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 Abstract 

  

This study reports the synthesis and characterization of ternary Cr-Al-O and quaternary Cr-

Al-O-N coatings deposited by cathodic arc physical vapour deposition, for various nitrogen 

and oxygen mass flow ratios during the growth process. The composition, microstructure, 

indentation hardness and modulus of the films have been characterized by scanning electron 

microscopy, electron probe micro-analysis, X-ray diffraction, and nanoindentation techniques. 

The evolution of the microstructure and mechanical properties of the coatings after ambient 

air annealing from 800ºC up to 1100 ºC have been investigated. As the oxygen to nitrogen 

mass flow increases, the as-deposited coatings exhibit lower hardness, higher roughness, 

lower crystallinity and a more marked columnar structure. At oxygen to nitrogen mass flow 

ratios bigger than 10/90, the coatings exhibit a stoichiometry of the type (CrAl)2+O3-. Only 

the coatings with an oxygen to nitrogen mass flow ratio smaller than 10/90 retained nitrogen 

in their compositions. In all cases, the coatings developed a cubic fcc lattice structure. 

After annealing at 1100 ºC the resulting microstructure showed a clear dependency upon the 

initial composition of the films. The evolution of the microstructure during the high 

temperature tests, as well as the analysis of the nanoindentation hardness, composition and 

thickness also provided valuable information about the combined effects of the thermal 

stability and the oxidation of the deposited coatings. 

 Keywords: CrAlON coatings, wear, cathodic arc evaporation, thermal stability 

  

 



  1.      Introduction  

  

Physical Vapour Deposition (PVD) of ternary Cr-Al-O and quaternary Cr-Al-O-N coating 

formulations have received a particular attention from the tooling and metal component 

industries due to its potential to attain the mechanical properties of super hard materials such as 

corundum -Al2O3 [1-6]. The idea is based on the capability of the eskolaite (-Cr2O3) 

crystalline structure to act as a template for the growth of the corundum phase -Al2O3, at 

temperature ranges permitting the deposition on tool steels, i.e. typically 450ºC-550ºC [2-7]. All 

this is feasible because of two main reasons; the structure of eskolaite -Cr2O3 has the same 

space group as corundum -Al2O3, and on the other hand the eskolaite -Cr2O3 can be 

synthesized at the application working temperatures of tool steels. In this context, two different 

approaches have been considered using PVD techniques in order to exploit these properties. The 

first one is focussed on the development of routes to deposit -Al2O3 based coatings by pre-

deposition of -Cr2O3 template films [2,7]; while the second consists on the deposition of -

(CrAl)2O3 strengthened solid solutions by co-evaporation of Cr and Al in the presence of oxygen 

[8-11].  

  

At temperatures compatible with the working conditions of hot forming steels, the 

eskolaite/corundum equilibrium phase diagram shows a wide miscibility gap, which theoretically 

restricts the formation of solid solutions to only a small mass percentage of Al in eskolaite or Cr 

in corundum [12]. Different studies reveal that a variety of phases can be attained for the system 

Cr-Al-O, and Cr-Al-O-N, including solid solutions. For example, Pedersen et al [8] and 

Dietchler et al [4] reported the formation of solid solutions in the form of α-(Al1−x,Crx)2O3 in d.c. 



and r.f. sputtered Cr-Al-O films. Khatibi et al [5,13] studied the system (AlxCr1-x)2+yO3-y for 

various deposition conditions using sputtering and cathodic arc evaporation. Firstly, they found 

that the films with stoichiometry (Al1−x,Crx)2O3 could develop fcc cubic lattice structures [5] 

with 33% cation vacancies under certain deposition conditions. In a follow-up study [13] the 

authors found that the films developed corundum or mixed-phases depending on both, the Cr/Al 

ratio and the oxygen gas flow. Thus, the corundum phase was favoured at high Cr content and at 

high O2 flows, while the cubic fcc phase was observed for high Al content and low O2 flow per 

active target. Najafi et al [9] found that the lattice structure of arc evaporated coatings Cr-Al-O 

could dynamically evolve from a fcc cubic crystalline structure to a rhombohedral -(CrAl)2O3 

during the deposition process when the coating thickness exceeded to 2 microns. Ramm et al 

[11] developed different coating microstructures and compositions based on pulsed electron 

emission arc evaporation of Cr/Al cathodes in oxygen atmospheres. Essentially, they showed 

that the produced coatings developed corundum-like lattice structure forming a solid solution of 

the type (Al1−xCrx)2O3. 

  

The influence of nitrogen as the reactive gas during the deposition of Cr-Al-O films has also 

been investigated [1,14-17]. For example, Hirai et al. [1] reported on CrAlON coatings 

synthesized by pulsed laser deposition at a substrate temperature of 400 °C, obtaining fcc cubic 

structures with a metal non-metal ratio of 1, and similar oxygen and nitrogen contents of 25 at.%. 

Najafi et al [14] reported on cathodic arc deposited AlCr(OyN1−y) coatings using rotary pulsed 

Cr/Al targets in an oxygen and nitrogen atmosphere. They observed films with three different 

microstructures depending on the oxygen to nitrogen content. For y < 0.6, a well-defined 

columnar fcc cubic lattice structure was found. For 0.6 < y ≤ 0.97, the fcc lattice structure was 



still present but the columnar morphology diffused. This cubic structure was explained in terms 

of the presence of cation vacancies, as reported by Khatibi et al.[5] for sputtered (Al1−xCrx)2O3 

films. In the case of y > 0.97, the main lattice phase was a corundum -(CrAl)2O3 solid solution. 

By adding nitrogen to r.f. sputtered Cr-Al-O films, Stüber et al [16] found that fcc cubic lattice 

structures could only be formed when the relative nitrogen gas flow (Nrel in %) over the total 

(O2+N2) is larger than the 75%, with a relatively small dependence on the Al/Cr ratio. The 

stoichiometry of the films with Nrel above 75% corresponded to a formulation of the form 

(Al1−xCrx)1+θ(O1−yNy) and a fcc cubic phase, whereas below this threshold they resemble the 

form α-(Al1−xCrx)2+δ(O1−yNy)3, showing a corundum-like structure.  

  

From the technological point of view, various authors have investigated the effect of oxygen in 

reactive arc deposition for (Al,Cr)2O3 films using arc industrial systems [3,10,11]. Pohler et al 

[10] found that the cathode developed selective poisoning forming pillar-shaped Al2O3 islands 

and intermetallic AlxCry phases with a fine-grained morphology during the process. This can also 

reduce the ion current obtained per cathode [3,18], as oxygen replaces nitrogen in the reactor 

chamber. 

  

The thermal stability of Cr-Al-O and Cr-Al-O-N coatings has also been addressed in different 

studies. Khatibi et al [13] showed that in-situ heat treatments of pristine fcc-(Al0.83Cr0.17)2.3O2.7 

leads to the transformation to a corundum structure, which initiates at 900 ºC and is totally 

completed at temperatures above 1000 ºC. In the case of films with an original corundum 

structure in the as-deposited state, thermal annealing did not lead to any structural modifications 

up to 1100 ºC. Similar results were found by Edlmayr et al [19] on vacuum, and by Najafi et al 



[14] on argon annealed arc deposited coatings. Hirai et al. [1] reported that the fcc cubic 

structure of laser deposited Cr-Al-O-N remains after oxidation in air up to 1100 ºC.  

  

Other studies focused on multilayered systems for oxidation and corrosion protection of bipolar 

plates, and high temperature Mo-based sintering tools [20, 21]. More recently Liu et al [22] 

investigated the thermal stability of arc deposited AlCrON and AlCrO interlayers in solar 

selective stacks up to 800 ºC, showing barely any structural modification. Some formulations 

have been tested under friction [23] and machining operations [13], showing different 

performances in comparison to industrial coating formulations. Bobzin et al. [24] deposited thick 

CrAlO and CrAlON using high-speed deposition sputtering. The influence of the bias has also 

been reported, in particular the effects of bipolar pulsing and duty cycle CAE deposited CrAlFeO 

and CrAlO arc coatings [25,26].  

 

  

In this work, the combined effect of temperature and oxidation in the films are discussed in terms 

of the evolution of the stoichiometry, crystalline phases and the mechanical properties; from the 

as deposited state, up to air annealing temperatures of 1100ºC. 

  

2.      Experimental 

  

The CrAlON coatings have been produced by cathodic arc evaporation, using a commercial 

PVD reactor able to reach a base pressure of 2-4×10-4 Pa. The reactor is equipped with two 

opposing columns, each one of them hosting three circular cathodes (63 mm of diameter) 



vertically aligned. Both columns face each other and leave an effective volume of 0.1 m3 

available for the substrates. Both columns were equipped with high purity CrAl cathodes, with a 

nominal composition of Cr 50 at. % - Al 50 at. %. The substrates were martensitic quenched hot 

work H13 steel tempered at 520°C (53-55 HRc) at the zone of secondary tempering hardness, 

commonly used for high pressure Al die casting; with a nominal composition of 0.4 at% C, 0.9 

at% Si, 0.3 at% Mn, 5.43 at% Cr, 1.32 at% Mo, and 0.96 at% V. Discs of 40 mm in diameter 

were mirror polished (Ra < 15 nm) and cleaned in an ultrasonic bath using de-oiling agents and 

de-ionised water. In addition, Si and INCONEL substrates were used to deposit the coatings for 

subsequent SEM analyses and thermal stability tests.  

  

The substrates were vacuum-heated and Ar+-ion bombarded using the so-called Arc Enhanced 

Glow Discharge (AEGD) process. After the Ar+-ion bombardment, high purity nitrogen and 

oxygen gases were mixed in the chamber to produce seven different coatings (A-G), which 

composition and structure varied as a function of the O2/N2 mass flow ratio introduced in the 

chamber during the deposition process. In all the cases, the working pressure was kept at 1.8 Pa. 

A continuous DC bias of -50 V was applied on the substrates, except for the eighth sample batch 

(H) which was deposited using a bias of -200 V. During the whole process, the substrates were 

rotated around the central vertical axis of the reactor chamber at a speed of 5 rpm. A CrAlN 

adhesion layer of around 0.2 microns thick was deposited in all the batches prior to the 

production of the investigated coatings. The substrates were set to 410 - 430ºC range during 

deposition, as estimated from Rockwell C hardness measurements on the back side of hardened 

100Cr6 bearing steel discs placed in the chamber during the process, fine-grained polished and 



finally tested. The results were compared with their tempering curves as described elsewhere 

[27]. Table 1 summarises the coating deposition parameters used in this work.  

 

The chemical composition of the coatings was determined using an electron probe micro-

analyser (EPMA, JEOL JXA 8900m) using a wavelength-dispersive spectrometer (WDS). 

Before the observation of the coatings’ surface, as a standard procedure the samples were coated 

with graphite, using a Quorum Q150T evaporator, to ensure electrical conductivity. X-ray 

diffraction (XRD) analyses were carried out in a BRUKER-D8 spectrometer using the parallel 

beam configuration, a Cr X-ray source (lambda=0.22897 nm) and a grazing angle of 1°. A field 

emission scanning electron microscope (SEM) HITACHI S- was used to inspect the cross 

sections of the films. 

 

Nanoindentation tests were performed on the as-deposited samples using a Hysitron 

Triboindenter© 950 system fitted with a Berkovich indenter with a tip-end radius of around 150 

nm. Forty indentations, separated enough to avoid influence from each other measurements were 

made on all the specimens using a peak load of 5 mN. The load function consisted on a 5 

seconds loading segment, followed by a 2 seconds holding load to account for the material creep 

response. A last 5 seconds unloading segment concluded each test. 

The Oliver and Pharr method [28] was used to obtain the hardness and Young’s modulus values 

from the experimental load-displacement curves. At 5 mN load, the maximum penetration of the 

indenter in the surface was clearly below the 10% of the total thickness of the coating, value 

widely accepted to measure the mechanical properties of a layer with no interference from the 



substrate [29]. Surface roughness was measured with a WYCO-RST 500 profilometer using the 

vertical scanning interferometry (VSI) mode. This system provides a vertical resolution of 3 nm.  

High temperature annealing tests in ambient air were carried out in a Nabertherm LT 24/11/B180 

muffle oven from 800 ºC up to 1100 ºC in steps of 100 ºC. A heating rate of 20 ºC·min-1 and a 

holding time of 2 hours was used for each step, followed by natural oven cooling after the 

holding period of the last step. Nanoindentation tests and SEM-EDX analyses were carried out 

subsequent to the high temperature annealing tests. 

  

3.      Results  

 

3.1 Composition and microstructure as deposited 

  

Table 2 shows the chemical composition and the thicknesses of the Cr-Al-O-N coatings, 

obtained by the EPMA analyses, as a function of the O2/N2 gas flow ratio. The samples in batch 

A, deposited using a gas flow ratio of 0/100, exhibit the composition of a substoichiometric 

CrAlNx (x < 1), with a small residual amount of oxygen around 2 at%. The increase of the O2/N2 

gas flow ratio leads to an increase in the oxygen content of the coatings. Samples in group B 

(5/95) show an oxygen content of 30 at%, whereas the nitrogen content decreases to 22at %. 

Batches C to H, deposited using gas flow ratio from 10/90 on, present no nitrogen in their 

composition, whilst their oxygen content is larger than 57 at% for all of them. The Cr/Al ratio is 

nearly constant for all the deposited coatings and close to unity, in line with the nominal 

composition of the cathodes. In addition, the thickness of the deposited coatings decreases as the 



O2/N2 gas flow ratio increases, in agreement to Khatibi et al [15]. This is likely due to the effect 

of increasing oxidation of the arc targets surfaces during deposition, since a larger amount of 

oxygen is present in the vacuum chamber.  

  

Table 2 also displays the cation to anion ratio (Cr+Al)1-x/(O+N)x  in the form of the parameter x. 

Whereas samples in batch A exhibit a x factor of 36%, it rises as the O2/N2 gas flow ratio 

increases. Particularly, specimens in batch B (oxynitrides) present an x factor of 52%, increasing 

to around 61-62 % for batches C, D and F, and slightly decreasing down to 57-58 % for batches 

G and H. The samples in batches C to H clearly show that the cation to anion ratio approaches 

2/3 as the O2/N2 gas flow ratio increases. This means that the stoichiometric formulae of the pure 

oxide coatings, i.e. not containing nitrogen to the detection limit of EPMA, exhibit the form 

(CrAl)2+O3-, with  typically smaller than 0.3. On the other hand, batches A and B (both 

oxynitrides) respond to a stoichiometric formula (CrAl)1-x(NO)x, with the indication that samples 

in batch A are substoichiometric.  

  

Figures 1 a-h show the cross section SEM micrographs of the coatings A to H respectively, as 

deposited on the Si substrates, as recorded with the secondary electron detector. The 

microstructure of the coatings shows some dependence on the O2/N2 gas flow ratio. The cross 

sections also reveal the initial stages of film growth starting from the CrAlN 0.2 microns 

adhesion layer. Specifically, the coatings A to E present a dense microstructure consisting of 

compacted micro-columns growing perpendicular to the substrate. This microstructure is 

common in arc PVD coatings based on Ti and Cr nitrides [30]. Contrarily, the coatings F and G 

exhibit a less compact microstructure, likely caused by instabilities of the cathode due to the 



oxidation of its surface in the presence of Oxygen [3]. The H films, show a compact structureless 

cross section, probably caused by the larger bias used for its deposition (-200 V).  

Figure 2 shows the grazing angle XRD patterns of the as deposited coatings as a function of the 

O2/N2 gas flow. Samples in A (0/100) show reflections at 58.0º, 68.1º and 104.7º attributed to the 

lattice planes (111), (200) and (220) of a fcc-NaCl like lattice structure (indicated as ). The 

peaks are slightly shifted to higher angles with respect to the positions expected for the CrN. 

This is due to the substitution by Al of the Cr-cation in the lattice. A low angle shoulder at the 

peak (200) could be attributed to diffraction of hexagonal -Cr2N phases. The specimens in 

batch A also show diffraction peaks at 49.3º, 92.5º and 107.4º, assigned to hexagonal forms of 

AlN (). Specimens in B show a similar structure to that of batch A. This is apparently coherent 

with the stoichiometric formulation for these samples (cf. Table 2), of the form (CrAl)1-x(NO)x, 

provided that in this case oxygen is replacing nitrogen at anionic sites. The peak (220) of 

samples in batch B shows a shoulder at the large 2 side, which can be attributed to the 

reflection (103) of h-AlN. In fact, this peak shoulder can also be inferred in sample A, although 

with less intensity. 

  

In the case of the samples C to H, a new diffraction feature is observed at 66.0º (), which has 

no correspondence with any feature observed for the samples in A or B. In addition, the peaks at 

68.8º and 107.3º observed for the specimens in C to H, can be assigned to the planes (200) and 

(220) respectively of a fcc cubic lattice of chromium-aluminium oxide, with a stoichiometric 

formulation like (CrAl)2+O3-, as found by other authors [5,9,13,14]. This phase was described 

by [5] as a face centred cubic lattice with 33 % cation vacancies. These fcc peaks appear slightly 

shifted to higher angles with respect to these of samples in A and B.  



 

In order to get more information about the evolution of the observed cubic phases, we have 

represented in Figure 3 the lattice parameter a0 obtained from the positions of the assigned fcc-

(220) diffraction planes, as a function of the oxygen mass flow percentage during deposition (cf. 

Table 2). The a0 value obtained for the samples in A is 0.408 nm. As the % O2 gas flow increases 

to 25%, the lattice parameter decreases to 0.403 nm, and keep this value for bigger % O2 gas 

flow values. Khatibi et al [5] reported a lattice parameter value of 0.404 nm for the cubic fcc-

(CrAl)2O3 phase, in good agreement with our results. 

 

On the other hand, the diffraction peak at 66.0º lays within the expected range for the reflections 

of rhombohedral -Cr2O3 (eskolaite) and/or -Al2O3 (corundum). This peak has been identified 

by various authors [1,3,4,9]. However, there are other possible crystallographic plains that may 

produce diffractions near this 2 position, such as Al4Cr or Al8Cr5 intermetallics, which may 

appear on the coatings from cathode ejected and unreacted droplets. The fact that the 

rhombohedral structures do not predominate in the diffraction peaks of the coatings, as 

deposited, can be due to the deposition temperature of 430ºC, which is lower than that reported 

for such phases to grow stably [2-7].  

  

3.2 Roughness and mechanical properties 

  

Table 3 gathers the roughness parameters Ra and Rq, the indentation hardness and elastic 

modulus of the produced coatings. The Ra values of samples in batches A and C are around 55 

and 47 nm. These values are typical for arc evaporated coatings with Al content [30,31]. Batches 



D to H exhibit Ra/Rq values doubling these shown by A-C specimens. This can be attributed to 

the fact that, when the O2/N2 gas flow increases the target surface oxidises. This causes the arcs 

to discharge on smaller target areas, rather than dispersing across its available area, thus 

producing the ejection of bigger particles [3,11]. The oxidation of the target as the O2/N2 gas 

flow increases is also in agreement with the observed decrease in the observed deposition rate.  

  

Figure 4 show the nanoindentation hardness and reduced modulus of the coatings as a function 

of the O2/N2 gas flow, for the samples A to H. The batch A coatings have a nanoindentation 

hardness of 23.3 GPa and a reduced modulus of 202 GPa. These values are lower than others 

measured for CrAlN coatings [31], due to the low nitrogen content and to the presence of some 

volume fraction of h-AlN and -Cr2N phases as observed by XRD. The B specimens exhibit a 

larger hardness than that of batch A (i.e. 28.8 GPa) and smaller rigidity (187 GPa). This increase 

can be caused either by the smaller ratio of anion vacancies, or to a solid solution strengthening 

effect. For the rest of the samples, i.e. as O2/N2 gas flow increases further, there is a progressive 

decrease of the nanoindentation hardness and modulus. In this study, the hardness evolved from 

28.8 GPa for the oxynitride coatings down to 16 GPa for the films deposited using the largest 

O2/N2 gas flow ratio. Given that the composition of the samples remains similar (cf. Table 2), 

this decrease of the mechanical strength may be caused by the loss of compactness of the coating 

micro-columns and a mayor presence of micro droplets, as observed by SEM. However, batch H 

showed a hardness of 26.8 GPa, which is clearly larger than that of its twin batch E, though 

deposited at -200 V of bias. This can again be attributed to the more compact microstructure 

observed by SEM for H samples (cf. Fig 1H). A similar hardness evolution has been reported by 

Najafi et al. [13]. On the other hand, Stüber et al. [16] found little dependence of the indentation 



hardness as a function of the N/O ratio, which was explained by the formation of vacancies, 

changes of chemical bonding and the coatings microstructure. Hardness values between 25 GPa 

and 30 GPa were reported by Khatibi et al. [13], with a slight increase as the Cr content rose. 

  

3.3 Composition, hardness and microstructure after annealing in air 

  

In order to get insight on the thermal stability and oxidation behaviour of these coatings, we have 

studied the mechanical and structural evolution of various representative samples after annealing 

in ambient air at temperatures from 700 ºC up to 1100 ºC. Figure 5 provides evidence of the 

different mechanical evolution of the deposited coatings A, B, C, D and G after annealing. The 

measurements indicate an overall increase of all the coatings hardness after annealing at 700 ºC 

in comparison to the as deposited specimens. Batch A retains its hardness values or even 

increases them up to 27 GPa for annealing temperatures at 700 and 800 ºC. Its hardness 

decreases after annealing at 900 ºC and 950 ºC, rising again to 26.8 after 1000 ºC and 1050 ºC 

treatments. Batch B steadily decreases its hardness as the annealing temperature increases from 

800 ºC to 1050 ºC, showing a slight increase at 1100 ºC. The samples from batch C retain their 

hardness values for over the whole range of annealing temperatures, whereas the hardness of 

samples from D and G steadily rises as the annealing temperature increases. The reduced 

modulus exhibits similar trends to those of the nanoindentation hardness. 

  

Table 4 shows the comparison of the stoichiometry and the thickness of the coatings A, B, C, D 

and G before and after a thermal annealing at 1050 ºC. It is noticeable that the coating 

thicknesses remain nearly around the same values of those as deposited. Meanwhile, the 



stoichiometry of the coatings, expressed in the form (Cr1-xAlx)2+yO3-y, reflects the influence of 

the exposition to hot air. The cation ratio Cr/Al decreases from 52/48 to 32/68 for the samples 

from batch A. This fact could be attributed to diffusion of the Al atoms towards the outer surface 

of the film [32]. Samples from B to G do not show significant changes in the cation ratio Cr/Al 

with respect to those measured in the as deposited specimens. The specimens in A and B also 

show a significant modification of the cation to anion ratio, which evolves from 1/0.57 to 

2.23/2.77 for the A samples, and from 0.96/1.04 to 1.98/3.02 in the case of the B samples. This 

fact clearly indicates that oxygen completely replaces nitrogen in the lattice after annealing. In 

contrast, coatings C, D and G annealed at 1050 ºC exhibit no change in their composition after 

thermal treatment.  

  

Figure 6a compares the diffraction patterns obtained for the batches A (nitride), B (oxynitride), 

and C and D (oxides), after the annealing treatment at 1100 ºC. In order to facilitate comparison 

with the reference phases, the theoretical peak positions of the main reflections of eskolaite 

(triangle) and corundum (square) have been pointed out in the graph. Fig. 6a evidences the 

different evolution of the coating microstructures depending on their initial compositions. The 

diffraction pattern of the A samples clearly exhibits the presence of both eskolaite and 

corundum. Specifically, the peaks assigned to the rhombohedral lattices planes (012), (104), 

(110), (113), (024) and (116). Further small diffraction peaks have not been labelled. This 

indicates that the A samples evolved from a cubic fcc-CrAlN lattice, with some undetermined 

volume fraction of h-AlN and -Cr2N, towards a dual phase eskolaite-corundum. The B samples 

also show doublet peaks at the positions of the rhombohedral lattice planes, like in batch A, 

though the peak located at low angles is predominant with respect to the one at higher angles, 



and in addition its spectral weight is shifted to higher angles. The diffraction peaks of samples C 

and D exhibit single peak structures (rhombohedral), and further their spectral weights are 

shifted towards high angles.  

 

In order to obtain a more detailed information on the microstructural evolution of the coatings, 

we have represented in Fig. 6b-d the diffraction patterns of batches B, C and D respectively, as a 

function of the annealing temperature, from 800 ºC to 1100 ºC. The B samples (oxynitride) 

diffraction patterns indicate the appearance of the phase -Cr2N at an annealing temperature of 

900 ºC. On the other hand, the cubic fcc phases, planes (200) and (220), are present up to 950 ºC. 

In fact, at 950 ºC neither eskolaite nor corundum can be observed any further. At 1000 ºC new 

peaks from the rhombohedral planes appear close to the eskolaite positions, while at 1100 ºC the 

area of the eskolaite peaks is much bigger than that of corundum’s. It is remarkable that the peak 

positions of the rhombohedral lattice planes do not shift as the temperature increases. This 

confirms that the metal Cr/Al ratio is not varying within the coating upon the annealing 

temperature, as also observed by the EPMA measurements presented in Table 4 (at 1050 ºC).  

  

The specimens in batch C (10/90) exhibit diffraction patters similar to those of the pristine 

coating for annealing temperatures up to 900ºC. The cubic phase remains even at 1000 ºC, as can 

be inferred from the peak (220) observed at 2 = 107º. At 950 ºC new peaks located in between 

the theoretical positions of eskolaite and corundum show up, corresponding again to the 

rhombohedral lattice planes (012), (104), (110), (113), (024) and (116) , which grow in intensity 

as the annealing temperature increases. In this case, only one peak per theoretical eskolaite-

corundum band is present. Finally, the D samples (75/25) show a similar evolution as the C 



samples. Although, the cubic phase of the pristine coating vanishes at a lower temperature (900 

ºC) than that for B and C. Again, the peaks corresponding to the rhombohedral planes appear at 

900 ºC and increase in intensities as the temperature rises to 1100 ºC. Like for batch C, no peak 

doublets are observed. The same response observed in batch B is found here for C and D, the 

peak positions of the rhombohedral lattice planes do not shift as the temperature increases, in 

agreement with the non-variation of the metal Cr/Al ratio measured by EPMA at 1050 ºC.  

  

  

4. Discussion 

  

The deposition conditions employed in this research lead to obtaining nitrides, oxynitrides and 

oxides using the same experimental set up but changing the N2/O2 gas flow ratio introduced in 

the reactor. It has been observed that oxynitrides Cr-Al-O-N can be only obtained when the 

N2/O2 gas flow ratio is 95/5 or larger. Below this value, oxygen is the unique anion present in the 

coatings. The N2/O2 gas flow ratio onset related to the transition between oxynitride and pure 

oxide, as found in this study (90/10), is larger than the value reported by Stüber et al [15] for 

sputtered coatings (i.e. 75/25) and the one by Khatibi et al [15], which was found at 63/37. The 

reason for this deviation, in addition to possible standard errors of the mass flow gauges. 

 

The qualitative evolution of the stoichiometric formulae observed in this work, i.e. from 

(Cr+Al)1+(O+N)1- for the nitride A and the oxynitride B, to a (CrAl)2+O3-, in the case of the 

oxide coatings C to H, is in good agreement with previous studies [15]. Furthermore, the 



influence of oxygen in the deposition process is manifested by the observed threshold from low 

to high roughness, as a function of the N2/O2 gas flow ratio (i.e. 90/10).  

 

The coating nanoindentation hardness as a function of the N2/O2 gas flow ratio is similar to that 

found by Najafi et al [14] for arc deposited coatings. These authors interpreted that the decrease 

of the hardness was due to the larger presence of cation vacancies in the fcc lattice structures as 

the oxygen content increased. In fact, they observed that the hardness increased again for the 

corundum coatings. In the present work, the coating hardness evolution is explained, not only in 

terms of the variation of the stoichiometry and ratio of ionic to covalent bonds, but also 

considering the coating microstructure. Indeed, SEM cross section images revealed that the 

coating morphologies become less compact when the N2/O2 gas flow decreases. This is also in 

concordance with the observed reduction in the deposition rate due to the cathode surface 

poisoning. The poisoning leads to the ejection of bigger macrodroplets, thus contributing to 

develop coating microstructures with weaker intercolumnar cohesion.  

  

The crystalline structures measured on the deposited coatings indicate that the cubic fcc phase is 

present in the oxynitride films B. This is in agreement with Najafi et al [14] and Khatibi et al 

[15] who reported that arc evaporated oxynitride Cr-Al-O-N coatings exhibit mainly a cubic 

structure. In addition, the oxide samples (i.e. C to H) also contain a certain volume fractions of 

cubic phases, again in agreement with previous studies on arc evaporated Cr-Al oxides [9,11].  

  

After thermal oxidation in air, all the tested coatings transformed from their original structures to 

either a single phase structure for C and D (oxide) or a double phase structure for A (nitride), and 



less pronounced in the case of B (oxynitride). The single structure formed for samples C and D 

after thermal annealing at 1100 ºC may correspond to a solid solution of the type -(CrAl)2O3, 

with a rhombohedral lattice. This is supported by the fact that the diffraction peaks lay in 

between the theoretical positions of the eskolaite and the corundum, and that the cation ratio 

Cr/Al is preserved after annealing (cf. Table 4). According to the eskolaite-corundum 

equilibrium phase diagram [12, 33], at 1100ºC there is still a significant miscibility gap between 

both phases. This means that, thermodynamically, the annealing at this temperature may lead to a 

segregation of the two components, to Al-containing eskolaite and Cr-containing corundum. This 

is compatible with the dual peak structure observed for samples of batches A and B. However, 

such segregation is not present for the oxide samples (C-D). This could be due to the fact that the 

diffusion kinetics of the atomic species within the oxide coatings (C-D) during annealing is 

slower than those in the nitride and oxynitrides films.  

  

The phase evolution upon the annealing temperature depends also on the coatings composition 

as-deposited. Nitrides and oxynitrides retain the cubic fcc diffraction peaks up to 950 ºC, 

whereas the oxide coatings do up to 1000ºC. Above these temperatures, the whole cubic 

structures vanish and the new rhombohedral phases show up, along with peaks from -Cr2N. The 

advent of this phase has also been reported in other CrN based systems such as PVD coated 

CrAlSiN [34] after annealing in oxidising atmospheres. All these results are consistent with the 

observations of the structural evolution from the cubic fcc phases present in of both Cr-Al-O and 

Cr-Al-O-N coatings to rhombohedral structures (corundum, eskolaite or its solid solution), 

reported by other authors [14,15,19]. Although it should be pointed out that those test in the 

literature were done under inert atmospheres, either Ar or vacuum. 



  

The hardness evolution with the increasing temperature also showed dependencies on the film 

stoichiometry. The oxide samples, C and D, exhibit excellent nanoindentation hardness stability 

up to 1100 ºC. On the other hand, the nitride and oxynitride coatings A and B showed larger 

variations of their nanoindentation hardness and reduced modulus. In fact, the indentation 

hardness of samples C and D reach a maximum value near 30 GPa. These high values are in 

agreement with a solid solution strengthened microstructure -(CrAl)2O3, as revealed by XRD. 

On the other hand, the presence of dual-phases eskolaite/corundum, as observed for samples A 

and B, might be causing that the hardness after 1100 ºC annealing is lower than that of the 

samples C and D.  

  

5. Conclusions 

  

In summary, this work provides a comprehensive evaluation of the chemical, structural and 

mechanical properties of CrAlNO arc PVD coatings, as well as their evolution under thermal 

annealing in air. The coatings present compositions, microstructure and mechanical properties in 

line with those found for cathodic arc evaporated coatings by different authors. In particular, the 

N2/O2 flow ratio onset to form oxynitrides instead of pure oxides is slightly larger than that 

reported for similar coating systems. Excessive oxygen also caused the films to accumulate large 

amount of macro droplets, causing an abrupt increase of the film roughness when the N2/O2 flow 

passes the onset 90/10. 

  



The presence of nitrogen in the system Cr-Al-O-N determines the stoichiometric relation and the 

crystalline structure. When nitrogen is incorporated in the coatings the film composition have the 

(Cr+Al)1+(O+N)1-form, whereas it evolves to (CrAl)2+O3- when nitrogen is absent. The 

nanoindentation hardness and reduced modulus seem to depend mainly on the inter-columnar 

bond strength of the coating microstructure, rather than on the composition. On the other hand, 

the maximum values were found for the oxynitride coating, suggesting a strengthening effect due 

the formation of a solid solution (Cr+Al)1+(O+N)1-.  

  

The annealing tests in air have revealed the influence of high temperature on the evolution of the 

lattice structure and hardness of the deposited coatings. The observed onset temperature for the 

formation of the new phases depends on the coating composition. The oxide and oxynitride 

coatings developed a dual structure of eskolaite and corundum, while the oxides seem to develop 

solid solutions of the type -(CrAl)2O3 at high temperatures. On the other hand, the cubic phases 

were preserved up to 950 ºC for the oxynitrides and up to 1000 ºC for the oxides. Other phases, 

such as the -Cr2N, were formed at 900 ºC for the oxynitride coatings.  
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TABLE 1 

 

 

CrAlN adhesion layer  

Cr50-Al50  arc current (A) 60 

Substrate Bias (V) -50 

Pressure N2 (Pa) 1.8 

Deposition CrAlON films  

Cr50-Al50  arc current (A) 60 

Substrate Bias* (V) -50 

Pressure N2 +O2 (Pa) 1.8 

Temperature ºC 410-430 

* Sample batch H of Table 2 was coated at -200 V substrate BIAS 
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TABLE 2 

 

Sample O2/N2 gas flow Stoichiometry 
%x in (Cr+Al)1-x 

/(O2+N2)x 

Thickness 

(m) 

A 0/100 Cr
0.32

Al
0.31

O
0.02

N
0.34 

 36% 2.59  0.03 

B 5/95 Cr
0.25

Al
0.23

O
0.30

N
0.22 

 52% 2.33  0.14 

C 10/90 Cr
0.22

Al
0.19

O
0.59 

 59% 2.35  0.12 

D 25/75 Cr
0.20

Al
0.19

O
0.61 

 61% 2.37  0.04 

E 37/63 Cr
0.22

Al
0.16

O
0.62 

 62% 2.12  0.04 

F 75/25 Cr
0.20

Al
0.19

O
0.61

 61% 2.27  0.05 

G 100/0 Cr
0.22

Al
0.20

O
0.58

 58% 2.04  0.09 

H* 37/63 Cr
0.22

Al
0.21

O
0.57 

 57% 2.12  0.03 

* Sample H is carried out at a BIAS of -200 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

TABLE 3 

 

Sample Stoichiometry Ra (nm) Rq (nm) H (GPa) E(GPa) H/E 

A Cr
0.32

Al
0.31

O
0.02

N
0.34 

 55.2  
4.7 

118  14 23.3  5.5 202  10 0.115 

B Cr
0.25

Al
0.23

O
0.30

N
0.22 

 55.4  
2.4 

124  6 28.8  2.6 187  8 0.154 

C Cr
0.22

Al
0.19

O
0.59 

 46.7  
2.4 

120  14 27.1  1.6 174  17 0.156 

D Cr
0.20

Al
0.19

O
0.61 

 103.7  
2.7 

185  7 24.5  2.2 195  8 0.126 

E Cr
0.22

Al
0.16

O
0.62 

 93.3  
3.8 

160  4 21.3  3.5 183  9 0.116 

F Cr
0.20

Al
0.19

O
0.61

 107.8  
4.3 

196 29 16.1  3.2 177  9 0.097 

G Cr
0.22

Al
0.20

O
0.58

 78.7  
1.9 

151  6 18.6  3.1 166  12 0.106 

H* Cr
0.22

Al
0.21

O
0.57 

 112  6 199  25 26.8  2.8 201  6 0.133 

 

 

TABLE 4 

 

 

 (Cr1-xAlx)2+yO3-y Thickness (m) 

Sample RT 1050ºC RT 1050ºC 

A (Cr0.52Al0.48)1(O0.05N0.95)0.57 (Cr0.32Al0.68)2.23O2.77 2.59  0.03 2.43  0.09 

B (Cr0.52Al0.48)0.96(O0.52N0.48)1.04 (Cr0.51Al0.49)1.98O3.02 2.33  0.14 2.55  0.05 

C (Cr0.54Al0.46)2.07O2.93 (Cr0.61Al0.39)1.93O3.07 2.35  0.12 2.09  0.13 

D (Cr0.52Al0.48)1.96O3.04 (Cr0.53Al0.47)1.98O3.02 2.37  0.04 2.15  0.10 

G (Cr0.52Al0.48)2.11O2.89 (Cr0.5Al0.5)1.94O3.06 2.04  0.09 1.73  0.16 
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Figure 6  
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