJ CDM (a) or n = -2 power-lew (b) power spectrum, normalízed to ilie

present rms density fluctuation insule a spliere of8h-1 Mpe equal to 0.67. The

value of ibe criticel density 8co used for eech power spectrum is the same as in

Fig. 3.4.

with

While, the relation

(4.11)

<x>= (4.12)

(4.13)
(Jo dR
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valid for the Gaussian filtering allows us to write equation (4.2) in the form

(4.14)

Equations (4.9) and (4.11) only differ by the effective scaled Laplacian x

appearing in both expressions. As shown in 4.2, this difference is negligible at

the large scale end when the approximation of rare events is valido However,
it introduces a notable deviation between the two functions at the small-scale

end. For power-law power spectra, P(k) ex: k" (-:3 < ti < 4), / is constant , R*
is proportional to R, and the function H is constant for small R. Since (T2/ (To is
proportional to R-2 the logarithmic slope at small R of the scale function (4.9)
or (4.11) is therefore equal to -4. As pointed out by AJ, such a steep slope
makes the mass integral diverge for collapsing clouds with M proportional to
R3• (This is the same to say that there is a divergent coverage of space by such

collapsing clouds). But we do not know the actual relation M(R). Moreover,
before applying the scale function (4.9) or (4.11) to objects we must correct it

for the cloud-in-cloud effect.

4.3.2 Correction for the Cloud-in-Cloud Effect

To perform this correction we must first compute the density of peaks at fixed

density contrast, subject to the condition of being located in some particu
lar background. Following just the same reasoning as in § 3.1 but from the
conditional density Npk(x, 1/, Rll1b, Rb) dx du given by equation() instead of the

density Npk(x, 11, R) dx du (equation [:3.2:3]), one is led to the following density
of peaks with density contrast 8c on scales between R and R + dR at points
with density contrast 8b on scales Rb

(4.15)
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where x. is defined as 11/, with

-2
_ 2[1 + 2(1- rI)2],-, E

1 2 '
-E

in terms of the spectral pararneters E == 0"6h/(O"QO"Qb), and rl = 0";h0"6/(0"6hO"i),
with O"jh(R, Rb) defined, for a Gaussian window, just as O"j (equation [4.4]) but
for the rms average scale Rh == [(R2 + Rn/2p/2. The conditional density given
in equation (17) can also be expressed as

(4.17)

in terms of the conditional density function Npk(l/, Rll/b, Rb) calculated in §
3.2.2 and the function <x> given by equation (4.12) now in terms of 1 and

x* instead of , and x*.

We are now ready to obtain the master equation yielding the scale func

tion of peaks at a fixed density contrast be corrected for the cloud-in-cloud

effect. The probability that a point is located inside the collapsing cloud as

sociated with a non-nested peak of density contrast be on some scale in the

range between n, and Rb + en, is p-l M(Rb) N(Rb, be) sn; where p-l M(Rb)
is the volume of the collapsing cloud associated with the non-nested peak, and
N(Rb, be) dRb is the unknown scale function of non-nested peaks. Given the

meaning of the conditional density (19) we are led to the following relation

Equation (4.18) is a Volterra type integral equation of the second kind for the

nesting-corrected scale function of peaks N(R, be). According to the theory
of integral equations, there exists a unique solution which can be obtained,
numerically, by iteration from the initial approximate solution Npk(R, be) given
by equation (4.9).

To corred the scale function of peaks for the nesting effect B89 used an

exclusion factor which can be interpreted as the Poisson probability that , in a

volume typically harboring one peak on scale R, there is no such peak located
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in the volume fraction independently subtended by collapsing clouds associated

with larger scale peaks. This correction is easier to implement than equation
(4.18). However, it is only well justified in the framework of the excursion set

formalism (Bond et al. 1991) dealing with the filtering evolution of fixed points.
On the contrary, the correction given by equation (4.18) is fully consistent with
the confluent system formalismo Moreover, it takes into account that the mean

density of peaks on scale R located in the collapsing clouds of larger scale peaks
is different from the global mean densify, at the base of the N-point correlations
among peaks neglected in B89's approximate expression.

But to solve equation (4.18) we must previously determine the function

M(R) in the kernel giving the mass of collapsing clouds associated with peaks
at scales between R and R + dR. In the spherical collapse model M(R) is

equal to 411"/3 p R3, that is, the mass subtended by a top hat window of scale

R. But we know that this simple model does not apply. In a similar manner

as the Gaussian window is better suited than the top hat one (§ 4.2), the

right function M (R) to use can notably deviate from that expression. On the

other hand, to obtain the mass function N(M, t) dM from the scale function

N(R, 8c) dR solution of equation (4.18), we also need the relation 8c(t) which,
for identical reasons, can notably deviate from the usual express ion for the

spherical collapse.

4.4 Dynamical Constraints on the M(R) AND
bc( t) Relations

4.4.1 The Mass vs. Scale Relation

In what follows, we will only consider the case of an Einstein-de Sitter universe

(O = 1, A = O). If the density field is endowed with a power-law power

spectrum there is no privileged time nor scale, So the scale function of peaks
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at a fixed density contrast must be self-similar. This means that if we define,
at any epoch, a characteristic length Re from sorne arbitrarily fixed value of

any physically distinguishable (although not privileged) quantity such as the

amplitude of density fluctuations, through, say, 0"0 (Re) = Óe, then any quantity
reporting to that characteristic length must be invariant in time. One of such

quantities is the number of peaks inside the volume R� with density contrast

0"0 (Re) (equal to óe) on scales R/Re in an infinitesimal range. The density
function of peaks with óe on scales in units of Re is equal to Re times the

function Npk(R,óe) given by equation (4.9). Thus, by multiplying this density
by R� and writting all spectral moments involved in terms of R, Re, and n we

are led to

1" k(R, óe) = (n + 5)2(n + 3)� H [n + :3 (!i)�] (!i)
-4

exp [_� (!i) n+3].p 12)6(271-)2 n+5 Re Re 2 Re
(4.19)

As can be seen, the right-hand side of equation (4.19) depends on R and óe just
through the ratio R/Re. Hence, I"pk is time-invariant. Likewise, the number
of non-nested peaks, I"(R, Óe) d(R/ Re), inside the same comoving volume with

density contrast (J"O( Re) (or Óe) on scales R/Re in an infinitesimal range must

also be invariant. Frorn equation (4.18) we have

1

1001"(R, óe) = I"pk(R/Re)-- d( Rb/Re) M(Rb) 1"( Rb/Re) Re Npk(R, óeln; Óe).
p R/Rc

(4.20)
By writting all spectral moments involved in the integrant on the right-hand
side of equation (4.20) in terms of R, Rb, Re, and n, we obtain a function of

R/Re and Rb/Re times an extra factor R-3 01', equivalently, an extra factor

R�. Thus, 1"(R, óe) in equation (4.20) will be invariant as required provided
only that the mass M(Rb) is proporiional to R�. Indeed, by multiplying and

dividing this integrant by R� we obtain a function of just R/Re and Rb/Re
and, by integrating it, a function of R/ Re as I"pk. We therefore arrive to the
conclusion that the dynamical consistency of the scale function solution of

equation (4.18) implies

(4.21 )
with q an arbitrary constant likely dependent on the spectral index n. The
natural volume subtended by a Gaussian window of scale R is (211")3/2 R3•
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So the meaning of q in equation (4.21) is simply the ratio between the true

Gaussian length of the collapsing cloud associated with a peak and the filtering
scale used to find it. (In principle, the invariance of J1(R, be) would also hold if q
were a function of RjRe. But this more general dependence of q is not allowed
because M can only depend on R, not on be') A third invariant function which

is then also guaranteed is the mass fraction in objects with masses, in units of

Me = M(Re), in an infinitesimal range. This is, by the way, the only invariant
function one has in the usual PS approach. But from equation (??) we see

that the function M(R) cancel s out in the explicit expression of this invariant.

This is the reason why one cannot use a similar reasoning as aboye to constrain

the form of M(R) in that approach.

Equation (4.21) is only valid in the scale-free case. Nonetheless, every

power spectrum can be approximated by a set of different power-Iaws in spe
cific finite ranges of the scale. Thus, under the reasonable assumption that

the dynamics of the collapse for a íluctuation of any given scale only depends
(statistically) on the distribution of density fluctuations on similar scales, the
form of M(R) for non-power spectra will approximately follow equation (4.21).
Sorne departure from that simple law cannot be avoided, for example, in the

case of the CDM spectrum if the values of the constant q for the two power
laws giving the asymptotic regimes at large and small scales are distinct. How

ever, provided that the values of q for different spectral indexes n are not too

different from each other, equation (4.21) will be a good approximation for
sorne effective fixed value of q dependent, in general, on the particular non
power-law spectrum used. Let us adopt , hereafter, this simplifying assumption
and check its validity a posteriori.

There is still another constraint 011 the function M(R). The nesting
corrected scale function must satisfy the normalization condition

loo M(R)1 = -- N(R,bc)dR.
o p

Equation (4.22) expresses the fact that the collapsing clouds associated with
non-nested peaks yield the exact coverage of space. (Remember that this is

equivalent to ask for any particle in the universe to be, at the time t, inside

(4.22)



4.4. Dynarnical Constraints on the M(R) AND 8c(t) Relations 93

sorne virialized object with the appropriate mass.) Condition (4.22) should be

automatically satisfied for any power-law spectrum. Indeed, as discussed at the
end of § 4.3, collapsing clouds associated with peaks prior to the correction for

the nesting effect yield, in this case, a divergent coverage of space. Hence, after
correction for the nesting effect one should end up with the exact coverage. As

a consequence, we expect the scale function N(R, De) to be correctly normalized
for whatever value of q. However, for non-power-law spectra, the coverage of

space by collapsing clouds associated with uncorrected peaks may not diverge
(for example, in the case of the CDM spectrum). Then, for any given value of De
there should be a unique effective value of q yielding the correct normalization.

But M cannot depend on De. We are therefore led to the following conclusion:

if the (effective) value of q yielding the correct normalization is the same for

every De there will be a unique physically consistent solution of equation (4.18),
while not, there will be no acceptable solution. It is worthwhile noting that ,
since the mass function given by equation (1) is always correctly normalized,
the form of M(R) in the PS approach, is not constrained by condition (4.22),
either.

In surnrnary, the existence of some consistent scale function N(R, De) is

only guaranteed in the scale-free case. Constant q is then a free parameter.
For non-power-Iaw spectra it is hard to tell a priori whether or not there is

sorne consistent solution. But if there is, the effective value of pararneter q is

autornatically fixed.

4.4.2 Overdensity vs. Collapse Time Relation

The previous argurnents only concerned the scale function of peaks with fixed

density contrast De at ti. Let us now turn to the corresponding mass function
of objects at t. For this mass function to be well-defined, that is, independent
of the arbitrary initial time ti chosen, 8c must be proportional to a(ti). Indeed,
on changing ti the values of the spectral parameters " CTJ/CT2, and CT2/CTo do
not vary, the only variable affected being l/e or, more exactly, CTo which appears

dividing De in the scale function (4.9) as well as in the conditional density of
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peaks in the kernel of equation (4.18). Since 0'0 changes as a(t¡) be must also

vary as a(ti) in order to balance that change. Therefore, the most general form
for the critical overdensity vs. collapse time relation is

(4.23)

For the scale-free case, any change in ti and t determining the same cosmic

expansion factor a(t)ja(t¡) should go unnoticed. (There is no absolute refer

ence to assess the shift produced in the uorrnalization of the power spectrurn,
that is, in the value of 0"0.) Therefore, De{) in equation (4.2:3) must be constant

and equation (4.23) reduces to the usual expression for the spherical collapse
model except for the fact that the value of Dco can be different from 1.69 and

possibly depend on the power index n. For non-power-Iaw spectra, there is

no obvious constraint on De{)(t). The spherical collapse model suggests that it

should not be far from constant , but some slight departure is probable, just as
for q in the function M(R) discussed aboye. However, for identical reasons, we
will assume that De{) is approximately equal to some effective constant value

dependent, in general, on the particular non-power-Iaw spectrum used, and
check a posteriori the validity of this approximation.

A last comment is in order concerning the constants De{) and q. In the

PS approach and a power-law spectrum , there is a degeneracy in their values,

One can take any of them fixed according to the spherical collapse moclel and

adjust the value of the other one by, Ior instance, fitting the mass function of
virialized objects obtained from N-body simulations, This is due to the fact
that the rnass fraction in virialized objects, the only time-invariant function
we have in this case, depends on q and [¡co only through the characteristic
mass Me = M(Re) (see, e.g., Lacey & Cole 1994). As a consequence, every
cornbination of the two parameters leading to the same value of Me yields
the same mass fraction 01', equivalently, the same family of mass functions
for different times. In contrast , there is no sueh degeneracy in the peak model
framework. The mass fraction in objects depends 011 q and ¡jeO not only through
Me, but also through q separately, Indeed, the mass Af(Rb) appearing in the
invariant number of non-nested peaks inside the volume R� (equation 4.20])
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depends only on q and the situation does not improve when that number is

multiplied by M(R)j(p R�) in order to obtain the mass fraction in objects. The
fact that, in the peak model, a change in q cannot be balanced by any change
in bcO is not surprising since the parameter q controls by itself the importance
of the nesting effect. Indeed, the value of q determines the invariant fraction

of non-nested peaks, equal to the ratio of equations (4.20) and (4.19).

4.5 The Mass Function of Objects

The resulting mass function of objects in an Einstein-de Sitter universe is

dR
N(M, t) dM = N(R, Dc) dM dM, (4.24 )

with N(R,bc) given by equation (4.18), M(R) by equation (4.19) for some

unknown constant q, and Dc(t) by equation (25) for bco another unknown con

stant. Of course, the existence of any consistent solution is not yet guaranteed
(see the end of § 4.4.1). Moreover, for any solution to be dynamically accept
able it must be close, for any value of t, to the PS mass function with top hat

window and 8cO = 1.69 because this gives good fits to the mass function in

ferred from N-body simulations. The situation is specially critical in the case

of non-power-Iaw spectra because the similarity between both mass functions
for different values of t is not trivial (they are not self-sirnilar ), and there is

just the free parameter 8cO to be adjusted.

For a given power spectrum and sorne arbitrary fixed values of t and ti, we
have solved equation (20) as indicated at the end of § 4.:3 by choosing the value
of q that satisfies, for each different value of Dcü tried, the normalization con

dition (4.22). In the case of power-Iaw spectra we find that the normalization
condition (4.22) is satisfied by any value of q and DcO, as expected. (Varying
bcO is equivalent, for a fixed value of ti, to vary 8c') In the case of the CDM

spectrum, the correct normalization is only obtained for one specific value of q
for each 8co tried, also as expected. What is most rernarkable is that this value
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Figure 4.3: Dependence on Ócü o[ [he pererneiet q Ior the CDM spectrum
assuming tbe sarne rnass vs. scsle teuuion as [ound Ior power-law especire:

of q is quite insensitive to Ócü just as needed for our simplifying assumption on

the shape of M(R) in that case to be acceptable. As shown in 4.3, q exhibits

only a 10 % variation around the value 1.45 for values of óco expanding along
two decades.

It is worthwhile rnentioning that the nonnalization condition (4.22) can

be checked very accurately. Apart from numerical roundoff errors, there is a

sorne uncertainty arising from the fact that to estímate the total mass integral
we rnust extrapolate to R = O the scale function obtained down to sorne

non-vanishing scale. In the case of power-law spectra, we cannot directly
reach R = O because of the divergence there of the spectral rnornents. Yet,
a log-log extrapolation gives an excellent approximation to the total rnass

integral which turns out to be correctly normalized up to an accuracy of 10-5.
In the case of the CDM spectrum, one cannot trust the scale function at

srnall scales because of the poorly known shape of the power spectrum at very

large k (all available analytic approximations are only valid up to sorne finite
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wavenumber). Nonetheless, the total mass integral is essentially controlled, in
this case, by the well-determined large-scale end of the scale function so that

the result is also reliable. After trying with different analytic approximations
for the CDM power spectrum, all with the expected k-3 asymptotical behavior,
we can ascertain that the values of q satisfying the normalization condition for

any given bcü are correct within 1 % of accuracy.
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Figure 4.4: The final mass functions specified in §4 . .5 (see text for tbe values

of q and bcü) for tbe same specir« as in Fig. 2 (fulllines) competed witl: PS

original, correctly normalized, rnass iuuctions for iop-lui; filtering and bcü =

1.69 (dashed lines). In each panel we plot the solutions corresponding to two

different epochs: tlie present time (curves reecliiug higher masses) and ihe

time at wbicu tbe cosmic scale Iectot was a ieutu of its current vslue.

In Figure 4.4 we plot, for the same power spectra as in Figure 2, the
solutions obtained for the values of the parameters q (if free) and bcü which
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give the best fit to the corresponding PS mass function. As can be seen, the

similarity between both solutions in the CDM case for Dcü � 6.4 (and q � 1.45)
is remarkable. This confirms that the relation M(R) can be approximated,
indeed, byequation (4.22). The similarity between both solutions also holds for

any power-law spectrum tried. The solution plotted in Figure 4, corresponding
to n = -2, is obtained for Dcü � 8.4 and q � 1.45. (Spectral indexes larger
than -2 lead to values of q slightly smaller than 1.45. So the equality in the

preceding two values of q is a mere coincidence.) Finally, Figure 4 also shows

that these similarities hold for any value of t as required. Thus, the valiclity
of our simplifying assumption that Dcü( t) in equation (24) is approximately
constant in the CDM case is also confirmecl.

More accurate values for the constants q and DeO require the direct fitting
of the mass function inferred from N-body simulations. In any event, there is
little doubt on the marked departure of Dcü from 1.69. This is not only caused

by the departure from the spherical collapse, but mainly by the values of q
found. These are large comparecl to the value of 0.64 yielding the same mass

in objects for the Gaussian window as fol' the top hat one with identical scale
R. But the collapse at the correct time of a large cloud requires (at least in
the spherical collapse framework) a large value of the density contrast averaged
just in the small central region. Hence, it is not surprising that large values of

Dcü are couplecl to large values of q, while the values of both parameters cannot
be reduced because there is no degeneracy in the coufluence system formalismo

To condude we want to stress that the present derivatiou of the mass

function of objects relying just on the validity of the peak model ansatz has
turned out to be an important test for this latter model. The fact that it
has been possible to derive a fully cousistent , well justified, and dynamically
acceptable mass function gives strong support to the statistical validity of
that simple moclel of structure formation provided, of course, the use of the

appropriate window and M (R) and De( t) relations.
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THE GROWTH HISTORY OF

OBJECTS

5.1 Introduction

In the most studied scenario of structure formation via gravitational instability
from a primordial random Gaussian field of density fluctuations, a first irnpor
tant step towards the construction of a clustering model was achieved by PS
who derived a practical analytical estímate of the number density of objects
of a given mass at any given epoch. This mass function was later on shown
to agree with N-body simulations (see Manrique & Salvador-Solé 1995a, for

references). But the mass function alone does not provide all the information

required in many cosmological problems. The rates at which objects grow and

the characteristic times of this process are also needed (e.g., Toth & Ostriker

1992; Richstone, Loeb, & Turner 1992; Kauffman, White & Guiderdoni 1993;
Lacey & Cole 1993; Conzález-Casado, Maman, & Salvador-Solé 1994; Kauff
man 1994; González-Casado et al. 1995). Richstone, Loeb, & Turner (1992)
used the time evolution of the PS mass function to estimate the formation

rate of objects of mass M at different epochs, However, this is not yet a very

99
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accurate estimate since the time derivative of the mass function is equal to the

rate at which objects reach mass M tninus the raie at which they leave this

staie , both terms having comparable values.

Following the PS original prescription or a better sound version of it using
the excursion set formalism, Bower (1991) and Bond et al. (1991), respectively,
derived the mass function of objects of given mass at a given epoch subject
to the condition of being part of another object with a larger mass at a later

time. This conditional mass function was used by Lacey & Cole (1993; LCa;
see also Kauffmann & White 1993) to infer self-consistent estirnates of the

instantaneous merger rate and the typical age and survival time of objects.
Although this clustering model has been shown by Lacey & Cole 1994 (LCb)
to agree with N-body simulations there is the formal caveat , as recognized by
these authors, that the PS approach on which it is based is rather heuristic. In

particular, the seeds of objects are rather fuzzy regions. (As a consequence, one

cannot really count objects with a given mass but just calculate the probability
that a given point is in a halo of that mass, This is at the base of a slight
self-inconsistency in the analytical estirnate of the formation time for power
spectra with index n > O; see LCa.) Furtherrnore, no natural clistinction is

made between merger and accretion. Indeed, the conditional mass function
enables one to follow any instantaneous mass increase of objects, generically
called "merger". Accretion does not play any role in this model. It is true

that any merger with objects of mass below some arbitrary resolution can

be interpreted as an accretion process. But this only enters in the graphical
representation of the evolution of objects; an infinite resolution is used in all

explicit calculations.

Although the interpretation that accretion is nothing but the merger of a
massive object with a very tiny one is correct frorn the viewpoint of the tiny
object, destroyecl in the event, it is not from that of the massive one. Incleed,
this does not account for the fact, characteristic of accretion as comparecl to
a true merger, that the massive object surnioes, that is can be identified to

the bound virialized object resulting from the capture of the tiny one. It
can be argued that the fact that one given event can be regarded either as
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accretion or as a true rnerger depending only on the particular object whose
evolution is being followed reveals that the distinction between these two kinds

of events is a mere convention. Yet, the possibility to achieve this convention

in a natural manner is crucial for the idea itself of the "growth history of

objects". This presumes, indeed, that the mass increase of a bound virialized

object can be followed since its formation until its destruction. In other words,
there must be sorne natural difference between "srnall" captures contributing
to the (quasi- )colltillUOUS mass increase of objects, the so-called accretion, and
"large" captures, called mergers, clestroying ancl giving them rise. Since such

a natural distinction is not macle in the LCa moclel, it is not surprising that

the formation, destruction and mass accretion rates, and the age and survival

time of objects are strictly rneaningless in this modeling. There is, instead, only
one rather arnbiguous "merger" rate, while these latter characteristic times are

artificially and somewhat arbitrarily defined. For exarnple, the forrnation time

of an object of mass M at t is defined as the cosmic time at which sorne

ancestror reaches for the first time a mass equal to M/2. Why half the mass

and not any other fraction of i t? (Note that for a fraction smaller than 1/2, the
adopted definition would not even guarantee that such a "rnain parent" keeps
on being so at any later epoch.) What is more important, is the mass increase

by a factor two of the "main parent" object quasi-coutinuous and peaceful or,
on the contrary, is it rather concentrated on one single event at some particular
moment?

Here we propose an altérnate clustering moclel, based on the peak model

ansatz, intended to avoid the main drawbaks of the previous model. In pa

per 1, we presented the so-called confluent system forrnalism, able to follow the

filtering evolution of peaks (see also Salvador-Solé & Manrique 1994). This for
malism was applied to derive a mass function of objects fully justified within
the peak rnoclel framework, which approximately recovers the PS mass func
tion for appropriate values of two free parameters governing the dynamics of

collapse. (A deeper insight into this model is also given in Salvador-Solé &

Manrique (1995).) In the present paper, we apply this formalisrn to calculate
the aboye mentioned rates and times characterizing the growth history of ob

jects, The new clustering moclel is similar to that cleveloped by LCa in the
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sense that these quantities are derived from the statistics of the random density
field at a fixed, arbitrary, epoch after recombination when ftuctuations are still

linear (and the growing factor only depends on time at all interesting scales)
and Gaussian distributed, and the dynamics of collapse are approximated by
the extrapolation of the linear theory (for the growing mode) according to the

spherical model. However, the new model is physically better motivated since

the assumed seeds of object are peaks instead of the fuzzy regions considered

in the PS approach, and the natural distinction is made between merger and

accretion. In § ,5.2 we remind the basic lines of the conftuent system formal

ism. In § 5.3 we derive the instantaneous formation, destruction, and mass

accretion rates of objects. Their typical ages and survival times are calculated

in § 5.4. Conclusions are drawn in § 5.5.

The notation used in this paper is the same as ll1 papel' I. Since many
calculations are based on results obtained by Bardeen et al. (1986; BBKS)
we have kept as close as possible to the notation introduced by these authors.
The main difference comes fr0111 the fact that we deal with three different

kinds of densities, while BBKS only dealt with one. Especial caution must be

made in not mixing them up. Firstly, there are the normal and conditional

density functions of peaks ai a fixed filtering scale R per infinitesimal ranges
of 11, i.e., the density contrast 8 scaled to the rms value ao(R), and other

possible variables. These were already defined in BBKS and are denoted by
a caligraphic capital n just as in that paper. A minor difference with the
notation used in BBKS is that we specify the fixed value of the filtering scale
R as one parameter. For example, we write N(II, R) du instead of #(1/) du,
Second, there are the normal and conditional density functions of peaks at a

fixed density contrast 8 per infinitesimal ranges of the filtering scale R and
other possible variables. These density functions, already introduced in paper

1, are denoted by aroman capital n with the fixed value of 8 as one pararneter.
We write, for example, N(R, 8) dR. Finally, and this is a novelty, there are also

density functions per infinitesimal ranges of both R and 8 (or the corresponding
mass M and time t, respectively) and any other extra variable. These are

denoted by a capital n in boldface, for example, N(R, 8) dR d8. These different

symbols, N, N, and N, are usually accompanyed by one superindex specifying
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the characteristic property (if any ) of the peaks involved and the subindex pk
or no subindex at all depending on whether all peaks with that characteristic

property are included or just those of them tracing bound virialized objects
(see § 2), respectively. Hereafter, all quantities are comoving.

5.2 The Confluent System: Basic Results

According to the peak model ansatz , there is a corresponden ce between peaks
of fixed linear overdensity in the filtered density field at sorne arbitrary initial
epoch ti and objects at the time t. The overdensity Óc is assumed to be a

decreasing function of the collapse time t and the filtering scale R, at least
in the strict version of the model assumed here, an increasing function of the

mass M of the resulting objects. This leads to the natural identification and

distinction between each other of accretion and merger events in the filtering
process. A peak on scale R+6.R, witb 6.R positive and arbitrarily small, is the
result of the evolution by accretion of a peak on scale R provided only that the
volume (mass) subtended by tbe former is embedded within that subtended by
the latter. (Strictly, we should talk ahout volurnes subtended by "collapsing
clouds associated to peaks", i.e., the regions surrounding each peak which

enclose a total mass equal to that of the corresponding final object at t, rather
than volumes subtended by "peaks". Likewise, we will say "nested peaks"
instead of "peaks with nested associated collapsing clouds".) Whenever the

identification between couples of peaks on contiguous scales is not possible,
that is, whenever there is a discrete jump in scale between two consecutive

embedded peaks, we are in tbe presence of a merger. It is important to mention

that the filtering of the density field must be carried out with a Gaussian
window for the density contrast Ó of peaks to diminish with increasing filtering
scale R as required by consistency with the growth in time of the mass of

objects. Hereafter we assume this particular window.

When an object evolves by accretion its associated evolving peak traces a

continuous and derivable trajectory ó(R) in the ó vs. R diagram. (We are as-
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suming a continuous and infinitely derivable density field.) In contrast, when
an object merges the evolving peak tracing it becomes nested on a larger scale
peak with identical 8, which yields a discrete horizontal jump in scale of the

associated peak trajectory in the 8 vs. R diagram. Therefore, to compute
the density of objects at t in an infinitesimal range of masses dM we must

calculate the density of non-nested peaks with fixed value of 8 appropriate to

t on scales in the infinitesimal range dR corresponding to dM. This density,
N(R, 8) dR, can be obtained from the density of peaks satisfying identical con
straints although disregarding whether they are nestecl 01' not, Npk(R, 8) dR,
and the density of these same peaks subject to the condition of being located

in a background with the same density contrast 8 on a different filtering scale

R', Npk(R,8IR',8') dR. Indeed, these three quantities are related through (see
eq. [A13])

N(R,8) = Npk(R,8) - ('Xl dR' M(R') N(R',8) Npk(R,8IR',8). (5.1)JR P

This is a Volterra type integral equation of the second kind for the unknown
function N(R,8) from the known ones Npk(R,8) and Npk(R, 81R', 8), respec
tively equal to Npk(IJ, R) < x > 0"2 RjO"o and Npk(IJ, Rll/, R') <x> 0"2 tu»; in
terms of the normal and conditional density functions of peaks at a fixed scale
R per infinitesimal range of t/ = 8jO"o, calculated in § :3.2, a¡ are the i-th order

spectral moments, which only depend on R, and < x > and <x> are sorne

averages of x == -(0"2 R)-18R8, which clepend on R and 8 as well as on R' and
8' in the latter case, defined in § 4.3. The mass function of objects at t is then

simply given by

(dM)-1N(M,t)=N(R,8c) dR ' (5.2)

with the dependence on R and t on the right hand side respectively given
by the same function M(R) appearing in the kernel of equation (5.1) and the
relation 8c( t) = 8 between the density contrast at ti and the collapse time t. As
shown in paper 1, very general consistency arguments allows one to determine
the shape of these two relations as

(5.3)
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with q a constant equal to "-' 1.45 for both the CDM and the n = -2 power-law
spectra (in the power law case, the larger n, the smaller q), and the relation

8(t)=8 a(ti) =8 (ti)2/3e cO
a( t)

cO
t

with a the cosmic scale factor and 8cO a constant equal to '" 6.4 and 8.4 for the

CDM and the n = -2 power-law power spectra. Strictly, equations (5.3) and
(5.4) are only valid for the scale-free case, i.e., a power-Iaw spectrum and an

Einstein-de Sitter universe (O = 1, A = O). However, as shown in Chapter 4

they are also good effective relations for other power spectra such as the CDM

one. Furthermore, following the same strategy as in LCa, it should be possible
to extend the applicability of the model to the cases O =J 1 and/or A =J O.

The values of parameters q and 8cO quoted aboye correspond to those giving
acceptable fits to the original PS mass function (i.e., for top hat window and

a critical threshold equal to 1.686) for tbe same cosmogonies. This tends to

priviledge the small mass end while tbe model will finally be applied rather to
massive objects, Thus, finer values of these parameters should be inferred by
directly fitting N-body simulations in tbe relevant cosmological scales.

(5.4)

In the present paper we are concerned with the density of objects forming
or being destroyed in a given interval of time. Given the characterization of

accretion and merger in the confluent system formalism, it is clear that the

density of objects merging and, hence, being destroyed in a given interval of

time is simply equal to the density of non-nested peaks which become nesied

along the corresponding decrement in 8. But to calculate the density of forming
objects we must first characterize those mergers which contribute with ihe

appearatice of new objects, As just mentioned, when an object merges the
non-nested peak tracing its evolution in the {j vs. R diagram experiences a

discrete jump in the scale. This does not mean, of course, that every non-nested

peak partaking of the same event necessarily experiences this kind of jump in

the scale. The largest scale peak will the most often just keep on evolving
in a continuous manner. This refleds the well-known fact in gravitational
clustering that a merger from the viewpoint of one given object can be a simple
accretion from the viewpoint of the most massive partner. It will sometimes

happen, however, that the scale of the largest scale peak also experiences a
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discrete jump. Then, it will not be possible to identify the final non-nested

peak with any of its ancestrors, This appearance of a new non-nested peak
therefore traces the forrnation of a new bound object. Therefore, to calculate

the density of forming objects in a given interval of time we must compute
the density of non-nested peaks which appear, in the previous sense, along the

corresponding decrement of b.

Before entering in these calculations a last remark is in order. The con

tinuous trajectory attached to an accreting non-nested peak can be suddenly
truncated (i.e., it is impossible to identify the peak at the current 5 with any

peak on the infinitesimally contiguous scale) without becoming nested. In the

peak model framework, this kind of filtering event can only be interpreted as

tracing the split of a bound virialized object in small pieces. Since this is un

realistic from the gravitational viewpoint , this kind of filtering events clearly
invalidate the use of the confluent system formalism to follow the clustering
process of individual objects. However, our aim here is not to follow the clus

tering of individual objects but just to own a good etaiisiical description of the

general clustering process. And what we only need for this to be possible is the

nei density of appearing non-nested peaks (once the density of disappearing
ones has been substracted ), which reflects the density of forming objects, be
positive. On the other hand, peaks not only become progressively nested into
each other but they can sporadically leave their hosts, which is, once again,
unrealistic in terms of virialized objects. Hence, we also need the net density
of peaks becoming nested (once the density of peaks leaving their hosts has
been substracted), which reflects the density of merging objects, be positive.
As shown below, these two conditions are only fulfilled for massive objects.
But this shortcoming is rather formal since the validity of the model in any of
its forseeable applications seems to be, in any eveut , guaranteed.

The reason why this model can only apply to massive enough objects is
clear: for any given be, the larger the scale, the higher the peak amplitude
as compared to the typical density fluctuation given by ao(R), and the closer
is the dynamics of collapse to the spherical approximation at the base of the

peak model ansatz. Indeed, the higher the peak, the more spherical its shape
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and the more negligible the shear caused by the surrounding matter. Both

the CDM and power-law power spectra used here to illustrate the general be
havior of the modellead to hierarchical clustering (in the bottom-up fashion).
In other words, their rms density contrast, 0"0, decreases with increasing scale.

This implies that, on decreasing 8e as the time goes by, the fraction of peaks
with scale larger than any arbitrary fixed value tends to increase. Therefore,
the nesting of smaller scale peaks tends to increase which explains that the two

net densities above are usually positive. Note that, according to this argument,
the steeper the power spectrum tbe less restrictive should the minimum mass

of validity of the model be, in agreement with what is found. (This would

explain the observed trend of the limiting mass with t, or 8e, in the case of

the CDM spectrum, since the characteristic wavenumber of objects collapsing
at earlier times corresponds to a steeper regime of the power spectrum.) Con

versely, would the power spectrum not lead to hierarchical clustering, the two

net densities above would hardly be positive even for very massive objects.
However, structure formation in the top-down fashion requires the action of

physical processes other than just gravitational instability. So this kind of

clustering is anyway outside the scope of the present model.

5.3 Growing Rates

As explained in the preceding section, objects merging (and being destroyed)
in the interval dt are traced by peaks becoming nested within larger scale peaks
in the corresponding range -d8. The net density of peaks with 8 on scales be

tween R and R+dR becoming nested in non-nested peaks with 8 -d8 on scales

between R' and R' + dR', Nd(R � R',8) dRdR' d8, is calculated in Appendix
B. By dividing it by N(R, 8) dR we obtain the conditional probability that a

non-nested peak with 8 on scales between R and R + dR becomes nested into

a non-nested peak with 8 - d8 on scales between R' and R' + dR'. And from
this conditional probability we can readily infer the instantaneous true merger
or destruction rate at t for objects of mass 11,1 per specific infinitesimal range
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of mass M' (M < M') of the resulting objects,

d I Nd(R � R',8c) (dMI)
-1

I es, Ir (M � M ,t) = N(R,8c) dR' di' (5.5)

with R, R', and 8c on the right hand side written in terms of M, M', and t,
respectively, through equations (5.3) and (5.3).

a b

10-' 10° 10' 102
MI/M

Figure 5.1: Instantaneous destruction (01' true merger) rate at the present
time Iot an object with mass MjM0 eque] to 0.5 1014 (the lowest curve), 1014,
2 1014, 4 1014, and 8 1014 (the highest curve) as a Iunction o[ tlie rnass t::.M oi

the merger partner Ior the CDM (a) and n = -2 power-Iaw (b) power spectra,
boi]: normaJized to 0-(8 h-1 Mpc) = 0.67 in an Einstein-de Sitter universe with

h = 0.5.

This true merger or destruction rate is plotted in Figure 5.1 for different
masses of the initial object M and a fixed tegual to the present time. As
the mass M diminishes, a small dip develops at intermediate values of the
mass of the final object M' (or the mass of the merger partner t::.M == M' -

M), which becomes more and more marked, finally reaching negative values.
This therefore establishes a lower bound in M for the possible validity of
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the present estimate of the merger rateo This minimum mass increases with

increasing t not only in the power-Iaw cases owing to the self-similar character

of such cosmogogonies, but also in the CDM case. The latter behavior is also

well understood since the smaller t, the steeper the CDM power spectrum at

wavenumbers relevant for objects having previously collapsed. At the present
epoch, the minimum mass is, in fact, quite small; we find '" 2.5 109 and '"

2.5108 Me!) for the CDM and n = -2 power law spectra, respectively) but still
comparable to the mass of dwarf galaxies. And at a moderate redshift of just
1.25 it already becomes as small as rv 1.8 106 and '" 1.1 106, respectively, which
encompasses all relevant cosmological scales. It is worthwhile mentioning that
the previous results correspond to the approximate values of q and 8cO quoted
aboye. So they might appreciably change when using finer values drawn from

the direct fit of N-body simulations.

These minimum masses only guarantee the self-consistency of the model
for more massive objects; they do not guarantee its gooclness. In fact, the true

merger rate given by equation (.5.5) shows a very clifferent behavior than that

obtained by LCa. As shown in Figure 5.1, the former vanishes at small /),M

while LCa's diverges (see their Fig. 1). But this does not mean that the merger
rate derived here is wrong. Actually, a merger rate with a divergent behavior
for vanishing partner masses as that founcl by LCa is not fully satisfactory
because when one massive object captures a very tiny one it remains essentially
unaltered during the process (in particular, the virial equilibrium is always
approximately satisfiecl) which allows one to identify it as the same bound

object before and after the capture. Hence, this capture corresponds, from the

viewpoint of that massive object, to an accretion rather than a true merger in

which the initial object is destroyed and a new object emerges. Consequently,
the true merqer 01' destruciion raie should vanish for small partner masses,

just as obtained from the confluent system formalismo The reason why LCa's

merger rate diverges at small part.ner masses is simply that, as mentioned,
what these authors call "merger" is any mass increase of the object whether or
not this causes its destruction. It therefore includes not only true mergers but
also accretion. Now, the density of tiny objects capable of being accreted by
any given object diverges at the small mass end. Rence, it is well understood
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that such a merger rate diverges at small partner masses in contrast with

what is expected for a true merger rateo It could be argued that the correct

behavior of LCa's merger rate is confirmed by N-body simulations. However,
what is actually compared with simulations in LCb is not the merger rate, but
the conditional probability that given an object of fixed mass at sorne initial

epoch it is incorporated within a larger mass object at a later time. And this

conditional probability does not distinguish, of course, between merger and

accretion.

From the confluent system formalism making the natural distinction be

tween accretion and merger we can also calculate the transition rate including
any kind 01 capture, true mergers and accretion. Equation (5.5) gives the rate

at which objects of mass M merge and are destroyed giving rise to objects of

mass M'. But from the viewpoint of such resulting objects the process can be

seen either as accretion if they can be identified with the initial (most mas
sive) object partaking of each event or true merger if they cannot. Thus, the
instantaneous accretion-l-rnerger, or simply capture, rate for final objects of

mass M' per specific infinitesimal range of the captured mass M (M < M') is

,C(M' t- M ) =
l'd(M -+ M', t) N(M, t)

1 ,t
N(M',t)

,

with rd given by equation (5.5). This composite rate is plotted (for masses

within the validity range of the model) in Figure 5.2. As expectecl, it shows the
same divergent behavior at small captured masses as the LCa rateo Note that
these two composite rates are strictly not comparable since the merger-í-accretion
or capture rate given by equation (,5.6) refers to the fixed mass M' of the final

object, while LCa's refers to the mass of the initial object. (In particular,
our rate is only defined for M/M' smaller than one, while there is no such
restriction in the corresponding values of 6.M/M of the LCa rateo This causes

the steeper behavior of our rate as compared to LCa's.) However, that differ
ence tends to vanish at small partner or captured masses since the masses of
the initial and final object tencl to be equal there. Therefore, the divergent
shape of both curves in this mass regime really reflects the similar behavior of
the two models when both merger and accretion events are included without
distinction.

(5.6)
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Figure 5.2: Insienieneous capture (or eccreiion-i-merger] rete at the presetii
time for a final object witli rnass M' /M8 equal to 0.5 1014 (the higbest curve
on the left), 101\ 2 1014, 4 101\ and 8 1014 (the lowest curve on the left) as a

function of tlie mass M of tbe captured objecis for tlie sarne cosmogonies (a)
and (b) as in Fig. 4_1_

The previous destruction and capture rates are per specific infinitesimal

range oí mass oí the final or collected objects, respectively. To derive the

respective global rates we must simply integrate equation (5_5) over the mass

M' oí the final objects,

(5.7)

and equation (5.6) over the mass M of the collected objects

(5.8)

Note that these global rates are obviously positive clown to much smaller
masses M or M' than their respective specific ones.
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Let us now turn to the formation rateo Objects forming in the interval

of time dt from the merger (from any viewpoint) of similarly massive objects
are traced by peaks appearing in the corresponding range of density contrasts

-dó without being nested within larger scale peaks. The net density of non

nested peaks appearing between Ó and Ó - u, Nf (R, ó) dR as, is calculated

in Appendix C. By dividing it by N(R, ó) dR we are led to the conditional

probability that a non-nested peak with scale R appears between Ó and Ó - dó.

Therefore, the instantaneous formation rate at t of objects of mass M is

f(M )=Nf(R,Óc)ldÓclr ,t
N(R,óc) dt'

with R and Óc on the right hand side written in terms of M and t, respectively,
through equations (5.3) and (5.4). This formation rate is plotted in Figure
5.3.
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Figure 5.3: Instantaneous Iottneiiou rete at two dífferent epochs as a functíon

of the mass M in uníts of MG = 1012 M0 oi objects ior the sanie cosmogonies
(a) and (b) as in Fíg. 4.1.

Finally, by multiplying equation (5.5) by tlA! = M' - M we obtain the

specific rate at which the mass M of objects is increased at the time t ow-

(5.9)

b
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ing to (true) mergers and, by integrating this latter function over M', the

instantaneous typical mass increase rate owing to mergers for objects of mass

M

(5.10)

Likewise, from equation (5.6) we can obtain the instantaneous typical mass
increase rate for objects of final mass M' owing to accretion and merger,

(5.11 )

As shown in Appendix D, the idea of a transition rate, by accretion, similar
to those given by equations (5.5) or (,5.6) is meaningless because accretion is a

continuous instead of a discrete process of mass increase. In contrast, the mass

increase rate by accretion does make sense. The instantaneous mass accretion

rate for objects of mass M follows from tbe instantaneous scale increase rate

of the corresponding peaks as they evolve along continuous and derivable tra

jectories in the 8 vs. R diagram. This latter rate depends on the particular
value of the scaled Laplacian x of the peak which is being followed. However,
since we are interested in the typical mass accretion rate for objects of mass
M disregarding any other property we must average over x. This is done in

Appendix D. The result we are led is

a
1

( dR)
-1

I ss, Irmass(M, t) =
< X > 0"2 R dM dt ' (5.12)

with R and 8e on the right hand side written in terrns of M and t, respectively,
through equations (5.3) and (5.4) and < x > the average mentioned in the
discussion following equation (5.1).

It is important to outline that , in contrast to the transition rates (5.,5) to
(5.9), defined in the usual manner, i.e., norrnalized to the number density of

objects in the state of reference, the mass increase rates (5.10) to (,5.12) have
not been norrnalized to the reference mass.



114 Chapter 5. THE GROWTH HISTORY OF OBJECTS

5.4 Growth Characteristic Times

From the meaning of the global merger rate, equation (5.7), we have that

the density Nsur(t) dM of objects surviving (i.e., having not merged but just
accreted) until the time t from a typical population with masses in the range
between Mo and Mo + dM at to < t is given by the solution of the differential

equation

d�;ur = -r.d[M(t), t] «:«, (,5.13)
with initial condition Nsur(to) = N(Afo, to). In equation (,5.1:3) and hereafter,
the function M(t) is the typical mass at t of such accreting objects, given by
the solution of the differential equation

d�1 = r�laSs[M(t), t], (,5.14)

with initial condition M(to) = Mo. Indeed, fr0111 equation (5.12) we have that
the typical mass of objects evolving by continuous accretion increases with
time according to equation (5.14). The solution of equation (5.13) is

Nsur(t) = N(Mo, to) exp{ -1: rd[M(tl),t/]dtl}. (5.15 )

Hence, by defining the typical survival time tsur(Mo, to) of objects with masses

between M¿ and Mo + dM at to as the interval of time since to after which
their initial density is reduced (owing to mergers) by a factor e, we are led to

the equality tsur = td - t«. with the destruction time td(Mo, to) given by the
solution of the implicit equation

(5.16)

In addition, the typical mass accreted by those objects until they merge and

disappear is M[td(Mo, to)] - M«. (Note that what Lea called survival time
would rather correspond to what here is called destruction time.)

In a fully similar manner, we can infer the typical age of objects with masses

in the range between Mo and Mo + dM at to, that is, the typical interval of
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time since the last merger giving them rise. The density Npre(t) dM of these

objects pre-existing (i.e., having just accreted matter since then) at a time

t < to is given by the solution of the differential equation

d�;re = rf[M(t), t] N[M(t), t] - rd[M(t), t] Npre(t) (5.17)

with initial condition Npre(to) = N(Mo, to). The solution of equation () is

N(M t) fO rd[M(t'),t'] dt'
o, o e I

{1 - r dt' N[M(t'), t'] l'f[M(t'), t'] e- JI�O rd[M(t"),t"]dt" \5.18)Jt N(Mo, to) f
x

Thus, by defining the typical age tage(Mo, to) of objects with masses between

Mo and Mo +dM at to as the interval of time until to before which their density
(owing to their progressive formation) was a factor e smaller, we are led to the

equality tage = to - tf, with the formation time tf(Mo, to) given by the solution

of the implicit equation

1
-1- fO(M ) rd[M(t'),t'] di'e I¡ 0,10

+ (to dt' N[M(t'), t'] 1.f[M(t'). t'] e- J;�o rd[M(t"),t"]dt".
Jt¡(Mo,to) N(Mo, to)

, (5.19)

And the typical mass accreted by these objects since they formed is Mo -

M[tf(Mo, to)].

These typical ages and survival times are plotted in Figures S.4 and .5.5,
respectively. As can be seen, the larger the mass of the object, the smaller the

typical age. This reflects the well-known fact that in hierarchical clnstering
larger mass objects form later on. The same trend was found by LCa. A more

surprising result because showing the opposite trend from LCa's is that the

larger the mass of the object, the larger its survival time. In fact, our estimates
of the typical ages and survival times are not comparable to those of LCa. The
natural definitions of the typical age and survival time considered here, i.e.,
the time spent until the next true merger when the object will be destroyed
and the time spent since the previous true merger when the object was formed,
respectively, are meaningless in the approach followed by those authors because



116 Chapter 5. THE GROWTH HISTORY OF OBJECTS

15.0

12.0

í::' 9.0

G
--

'" 6.0
�

.....

3.0

0.0 -1
10

z=o a

¡:- z=o b

z=o

---

z=2 z=2

Figure 5.4: Typical age (fulllines) «nd accretion-age (dashed lines) of objects
of mass M in units of Me = 1012 M8 for tlie quoted values of tlie redshift

corresponding to tbe same cosmogonies (a) end (h) as in tlie preceding figures.

it does not distinguish between merger and accretion. What LCa adopted as

the typical age and survival time (or formation and destruction times) are two

quantities which also report on the past and future history of objects but which
have a very distinct meaning: the interval of time spent since the mass of some

parent object was half the current value for the object and the interval of time

required by the object to double its current mass, respectively. The theoretical

expressions derived by LCa were checked, in LCb, to correctly estimate the
same quantities as inferred from N-body simulations, but this does not mean,
of course, that they really reflect the times suggested by their names.

In Figures 5.4 and 5 . .1 we plot, for comparison, a new version of the age
and survival times of objects of given mass at a given time. These new times,
which can be called accretion-age and accretion-survival-time, have been de
rived from our model and are, in some sense, complementary to the previous
ones. They are defined as the interval of time spent since the mass of an ob-
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ject was half its current mass and the interval of time required by an object to
double its current mass, respectively, and since they refer to the mass evolu

tion of a given object they only iuc1ude accretion. They are therefore readily
obtained from the function M(t) solution of equation (5.14). Notice that as

far as the new times are smaller than the respective previous ones the mass

increase of objects of that mass will be really clominated by accretion. There

fore, these new accretion-times should essentially coincide, in this regime, with
those calculatecl by LCa_ As can be seeu from Figures 4 and ,5, they show,
indeed, the same trend as LCa's estimates. In particular, they both clecrease
with increasing mass of the object. From the behavior shown by these two

complementary time estirnates we arrive to the interesting conclusion that the

clustering of small mass objects is dominated by mergers while that of very
massive ones, once they have formed, is dominatecl by accretion.
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Finally, from the typical age and surviving time of objects with masses

between Mo and Mo + dM at io calculated above, we can readily calculate

their typicallifetime (or intermerger period). This is simply

ili¡e(Mo, io) = iage(Mo, io) + tsur(Mo, io) = tm(Mo, io) - i¡(Mo, io). (5.20)

And connected with this latter quantity, there is the total mass typically
accreted by those objects during their whole life, given by M[im(Mo, io)] -

M[t¡(Mo, io)].

5.5 Summary and Conclusions

A fundamental result of Chapter 4 was that the confluent system formalism
fixes the filtering window and the M (R) and oc( t) relations that are consistent

with the peak model ansatz and allows one to account for the cloud-in-cloud
effect so that a mass function can be obtained which is in overall agreement
with N-body simulations. In the present paper we have calculated the rates

and characteristic times of growth of bound objects. As far as we can tell from
the comparison achieved between our model and that constructed by LCa, the
two models seem to yield a similarly good description of clustering provided
no distinction is needed between merger and accretion. The interest of our
model precisely relies on the fact that it can make that practical distinction
which enables one to calculate several important quantities connected with the

growth history of objects which are not available from the LCa model. The
statistic which puts the most severe limitation to the applicability of our model
(i.e., which establishes the largest minimum mass of validity at a given epoch)
is the merger rate per specific mass of the final object. But the model can
still apply to smaller masses if we resign ourselves to less cletailecl information.
For example, there is, in principle, no restriction at whatever redshift if one
uses the confluent system formalism just to infer the mass function of objects.
A thourough comparison between our model and N-body simulations as that
carried out in LCb with their own model is however needed in order to draw
more definite quantitative conclusious on its general as well as detailed validity.
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The idea that our clustering model relying just on the peak formalism pro
vides a good description of hierachical clustering is at variance with the rather

extended opinion that peaks are not good seeds of bound objects. Detailed

N-body simulations of the gravitational evolution of individual density max

ima show, indeed, that if their initial amplitude is small they can be easily
disrupted before collapsing (van de Weygaert & Babul 1993). While Katz,
Quinn, & Gelb (1993) have found that even high amplitude peaks seem to

be poor tracers of bound objects, and this individually as well as statistically.
The reason why this would be so is that peaks are not spherical in general,
nor are they isolated. So their non-linear evolution will markedly deviate from

the spherical approximation at the base of the peak model ansatz. However,
there is the counterargument that the higher the peak relative to the typical
density fiuctuation on that scale, the more spherical it is and the less impor
tant is the shear caused by the surrounding density fiuctuations, particularly
if the power spectrum is steep enough to guarantee that large mass fluctua

tions have much less typical amplitude. In fact, this idea has been recently
confirmed by Bernardeau (1994) who has rigurously shown that the evolution

of high amplitude peaks (with 1/ ;:::: 2) in a Gaussian random density field is

correctly described by the spherical model provided only the logarithmic slope
of the power spectrum is smaller than ti = -l. On the other hand, the conclu
sion drawn from the aboye mentioned N-body simulations dealing with peak
statistics is somewhat precipitated because of the unknown effects of the use

of unappropriate M(R) and óc(t) relations, and the lack of any correction for
the cloud-in-cloud effect. Thus, we should not be surprise, after all, that for
realistic (relatively steep, at the relevant scales) power spectra and massive

enough objects (high enough initial peaks for any fixed t) the peak model with
adequate filtering window, M (R) and óc( t) relations, and after correction for
the nesting effect can provide a good description of the clustering process.
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CONCLUSIONS AND

FUTURE PROSPECTS

In this work we have discussed the foundations of a new formalism for the

construction of a detailed model of hierarchical clustering via gravitational
instability from an initial random Gaussian field of density fluctuations. Sim

ilarly to other formalisms the new one also deals with clustering through the

filtering process of the density field at an arbitrary fixed early epoch, but it
focus its attention on maxima instead of normal points. The conexion between

peaks and collapsed objects is made through the peak model ansatz, a pre

scription inspired in the spherica.l collapse, which states that objects at a time

t emerge from peaks with a fixed linear overdensity De in the smoothed, on any
scale R, density field at the arbitrary initial time ti. The critical overdensity
would be a monotonous decreasing function of t, and the mass M of collapsing
clouds associated with peaks a monotonous increasing function of R.

The peak model ansatz is, in principle, a suitable framework for the con

struction of a good clustering model. The true dynamics of collapse are well

approximated by the spherical model for high arnplitude peaks or, equivalently,
massive objects (in hierarchical models, the rms. density fluctuation decreases

121
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with increasing R), and the main effects of such simple dynamics are implic
itly accounted [or by that ansatz. So the question is whether or not there is

enough room left by the only freedom we have, namely the shape of the fil

ter and the monotonous functions N[( R) and óe( t), for the filtering process to

be able to statistically reproduce the gravitational clustering, i.e., the rate at

which mergers and accretion proceed according to those unknown dynamics,
and, if so, whether the problem is well constrained.

The identification of peaks on slightly different scales proposed in § 4.2.1

allows us to draw the trajectory ó(R) followed by the evolving peack attached

to any individual accreting object in the filtering process. The form of the

total derivative of peak trajectories, which coincides with ORÓ, and very general
properties of the Fourier transformation lead to the important conclusion that

only the Gaussian window is able to recocer, in any realistic density field, such
a fundamental property of gravitational clustering as the systematic qrouith,
by accreiion, of the mass of objects. We have not yet required accretion to

proceed at the correct rate, that is, accreting peaks to follow tracks in the

Ó vs. R diagram statistically consistent with the real collapse dynamics. In

principle, the two functions M (R) and óe( t) can be adjusted in order to satisfy
this constraint. But can we separately recover the rate at which mergers

proceed?

Mergers are in both gravitational and filtering clustering the natural con

sequence of the mass increase of accreting objects or peaks and the fact that
the total available mass is fixed. Objects and peaks accrete at the expence
of smaller mass objects which merge into them and new objects form or new

peaks appear (they cannot be identified with any preceding peak) whose mass

or volume subtends that previously subtended by objects or peaks with similar
masses or scales. Therefore, mergers and accretion are not to be separately
reproduced by the filtering process. The fine tuning between these two compet
ing events will be automatically satisfied provided we have the correct spatial
coverage by peaks (properly corrected from nesting) or, more exactly, their
associated collapsing clouds at any óe•
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To derive the mass function of objects at any given t in the peak model

framework we should follow the peak trajectories tracing the mass evolution of

bound objects in the 5 vs. R diagram, calculate the density of such trajectories
upcrossing the corresponding overdensity in the infinitesimal range of scales,
Npk(R, be) dR, correct it for eloud-in-eloud configurations, and transform the

result to the mass function of objects at that time, N(M, t) dM, through the

appropriate M(R) and 5e(t) relations. These two functions therefore determine

the shape of the mass function at every time or, equivalently, the rates at which

filtering accretion and mergers proceed according to the true collapse dynamics
(the fine tuning among these two competing events being guaranteed by the

correct normalization of the mass function). So the question finally reduces to

whether there is enough room to fit the correct mass function and whether this

constraint is enough to fix the functions M (R) and 5e( t). By imposing sorne

consistency arguments in an Einstein-de Sitter universe (O = 1, A = O) and
a density field endowed with a power-Iaw power spectrum we can restrict the
form of these two functions. Since, in this scenario, the gravitational elustering
proceeds in a self-similar way, then the relations M(R) and 5e( t) adopt the
forms given by equations (5.3) and (5.4) respectively, which are exact for the

scale-free case and approximate for other cosmogonies. The resulting mass

function gives good fits to the PS one at any epoch for 5eo � 6.4 and 8.4 and

q � 1.45 and 1.45 in the CDM and the n = -2 power-law cases. (It can be

shown that there is no degeneracy in the values of these parameters.)

The natural prolongation of the model ineludes the calculation of quantities
related to the growth of objects, in particular typical rates and characteristic
times. With the aid of the confluent system formalism, we have derived the net

density of non-nested peaks becoming nested, the net density of non-nested

appearing peaks (both in an element of the 5-R diagram), and the mass acere

tion rate. The first density leads to the instantaneous merger rate of objects
of mass M per infinitesimal range of mass ]0.,1' of the resulting object, which
is used to obtain the capture (accretion plus merger) rate for final ob jects of

mass M' per infinitesimal range of the captured mass M, and, by integrating
over M' and M, the respective global rates, whereas the second density allows
one to deduce the instantaneous formation rate of objects of mass M. The
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variation in the number density of survival objects (owing to mergers) and pre

existing ob jects (due to mergers and formations) has been implemented as a

criterion to set the destruction and formation times respectively, both referred

to a specific epoch. The survival time for an object of a given mass corre

sponds to the interval elapsed until it is destroyed, and the typical age to the

interval elapsed since it was formed. The difference between the destruction

and formation times gives the intermerger period, or the object lifetime.

We have compared our specific merger rate, the survival time and the

typical age with the analog quantities derived in the excursion set formal

ism framework (LCa) and checked by means of N-body simulations (LCb) by
Lacey & Coleo The agreement is good as long as we are not concerned with

the distinction between merger and accretion. However, the confiuent system
formalism is able to do such a distinction, allowing the derivation of relevant

quantities connected with the gravitational clustering which are not avalaible

from the LCa model.

To summarize, the peak model ansatz with monotonous relations M(R) and
bc(t) is appropriate to describe the gravitational clustering of objects through
the filtering of the initial density field. A fully consistent description of gravi
tational clustering can be obtained, indeed, leaving one or two free parameters,
depending on the particular cosmogony assumed, which can be used to fit the
real mass function whatever its exact shape. As long as the true unknown

dynamics of collapse are not be far from the spherical model, at least when
dealing with massive objects, it is not surprising that a good fit can be ob
tained at any epoch for appropriate values of the free parameters. Moreover,
both mergers and accretion can be simultaneously followed which is crucial for
the obtention of an accurate clustering model as far as the own definition of
bound objects involves the distinction between those two kinds of events.

The model, which has already yielded three papers in refereed journals
(Manrique, & Salvador-Sole 1995a, Salvador-Solé, & Manrique 1995, and Man

rique, & Salvador-Sole 1995b), has a wide range of applicability. Its extension
to other cosmogonies, apart from the Einstein-de Sitter univers, will allow to
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study the role played by the cosmological parameters in gravitational cluster
ing and, by comparing with observations, constrain their values. We intend

to perform the same calculations for two low density models, one filled with

baryonic matter and no = 0.2, and the other with CDM and a cosmological
constant such that no + nA = 1.

In a medium term we plan to apply the model to several fields on which

our group has been deeply concerned:

• Morphological se gregation.
It is well known that galaxies of different morphological types dwell in

different environments. This observational fact suggests that the galaxy
shapes can change due to interactions with the environment (Solanes,
Salvador-Solé, & Sanroma 1989; Salvador-Solé, Sanroma, & Jordana

1989; Sanroma, & Salvador-Solé 1990; Solanes, & Salvador-Solé 1992).
However, the evolutive interpretation is currently challenged by an al

ternate explanation which claims that the shape does not change but it

is determined by the environment before galaxy formation. This would

be the case if earlier type galaxies arise from higher peaks of the linear

density field. We think of using our model to find the population fraction
and galaxy luminosity function inside and outside virialized structures

at different redshifts. The thresholds for the morphological types could

be obtained by assuming that galaxies with a lifetime shorter than the

characteristic forrnation time of a disk (rv 2 Gyr) are ellipticals, and

spirals or SO 's otherwise .

• Modeling galaxy clusters.

Present models of galaxy clusters account for sorne generic properties
of these systems at the present time (Solanes, & Salvador-Solé 1990),
any evolutionary model being still very rough. A complete theoretical

description of galaxy clusters, including features of the galaxy population
(the total number of galaxies aboye sorne limiting magnitude, the galaxy
luminosity function, and the population fraction) at different epochs, can
be achieved with the aid of our model.
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• Detection and characterization of substructure.

Clusters of galaxies often show substructure. Provided the knowledge
of its dynamical survival time, the observed frequency and characteris

tics of the detected clumpiness informs us on the rate of clusters merg
ers and accretion oí groups onto clusters (Salvador-Solé, Sanroma, &
González-Casado 1993; Salvador-Solé, González-Casado, & Solanes 1993;
González-Casado, Solanes, & Salvador-Solé 1993; Gonzalez-Casado, Ma
mon, & Salvador-Solé 1994; Gonza.lez-Casado, Serna, Alimi, & Salvador

Solé 1995). It is clear that our gravitational clustering model can make
the link between such observations and the correct cosmogonical scenario.
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Nesting Probabilities

Collapsing clouds associated to non-nested peaks with fixed Ó yield a par
tition of space which makes the mass function of objects at t be correctly
normalized (see Chapter 4). This implies that the volume fraction occupied
by disjoint backgrounds with Ó on filtering scales between R' and R' + dR'

or, equivalently, the probability to find a point in any such backgrounds is

M(R') p-l N(R', ó) dR'. Therefore,

P(R' ólR ó) dR' = AI(R') N(R' ó) dR' Npk(R, ólR', ó) (A.1)"

p
,

Npk(R,ó)·
gives the probability that a typical peak with Ó on scale R is nested within
sorne non-nested peak with identical density contrast but on a scale between
R' and R' + dR' (R < R'), hereafter simply called the (differential) nesting
probability of a peak. This was used, in Chapter 4, to derive equation (4.18).
Likewise, the nesting probability of peaks with given values of variables Ó, x,
and any set of variables Vi (i = 2, ... , n with arbitrary n) is

P(R', ólR, Ó, X, V2, ...vn) dR' =
M(R') N(R', ó) dR' Npk(R,

X, V2, ... , Vn, 81R', 8),
P Npk(R,x,V2, ... ,vn,8)

(A.2)
with Npk(R, X, V2, ... , vn8lR', ó) the conditional density function analogous to

Npk(R, 81R', 8) in equation (A.1) but per infinitesimal ranges of the extra vari-

1 :31
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ables x, V2, V3, ... , Vn- The last factor on the right-hand member of equation
(A.2) satisfies the relation (see § 3.2.3)

Npk(R, x, ... , Vn, 81R', 8)
Npk(R, x, ... , Vn, 8)

P(v', R'lv, x, ...Vn, R) N'pk(V, x, ...Vn, R)XU2R/uQ
P(v', R')N'pk(V, X, ...Vn, R)XU2R/uQ

P(v', R'lv, x, ... , Vn, R)
P(v', R')

with u' == 8/ub, P(v', R'lv, X, V2, ... , Vn, R) dv' defined in equation (3.63), and
P( t/, R) dv the Gaussian probability to find the scaled density contrast on

scale R between u and u + du . Notice that , for identical reasons as for the

conditional probability in equation (3.6.5), the conditional probability given in

equation (A.2) applies, in fact, to points. Note also that we are using the same

convention for the notation of the conditional probabilities as for the density
functions: they are denoted by a caligraphic capital p (in contrast with the

notation used in Chapter 2) when they are per infinitesimal range of v at a

fixed R, and by a roman capital p when they are per infinitesimal range of R at

a fixed 8. Finally, it is worthwhile mentiong that , contrary to what is suggested
by the present notation, we can write u or 8, indistinctly, when specifying the

condition.

(A.3)

From equation (3.65), it is clear that the nesting probability given by equa
tions (A.2) and (A.3) will depend on variables Vi provided only that these
variables have non-null correlations with v (or 8) and x on scale R or any ex

plicit variable correlating with them. This is what happens with the variables

Vi defined in equation (3.67) involving the different order scale derivatives of
the density contrasto Thus, to accurately infer the density of nested peaks in

any given peak population one must calculate the distribution of these infi
nite variables in that population. The only noticeable exception concerns the

typical population of peaks, The density of typical peaks at 8 with values of

Vi (i = 1, ... ,n) in infinitesimal ranges, Npk(R,x,v2""vn,8)dRdxdv2 ...dvn,
times the nesting probability P(R', 81 R, 8, X, V2, ...vn) dR' integrated over any
subset of variables Vi coincides with the product of these two functions without
the explicit dependence on the integrated variables, as readily seen from equa
tion (A.2) valid for any arbitrary values of the subindexes. In particular, the
integral over all Vi for i ;::: 1 is equal to the product of Npk(R, 8) dR times the
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reduced nesting probability P(R', 8/R, 8) dR' given in equation (A.1), which
justifies this latter expression and equation (4.18).

The conditional probability P(v', R'/v, X, V2, V3, ... , R) di/ extended to the

infinite set of variables Vi defined in equation (3.67) can be obtained according
to equation (3.65). After sorne lenghty algebra using intermediate variables

which only correlate with themselves (found by means of the Gramm-Schmidt

method) we arrive to the expression

P(v', R'/v, X, V2, V3, ... , R) du' = � exp [- (v' 2i/)2] dv' (AA)
27r (JI./' 2 (JI./'

with

(X) J

CYi L: Bj (3i j-i L: (3k j-k (v� Vk)
j=O

2
(J1./'

(X)

[j ]21 - � e, E e. j-k (v� Vk) (A.5)

(i � O), where a prime denotes the scale R', the correlations in angular brackets
are given by equation (3.68), and coeffecients Bj and (3k j-k are defined as

j-1 j-1-k

(Bjt1=1+L: (3kj-k((3kj-k+2 L: (3j-I/(VkVj-l))k=O 1=0

j-1

(3ij-i = - L: Ctj_i (Vj Vk),
k=O

(A.6)

(j � 1 and í =1- j) in addition to Bo = 1 and (3io = 1. In equations (A.6) we

have used the notation

j-1

C;j_i == L: Bl (3k l-k e, l-i
l=k

(A.7)

for i < k and C� ..

_ ci, k for i > k.
- 'J-' J-
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From the general expressions of w and O"�, equation (3.65), it can be shown,
through the intermediate use of variables v{n) defined as v but for just the first
arbitrary n + l variables Vi, that

2

(-) (') = (_I)i+1+60i 0",ih ,1/ Vi = 1/ Vi
0"00"2i

(A.S)

(i 2: O) which implies, on its turn, a similar relation for any (finite or infinite)
linear combination of Vi, in particular,

(A.9)

On the other hand, taking into account that the correlation between two vari

ables is equal to the integral of the product of their Fourier transforms taken

at r = O and defining the new variable ii: as -(0"2 R)-l oR(O"b v) we have

(A. lO)

(i 2: O) and
0"' l

(x v) = - _2_
-,

- OR(V2). (A.11)
0"2 2 R

By substituting the correlations in equation (A.S) into equation (A.IO) we

obtain

(XVi) = O (A.12)

(i 2: O) which also implies

(X v) = O (A.13)

Thus, (v2) and O"v' do not depend on R (see equations [A.9] and [A.11]) which
ultimately implies that O"u' is null and (v2) equal to unity. Indeed, according
to its definition, equation (A.5), O"v' is null for R' = R and since it does not

depend on R it is necessarily null for any value of R'. Then, equation (A.4)
leads to

P(I/',R'II/,x,V2,V3, ... ,R)dl/' = 8(I/'-v)dl/'. (A.14)
This result is not surprising since fixing the values of the density contrast and

every order scale derivative of it on a given scale R automatically fixes, through
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the Taylor series expansion of 8 as a function of the filtering scale, the value

of the density contrast in any other scale R'. FinalIy, by substituting P given
byequation (A. ID) into equation (A.3) and the latter into (A.2) we arrive to

the following express ion for the nesting probability

P(R' S:IR e )d'- ( , 1-) , M(R')
( ') ,8(v'-i/)

,v ,v,X,V2, ... R =P R,8v dR =

p
N R,8 dR

P(v')
,

(A.15)
with u' = 8jab.
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IBI
Net Density of Peaks Becoming
Nested

The density of peaks at 8j == 8 - /j.8, with /j.8 positive and arbitrarily small, on
scales between R¡ and Rj + d.R¡ and variables x i» V2j, V3¡' ... in infinitesimal

ranges, which result by continuous evolution from peaks at 8 on scales between

R and R + dR and x, V2, V3, ... in infinitesimal ranges is

N;'k(R¡, X¡, V2j, ... , 8j) d.R¡ dx ¡ dV2j ... = Npk(R, x, V2, ... ,8) dRdx dV2 ... ,

(B.l )
with

(B.2)

137
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to first order in 68. Equation (B.1) states that the density Npk(R, X, V2, V3, ... , 8)
dR dx dV2 dV3 ... of peaks is conserved through continuous evolution from 8 to

8j. There likely is a small amount of peaks which disappear in that infinitesi

mal range of 8 but, as shown in Appendix A.1, these are not counted in Npk.
Equations (B.2) and (B.4) give the shift from 8 to 8j in the values of all the

relevant variables. It is important to outline that we need to know, indeed,
the values of all variables R and Vi (i 2:: 1) at 8j in order to calculate the

density of evolved peaks which are nested since, as explained in Appendix A,
the nesting probability depends explicitly on all these variables differently dis

tributed in N;l: than in Npk at 8j. Equation (B.2) arises from the derivative

dR/d8 along continuous peak trajectories, equal to -(X0"2R)-1 (see § 4.2.1).
While the shift in the variables Vi, equations (B.4), is equal to the sum of

two terms: one coming from the scale derivative of each particular variable,
and a second one coming from the scalar product of its spatial gradient times
the shift in position of the new peak relative to the old one (equation [3.44]).
However, the nesting probability does not depend on the variables ORT]i since
these variables do not correlate with u, x, V2, V3, ... (see Appendix A). Thus,
in averaging below over all variables, these second terms will contribute with
a null mean (the distribution of ORT]i for peaks is the same as for arbitrary
points). Consequently, we can drop these second terms which is equivalent to
taking an effective location for each evolved peak equal to the mean expected
value, that is, the same location as the original peak.

From equation (B.1) we have that the density of peaks at 8 per infinitesimal
ranges of R and x, V2, V3, ... which, after evolving to 8j, are found to be nested

(although not necessarily just become nested) into non-nested peaks with scales
between R' and R' + dR' (R :::; R¡ < R') is

N;:st(R -t R';e, V2, ... , 8 -t Ój) dR dR' dx dV2, ...
= Npk(R, x, V2, ... ,8) dR dx dV2, ... P(R', ójlRj, Ój, x j, V2j' ... ) dR'(B.4)

with R¡, X¡, V2j, V3j,'" on the right hand side in terms of R, x, V2, V3, ... and 6ó
through equations (B.2) and (B.4), and the specific nesting probability P given
in Appendix A. To obtain N;rt(R -t R', Ó -t Ój) dRdR' giving the density of

peaks at 8 per infinitesimal range of R which are nested at Ój into non-nested
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peaks on scales between R' and R'+dH': we must integrate equation (B4) over
variables x, V2, V3, .••• Given the simple express ion of the nesting probability
appearing in equation (B.4) in terms of the variable v (equation [A.8]) it is

convenient to first transform V2 and V3 to v and ii . This can be done by
repeated application of the scheme given in § 2.3.2. Taking into account the

correlations (A.8) and (A.9) and the fact that O'�I = O (see the discussion after

equation [A.ll]) we first obtain

[ (v -

V*)2jexp 20'�
Npk(R,x,v,R',8)dRdxdv = Npk(R,x,8)dRdx J2;

/.1 do, (B.5)
271" O'¡;

with Npk(R,x,8) = N'pk(v,x,R)x0'2R/O'Q in terms of the density function

given in equation (3.23) and

(B.6)

with e 0'6h/(O'QO'b) and rl == O'ihO'6!(0'6hO't) already used in § 3.2.2. Then,
from correlations (A.12) and (A.13) we obtain

Npk(R,x,v,x,R',8)dRdxdvdx = Npk(R,x,v,R',8)dRdxdv 8(x)dx. (B.7)

This result is well understood. As shown in Appendix A, variable v can only
take the same value as i/ and, hence, O'b v can only depend on R' so that
x - -(0'2 Rt1 ORkb v) must be null. Finally, following the same procedure
we can infer the density of peaks for the remaining infinite series of variables

V4, V5, •.. in infinitesimal ranges. But this is actually not necessary since the

integration of equation (B.4) over these latter variables not entering in P is

trivial, leading to

N;rt(R - R',x,v,x,8 - 8¡)dRdR'dxdvdx = Npk(R,x,v,x,R',8)
x P( R', 8¡ I o¡ ) dRdR'dxdvdx, (B.8)

with v¡ = v - ii: 6:.8/(x O'b). Then, by integrating equation (B8) over ii; and v,
keeping the first order terms in 6:.8 and then integrating over x (in the positive
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range) we arrive to

N;:st(R � R', 5 � 51) dR dR' = Npk(R, 5) P(R', 51R, 5)
x {l - 8Óf In[N(R', 81) Npk(R, 81R', 51 )llóf=Ó �8}dR dR'. (B.9)

Equation (B.9) can also be written in the form

N;:st(R � R', 8 � 81) dR dR' = NpdR, 8) dR P(R', 811R, 8) dR', (B. 10)

with

P(R' 8 IR 8) dR' = M(R') N(R' 8 ) dR' Npk(R, 81R', 51),1 , , 1 N (R 8)P pk ,

(B.ll )

therefore giving the probability (only for R' > R; the case R' R being
excluded) that a peak with 8 on scale R is located on a disjoint background with
81 on scales between R' and R'+dH', The expression for that probability given
by equation (B.ll) is just what one would expect from the same arguments
leading to the nesting probability (A.l). Notice that, in contrast to the case

81 = 8, the probability given by the left-hand member of equation (B.ll) would
now include not only the nesting effect but also direct filtering evolution, while,
by construction, the right-hand member of equation (B.9) only includes the

nesting effect. However, as readily seen from a similar development as that

leading to N;rt, the density of peaks with R at 8 which, by direct evolution,
are found with R' at 81 is of high order in �8/(R' - R). So, to first order in
�8 and provided R' - R is not too small, there is no difference, in practice,
between these two expressions. Note also that the spatial shift of evolving
peaks makes the different order scale derivatives of the density contrast of the
evolved peak at 81 deviate from those of the initial point at the same 81 for

arbitrarily large values of �8 (see equation [B.4]). The equality only holds
to first order in �8. Therefore, the probability to find a peak with R at 5
located in a disjoint background with R' at 81 is different, in general, from
the probability that the corresponcling evolved peak at 81 is located in that

background.

We are now ready to calculate the net clensity of peaks with 8 on scales
between R and R + dR becominq nesfed ;11,10 (being destroyed in a merger
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giving rise to) non-nested peaks with 81 == 8 - ,6.8 on scales between R' and

R' + dR', Nd(R ---+ R',8 ---+ 81)dRdR'. (Superindex d stands for destruction

since we are dealing with true mergers.) To do this we must simply correct

the density of peaks which, after evolving from 8 to 8¡, turn out to be nested

into non-nested peaks with such larger scales for nesting at the initial 8 in

the ancestrors of those disjoint backgounds at 81, (Note that these ancestrors

concern, in principIe, any kind of evolution, although the contribution of direct

evolution can be ignored in practice since being of higher order in ,6.8). This

correction can be readily performed following the same procedure as leading
to equation (5.1). The result is the integral equation

Nd(R ---+ R',8 ---+ 81) = N;kst(R ---+ R',8 ---+ 81)
_

(R1 dR"M(R") Nd(R" ---+ R',8 ---+ 81) Npk(R,8IR",8)(B.12)iR p

for the unknown function Nd(R ---+ R',8 ---+ 81) in terms of N;¡st(R ---+ R',8---+
81) (equation [B.12]) and Npk(R,8IR",8) (see equation [5.1]).

But we do not need to solve equation (B.12). Given the meaning of Nd
and N, we have Nd(R" ---+ R',8 ---+ 8) == N(R', 8) 8(R' - R"). (Notice that R"
reaches the value R' inside the integral of eq. [B12].) And since N;¡st(R ---+

R',8 ---+ 8) is equal to Npk(R, 8) P(R', 81R, 8) (see eq. [B9]) we are led to

Nd(R ---+ R',8 ---+ 8) = O (for R < R' as in the present case). Thus, equation
(B.12) reduces to a simple relation between first order terms in ,6.8. By dividing
this relation by ,6.8 we are led (see eqs. [B9] and [A13]) to the Volterra type
integral equation of the second kind

Nd(R ---+ R',8) = _

M(R')
oó¡[N(R',81) Npk(R,8IR',81)]íi¡=íi

p

(R1 dR" Jl.1(R") Nd(R" ---+ R', 8) Npk(R, 8IR", 8), (B.13)i: p

whose solution gives the wanted net density Nd(R ---+ R', 8) dR dR' d8 of non
nested peaks at 8 with scales between R and R + dR becoming nested (merg
ing) into non-nested peaks with scales between R' and R' + dR' in the next

-d8. Equation (B.13) can be solved numerical1y by iteration from the initial
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approximate solution -M(R') p-l oó[Npk(R', 8) N(R, 81R', 8)]. Actually, this
latter function is a very good approximation to the wanted solution, at least
for all power spectra analyzed. Thus, we can simply take

(B.14)

with oóN(R', 8) given by numerical differentiation of the scale function N(R', 8)
or, what is more accurate, by the numerical solution of the new Volterra type
integral equation

oóN(R',8) = [OÓNpk(R',8) - L� dR" l\1�RII) N(R", 8) OóNpk(R', 8IR", 8)]
roo ur M(R") oóN(R", 8) Npk(R', 8IR", 8), (B.15)iR' p

resulting from differentiation of equation (5.1).



lel
Net Density of non-Nested

Appearing Peaks

The net density of peaks appearing at 8 with scales between R and R + dR
and variables x, V2,V3, ... in infinitesimal ranges is equal to the density of peaks
found with these characteristics minus the density of those of them arising
by continuous evolution from peaks at 8i == 8 + 6.8, with 6.8 positive and

arbitrarily small. Therefore, the net density of non-tiesied peaks appearing
(forming) with the previous characteristics is

Nf(R,8,x,V2,V3, ... )6.8dRdxdv2dv3 ....
= [1 - P(R,8,x,V2,V3, ... )]

x [Npk(R, X, V2, V3, ... ,8) - N;�(R, X, V2, V3, ... ,8)] dR dx dV2 dV3 ... , (C.l)
with P(R,8,x,V2,V3' ... ) the integral (over R' > R) of the differential nesting
probability given by equation (A.2) ancl N;'k(R,x,V2,V3, ... ,8)dRdxdv2dv3 ...

the density of evolvecl peaks, equal to

N;�(R, X, V2, ... ,8) dR dx dV2 ...
= Npk(R;, Xi, V2i, ... , 8i) d.R, dx, dV2i ... (C.2)

Equation (C.2) is but equation (B.l) for the present values of the initial and
final clensity contrasts, while the present relations between variables with ancl
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without subindex i are just the inverse of those given in equations (B.2) and
(B.4). Note that, for the same reasons as in Appendix B, we are forced to

follow the evolution of the whole infinite set of variables x, V2, V3, ....

From equations (C) and (C.2) we have

Nf(R,8,x,V2,V3, )tl,8dRdxdv2dv3'" = [1- P(R,8,x,V2,V3, ... )]
x [Npk(R,x,V2,V3, ,8) - Npk(R¡,X¡,V2i, ... ,8¡)IJI] dRdxdv2dv3'" (C.3)

with J the Jacobian of the transformation from variables with subindex i

to variables without subindex. Thus, by integrating equation (C.3) over all

intermediate variables we obtain

Nf(R,8)tl,8dR = {N(R,8) - Npk(R,8)

+ JNpk(R, X, V2, V3, ... ,8) P(Rf, 8j, x j, V2j, ... ) dx dV2 dV3 ... } dR (C.4)

In deriving equation (C.4) we have used the fact that Npk(R,8) times the

probability that a peak with 8 on scale R be nested, P(R, 8), is just equal
to the difference Npk(R,8) - N(R,8) (equations [A.l] and[5.1]). We have also

transformed the variables at 8 in the integral on the right hand side to variables

at 8;, which balances the Jacobian IJI, and then dropped subindexes i for the
new variables while written subindex f for the old ones, which makes them be
related within each other just through equations (B.2) and (B.4).

For identical reasons as in Appendix B, it is convenient to express Npk and
the nesting probability P in equation (C.4) in terms of variables ¡; and x instead
of V2 and V3. After this substitution, the integrals over variables V4, Vs, ... in

equation (C.4) become trivial, while those involving x, ¡; and x have been
calculated in Appendix B (equations [B.S] and [B.9] for the differential nesting
probability, equation [A.1], instead of the integral form used here). The final
result after taking the limit tl,8 ---* O is

Nj(R,8)dRd8 = aó[N(R,8) - Npk(R, 8)] dRd8, (C.5)

with aóN(R, 8) given in equation (B.14).



IDI
Mass Accretion Rate

From equation (B.2) we have that the mass accreted from 8 to 8f = 8 - 6..8,
with 6..8 positive and arbitrarily sma.ll, by any non-nested peak with initial

scale between R and R + dR and variable x in an infinitesimal range is

dM 1
6..11,[ =

dR x (T2 R
6..8. (D.1)

The density of such accreting non-nested peaks is

Na(R, x, 8) dR dx = N( R, x, 8) dR dx. (D.2)
In writing equation (D.2) we have taken into account that the density of non
nested peaks not accreting because merging from 8 to 8 - 6..8 is a higher order
correction (see the discussion leading to equation [eq:apb13]). Therefore, by
dividing the density (D.2) by N(R, 8) dR we obtain the conditional probability
p(x, R18, R) dx that an accreting non-nested peak at 8 with scale R has the

appropriate value of x in order to increase its mass by 6..M given by equation
(D.1) in the passage from 8 to 8 - 6..8. From equation (5.1) but for peaks
with variable x in an infinitesimal range (or, equivalenly, from eq. [A14], after
integrating the product Npk P over the remaining variables) this conditional

probability takes the form

dx

[p(x,RI8,R)dx =

N(R,8) NpdR,x,8)

14.5
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_ �oo dR' J}f�R') N(R',8) Npk(R,x,8IR',8)], (D.3)

with the densities Npk(R, x, 8) = Npk(v, x, R) X �2 Rjo¿ and Npk(R, x, 81R', 8) =
Npk(v, x, Rlv, R') x �2 Rla¿ in terms of the analogous density functions calcu

lated in Chapter 3.

By changing variable x into .M' = M + I:::.M we can compute the instanta

neous accretion rate of objects of mass 1\1 per specific range of mass M' of the

final object similar to the merger rate (5.6). By doing so we arrive to the fact

that this transition rate is identically null. The reason for this is that, as men
tioned in Appendix B, the density of peaks with scales between R and R + dR

at 8 which directly evolve into peaks with scales between R' and R' + dR' at

81 is of higher order than one in 1:::.8 = 81 - 8. This result is well understood.

From the viewpoint of the accreting object, the process is not a transition be

tween two different masses but as a continuous mass increase. Consequently,
no discrete increment I:::.M can be achieved in the limit 1:::.8 ---+ O. Of course,
such a continuous evolution of the accreting object during the small interval

I:::.t necessarily causes (is made at the expense of) the merger (capture) of a
number of tiny objects which do make a finite transition in mass. And it is

taking the limit for vanishing I:::.t of the change in the number density of these

latter objects that one obtains a non-vanishing accretion( +merger) rate (see §
5.3).

In any event, there is no problem, even from the viewpoint of accreting
objects, in obtaining the instantaneous mass accretion rate at t for objects of
mass M. Equation (D.l) tells us that the instantaneous mass increase rate,
by accretion, for objects arising from peaks with 8 and the specific value of x
lS

dM dM 1 Id8cl-;¡¡= dR x�2R dt' (D.4)

Therefore, the instantaneous mass accretion rate, at t, for objects of mass M

(disregarding any other particularity) is the average of the specific rate (??) for
the probability function (D.3) with R and 8 = 8c expressed in terms of M and
t through equations (5.3) and (5.4). Given the form of functions Npk(R, x, 8),



Npk(R, x, bIR', b) and the expression of N(R, b) (equation [5.1]), we arrive to

r�ass(M,t) = �; < X: �2R I�cl· (D.5)

r-'" '""�' ...
�,.-.'<.�.�.�

i!

t;;�;,�"�,
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