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Abstract 
 

Inherent sensor variability limits mass-production applications for metal oxide 

(MOX) gas sensor arrays because calibration for replicas of a sensor array needs to 

be performed individually. Recently, calibration transfer strategies have been 

proposed to alleviate calibration costs of new replicas, but they still require the 

acquisition of transfer samples. In this work, we present calibration models that can 

be extended to uncalibrated replicas of sensor arrays without acquiring new 

samples, i.e., general or global calibration models. The developed methodology 

consists in including multiple replicas of a sensor array in the calibration process 

such that sensor variability is rejected by the general model. Our approach was 

tested using replicas of a MOX sensor array in the classification task of six gases 

and synthetic air, presented at different background humidity and concentration 

levels. Results showed that direct transfer of individual calibration models provides 

poor classification accuracy. However, we also found that general calibration 
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models kept predictive performance when were applied directly to new copies of 

the sensor array. Moreover, we explored, through feature selection, whether 

particular combinations of sensors and operating temperatures can provide 

predictive performances equivalent to the calibration model with the complete 

array, favoring thereby the existence of more robust calibration models.  

 
1. Introduction 
 

In the modern era of ubiquitous sensing, cost-efficient gas sensors are expected to 

encounter many different applications, such as environmental monitoring, public safety, 

building automation and medical systems [1]. Among the different gas sensing 

technologies, metal oxide (MOX) sensors are a popular choice due to the ease of use, fast 

response, high sensitivity, miniaturization options and low-cost [2,3]. However, the 

calibration of MOX sensors faces two significant limitations due to the high correlation 

among features, sensor drift, scattering at different concentrations, and lack of 

reproducibility, among others [4,5].  First, calibration models only keep their predictive 

performance in the same conditions in which they were built. Thus, the utility of the 

model is compromised by the change of environmental or sampling conditions and the 

aging of the sensor. In consequence, calibration models require many calibration 

conditions to incorporate cross-sensitivities to the model. Second, inherent sensor 

variability requires specific calibration models for each system, even for replicas of gas 

sensor arrays with the same design and sensor types. Hence, the sensor variability and the 

constrained conditions of the calibration models hinder the generalization capability of 

the models. As a result, calibration is a costly and time-consuming process for MOX 

sensor arrays.   

 

Substantial improvements in MOX sensor technology appeared in the last 20 years 

leading to significant performance enhancement [6–11]. Among the most relevant 

contributions to the amelioration of MOX sensing behavior we should highlight the 

development of new materials [12], the use of temperature modulation [13,14], and the 

integration of sensing layers in micromachined substrates, leading to an important power 

reduction [15–17]. While these technology improvements diminished the inter-device 

tolerances, calibration models for MOX gas sensor arrays cannot be transferred among 

replicas of the arrays and they are not robust against sensor replacements. 
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The widespread use of MOX sensor arrays in practical applications will rely on the 

improvement of the robustness of the calibration models and the reduction of calibration 

costs and time. Robust calibration models should capture the chemical variance of interest 

and, at the same time, reject non-relevant sources of variance. Some of the strategies that 

may improve calibration models and reduce costs are: i) data pre-processing, ii) robust 

feature selection and iii) calibration transfer techniques. Moreover, strict validation 

procedures with external validation test data are necessary to ascertain the performance 

of the predictive model and assess its applicability domain [18].   

 

Calibration costs might be reduced with methods that limit the number of calibration 

conditions [19]. Data pre-processing strategies are widely used to reject some effects 

caused by changes in concentration, sampling, or environmental conditions. After pre-

processing step, the number of calibration conditions that may be presented to the 

calibration models to obtain accurate predictions can be reduced [20]. Besides, data pre-

processing avoids the inclusion of non-relevant variance, resulting in simpler and more 

general models (parsimonious models).  Gutierrez-Osuna et al. explored different data 

pre-processing methodologies for odor discrimination. The figure of merit used was the 

classification rate of a k-NN in a Fisher linear discriminant subspace. Their results 

confirmed the benefit of data preprocessing in pattern recognition methodologies for gas 

sensors [21]. Other strategies to make calibration models more robust are based on 

orthogonal projection filters. Artursson et al. proposed Component Correction [22], 

Padilla et al. explored Orthogonal Signal Correction [4], and Zityadinov et al. proposed 

Common Principal Component Analysis [23]. For the above-mentioned approaches, the 

resulting calibration models were more robust.  

 

Another strategy also employed to improve the robustness of the model is feature 

selection, which has been successfully applied in many occasions to identify the most 

informative features that are invariant with respect to changes in  the conditions of the 

instrument or the environment [5]. Techniques such as Sequential Feature Selection 

(SFS), Sequential Backward Selection (SBS), and Genetic Algorithms (GA) have been 

previously applied for this task [24,25]. Feature selection is closely related to sensor-array 

optimization, a popular approach to reduce the number of sensors [26,27]. Therefore, this 

strategy may also be understood as the selection of the best combination of sensors that 
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successfully discriminate the target volatiles. In the presence of unwanted sources of 

variance (tolerance between units, sensor drift, etc.), the selected sensors will constitute 

a robust combination against those sources of noise. For instance, Raman et al. presented 

a MOX microhotplate sensor-array optimization problem, and they encountered that the 

best configuration included two materials and four replicas of each [28,29]. GA for the 

use of sensor selection was already proposed by Gardner et al., who also fixed the number 

of features to be selected to avoid the exploration of all the combinatorial space [30]. GA 

is currently one of the most popular approaches due to its ability to avoid locally optimum 

solutions compared to other techniques [5]. Hence, feature selection allows the 

development of calibration models using fewer parameters, resulting in simpler 

calibration models that may be better suited to predict new samples. Besides, a system 

with a reduced set of sensors may need fewer calibration conditions and calibration costs 

may be further reduced.  

 

Over the years, different methodologies have also been proposed to reduce the number of 

calibration conditions. For example, Shmilovici et al. used Support Vector Regression to 

choose the best calibration points (support vectors) for the quantitative prediction of 

mixtures of three gases with a 12-MOX sensor array [31]. The performance of active 

control sampling has also been explored, aiming at the optimization of the order to present 

calibration conditions (gas class and concentration) to ensure, on the fly, the most relevant 

condition during the whole calibration sample acquisition [19].  

 

Moreover, similarly to standardization techniques applied in spectroscopy [32–34], 

calibration transfer strategies have been explored to extend calibration models to replicas 

of a sensing instrument in order to reduce calibration costs. Briefly, calibration transfer 

strategies are based on building a calibration model with a complete set of calibration 

samples using a master (reference) instrument. Then, a smaller set of samples (transfer 

samples) is acquired with a slave instrument to determine a function that maps the 

responses of the slave and the master systems. This mapping of the response spaces is 

then used to transfer the calibration model between replicas. 

 

In the field of chemical gas sensor arrays, the concept of data transferability between units 

in view of calibration transfer was pioneered by Balaban et al. They compared univariate 

regression between individual sensors, multivariate linear regression (MLR) and 
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Artificial Neural Networks (ANN) [35]. After the correction of the slave’s signals, they 

applied Statistical Neural Networks to the master data and the transformed data. 

Multivariate Regression techniques (MLR) provided the most accurate results in terms of 

classification rate. In another interesting work, Zhang et al. compared the response of 

different MOX sensors and found out that sensitivity can differ up to 17% for sensors of 

the same type. This mismatch may lead to unreliable predictive models if the calibration 

model is directly extended to other copies of the same sensor. Hence, they proposed 

univariate linear functions to map the response of the sensors of the same type [36,37], in 

a similar way as Balaban did years before. However, they claim that results improve if 

simple linear regression is replaced by a robust weighted least squares regression. 

Fernández et al. compared four different techniques for calibration transfer between 

temperature-modulated sensor arrays: direct standardization (DS), piecewise direct 

standardization (PDS), orthogonal signal correction (OSC), and Generalized Least 

Squares Weighting (GLSW). They found that among all the tested techniques, PDS 

provided best results [38]. Very recently, DS was proposed to transfer a Support Vector 

Machine model from a master device to slave instruments and, interestingly, calibration 

transfer strategies were also applied to counteract drift [39]. In the literature, drift is 

usually connected to physical changes in the sensing layer attributed to, for example, 

sensor aging and poisoning (first-order drift); and to uncontrolled changes in the 

environmental conditions (second-order drift) [40,41]. Other recent works also used 

transfer learning strategies to compensate first-order drift in sensor arrays [42–44]. 

Actually, any system affected by first-order drift can be considered as another virtual 

replica of the original system with deviated sensitivity. Hence, calibration transfer 

algorithms can help to correct first-order drift. Additionally, calibration transfer 

techniques were proposed to counteract the variations in the behavior of a sensor array 

after sensor replacement. Tomic et al. developed a methodology based on Component 

Correction (CC) and Multiplicative Drift Correction (MDC) followed by a k-NN as 

classifier [45]. In a first stage, they acquired data with an array composed of 12 MOX 

sensors and 5 MOSFET sensors. One MOX sensor was replaced, and they acquired a 

second data set. The second dataset was transformed to use the calibration model built 

with the first dataset. Best classification rates were achieved after signals were 

transformed.  
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The mentioned calibration transfer strategies successfully reduce calibration (and 

recalibration) costs of system replicas. The ratio between the number of calibration 

samples and the number of transfer samples determines the savings in the calibration 

process. This analysis is sometimes overlooked in the literature, and different strategies 

make use of very different ratios, ranging from 5% to 60%. Nevertheless, calibration costs 

of MOX sensor arrays are still identified as a major burden towards large-scale 

deployment of such systems [18,46]. 

 

Finally, in the recent years, there has been an increasing amount of literature on 

calibration strategies for Distributed Environmental Sensory Networks (DESN) as they 

became economically feasible to monitor air quality in urban areas [47–50]. Advanced 

strategies for DESN calibration combine measurements acquired by different sensory 

nodes. These calibration strategies usually rely on data acquired with collocated nodes in 

time and space, or assumptions such that the nodes are exposed to similar concentration 

levels at night [51]. Fishbain and Moreno-Centeno presented a consensus methodology 

for uncalibrated wireless DESN that is also applicable when the aggregation of 

measurements is incomplete [52]. However, the mentioned strategies are designed for 

networks of sensing systems as they need data acquired by other units to provide 

calibration models. In this work, we will focus on systems that operate standalone systems 

and do not have data available from other sensing units. Actually, consensus algorithm 

strategies were also applied to correct sensor failures in sensor arrays and extend system 

lifetime before re-calibration or sensor replacement [53,54].  

 

Specifically, we propose a calibration methodology for arrays of MOX gas sensors that 

takes advantage of the inherent sensor variability and, therefore, the obtained calibration 

model can be extended directly to other replicas of the array without the acquisition of 

new (transfer) samples. This has been achieved by building a general calibration model 

with different copies of a sensor array and searching a set of sensors that favors the 

simplicity of this general calibration model. We tested our methodology in the task of 

discrimination between six gases presented at three concentration levels over a 

background of synthetic air at three humidity levels. Different calibration strategies were 

compared to ascertain whether general models trained with several arrays provided 

similar predictive performances than models trained specifically for individual arrays.  
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2. Materials and methods 
 
2.1 Dataset  
Five replicas (units) of a 24-sensor array were assembled to generate a thorough dataset 

to test different calibration strategies. Each sensor array included three different types of 

MOX gas sensors, and each array included eight units of the three types of sensors. The 

eight elements of the same type within an array operated at different temperatures for a 

total of 24 sensors per array.  

 

The sensors were provided by ams AG [55] with labels that identify the different sensing 

properties of the sensors: MLC sensors were specifically designed to be sensitive to 

carbon monoxide, MLK sensors targeted methane, and MLX targeted volatile organic 

compounds. The sensors were packaged in the standard TO-39 housing (4-pin header). A 

heater and interdigital electrode structures were placed on a 1 μm-thin membrane, on top 

of which a tin dioxide sensitive layer was deposited. The built-in heater enables the 

control of the sensor operating temperature, which in turn changes the performance 

characteristics of the sensor [56,57]. At typical operation temperature (270ºC for MLC 

and MLX, and 320ºC for MLK), MLK shows the highest sensitivity to methane in the 

concentration range of 0.01-4%, and MLC shows the highest sensitivity to CO in the 

range of 0.5-500 ppm. The typical recovery time of the sensors is in the range of seconds. 

For more details on sensor specifications, the reader is referred to the manufacturer.  

 

The actual temperature of the sensing layer according to the power applied to the heater 

was determined after a two-step process using the heater as a resistive temperature sensor. 

First, the temperature coefficient of the heater resistance (TCR) was determined. The 

temperature was increased stepwise in an oven, and the resistance of the sensor heater 

was measured using a four-wire configuration. Then, the relationship between the applied 

heating power P and the measured heating resistance R was measured by gradually 

increasing the power using a 100-Ω series resistor. Hence, the relationship between 

heating power P and operating temperature T was obtained by comparing both 

measurements. Typical heater resistance at room temperature is 95 Ω, with 1700 ppm/K 

temperature coefficient. In this analysis we neglected temperature gradients that may 

occur in the sensitive material. Proper thermal design of the structure may confine the 

power dissipation on the hotplate and minimize the power dissipation on the suspension 



 8 

elements. Additionally, it is desired that the temperature distribution is homogenous in 

the sensitive material and the temperature gradient is located just along the suspension 

membrane. Detailed discussion on the thermal design and behavior of hotplates can be 

found in Walden et al. [58]. On the other hand, we did not implement any active 

temperature control to reject changes in the room temperature. A proposal for active 

temperature control can be found in Kneer et al. [59]  However, the temperature in the 

sensor chamber was continuously monitored, and laboratory temperature was also 

regulated. Specifically, to verify the experimental conditions (set-points), temperature 

and humidity were continuously measured using an SHT11 sensor (accuracy of ±0.4ºC 

and ±3%r.H.) provided by Sensirion (Switzerland). The recorded temperature was 

25.5±0.5ºC, so we expect a minimal impact on the temperature of the hotplate.  

 

The sensors of the same type, within the same array, operated at eight different 

temperatures. The sensor heater was adjusted via a constant power board (Analog 

Devices; Part No.: Eval-AD5380SDZ) to ensure a constant temperature. Specifically, the 

nominal values of the estimated operating temperatures were 245, 275, 303, 313, 330, 

340, 356 and 381°C. We will refer to each combination of sensor type and operating 

temperature as a feature. Therefore, every sensor array provides patterns of 24 features 

(i.e., input space of 24 dimensions). 

 

The sensor arrays were placed in a measurement chamber (volume = 286.9 cm3) and 

exposed to different gas conditions, while sensor responses were acquired at a sampling 

frequency of 1Hz. A set of mass flow controllers (MFC) was used to control the 

composition of the sample gas, the humidity level, and the total flow through the chamber. 

Specifically, we used three MFCs (EL-FLOW Series provided by Bronkhorst) to control 

the mixture of synthetic dry air (range 0-200 sccm), humidified air (0-200 sccm), and the 

gas under test (0-100 sccm). The flows of three MFCs were adjusted to generate the 

desired concentration levels under the defined humidity level, while keeping the total 

flow constant.  

 

The experimental protocol consisted in exposing the sensor arrays to synthetic air at a 

defined humidity level for 90 minutes. This first (cleaning) stage was used to purge the 

measurement chamber from the previous measurement and recover sensor baselines. 

Next, a gas sample was introduced to the measurement chamber for 30 minutes 
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(measurement cycle). The air flow was kept constant at 196 ml/min for all the duration 

of the experiment (cleaning and measurement stages). The humidity level only was 

changed after the experiment was completed.  

 

For each measurement and sensor, we extracted the sensor conductance 28 minutes after 

the gas was presented (gas response), and 2 minutes before the sample was introduced 

(baseline levels). Figure 1 (top) shows the signals of MLK sensors operating at four 

different temperatures when exposed to CO. Figure 1 (bottom) presents the 

corresponding set-points for CO and humidity levels. Black and green points overlapping 

the set points represent the time at which the sensor signals were acquired for the 

construction of our dataset.  

 

  

(see below) (new version of the figure) 

Figure 1: Sensor responses to CO presentation under different humidity levels. Acquired 
signals for four MLK sensors (top panel), and CO and humidity set-points (bottom panel). 

Sensor conductivity changes according to the presented conditions. Blue (baseline) and 
green (measurement cycle) dots represent sampling points for the construction of the 

dataset. 
 

Six different gases were presented to the sensor arrays: acetaldehyde, methane, ethanol, 

propane, nitrogen dioxide, and carbon monoxide. Each gas was presented at three 

concentrations and three humidity levels. Table 1 details the set-points for the gas 

concentration and humidity levels for each of the presented gases. The temperature and 

humidity sensor (SHT11) provided actual measurements of the experimental conditions 

and its variability. The mean temperature during measurements was 25.5ºC, and the 

deviations were always within the accuracy of the temperature sensor. Similarly, the 

measured relative humidity levels at the measuring points were within the accuracy 

provided by the humidity sensor. Specifically, the measured values ranged in the intervals 

of (20,22)% r.H., (40,42)% r.H., and (60,61)% r.H. for the three set-points, respectively 

always at 25.5ºC. Only the measurements that correspond to the highest concentration 

level of the gases, at the highest humidity level, were discarded due to technical setback. 

Hence, in total, we considered 48 different gas conditions (six gases at eight humidity and 

gas concentration combinations). In order to consider a balanced dataset among all the 

gas conditions and the blank samples (background air), we randomly selected 8 of the 
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background measurements (baseline measurements). From now on, for simplicity, we call 

air to the class background air, although it contains three humidity levels. All in all, our 

dataset, includes 56 (gas and air) conditions, which were evaluated once for each of the 

five copies of the sensor array.  

(see below) 

Table 1: Volatiles, humidity and concentration levels to which every sensor array was 
exposed for the dataset acquisition. 

 
 

2.2. Evaluation of calibration methods 
 
In order to evaluate the performance of different calibration methods, and based on the 

dataset described previously, we built predictive models for the discrimination of the six 

gases regardless of concentration and humidity levels.   

 

For benchmarking purposes, the performance of an individually calibrated sensor array 

was taken as reference. The performance of this individual calibration model was 

evaluated when applied to different replicas of the sensor array, in order to estimate the 

impact of sensor tolerances on the accuracy of the predictive model. As an alternative, 

we proposed to build a general calibration model that incorporates a number of replicas 

of the sensor array. We validated the model with test samples from different copies of the 

sensor array. Due to the characteristics of the used dataset, general calibration models 

were calibrated with up to four replicas and validated with the rest, but this can be changed 

in the general case.  

 

Hence, we explored the prediction ability of calibration models in four different scenarios.  

- Scenario 1. An individual calibration model is obtained with data from one sensor 

array, and it is tested with data from the same sensor array. This constitutes the 

reference condition for our analysis.  

- Scenario 2. An individual calibration model is obtained with data from one sensor 

array, and it is tested with data from different sensor arrays. This case aims at 

evaluating whether a direct transfer of the calibration models is feasible or not.  

- Scenario 3. A general calibration model is obtained with multiple copies of the 

sensor array, and it is applied to a different sensor array. This model makes use of 
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all the data captured with the units included in calibration. This scenario explores 

whether the model is able to extract the common behavior among a group of 

sensor arrays and, thereby it rejects sensor tolerances. Moreover, two other 

methodologies were explored to compare the performance of the general model 

with other training data. We also built a calibration model with the averaged 

response of different calibration units. Finally, we built calibration models with 

data from different sensing units, but keeping constant the total number of 

calibration measurements. 

- Scenario 4. It is the same procedure as in Scenario 3, but including a feature 

selection step. In this scenario, we search for sensor-array optimization. 

Therefore, in this case, feature selection is directly related to sensor selection, in 

particular, sensor type and its operating temperature. 

For the four scenarios, calibration models were built and evaluated for all the possible 

combinations of training/test data partitioning. 

 

Classification models were based on a multiclass (all classes vs. all classes) Partial Least 

Squares - Discriminant Analysis (PLS-DA) [60], followed by k-Nearest Neighbours (k-

NN) in the latent variable (LV) subspace. The optimization of the number of latent 

variables (LV) and neighbors (k) was performed considering the ranges LV = [1, 24] and 

k = [1, 19]. The combination of hyperparameters that provided maximum classification 

rate in internal cross-validation was used to build the final model with all the calibration 

samples. Then, the performance of the models was estimated with the corresponding test 

dataset. Figure 2 shows the overall validation methodology.  

 

(see below) (slightly modified figure) 

Figure 2: Workflow of the methodology employed to build and test the calibration models. 
The dataset was divided into calibration and test sets. For each scenario, the calibration 

model for all the possible combinations of calibration/test data partitioning was built and 
evaluated. 

 

The size of training and test sets for each of the considered scenarios is as follows (see 

Table 2).  

- Scenario 1. One measurement of each volatile and one air measurement were 

randomly selected as the test set, whereas the rest of the measurements constituted 

the training set. The model parameters were selected after internal cross-
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validation using Leave One Out (LOO). The process was repeated eight times 

until all the measurements were used for model testing (external validation). This 

methodology allowed to evaluate the performance of the calibration models when 

the models were built and tested with data from the same replica. The same 

process was applied to the five sensor array replicas. Therefore, classification 

accuracy was evaluated with a total of 280 measurements (40 measurements per 

class).  

- Scenario 2. All measurements from one sensor array (56) were included in the 

training set, and the measurements from the rest of sensor arrays constituted the 

test set. This procedure was repeated such that all sensor arrays were used once 

for model training or calibration.  

- Scenarios 3 and 4. All the measurements from four sensor array replicas (224) 

were used to train the models, and the measurements acquired with the remaining 

sensor array (56) composed the test set. The process was repeated such that all the 

sensor arrays were used once for testing the calibration models.  

 

Even though scenario 4 is equivalent to scenario 3 in terms of training and test set size, 

scenario 4 includes feature (or sensor) selection as a part of the calibration process (i.e., 

only performed with training samples).  

 

The employed feature selection strategy was based on GA [61]. First, different subsets of 

features (population) were randomly created, and their predictive performance was 

estimated through PLS-DA models. PLS-DA models were built using the internal training 

set, and the Fisher’s ratio (computed in the LV subspace) of the internal test samples was 

the figure of merit for selecting the best subsets of features. The best performing subsets 

of features were then used to generate a new population through crossover among them 

or mutations [62,63]. This process was repeated until the objective function (i.e., Fisher’s 

ratio) of the best individual did not increase more than 1% after 10 iterations. The process 

is summarized in Figure 3. GA assumes that the best-fitted individual in the last iteration 

is the final solution. However, different trials of GA do not converge to the same solution. 

Therefore, to prevent a locally optimum solution, GA were repeated and a frequency of 

selection for every feature was obtained as a result. Finally, the final calibration model 

was built considering the features that were systematically selected and thus their 
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frequency of selection was larger than expected form a random selection. The analysis 

was done with R, using, class, pls, and GA [64–66] libraries. 

 

(see below) 

Figure 3: General scheme of Genetic Algorithms. An initial population is generated, and 
then there are several iterations during which the individuals are evaluated, selected, 
recombined (crossover) and mutated. The individual with the best fitness of the final 

iteration gives the selected features. 

 

All the four scenarios were evaluated in terms of classification rate using a generalization 

of the area under the ROC curve (AUC) for multiclass classification problems proposed 

by Hand and Till [67]. To test whether the results were obtained by chance, all the models 

were trained with permuted labels 1000 times (permutation test). The null hypothesis is 

that the relationship between the data and the labels cannot be learned by the classifier 

during training.  To reject the null hypothesis we accepted a risk of 0.05.  

 

Table 2: Data partitioning used for each scenario. Number of sensor arrays and samples 
used in the different considered scenarios. 

 
(see below) 

 

3. Results and discussion 
 

This work aims at developing calibration models that reject sensor variability and can be 

extended to new replicas with no need of transfer samples. To meet this goal, general 

calibration models were built with samples from five sensor array replicas and were 

scrutinized in their ability to predict samples acquired with a sensor array not present in 

the training set. The performance of these general calibration models was compared with 

that of individual models (calibrated with only one sensor array). In addition, a small 

subset of features was selected to construct general models that are parsimonious and 

more robust. 

 

3.1. Dataset visualization. 
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A Principal Component Analysis (PCA) provided an exploratory analysis of the captured 

dataset (see Figure 4). Projected data appears in regions for different gas classes, with 

some overlap among them. Different sensor responses, due to the different presented gas 

conditions, dominate the inherent sensor variability in this PCA projection. Although 

Figure 4 provides a simple and yet informative visualization of the dataset in a 2-

dimension space, in general, calibration models will make use of a higher number of 

dimensions.  

 
(see below) 

Figure 4: PCA scores of the different sensor array samples. Numbers correspond to the 
sensor array and color codes the gas (class). 

 

3.2. Individual calibration models 

 

Models consisting of PLS-DA followed by k-NN were built using data acquired with one 

sensor array. Then, the discrimination ability of the models was evaluated with data 

acquired with the same sensor array using data not presented in calibration (scenario 1) 

and using data captured with other copies of the sensor array (scenario 2).  

 

Figures 5a and 5b show the confusion matrices for scenario 1 and scenario 2, 

respectively. The built calibration models were able to perfectly predict the class of new 

samples if they were acquired with the same sensor array (100% classification rate). 

However, individual models substantially decreased their predictive ability for new 

samples measured with other replicas of the sensor array. In scenario 2, even though all 

the obtained models predicted propane, nitrogen dioxide and methane without error, only 

62.5% of the CO samples were correctly classified. The rest of CO samples were 

misclassified as background air (40 samples), ethanol (16 samples) or acetaldehyde (4 

samples). One-fourth of the air samples acquired during the baseline cycle was wrongly 

predicted as CO. In addition, one of the models misclassified one acetaldehyde sample as 

CO, giving a total of 41 false positives and 60 false negatives for the task of CO detection. 

The overall classification rate (CR) was 91%. We run a Fisher’s exact test (two-tailed) 

[68] to assess the significance of the observed differences between the CR obtained for 

the model tested with the same sensor array, and the CR obtained for the model tested 
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with different sensor arrays. The null hypothesis that establishes that both distributions 

are the same was rejected (p-value<0.0001). 

 

Thus, our results confirmed that individual models were local to the sensor array 

employed for calibration. To a certain extent, individual models were able to predict gas 

samples from other replicas, but generally failed in one of the most relevant 

discrimination tasks: CO detection [69]. For this gas, individual models were not able to 

extrapolate to data acquired with other arrays. The local behavior of models trained with 

one single array is well-known due to the already mentioned variability among sensors. 

 

(see below) 

Figure 5: Confusion matrix obtained when the model is tested with data acquired with the 
same sensor array present in calibration (top, scenario 1) and when it is tested with data 

acquired with different copies of the array (bottom, scenario 2). The classification 
accuracy decreases if the calibration model did not include data from the sensor array 

used for training. 

 
3.3. General calibration models 

 

General calibration models were built using data captured with four replicas of the sensor 

arrays, and they were then evaluated with the remaining replica. Figure 6 shows the 

confusion matrix after all the iterations and sensor combinations were performed. 

Interestingly, results show that the models can be extended with high accuracy to new 

replicas, even though no measurements from the new sensor array were included in 

calibration. General models achieved a classification ratio of 99% of the test samples 

despite the perturbation due to varying humidity levels. From the 280 test samples, the 

model only confused two air samples with CO. We also performed Fisher’s exact tests to 

evaluate the significance of the different CRs. The null hypothesis that the distribution of 

the general calibration model and the distribution of the individual calibration models 

(tested with data from the same array) are the same cannot be rejected (p-value=0.5). The 

hypothesis that the general model is the same than the individual model tested with data 

from new arrays was rejected (p-value<0.0001). Hence, although the slightly lower CR, 

statistically, the distribution of the CR obtained with the general model (scenario 3) 

cannot be considered different to the distribution of the predictions when a calibration 

model is built and tested with the same unit (scenario 1).  
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Figure 7 shows the PLS-DA score plot for a general calibration model. This 

representation highlights the presence of different clusters that correspond to the distinct 

gases. In general, test samples of every gas fall close to those of the calibration set in the 

PLS-DA subspace, thereby suggesting a good generalization of the model.  

 

The inclusion of the sensor array variability to the general calibration model improved 

the ability of the model to predict the class of samples acquired with new sensor arrays. 

The model is able to extract the redundant information of the sensor arrays, reducing 

thereby the individual sources of noise. In order to ascertain to what extent sensor 

variability needs to be included in the calibration process, we evaluated the performance 

of a new model that uses averaged sensor signals.  

 

Specifically, we compared the performance of our calibration method that incorporates, 

directly, all the variability of the sensor signals, with a methodology that averages the 

response of four calibration units. The calibration models obtained with the averaged 

responses were tested with data acquired with the sensor array not included in calibration 

(a unit was set aside for model evaluation, and we repeated the process until all the units 

were used for test). Classification rate (97.5%) was higher than the one observed for 

individual models applied to other sensor arrays replicas  (91%), but did not reach high 

classification rate obtained with the general models that carry all inherent sensor 

variability (99%). Similarly, than for the global model, air samples were misclassified as 

CO. However, for the model built upon averaged signals, air samples were also 

misclassified as methane, and CO samples were wrongly classified as air and propane.  

 

Actually, the average of the signals still carries information that is beneficial to reduce 

individual sources of noise [70]. Therefore, one expects the averaged model to perform 

better than the direct transfer of an individual calibration model. Hence, that for efficient 

rejection of the sensor variability, the calibration model needs to rely on a training dataset 

that includes measurements that are representative of the sensor variability, which is not 

the case in the case of averaged sensor responses across units. Additionally, averaging 

the sensor signals still requires the use of four sensor units, so we do not have any savings 

in terms of test effort. Results confirm that the averaged-signal model does not reach the 

classification rates obtained by the global calibration model, confirming thereby the 
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benefits of including all sensor diversity to the calibration dataset. In this sense, the 

variance corresponding to the intrinsic sensor variability was better rejected with the 

calibration model trained with the original signals.  

 

 

(see below) 

Figure 6: Average of confusion matrices of the general calibration models. Models were 
trained with samples of four different arrays and evaluated with samples of a different 

array. The performance of the general model is similar to the performance of individual 
calibration models when were trained and tested with samples of the same array.  

 
 

(see below) 

Figure 7: PLS-DA score plots for the general calibration model. Color indicates the gas 
type and marker type indicates calibration/test point. (left) LV 1 vs LV 2, (right) LV 1 vs 

LV 3. Calibration and test points appear in the same regions, confirming thereby a 
generalization of the models.  

 

The superior performance of the general calibration models with respect to the individual 

models, when applied to new sensing units, may come from i) the higher data variability 

in the calibration dataset due to the inclusion of different replicates, and ii) the larger size 

of the calibration dataset. In order to investigate further these two effects, we built 

calibration models with data from different sensing units but keeping constant the total 

number of calibration measurements. Figure 8 shows the model performance, in terms 

of classification rate, as calibration data from increasing number of units is used. Two 

strategies are shown in the mentioned figure: i) considering all available samples of the 

used arrays (each new unit adds 56 calibration measurements to the model), and ii) 

keeping constant the total number (56) of calibration samples. Results show that diversity 

from different sensor arrays is favorable for building general calibration models, although 

when all the available data is used, the performance of the calibration model increases 

more rapidly. Nevertheless, in practical calibration scenarios, one may expose the sensor 

arrays to the calibration conditions simultaneously. In this case, it is recommendable to 

use all data at hand. From Figure 8 one can observe that adding a second array to the 

calibration model increases the prediction ability of the model significantly, and the 

performance reaches a plateau when three sensor arrays are used. Hence, one can 

conclude that, for the considered classification task, three copies of the sensor array would 

suffice to build general calibration models that can be extended successfully to new 
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arrays. However, more complex tasks or systems with different sensing elements may 

require a different number of units in calibration to provide reliable general models.     

 

(see below)  

(new figure in the manuscript, figure numbers are shifted from now on) 

Figure 8: Performance of the models when evaluated with test samples from units not used 
in calibration, for different number of sensor arrays used in calibration. Keeping the 

number (56) of calibration samples constant (red), and using all the data available (56 per 
sensor array) for the units used in calibration (blue). 

 

 

3.4 Sensor selection 

 

We also explored whether a subset of the 24 considered features (24 combinations of 

sensor type and operating temperature) can be selected to model the chemical variation 

of interest and reject the calibration conditions, since this might help in model 

generalization. In particular, we selected a subset of features using GA with the purpose 

of building more robust general models. Since feature selection is directly related to the 

selection of sensing elements, it also results in more cost-efficient devices. 

 

The methodology based on GA selected 4 features of each array after 96 executions: MLC 

sensor at 245ºC and 356ºC, MLK at 381ºC, and MLX at 386ºC. The average of the 

confusion matrices for scenario 4 is presented in Figure 9. General calibration models 

that only use data from 4 sensors provided good predictions of the gas classes. 

Specifically, all the acetaldehyde, methane, CO, ethanol, nitrogen dioxide, and propane 

samples were correctly classified. The confusion of CO with background air is the only 

one that appears in the general calibration models, and it happens at a higher frequency 

with models that incorporate feature selection. In particular, CO showed nine and two 

misclassifications in the general models with and without feature selection, respectively.  

 

With a 97% of classification rate, general models with feature selection showed a good 

ability to predict samples of new arrays. Their classification accuracy was higher than 

individual models (91%) and very close to the general models considering the complete 

sensor array (99%). The Fisher’s exact tests evaluated the significance of the CRs for the 

general model with, and without feature selection. The null hypothesis that establishes 
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that both distributions are the same cannot be rejected (p-value=0.062). These results 

seem to indicate that in order to build general models, sensor array diversity is an asset 

but, in the search for simpler arrays, the provided benefits get slightly degraded. 

 

Figure 10 shows the PLS-DA projection of one general calibration model with feature 

selection. Similarly to the calibration model with all the features, the proximity among 

training and test datasets suggests the good generalization of the models with feature 

selection.   

 

An optimum selection of sensors could basically keep constant the performance of 

general calibration models with the advantages that a simpler sensor array brings, such as 

miniaturization, cost reduction and a parsimonious model of easier interpretation (due to 

the reduction of sensing elements). In particular, feature selection allowed the 

identification of the common features that have high predictive performance. We avoided, 

thereby, including many variables in the model, which might be modeling other 

conditions that include unwanted sources of variance. It could be that the most accurate 

model, which is the general without feature selection, is also the one that degrades faster 

in time due to the inclusion of non-informative features. It is the application or the 

demands of the user that determine whether the drop in the performance (limited to one 

gas class only) compensates or not the reduced size of the sensor array after feature 

reduction, its cost-efficient design, and the simplicity of further re-calibration or sensor 

replacement. For a practical application, it would also be interesting to assess whether the 

model that incorporates feature selection shows reduced drift in time or rejects other 

sources of variability better than the general model with the complete sensor array. 

 

(see below) 

Figure 9: Average of confusion matrices of the general calibration models with selected 
features after GA. Models were trained with samples of four different arrays and 

evaluated with samples from a different array. 

 
(see below) 

Figure 10: PLS-DA score plots for the general calibration model with feature selection. 
Color indicates gas type and shape indicates train/test data. (A) LV 1 vs LV 2, (B) LV 1 vs 
LV 3. The model is capable of separating the seven different gases partially. Training and 

Test samples follow the same distribution. 

3.5 Area Under the ROC Curve (AUC) 
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In order to compare further the performance of each model, we computed a generalization 

of the AUC for multiclass classification to estimate the robustness of the different models. 

Figure 11 shows the distribution of AUC values for scenarios 2, 3, and 4. The averages 

of the AUC obtained for general calibration models with and without feature selection 

are 99%. On the other hand, the performance of individual calibration models evaluated 

with new samples drops to 97%, compared to 100% for the scenario in which the model 

was tested with samples from the same sensor array. In addition, results of permutation 

tests point out the statistical significance of the results. With a 95% of confidence, all the 

models rejected the null hypothesis that the obtained AUC values could come from a 

model trained with random labels (i.e., random distribution). 

 

The obtained AUC values confirm that general calibration models show higher prediction 

ability to classify samples acquired with new sensor arrays than models built with one 

sensor array. Moreover, general calibration models with only four features are also able 

to predict samples from new arrays successfully. This indicates that the selected features 

are informative and resulted in a parsimonious model to improve the robustness of the 

calibration. 

 

(see below) (adapted figure according to reviewer’s comments) 

Figure 11: Relative frequency of the area under the curve (AUC) computed for each 
model. General models are more accurate than individual models for the prediction of 

new samples from arrays not presented in training. The histograms present the relative 
frequency for all the possible combinations of arrays.  

 

3.6 Model complexity  

 

The complexity of the models was studied in terms of the number of latent variables, LV, 

and the number of neighbors, k, that were selected during model training. Figure 12 

shows the frequency of selection of optimum LV and k values for individual and general 

models. For both types of models, optimum k ranges from 1 to 3, whereas the optimum 

number of LV tends to be larger in individual models (LV = [5,7]) than in general models  

(LV = [3,5]). Higher number of LV means that individual models are more complex. This 

possibly indicates that the models are capturing better the particular behavior of the 

calibrated sensor array, but this information is specific for this sensor array and it becomes 
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a misrepresentation of the general sensor behavior. Figure 12 also shows that general 

models with feature selection perform better when trained with fewer LV. This is a direct 

consequence of the previous dimensionality reduction. Hence, GA helps in reducing the 

complexity of the model.  

 

(see below) (adapted figure according to reviewer’s comments) 

Figure 12: Relative frequency of the number of latent variables and nearest neighbors 
used to build general and individual models. General models use fewer latent variables 

than individual models, providing an easier interpretation and a better generalization of 
the model. 

 4. Conclusions 

 

In this work, we presented a methodology to improve the robustness of calibration models 

and reduce calibration costs of standalone MOX gas sensor arrays. Our approach is 

operative, scalable to a larger number of calibration units, and can be readily applied to 

multiple application fields that MOX gas sensors have found and may find in the future.  

 

Our methodology is compatible with any performance test that could be carried out before 

actual system calibration to remove faulty elements. In this work, however, we focused 

on the calibration process to provide a prediction for a new sample, given a task. MOX 

sensors can be incorporated in systems targeting very different applications, where each 

application will have its own target volatiles and interfering gases. Hence, given the broad 

response that MOX gas sensors produce, their non-specificity, and the different array 

configurations (number and types of sensors, operating temperatures, etc.), it is necessary 

to define a set of calibration conditions specific for each application. 

 

Although our study shows that the best results are obtained when sensor arrays are 

calibrated individually, this approach is not feasible in mass-production applications due 

to high costs. Previous approaches to obtain robust models and reduce costs are mainly 

based on calibration transfer. However, these strategies still require the acquisition of 

calibration samples for every new system and, ultimately, they rely on calibration models 

built upon individual sensor systems. Herein, we showed that general -or global- 

calibration models can be obtained if several replicas of the sensor array are included in 

the calibration process. Moreover, feature selection was also applied to avoid including 
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sensors or features that overfit the model to certain sampling, environmental or 

instrumental conditions. All in all, the obtained calibration models were able to reject the 

intrinsic system variability: for the proposed classification task, the prediction ability of 

the models only decreased marginally with respect to specific calibration models. Hence, 

the variability present in the training set allowed building robust models that could be 

extended to new replicas without any further calibration, resulting in calibration models 

that are replica-independent. 

 

We also showed that general calibration models tend to be simpler (fewer number of LV) 

than individual calibration models, especially after selecting a subset of informative 

features or sensors. Actually, individual models are trained for the particular array of 

sensors, and higher dimensions of the model account for the specific response of the set 

of sensors. This information captured at higher dimensions results in better system 

performance, but the same information misleads the calibration model when it is used for 

other arrays. Higher dimensions can be understood as a more detailed calibration model 

for one array, but at the same time, it could be considered as an overfitted model when 

used for other arrays. Similarly, general models without feature selection performed only 

slightly better than the ones with a subset of selected features. However, general models 

with feature selection reinforce the common features that systematically exhibit better 

predictive ability using other replicas, and feature selection may help to reject better other 

sources of unwanted variability. Therefore, even though, for the selected test task, the 

model performance after feature selection does not improve the model with the complete 

sensor array, the calibration of a new sensor array, or a future re-calibration, might work 

better after feature selection. 

 

We tested our methodology on the classification task of six different volatiles at different 

humidity levels. We selected the volatiles in view of their relevance in potential 

applications for chemical sensing, such as fire detection (carbon monoxide), combustible 

gas leak detection (propane and methane), air quality monitoring (nitrogen dioxide), or 

common interfering volatile (ethanol). However, our calibration approach should be 

tested for scenarios that consider more complex tasks, closer to final applications, using 

the specifically-designed detection systems. Also, it may be necessary to investigate our 

approach to a regression task. While quantification is usually a requirement in many 

applications, testing our methodology in a regression task would provide more sensitive 
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measures on the performance of the models when extended to new replicas. Actually, 

calibration transfer strategies did show good results when tested in regression tasks 

[38,39].  

 

Specifically, we showed that, for the proposed test scenario, using four copies of the 

developed sensor array, one can build models that generalize to other replicas. New copies 

of the sensor array would not need any specific calibration nor the acquisition of transfer 

samples if they are set to operate under the same task, saving, therefore, future calibration 

costs. Nevertheless, the number of copies required to build a general calibration model 

may change for different sensing systems and proposed tasks. The goodness of the model 

extension to new units depends on the complexity of the task and the inherent sensor 

variability. Or, in other words, the ability of the general model to successfully predict 

samples from new sensor arrays is conditioned by the responses in the sensor space of the 

presented stimuli with respect to the distribution of responses caused by the inherent 

sensor variability, given a stimulus. Hence, one may need to explore the feasibility of 

building general calibration models for more complex tasks or other technologies with 

different sensor tolerance. Nevertheless, if the calibration of a particular unit needs to 

meet higher standards or accuracy, one can always perform individual calibration. 

Calibration costs and system design can also be reduced by applying feature reduction 

techniques. We also showed that the number of sensing elements can be reduced while 

system accuracy remains. If the system is built with a fewer number of sensors, a larger 

number of sensor arrays can be calibrated simultaneously, scaling down calibration costs 

as well.  

 

It is worth noting that the initial calibration process may be more expensive than 

individual calibrations. For instance, more units need to be built and exposed to 

calibration conditions, more sophisticated equipment may be required to acquire several 

units simultaneously, or more time may be necessary to complete the whole calibration 

dataset. However, in the long term, general calibration provides significant cost reduction 

for mass-production applications where a large number of units needs to be calibrated: 

only a few will be calibrated, and the others will benefit from the general calibration 

model. The savings in calibration costs will be more and more significant as the total 

number of sensor arrays produced becomes larger.  
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