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"For every ro-consistent recursive class N of formulas there
exists a recursive class formula r such that neither v Gen r nor
Neg (v Gen r) belongs to Flg (N) (where v is afree variable in

theformula r)."

K. Godel, "Über formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme 1," Monantshefte für
Mathematik und Physik 38(1), 173-198 (1931).
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Context, objectives and outline

"Fourier's theorem is not only one of the most beautiful results of modern

analysis, but it may be said to furnish an indispensable instrument in the

treatment ofnearly every recondite question in modern physics"

Sir William Thomson, Lord Kelvin.

The probably somewhat exaggerated claim of Lord Kelvin -his

enthusiasm is understandable if it is taken into account that the Fourier transform

was originally conceived to solve the heat equation- is absolutely precise just by
changing the term Physics by the more restricted of Optics. A good example of
this is the so called Fourier Optics, to which this dissertation belongs.

Within this general frame, optical information processing and partem

recognition, as modem technological applications of the basic principIes of

Fourier processing, enjoy at present a patent interest. The reasons for this can be

found in the singular nature of the methods involved: whereas the rest of the

approaches are mainly digital and use electronic devices -computers-, optical
partem recognition is based on optical systems, mostly coherent ones, and

utilizes analog procedures. The advantages and drawbacks derived from this

singularity are therefore worth studying and part ofthis work is devoted to do so.

The historie roots of the methods for optical image processing go back to

the experiments of E. Abbe in 1893 [Abb93] and A. B. Porter in 1906 [por06]
about how coherent images are formed. Such experiments, surprisingly close to

present methods consisted of the spatial filtering of the Fourier transform of a

partem and its subsequent reconstruction. The results showed the power of such

procedure for modifying and analyzing the images.



Contexto, objetivos y esquema general

Soon this experiments found a practical application. In 1935, F. Zernike

[Zer35] proposes a spatial filtering method that leads to the phase contrast

microscopy, which is of great value for observing transparent structures. Later, in

the fifties, A. Maréchal and coworkers propose a set of techniques to enhance the

quality of photographic images. Among them, the reinforcement of the high
spatial frequencies as a means to emphasize the details and a type of inverse

filtering to eliminate the defocusing, lie already within the basic procedures used

in this work.

By this same time, D. Gabor [Gab48][Gab49][Gab51] discovers

holography, a wavefront reconstruction technique -originally intended to,

although never used in, microscopy- whose subsequent development by E. N.

Leith and J. Upatnieks [Lei62] made possible the VanderLugt filter and as a

consequence the optical correlator.
A. VanderLugt -or Vander Lugt-, a researcher of the Radar Laboratory of

the University of Michigan proposes an interferometric procedure that enables

the recording of complex valued functions. This was the adaptation to the optical
frequencies domain of the heterodine methods well known by radar engineers
and commonly used in the synthetic aperture systems. Although VanderLugt's
method was virtually identical to the off-axis holography -in contrast to the

original procedure of Gabor- of Leith and Upatnieks, researchers as well in the

Radar Laboratory, its development was independent of the latero This surprising
duplicity, the restrictions to the spread of information owing to military reasons

should be taken into account, and its coincidence in space and time, were without
doubt the result of the exchange of ideas between optics and the theory of signal
processing.

The pioneers of this marriage between the two subjects and of the

adaptation to images of the signal detection problems were, among others, P.

Elias [Eli52], E. L. O'Neill [One56] and L. J. Cutrona [Cut60]. The basic idea,
finally possible thanks to the VanderLugt filter, was the detection by means of

correlation. This operation, as detailed in the first chapter, is a measure of the

similarity degree between two functions and can be optically performed by
means of a spatial filtering of Fourier transforms.

It is worth pointing out that this filtering process, formally identical to the

mentioned precedents of Abbe, Porter and Maréchal, implies a conceptual
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difference. Until then these "optical processors" could be viewed of as imaging
systems -the images more or less modified-. As such they handled all pattems the
same way emphasizing, for instance, the high frequencies by means of a high­
pass filter. Correlators, on the contrary, are systems matched to one image -hence

the name ofmatched filter for VanderLugt's-, in such a way that they respond in
a particular way when the input is the image to be detected. Such optical system
carries specific information about a given object.

In this way and up until now, optical information processing has been

benefited from the theory of signal processing in such a way that, as pointed by
Goodman, " .. the merger of the two points of view [optics and signal processing]
has become so complete that it is sometimes difficult to judge whether a

particular piece of work should be published in an optics joumal or an electrical

engineering joumal" [Go068].
The object of this thesis, following that tradition, is the analysis of the

basic limitations of optical correlation, for which several results well known in

other branches of pattem recognition will be adapted. Also, we will develop
procedures and altematives as a solution to sorne of the difficulties encountered.

The development of such objectives in this written work is as follows. The first

chapter introduces the basic definitions that will be ofien used in later chapters.
Furthermore, here we intend to show the usefulness of optical pattem recognition
through a calculation of the equivalent computational power of an optical
correlator.

Chapter two is devoted to survey the techniques of filter design for

VanderLugt correlators. Here we cite and analyze more specific -and more

recent- precedents than those of this general introduction. The purpose is to unify
under a single argumental line works, whose development, owing to the initial

inmaturity of every subject, has been, ironically, incoherent. This therefore

required a selection of the relevant results and an unification effort -as an

example most of the mathematical proofs are original- that should be considered

part of the results of this thesis. Within the general framework, this chapter
illustrates the power and flexibility of modem filters, which suggests that the

limitations of optical correlation do not arise from inappropriate designs.
Chapter three analyzes, based on the theory of discriminant functions and

on the formalism of decision regions, the structural limitations of single-filter

-3-
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correlations. Such limitations, quite severe when the inherent shift invariance

capabilities of the correlation function are utilized, can be overcome by using
multichannel correlators. Chapter four and five, in addition to illustrating this

point, introduce practical methods to correct the sidelobes, one of the most

common problems ofthe correlation.

Multichannel correlators face in turn several problems, now arising from

their practical implementation, owing to the inadequacy of the current technology
of spatial light modulators. Chapter six proposes an algorithm to design filters

that constitutes a solution to this difficulty. The procedure offers several

advantages with respect to similar algorithms previously proposed.
Finally, in chapter seven it is shown, now borrowing an argumentation

from the field of cellular automata, that an optical correlator working in an

iterative fashion, can as well solve the intrinsic limitations of single-filter
correlators, thus being an altemative to multichannel setups.

-4-



Chapter one. Pattern recognition by means of optical
techniques: Optical correlators

Introduction.

Artificial image understanding is being vigorously pursued because of its

vital importance in such fields as robotics, artificial vision or artificial

intelligence, all of them of an immense commercial interest. It has, by this

reason, a long history that can be traced back to the first decades of the century

when, with the inception of electronic computers, a practical solution seemed

feasible. However pattem recognition by artificial means has revealed to be a

much more complicated problem than previously thought and a lot of techniques
have been proposed and discarded and subsequently rediscovered and discarded

again in a sort of dialectic process which still continues.

The apparent ease with which we identify objects no matter the

orientation in space, the scale, the ilumination conditions, etc, is just that,
apparent; the processes involved in the visual cortex are of great complexity.
Two data clearly indicate this point. In humans, about 20% of the energy

consumed by the body is due to the brain -its weight is only 2% ofthe total- and

more than 60% of the brain is devoted, totally or partially, to vision tasks. The

100 watts of power that this represents are necessary to feed the 1011 computing
elements, the neurons, each connected to an average of 3000 companions, which
constitute the human visual system.

The necessarily more modest hardware used in artificial pattem
recognition forces us to restrict the type of problems we can satisfactorily solve.

In this sense pattem recognition methods usually deal with a limited number of

images in controlled environments. Whether or not a good method for these toy-
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problems could be effective for the more general ones of real life is still an

unknown.

Within this context, Optics has something to offer because it is the natural

technology to deal with images. rae way in which optical systems handle the

two dimensional information that a given image carries resembles very much that

of the neural systems [Rog91]. Its inherent parallelism, that is, the simultaneous

processing of a large amount of data, the three dimensional nature of optical
systems, the massive interconnection between processing elements with null

cross-talk, and finally, its low power requirements, makes optical pattern

recognition a strong competitor of the computer oriented approaches.
Nevertheless, the great development of digital electronics with its intrinsic

flexibility and accuracy is displacing optical technology from several traditional

areas in image processing. For applications requiring small processing times, the

parallelism of optics still offers advantages over electronics. This is specially the
case of real-time pattern recognition where a large amount of data -an 8 bit gray

scale image of 1024xl024 pixels contains 1Mbyte of information- must be

processed in a very short time, frequently at video rates (25 Hz), which implies
computation times of about 40 miliseconds per frame.

For computing a single correlation ofa 1024xl024 image at video rate we

need a device capable of achieving at least 200 Mflops, as we will show in the

next sections, even by using the FFT, a very efficient algorithm for computing
Fourier transforms. This is ten times the throughput of off-the-shelf signal
processing hardware and can only be attained by means of supercomputers such

as the eRAY, whose Y-MP 232 model runs at 600 Mflops on favorable problems
[Alm94].

On the other hand, the operations that can be implemented through optical
systems are very limited and they are almost exclusively reduced to linear

transforms. Among these the easiest to accomplish and the more used in pattern
recognition is the Fourier transform [Bra65], which allows to perform
correlations between images, the procedure that is analyzed in this study. In this

chapter these arguments are developed in detail and a comparison between

electronic and optical processors is presented.

-6-



Chapter 1. Optical correlators

1.1 Fourier Transform and Correlation.

The Fourier Transform is a linear operation that provides information

about the frequency distribution of a function. It is a basic tool in signal
processing since the frequency content of a signal is often an important factor in
its analysis. For example the elimination of a periodic noise becomes very easy

by means of a filtering process in Fourier space [Gon93]. The Fourier Transform
ofthe functionf(x) is defined as:

-too

F(u) = s [f(x)] = ff(x)e-j21tuXdx (1.1)

where j is the imaginary unit and one dimensional notation has been used for

convenience. Analogously, the inverse Fourier transform ofthe function F(u) can
be written as:

-too

f(x) =�-I [F(u)] = fF(u)ej21txUdU (1.2)

The basic properties of Fourier transforms that will be frequently used

throughout this work are:

a) Inversion equations:

�-I {�[f(x)]}= f(x) (1.3)

� {�[f(x)]} = f(-x) (1.4)

Equation 1.4 is specially interesting because it means that we can use the

direct rather than the inverse Fourier Transform with the only difference of an

inversion off(x) with respect to the origino

-7-
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b) Parseval's Theorem: which, for our purposes, represents the conservation of

the energy between the object and Fourier planes:

-too -too

J If(x)12 dx = JIF(u)12du (1.5)
-00

c) Correlation Theorem: The correlation between two functions, f(x) and g(x),
defined as:

-too

(f*g)(y)= ff(x)g*(x-y)dx (1.6)
-00

where the superscript * means complex conjugation, can be expressed as:

(1.7)

where F and G are the Fourier Transforms offand g respectively. This property
enables a simple implementation of the correlation by means of optical hardware
as will be later shown,

The correlation can be utilized to measure the degree of similarity
between the two functions being correlated. However, sorne care should be taken

in doing this, since we can obtain arbitrarily large correlations by multiplying one

of the functions by a proper constant. This means that the correlation is also a

measure ofthe energy, so to speak, ofthe functions that are to be compared, and
so we must normalize them in sorne way, to obtain a true similarity criterion.

This issue has been considered, for the particular case of images by Kast and

Dickey arnong others [Kast91].
To simplify the discussion, let us assume that we are dealing with real

functions. In this case, the complex conjugation has no effect and thus the term

g
*

(x-y) reduces to g(x-y), which is simply the function g(x) centered at point y.

-8-
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Figure 1.1- Graphic representation of the corre/ation function. The plot shows g(x-y)
for severa/ values ofyas well as the overlapping betweenf(x) and g(x-y).

Then the product of g(x-y) andj(x), and the sum of all these products are carried

out. Intuitively it is clear that a large correlation is obtained if the high values of

one of the functions are multiplied by the high values of the other and therefore,
when the two functions are similar.

Figure 1.1 is an example of the correlation between an square, g(x), of
unit area and a function,j(x), composed by a triangle and this same square. In this

simple case, the correlation at a given point, y, is merely the area of the

intersection ofj(x) and g(x-y). As g scans the X-axis, we obtain a measure ofthe

degree of overlaping between the pattems. As can be observed, the maxima

indicate the position of the two figures in j(x) and the absolute maximum is

obtained when the position of both squares coincides.

Although we have used one-dimensional notation the correlation function

can be easily generalized to an arbitrary number of dimensions. Two-dimensional
correlation is of particular interest because it can be applied to the two­

dimensional functions by which images can be represented. Correlation thus

offers an effective method to identify and locate images, specially for

applications implying the recognition of an object irnmersed in a large scene with

high clutter and noise.

-9-



Chapter 1. Optical correlators

1.2 Optical Correlation.

The Fourier transform, which seems hard to evaluate since it implies a

complex integral, can be readi1y obtained in practice, just by letting light pass
through a positive lens. In particular if an object, whose transmittance could be

represented by the functionf(x), is placed at the front focal plane of a convergent
lens and is illuminated by an on-axis plane wave, the light distribution observed

at the back focal plane is an scaled version ofthe Fourier Transform off(x).
This property of lenses is usually derived using diffraction theory -see for

example [Go068]- but we will give here a self-contained proofwhich needs on1y
elementary optical principIes. Since we assume that both object and lens are

infinite, the diffraction integral on1y describes interference phenomena, whose
result can be easi1y obtained by calculating optical path differences.

Let x represent the coordinate of a point of an object whose transmittance

isf(x), placed at the front focal plane ofthe lens L (see Fig 1.2). Notice that ifit is
illuminated by a on-axis plane wave, the phase in the plane irnmediately after the
object on1y depends on the complex transmittancef(x). Let x' be the coordinate of

a point in the back focal plane of the lens. If A(x�x) represents the complex
amplitude observed at x' due to light coming from x, we have:

A(x' ,x) = Cte f(x) ej�cp(x') (1.8)

f' f'

f(x) L

Figure 1.2- Optical setupfor obtaining Fourier Transforms.
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where Ll.cp(x? is the phase associated to the propagation from x to x'. Since x is a

point of the focal plane of L, rays coming from it will become parallel with an

angle e with respect to the optical axis after passing through the lens. By
applying the Malus-Dupin theorem [Bor75] -which states that the orthogonal
surfaces to the light rays have constant phase- to the resulting plane wave

centered at x'=O we have (Fig 1.3):

L\.C(X') .

sine =
I

<=> L\.C(x') = X' siní)
X

(1.9)

where Ll.C(x? is the difference in optical path between the light rays reaching the

center and those reaching x'. The paraxial approximation allows us to write:

X x'x
sine = tanü = - => L\.C(x') = -f' f' (1.10)

wheref is the focallenght of L. Assuming that the origin of phases is at x'=O,
such optical path represents a phase delay of:

211: x'x
L\.<p(x') = -kAC(x') =-Tr (1.11)

where k is the wavenumber and Iv the wavelenght of the light. By substituting eq.

1.11 into eq. 1.8 we have:

ray 1

� C(x') wavefront 1

x'

wavefront 2

Figure 1.3- Optical
path diferences.

Figure 1.4- The phase at the origin of the back focal
plane is the same for all wavefronts.
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.21t x'x
-J---

A(x' ,x) = Cte f(x) e A. f' (1.12)

At point x' we will observe the coherent superposition of the wavefronts

ernmitted by the whole object. The terms of that superposition can all be

expressed by means of equation 1.12 with respect to the phase of each wavefront
at x'=O. To carry out the sum we have first to write all these terms with respect to

a cornmon origino However, this is actually not necessary as illustrated in Fig.
1.4. The figure shows the wavefronts originated by two distinct object points and
two light rays that reach the origin and belong to those wavefronts. Since these

rays can also be considered as part of aplane wave being focused by the lens,

applying again the Malus-Dupin theorem we see that the phase at the origin of all

plane waves is the same. Therefore, finally, the complex amplitude at pointx' can
be written as:

+00

J
21tx'x

A(x' ,x) = Cte f(x)e-j�Í'dx (l.13)
-00

which is the Fourier Transform ofj(x), where the frequency u is observed at point
x'=uJ.¡', quod erat demonstrandum.

This property of lenses together with the possibility of obtaining the

correlation product by means of Fourier transforms allows us to perform
correlations with a reduced optical setup. The basic architecture, known as 4-f

VanderLugt correlator, is sketched in figure 1.5. It consists of an illumination

system -composed of a low-power laser, a spatial filter to clean the beam and a

collimating lens to obtain the on-axis plane wave- two displaying devices, two

converging lenses, and a detector. The first display, labeled Input, is used to

show the scene that presumably contains the target pattern and the second one,

labeled Filter, encodes the information about the pattern being searched foro

When there is no filter at the focal plane ofL1, the VanderLugt correlator
is just a telecentric imaging system that provides a lateral magnification of -1 as a

simple analysis based on geometrical optics shows. However, an alternative

-12-
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Figure 1.5- Schematic diagram ofa 4-1VanderLugt corre/atoro

explanation based on Fourier optics is more enlightening for our purposes. The

first lens Lb provides the Fourier transform of the input image at its back focal

planeo The complex distribution observed at the output plane wiIl be the Fourier

transform -due to the lens Lr ofthat observed at the filter plane, so in absence of

a filter it is merely a double Fourier transform of the input image. Thus, as

equation 1.4 indicates, we will observe the input pattern with a minus one

magnification. If the Fourier transform of the input is modified by interposing a

filter at the back focal plane of L1, the second lens will reconstruct a modified

version of the original image; for instance, ifwe put a mask that blocks the high
frequency components, that is a low-pass filter, we will register at the output a

blurred version of the input image.
When the transmittance ofthe filter encodes the proper1y scaled Fourier

transform of a reference object, the output will be the correlation between this

reference and the input image. This is so because, after the filter we obtain the

frequency-by-frequency multiplication of both Fourier transforms, the incoming
and that codified in the filter display. The lens L2 performs a final Fourier

-13-
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transform of this product, which according to eqs. 1.4 and 1.7 is, aside of the

inversion, the correlation between both pattems.
The design of filters for the VanderLugt correlator is an issue of the

utmost importance and will be extensively covered in chapter 2. In practice, the
basic setup we have analyzed should be modified in order to get variable-scale

Fourier transforms or to shorten the overall length of the system

[Clar91][Cra91][Geb91], although for the ends of this work such changes are

unimportant. It is worth pointing out that the VanderLugt architecture is not the

only possible but there exist different altematives to carry out the correlation

between images by optical means. In particular, the Joint Transform Correlator

has been widely studied because it offers sorne advantages such as a better

stability and an easy alignment. On the other hand, the flexibility, basically in the

filter design, is lower than that of a VanderLugt correlator although the nonlinear

effects recently proposed are rapidly overcoming this difficulty [Jav89]. Finally,
the Acousto-Optic correlator based on the direct realization of the correlation

integral instead of on the Fourier approach is also a good possibility to build high
speed optical pattem recognition systems. The input devices, the acousto-optic
cells, are used in cornmunications and spectrum analysis applications, they have

been cornmercially available for many years and thus represent a mature

technology. Furthermore they do not require coherent illumination and have a

large bandwith, a fast response and high dynamic range [Psa82][MoI91].

1.3 Correlation between discrete functions: aliasing.

Up to now we have been considering continuous functions to represent
the information contained by images and although this provides an elegant
formalism, is unadequate for most practical purposes. The limited resolution, that
is the limited capability to treat as distinct two close or similar points, of actual
devices for capturing, processing and storing information makes the discrete

representation a more suitable one. The influence of the discretization of signals
is specially important on Fourier processing and thus an analysis ofthese effects

-14-
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is needed. Signals will be represented by the array ofvalues, {f(x¡J}, taken by the
functionf(x) at points xk=kt1x, where t1x is called sampling interval.

We will focus our attention on banlimited signals. Natural images can be

considered with wide generality as members of this special class of functions for
which the intuitive rule-of-thumb that the smaller the sampling interval, the more
accurate the representation of the signal is valid until a limit. A given sampling
interval is enough to exactly reconstruct them by using interpolation techniques
and thus a smaller t1x does not result in a better description oiftx). Bandlimited
functions are defined as those whose Fourier transform has a finite region-of­
support, being the region-of-support the subset of the domain for which the

function has a nonzero value. This result is usually surnmarized in the

Wittaker-Shannon sampling theorem:

Let f(x) be a bandlimited funetion, whose Fourier transform F(u) is

different from zero only inside the interval (-B,B). The necessary and suffieient

condition forf(x) to be reeoverable from the regularly sampled data (f(kt1x)} is:

1 1
�:::;-=-

2B vn (1.14)

where vn=2B is known as Nyquist frequeney.

A thorough demonstration of the theorem as well as sorne pointers to

relevant bibliography can be found in [Go068] and we give only a general
explanation. The possibility of recovering a given signal f(x) is based on the faet

that when a funetion is sampled in one domain, it beeomes replicated in the other

-a diserete funetion has a periodie Fourier transform and a periodie funetion has a

diserete one- with a periodieity L1u given by:

1
�u=­

� (1.15)
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Chapter 1. Optical correlators

where Lh' is the sampling intervalo A physical example of this phenomenon is the

spectral orders (m=O,+l,-l, .. ) observed at points mlf/Lh' -notice the scale factor­

in the Fraunhofer pattem of a difraction grating, the discrete equivalent of a
constant function.

If the Fourier transform of f(x) is zero outside the interval (-B,B), the
condition for the replicas to not overlap each other is thus the one expressed by
eq. 1.14. Finally, if one ofthe terms can be isolated from the rest, the function

can be reconstructed simply by performing an inverse Fourier transformo

The Wittaker-Shannon theorem thus establish a lower limit for the

frequency at which a function can be digitized without any information being lost
in the process: the sampling frequency must be twice the highest frequency
contained in the signal. Failing in observing this principle results in errors known

under the generic name of aliasing.
Examples of aliasing are abundant in real life: the flickering of computer

screens in TV news programs or wheels appearing to spin backwards and rain to
fall upwards in ancient movies, to mention only a few. All of them have in

cornmon the conversion of high frequencies into unreallow ones, as illustrated in

Figure 1.6. Figure 1.6.a) shows a cosine function offrequency 0.8 Hz (solid line)
being digitized at a sampling rate of 1 Hz, and the filled circles represent the
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Figure 1.6- Aliasing due to insufficient sampfing. a) time domain;the 0.8 Hertz cosine

(continuous fine) can not be distinguished from a 0.2 Hertz cosine (dashed) when
digitized at 1 Hertz (filled circles). b) frequency domain; overlapping ofdifierent orders.
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discrete values taken by the function (one per second). Since the Nyquist
frequency for this case is 2xO.8=1.6 Hz, the discrete values do not completely
characterize the function, which can be confused with a (1-0.8) Hz=0.2 Hz

cosine. Figure 1.6.b) provides a complementary interpretation from the point of
view of Fourier domain. The discrete cosine gives rise to infmite replicas of the
Fourier transform of the continuous cosine -a pair of delta functions-. As the

sampling was carried out at 1 Hz, their separation is also 1 Hz, which is

insufficient to prevent the mixture of adjacent terms. The net resuIt is the

appearance of a false 0.2 Hertz cosine.

When the correlation is implemented via Fourier transforms the effect of

aliasing has to be carefully considered. The main limitation comes from using a

discrete filter as we show in the following. This is valid whenever we deal with

discrete images, that is in a digital implementation or in an optical correlator
when pixelated modulators are used, although the analysis we are carrying out is

focused on this latter case. For the sake of clarity and because the discussion is

somewhat lengthy we surnmarize it here, at the beginning. Our purpose is to

show that, owing to sampling effects and no matter the size of the target pattern,
the filter must always have the same number of pixels as the whole input scene.
The problems raised and a possible solution are also briefly cornmented.

Let us suppose that we have an input scene ofNxN pixels that contains a

target image of QxQ pixels. The spacing between pixels -the pitch- in the input
modulator is &. The filter plane modulator consists of a regular lattice of TxT

pixels of pitch .1u. In these conditions, the filter impulse response -or more

correctly, the correlator impulse response-, that is the inverse Fourier transform

of the discrete fiIter, is composed of infinite copies of the intended encoded

image appearing at x'm=mlf/.1u. When the dimensions of the scene are small

compared with the period of the replicas, namely when:

Af'
ilic == (N -l)L\s ::; -

L\u (1.16)

where .1x represents the lateral dimensions of the input modulator, the result is a

circular correlation as depicted in Figure 1.7. The picture shows the impulse
response of a 128x128 filter, encoding the image of an Abrahams tank being
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Replicated impulse response

Circular correlation

-

-

Figure 1. 7- Circular correlationproduced by a discretefilter.

correlated with a Panzer tank, the latter displayed in a darker gray scale. The

correlation is being evaluated at point (54,0) as indicated by the displacement of
the array ofAbrahams. The scene, here only the Panzer on a black background, is
limited by the square labeled FOV (field of view). Obviously, the position of the

target makes sense only for points belonging to the field of view and thus we are

only interested in the correlation on this region. For the region of interest

everything happens as if the edges of the scene were glued together, in such a

way that when part of the reference image goes out of the field of view, reenters
from the opposite side.

Circular correlations retain most of the properties of the aperiodic ones

and in particular the capacity for locating and identifying objects. Furthermore,
the most powerful filter designs can only be obtained by means of digital
computations and implemented through digital holograms, which implicitly
assume the circularity of the correlations and thus, in practice, this effect is not

disadvantageous. The problem appears when the input scene is large compared
with the periodicity of the impulse response, as illustrated in Figure 1.8. In this

example, the field ofview, formed by the letters A, B and e, spans nine copies of
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al bl

Figure 1.8- Same corre/ation at the origin.a) centered
target. b) centered at the order (0,-1).

the target pattem, the letter A, which yields to a high correlation at the origin of
the correlation plane no matter whether the A is actually located at the center or

at one of the spectral orders. In this situation there are errors in the determination

of the position of the target as well as false peak:s. Therefore, to avoid them, the
size of the input scene must be at most:

Af'
�=­

Llu
(1.17)

On the other hand, the factor lf can not be arbitrarily set because of the

need of matching the scales of both filter and scene, which forces us to use a

filter with the same number of pixels as the input modulator. This is so because

the maximum spatial frequency contained in the displayed image is:

N-I
urnax=--2� (1.18)

The plane wave that carries the information of this frequency must be

focused at most at the last pixel ofthe filter modulator, namely at a distance:

T-I
x'=--ó,u

2 (1.19)
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-----------::;:;:

a) b)

Figure 1.9- Size-frequency relationships between input and filter planes. a) The maximum

frequency present in the input image must be focused on the outmost pixel of the filter. b) the
outmost pixel of the image gives rise to the maximum frequency contained in the Fourier

transformo

from the optical axis (see Figure 1.9.a) so due to the scale of the optical Fourier
transform given by Equation 1.13 we have:

N-1 T-1
--A.f'=--�u
2� 2

(1.20)

whence

T-1
A.f'=--��

N-1 (1.21)

and thus we have:

T-1
A.f' N -1

�� T-1

�u
-

�u
=

-N---l�
(1.22)

and substituting into equation 1.17 we fmally get T=N.
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It is worth pointing out that we have supposed that the target image is

only QxQ pixels. Let us derive the number of pixels needed to accurately
represent its Fourier transformo

The maximum frequency contained in the Fourier transform of a centered

target is due to the outmost pixels (Figure 1.9.b), namely those at the distance

from the optical axis given by:

Q-l Q-l ffic
x=--�s=----

2 2 N-l (1.23)

whence the maximum spatial frequency is:

Q-l ffic Q-l ffic
---- ----

Q-l2 N-l 2 N-l
(1.24)(Om = =

T-l
=

Af' 2(T -l)�u--�uffic
N-l

The maximum frequency that can be represented in the filter modulator

IS:

1
(o' =--m 2�u (1.25)

and, according to the Wittaker-Shannon theorem, for the Fourier transform of the

target to be well represented we need:

Q-l 1
<=> >- <=> T�Q

2(T -l)�u
-

2�u (1.26)

which means that a Fourier Transform is properly encoded by using the same

number of pixels as the object. Therefore, although a filter of QxQ pixels is

enough to represent a target of QxQ pixels, the necessity of avoiding the errors
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raised by the discrete nature ofthe Fourier plane modulator, namely the aliasing
errors, makes necessary the use of a filter with the same bandwith as the whole

scene. Notice that this makes the Fourier implementation of the correlation

inefficient for small targets embeded in a large scene when compared with the

direct evaluation of the correlation in object space. This is considered by sorne

authors, [Hua91][Ghe92], as one ofthe major handicaps for building competitive
high speed optical correlators -a large bandwith modulator needs a large memory
and complicated control electronics and is necessarily slow- to address broad­

area-search problems. A possible solution is the use of randomly pixelated
modulators [Hed92], for which the sampling theorem is less restrictive and which

require a bandwidth equal to that of the target image. The price is a lower fill

factor and thus a smaller optical efficiency.

1.4 Comparison of digital and optical correlators.

Optics provides a simple way, although not exempt of sorne difficulties,
to perform the correlation product, as shown in the preceeding sections.

However, the key question is whether or not this represents advantages enough
over digital electronics that can compensate the difficulties of developing a new

technology.
Huang el al. and Gheen el al. carry out a comparison between optical and

digital correlators in [Hua91] and [Ghe92]. They computed a figure of merit

defined as correlations per second per watt, concluding that optical processors
still enjoys a significant advantage for large fields of view; for example optical
correlators can perform 41.67 to 416.67 corr/s/watt depending on the filter plane
modulator, for input scenes of 1024xl 024 pixels, whereas digital processors can,

in the best case, perform only 4.156 corr/s/watt, that is ten to one hundred times

less. However, since their data depend strongly on delicate assumptions and

extrapolations of technology trends we prefer to make such a comparison by
adopting a different point of view. We wiIl derive the number of floating point
operations per second - flops- needed to compute the same number of correlations

than those performed by an actual optical correlator: SPOTR. Since the number

-22-



Chapter 1. Optical correlators

of floating point operations per second is an standard measure of computational
power we can get a fair idea of its electronic equivalents. Although this approach
does not encompass important issues such as the cost of those operations, for

example through the power consumption, as the mentioned references, it relies

only on non-controversial assumptions.
SPOTR, the acronym for System for Passive Optical Target Recognition,

is a high-speed multichannel VanderLugt correlator developed by Martin­

Marietta and Boulder Nonlinear Systems Inc. for the Transition of Optical
Processors into Systems-TOPS project, a program funded by the Advanced

Research Projects Agency to produce rugged optical processors [Lin94][Cas94]
and represents the state-of-the-art in this technology. It is designed to achieve

distortion invariant recognition over a large range of view angles and distances

by correlating the input scene with a filter database.

The input scene and the filter are displayed on two ferroelectric spatial
light modulators (SLM) of 128x128 pixels and capable of a frame rate in excess

of 2000 Hz. The source of coherent illumination is a 690 nm laser diode and the

correlations are captured by means of a high speed camera developed by DALSA

working at 800 Hz. The prototype consumes less than 126 watts, occupies less

than a cubic foot (0.028 m3) and weights about 43 pounds (19.50 Kg).
With this architecture, the speed of the optical correlator is limited by the

electronic devices used at the input and output planes, namely modulators and

cameras. The frame rate allowed by the optical elements, mainly limited by the

speed of light, is higher as we will show.
The ferroelectric SLM has a pixel pitch of .1x=30llm. Since it is

composed of 128x128 pixels, its size is

d=0.03xI28=3.84 mm. (1.27)

The higher spatial frequency that can be displayed on the modulator is 1/(2&),
which, to be adequately modified at the Fourier plane, must intercept the filtering
modulator at x'=d/2. Owing to the scaling of the optical Fourier transform given
byeq. 1.13 we have:
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d 1
-=A.f'-
2 2�' (1.28)

whence

déx 3.84x31O-2
f'= ---;¡- = -4

= 166.96mm == 16.7 cm ,

1\, 6.9xl0
(1.29)

and thus the overalllength of the correlator is

4f'= 4x16.696 = 66.78 cm. (1.30)

To travel this distance, the light will need:

66.78 -11�t = 10
= 2.23xl0 s,

3xl0 (1.31)

which, even ifpipelining is not used, equivals to the huge frame rate of:

1 1 -1 MHv=-= 11 s =450 z.
�t 2.23xl0- (1.32)

and therefore the maximum frame rate is 800 Hz imposed by the camera, the

slowest device in the system. If we wish to perform the identification of an

object at video rate (25 Hz), this means that we can perform up to 32 correlations

per input image (32x25=800). In practice the SPOTR correlator uses composite
filters that are able to include the information of 180 images of the target, which

results in 180x32=5760 views. When the range of viewing angles and distances

from which the object may be observed is large this number is not enough; for

example, in the initial tests of the correlator was found that a 800 filter database

was necessary -a total of 144000 images to characterize the 3-D target- and thus

only one identification per second was possible. Since the number of equivalent
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Figure 1.10- SPOTR correlator digital equivalent operating at video rateo

1second

flops is only slightly different for the two cases we will compute them when the

correlator operates performing 32 correlations per input frame at video rate (25
frames per second).

To reproduce the results obtained by the SPOTR correlator by means of

digital electronic hardware we need to carry out the Fourier transform of the

input scene, multiply it by the precomputed filters on a frequency by frequency
basis and obtain the correlations by computing the inverse Fourier transform of

those products as sketched in Figure 1.10.

Unfortunately for Optics there exist very efficient algorithms for the

digital computation ofFourier transforms known as FFT algorithms -Fast Fourier

Transform-, capable of reducing the apparent complexity of N2 operations to

roughIy Nlog-N for an N-point sequence. In particular, when the number of

points is a power of two, namely N=2k, we can use the so-called Radix-2 FFT

algorithm, which according to [Nus82] needs for an N-point complex transform:
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N
M = 2(-10+310g2 N)+8

N
A = 2(-10+ 710g2 N) + 8

(1.33)

nontrivial real operations, where M and A are the number ofmultiplications and

additions respectively. Operations such as multiplications by ±1, ±j, etc, are not

taken into account as they imply in the worst case only a change of sign, thus

being much less involved than true floating point operations.
The two-dimensional Fourier transform of the NxN input scene is carried

out by performing the N one-dimensional row transforms -ofN points each- and

subsequently the N column transforms. Let rik be the i row. Equation 1.33 gives
the computational complexity of an N-point complex one-dimensional Fourier

transformo Since the input scene is real we can compute two row transforms with

the same number of operations as one complex [Nus82] by forming the auxiliary
sequences:

SI k = rl k + jr2 k, , ,

Sp,k = r2p-l,k + jr2p,k'
sN/2 k =rN-l k + jrN k, , ,

(1.34)

that is to say, N/2 complex transforms for which we need:

N2
MI =-¡-(-10+310g2N)+4N

N2
Al =-¡-(-10+710g2N)+4N

(1.35)

The individual rows transform can then be separated by using the

syrnmetry properties of the Fourier transforms of pure real and imagmary

sequences:
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Re{R2p-1,k} = (Re{Sp,k} + Re{Sp,_k}) /2
1m {R2p-1,k} = (lm {Sp,k} - Im{Sp,-k}) /2

Re{R2p,k} = (lm{Sp,k} + lm{Sp,_k}) /2
Im{R2p,k} = (Re{Sp,_k} - Re{Sp,k}) / 2

(1.36)

at the cost of 4NxN/2=2N2 additions, where ReO and ImO symbolize the real and

imaginary parts and capital letters represent the Fourier transforms of the

corresponding lower-case sequences. Notice that the multiplications by 1/2 are

not considered because it is an irrelevant -for our purposes- proportionality factor

affecting all the transforms. Therefore we have so far:

N2
M2 =4(-10+310g2N)+4N

N2
A2 =4(-10+710g2N)+4N +2N2

(1.37)

The computation of the column transforms is also simplified by the real

nature of the input scene. In this case, the real and imaginary parts of the two­

dimensional Fourier transform have even and odd symmetry respectively:

* *

Fi k = F-i -k = FN-i N-k, , ,

N
i,k = 1''''2 (1.38)

and thus only the first N/2 transforms -now complex- must be calculated making
a total of:
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N2
M3 =T(-10+310g2N)+8N

N2
A3 =T(-6+710g2N)+8N

(1.39)

As the SPOTR correlator uses an FLC device with only two modulation

states, + 1 and -1, the frequency-to-frequency multiplication between the scene

transform and the filters is accomplished with N2 trivial multiplications, which
are consequently discarded. FinaIly to carry out the Fourier transform of this

product, and considering that the filter, and therefore the correlation, may be

complex in direct space, we wiIl need N complex row transforms foIlowed by N

complex column transforms, namely:

M4 =N2(-10+310g2N)+16N
A4 =N2(-10+ 710g2N) + 16N

(1040)

FinaIly, to carry out the 32 correlations per frame at a 25 Hz frame rate

we need -25 real FFT (input scene) + 32x25 complex FFT (product):

N2
25M3 +800M4 = T(-16250+487510g2N) + 13000N

N2
25A3 +800A4 = T(-16150+ 1137510g2N)+ 13000N

(1.41)

whence the total number of operations per second is:

N2
flops = 2(-32400+ 16250log2 N) + 26000N (1.42)
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Connection Machine-CM2 with 2048 processors (peak value) 20 Gigaflops
IBM SP2 with 12 nodes (peak value) 3,2 Gigaflops

IBM 3090/600 J with 6 processors (? value) 828 Megaflops
SPOTR correlator (theoretical value) 670 Megaflops

CRAy Y-MP 232 with two processors (? value) 666 Megaflops
16x16 mesh ofInmos T800 transputers (peak value) 384 Megaflops

CRAY-1 (peak value) 160 Megaflops
Data Translation DT 2878 Advanced Processor-image 25 Megaflops

processing card (nominal value)
My home computer-Intel 486 DX2 at 66 Mhz (computed with 2,2 Megaflops

LINPACK-Argonne test)

Table 1.1- Computationalpower comparison between several systems.

and since the bandwith ofthe modulators is N=128 we have:

flops = 669747200::::: 670 Megaflops (1.43)

which is about the same computational power as a Cray Y-MP 232

supercomputer working in parallel with two processors (666 Megaflops) and

roughly 27 times the capacity of off-the-shelf image processing electronic

hardware as Table 1.1 surnmarizes.

In conclusion, because of vision problems are characterized by the

necessity of processing a large amount of information in very short times, and
since they do not need a high precission in the associated computations -

frequently a yes/no result is enough- they are well suited for Optics, an analog
and intrinsecally parallel technology. In the particular case of correlation, a

relatively simple optical setup can compete with parallel supercomputers
outperforming them, probably by sorne orders of magnitude, in cost, size and

power consumption.
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Introduction.

The measure of similarity between pattems of equal energy implicit in the

correlation function can be used, as explained in the first chapter, to determine the

position of a given object inside a complex scene. The obvious way to do this

consists of using as a filter the pattem to be detected, which wiIl naturally produce
a maximum correlation at the position in which the image is placed. But this is not

only possibility since we can use as a filter a model of the object, perhaps with

only its salient features such as the edges and distinctive details.

The information contained by an image is in general very much redundant,
a weIl known fact that is employed in compression algorithms. These algorithms
routinely attain large compression ratios [Son94] by exploiting the repeated
appearance of strings of data that are frequent in natural images. This effect is

even more patent when we don't have to recover the whole image but we are

interested in distinguishing a pattem from a different one. In a such a case, and if

there is no noise blurring the images, the problem can be triviaIly solved just by
using one of the pixels where the two pattems differ. For a more complicated
problem involving noise and more images we will need the use of more

information, but in general, the whole target picture wiIl not be necessary. This

fact gives us sorne flexibility in the correlation filters we can use for a reliable

detection.

VanderLugt in 1964 proposed the first feasible implementation of a

correlation filter by means of the, in those days, recently discovered technique of
off-axis holography. Since then and in an almost trial and error process at the

beginning, hundreds of different filters have been developed and enhanced until

the systematic approach of the optimization procedures emerged as a synthesis.
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Filter design for optical correlators is currently a well founded discipline to which

this chapter is devoted.
The natural domain in designing filters for VanderLugt correlators is the

Fourier space because the correlation product is carried out by means of a

frequency filtering process. However the object space is sometimes more useful

when the filters are intended for a different architecture such as a joint transform

correlator, which works with a filter in direct space or an acoustooptic correlator

that performs the correlation directly without using Fourier transforms. An

specific design in direct space may overcome sorne of the difficulties raised by the

frequency representation, for example the circularity of the correlations. Inasmuch

as we deal only with VanderLugt correlators the Fourier representation is

implicitly assumed in what follows unless otherwise specified.

2.1 Previous considerations: notation, procedures and quality
criteria.

We begin this chapter by making clear the conventions we adopt to express
and derive the different results. First of all, the two representations, discrete and

continuous, will be used indistinctly passing from one another when mathematical

convenience so demands. In general, single-image filters are described in the

continuous representation whereas the multiple-image designs, to avoid the

Hilbert formalism, will be represented by discrete magnitudes. This will allow us

to use the more simple theorems of linear algebra.
To unify the notation we adopt the following conventions:

x, y : represent spatial coordinates in object space.
u, v : represent frequency coordinates in Fourier space.

h(x,y) : represent images in object space and
H(u, v) : in capitalletters denotes the Fourier transform ofh(x,y).
8, CP(u, v) : Greek letters are used to represent angles and phases.

and whenever discrete notation is used:
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x : normal Ietters denote scalar variables.

x, xi: bold case letters represent vectors and Xi its i-component.
x ,xi: are vectors and components in Fourier space.

X,Xij : a capital bold case Ietter denotes amatrix with componentsXij.
X,Xij : represent a matrix in Fourier space.

Images in the discrete representation are treated as vectors using
lexicographic scanning. Such procedure, as sketched in Figure 2.1, enables us to

construct a vector ofN2 components from an image ofNxN pixels by successively
stacking its N row vectors. With this technique, the correlation can be written as a

scalar product allowing the introduction of the powerful concepts of vector and
metric spaces. Indeed, the central correlation between the filter h(x,y) and the

image r(x,y):

e ( O ,O) = ffh *

(x, y) r ( x, y ) dxdy = ffH *

( u, v ) R ( u, v ) dudv (2.1)

._u

• 11

••• 11 �

• 1111

••.u

Row#1

Row#2

Row#3

Row#4

Image Row separation

Row#5

Lexicographic scanning

Figure 2.1- Conversion of a 5x5 image into a vector of 25
components by means of lexicographic scanning.
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can be rewritten for discrete functions as:

�* +

co,o=�hiri=h r (2.2)

where the superscript + means conjugate transpose. Equivalently, expressed in

terms of their Fourier transforms we have:

1 ��* 1
�+

cO,o =-�hi Ti =-h r
N N

(2.3)

where N is the image bandwidth.
To illustrate the different results several simulations have been carried out.

In all of them, the correlation has been implemented using an FFT routine of the

Brenner type found in [Pre88].
Noise is assumed to be additive, Gaussian, stationary -the statistieal

properties do not vary from point to point- and zeromean. When a white spectrum
is supposed it is explicitly mentioned, This model for the noise is the most simple
one, so it is worth mentioning that more realistic cases are being currently
addressed such as non-Gaussian models [Kas87][Vij89a] or nonoverlapping -with
respect to the signal- noise as a first approximation to clutter [Jav93][Ref93].

Finally, most1y following Vijaya Kumar in [Vij90a] we define several

quality eriteria which enables us to assess the performance of the different filters

and consequently to search, compare and select the most appropriate ones. They
are:

a) Signal-to-noise ratio (SNR), which is a typical figure-of-merit in signal
processing to measure the quality and reliability of a system. Here, the signal is
the correlation peak, which for simplicity is supposed to be at the center of the

output planeo It is defined as:

IE{c(O,o)}12SNR=---­
var{c(O,O)}

(2.4)
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where E{} is the mathematical expectation or more simply the mean and var{}
represents the variance of the correlation peak. Large signal-to-noise ratios

represent small fluctuations of the correlation signal compared with the total

height of the peak, and thus this parameter should be kept as high as possible
when thresholding is used to determine their position. Since the noise is additive

in our model, the input image r(x,y) can be written as:

r(x,y) = s(x, y) + n(x, y) (2.5)

where s(x,y) is the noncorrupted image and n(x,y) a noise sample realization. The

correlation with filter h is therefore:

+ + +
h r=h s+h o (2.6)

and thus the mean is:

E(h
+
r) = E(h+s) + E(h+0) = h+s+ E(h+0) (2.7)

and since the noise is Gaussian and zeromean we have:

+ + +
E(h o) = h E(o) = h O = O (2.8)

which after substituting into equation 2.7 gives:

+ +
E(h r) = h s (2.9)

The variance can also be expressed as a function of the filter components
in a simple way:

(2.10)
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and applying again that the noise is Gaussian and zeromean:

var{lh+rl} = Ih+sl2 + ,Ih+nl2 )-Ih+sl2 = ,Ih+nl2 )=
= '(h+n)(h+nf)= E[h+nn+h] = h+E(nn+)h = h+Sh

(2.11)

where

s = E(nn+) (2.12)

is known as the correlation matrix, the second order matrix or - for zeromean

noise- the variance-covariance matrix [Pic93]. For an stationary noise, the Fourier

transform, S, of the covariance matrix is diagonal, being its entries the

components of the power spectrum of that noise.

Finally, the signal-to-noise ratio can be written as:

Ih+sl2 líi+¡12
SNR= =---

h + Sh N íi + síi
(2.13)

or equivalently in terms of continuous functions:

IffH* (U,V)S(u,V)dUdvI2
SNR=a

JJP n ( U ,v) 1 H ( u ,v) 12 dudv

(2.14)

where Pn (u, v) is the power spectrum of the noise and ex. a scaling constant.

b) Homer efficiency: This is a quality criterion specifically defined to

address the optical properties of correlation filters. In particular, Homer efficiency
measures the fraction of the total energy present at the input plane passing through
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the filter and fonning the correlation so this parameter should be maximized. It is

defined as:

Total energy at the correlation plane JJlc(x,y)12 dxdy
11-

-
.. (2.15)-

Total energy at the input plane
-

JJ Ir(x,y)12 dxdy
which using the Parseval's theorem -see Chapter 1- can be written in Fourier space
as:

(2.16)

Notice that the optical systems -holograms, modulators, etc- used to

display the filters are passive, and so their transmittance are such that IH(u, v) I�1

and consequently:

11:::;1 (2.17)

e) Peak-to-correlation enerliY: A high Homer efficiency is not enough to

guarantee a large detection signal when the filter produces broad correlation peaks
or if large secondary lobes are present. To measure the fraction of the correlation

energy going to fonn a detection maximum, the peak-to-correlation energy is

defined:

Energy of the peak 1 c ( O , O) 12
PCE= -

Energy of the correlation plane
-

JJI e (x, y) 12 dxdy
(2.18)
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or in terms ofFourier transforms:

(2.19)

where a is a normalizing constant. The expression of the peak-to-correlation
energy takes a compact form when written in discrete notation which is of great
interest in designing multiple-image filters. Such expression is:

lii+rl2 lii+rl2 lii+rl2
PCE =----- =------- =---

N� h ¡ f¡ 12 N� h ¡ 121 f¡ 12 N ii +ñii
(2.20)

where ñ is the diagonal matrix:

(2.21)

o

Again this parameter should be maximized to obtain sharp peaks and small

sidelobes.
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2.2 Filter design for a reliable detection. Necessary conditions.

Chapter 1 introduced the correlation as a useful technique for pattem

recognition based on intuitive reasonings. Recalling those arguments, we said that

the correlation is large when the high values of the two functions being correlated

coincide and therefore when they are similar. However one could legitimately ask

what would happen when one of several similar objects is to be identified and its

position determined. Is it possible to find a filter capable of doing so or correlation

is only able to discriminate pattems in trivial cases when the objects are very

different? As we saw, when the filter is a constant -or there is no filter- an optical
correlator is merely an imaging system that, of course, gives no distinctive

information about the input images so which filters, if any, ensure a reliable

identification? To answer this, we need first an explicit definition of what a

reliable filter is and a mathematical condition characterizing them. A reasonable

possibility is the following:
When the detection procedure of a given object is implemented by means

of the correlation function and the subsequent thresholding of the output plane, the

necessary conditions that a filter must fulfill for a reliable identification are:

a) The correlation between the filter and the target image must be higher
than the correlation between that filter and any other image ofthe same energy.

b) The maximum of the correlation between the filter and the target image
must indicate its position.

With these conditions the appearance of a clear maximum in the output

plane would indicate the presence and position(s) of the image of interest in the

input scene. Furthermore a threshold can be selected to eliminate the correlations

with the nontarget objects. If the output plane shows no sharp peak, the image
being considered is not present. It is worth pointing out that the utilization of

threshold detectors, although being the easiest, is not the only possibility for

interpreting the output planeo The height of the correlation maxima may induce to

errors in the identification of an image in an adverse environment with changes in
the illumination conditions. For this reason the shape of the peaks has been

proposed [Jen87] as a new element of decision. Filter designs such as G-MACE

[Cas91] and MSE-SDF [Vij92a] that control the form ofthe peaks have also been

developed. Furthermore the hard decision logic implied by the binarization may be
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replaced by soft decission rules such as those used in fuzzy logic or by using
neural networks [Raj92]. These different approaches would lead to different

definitions of acceptable filters. However, we wiIl not consider them in the

foIlowing argumentation.
When only the height of the correlation peak is taken into account, the two

constraints that we have established ensure the detection. The first condition

enables us to distinguish the target pattem from other similar objects and the

second one to accurately determine its position inside a large scene. Both can be

mathematicaIly expressed in a convenient way through the foIlowing

Proposition

Letf(x,y) be the pattem to be identified. Let us choose a point ofthis image
that wiIl be refered to as the image center and wiIl be used to defme the position of

f(x,y). In this way, when we say that the image is centered or is placed at the point
(x(pyo) we mean that its center is located there. Then, if

F ( u , v) = I F ( u, v ) I e jq, 1 (u,v) (2.22)

is the Fourier transform off(x,y) centered at the origin of coordinates and

H ( u , v) = I H ( u, v) I e jq, 2 (u,v )
(2.23)

the Fourier transform ofthe filter h(x,y) then:
- The sufficient condition -condition b) above- for the filter to give a

maximum at the center of the correlation plane is:

<PI (u,v)=<P2 (u,v) v u ,v (2.24)

- If the latter requisite is met, the necessary condition -a) above- to obtain a

higher correlation with the pattemf(x,y) than with any other ofthe same energy is:

IH(u, v)1 = IF(u, v)1 v u,v (2.25)
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The intensity of the correlation between the image and the filter can be

expressed as

by means of the correlation theorem.
If we express both H and F in terms of their magnitudes and phases the

correlation can be written as:

I[h* f] (x,y) 12 =lffIH(u,v)IIF(U,v)lej(G>2 (u,v)-G>¡ (U,V»ej(XU+YV)dUdvI2
(2.27)

The maximum value of this expression with respect to the phase, is easily
found by considering the complex values as two-dimensional vectors and applying
to them the triangle inequality:

I[h * f] (x,y) 12 = alfflH( u, v)IIF(u, v)le j(P2 (u,v)-(Pt (uv j) ej(xu+yv) dUdvl2 �

�a(ffIH(U,v)IIF(U,v)llej(G>2 (u,v)-<I>¡ (u,v»ej(xu+yv) Idudvy =

= a( ffIH(U, v)11 F(u, v)ldudv r = alffIH(u, v)IIF( u, v)ldUdvl2
(2.28)

where the equality holds if and only if:

ej(xU+YV+G>2 (u,v)-G>¡ (u ,v ) = ejp vu ,v (2.29)
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where � is an arbitrary constant.
Since we are looking for the condition ensuring a maximum to appear at

the center of the correlation plane, i.e.:

x=y=o (2.30)

it is enough ifwe demand:

<1>2 (u,v)=<I>l (u.v j+B (2.31)

The constant � is of little importance because it merely represents a

different phase origin between the Fourier transforms of target and filter and can

be set to zero with no loss of generality. By doing so, the first part of the

proposition is proved.
A few comments about this result are necessary. First, the condition is

sufficient but not necessary. It could be possible to obtain the maximum of the

correlation plane at the center with a different phase distribution. Notice that we

have stablished the condition to obtain the maximum possible correlation -with a

given amplitude- at the center, which obviously implies that the rest of the

correlation plane is not higher. However, in many cases, for example with sorne

SDF filters, the center is also the highest with respect to the correlation plane
although it is not the maximum achievable value for the correlation with that

particular input image. The possibility of stablishing a less stringent requisite wiIl
be later used in deriving the multiple-image filters.

On the other hand the maximum is not necessarily unique and several

points may take the same value as the center. For example when the input image is

a periodic pattem, the correlation is also periodic and the maximum appears at

regular intervals. However the position of a periodic image is loosely defined

since such images are indistinguishable when they are displaced exactly one or

several periods. Thus the problem seems to be a consequence of pathological
images rather than a defficiency of the recognition procedure.

The second point is proved as foIlows. The intensity of the correlation

between two different images ofthe same energy can be written as:
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l[h*f](X,y) 12 =aIJJIH(U,V)IIF(U,v)lej«I>2-<I>l+XU+YV)dUdvI2 :5

:5a(JJIH(U,V)12 dudv XJJIF(U,V)12 dudv )=a(JJIH(U,V)12 dudvr =

=1[h*h](O,O) 12
(2.32)

where the first step has been derived by using the Cauchy-Schwartz inequality and

thesecond one by imposing the equality ofthe energies. Since the latter integral is
the intensity of the central autocorrelation the proposition is proved.

Expressed in words this result permits us to answer the questions raised at

the beginning of the section: it is always possible to discriminate a given object
from others of similar shape -in fact no matter how similar- and determine its

position ifthe filter is the Fourier transform ofthe target object. Thus in this sense

correlation is a well defined operation and can be used with confidence in pattem

recognition problems.
The Fourier transform of the target object, when considered as a

correlation filter, is a particular case of the so-called matched filter and has a

number of additional interesting properties. In particular for white noise the

signal-to-noise ratio is a maximum:

IJIH *

(u, v)S(u,V)dUdvl2 JIIH(u, v)12 dudvJIls(u, v)12 dudv

SNRH(u v)
=

JI
s

JI
=

,

P n (u, v ) 1 H ( u, v ) 12 dudv P n 1 H ( u, v ) 12 dudv

(2.33)
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where the Cauchy-Schwartz formula has again been used. Furthermore, the noise

induced peak location error is a minimum, see [Vij92b] for the details and the

filter can be easily and accurately implemented in practice thanks to optical
holography following the VanderLugt method [Van64].

Matched filters have also important drawbacks, mainly their

overspecialization on noise robustness as we will further analyze. This makes the

filter to rank poorly in Homer efficiency and specially in the peak-to-correlation
energy criterion. This overspecialization limits the range of possible applications
of the correlation based techniques to problems in which noise is the main

concem.

However, one would wish to have different choices to be applied to

different situations. For example, a filter giving sharp peaks when noise is not too

severe but multiple targets may appear in the field of view or perhaps, a very

efficient filter to be used jointly with a low-power laser in a portable correlator. To

get this flexibility we must renounce to the maximum correlation condition,

passing from having a total certainty that the target correlation is the highest to a

reasonable probability. In fact, this condition is too strict. Think, for example in a

problem that consists in sorting a set of cutting tools, a practical application solved

by an optical correlator as reported in [Caw89] and [Raj92]. The optical processor
was developed as part of an ESPRIT program, the high-technology initiative

promoted and funded by the European Union, being the final user the German

company Fried Krupp GmbH. To reduce the fabrication costs, the company was

interested in achieving a dense packing of different tools in a holder where the

pieces had to undergo a coating process but avoiding the contact between them.

The optical correlator had therefore to classify the pieces and provide information

about their position and orientation. Here, the number of images that can appear in

the field of view is limited and differ from the ideal shapes within very strict

margins -the tolerance ofthe fabrication process-. In such a case it is unnecessarily
demanding to prevent that, say, a set of butterflies give a high correlation with the

filters used to identify the tools. Simply, it is unlikely to see a butterfly in such a

place.
This matches with the intuitive notion, as commented in the introduction,

that the totality of the information of an image is in general not necessary to

identify it. For the specific case of using the correlation as the means to carry out
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such identification, it may suffice ifwe use as a filter a model of the target object,
that is sorne version containing only relevant data. This possibility would permit
us the utilization of different filters.

The work ofOppenhein and Lim [Opp81] gives the theoretical background
to put this qualitative arguments into a more formal basis. In the cited reference,
the authors analyze the information content of both, the magnitude and phase of
the Fourier transform of natural images, concluding that it is not equally
distributed. The magnitude of natural images seems to be very similar thus

carrying little specific information about them and consequently it is the phase
what really makes the difference. This fact is illustrated in the following example.
Figure 2.2 shows a set of twelve different butterflies and Figure 2.2 the magnitude
oftheir respective Fourier transforms; all twelve showa similar behavior, namely
a concentration of energy in the lower frequencies giving delta-like distributions.

It is worth pointing out that this behavior is the origin of the broad correlation

peaks given by matched filters.

Figure 2.2- Test images.
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Figure 2.3- Magnitude ofthe Fourier transforms ofbutterflies in Figure 2.2.

Figure 2.4 gives a numerical comparison of the information content of

both, magnitude and phase of a set of images. The graph has been obtained by
adding successively a new image of the set in Fig. 2.2 and computing for the two
quantities of interest the following deviation:

max(x j [k])
j,k

(2.34)
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where N is the bandwith of the images, Nl the number of images being
considered, xj[k] the kth pixel ofthe imagej, and fínally mS[k] the mean value of

either magnitude or phase ofpixel k for the set of images.
For a given number of patterns, say the first five butterflies, the quantity

inside the parenthesis is a measure, for each pixel, of the deviation of the phase
and magnitude with respect to the average value of these same quantities for the
five butterflies. For example, if for a given pixel the magnitude of all butterflies
considered is the same, the parenthesis is zero. This gives then an indication of

how varies the magnitude -or the phase- in that pixel for the set of five butterflies.

Furthermore, when we add a new image, the new value of the parenthesis reflects
the amount of distinctive information introduced. The rest of the expression adds

up the variation of all the pixels and normalize it to the maximum value.

The plot in Figure 2.2 shows, although this should be taken with caution

since we are reducing the complexity of a set of images to a single numerical

value -see [Juv91] for possible exceptions-, that the average variation ofthe phase
is much important than that of the magnitude and consequently that the phase
carries most of the specific information of an image.
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Figure 2.4- Normalized variance vs. number oi
images of the magnitude andphase.
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Figure 2.5- Reconstructed images.

A further example, this one closer to our discussion about correlation

filters as we will see, is shown is figure 2.5. In this case the twelve butterflies have

been reconstructed from Fourier transforms made by conserving their specific
phases but by changing all the magnitude distributions to a common one, the

average ofthe seto As can be observed, except for a nonuniform background and a

small loss of details, all the images resemble the original ones, and in particular
they can be distinguished from similar companions.

The consequence of this asymmetric distribution of the information

between the two parts of a Fourier transform, enables us to use with quite
precission the approximation that the amplitude distribution of a set of images is

the same and does not change from pattem to pattem. In such a case, the two

conditions we stablished to ensure a reliable detection can be met by only
maintaining the phase of the target pattem, namely we are allowed to use filters of

the type:
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H ( u, v) = I H ( u, v) I e j«l' 1 (u,v) (2.35)

where <PI (u, v) is the phase ofthe target pattem and IH(u,v) I an arbitrary positive
function. Indeed, let

F 1 (u, v) = I F ( u, v ) I e j«l' 1 (u,v) (2.36)

be the target pattem and

(2.37)

an arbitrary pattem to be discriminated against. Let

H ( u,v) = I H ( u, v ) I e j«l' 1 (u,v) (2.38)

be the filter. We triviaIly have:

I[h * f2 ] (x,y) 1= IJJIH (u, v)11 F( u,v)le j(<<I'2 -«1' 1 +xu+yv ) dudvl:::;;
:::;; IJJIH( u, v)11 F( u, v)ldudvl = I[h * f1 ] (0,0) I

(2.39)

no matter the magnitude of the filter.

Depending on the accuracy of the equal-magnitude assumption we wiIl a

have a more or less reliable identification. As we saw, for natural images this can

be supposed with wide generality, giving us the needed flexibility in the filter

design at the cost of a lower confidence in the recognition process.
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2.3 Design of single-image filters.

The possibility of using arbitrary functions for the filter amplitude was

soon realized by Homer and Gianino [Hor84], who proposed a filter to rnaxirnize

the optical efficiency. This work stirnulated the interest in filter design attracting
other authors, who developed a long list of new rnodifications of the rnatched

filter. An incornplete inventory could be as follows:

- Phase-only filter (POF), [Hor84]
- Binary phase-only filter (BPOF), [Hor85a]
- Optirnal filter (OF), [Yar86],
- Amplitude cornpensated rnatched filter (ACMF), [Mu88]
- Optirnal phase-only filter (OPOF), [Vij89b]
- Phase-rnostly filter (PMF), [Jud89]
- Quad-phase filter (QPF), [Dic89a]
- Cornplex temary rnatched filter (CTMF), [Dic90]
- Phase-with-constrained-rnagnitude filter (PCMF), [Kau90]
- Amplitude rnatched phase-only filter (AMPOF), [Aww90]
- Fractíonal power filter (FPF), [Vij90a]
- Entropy optirnized filter, [Fle90],
- Optirnal trade-offfilter (OTF), [Réf91a]
- LocaIly nonlinear rnatched filter. [Gua93]

and the rnultiple irnage designs that wiIl be later cornmented. Obviously, a detailed
discussion of aIl of these possibilities is out of the scope of this introduction.

Moreover, sorne of these designs introduced only minor rnodifications and sorne

others are now known to be suboptirnal so we wiIl only discuss the principal
designs: the rnatched filter, the phase-only filter, the inverse filter and the

generalization of aIl of thern, the optirnal trade-off filter.

a) Optirnization ofthe si2nal-to-noise ratio; rnatched filter.

The signal-to-noise ratio for white noise has been proved to be optimized
when the filter is the Fourier transform ofthe target pattem.
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This result can be generalized to colored noise by using again the Cauchy­
Schwartz inequality:

IJk (U,V)S(U,V)dUdVI' JJ[H' (u,v)�p" (u,v)L:::':,:) }UdV
z

SNRH(u v) =aJJ
=a

JJ
s

,

Pn (u,v)IH(u,v)12 dudv Pn (u,v)IH(u,v)12 dudv

(2.40)

JI 2 JI'S(U,V),2IH(u,v)1 Pn (u,v)dudv
Pn (u,v)

dudv

JI'S(U,V),2�a =a dudv

JII H (u,v)12 Pn (u,v)dudv Pn (u,v)

where the equality holds only when:

S(u,v)
H (u,v) = �

( )
== H CMF (u,v)

Pn u,v
(2.41)

where � is an arbitrary constant.
This filter is known as classical matched filter (CMF) and consists of a

whitened version of the Fourier transform of the target image. When the noise is

already white, the matched filter reduces to the Fourier transform of the object,
except for an unimportant proportionality factor.

The noise robustness of the matched filter has an interesting consequence

that it is worth mentioning. When the input scene is affected by noise, the filter

receives not the Fourier transform of the target pattem but sorne distorted version.

In such a case, the filter will not be able to cancel out the phase and therefore the

maximum value of the correlation plane may be located in an arbitrary position.
The deviation between the actual position of a correlation maximum from its

nominal location is termed as peak: location error and can be proved to be

minimized by the matched filter [Vij92b]. Although this seems a logical corollary
of the optimality against noise, the proof is far from being obvious and is not

given here.
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b) Optimization of the optical efficiency: phase-only filter.

The light throughput of an optical correlator can be optimized by using a

filter whose transmittance be one at all frequencies, namely:

H ( u, v) = e jtjl ( u , v) (2.42)

This filter is called phase-only filter (POF) when </J(u, v) is the phase of the
Fourier transform of the target. This latter requirement, which is necessary to

ensure a reliable detection as we have seen is not an unfavorable restriction but on

the contrary an optimal election. In particular the phase-only filter is, among all

unit-modulus filters, the optimum in signal-to-noise ratio and peak-to-correlation
energy [Vij90b][Dic89b]. The correlation at the origin with a unit-modulus filter

ofphase </JH(u, v) can be written as:

Ic(O,o)1 = IJJls(u,v)lej(tjls (u,v)-tjlH (u.v ) dudvl (2.43)

which, as previously shown, is a maximum when:

<l>H (u,v)=<I>s (u,v) (2.44)

Since neither the denominator ofthe signal-to-noise ratio, eq. 2.14, nor that
ofthe peak-to-correlation energy, eq. 2.19, depend on the phase ofthe filter -they
have the same value for all unit-magnitude filters- the statement is proved.

The advantages of phase-only filters ayer matched filters are numerous.

Aside of a higher Homer efficiency that produces a central peak anywhere from

50 to 500 times higher [Hor84][Fla89], the phase-only filter provides an equal or
greater peak-to-correlation energy as has been analytically proved by Romero and

Dickey in [Rom91] and numerically studied by Kumar et al. in [Vij90b]. For
example, the results reported by the latter reference show an improvement of
about ten times for the case considered.

Closely related with PCE is the discrimination capability, namely the ease

in distinguishing similar pattems, which is consequently higher in the POF than in
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the matched. This can be intuitively appreciated if we consider the phase-only
filter as a high frequency enhanced version of a matched filter. It is easy to see that

the POF is a matched filter that has been divided by its modulus. The modulus of

common images concentrates most ofthe energy at low frequencies -see Fig. 2.3-
and thus the denominator attenuates the low frequencies and enhances the high
ones. Finally, as the high frequency components of the Fourier transform are

related with the edges and the profile of an object, that is with its distinctive

elements, the POF becomes more sensitive to differences between images.
A further benefit is a more convenient implementation because only the

phase of the incoming light is to be modified. While there are several devices

capable of acting as phase-only modulators with more or less accuracy -liquid
crystal displays, deformable mirror devices-, the full-complex modulation needed

by matched filters presents multiple difficulties -holograms, combination of two
modulators in cascade, etc-. In addition, the phase-only filter can be hard-clipped
to two values -giving the so-called binary phase-only filters (BPOF) [Hor85]- with
a small loss in performance, but with a great saving in storage requirements and

with an added simplicity in its implementation. For good surveys of BPOF's and

relevant bibliography see [Fla89] and [Réf90b].
On the other hand, the signal-to-noise ratio obtained with phase-only filters

is in general small because of the all-pass nature of the filter. Not only the light
coming from the images gets through the filter but also the possible noise present
at the input scene. A possible remedy [Vij89b] consists in defining a region of
support outside which the filter modulus is set to zero. A proper selection of the

region of support leads to improvements in the SNR of about 3.5 dB although with
a significant loss in peak sharpness.

e) Optimization of the peak sharpness: inverse filter.

The peak sharpness measured by the peak-to-correlation energy ratio is

optimized by the inverse filter (lF), a design probably borrowed from image
restoration techniques. Using once again the Cauchy-Schwartz inequality:

-53-



Chapter 2. Filter design

ffIH(u,v)12Is(u,v)12 dudVffdudv
�a

JJIH(u,V)12IS(U,V)12 dudv

(2.45)

where the equality holds if and only if:

S(u,v)
H(u,v)=� 2 =HIF (u,v)

IS(u,v)1
(2.46)

where � is an arbitrary constant.
The aboye result indicates that the inverse filter provides a peak-to­

correlation energy equal to one, and consequently, that concentrates all the energy

passing through the filter in the correlation peak. This can be easily explained in

physical terms by looking at the wavefront obtained irnmediately after the filter:

�: !

*

* S (u,v)
HIF (u,v).S(u,v)=� 2 .S(u,v)=�IS(u,v)1

(2.47)

namely we obtain a constant or in other words aplane wave. The second lens

focuses this plane wave into a single point or equivalently, the second Fourier

transform converts the constant function into a delta distribution.

The inverse filter can be considered as a phase-only filter divided by the

modulus of the image, and then represents a new step in highlighting the high
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frequency components of the matched filter. As a consequence, the discrimination

capability of the inverse filter is better than that of the POF although, in this case,

this is often a problem rather than a practical advantage; the inverse filter does not

only give small correlations with images other than the target but also with

slightly distorted versions of the image of interest -the so-called intraclass

variations- in such a way that its discrimination properties are frequently presented
as a low generalization capability.

The noise sensitivity may also be a difficulty in this design since we are

strengthening the frequencies of low energy, and therefore those which are more

likely to present a low signal-to-noise ratio. This should be taken with caution

because the less the noise distribution differs from the power spectrum of the

target, the more the inverse filter approaches the matched filter and thus the better

it performs against noise.
Inverse filters present a lower efficiency than the other two designs

although this again should be carefully considered before mentioning it as a

drawback. For instance in the problem examined in [Réf91a] the inverse filter has

a Homer efficiency 9.7 times lower than that of the CMF but the correlation peak
is about 56 times more intense than the one given by the matched filter.

Finally, the inverse filter may diverge at sorne frequencies owing to the

mathematical poles of the denominator, a practical problem that can be avoided in

different ways as studied in [Car93].

d) Putting it aH together: the optimal trade-offfilter.

The three designs that we have cornmented so far optimize a different

quality criterion. When noise is presumed to be the main problem, one can use a

matched filter; ifthe amount oflight at the detector plane is the limiting factor, the

phase-only filter would be the adequate choice or finally, if the input scene is

composed ofmultiple targets, the inverse filter with its delta-like peaks could be a

good solution. However, all three filters -the phase-only to a lower extent- focus

only in one of the quality parameters and, as a consequence, they are

overspecialized, that is, they give good performance in one of the ratios of interest

but in general, unacceptable low values in the rest.
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To overcome the specialization of the filters, we can trade-off, say, peak
sharpness for noise robustness or for light efficiency, or for both, to obtain filters

that are not optimal in any sense but giving reasonable values for all three criteria.

The most effective compromise between SNR, efficiency and PCE is found in the

optimal trade-off filters (OT) [Réf91a]. Optimality, according to Réfrégier, means
that for given values of two of the criteria, a filter giving a better value for the

third one, can not be found with the same degrees of freedom -here the bandwidth

of the images-, This defmition also implies that it is always possible to find an

optimal trade-off that performs better for the three quality parameters than any

given filter. They can be obtained by means of the Lagrange minimization method
as follows:

Let us call the expression that appears in the denominator of the signal-to­
noise ratio in eq. 2.13, the mean-square error (MSE):

(2.48)

and that appearing in the peak-to-correlation energy in eq. 2.20, correlation plane
energy (CPE):

(2.49)

These two quantities as well as the Horner efficiency do not depend on the
phases ofthe filter components, and thus the signal-to-noise ratio and the peak-to­
correlation energy are optimized with respect to the phases, when the value of the

central correlation is the highest. The maximum central correlation is obtained

with the phase of the target pattern, a result already obtained in the section

concerning phase-only filters. This also matches with our necessity of using the

phase of the image to be detected to ensure a reliable identification. Therefore, we
need only to derive the magnitudes.

The problem of finding the filter that maximizes the SNR while holding
the PCE and the Horner efficiency constant, is equivalent to the problem of

minimizing the mean-square error with CPE and the value of the central

correlation kept constant. This latter formulation is easier to solve and thus we

define the Lagrange function as:

-56-



Chapter 2. Filter design

E(a,p) =MSE-aCPE- ph+¡ (2.50)

where a and p are the Lagrange multipliers. By introducing the changes:

Jl-l
a=--

Jl
and

1
A= -Jlp2

(2.51)

equation 2.50 becomes:

E ' ( u,A) = JlMSE + ( 1 - u) CPE - 2 Ah + ¡ (2.52)

where we have the additional constraints:

Jl E [0,1 J, A � O, 1 h k 1 ::; 1 (2.53)

By making explicit the dependence of the aboye quantities on the

magnitude of the filter components we get:

N N N

E'(Jl,A) = JlLSii Ihi 12 +(l-Jl)L1Xi 121hi 12 -2AL1Xi Ilhi 1 (2.54)
i=l i=l i=l

and setting the derivatives ofE'(Jl,A) with respect to 1 h k 1 to zero we obtain:

(2.55)

whence

(2.56)
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and considering the restrictions of eq. 2.53:

OtherwiseJ

(2.57)

AIXk 1
Uf �1

JlS kk + C 1 - u) 1 x k 12

which can be compactly written as:

(2.58)

where O k is zero or one depending on whether or not the condition in eq. 2.57 is

satisfied. Finally the optimal trade-off filter can be expressed as:

(2.59)

where

O"ACy)={AY if

e jo/e y) otherwise,whereqn y) isthephaseofy

(2.60)
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The optimal trade-off filter includes the matched, the phase-only and the

inverse filters. In particular, by setting:

1
f..l= 1, A.<----

Max(I:�1 J
(2.61)

eq. 2.59 becomes:

(2.62)

that is the matched filter; by setting:

1
f..l = 0, (2.63)

we obtain:

1
since I y I ::; A.

(2.64)

that is the inverse filter, and finally by setting:

(2.65)
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Figure 2.6- Operating curve of an OTfilter. a) Keyelements. b) Trade-of between SNR
and PCE. The inset curve is a zoom ofthe elbow area.

we obtain:

(2.66)

and since the phase of the filter is that of the target, we obtain the phase-only
filter.

Figure 2.6.a) shows the transition between an inverse filter and a matched

filter by means of the optimal trade-off technique -only PCE and SNR are being
considered-. The suboptimal filters He in the region above the curve since for a

given value of the SNR they present a lower PCE. The region below the operating
curve can not be reached with a filter with N degrees of freedom. The trade-off

approach permits the obtention of filters with good performance in all the quality
criteria as can be observed in Figure 2.6.b). The plot represents the operating
curve of an optimal trade-off filter obtained to detect the first butterfIy of Figure
2.2. The noise is white with a power spectral density of 0.1 of the average value of
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that of the target butterfly. This curve is very close to the axes and then it is

possible to get an important increasing in the signal-to-noise ratio of an inverse

filter with a small loss in the peak-to-correlation energy or vice versa, an

important increasing in the peak-to-correlation energy of a matched filter with a

smallloss in signal-to-noise ratio. As an example, the trade-off filter obtained with

J..l=0.04 has both a PCE and a SNR of about 17% of the maximum values. The

overspecialization of the matched and the inverse filter is evident in this example:
the signal-to-noise ratio of the inverse filter is only 0.5% that of the matched and

the peak-to-correlation energy ofthe matched filter only 0.07% that ofthe inverse.

In conclusion, the possibility of using an arbitrary function for the modulus
enables us to design filters that are optimum with respect to different criteria. We

can also combine these different criteria to obtain more flexible filters by putting
more emphasis in the more critical parameters but without forgetting the rest. In

this way, the filters can be adapted to the application instead of adapting the

application to the filter.

2.4 Lack of invariance of single-image filters.

Up to now, we have been assuming that the only degradation that can

affect the input images is noise, a sample realization of an stocastic process. We

mentioned somewhere that there has been sorne attempts to modelize the

background clutter in a more realistic way than the one provided by the additive­

Gaussian-stationary model. Degradations such as defocussing, that tan also be

present in the scene, are currently being analyzed and sorne methods to minimize

their effects being developed [Cam91][Sa195]. However, the probably more

important source of distortions is that affecting the geometry of the images. In

practice it is unlikely to observe the object always under the same point of view, at
the same distance, and as a consequence, the images may be captured with a

variable scale or arbitrarily rotated. A pattem recognition system intended to be

used in a practical situation, must, therefore, be able to identify the objects of
interest, regardless of their relative positions with respect to the acquisition
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a)
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Figure 2.7- Test images. a) Original and images rotated each 4 degrees.
b) Original and images reduced in 2% steps.

module. Such a property is called invariance and unfortunately is absent from the

filters considered so faro

Figure 2.7 and 2.8 are an example of the lack of invariance of the matched,

phase-only and inverse filters. Figure 2.7.a) shows five images corresponding to

0°,4°, 8°, 12°, and 16° in-plane rotations. Similarly, Fig. 2.7.b) shows an image at

five different scales: 100%, 98%, 96%, 94%, and 92%. Figure 2.8 represents the
correlation -the maximum normalized to the central correlation of the original
pattem- between images in Fig. 2.7 and the three filters derived from the
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Figure 2.8- Correlation between single-image filters and a) rotated input b) scaled input.
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nondistorted pattem. All tbree present a marked decay, that in the best case, is

about 50% of the original correlation. The excessive discrimination capability of
the inverse filter is clearly observed, making it useless to recognize the target even

with these small changes in scale and view angle.
There are two approaches that can be followed to overcome the lack of

invariance of single-image filters. Both, explicitly or implicitly, involve the

multiplexing of several images into the filter as a means to introduce the

information about how the distortion affects the original pattem. This implies that
the phase of the filter components are not matched to the target image -in fact we

have several targets, the different views of the object- and thus, according to the

conditions we derive for a reliable detection, the central correlation is not

necessarily the maximum of the output planeo These new filters may present large
lateral peaks, known as sidelobes, that can induce to false alarms and to an

incorrect determination of the position of the image. Several solutions to the

problem of the presence of large sidelobes have been proposed and wiIl be

discussed in detail in this and in subsequent chapters.
The two possibilities to obtain invariant correlation filters are the ad hoc

approach, based on harmonic series, and the general formalism provided by the

synthetic discriminant functions (SDF) theory. The first approach is based on the

fact that sometimes the target pattem can be expressed as an infinite sum of two­

dimensional functions, each one being invariant to the deformation. By using as a

filter one of the terms of such a decomposition, we will obtain the same

correlation with the original pattem as with any distorted version. Moreover, as

the filter conserves certain amount of information about the image it was derived

from, one expects to obtain a large value for the central correlation and sorne

discrimination capability. Examples of this technique are the circular harmonic

filters (CHF) [Hsu82a][Hsu82b] to handle in-plane rotations and the radial Mellin

harmonic filters (RHF) [Cas76] to address scale changes.
The second approach, the SDF theory, is closer to the supervised leaming

procedures found in neural networks. This technique is quite general and does not

need an analytical description of the degradation but only to have abundant

examples of distorted images.
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2.5 Design of invariant filters.

The two approaehes to design filters eapable of handling large
deformations of the input pattems are the topie of this seetion. The harmonic

decomposition method is illustrated by means of an specific example: the circular
harmonie expansiono

2.5.1 Circular harmonic filters.

The in-plane rotation is one of the cases where the ad hoc approach can be

used. The method is based on the expansion of an image into its circular harmonie

components and has been adapted to designing eorrelation filters by Hsu et al.

[Hsu82a] [Hsu82b]. For the sake of simplicity, the following discussion is carried

out in direct rather than in Fourier space.

Let us consider the image f(x,y) expressed in polar coordinates. It will be

denotedf(r, e). In this representation, the image is a periodic function with respect
to the polar angle since:

f(r ,9) = f(r ,9+21t) (2.67)

namely a function with period 21t, and therefore I(r, e), for any value of the radius,
admits a Fourier expansion, expressed as:

00

f ( r ,9) = :L/m (r) e jmü (2.68)
m=-oo

where m are integer numbers and the factors fm(r) are called circular harmonics -

strictly speaking the circular harmonics are the complex exponential terms-.
The coefficients Im(r) can be found in the following way:

•

00

f(r,9)e-jn9 = :L/m (r)ej(m-n)9 (2.69)
m=-oo
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and integrating both sides with respect to the polar angle we get:

21t 00 21t 00

ff(r,8)e-jn9d8= I, fm (r) fej(m-n)9d8= I,fm (r)21tom_n =21tfn (r)
o m=-oo o m=-oo

(2.70)

whence:

21t

fn (r) = _1_ ff (r ,e) e - jn9 de
21t

o

(2.71)

If we use as a filter one of the infinite terms of the sum in equation 2.68,
namely:

h ( r ,e) = fn (r) e jn8 (2.72)

the modulus of the central correlation with the target image wiIl be the same

regardless of the rotation suffered by the object. The correlation in polar
coordinates between the image rotated a certain angle ex, f(r, e-a), and a circular

harmonic filter can be expressed as:

oo21t

[ f
a * h] ( o, O) = f fh *

(r ,e) f (r ,e - ex ) rdrdfl
o o

(2.73)

which, by using eqs. 2.68 and 2.72, becomes:
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002�

. ( 00

. I
[ f
a * h 1 ( O , O)

= f f f: (r) e - JnS

l 'Llm (r)
e jm ( S-a)

Jrdrd8O O m=-oo

(2.74)

that can be rearranged to obtain:

00 00 2�

L fm (r)e-jma fej(m-n)Sd8 rdr >[fa *hl(O,O) = ff� (r)
O m=-oo O

00

(00 1
00

.

* .

*
= e

- jmce ffn (r) l L
fm (r) 2 1tOm-n rdr = 2 ne

- jnn ffn (r) fn (r) rdr =
O m=-oo O

(2.75)

and as we detect energies, namely the squared modulus of the later expressions,
we finally have:

la 12 1 jnn O 12 1 O 12[f *hl(O,O) = e- [f *hl(o,o) = [f *hJ(O,O) (2.76)

which is the desired invariance for the central correlation.

The analysis of the zero-order circular harmonic could be enlightening to

understand how these filters provide rotation invariance. The zero-order filter is

merely, see eqs. 2.71 and 2.72:

2�

h(r ,8) = fo (r) = _1 Sf(r ,8)d821t
O

(2.77)
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This function does not depend on the polar angle -it has the same value

whatever the angle 8- and thus presents circular syrnmetry. As a consequence, all

images rotated with respect to this syrnmetry center will see the same filter and

will give the same correlation.

It is worth mentioning that a circular harmonic filter can be interpreted as

being formed by a linear combination of all possible rotated images. For the

particular case of the zero-order harmonic the coefficients of the linear

combination are all equal and thus it becomes the average of those images. This
can be easily shown. The average ofall possible rotated images can be written as:

21t

-
1 ff(r ,8) = - f(r ,8+a)da
21t

O

(2.78)

By splitting the interval of integration into two parts we obtain:

21t-8 21t

f(r ,8) = 211t ff(r ,8+a)da+ 211t ff(r ,8+a)da
O 21t-8

(2.79)

that can be written as:

21t 8

-
1 f 1 ff(r ,8) = -2 f(r,� )d�+-;- f(r,� )d�
1t ,¿,1t

8 O

(2.80)

if the following changes are performed:
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1 st int e gra 1 � B = e+ a

2 nd int e gra 1 � B = e+ a - 21t
(2.81)

and so finally we have:

2n

f ( r ,e) = f (r ) = 211t ff (r ,B ) dB == fo (r)
o

(2.82)

namely the zero-order harmonic. This result wiIl be later used and justifies the

statement that the harmonic based filters implicitly involve the multiplexing of

samples ofdistorted images to achieve their invariance properties.

2.5.2 The general approach: synthetic discriminant functions (SDF's).

The former method needs an analytical description of the degradation,
which is not always available and thus can only be applied to a few specific cases.

In general, the relationship between two distorted images is unknown although, in

contrast, we can obtain as many examples of such degraded images as we wish.

The synthetic discriminant functions theory aIlows the design of invariant filters
based on the information provided by these sample partems and therefore, with no

previous knowledge about the degradation affecting them. The set of partems used

to compute the filter is caIled the training set and, if it is representative enough,
the resulting solution captures the underlying connection between the images, in
such a way that we obtain the desired correlation even with partems not used in

the leaming process. Representative enough is, as in other leaming-by-examples
procedures not weIl defined, being the size of the training set required to obtain

generalization capabilities dependent on the type of filter. These designs does not

guarantee as in the harmonic expansion approach, that the maximum correlation

will be found pointing to the position occupied by the target. This means that we

must provide solutions to the problem of the appearance of sidelobes.
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The filters we are looking for can be characterized in mathematical terms

in the following way:

Let h be the filter whose expression is to be found and let xi be the ith

training image. Let ci the value we wish to obtain as central correlation with the

pattern xi' namely:

(2.83)

where K is the number of training patterns. Notice that the correlation can be

expressed in the aboye form in both, object and Fourier space, eqs. 2.2 and 2.3, so
the following discussion is equally valid whatever the representation we use. This

equation can be written in a more compact form by defining an NxK matrix, X,
whose ith column be the ith training vector xi. In this way equation 2.83 becomes:

(2.84)

where C is the column vector of components ci. This lS a system of linear

equations for which the superposition principle holds:

(2.85)

namely, that the general solution of 2.84, hG, can be written as a particular
solution, hp, plus the general solution, hH, to the homogeneous system:

(2.86)

In fact, if h is a solution of the system it can be decomposed as:

h=hp +(h-hp) (2.87)

where
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(2.88)

The particular solution is found by means of an ansatz: a temptative
solution that in our case is fonned by a linear combination ofthe training images:

K

hp = LaiXi = Xa

i=l

(2.89)

where a¡ are the coefficients of the combination and a the column vector whose

components are a¡. By substituting eq. 2.89 into eq. 2.84 we get:

(2.90)

The KxK matrix (X+X) is regular when the training pattems are linearly
independent, something that can be supposed with wide generality and a

requirement ofmost pattem recognition techniques. The solution for the values a¡
can then be found as:

(2.91)

and finally the filter hpis:

( )-1 *

hp =Xa =X X+X e (2.92)

A few comments about this expression are in order. First, it is instructive to
check that it is actually a solution of equation 2.84:

(2.93)
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v

Figure 2.9- Orthogonal projection of the vector v onto the

subspace generated by the trainingpatterns.

On the other hand by substituting this later equality into the filter

expression, equation 2.92, we obtain:

( + )
-1 +h p = X X X X h p == Ph p (2.94)

The NxN matrix P is an orthogonal projector, that is, an operator that

projects any vector onto the hyperplane spanned by the K training images in an

orthogonal fashion as shown in Figure 2.9. Its main properties are:

a) P is a Hermitian matrix:

p+ �(x(x+xrl x ' r - x '" (x(x+xr1 r �x(((X+X)-1 r X+ }
�x(((x+x¡+ r X+ }x(x+xr1 X+ �p

(2.95)

b) P is idempotent, i.e. p2 = P (and thus pn = ...

= p3 = p2 = P):
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p2 =(X(X+Xrl X+ XX(X+Xrl X+ )=X(X+Xrl X+X(X+Xrl X+ =

Id

(2.96)

which means that once the vector has been projected and belongs to the

hyperplane, additional applications of the operator P do not result in any further

modification. The projection of a vector already belonging to the subspace is the

vector itself, being equation 2.94 an example.
The effect of the projection matrix over a vector, v, can be easily visualized

when the image vectors Xi are orthogonal. In this case we have:

1

1

and multiplying it by the matrixXwe get:

-72-

(2.97)

(2.98)



Chapter 2. Filter design

On the other hand, the product X+v is a K-dimensional column vector

whose components are the scalar products:

(2.99)

so by combining equations 2.98 and 2.99, we can express the projection of the
vector vas:

and since the vector v can be written as the sum of a parallel -with respect to the

set of images- and a perpendicular component, see Figure 2.10.a), the scalar

products in the above equation become:

(2.101)

v, v v

a) b)

Figure 2.10- a) Decomposition ofa vector b) Perpendicular projection.
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where vII is the projected vector and (Ji the angles formed by vII and the training
images as shown in Figure 2.10.b). Finally, we have:

(2.102)

that clearly shows how the multiplication by the matrix P gives the component of

the vector lying on the hyperplane spanned by the images of the training set.

This formalism is very appropriate to characterize orthogonal vectors and

therefore allows us to find the homogeneous solution with ease. Let v be an

arbitrary vector. According to the aboye discussion it can be written as:

( + )
-1 +

v=vlI+V.l=XXX Xv+v.l (2.103)

whence

where 1 is the NxN identity matrix. The matrix P' has exactly the same properties
as P, namely it is Hermitian and idempotent, because it also represents an

orthogonal projection, now over the subspace generated by the orthogonal vectors
to the training images. As a consequence, the kernel of the matrix X can be readily
expressed as:

v V E e N } (2.105)

and thus the homogeneous solution is:

(2.106)
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where v is an arbitrary N-dimensional complex vector. Indeed, we have:

h�X=V+[ I-x(x+xfI X+ Jx=v+x-v+X(X+XfI X+X=v+X-v+X=O
(2.107)

and thus fmally, the general solution of2.84 is:

(2.108)

This design procedure enables us not only to design invariant filters, but
also filters with controlled response -the values for c¡ can be chosen at one's

wishes- to be used in classification systems or to include information about

images that we need not to confuse with the targets. Thus, the SDF formalism

makes correlation a flexible tool for pattem recognition and image classification.

Furthermore, equation 2.108 implies that we have available an infinite number of

filters fulfilling the conditions we imposed on the correlation values -an (N-K)­
dimensional hyperplane for real or a (2N-K)-dimensional one if the filters are

allowed to be complex in object space- from which we can select the most suitable

solution for a given problem. In particular, we could search for optimal filters with

respect to the quality criteria exposed in section 2.1. Optimal filters are usually
derived using Lagrange optimization procedures but we will continue with the

geometrical point of view we have been using, which offers more intuituive

insights.
The first interesting result in this sense is that the linear combination filter,

hp, is the minimum-norm solution to equation 2.84:

h+h=//h//2 =lIx(x+xfI c* +[ I-X(X+X)-I X+ Jvr =llx(x+x)-I c* r +

+ II[ 1 - X ( X + Xf
1
X + ]vr � 11x( X + Xf

1
e
* r =" h p ,,2 = h � h p

(2.109)

whatever the filter h.
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The filter hp, called projection SDF or composite filter is important
because of historical reasons. It was proposed by Hester and Casasent [Hes80] in
1980 being the first filter of the SDF type. Since it is a weighted sum of several

images, it can be implemented with conventional optical holography through a

multiexposure VanderLugt filter. However, with the advent and development of

digital holography, the optical feasability is no longer a constraint and the linear

combination assumption is an unnecessary restriction. Let us find more interesting
designs.

All the correlation quality criteria we have stablished in section 2.1,
involve purely quadratic terms. For these symple expressions it is possible to

derive the optimal filters exploiting a result already obtained. To optimize the

different figures of merit -Homer efficiency is an exception- and because of the

central correlations are now fixed, we need only to minimize their respective
denominators. In mathematical terms we look for the filter that makes

(2.110)

minimum while fulfilling

(2.111)

and whereMis a real symmetrical matrix. Equation 2.110 may also be written as:

E = h +Mh = h +M 1/2M 1/2 h = (M 1/2 h)
+

(M 1/2 h) == h' + h' (2.112)

and similarly equation 2.111 :

h+X=ct <=}h+M1I2M-1I2X=ct <=}(M1/2h)+ (M-1/2X)=ct <=}h'+ X'=ct
(2.113)

Thus we want a filter so that:
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(2.114)
h'+ h' minimum

The solution of the problem in terms of h' and X' is known to be the composite
filter, namely:

( )-1 *

h'= X' X'+ X' e (2.llS)

and if we express the aboye equation as a function of the original quantities, we

finally have:

MII2h=h'=X'(X'+ X,)-I c* =M-1I2X(X+M-1I2M-1I2X)-1 c* =

=M-1I2X(X+M-1X)-1 c* <=>h=M-1X(X+M-1X)-1 e
"

(2.116)

However, a different approach to solve the same problem provides a richer

interpretation and a description both unified and elegant. By rewriting the

equation about the central correlations as:

(2.117)

where the new definitions are obvious, our problem turns out to be:

h+MX'=ct

h +Mh minimum

(2.118)
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Notice that equation 2.84 can be considered as a particular case of 2.117
forM=I. Moreover, in our case the matricesM are not only real and symmetrical
but also positive definite, that is:

(2.119)

and then they can be considered as a metric. It should be taken into account in

what follows that a new metric implies a new definition of the orthogonality
between vectors:

u.Lv <=> u +Mv = O (2.120)

and also a new definition of the norm of a vector:

(2.121)

With these elements, the problem can be reinterpreted as the search of the

minimum norm vector whose projections onto the training images are known,
being the norm and the projections defmed through a generalized metric M. The

general solution to:

h+MX'=ct (2.122)

is completely analogous to that in eq. 2.84 and is obtained through similar

deductions. As before, the particular solution is formed by a linear combination of

the training images:

h'p = X'a (2.123)

and substituting into eq. 2.117:
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and therefore the filter h'p is:

(2.125)

By looking at this later expression we define the orthogonal projector -

according to the new metric- onto the hyperplane generated by the the modified

imagesX' as:

(2.126)

and the orthogonal projector onto the orthogonal subspace:

(2.127)

with which the general solution can be written as:

h'G =M-1X(X+M-1Xf1 c* +[ I-M-1X(X+M-1Xf1 X+ JV=h'p +h'H
(2.128)

It should be noted that the two components of h'G are perpendicular only
according to the metric defined by the matrixM:

h'� Mh'H =c+ (X+M-1xfl X+M-1M[ I-M-1X(X+M-1Xf1 X+ Jv=
=c+ (X+M-1xfl X+v-c+ (X+M-1xfl X+M-1X(X+M-1xfl X+v=

=c+ (X+M-1xfl X+v-c+ (X+M-1xfl X+v=O
(2.129)
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As before, the mínimum norm filter is the particular solution given by
equation 2.125:

b+Mb=llbll� =IIM-1X(X+M-1Xfl c* +[ I-M-1X(X+M-1Xfl x ' Jvll� =

=IIM-1X(X+M-1xfl c* II� +II[ I-M-1X(X+M-1xfl X+ Jvll� �

� 11M -1 x( X +M -1 X)
-1

e
* 11 � = 11 b p 11 � = b � Mb p

(2.130)

where the following equivalence has been used:

IIM-1X(X+M-1Xrl .: +[ I-M-1X(X+M-1Xrl x ' Jvll� =llhp +hH II� =

( h p + h H r M ( h p + h H ) = h ;Mh p
+ h ;Mh H + h iiMh p + h iiMh H =

=lIhp II� +o+o+llhH II� =IIM-1X(X+M-1Xrl c·ll� +II[ I-M-1X(X+M-1xrl x ' Jvll�
(2.l31)

The geometrical interpretation of this result is as follows. We have found

the filters that would give as central correlations with a set of pattems the values

we want. We see that we have an infinite number of solutions. These filters can be

expressed as a sum of two orthogonal terms, one being a linear combination of the

training pattems and the other one a vector orthogonal to all of them. But in tum

this decomposition is not unique, and can also be expressed as the sum of a linear

combination of the training images modified in certain way and an orthogonal
vector to all of them, where the orthogonality is now defined through a

generalized metric. In all cases the projection of the filter onto the hyperplane
generated by the images, that is the linear combination component is optimal with
respect to a given quadratic criterion as sketched in Figure 2.11.a). Figure 2.11.b)
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orthogonal projection
using metric M

� \ I

h

orthogonal projection
using Euclidesn metric

//
\

I�
orthogonal projection
using Euclidean metric

a) b)

Figure 2.11- a) Orthogonal projection of a vector, according to a metricM, onto the

hyperplane generated by the modified images b) Two possible decompositions for an
SDFfilter.

is an example oftwo possible decompositions for an SDP filter. The filter h can be

expressed as the sum of the composite filter, called Comp in the figure, plus an

orthogonal vector according to the Euclidean metric, i.e. M=I. On the other hand,
we can also express this filter as the sum of a vector that minimizes h+Mh, called

hmim plus an orthogonal vector following the metric M. Purthermore, the filter

hmin can also be expressed in terms of the composite filter or the composite in

terms ofhmin .

The first analysis is a particular case of the later when the metric used is

the identity, being the composite the associated optimal filter. Other cases of

interest are:

a) The metric is the average image energy, M = ñ with:

K

�
1

L �.

D=- a·DI
K 1

i=l

(2.132)

where

-81-



Chapter 2. Filter design

� i . (1 � i 12 1 � i 12)D = diag xl'''' xN (2.133)

is a diagonal matrix that represents the energy of the ith image. The quantity
mínimized is therefore:

K

�+��
l � �+�i�E=h Dh= K�aih D h

i=l

(2.134)

namely a weighted average of the correlation energy with the set of training
images. The resulting optimal design is called mínimum average correlation

energy filter (MACE) and was proposed by Mahalanobis et al. in [Mah87]. The
filter provides an indirect method of controlling the whole correlation plane rather

than on1y the central point. By minimizing the average energy of the correlation

plane the sidelobes are forced to be small and consequently, this filter gives sharp
peaks and reduces the number of false alarms. The MACE filter can be considered

the generalization to multiple images of the inverse filter. When there is on1y one

image in the training set bothMACE and inverse filter are the same:

�h D�-I�(�+D�-I�)-1 *
= x x x e (2.135)

The matrix inside the parenthesis is in this case, lxl, that is a scalar, whose
value is merely l/N. On the other hand, we have:

(2.136)
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and therefore

(2.137)

where � is a certain constant.

The major drawbacks of the MACE are a notable noise sensitivity and a

low generalization capability, giving small peaks with almost every image not

included in the training set.

b) The metric is either the noise covariance matrix or the noise power

spectral density, i.e. M = S, eq. 2.12, or M = S, eq. 2.13. In such a case the

quantity to be minimized is the noise induced peak variance in either object or
Fourier space:

E=h+Sh or

E = ii+sii
(2.138)

The resulting optimal filter is called mmnnum variance synthetic
discriminant function (MVSDF) and was proposed by Vijaya Kumar [Vij86] in an

attempt to obtain stable peaks in the presence of input noise. For white noise this

filter reduces to the composite filter since the covariance -or equivalently the

power spectral density- matrix becomes:

(2.139)

whence

1 ( 1)
-1 * 1 ( 1 )-1 * � ( )

-1 *

( )
-1 *

h=S- X X+S- X e =I3IX I3X+IX e =I3X X+X e =X X+X e

(2.140)
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Analogously to the MACE filter it is possible to show that the MVSDF is

the generalization to multiple images of the classical matched filter. Therefore, the

main difficulties of this design are the same as those of the CMF, namely a low

discrimination capability, which makes necessary the inclusion of nontarget

pattems in the training set, and broad correlation peaks. In addition, we find the

specific problems of the SDF technique: large lateral peaks and sometimes

mathematical problems in inverting the noise matrix. Notice that S is an NxN

matrix, which for example for 128x128 pixel images gives 16384x16384

elements. In contrast to the matrix associated to MACE filters, this matrix is

diagonal or easily invertible, say Toeplitz [Vij89a], only in certain cases.

e) The metric is a combination of the two cases aboye, M = �s + ( 1- � )ñ

with � E [O, 1]. The minimized criterion is a trade-off between the noise

resistance and the peak sharpness, where the importance of these two conflicting
goals is balanced by means of the parameter u:

E = �il+ sil + (1-�) il+ñil (2.141)

The optimal filter is called optimal trade-off synthetic discriminant

function (OTSDF) [Réf90a] and for the single-image case coincides with the well

known Wiener filter [Réf91a][Réf91b]. For �=O, the OTSDF is just the MACE

filter and conversely, for �=1, the filter becomes the MVSDF. For intermediate

values the optimal trade-off design gives, as its single-image counterpart, filters
with intermediate characteristics between the two extremes in such a way that no

filter can be found giving a better trade-offwith the same degrees of freedom.
It is worth mentioning that in contrast with the single-image case, the

optical efficiency can not be easily introduced in the SDF approach, because it

involves nonlinear constraints for the filter components. This leads to a rather

complicated mathematical problem for which an analytical solution has not been

found and only a few proposals for designing phase-only SDF filters by means of

iterative algorithms has been published. The problem of computing phase-only
synthetic discriminant functions is one of the research topics of this dissertation

and will be extensively discussed in Chapter 6.
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2.6 Equivalence of circular harmonic filters and invariant SDFs.

The synthetic discriminant functions theory is a powerful mathematical
tool to design filters with controlled responses. As we have seen this enables us to

utilize the correlation to perform image classification or invariant pattern

recognition. Moreover, the theory is general enough to encompass, as particular
cases, many designs obtained on an independent basis, as for example the matched
or the inverse filter. This seems to be also valid for the invariant filters developed
by means of the decomposition into harmonic series as we show in this section.

Although only the equivalence with the circular harmonics has been explicitly
proved -to our knowledge anyway- it is our believe that this is the rule rather than

the exception and constitutes a very interesting theoretical result that should be

further studied. The equivalence of both approaches for the case of in-plane
rotations has been proved by Réfrégier in [Réf90b], but since his discussion had a

different goal -more devoted to optimal trade-off comparisons- we give here a

different and more specific proof.
Let us consider a composite filter, h, designed to achieve invariance with

respect to in-plane rotations. The training set is formed by P rotated images
spanning an angle of 21t, that is they are tilted each 2tr1P radians. According to

equations 2.89 and 2.91 the filter can be written as:

h = L,a¡x¡ = Xa (2.142)

where

( )-1 * 1 *

a= X+X e =Á
-

e (2.143)

The matrix A in the latter equation has as elements the correlations

between the different images in the training seto The central correlation between

two rotated images depends only on the relative angle between them and not on

their absolute tilts. As a consequence, A is a special type ofmatrix called Toeplitz,
characterized by:
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(2.144)

and for which the following relation is valid [Réf90b]:

P

Ah! = �LAklej(21t/P)k(l-m)
k= l

(2.145)

Substituting eq. 2.145 into 2.143 we get:

al = LAh!c� = �LLAklej(21t/P)k(l-m)c�
m m k

(2.146)

Now, if we force the SDF to give the same correlations that a circular

harmonics filter would give:

cm =e-j(21t/k)am (2.147)

where ex is the order ofthe harmonic, equation 2.146 becomes:

al = �LLAklej(21t/P)k(l-m)ej(21t/P)am =

m k

= � LAk1ej(21t/P)kl Lej(21t/P)(a-k)m
k m

(2.148)

which considering that:

2_� ej(21t/P)(a-k)m =úp� a-k
m

(2.149)
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leads to:

- �A� -1
e j(21t/P) kl � - A� -1 e j(21t/P)al = Ce j(21t/P )alal - � k ua-k -

a
-

k

(2.150)

Substitution of eq. 2.150 into 2.142 gives:

h = Lx 1 al =Lx 1 ej(21t/P)al
1 1

(2.151)

where the unimportant constant factor has been omitted for convenience. If we

remove the lexicographic scanning and retrieve the two-dimensional notation we

have:

h .. - �xl ej(21t/P)alI,J
- � i,j

1

(2.152)

where now the superscript indicates the image and the subscripts the pixel count.
The aboye expression, in polar coordinates, can be written as:

h =
�

x
1

e j(21t/P)alr,El � r,El
1

(2.153)

Assuming that the images are ordered by growing angles, the following
identity can be stablished:

1 1+1 1 l+k
xr,El =xr,(El+l) =>xr,El =Xr,(El+k) (2.154)

and therefore:
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h =
�

x
1

e j(21t/P)a.l = � x
°

e j(21t/P)a.kr,e � r,e � r,(e-k)
1 k

(2.155)

which can be finally rewritten as:

h =
� xO ej(21t/p)a.(e-w) =[� xO ej(21t/P)a.w ]ej(21t/p)a.e (2.156)

r,e � r,w � r,w
w k

This expression is the discrete equivalent to eqs. 2.71 and 2.72, that is the
circular harmonic filter of degree a, a result that suggest that invariant filters are

unique although can be computed in different ways.
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Introduction.

As cornmented on in the introduction of the first chapter, partem

recognition is of vital importance in several fields that have a great cornmercial

interest. This has artracted people from different areas of mathematics, physics,
computer science, biology, psychology, etc, and therefore it is not surprising to

find a wide variety of methods and recipes to artack this difficult task. A given
problem may be solved by means of statistical partem recognition, neural nets,
syntactic partem recognition, graph matching, or correlation techniques to

mention only a few -see for example [Son94] for more information-. In addition,
sorne ofthese methods seems to be deeply related. For example, correlation may

be viewed as a neural network [Ghe89], it can be considered as a discriminant

function -see for example [Cas84]-, or mathematical morphology operations can

be implemented through correlation [Cas92]. Thus it could be difficult to

determine in general whether a problem is more suitable to be solved by means

of correlation or neural networks or discriminant functions or mathematical

morphology or cellular automata, or etc, and good comparison methods are then

necessary. This chapter is devoted to adapt the formalism of the decision

boundaries -one possibility to do so- to the specific case of correlation. In this

way, the pros and cons of the correlation based techniques could be more easily
understood, enabling the comparison with other classification procedures or

between different optical architectures. This kind of analysis has been vaguely
used before in the optical partem recognition literature and we intend to carry out

a more formal analysis and to take profit of the results. However such results are

rather preliminary and should be considered as a starting point for future

research.



Chapter 3. Limitations of single-filter correlators

3.1 Correlation as a discriminant function.

Classification procedures are, without doubt, about complexity. Any
classification procedure, no matter whether we are classifying animals or stellar

spectra, is intended to simplify the description of a complex phenomenon. If we
can order a large set of elements, showing sorne of them similar features, into a

smaller set of groups, the study of such objects becomes much simpler. For

example we can analyze in detail one conspicuous representative of each class

and extend the results to the rest of the group. That is the reason why
classification techniques have a long tradition in the history of science.

The same argument apply to the classification of images. By grouping
them into a small number of prespecified categories we may solve certain

problems in a simpler formo This is usually accomplished by computing sorne

kind of similarity measure between the input images and a set of reference

pattems of each class.

The simplest problem is the two-category classification and its

importance relies on the frequency with which simple decisions of this kind must

be taken in pattem recognition applications. In addition, it forms the basis of

more complex classification systems. For instance, the classification of an object
as belonging to one of four possible categories (A, B, C, D) can be decomposed
into two two-class problems in the following way: first, decide whether the

objects belongs to (A U B), and second whether it belongs to (A U C), where the

symbol U indicates the union of the two sets. Each object is completely
determined: the only object which belongs to both is A; B only belongs to the

first, C only to the second, and D to neither of them. In what follows we will deal

only with the two class problem.
One of the most used methods in optical pattem recognition is that based

on the correlation. The correlation between the input scene and a filter that

codifies the information of the class is the measure of similarity utilized in these

processes. The intensity of the correlation plane is binarized by means of a

threshold function. Then, the input scene is assigned to the class if the correlation

intensity is higher than the threshold. Otherwise the image is rejected. Because of
a sampled image can be considered as a point in a P-dimensional space -thanks to

the lexicographic scanning trick-, such a dichotomic decision divides the
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hyperspace into two regions: the points that give a zero output and those that give
an output equal to one.

The hypersurface that separates the two regions is called the decision

boundary. A given classification problem can be solved if there is a decision

boundary that separates the images according to the desired assignment of
classes. For a procedure without arbitrarily shaped boundaries it is possible to

find sorne problems that can not be correctly solved. The more complex the

boundary functions are the higher the probability that a given problem can be

solved by the procedure. For this reason it is of great interest to know what

boundaries optical correlators produce and the number of dichotomies

classifiable with these devices.

The simplest boundary is an hyperplane: the first order surface. It is

produced by the well known linear classifier -Linear Discriminant Function

(LDF)-. Let the vectors x and h represent the input scene and the vector that

defines the LDF. The classification process is as follows: if and only ifthe irmer

product between both vectors surpasses a prefixed value e, the image is accepted
as amember of the class. Therefore, the decision boundary can be written as:

ht X - 8 = h j x ¡ +h2x2 + ...+hpxp - 8= O (3.1)

where t means transpose. Let xi> i= 1 , ... ,K be the set of images we want to accept,
and let xi> i=K+ 1 , ... ,N those we want to reject. The problem is linearly
classifiable ifwe can find an hyperplane h and a threshold e so that

i= 1, ... ,K
(3.2)

htx·-8<O1 i = K+ 1, ... ,N

Obviously, this is not always possible. The probability for an arbitrary
dichotomy to be linearly separable depends on the number of patterns -N- to be

classified, and on the number of components of such images -P-. There are 2N

possible problems of classification: the 2N different labelings ofN objects with a

binary digit. A certain fractionf(N,P) are linearly separable [Cov65][Dud73]
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0.00 2.00 4.00 6.00

n/(d+1)

Figure 3.1- The fraction of linearly separable dichotomies
as afunction ofN/(D+l).

f(N ,P)

N:S;P+l

(3.3)

N> P+l

where the identity holds when the points are in general position, namely when no

subset of P+l points fall in a (P-l)-dimensional space. Figure 3.1 represents the

maximum given by equation 3.3 for several values of P and N. AH ensembles of

N<P+ 1 are linearly separable. At N=2(P+1) half of the problems are linearly
separable. When N is several times P the solution is unlikely.

If instead of aplane, the decision boundary is a polynomial surface, the
number of classifiable dichotomies depends, in general, on the degree of the

polynomial. The fraction is given by the same formula -eq. 3.3- but substituting
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the dimension P by the number of adjustable parameters of the surface, Le. the

number of degrees of freedom [Cov65], which are given by the binomial

(P+RJcoefficient
R

' where R is the degree of the polynomial.

3.2 Decision boundaries in an optical correlator.

In this subsection we will represent the correlation filters as linear

discriminant functions (LDF). From this analogy it foIlows sorne limits on the

discrimination capability of correlation filters. Let the vectors x and h represent
the input scene and the filter respectively in the spatial domain. For simplicity we
wiIl suppose that the filter is normalized, namely

(3.4)

The central correlation is given by:

(3.5)

This latter expression is a Linear Discriminant Function -see eq. 3.1-, but
now the classification process is slightly different because of the square law

detectors usuaIly utilized: we detect the intensity ofthe correlation. The object is

recognized if the correlation intensity c2 is higher than a threshold (f2. The new

decision boundaries can be written as:

(3.6)

whence
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Figure 3.2- Decision boundaries produced by an optical
correlator.

(3.7)

From this expression we can deduce that the decision boundary is a pair
ofhyperplanes separated a distance 2e apart, see Figure 3.2. The regions that are
associated to the true class are those shaded in the Figure 3.2, namely when either
both expressions (h/x-e), and (htx-e) are positives or both negatives. When they
have opposite signs the total result is negative and the.image will be rejected.

Since we have a second order surface with P+ 1 adjustable parameters -the

coefficients of the filter and the threshold-, the maximum number of separable
dichotomies is limited byf(N,P) -eq. 3.3-. In figure 3.3 two separable problems
by an optical correlator and the decision boundaries are shown. Two non­

separable problems are also presented.
The possibility of arbitrarily classifying as many images as the dimension

of the space deduced from eq. 3.3. seems to be a very good result. For example
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for 128x128 pixels images this means that we can introduce in a single filter the
information of 16384 patterns. Such number is probably enough for the majority
of applications. However, until now we have only considered the central

correlations. One of the advantages of the correlation methods is that they are

position invariant. The correlations with the shifted images are also evaluated

and the position of the peak indicates the position of the target. To profit this
information it is necessary to control the correlation in all points -P- to avoid

false alarms due to the sidelobes. The correlation in a given point is the same as

the central correlation with the image shifted to that point. This implies that we

pass from the problem of detecting one object, to the problem of detecting the

image and rejecting all the P-1 possible displacements. So, for an object we have

N=P patterns to classify. According to Equation 3.3 this can be always solved

with a single-filter correlation. The solution is the inverse filter that gives 1 at the

origin and O elsewhere.

A geometrical interpretation may be enlightening. The displaced images
lies in a manifold of as much as P-1 dimensions. As the decision space is P­

dimensional, there is always an orthogonal direction h to all of them. Thus, if the
centered image has a non-zero projection onto h, the correlation will be a delta

function by using h as the filter. But the problem appears when more than one

object -No- has to be classified. The number of vectors in the feature space is

N=P.No' and the probability for this problem to be separable decreases

drastically. To obtain rotation invariance it is necessary to control the correlation

with N; rotated versions of the target, so for No objects the number of vectors

will be N= P.No.Nr That is the reason why high sidelobes are frequent in this

case.

What appeared to be a very good method when only the central

1 O
• •

• •

1 O

Figure 3.3- Two separable and two non-separable problems in a correlator
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correlations were considered, seems to be a very bad one when invariances are

required: no more than one image can be arbitrarily classified with total

reliability when the position invariance is taken into account. Additional

invariances produce the appearance of sidelobes with almost total certainty.
However a more detailed analysis must be carried out because the experimental
results are not so pessimistic. For instance the MACE filter permits to include

several images producing delta like correlations. Also the generalization of the
MACE filter [Rav91] seems to work properly for rotation invariant correlation.

Possible explanations for this behavior are: on one hand, the projections of the
false class images onto the filter must not be equal to zero, but lower than the

threshold value 8. On the other hand, and perhaps more important, we have to

consider the possibility for the images to be long to a manifold of lower

dimension than that expected. This means that the number of quasi-orthogonal
directions may be higher and this fact permits to include more images. This

question may be elucidated by means of a principal component analysis which

enables to find the directions that accumulates the majority of the variance of the

data.

Equation 3.3 gives an expression for an arbitrary classification problem,
and for points distributed without restrictions, except the general position
condition. The problems that can be solved by a given decision boundary are not

always the same. Depending on the relative locations of the images, a given
subset ofthe 2N possible dichotomies are separable. For a distinct arrangement a
different set of problems can be solved. This implies that the probability for any
dichotomy to be separable is limited byf(N,P) and the maximum is attained when

the images are distributed in general position. If this condition is not fulfilled

because the set of points lie in a lower dimensional subspace, the probability for
an arbitrary dichotomy to be separated is smaller. However for sorne problems
the probability may be higher. The problem of avoiding sidelobes is always the

same dichotomy, namely, we want to reject the shifted images and to accept the
centered ones. Therefore it is possible that by rejecting a fraction of the shifted

images we accomplish to reject all of them being the problem equivalent to one

with less images involved and thus being more probable.
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Decision boundaries Combinations between Channels

(_¿Channels)
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Logic Operations

Figure 3.2- Difierent combination between two channels and the corresponding
decision boundaries.
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Even in this latter case the relative simple decision boundaries produced
by an optical correlator seem to limit a great deal the possibilities of single filter
correlations for handling the large number of images required for real-world

problems. The solution may be the use of more complex discriminant functions

by using multichannel filtering architectures as illustrated in Figure 3.4.

The Figure shows -for the two-filter case- how the information provided
by the different correlations can be combined in a later postprocessing stage to

obtain decision boundaries with more complex shapes. Now we have an added

flexibility, with which new classification problems can be solved or perhaps, the
old problems can be solved with more ease. The rest of this dissertation is an

attempt to profit by this general idea, developing specific methods and

algorithms for multichannel correlators. It is worth pointing out that the price of

having a more powerful framework, is of course a more complex procedure. This
leads to several practical problems that are also analyzed in subsequent chapters.
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procedure: Real case

Introduction.

The design of filters for the VanderLugt optical correlator has undergone
great progress during the past years as surveyed in chapter two. Inasmuch as

filters with optimal properties can be obtained, the obstacles encountered in

correlation should be considered as a product of the inherent limitations treated

in the preceding chapter rather than as a fault in the design techniques. Let us
recall sorne of the problems. The matched filter gives the maximum signal-to­
noise ratio in the correlation plane but is unable to discriminate between similar

objects. The discrimination capabilities can be enhanced as well as the light
efficiency by using a phase-only filter whose main drawback is its small noise

resistance. The inverse filter presents a low efficiency, a small generalization
capability and an extreme noise sensitivity.

Furthermore, the response of these filters depends on the scale, orientation
and in general any deformation in the input partem. A possible solution to this

problem is to expand the reference objects into a set of orthogonal functions that
are invariant to one ofthese deformations. For instance with a circular harmonic

expansion (CHC), rotation invariance can be achieved. A different possibility is

the use ofSDF filters. With them, the information ofthe objects to be recognized
and the objects to be discriminated against can be introduced simultaneously.

The main difficulty of the last two approaches is the appearance of

sidelobes. This phenomenon was explained in chapter three as a problem of

classification -involving the centered and the displaced images- that can not be

solved by means of the simple decision regions of single filter correlations. Here
we present a method to eliminate them through a multifilter procedure, thus
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illustrating how those limitations can be defeated by usmg multichannel

correlations. This chapter is devoted to the case of real-valued correlation planes
leaving the general case for the next chapter. The reason for this is twofold. On

the one hand, the discussion of the real case is simpler and may help in

understanding the general method. On the other hand, filters giving real

correlations are the most frequently used -for example SDF filter with real

constraints- and so they deserve an specific treatment.

4.1 Method.

If we perform the correlation of an input image with two differently
designed filters restricted to produce the same central correlation, we can

postprocess the output distributions in order to improve the results. For example,
if we binarize them by applying a given threshold and then multiply the output

planes pixel by pixel -which is equivalent to process them with the logical
operation AND-, we can eliminate the sidelobes that are more than the threshold

value that are not cornmon to both planes, and we canmaintain the central peak.
The existence of false alarms in such a procedure depends on the

appearance of cornmon sidelobes. The method we propose ensures, provided
certain conditions are met, that the sidelobes aboye the threshold are spatially
disjoint in both correlations.

The idea of an image being processed by means of several digital or
optical processes and of the final image being obtained by the pointwise
multiplication of each single output has been applied in the past in various

problems. The procedure is similar to operations cornmonly used in mathematical
morphology. Casasent et al. [Cas92], using the correlation with two different

filters, detected simple geometrical shapes irnmersed in high clutter and noise.

The procedure involved the binarization ofthe correlations and the pixel-by-pixel
multiplication of both results. The method was an optical implementation of the
morphological hit-miss transformo More recently, Crowe et al. [Cr093] proposed
the utilization of a similar method to reduce the sidelobes appearing in imaging
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systems owmg to the finite size of the pupil, thus improving the spatial
resolution.

We wiIl restrict our study to the case in which we obtain real-valued

correlations. The general case of obtaining complex distributions -such as those

produced by circular harmonic filters- is treated in the next chapter.
The method can be applied to a wide variety of filters -which is referred

to as the base filter in what foIlows- and consists of addition and substraction of a

new filter -caIled the correcting filter- designed so that the foIlowing conditions

are fulfiIled:

(1) The filter is orthogonal to every image in the training set -the filter

and the images are treated as vectors with the usual lexicographic ordering. This

requirement ensures that the central correlations produced by the base filter

remain unchanged.

(11) The correlation between the correcting filter and the images produces
a constant plane of a predefined value. This condition is accomplished only in an

approximate form by means of a Lagrange minimization process.

The output distributions obtained with the new filters have two terms:

(4.1)

(hb -h )*x· =hj, *x· -h *x·e I I e I (4.2)

where hb is the base filter, he is the correcting filter, Xi is one of the images and

* means correlation. If the training images and the filter are real the expression
hb*x¡ is real and may take positive and negative values. The term he*x¡ in
equation 4.1, which is constant over the whole plane, increases the positive
sidelobes and decreases the negative ones. Conversely, in equation 4.2, he*x¡
increases the negative sidelobes while decreasing the positive ones. Suitable

choice of the value of the constant plane and the threshold ensures that no

sidelobe is cornmon to both binarized correlations. By applying the logical
operation AND the sidelobes are eliminated.
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Figure 4.1- Decision regions.

The correcting filter is a particular case of the mínimum squared error

synthetic discriminant function (MSE-SDF) introduced by Vijaya Kumar

[Vij92a] and its mathematical expression is derived in the appendix of the next

chapter.
The intuitive idea on which the procedure is based is sketched in Figure

4.1. The combination of the two filters reduces the region where the sidelobes

will give false alarms. The centered image is represented by a black point while
several displaced versions are represented as white points. All the sidelobes will

be removed in the case represented in the figure.
One of the advantages of this method in front of the filters designed to

reduce sidelobes such as the MACE filter, is that those designs try to be as

orthogonal as possible with the displaced images and, as a consequence, the

projection ofthe centered image is also very small. This means that the efficiency
of these filters is usually very poor. In the proposed method the sidelobes are

suppressed by the combined action of two filtering processes, thus not being
necessary to impose the orthogonality of each single filter.
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4.2 The correcting filter.

We derive in this section the mathematical expression for the correcting
fiIter.

Let xl, x 2 , .. , x k denote the Fourier transforms of the K training

images ofN components. Let ii e be the Fourier transform ofthe correcting filter.

Condition (I) in section 4.1 can be written as follows:

N

L .( .)*� J �J
he xi = O

j=l

i=1, .. ,K (4.3)

where the superscriptj indicates the pixel.
Condition (H) can only be achieved approximately by minimizing the

following error function:

K N
2

E=�LL ,O -h� (xl r
i=l j=l

(4.4)

where d represents the Fourier transform of the desired shape for the correlation

between the images and the fiIter -a plane in our case-. Expression 4.4 is

therefore a measure of the mean error between the correlations obtained and

those desired. This fiIter is a particular case of the minimum squared error

synthetic discriminant function (MSE-SDF) design introduced by Vijaya Kumar

et al [Vij92a].
Equation 4.3 can be written compactly as

(4.5)
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where S is an NxK matrix formed by the Fourier transforms of the images
arranged in columns:

�l �l �l
xl x2 .. xK
�2 �2 �2

S= xl x2 xK (4.6)

�N �N �N
xl x2 .. xK

and the superscript + means the conjugate transpose of the matrix. Finally, O

represents the K dimensional vector with all its components zero.

Equation 4.4 can be expressed with the same formalism by defming the

NxN diagonal matrix:

(�lx·1
�

l
O

PI =

�

O

�2
Xi

O I

_: Jx·
1

(4.7)

O

With such definition the error can be written as:

k

E = � IJ (d - P t be) + ( d - P t be) ] = d + d - b � r - r + b e + b � Pb e (4.8)
i=l

where

K

r= ��)Pid)
i=l

(4.9)
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and

K

�
1

�(�*� )P=KLJP¡P¡
i=1

(4.10)

Conditions (I) and (Il) can be accomplished simultaneously by
minimizing the following expression:

by means of a Lagrange optimization process. In expression 4.11, A denotes a K­

dimensional complex vector containing the Lagrange multipliers.
By calculating the gradients with respect to the filter components and the

Lagrange muItipliers and setting them to zero we obtain the following expression
for the correcting fiIter. The mathematical details can be found in [Vij92a].

(4.12)

4.3 Necessary conditions.

Let us suppose we have designed a generalized SDP for solving a two­

class problem. The prespecified values for the correlation with classes A and B

are calledPo andP¡, respectively, and with no loss of generality we suppose that

Po> PI· The criterion for classification of an image as a member of one of the

two classes is the following: if the correlation intensity at the center exceeds a

given threshold, the image is classified as belonging to class A; otherwise, the

image is assigned to class B.

As we have cornmented on in section 4.1, the method for elimination of

sidelobes involves the correlations with two fiIters that have an opposite effect.
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The first, which we call positive filter, reduces the negative sidelobes and

enhances the positives ones. The second filter, called negative, reduces the

positive peaks and enhances the negative ones.

Our goal is to determine the proper settings for the threshold and the

constant plane resulting from the correlations between the images and the

correcting filter in such a way that the only point in the output intensity
distributions that passes the threshold in both cases is the central peak.

The equations that ensure the above statement can be written as follows:

e(lxl + c)2 < p� (4.13)

(Ixl - c)2 < ep� (4.14)

(4.15)

2 2
PI < epo (4.16)

where e is a factor between zero and one that represents the threshold, e is the

value of the constant plane, and x is the height of the maximum sidelobe to be

suppressed.
The necessity of conditions 4.13-4.16 is discussed in the following

considerations. Maximum sidelobe x increased by constant e may become higher
than value Po of the correlation for class A. This situation is illustrated in Figure
4.2. In Fig. 4.2.a) the positive sidelobe -x>O- is increased by positive constant c.

The resulting intensity can be seen in Fig. 4.2.b), in which it appears higher than
the intensity of the central correlation pi. For negative sidelobes we have an

equivalent situation. In Figure 4.2.c) the negative sidelobe -x<O- is increased -in

absolute value- by negative constant -e, and the resulting intensity -Fig. 4.2.d)- is
also higher than the central correlation for class A. Inequality 4.13 is then

necessary to guarantee thatPo passes the threshold. The expression ( [x ] + c)2 is

the intensity of the increased peak no matter whether the maximum sidelobe is

-106-



Chapter 4. Sidelobe elimination: real case

(x+e)
2 (x_e)2

x>O Po

±t± x>O Po

±tLe e

(x+e)
2 2 2(x-e) PI

-e

x<O x<O

a) b) e) d)

Figure 4.2- a) Amplitude of the correlation plane produced by the base and the

correcting jilters when both are added (positive jilter). The thin line represents the
constant amplitude correlation value given by the correcting jilter. The jul/ lines
represent the correlation peales and the sidelobes obtained with the base jilter. b)
Intensity distribution for the positive jilter. c) and d) Same as a) and b) for the case of
the negativejilter.

positive or negative. In other words, this factor takes into account the case (x -c)2
for negative peaks and (x + c)2 for positive ones.

Inequality 4.14 represents the condition for the decreased maximum

sidelobe to be eliminated in the binarization, i.e., when the absolute value of the

sidelobe is decreased, the resulting intensity has to be lower than the limit

marked by the threshold value -see Figs. 4.2.a) and b) for x<O and Figs. 4.2.c)
and d) for x>O-. The condition is written assuming that the threshold is applied

Po 2

x
Po

xl2 s e e

e

-e (x-e)
2

(s-e)
2

-e

a) b)

Po 2
Po

x

xli- s
I

e) d)

Figure 4.3- Il/ustration ofthe necessity of inequality 4.5: a) Case e < x/2. The jul/lines
represent the amplitude of the correlation with the base jilter, which produces a high
(peak x) and a small (peak s) sidelobe. b) Intensity distribution corresponding to a). Jf
c<x/2, sidelobes lower than x are suppressed by eq. 4.4. e) The same as a) when
c>x/2. d) Intensity distribution corresponding to e). When c>x/2, small sidelobes
increased by the constant may surpass the threshold value.
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on PO' but the maximum value in the output intensity distribution might be

different. For instance, if we had two maximum sidelobes, both with the same

absolute value but with different sign, and if the increased term ( [x ] + c)2 were

higher than pi, the threshold value would be 9( [x ] + c)2 because when one

decreases, the other one increases -the case represented in Fig. 4.2-. By setting a

more restrictive condition, such as equation 4.14, we can cover all the cases.

In addition, we need to ensure that the sidelobes lower than x disappear.
We have to treat two cases separately:

a) If

c<lxl/2

wehave

(4.17)

Threshold

\ ep2
...................... !l .

Decreased sidelobe helght

(lsH:)2

[x]

Sidelobe magnitude, 151

a)

(4.18)

Threshold

\ ep2
. . . . . . . . . .. • ..•..••....

0
.

Decreased sidelobe height

(151-<:)2

2

(lxi-e) -------------- - ------------------

,
,
,
,

: [x]

Sidelobe magnitude, Isl

b)

Figure 4.4- a) When e < Ix 1/2, elimination of maximum sidelobe x ensures the
elimination of smaller sidelobes. b) When c>lxl/2 a new condition is necessary to

preventfalse alarms.
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In this situation equation 4.14 guarantees the elimination of every

sidelobe ranging from zero to x -see Figs. 4.3.a), b) and Figure 4.4.a)-.

b) If e > [x ] /2 the former condition is not assured, and small sidelobes

may surpass the threshold. This situation is depicted in Figs. 4.3.c),d) and 4.4.b).

Inequality 4.15 is then necessary to take into account case (b). Finally,
inequality 4.16 is required for a correct classification of class B. In the typical
case in whichPo= 1 andP1=0, inequalities 4.13-4.16 become:

Ixl-s1I2 <c<S-1/2 -Ixl (4.19)

(4.20)

As can be observed in the aboye expressions, the value of e is not

completely determined by the conditions, but there is a range of permissible
values that is necessary for the reliability of the method. This necessity is caused

by, as mentioned aboye, the correlation planes with the correcting filter not being
exact planes but approximate versions obtained by means of a minimization

process.

Since the leftmost part of equation 4.19 is an increasing function with

respect to [x I and the rightmost part is a decreasing function, the maximum

sidelobe that fulfills both inequalities is obtained when:

Ixl-S1/2 =S-1I2 -Ixl (4.21)

whence

1
Ixl=-(S+l)S-1/2

2
(4.22)

On the other hand, by considering inequality 4.20 and the leftmost part of

inequality 4.19, or:
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c>lxl_81/2

we obtain the maximum [x I when

(4.23)

whence [x / is

(4.24)

and fmally, the maximum sidelobe can be written as:

(4.25)

The two expressions that determine the maximum sidelobe have been

plotted in Figure 4.5. As can be observed, while the first is an increasing function
of e, the second is a decresing one. Therefore the maximum sidelobe that can be

suppressed by the method is found at the point where the curves intersect each

other, or in mathematical terms:

1 1
281/2 = -(8+ 1)8-112 => 8=-

2 3
(4.26)

and substituting into eq. 4.25 we get [x ]max ::::: 1.15 (i.e. 115% of the central

correlation) in amplitude or [x 12max " 1.32 (132% of the central correlation) in
intensity.

In practice it is not possible to reach this limit because the range of

permissible values for e in inequality 4.19 is reduced to a single point. However,
in most practical situations the method enables the elimination of sidelobes
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lhreshold, 9

Figure 4.5- The plot shows the two conditions that
determine the maximum sidelobe that can be

suppressed.

higher than the central peak, which cannot be corrected by binarization of the

output intensity produced by the base filter with a single threshold.

Figure 4.6 represents the permissible variation of constant e -shaded area­

when the threshold value is fixed (Po=l, Pl=O, 8=0.5). The graph shows that for

small variations in e, large sidelobes can be eliminated, but for wide variations

the height of the sidelobe must be small. By varying the threshold and by fixing
the desired height ofthe sidelobe to be suppressed, we obtain Figure 4.7 (r=l ).

As can be observed, there is a value of e for which the permissible range

of e is maximum because of the monotonic behaviour of the restrictions in

inequalities 4.19 and 4.20. This optimum threshold can be calculated by use of

the following equation:

8112 - 8-112 -Ixlop
-

op (4.27)
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Figure 4.6-Permissible range for
constant e as a function 01 the maximum

sidelobe to be eliminated.
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Figure 4.7- Permissible range for
constant e as afunction 01the threshold.

Consequently, we can determine all the parameters envisaged by the

method by selecting the maximum height of the sidelobe to suppress, by
calculating the optimum threshold by means of eq. 4.27, and finally by choosing
the constant e as the midpoint value ofthe range given by inequality 4.19.

The validity of the method is determined by the extent to which the actual

correlations between the images and the correcting filter are constant planes with
the expected accuracy. The possibility of the sidelobes being eliminated in the

range from O to a prespecified value jx j, depends on whether the minimization

procedure is capable of producing a correcting filter so that the correlations

obtained with the images in the training set satisfy inequality 4.19.
Therefore the performance of the method is determined by the deviations

in the correlation distribution from the expected plane; in other words, the

maximum sidelobe that can be suppressed depends on the range of variation of

the points in the correlation planeo On the other hand, the height of the sidelobes

depends on the similarity between images in different classes; Le, the more

similar the images with different conditions are, the larger the expected values of
the sidelobes become.

The method gives more accurate correlations planes, i.e., the correcting
power is higher, when the images in the training set are more similar and
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therefore when higher sidelobes appear. To demonstrate this property, let us

assume we have two N-dimensional images whose Fourier transforms are X1(w)
andX2(w).

The expression for the error in equation 4.4 can then be written as:

N N

E =�(IID(W) -Hc(w)Xi(w)12 + IID(w) -Hc(w)X;(w)12) (4.28)
w=1 w=1

or in vectorial form

1 * + * * + *

E="2[(d-P1 he) (d-P1 he)+(d-P2 he) (d-P2 he)] (4.29)

Let us suppose that PI and P2, which are diagonal matrices, can be

inverted -that is, there is no frecuency for which the Fourier transform of the

images is zero- and let us define filters hI and h2 so that:

( *)-1hl = PI d (4.30)

( *)-1h2 = P2 d (4.31)

hI and h2 represent the filters that give exactly the desired shape when they are

correlated with images X¡ and X2 respectively. The assumption that PI and P2
are invertible is not so restrictive, and similar requirements are needed in other

filter designs. In particular, in MACE filters, the matrix that represents the

average energy of the images in the training set must also be full rank.

Because he is the optimal filter, by substituting he for hI in equation 4.29

we have:
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E s ±[ ( d - P; h 1 )
+

( d - P; h 1 ) + ( d - P; h 1 )
+

( d - P; h 1 ) ] =
= ±[ ( d - P; h 1 )

+

( d - P; h 1 ) ] = ±[ (P; h 2
- P; h 1 )

+

(p; h 2
- P; h 1 ) ] =

=±{rp; (h2 -h1 )]+ [p; (h2 -h1 )]}
(4.32)

and from eqs 4.30 and 4.31:

(4.33)

Ifwe express image X2 as a function ofX¡ we can write:

(4.34)

and therefore

(4.35)

(4.36)

As PI is a full-rank matrix, if L1 tends to zero, then (h2-hI) tends to zero,

and in consequence the error in inequality 4.32, which depends on this

difference, becomes increasingly small:

Q.E.D. (4.37)

We carried out an experimental verification of this property. The details

are given in section 4.4.
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4.4 Computer experiments.

In this section we present the results of several experiments carried out by
means of a computer simulation in order to test the suitability of the method in

practical situations. We performed a study of the dependence between the value

of the expected sidelobes and the correcting capabilities of our metod by using
the images depicted in Figure 4.8. A set of ten correcting filters was designed,
each of them calculated by use of a pair of images from the sequence ab (O)-ab (i) ;
namely, filter 1 was calculated with abrO) and ab(l) , filter 2 with abrO) and

ab(2), and so on. The measure of the similarity between image ab(i) and abrO)
was calculated with the following expression:

. 1 [ ab(O) * ab(i) ] (O, O) 12
S [ab(O),ab(l)] =-------

1 [ab(O) * abeO)] (O, O) 12
(4.38)

where the symbol * means correlation.

The error function in eq. 4.4 as well as the deviation from a perfect plane

Figure 4.8- Sequence 01 images used in the
simulation. Letter a is ali(O), letter b is ab(IO), and
the intermediate patterns are ab(i), with i=I, ... , 9.
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(c=0.35) for each single image was computed for every correcting filter, and the

results are represented in Fig. 4.9. The graph shows the dependence between

these deviations from the expected shape and the similarity measure given by eq.

4.38. For very similar images such as ab(O) and ab(l) -S(ab(O),ab(l)) = 0.96- the

error is small -E=0.25- and conversely, when the similarity between images is

small-S(ab(O),ab(1)) = 0.57 for ab(O) and ab(10)- the error is high -E=10.3-. The
result shows the expected behavior; i.e., when large sidelobes are more likely to

appear, owing to the similarity between images with different constraints, the

procedure we propose is more powerful because of a smaller variation with

respect to the desired planeo
The increasing correcting power enables the elimination of sidelobes,

even if they are higher than the central peak as illustrated in Figure 4.10. In

Figure 4.10, two images with a similarity S=0.90 were used to build a MACE

filter by imposition of images (a.1) and (a.2) to give values of 1 and O,

16

ab(O)

s....

O 12
s....
s....

<D

""C
<D
s.... 8ro
::J
o-
C/)

4

S[ab(O),ab(i)]

Figure 4.9- Squared error as a function 01 the similarity between
images.
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a) b) e) d) e) f) g)

1) 11 •••
2)• •••.

Figure 4.10- a.l, a.2, Images used to design the MACEfilter. The imposed values were
1 for image a.l and O for image a.2. b.I, b.2, Intensity of the correlation between the

MACEfilter and images a.l and a.2, respectively. c.l, c.2, Intensity ofthe correlation
between the positivefilter and images a.l and a.2. d.I, d2, Intensity ofthe correlation
between the negativefilter and images a.l and a.2. e.l and e.2, Same as images c.l and
c.2 binarized with 8=0.36. JI, j2, Same as images d.l and d.2 binarized with 8=0.36.

g.l, Result ofpixel-by-pixel multiplication ofimages e.l andf.I, g.2, Result ofpixel-by­
pixel multiplication ofimages e.2 andj2.

respectively. The MACE filter is an antisidelobe design, but in this situation it

gives several lateral peaks, the largest of which has a value of 126% of the

central correlation -in intensity- as shown in images (b.l) and (b.2).
In order to elliminate the sidelobes, we prepared the correcting filter using

the following set ofparameters:

Ixl=(1.26)1I2 =1.12

80p = 0.36

e = 0.53

The results of the correlations between the positive and negative filters

are shown in images (c.l )-(d.2) of Figure 4.10, and the binarized results are

shown in images (e.l )-(f.2). After pixel-by-pixel multiplication of both binarized

planes, images (g.l) and (g.2) were obtained. As can be observed, all the

sidelobes are suppressed and a perfect detection of the central correlations is

possible.
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The method is then capable of producing a significant increase in the

discriminant abilities of the SDF filters, inc1uding those such as the MACE

design, which are specifica1ly designed to avoid the appearance of sidelobes.

However, there is no noise resistance inc1uded in the minimum squared error

SDF filter, so the procedure is high1y sensitive to noisy inputs.
The possible solution to this problem is the same as that used to introduce

noise resistance in the MACE design: the optimal trade-off technique. A further

study on the suitability of this solution should therefore be carried out.

4.5 Optical results.

The method proposed for elimination of sidelobes was tested by use of a

convergent correlator [Van92]. This setup has an advantage in that it permits
easy matching between the scales ofboth the input image and the filter.

The filters were built by means of cornputer-generated holograms
codified by Burkhardt's method [Bur70], displayed on a laser printer, and

photoreduced. The holograms were sandwiched to avoid uncontrolled phases
owing to thickness variations in the photographic film. A low-power He-Ne laser

provided the coherent illumination. Finally, a CCD camera and a frame grabber
were used to capture the resulting correlation distributions.

The images that were used in the design of the filters are shown in Figure
4.11. The values imposed for the correlation at the origin were 1, 1, O for S, C,
and E respectively. The correlations between the three letters and a composite

Figure 4.11- Images used to design the filters.
The imposed values for the central correlations
were 1 for S, 1 for e, and ofor E.
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filter are shown in the first column of Figure 4.12, in which large sidelobes can

be observed. Figure 4.13 presents a three-dimensional plot ofthese correlations.

The correlations obtained with the positive and the negative filters are

depicted in the second and third columns of Figure 4.12 and in a three­

dimensional view in Figures 4.14 and 4.15, respectively. As can be seen, the

effects of the two filters are the opposite; the sidelobes reduced by the first one

are enhanced by the other and vice versa, as expected. By binarizing the results

obtained with the positive and negative filter with a threshold of 0.40, we obtain

the two first columns ofFigure 4.16. Finally, in the third column ofFigure 4.16,
the results ofpixel-by-pixel multiplication ofbinarized images are represented.

The results observed in the optical implementation were satisfactory and

showed good agreement with previous computer simulations. Therefore the

method seems to be suitable for application in a practical situation.
The conclusions of this chapter can be summarized as follows. The

existence oflateral peaks is one ofthe most important problems in optical pattern
recognition by means of correlation. In this study we present a method that

eliminates every sidelobe within a given range, provided certain conditions are

fulfilled. The method has the following properties:

- It can be applied to a wide variety of filters.
- The method ensures the elimination of the sidelobes if certain conditions

are satisfied.

- Sidelobes higher than the central correlation can be suppressed.
- The method is more powerful when higher sidelobes are expected.

The procedure was tested with simulation and optical implementation and

gave satisfactory results in both cases. The method presents a high sensitiveness

to noisy inputs although the use of trade-off techniques may presumably
overcome that difficulty.
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Figure 4.12- First column shows the results obtained with a compositefilter designed to
recognize letters s and e and to reject letter e. As can be seen the appearance 01
sidelobes makes impossible the correct classifications 01 the letters. Second and third
columns show the correlation with the base plus the correctingfilters and with the base
minus the correcting filters, respectively. Note the opposite effect 01 the two filters. The

high sidelobes on the second column correspond to low sidelobes on the third, and vice
versa.
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Figure 4.13- 3-Dplots ofthe correlations with the compositefilter.
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Figure 4.14- 3-Dplots ofthe correlations with thepositive filter
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Figure 4.15- 3-dplots of the correlations with the negativefilter
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Figure 4.16- First and second columns are the binarized versions of the columns two

and three offigure 4.12. The threshold used was 8=0.4 of the maximum value. As can be
seen the sidelobes in both columns are spatial!y disjoint. Column three is the pixelwise
multiplication of columns one and two. A perfect detection is possible since al! the
sidelobes are removed.
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Chapter five. Sidelobe removal by a multichannel

procedure: Complex case

Introduction.

Chapter 4 introduced a novel procedure to eliminate sidelobes by means

of a two-filter correlation. The procedure shows clear advantages over the single­
filter solutions such as the minimum average correlation energy (MACE) filter,
and can be applied to them as well, to increase their discrimination capabilities
when necessary. However the method was derived under the simplifying
assumption of real-valued correlations. As already commented this is a very

common situation, appearing when both filter and scene are real-valued in object
space, but is not the most general case. There are several filters that do not fulfill

the former condition, that is, their impulse response can be complex-valued, such
as the circular harmonic filters or SDF filters made by imposing complex
correlations with the training images. This latter case may be interesting to

further maximize the quality criteria by taking profit of the additional degrees of
freedom resulting from the removal of the symmetry constraints. For example
Vijaya Kumar in [Vij88] and Réfrégier in [Réf90c] explore this possibility.

In this chapter the sidelobe elimination method is extended to complex
correlation planes. The process is completely analogous to that of chapter four: it
involves several correlations, the binarization of the results and a pointwise logic
operation between the output planes. The main difference is that now we need

more filters to obtain similar results. For the sake of clarity the method is

presented from the beginning sometimes duplicating reasonings already
developed in the preceeding chapter. We believe that this may help to understand

better the rather complicated arguments without appearing repetitive.
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5.1 Method.

The procedure can be intuitively described as a method to share between

several filters the task of eliminating the lateral peaks. The traditional approach
to prevent the appearance of false alarms due to large sidelobes consists in

designing a filter that gives high values for the central correlations with the target

images while minimizing the average energy of the correlation planeo This leaves

little energy for the rest of the correlation plane and thus makes unlikely the

presence of large sidelobes. However, in some cases such minimization is not

enough, for example when the filter is forced to give different correlations with

similar objects. Moreover, the minimization of the energy leaves little energy not

only for the sidelobes but also for the central correlations, that is the optical
efficiency of this kind of filters is in general low. This proposal permits to

distribute the load between a set of filters in such a way that the first filter has

only to eliminate a subset of the total amount of sidelobes, the second one a

different subset and so on. With an appropriate design of the filter database we

can ensure the suppression of the whole set of lateral peaks.
The multichannel method ensures that after the filtering, binarization and

multiplication stages all the sidelobes are eliminated if a set of conditions are

satisfied. The higher the number of filters used the easier the conditions are met.

This procedure can be applied to a wide variety of filters -which will be referred

to as the base filters in what follows- and consists in adding a new filter -called

the correcting filter-, weighted with a complex value of unit magnitude, with the

following characteristics:

(1) The correcting filter is orthogonal to every image in the training set;
the filter and the images are treated as vectors using the usual lexicographic
scanning. This requirement ensures that the central correlations produced by the

base filter remain unchanged.

(H) The correlation between the correcting filter and the images produces
a constant plane with a predefined real value that we will denote c. This

condition is accomplished only in an approximate form by means of a Lagrange
minimization process.
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The correcting filter, is the same as that utilized in chapter 4. The output
distribution obtained with the kth filter has the following two terms:

(5.1)

where hb is the base filter, he is the correcting filter, X¡ is one ofthe images in the

training set and the symbol * means correlation. Letter j represents the

imaginary unit and 8k indicates the phase of the kth complex value applied to the

correcting filter.
The expression hb*X¡ is a bidimensional distribution of complex values.

Since he*x¡ is constant and real over the correlation plane -except at the center

where it is null-, the expression ¿ekhe*X¡ is a constant complex plane of value
c¿8k. The effect of the new filter on the correlation given by the base filter is

therefore to increase the sidelobes pointing to directions close to that represented
by the angle 8k and decrease the sidelobes pointing to directions close to 8k+7t -

Fig. 5.1-. By equaIly distributing the angles 8k on the unit circle -i.e. 8k=2kTt/n
where n is the number of filters- we ensure that there wiIl always be a filter

whose correlation points close to the opposite direction to that of every sidelobe.

a) b)

Figure 5.1- Effect 01 the correcting correlations on the height 01 the sidelobe. a) The
sidelobe is increased by a correcting correlation pointing in the same direction. b) The
sidelobe is decreased by a correlation pointing in a nearly opposite direction.
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That filter wiIl decrease the magnitude of the sidelobe. Suitable choice of the

value of the constant plane e, the number of filters n, and the threshold ensures

that no sidelobe is common to aIl binarized correlations. These considerations

wiIl be discussed in detail in section 5.2.

As before our analysis is devoted to the two-class problem. If the

prespecified values for the magnitude of the correlation with classes A and B are

PO and PI respectively, -supposing PO > PI with no loss of generality-, the

decision is taken by comparison with a threshold: if the correlation value at the

center is higher than that of the threshold, the input pattem is associated with

class A and vice versa. The necessary conditions that the multifilter procedure
has to fulfiIl to prevent either a false alarm or a detection miss in a classification

problem are as foIlows:

a) The classification procedure imposes a limit on the threshold value

since the correct assignment of each class implies:

(5.2)

where e is a value between zero and one that represents the threshold. The

maximum value at the output plane is supposed to be the peak for the true class

pi although it may be different, for instance when a high sidelobe appears. The

more restrictive condition represented by eq. 5.2 is needed to cover all cases.

b) The magnitude of the sidelobes are sometimes increased owing to the

constant planes produced by the correcting filters. In those situations we must

ensure that these increased sidelobes do not hide the peak corresponding to the

true class, namely:

8(X+C)2 < p� (5.3)

where e is the magnitude of the complex plane given by the correcting filters and

x the magnitude of the maximum sidelobe to be eliminated. The equation has
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been written in the most unfavorable case, which appears when there IS a

sidelobe pointing in the same direction as the correcting plane -Fig. 5.l.a)-.

e) To avoid false alarms, we need that for every sidelobe exists at least

one correcting filter being able to decrease its magnitude below the threshold

value. As in point b) the equation is written in the worst case which now appears

when the sidelobe points between two correcting correlations -Fig. 5.l.b)-. For
such peaks we need:

(5.4)

where n is the number of correcting filters.

d) Finally, we must ensure that every sidelobe ranging from zero to x

disappear after the processing with the threshold function. This fact is not always
covered by eq. 5.4 which only accounts for the maximum sidelobe x. In

particular when

(5.5)

small sidelobes, for example one with zero value, may surpass the threshold -Fig.
5.2-. After a little of algebra, the aboye equation can be written as:

x
(5.6)c >

1t
2cos­

n

To avoid the appearance of these small sidelobes in the final output we

need the additional constraint:
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s

a) b)

Figure 5.2- Sometimes the elimination oi a high sidelobe (a) does not ensure the

elimination ofa small one (b).

(5.7)

The method is intended to be applied to the general case in which the

correlation plane is fully complexo When the sidelobes can only be positive or

negative (their phases only O or n), that is the real case, to increase or decrease

them we only need two filters, one giving a constant plane ofvalue ce?«: and a

second one giving Ct/1T:=-C . However when we deal with complex correlations,
the sidelobes have arbitrary phases, they can point in any direction, and so we

need to use multiple filters. The equivalent situation to that of chapter four is the
use of an infinite number of filters. In such a case, for every possible direction

that a sidelobe may take, we have a correcting plane pointing in the opposite one.

For example, the condition in eq. 5.6, becomes for n=s«, c>x/2, which was that

obtained for the real case, although as we will show, good results can be obtained
with a reduced filter database.
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5.2 Optimal settings for the parameters.

The elimination of all sidelobes through the multiple correlation scheme

proposed is guaranteed when the aboye conditions are fulfilled. For the potential
user, the important parameters involved in these conditions are the highest
sidelobe to be supressed and the number of filters that one is willing to use. The

other two variables, the value for the constant e and the threshold e are only
internal parameters of the procedure, whose values have no special interest for
the user and can be selected with total freedom. According to this, we derive in

this section, the values for e and e that make compatible the conditions with

values for x and n arbitrarily chosen. Obviously this is not always possible, for

example when we try to eliminate a high sidelobe with a small number of filters,
and so the minimum number of filters to eliminate a given sidelobe is also

deduced here. To do so, we first make explicit the constraints that equations 5.2,
5.3, 5.4 and 5.7 impose over the constant e and which have to be used in

subsequent steps.

5.2.1 Constraints over the value of constant C.

For simplicity we will treat the usual case where PO = 1 andP1=0. In such

a situation equation 5.2 automatically holds unless the threshold is zero -which is

meaningless- and thus we have no longer this constraint.

a) The first restriction comes from equation 5.3, which in the general case
IS:

CI<-X±Po e-1/2 (5.8)

and assumingpo=l becomes:

CI < -x ± e-1/2 => c¡ < -x + e-1/2 (5.9)
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It should be noted that 8 is a dimensionless parameter, although in the

following equations may apparently take different dimensions due to the

simplification we made. In the latter equation, the minus sign has been discarded

because e is always a positive quantity. The subscript indicates the different

permitted values for e due to the different constraints.

b) The second restriction is posed by equation 5.4, which leads to:

f(c,x,n,9) (5.10)

In figure 5.3,f(c,x,n, 8) has been plotted for several values ofx, n and 8. It

shows that the range of allowed values for e, namely those for whichf(c,x,n, 8)<0,
is the region comprised between the solutions of the second order equation
f(c,x,n, 8)=0. By solving this equation we get:

1.2�-------------_
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,
,
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Figure 5.3- Range of permitted values for e arising
from the necessity ofavoidingfalse alarms.
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(5.11)

and

(5.12)

and therefore the permitted range for e due to condition 5.4 is:

(5.13)

where the lower limit for e is zero when the minus solution is negative. Since we

can write:

(5.14)

the value of e2
-

is positive when (e - i) < 0, a result that will be later used. This

result can be interpreted as follows: if the sidelobe to be suppressed is higher
than the threshold, i.e. ifi > e, the constant can not be zero and thus we have the

lower limit given by eq. 5.12. Otherwise the sidelobe can be eliminated by the

binarization alone, that is with a zero constant.

e) Finally, the constraint associated with eq. 5.7 can be expressed as:

c3 < e1/2 (5.15)
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5.2.2. Maximum eliminable sidelobe with a given number of filters.

An important issue of the method is the maximum sidelobe that can be

eliminated, which will depend on the number of filters used. The limit is due to

the constraints of e that we have deduced in the preceding section. We obtain the

expression for the value of the maximum eliminable sidelobe in what foIlows.

Two cases must be treated separately:

a) The number offilters is lower than five, n<5.

When the number of filters is smaIl, the method cannot correct sidelobes

higher than the central peak because equations 5.3 and 5.4 become contradictory.
This is due to that in the worst case, the sidelobes may be almost orthogonal to
the correcting correlations and thus they have little effect in decreasing their

height. To make them lower than a given threshold we need a large value for the

constant e, which may produce the miss of the central correlation when the

sidelobes are increased. A good example is n=2 for which the method makes no

sense since, in the worst case, it appears a sidelobe orthogonal to both correcting
correlations as depicted in Fig. 5.4. Thus the correcting filters can only increase

the height of the sidelobe, it must be suppressed by the threshold alone and

therefore the sidelobes to be eliminated must be lower than the central peak.

s-c I

I

I

I

s+c

Figure 5.4- Two filters can only
increase the magnitude 01 an

orthogonal sidelobe.
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n=4 n=5
1.5 0.8

NonIJivial soIutioos

§
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-0.4
-0.5 x=O.8

-1.0 -0.8
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e e

a) b)

Figure 5.5- Compatibility function S(x,c,n). a) lf n=4, sidelobes equal to the central

peak can not be eliminated. b) n=5 represents the limitfor which sidelobes higher than
the central correlation can be suppressed

In this situation the maximum sidelobe is suppressed when c=O and 8=1,
which makes the method unnecessary although it is still of use for sidelobes

lower than the central peak as will be further commented. Eqs. 5.3 and 5.4 are

mutually consistent when:

(5.16)

or equivalently while:

1t

S(x,c,n) = (x + c)4 - 2xc(x + c)2(1 + cos-) -1 < O
n

(5.17)

Figure 5.5 represents the compatibility function S(x,c,n) for n=4 and n=5.

As can be observed, while there is a wide range of values for e allowing the
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elimination of sidelobes lower than the central peak, sidelobes equal to it cannot
be suppressed with n=4 -Fig. 5.5.a)-, because there is no value for e making
S(x=l,c,n=4) negative. The maximum sidelobe is thus x=1, the constant e must

be zero and the method becomes unnecessary. n=5 -Fig. 5.b)-, represents the

limit in the appearance ofnontrivial solutions.

b) The number offilters is higher or equals five, �5.

Equation 5.10 limits the height ofthe maximum sidelobe to be suppressed
by the procedure since the discriminant of the equation must be positive because

e is a real value:

1t 8112
- x

2 sin 2 - + 8 > O ::::::> xM 1
=

n 1t
sm­

n

(5.18)

A second restriction in the height of the sidelobes arises from equations
5.9 and 5.12. On one hand, when the magnitude ofthe sidelobe to be eliminated

increases, the lower limit for C2 -called C2-- also increases but on the contrary the

upper limit for c1 decreases. The maximum sidelobe that is compatible with both

constraints will be that for which C2-=C1, namely:

1t 1t
X cos- - [8- x2 sin2- ]1/2 = - x + 8-112

n n
(5.19)

whence after a few calculations we get:

1
-e-I12 ±
2

1
-8-1
4

11/2_
2. (8-1-8)
2 1t J(1 +cos n)

(5.20)
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In this equation the minus sign must be discarded because it can be shown

that for that solution the expression (e - i) becomes positive and therefore e2
-

is

no longer a constraint over e -e2- becomes negative as deduced in eq. 5.14-.

On the other hand, applying the same argument to e3 and e2- the

maximum sidelobe compatible with both constraints will be:

1t 1t
X cos- - [8- x2 sin2- ]1/2 = 8112

n n

(5.21)

whence

1t
= 2 81/2 cos­

n
(5.22)

and the maximum sidelobe compatible with all the conditions can be written as:

(5.23)

It is easy to determine the mínimum between xao andxM3 :

21t 1t 1t 1t 1
sin- � 1 <=:} 2cos-sín- � 1 <=:} 2cos-�--

n n n n 1t
sm­

n

(5.24)

mm
81/2 1t

281/2cos­
n

(5.25)
1t

sm­
n
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and so we have:

Xmax

(
1t 1

minl2e1l2COS- -e-l12
n

'

2

r
I 1 1

+ I e-1 (-----) +

l
4 1t

2(1 +cos-)
n

(5.26)

As can be seen the maximum sidelobe depends on the number of filters

used and on the threshold applied in the binarization. For a given number of

filters, different thresholds wiIl give different maximum sidelobes. It is possible
to determine the threshold that enables us to eliminate the highest sidelobe

aIlowed by the method with a prefixed number of filters.
In figure 5.6 we have represented the two expressions that determine the

maximum sidelobe in eq. 5.25 as a function of the applied threshold. Notice that

2.0�-------------�

1.2

1.6

0.8

DA

0.0 0.2 0.4 0.6 0.8 1.0

e

Figure 5.6- Determination 01 the threshold

enabling the elimination 01 the maximum sidelobe.
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the squared root appearing in eq. 5.20 give rise to a condition over the threshold:

1 1 (8-1-8)
-8-1------
4 2 1t

(1 +cos-)
n

> O => 82 >

1t

(l-cos- )
n

(5.27)
1t

(1 +cos-)
n

which is a lower limit that has to be taken into consideration in the election of

this parameter. As can be observed, the optimum threshold -i.e, that which gives
the highest sidelobe- corresponds to the intersection point between the two plots
due to the increasing behaviour of the first constraint and the decreasing
behaviour of the second. Therefore the optimum threshold wiIl be reached when:

r r1t 1 I e-1 1 1 8
28l/2cos- -8-1/2 + + (5.28)

n 2 l 4 1t

2(1 +cos:) J2(1 + cos-)
n

whence

1t 1t 21t
2cos-(1 + cos-) + cos-

n n n
(5.29)

1t 1t

8cos2-(1 +cos-)-l
n n

and thus the maximum eliminable sidelobe is:

Xmax(n) = A(8�p)
1/2

(5.30)
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Figure 5.7- Maximum sidelobe versus the number of
filters used.

Figure 5.7 represents this maximum sidelobe as a function ofthe number

of filters used, n. For n=oo we have xmax(oo)=2/...J3 which is the value obtained for

the real case.

Equation 5.29 can be interpreted in a more useful way for our purposes,
as the expression which gives the minimum number of filters needed to eliminate

a given height of sidelobe because it is an increasing function; ifx represents the
maximum sidelobe that can be suppressed with k filters we need at least k filters

to eliminate x.

5.2.3 Optimal settings ter censtant e and thresheld e

In practice we will need a larger n than that given by eq. 5.29 because

with such election of the threshold and the number of filters the possible choices

for the constant e reduce to a single value, that is, e is completely determined.

Because of the filter design, we have in actual correlations small fluctuations

with respect to the desired plane which have not been considered until now. In
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Threshold

Figure 5.8- Permitted range 01 variation for e

(shaded area) as a function 01 the applied
threshold (n=10, x=1,035).

order to allow this variation we need that a given sidelobe can be suppressed with
different values of c, that is, we need a range of values for e being compatible
with the constraints.

By selecting a number of filters larger than the minimum we have sorne

freedom in the election of c. Furthermore, we are not restricted to use the

threshold given by eq. 5.28 and we can select that which gives the maximum

range ofvariation for the constant c.

For example, in Fig. 5.8 the allowed variation for e has been plotted
versus the threshold for a problem in which, requiring six filters, ten filters has

been used. Because of the monotonic behaviour of all the constraints of c, the

maximum allowed variation is obtained when:

81/2 = - x + 8-1/2 (5.31)

whence we obtain:
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(2 + x2) - x J x 2 + 4

2
(5.32)

Finally, the value for e that must be used in the filter design will be the

medium value of the permitted range to account for positive and negative
variations of the constant, namely:

c =

1 r
_ I (SC )1/2
2 L op

+ x cos

1t -(SC _ x2 sin 2
1t J1I2 Jln op n

(5.33)

The method allows the elimination of sidelobes higher than the central

peak as commented before and as will be illustrated in the next section. However,
this procedure may also be used when we have lower lateral peaks to obtain a

more reliable process than the simple utilization of a threshold function. Large
sidelobes imply large thresholds and thus a small variation of the peaks due to

any degradation of the input image may easily cause either a detection miss or a

false alarmo In these situations the multichannel procedure may be used to

increase the range of variation for the peaks to obtain a more dependable
detection.

On the other hand it should be pointed out that the the control of sidelobes
is not the only desirable ability of a correlation procedure. When only this is

considered, the procedure is in general overspecialized and gives little

performance in other interesting quality criteria such as noise resistance. The

filter design -the MSE-SDF filter- we are using as correcting filter, focuses only
in minimizing the error in the shape of the correlation plane with respect to a

constant plane and thus has not built-in capabilities to defeat noise. The problem
is analogous to that found in the standard antisidelobe design, the MACE filter

that is known to present a low signal-to-noise ratio. This analogy could be used

to adapt the solutions proposed to increase the noise robustness of the MACE

filter to the MSE-SDF filter. This solution would consist in trading-off
antisidelobe power for noise robustness by introducing the noise induced peak
variance as an additional term to be minimized jointly with the shape error. Such
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approach is called optimum trade-off filter design and is known to give good
results as cornmented in chapter 2.

5.3 Algorithm.

In order to summarize the method we are giving an algorithm to compute
all the parameters envisaged by the procedure. In addition a practical example is

analyzed step by step in this section to clarify the process.

Let us consider the four letters of Figure 5.9 as our training set. The

values of the central correlations were chosen to be (0.0, 0.0) for e and o, (1.0,
0.0) for e and (-0.866, -0.5) for s in designing a composite filter. The magnitude
of the response for the two target images is the same, namely one. With such

values several sidelobes appear, the largest of which is 107% higher than the

central correlations with the target images -Fig. 5.10-. To overcome the problem
the following steps must be followed:

- Step 1: Select the magnitude of the maximum sidelobe to be eliminated. In our

case this value is set to x==--J1.07=1.035.

Figure 5.9- Training seto The

specified values are (O, O) for e

and o, (1, O) for e and (-0.86,-0.5)
for s.

Figure 5.10- Intensity 01 the
correlation between the four letters
01Figure 5.9 and a composite filter.
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- Step 2: Determine the minimum number of filters required to suppress the

sidelobe by means of equation 5.29, i.e.:

xmax(n) = A(8�p)
1/2

In the example n=6 gives a maximum sidelobe ofx=1.048 and n=5 gives
x=1.000. Therefore the minimum number offilters is six.

- Step 3: Choose a value for n larger than the minimum. The larger the number of
filters used the larger the permitted range of variation for e -and thus the more

reliable the method is- but also the more complex the procedure becomes. We

have chosen ten filters for our problem.

- Step 4: Select the threshold by means of equation 5.31:

(2 + x2) - x J x 2 + 4

2

This election will permit a maximum variation for the constant. In the

example the threshold must be 80/=0.370.

-�: Select the constant e using equation 5.32:

In our case we have c=0.538 with an allowed range of ilc=±0.07, which

represents a possible variation of 13% aboye and below the specified value.
The intensity of the correlations between the ten filters and the scene

containing the four letters is shown in Fig. 5.11. By binarizing these correlations

with the threshold calculated in step 4, figure 5.12 is obtained. The final result

after multiplying pixel by pixel the ten binarized correlations is depicted in
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Chapter 5. Sidelobe elimination: complex case

Figure 5.11- Intensity ofthe corre/ation between thefour letters ofFigure 5.9 and the
set oftenfi/ters obtained by the method

Figure 5.13 where a perfect detection of the target pattems is now possible in

contrast to the original correlations -Fig, 5.10-.
In conclusion, the appearance of lateral peaks is one of the difficulties

encountered in certain type of filters. These sidelobes may be even higher than
the central correlation thus turning the filter unable to detect the target pattems.
In such cases a single threshold is not enough to eliminate them without also

hiding the central peak. Even if this is not the case a high threshold may be

necessary lowering the reliability of the recognition process.

We have presented a new method to handle this problem which is capable
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Figure 5.12- Binarization ofthe corre/ations ofFigure 5.11 with &=0.370.
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Figure 5.13- Pixel by pixel
multiplication of the ten

binarized correlations of Figure
5.12. A perfect detection of
letters e and s is nowpossible.

of eliminating sidelobes higher than the central peak. The process consist of a

multichannel correlation followed by a binarization and a pointwise
multiplication of the outputs and can be used with filters with no syrnmetry
constraints.

A complete mathematical description of the process has been developed
and an algorithm has been reported to design the filters. Computer simulations
show the validity of the approach.
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Introduction.

We have seen how the multifilter setups provide the means to overcorne

the intrinsic limitations of single filter correlations. The use of several filters is

therefore advantageous in sorne problerns and absolutely necessary in sorne

others, as when we deal with three-dirnensional objects and multiple invariances

are required. This is the theory but what about practice? In other words,
multichannel correlators are necessary but are they feasible? How can this

systerns be built and what problerns do we encounter in practice? Of course, the

answer to these questions is neither easy nor general. The problems, as the filters,
are rnultiple. Starting from an abstract level, we need to consider the architectural

and organizing issues. For example, the SPOTR correlator rnentioned in Chapter
one is divided into three functional modules: preprocessing systern, the correlator

itself and the postprocessing systern. Each of these subsysterns need their own

algorithms -see for instance [Bau93]- and control devices. Focusing our attention

on the correlator we have in turn to handle organization issues, perhaps adopting
a hierarchical decornposition of the identification problern as proposed by
Casasent [Cas94]. Once this has been decided, the filter database has to be

designed and ordered, determining which filter should start the process and

which ones should be used next based on the information given by the first. The

possibilities proposed in [Jar86] and [CaI94] may be of help. There are also

technical problems such as the implementation of the filters and the procedure to

change thern with rapidity and accuracy. A rnechanical systern could be utilized

for a small number of filters but this would probably lead to stability and

alignment difficulties. A better choice could be the spatially multiplexed setup

proposed in [Cas94] where a matrix of laser diodes select the proper filter.
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However, for a large database the use of spatial light modulators to render the

filters is surely the best solution. This in turn raises new problems in filter design
because such devices frequently present a fmite modulation capability, namely
that the posible values of amplitude and phase that can be codified are limited.

The theoretical designs and procedures presented in the preceding chapters are

based on the assumption of unrestricted modulation and consequently they must
be adapted to the new constraints.

This field have deserved little attention until recently and therefore it is

not as mature as its full modulation counterpart. Juday [Jud93] and recently
Laude and Réfrégier [Lau94] have addressed the problem of the optimum
projection of single image filters to the domain allowed by a modulator. For the

single image designs and for a wide class of metrics -the quality criteria

according to the terminology of these authors- the optimal solution is more or

less as follows. First compute the optimal filter assuming there is no modulation

restrictions following the procedures summarized in chapter two. Second,
provided the available complex values are known, for every component of this
filter find the realizable value placed at the minimum Euclidean distance. This

ensures the optimality among all constrained filters.
For SDF filters with several images in the training set, the problem is

worse, since a simple projection of the values of the fully complex filter will, in
most cases, dramatically modify the desired outputs. Therefore the constraints

imposed by the filter plane modulator must be considered in the design
procedure. Notice the difference with single image filters. Here we are not trying
to determine the optimal among several solutions but we are in a previous stage:
we find problems even in fulfilling the SDF conditions. Optimality will be a later

concem.

The majority of the efforts has been directed at obtaining phase-only and

binary phase-only SDF filters, although the general case of arbitrary constraints

have also been studied. The first attempt to design a Phase-Only Synthetic
Discriminant filter was reported by Homer and Gianino [Hor85b] whose solution
consisted simply of using the phase of a conventional composite filter. Although
the first tests gave good results, the approach is not appropriate because the SDF

constraints are no longer met [Cas86]. Since then a variety of recipes have

appeared in the literature but none of them seems to give the ultimate answer:
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Kallman's algorithm [KaI86] is computationally expensive and gives little control

over the correlation peaks -according to [Jar89]-. The procedures proposed by
Jared and Ennis [Jar89] and Bahri and Kumar [Bah89] limit the number of

possible solutions by supposing the filter to be a linear combination of the

training images, thus affecting the probability of convergence. Jared and Ennis

algorithm has also been applied to design arbitrarily constrained filters in

[CarI92]. The entropy-optimized filter proposed by Mahlab and Shamir [Mahl89]
uses the simulated annealing algorithm, inheriting its drawbacks: heuristic

selection of several parameters -initial temperature, number of iterations until

thermal equilibrium, etc.- and a high computational load -Réfrégier in [Réf90b]
reports 7h. 30 m. on a VAX8200 computer for 10 images of 64x64 pixels-.

In this chapter a new algorithm for computing constrained SDF filters is

proposed. It is based on a new filter design that we call minimum Euclidean

distance synthetic discriminant function (MED-SDF) filter, which enables us to

obtain the closest SDF filter to a given non-SDF filter in the sense of Euclidean

distance. This design is then used in an iterative algorithm which leads to a

solution in a few steps.

6.1 The structure of the algorithm.

We designed an iterative algorithm with a structure very similar to that

used in the Successive Forcing Algorithm [Bah89], that is an algorithm in which,
at each iteration, the filter is forced to fulfill the conditions for the central

correlations and subsequently to take values on the allowed domain - Fig. 6.1-.
This technique of successive projections is widely used as a basis of

different algorithms in filter synthesis or in image restoration, see for example
[Ros91] and [You82]. The answer to:

1) How to project the SDF filter hk onto the domain allowed by the

modulator to obtain filter ak, and
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Start Iter. O Iter. 1 Iter. n

�Ihn� anl-----

SDF CONS. SDF CONS. SDF CONS.

Figure 6.1- Structure ofthe algorithm.

II) How to force the constrained filter ak to give the desired central

correlations, that is to obtain the SDP filter hk+l

will cornpletely shape the algorithm.
Among all the possibilities, we are interested in those leading to

convergent procedures. Since we are looking for the SDP filters that take values

on the specified subset of the cornplex unit circle, such convergence should be

expressed as:

N N

(6.1)

where h and a are the SDP and the constrained filters respectively. The subscripts
k and k+1 indicate the iteration and the superscript i the pixel; finally N

represents the number of pixels of h and a. Equation 6.1 dernands that sorne

rneasure of sirnilarity between the SDP and the constrained filter be a decreasing
quantity with the number of iterations. Although it has been written using the

Euclidean distance as a rneasure of sirnilarity, this is not the only possibility and

other rnetrics rnight be of use. The solution will be reached when the distance

between the two filters drop under sorne lirnit depending on the desired precision
for the correlation values.
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However, imposition of eq. 6.1 implies that one solution always exists

and that such solution can be reached by means of an algorithm with the chosen

structure. We are not able to ensure this so we had to use the less ambitious

condition:

N N

(6.2)

which is very similar to the former but where the equality sometimes may hold.

By splitting the latter inequality as:

N N N

which obviously imply eq. 6.2, we can answer the two questions stated aboye in

an unique way.
The first inequality:

N N

(6.4)

is used to project the snF filter onto the allowed domain of the complex planeo
At this point of the process we know everything except the filter ak+l. Eq. 6.4

compares the distance of ak and ak+l with respect to the SnF filter at iteration

k+l, hk+l. Since ak is a constrained filter ifwe choose ak+l as the constrained

filter that makes minimum:
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a) b) e)

Figure 6.2- Projection of the filter values onto the allowed domain for a) a phase-only
filter, b) a binary phase-onlyfilter and e) for an arbitrary domain.

N

E(a) = Llh�+l -a i 12
i=l

(6.5)

eq. 6.4 is automatically satisfied. Eq. 6.5 is a sum of positive and independent
terms and therefore the minimum is reached by minimizing each addend. Since

the coding domain is assumed to be known, the process merely reduces to a

search of the closest domain value to each component of hk+l, a process
sketched in Figure 6.2. For example, for a phase-only filter, ak+l is obtained by
extracting the phase of the SDF filter hk+l' It is worth pointing out that this

process is used to project in an optimum way, a single image filter

[Jud93][Lau94].
Equivalently, the second inequality

N N

i=l i=l

(6.6)

tells us how to derive the SDF filter at the next iteration, hk+l from the

constrained filter at the previous iteration ak. At this point we know everything
except hk+l' Eq. 6.6 compares the distance of hk and hk+l with respect to the
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constrained filter at iteration k, ak. Since hk is an SDF filter, by selecting hk+l
as the SDF filter which makes minimum:

N

E (h) = II h i _ a � 12
i=l

(6.7)

the inequality in eq. 6.6 is automatically met. The process for obtaining such a

filter is not as evident as before because now the terms of the sum are not

independent; they are linked together by the conditions imposed on the

correlations with the training images. The appropriate conditions and the

resulting expression for the MED-SDF filter wiIl be given in the next section.

Figure 6.3 surnmarizes the information contained in this section. Starting
from the SDF filter at iteration k, hk, we obtain the constrained filter ak by
looking, among all possible constrained filters, for the closest to hk. This filter is
forced to be an SDF design -to obtain hk+l- by looking, among all possible SDF

filters for the closest to ak. Notice that hk+l is not necessarily equal to the

original filter hk and when they coincide the algorithm stops. This issue wiIl be

discussed in section 6.3. The latter step is carried out by computing the MED­

SDF filter.

SDF's
hk-------

1)

Figure 6.3- Sketch 01 the two successive projections
thatform an iteration 01the algorithm.
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6.2 The muumum Euclidean distance synthetic discriminant
function (MED-SDF).

Let us suppose we have a correlation filter a that we wish to modify to

give sorne prespecified values for the central correlations with M images. The

shape of the filter is important and so we want to change it as little as possible.
The question as to which filter enables us to obtain the desired correlations by
preserving the original filter a as far as possible is answered in this section. We

call this design minimum Euclidean distance synthetic discriminant function

(MED-SDF). The problem can be stated in the following terms:

Let xl , ... , xM denote the Fourier transforms of the M images of N

components for which we wish to obtain the values C1 , ... ,cM at the center of the

correlation planeo Let a be the filter we need to modify. We are looking for the

filter h so that

(6.8)

where

N

E (h) = II h i _ a
i 12

i=l

(6.9)

. . .

lS a mmimum,

In the aboye expressions X is the NxM matrix whose columns are the

images xi, C is the column vector ofM components containing the values ci and

the superscripts t and + mean transpose and conjugate transpose. Finally, hi and
ai represent the component number i of h and a respectively. Equation 6.9 can be

rewritten using vector notation in the following way:
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N N

E (h ) = I[ (h i
- a

i
)
*

(h i
- a

i )] = I[ (h i )
*

h i - (h i )
•

a
i

_ (a i )
*

h i
+ (a

i ). a
i ] =

i=l i=l

(6.10)

By making explicit the real and imaginary parts of all the quantities,
namely h=hR+jh¡, a=aR+ja¡, X=XR+jX¡ and c=cR+jc¡ wherej is the imaginary
unit, eqs. 6.8 and 6.10 become:

hkXR +h�XI =ck
hkX1 -h�XR =c�

and (6.11)

The solution can be found by setting the gradients of the Lagrange
function L(hR, h¡) to zero with respect to the filter components, where:

(6.13)

and u and v are M-dimensional column vectors containing the Lagrange
multipliers, Such a solution can be written in vector notation as:

*

h=a+Xw (6.14)

with w=u+jv. Substitution of eq. 6.14 into eq. 6.8leads to:

(6.15)
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whence

(6.16)

and substituting into eq. 6.14 we finally obtain:

where IN is the NxN identity matrix. This equation can be rewritten as:

(6.18)

that is, the modification of filter a is a composite filter which complements the

central correlations in the exact amount needed. Since the composite filter is,
among the SDF's, that with minimum modulus -it minimizes h+h-, it changes as

little as possible the original filter a. The expression in eq. 6.17 admits a

potentially useful interpretation. When a is an arbitrarily chosen vector, eq. 6.17

represents the most general solution to the SDF problem -see chapter 2- where
the term X(X+Xj-le * is the classical composite filter and 1N-X(X+Xj-lX+ is the

projection operator over the subspace spanned by the N-M orthogonal vectors to
the training images. Every SDF design can be expressed in the above form by
properly choosing the vector a, which can now be interpreted as the filter to

which h most approximates thus establishing an interesting link between SDF

and non-SDF filters.

6.3 The algorithm.

The whole process to compute constrained SDF filters is depicted in Fig.
6.4 and can be sketched as follows:

- S1m:Ll: Choose an initial vector ao ofN components.
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h = ex. Comp + P a
k k-I

1

a
k
= Constr. otc )

Figure 6.4- Block diagram ofthe proposed algorithm.

- Step 2: Start iteration k: compute

(6.19)

by means of equation 6.17, where ex is a scaling constant that will be later

justified.

- Step 3: Compute for i=l to N

.

l' 12a � = ArgMin \iSE D ( h � - s )

where Drepresents the coding domain.

(6.20)

- Step 4: Ifthe difference between the constrained and the SDP filter is small or if

the algorithm stops its convergence, i.e. if
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N

Ek = IlhL -aL 12 <Sf
i= l

(6.21)

or

(6.22)

then exit; Sf and Sm are arbitrarily chosen small numbers.

- Step 5: If the condition in step 4 is not satisfied, fmish iteration k by going to

step 2.

The computation of the MED-SDF filter is carried out in step 2. It

involves a matrix vector multiplication to project the constrained filter onto the

orthogonal subspace to the training images and the addition of the resulting
vector to the composite filter. Note that both this filter and the projection matrix
are fixed and can be precomputed and stored. However, the projection operator is

a matrix ofNxN components and would require a huge amount of memory - for

128x128 images it needs over 1 Gigabyte-. A good compromise between

memory requirements and computation complexity is to precalculate only
S=XWX)-l, which is a NxMmatrix -for 20 images of 128x128 pixels it needs
about 1 Megabyte-. Then the computation is completed at each iteration by
multiplying the stored matrix by the M-dimensional vector x+a and by adding
the result to the N-dimensional vector a:

The scaling constant in step 2 provides an additional degree of freedom. It
accounts for the fact that the specified values for the central correlations can be

rescaled to obtain a better matching between the computed filter and the values
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available in the coding domain. We wish a bright correlation spot with the target

images and a dim one with the nontarget pattems but the exact value to be

imposed at the center of the correlation plane to achieve this, depends a good
deal on the characteristics of the filter plane modulator. For the sake of clarity,
we give the derivation of the scaling constant leading to a minimum distance

between hk+l and ak in a separated appendix. Note that we have two additional

sources of degrees of freedom:

- The phases of the central correlations with theM training images can be

used to further minimize the difference between the SDF filter hk+l and the

constrained filter ak. The same procedure used in phase optimization for previous
SDF designs can be used [Vij88][Réf90c].

- The SDF filter hk+l can be rescaled again by a complex constant to

obtain ak+l withminimal error as proposed in [Jud93] for single image filters.

We did not exploit these two possibilities in order not to overly
complicate the algorithm. Although the nondivergent behavior of the algorithm
wi11 not be affected by not performing these additional operations the probability
of convergence is lower.

The process stops only when:

a) One solution is reached; the constrained filter ak fulfi11s the SDF

conditions, i.e.

a k = Comp+Pv (6.24)

where v is sorne N-dimensional vector. Filter hk+l is then

hk+l = Comp+P] Comp+Pv ] = Comp+P(Comp)+p2v = Comp-r-ü+Pv = a k

(6.25)

-159-



Chapter 6. Arbitrarily constrained filters

and the output is constant from this point on. Eq. 6.25 has been derived using that
Pis a projection operator and therefore p2=p and that the filter Comp is a linear

combination of the training images and thus its projection P(Comp) is null.

b) If ak is not an SDF filter but can be written as:

(6.26)

where v belongs to the kernel of the projection matrix, i.e. v E Ker(P). Filter

hk+l is then

h k+l = Comp+Pa k = Comp-i-P'[ a k-I +v) = Comp+Pa k-l = h k (6.27)

whence

ak =ak+l =ak+2 =
.

hk =hk+1 =hk+2 =
.

(6.28)

and the distance between the SDF and the constrained filter remains constant.

This possibility is unlikely since the dimension of the kernel of the projection
matrix is M, the number of training images, which is in general much smaller

than the dimension of the space, the bandwidth product N.

e) If ak is not an SDF filter but

(6.29)

then

ak =ak+l =ak+2 =
...

hk+1 =hk+2 =
...

(6.30)
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i.e. when the projection oftwo consecutive and different SDF filters is the same,

the algorithm stops its convergence. This possibility is difficult to analyze and

depends on the coding domain. It represents the intuitive notion that the smaller

the number of coding values the smaller the probability to find a solution. When

there are no restrictions and the entire complex plane is available, the SDF and

the constrained filters are always equal and equation 6.29 is self-contradictory
and never holds. When only one coding value is allowed, all the constrained

filters are the same and the process stops at the first iteration. No solution is

possible. Binary modulators permit the coding of 2N different filters, which for

128x128 images is over 104900. In spite of this seemingly large number, since
two consecutive SDF filters may be very similar, specially when we are near the

solution, their binarization may be equal with relative ease. Although we found

this problem with binary phase-only filters we show in the next section that the

algorithm can still produce usable filters.

6.4 Results.

The algorithm was tested by means of a computer simulation of the

optical correlation process. Toward this end we designed several filters to solve a

two-class problem involving different views of out-of-plane rotated objects. The
true class -see Figure 6.5- was formed by twenty images of a tank captured each

18 degrees. The false class -see Figure 6.6- contains twenty images of a truck

obtained in the same conditions. All the images are of 128x128 pixels and no

special preprocessing such as edge enhancement was carried out. The training
set, that is the set of images used in designing the filters, for all the examples that
follow is composed of the ten samples of each object taken at 0°, 36°, .. , 324°

angles.
The performance of the algorithm was studied for four different coding

domains -Fig. 6.7-: a phase only, a binary phase-only, a spiral coupling between

amplitude and phase and an arbitrary domain. Phase-only filters are attractive

designs because they provide a good trade-off between noise resistance and peak
sharpness together with optimum light efficiency.
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Figure 6.5- True class images.
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Figure 6.6- Fa/se class images.
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a) b) e) d)

Figure 6.7- Difierent coding domains used to test the method. a) phase-on/y b) binary
phase-only c) spiral coupling between amplitude andphase d) arbitrary domain.

Binary phase-only filters retain to a large extent the properties of the latter

design but they can be implemented in actual devices such as Magneto-Optic
Spatial Light Modulators (MOSLM), which in addition are very fast. The spiral
domain is typical for liquid crystal displays (LCD). Finally, Fig. 6.7.d) shows a

rather arbitrary modulator characteristic for which the algorithm will work.

The first issue addressed was the choice of the initial filter ao. The

algorithm was found to be capable of producing SDF filters using a wide variety
of starting points. In particular we tested:

a) Full complex SDF filters designed to solve the same problem. We used

them because sometimes the simple projection of an SDF filter is a good
solution. For example the phase of a composite filter is sometimes a good phase­
only SDF [Hor85] and thus would require only small modifications.

b) Random complex vectors. In contrast to case a) they contain no

information about the problem.
e) The same starting point used in the Jared and Ennis algorithm[Jar89]:

M

aO = LCiX¡
i=l

(6.31)

-164-



Chapter 6. Arbitrarily constrained filters
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Figure 6.8- The plot shows the convergence of the
algorithmfor aphase-only SDF.

where x¡ is the N-dimensional vector representing the ith training image, ci its
desired output andM the number of training images.

Figure 6.8 shows the convergence of the algorithm when designing a

phase-only SDP with a MACE filter as a starting point. The Y-axis, which has a

logarithmic scale, represents the error between the SDP and the constrained filter

at a given iteration divided by the sum of the squared magnitude of the

components ofthe SDP filter, i.e.

N N

E NORM (h) = (II h � - a � 12 ) / (II h � 12 ) (6.32)

i=1 i=l

where h is the SDP filter and a the phase-only version of h. The superscript i
indicates the component and the subscript k the iteration. Por an ideal phase-only
filter this error function is zero. The graph shows an exponential decay with the

number of iterations meaning a fast approach to the desired phase-only filter.
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a) b) e)

Figure 6.9- Impulse response of three phase-only SDF designed with the same

training set but with difierent starting points: a) the phase of a MACE filter b) a

phase-only random vector c) a constantplane in Fourier space.

The accuracy attained for the SDF conditions was found to be only
slightly dependent upon the initial point although different number of iterations -

from ten to twenty- were required for different points. However, depending on

ao, the behavior of the final filters may be very different because the algorithm
seems to find a solution easily, without modifying so much the starting point.
Since the solution is close to the initial filter, it preserves to sorne extent its

characteristics.

We give two examples of this feature. In the first one, three phase-only
SDF's were computed using the phase of a MACE filter, a phase-only random

vector and a constant plane in Fourier space -a delta function in object space- as
initial points. Figure 6.9 shows the impulse responses of the obtained filters. AH

three meet the SDF conditions with an accuracy of 96% and are very similar to

their respective starting filters. For instance, filter 6.9.b) is clearly random or

filter 6.9.c) is almost a delta function. The rest of the correlation plane is of

course very different and this property enables an indirect control over the

characteristics of the final filters. The second example illustrates more clearly
this point.

Figure 6.10.a) shows the central correlations between the whole set of 40

images -20 tanks and 20 trucks- and a phase-only SDF designed with only the 20

intermediate views The starting point was the sum of the ten target images -the

ten tanks-. Note that while there is a perfect control over the central correlations

with the training images and small sidelobes -Fig. 6.15-, the correlations with the
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Figure 6.10.- Central correlations obtained with two different phase-only SDF: a) with
a startingpointformed by the sum of the tenk tanks of the training set, b) with a starting
point formed by the sum of the whole set of 20 tanks. Open circles represent the
correlations with the trucks. Filled eire/es represent those ofthe tanks.

tanks not included in the training set are too small to be separated from those of

the trucks. The true class images can be separated from those belonging to the

false class, if the initial point is formed by the sum of the whole set of true-class

images -20 tanks-, as shown in Fig. 6.1O.b). Thus, the e1ection of an initial vector

ao that includes information about the intermediate views leads to a filter with

enhanced generalization capabilities.
The type of coding domain is the most influential factor with respect to

the control of the central correlations. Figures 6.11, 6.12 and 6.13 show

respectively the central corre1ations between the images of the training set and

the binary phase-only, the spiral and the arbitrarily constrained filter whose

domains are represented in Fig. 6.7. The correlations with the nontraining images
-the intermediate views- are not shown since they strongly depend on the filter ao
as cornmented. The two latter designs accurately meet the SDF constraints. The

binary phase-only filter presents more difficulties because although the values for
the true c1ass images are significant1y higher than those of the false c1ass they
show the most marked variation. This is due to the stop of the algorithm at about

four iterations with all the initial points we used. Finally Figs. 6.15, 6.16, 6.17
and 6.18 present 3-D plots as well as a front and a lateral view of the intensity of
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Figure 6.11- Central correlations between Figure 6.12- Central correlations between
a binary phase-only SDF and the images a spirally constrained SDF filter and the

01 the training seto Open circles represent images 01 the training seto Open circles
the correlations with the trucks. Filled represent the correlations with the trucks.
circles represent those 01 the tanks. Filled circles represent those 01the tanks.

the correlation between the test scene of Fig. 6.14 and the four filters. A good
detection of the tank is possible in all cases.
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Figure 6.14- Test

input scene. Both

images belong to

the training seto

1
Figure 6.15- Correlation between the

phase-only SDF and input scene 01Fig.
6.14.
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1
Figure 6.16- Corre/ation between the

binary phase-on/y SDF and input scene
ofFig. 6.14.

Figure 6.17- Corre/ation between the

spirally constrained SDF and input
scene ofFig. 6.14.
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1

In conclusion, a new algorithm for computing synthetic discriminant

functions adapted to the restrictive modulation characteristics of present-day
devices has been developed. In contrast to other previously proposed methods

our procedure can be proved to be non-divergent. Furthermore it has a solid

mathematical background that enables the analysis of the cases not leading to a

solution. The algorithm needs only a few iterations, ranging from ten to twenty,
to obtain the desired filter so the computational load is moderate. Finally, no

special assumption over the shape of the filter was made, such as the imposition
for the filter to be a linear combination of the training images and therefore

multiple solutions can be reached by changing the initial point. This property
enables an indirect control over the characteristics of the final filter as indicated

by the results of the simulation. Nevertheless a systematic approach for the

selection of the initial filter to take full profit of this feature must still be devised.

There are other possibilities worth exploring such as the use of different

metrics to measure the similarity between the SDF and the constrained filter. The

Figure 6.18- Corre/ation between the

arbitrari/y constrained SDF and input
scene oiFig. 6.14.
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change of the similarity criterion might permit to obtain a solution when this is

not feasible using the Euclidean distance.

6.5 Appendix: scaling constant leading to minimum error.

We derive an expression for the scaling of the central correlations leading
to minimum error as mentioned in section 6.3.

The expression for the error function to be minimized can be written in

vector notation as -see eq. 6.10-:

(6.33)

where h is the minimum Euclidean distance synthetic discriminant function

(MED-SDF) filter:

h=exComp+Pa (6.34)

and ex is a real constant that scales the central correlations. By substituting eq.
6.34 into eq. 6.33 we get:

E ( ex) = ( ex ( Comp )
+
+ a

+ P )( aComp + Pa ) - a
+
(aComp + Pa ) -

-(a(Comp)+ +a+P)a+a+a=a2 (Comp)+ Comp+rrfCemp}" Pa+
+aa +P(Comp)+a +p2a-aa +Comp-a +Pa-a(Comp) + a-a +Pa+a +

a

(6.35)
Owing to the properties ofthe projection operator P:

( Comp )
+ Pa = O

a
+ P (Comp ) = O

a
+ P 2

a = a
+ Pa => a

+ P 2
a - a

+ Pa = O

(6.36)
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we can write:

E (a) = a 2
(Comp)

+
Comp - 2 aa +

Comp - a
+ Pa + a

+
a (6.37)

and finalIy by setting the derivative of E to zero we frnd the expression for a

leading to minimum error:

dE

da
= O � 2a (Comp)

+
Comp - 2 a + Comp = O (6.38)

whence

a+Comp
(6.39)a=-------

(Comp)
+
Comp
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Introduction.

In chapter 3 the inherent limitations of single-channel correlators were

pointed out. The considerations about the constraints imposed by the decision

boundaries lead to the conclusion that arbitrary classification of a set of pattems
is not always possible. By using more filters and a proper combination of the

results, for example using pointwise logic operations, the decision boundaries

become more complex and those difficulties can be solved. A direct

implementation of this idea for sidelobe elimination was the topic of chapters 4

and 5. However depending on the problem such procedure may be complex,
mainly by the large amount of data produced by the correlations and therefore an

altemative would be desirable. We propose in this section such an altemative, by
showing that an iterative process involving a single-channel correlation

processed by a simple nonlinear function is also free of restrictions. To do so we

need to travel through the world of cellular automata and universal computers.

7.1 Cellular automata.

Cellular automata were introduced by J. von Neumann as theoretical

idealizations of biological systems to investigate the possibility of developing
self-reproducing machines. Since then, they have been used for very different

purposes and are considered a very promising framework to modelize complex
physical systems -see for example [WoI83]-. They are usually described as a

regular infinite array, a rectangular grid for example, of elements called cells that
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can take one of several permitted states. The automaton evolves in discrete time

steps -caIled generations- govemed by deterministic rules. The state of a given
cell in the generation k+1 is a function of its state as well as of the states of its

neighbors at generation k, where the neighborhood comprises the closer ceIls,

usuaIly in all directions, up to a given distance. An important feature of these

systems is the synchronous dynamics; the cells are all updated at the same time

by applying the rules over the former generation.
Sorne of these ceIlular machines exhibit a behavior complex enough to

support universal computation [Lan91]. Loosely speaking, an universal computer
is a machine with a fixed structure that following precisely determined

instructions, which all the time direct its behavior, is capable of executing any

algorithm no matter its complexity. The question of whether it is possible to

build a more powerful machine than an universal computer is a controversial

issue -see [Hof79] and [Pen89] for confronted opinions- but, at least at present,
universal computation is the most powerful known form of information

processing. CeIlular automata with such capacities to handle information are

caIled Class-IV automata being the most popular the Conway's Game of Life

[Ber82]. We will use it to show our approach.

7.2 Optical Life.

Life consists of a bidimensional infinite rectangular array of ceIls each

one with two possible states: dead or alive. The neighborhood is composed by
the eight sites that lie at the 3x3 square centered at the cell. The game has

carefuIly chosen rules that control the death and birth of the cells in the

successive generations. These rules can be surnmarized in the following way:

- Death rules: If a living cell at generation k has less than two living
neighbors it dies at generation k+ 1 owing to isolation. If a cell has more than

three living neighbors it dies owing to overcrowding.
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- Birth rules: If a dead cell has exactly three living neighbors at generation
k it becomes alive at generation k+1. If a living cell has two or three living
neighbors it continues alive at generation k+1.

Three features of the automaton are relevant for our discussion:

- Life is an universal computer.

- As customary in cellular automata, the updating of the state of all cells is

carried out synchronously.

- The rules are totalistic. The state of a cell depends only on the sum of

the states of its neighbors, assuming one for live cells and zero for the dead ones,

and not in the particular configurations of live and dead cells.

The Iatter two characteristics allow the implementation of Life by means

of correlation, which basically computes the alive neighbors and a simple
nonlinear processing of such correlations, which performs the decision of which

cells are dead and alive at the next time step. The filter and the nonlinearity we

use are displayed in Figs. 7.1 and 7.2. This is neither the only possibility nor the

optimum in any sense. The filter in object space is represented in fig. 7.l.a). As
can be seen it is of size 3x3 pixels and syrnmetrical, which gives the real filter in

1 1 1

1 0.5 1

1 1 1

a) b)

Figure 7.1- a) Filter in object space. b) filter in Fourier space.
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Figure 7.2- Nonlinear function used to binarize the intensity. The

figure shows several configurations o/ dead and alive cells and
their corresponding correlation intensities. The alive neighbors
are represented by filled squares. A gray square means that the
considered cel! is alive and a white one that it is dead

Fourier space represented in Figure 7. Lb). The off-center values are all one

because the effect of all neighbors over the state of the cell is the same. A

different value for the center is needed to codify the distinct rules applied when

the cell is dead or alive.

The possible values for the intensity of the correlation given by such a

filter are surnmarized in Table 7.1. The column labeled as Output, gives the result
after the nonlinear function f(x)=rect (xiI 0-1) shown in Fig. 7.2. It is easy to

verify that the rules are fulfilled,

The extremely simple rules that govem the evolution of an initial

configuration of cells produce, however, a very rich behavior: sorne initial

pattems decay rapidly until they become extinguished and sorne tum into
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Cell state No ofneighbors Correlation Output

O O O

1 1 O

2 4 O

O
3 9 1

4 16 O

5 25 O

6 36 O

7 49 O

8 64 O

O 0.25 O

1 2.25 O

2 6.25 1

3 12.25 1

1
4 20.25 O

5 30.25 O

6 42.25 O

7 56.25 O

8 72.25 O

Table 7.1- Thefirst co/umn indicates the state ofthe cell. Depending on the number of
a/ive neighbors, listed in co/umn two, the different corre/ation intensity values of
column three are obtained Thefourth column shows the resu/t of these intensity va/ues
after beingprocessed by the nonlinearfunction ofFigure 7.2.

periodic configurations but all of them evolve in highly unpredictable ways. The

most interesting of these pattems because they are the building blocks of the

universal computer are:

- The 2lider: it is a periodic structure composed of five living cells. After

four generations the initial pattem of cells is recovered but centered at the next

diagonal site. This traveling structure enables the interchange of signals between

the different parts of the Life universe. Typically the presence or absence of a

glider encodes one bit ofinformation. The pattem is represented in figure 7.3.

When two gliders traveling in opposite directions meet each other,
different reactions can occur depending upon their particular phases inside the
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•

... wJ :r
••
•

a) b) e) d) e)

-- 111
Figure 7.3- Up: Life structures. Down: Corre/ation intensities; their binarization

gives thepattern at the next generation.
a), b), e), d) Glider at generations 0, 1, 2, 3 respective/y. e) Generation 4; it is the
same as that in a) but displaced one site right and one down.

four-generation cycle. The most interesting are the vanishing reactions by which
both gliders are destroyed in a variable number of steps -Fig. 7.4-.

- The glider-gun: it is a structure ofperiod 30 composed by 45 living cells

in its first generation. After 30 time steps it emits a glider and recovers its initial

shape. The pattem is used to produce the constant stream of gliders necessary in

�,. .:: •, •

b) e)

••

a) d) e)

•

Figure 7.4- Up: Life structures. Down: Corre/ation intensities; their binarization
gives thepattern at the next generation.
A vanishing reaction. a) G/iders traveling in opposite directions. b) Collision.
e), d) and e) The resu/ting reaction annihilates both g/iders infour steps.

-180-



Chapter 7. Iterative correlators

2 3 4 5 6 7 8 9 10
.. .. .. .. .. .. .. .. . . ..
.. .. .. .. .. . . .. .. .. . .

·
·

...
·

·
· .

...
· .

..

· ...
·

·
...

·
... ...

·
....

·
...

... .....
· . .. ..

.....

· ·
...

·
· ':

..... · . · ... .. . .
..... .. .. .. . .. .. . . .. .. .. .. .. . .

· . .. . . ·
· · .....
... · . · · · · · .. .. ....
... · . ... ... · . . . .. . . . .. .. · ..

· · ... · . ...
·

· · .. · .

· ·
..

·
... · ..

. . .· · . ..
· ... . . ... ... ..... · .. ·

... .. ..
·
...

·
.
...

· . .
.
. ·

·
.....

·.. ..
.. ..

· ....
. ·

.. ..
.. .. .......... ..... ·

..... ... ... . · . ....
.. .. · ... ... · ·

· . ..

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. . . . .

11 12 13 14 15 16 17 18 19 20
.. .. .. .. .. . . .. .. .. ..
.. .. .. .. .. . . .. .. .. . .

· · ... :
·

:· · ... · · ...
· ... . . ... ... · . · · ·

... .. .. · . · · · · .....
.. .. · · ... · ... · · . .. . . .
.. .. .. . . ..... · · ..... . .. . . .. · ..
..... ... ... ·

...
· ..... ·

· ·
·

.. .. · ...
. ..·

.....
·

·
·

.. · · ··
..

·
... · · ..· · · · ·

... .. .. .. . ...
· ..

.. · ·
..

· .. · .. ·
.. · . ·

· .
..

·
·.. .. .. ... ·

· .. .. . . . ..

. · .
.. .. .. .. . . .. . .

.. ..· . · .. .. .. . .
· ·..... . .... . ....

... .
...

· ... . . .. .. .. ..
. ·

..
...

. .
.
. ....

·...
·

....
.. .. ... . · ·

. ..
··

·
...

· ... . · ...
· ·

.. .. .. .. .. .. .. .. . . ..

.. .. .. .. .. .. .. .. . . . .

21 22 23 24 25 26 27 28 29 30
..

·
..
· .

..
·
.. .. .. ..

..
. . ..

..
·

. . .. .. .. .. . .

· ·
·
· .. ··

. ..·
·
· ·

·
· .

· · :
..
· .
.. .. .. .. .. . .

.. . .· .. ..
. .... · ·.....

· ·
.....

.. .. . .......
... ... · ·

. ...
· · . .. · ·· ....

. . .. · . · ·· : ...
· ::: · . ...

· ·

· .
·

·
..

.
. · . . · . :..

· .. .. ... .. · . ... .. ... . . . · . .

... .
...

·
· .. . · .. ... . ..

.
.. ..

·
·
..

... · · . .... · · · . . · ..
. · . .... . : .. .. .. · .. .. .. .. .. .. .. .. ...
. ·

· .. . . .

... . . · · · · · · · ·

... .
·
· ... . .. · · : : . · . . ..

·
·

· ... ·
·
· . · ..

...
.. .. ..

..
..

..
· . . .

. ... .. .. .. .. . . ..

Figure 7.5- The 30 different generations of a glider-gun; note the new glider between
the two large structures at generation 18.

the construction oflogic gates. Figure 7.5 displays the 30 generations of a glider­
gun.

and finally,

- The eater: it is a stable pattem that is capable of annihilating a glider in
four generations without being altered in the collision -Figure 7.6-. It IS

cornmonly used in logic gates to eliminate the unwanted gliders produced by a

glider-gun, and to stabilize different reactions.
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L· •

Ó •r
11 t' 11J , J
a) b) e) d) e)

Figure 7. 6- Up: Life structures. Down: Corre/ation intensities; their binarization
gives thepattern at the next generation.

As an example of the computing capabilities of the automaton we show

the construction of an AND gateo The input pattem is that shown in Figure 7.7.a)
where the two inputs are labeled by the letters A and B. The signals are carried

by gliders. The presence of a glider encodes the binary digit one. Analogously,
its absence encodes the bit zero. The glider-gun at the bottom left comer emits a

continuous stream of gliders which will eventuaIly collide with the data as can be

observed is Fig. 7.7. b).
The logic operation is performed by these collisions. When there is a

glider in both channels -A and B-, one of them opens a hole in the stream by
means of a vanishing reaction -letter V in Fig. 7.7.b)- that is profited by the

second glider to pass through as sketched in Figure 7.7.c). A single glider in
either channel is destroyed in the collision -Fig. 7.7.c)- and therefore by detecting
the presence of a glider at the point indicated as output in figure 7.7 .d) we obtain

the AND operation. The non used gliders of the stream are eliminated by an eater

to avoid interferences with other structures -the collision e marked in fig. 7.7.d)-.
It is worth noting that if we use as output the rest of the stream produced by the

glider-gun the resulting operation is a NOR gateo This latter operation is
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Figure 5.7.- Lije AND gateo a) The desired operations are AND(A=1,B=1) and

AND(A =O,B=1). b) the first glider ofchannel A opens a hole in the stream. e) The first
glider of channel B pass while the solitary second glider of channel B is destroyed. d)
The eater eliminates the residual gliders.

important because every logical function can be carried out by means of a

suitable combination ofNOR gates.
Based mainly on these pattems we can perform a complete imitation of an

universal computer -see [Ber82] for details-. As a consequence, the iterative

correlation process by which we have implemented Life, can be used to solve

arbitrarily complex mathematical problems such as those involved in pattem

recognition.
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A few cornments about this surprising result are necessary. First of all, the

proof for Life to be universal is carried out by showing the possibility to build

inside the automaton, a replica of an electronic computer. However computation
neither necessarily imply logic operations nor the particular architecture of such
machines. What we can ensure is that there exists, for any describable process, a

Life pattem that encodes the problem, which after sorne iterations produces a

different pattem that codifies the solution. The encoding and the decoding must

be simple in such a way that these steps do not hide an universal computer. It

might be possible to find a more natural way to perform complex calculations

inside Life. The same argumentation can be applied to our optical process. It is
not necessary to codify pattem recognition problems as Life structures to solve

them. We have used the game to show that the proposed architecture is free of

the a priori restrictions of single-filter correlations. There is only a little difficulty
in this approach. How do we must design the filters to use the iterative

architecture the natural way?
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The scientific objectives and the corresponding original results mentioned
in the introduction and developed throughout the dissertation can be surnmarized

in the following way:

- Chapter one and two:

These are basically introductory chapters and give theoretical support to the rest

of the work. However a compilation of results, sorne of them little known, and a

unification work has been carried out, so that they should be mentioned in the

conclusions. In particular, the following may be considered interesting
contributions:

* The deduction of the capability of lenses to produce Fourier transforms

at finite distance, based upon considerations of geometrical optics and by means

of methods similar to those proposed by Keller and his geometrical theory of
difraction. This ad hoc demonstration could be more intuitive.

. * The detailed derivation of the necessity of using a filter with the same

space bandwidth as the input scene, and not necessarily equal to that of the

target, a result already known but seldom made explicit.

* The detailed calculation of the computational capacity of an actual

optical correlator in terms of floating point operations by second. This kind of

equivalence with the digital systems is often mentioned, but the number varies
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depending on the author. Finally, such estimation enables us to compare with off­

the-shelf digital hardware, from supercomputers to specialized image processing
cards.

* Presentation of the filter design techniques as a natural evolution based

on two opposing needs: the flexibility of adaptation to applications of growing
complexity and the reliability of the detections. The conditions that ensure the

detection of an image have been made explicit. Also the conditions in which

single-image filters can be used with confidence are pointed out. Later, multiple­
image filters are presented and the reasons for the appearance of sidelobes are

clarified. The section about synthetic discriminant functions filters is presented in
a novel way, by means of geometrical interpretations based on the concept of

generalized metric. Finally, the equivalence between circular harmonic filters and

synthetic discriminant functions is proved through an original derivation. This
result, first obtained by Réfrégier, is little known and of great theoretical interest.

- Chapter three:

In this chapter we adapt the formalism of the decision regions to the particular
case of the optical correlation.

* We obtain that the decision boundaries of an optical correlator are a pair
of hyperplanes, whose equation is determined by the filter and the binarization

threshold.

* This formalism allows us to point the inability of single filter

correlations to handle complex pattem recognition problems.

* Finally it is shown how multichannel correlations allow to attain more

complex decision boundaries therefore providing a solution to the aboye

problem.
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- Chapter four and five:

As an example of the later statement and as a method of practical interest we

develop a procedure to eliminate lateral peaks -sidelobes-. Chapter four is

devoted to correlations giving only real values and chapter five deals with the

generalization to the case of complex correlations.
The results of the real case can be summarized as follows:

* It is shown how the combined action of two properly designed filters

ensures the suppression of the false alarms caused by the spurious peaks, even if

they are higher than the central peak.

* The mathematical expression of the necessary correcting filter lS

obtained. This is a particular case of a previous design proposed by Kumar.

* We deduce the necessary conditions to have a working procedure.

* Based on these conditions we derive the optimal values for the

parameters envisaged by the procedure.

* It is mathematically proved that the correcting power of the method is

higher when larger sidelobes are expected. We also check this property by means

of a computer simulation.

* The superiority of this process with respect to antisidelobe solutions

based on a single filter is illustrated. In particular we give an example in which

the method allows the total elimination of the sidelobes not removed by a MACE

filter.

* Finally, we carry out an experimental implementation of the procedure
that gives satisfactory results and in agreement with previous numerical

simulations.
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The complex case is treated with less detail. In particular we have

* An analysis of the conditions under which the method ensures the

solution to the problem.

* The derivation of the number of filters required to suppress a sidelobe

of a given height.

* The deduction of the optimal values for the parameters.

* An algorithm surnmarizing the procedure.

* The verification by computer simulation of the method performance for
a typical problem of character recognition.

- Chapter six:

The practical possibility to carry out multichannel correlations in a

reliable, fast and convenient way involves necessarily the use of spatial light
modulators. This tackles a difficulty owing to the limited modulation capability
of currently available devices, which makes necessary the development of filters
taking values only on a small portion of the complex planeo Whereas the case of

single-image filters is satisfactorily solved thanks to the work of Juday and

Réfrégier, the algorithms proposed for the case of SDP filters are deficient and

present several difficulties. Taking care ofthis necessity

* We have proposed an iterative algorithm for the computation of

arbitrarily constrained synthetic discriminant functions.

* The algorithm is nondivergent, involves a moderate computationalload
and is capable ofproviding multiples solutions.
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* This later characteristic is of special importance and represents a

difference with earlier methods. The possibility of achieving multiple solutions

permits us to select the most appropriate one depending on the application.

* The influence of the initial point of the iterative procedure over the

properties and final behavior of the filter has been studied. The results show that

suitable choice of this initial point enables us to control, in an indirect way, the

generalization capabilities of the filter.

* We have studied the convergence of the algorithm and the results

obtained are highly satisfactory. The most problematic restriction was that ofthe

binary filters, although, even in this case, the procedure produces usable

solutions.

* Finally we have obtained simulation results for four different domains:

phase-only filters, binary phase-only, with spiral coupling and for an arbitrary
domain, in a two-class problem requiring three-dimensional rotation invariance.

The obtained filters show in all cases a suitable performance.

- Chapter seven:

In this chapter we propose an altemative to multichannel correlations as

the means to overcome the limitations of single filter correlators. In particular

* We show that an iterative correlator where the output has been

processed by means of a simple nonlinear function -similar to the usual

binarization procedure- has universal computation capabilities.

* This proof, which involves an argumentation based on the cellular

automaton called Life, is a theoretical result and not necessarily indicates how to

solve particular problems with this architecture.
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* Since universal computation is the most complex form of information

processing, the development of iterative procedures -an open question- would
allow the solution of general pattem recognition problems.
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