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Abstract

A new experimental setup for the generation of homogeneous, monodisperse bubble suspensions in turbulent duct flows in

microgravity has been designed and tested in drop tower experiments. The setup provides independent control of bubble size, void

fraction and degree of turbulence. The device combines several slug-flow injectors that produce monodisperse bubble jets, with a

turbulent co-flow that ensures homogeneous spatial spreading. Bubble separation in the scale of the most energetic eddies of the

flow, and bubble size sufficiently smaller, ensure that turbulence is most efficient as a mechanism for spatial spreading of bubbles

while preventing coalescence, thus optimizing the homogeneous and monodisperse character of the suspension. The setup works

in a regime for which bubbles are spherical, but sufficiently large compared to the turbulent dissipative scales to allow for two-way

coupling between bubbles and carrying flow. The volume fraction is kept relatively small to facilitate particle tracking techniques.

To illustrate the potential uses of the method we characterize the statistics of bubble velocity fluctuations in steady regimes and we

characterize the transient relaxation of the buoyancy-driven pseudo-turbulence when gravity is switched-off.

Nomenclature

ν Kinematic viscosity

Re Reynolds number

Uc Characteristic flow velocity

Lc Characteristic system size

Tc Characteristic time of the flow

λk Kolmogorov length

τk Kolmogorov time

λMax Characteristic size of most energetic eddies

τMax Characteristic time of most energetic eddies

τB Bubble response time

Ql Volumetric liquid flow rate

Qg Volumetric gas flow rate

Qco-flow Volumetric co-flow rate

ϑ Void fraction

dT T-junction tubes diameter

dB Bubble size

ui Component of the bubble velocity in the i direction

n Mean number of bubbles on given interval

σi Standard deviation of i component of bubble velocity

a, b, τ Fittings parameters for bubble velocities

d Mean separation of pair of bubbles

dxy Mean separation in the plane xy between pairs of bubbles

d0, vsep,L Fittings parameters for pair separations

1. Introduction

Dispersed multiphase turbulent flows are common in many

engineering applications, but pose formidable challenges to

fundamental theory due to the complex interplay between the

inherent fluctuations of the carrier and the random distribution

of the dispersed phase, together with the presence of break-up

and coalescence phenomena [1, 2, 3, 4, 5]. In particular the

physics of bubbles in a liquid carrier [6, 7, 8] is widely recog-

nized as crucial for a variety of space technologies. These in-

clude for instance power generation and propulsion [9], thermal

management [10, 11], or life support systems and environmen-

tal control for life in space [12, 13, 14]. Given that the presence

or absence of buoyancy forces affects crucially the physics of

bubbly flows, the fundamental understanding of gas dispersions

in microgravity conditions becomes strategic for space technol-

ogy. In addition, the study of bubbly flows in weightlessness

poses important challenges of management and control [15, 16]

for its study and for practical applications. In this context, the

capacity to generate monodisperse bubble suspensions in the

absence of buoyancy forces, with good control of parameters

such as bubble size and void fraction, becomes a very promis-

ing but challenging technical problem. Technical solutions to

this problem may have direct relevance to specific technologies

but at the same time they will provide the means to generate

adequate testing grounds for fundamental research on turbulent

bubble dispersions in microgravity.

Homogeneous bubbly flows have been largely studied in the

past for the case of normal gravity [17, 18, 19]. Unfortunately,

there is a lack of high quality data for this kind of flows in
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microgravity due to the obvious limited access to micrograv-

ity environments but in particular to the technical challenges

of generating bubbles of uniform size with good control but

without taking advantage of buoyancy forces. Previous studies

have used for instance a hypodermic needle of 0.15 mm diam-

eter to inject gas into a liquid co-flow that detached bubbles of

typically 0.92 mm in diameter carried in a turbulent pipe of 4

cm in diameter [20]. Although this procedure allows to gener-

ate bubbles with a very precise and controlled size, it creates

them at a very low rate. Despite the excellent bubble homo-

geneity reported, these conditions do not allow one to study

the interaction between large bubble ensembles and turbulence

in the spirit of the present work. Similarly, in the area of mi-

crofluidics there are well known mechanisms to generate per-

fectly monodisperse bubbles that would perform adequately in

microgravity [e.g. 21]. However, the microfluidic environment

misses the turbulence component that is present in many appli-

cations and that we are interested in here. In addition, if injected

in a turbulent flow, they would typically be too small compared

to the relevant turbulent scales to produce a significant effect.

In this paper we build on the previous development of a de-

vice for the injection of monodisperse bubble jets in a quies-

cent liquid [22, 23, 24, 25, 26, 27, 28], to design, construct and

test a gravity-insensitive method that generates monodisperse,

homogeneous bubble suspensions, with good and independent

control on the degree of turbulence, the bubble size and the bub-

ble density. The system is tested in microgravity by means of

a series of free-fall experiments conducted in the ZARM Drop

Tower at Bremen. We discuss and demonstrate the practical

use of this procedure and we illustrate its functionality and per-

formance to acquire valuable data in different situations. The

set-up was designed to allow a separate control of the bubble

characteristics and of the turbulent flow. The idea is to combine

several injectors where a slug flow with monodisperse bubbles

has been created in a capillary T-junction of liquid and gas mix-

ing, prior to injection. The bubble diameter is close to that of

the junction tubes, typically of the order of one millimeter, but

can be fine-tuned through the week dependence on Weber num-

ber taking advantage of the control of the volume injection rates

of both gas and liquid [22]. The Weber numbers used are suf-

ficiently small so that bubbles are essentially spherical once in-

jected in the carrying co-flow. However, bubbles are relatively

large compared to the turbulent dissipation scale, so they may

have an active coupling with the flow. The latter is a duct flow

with a side of 100 mm allowing for eddies much larger than

the bubble size. The bubble densities here considered are such

that the the void fraction is small, typically of a few percent,

to facilitate particle tracking techniques and to avoid coales-

cence, but the method is not limited to these small values. In our

experiments, the typical bubble-bubble distance is comparable

to the size of the most energetic eddies, thus favoring efficient

spatial dispersion while avoiding coalescence phenomena. The

void fraction can also be changed by tuning the volume rates of

gas and liquid injection at the capillary T-junctions that produce

the slug flows injected in the carrying co-flow, as described in

[22, 23, 24]. Changing the number of such injectors, which we

keep at four in all our experiments, gives additional freedom

Figure 1: Snapshot of the experimental channel while injecting bubbles from

the 4 injectors

to increase the void fraction further. Finally, the degree of tur-

bulence of the carrying flow can be changed by controlling the

total liquid flow rate pumped into the duct.

For illustrative purposes and to demonstrate the applicability

of the set-up, we address two situations of interest. First, we

use particle-tracking techniques to characterize the statistics of

bubble velocities and to discuss their interaction with the flow

in nearly stationary conditions. Second, we study the decay of

pseudo turbulence caused by buoyancy forces in normal gravity

[29, 30, 31], when gravity is switched off. In normal gravity, the

decay of pseudo turbulence has been measured in the region left

behind by a bubble swarm [32]. In our case we can directly

visualize the process using the bubbles themselves as tracers.

The method proposed is sufficiently versatile and accurate to

open many possibilities of acquiring systematic data in a vari-

ety of situations, that in turn may provide new insights into the

fundamental physics of turbulent bubbly flows.

2. Experimental generation of turbulent bubble suspen-

sions

2.1. Description of the apparatus and the protocol

To achieve a controlled homogeneous distribution of

monodisperse bubbles within a turbulent flow we use a vertical

duct of square section and dimensions 800x100x100 mm3. At

the base of the channel we inject the carrying co-flow from nine

evenly-spaced inlets (separated 30 mm between centers) with

14.5 mm inner diameter and with a final nozzle of 90◦ opening

up to 26.9 mm diameter. Those inlets surround four bubble in-

jectors (see Figs. 1,2) of 1.6 mm inner diameter also separated

distances of 30 mm between centers. The co-flow is provided

by a main water pump and split into the nine lines (one for each

inlet in the duct) by using a manifold. Due to space restrictions

inside the drop capsule, the main water tube suffers of a sharp

90◦ bending just before connecting it to the manifold producing
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Figure 2: Sketch of the experimental setup. 1-Gas Tank, 2-Filter, 3-Pressure

regulator valve, 4-Flow-meter, 5-electronic valve, 6-Precision orifice, 8-Manual

throttle, 9-Liquid pump, 10-Liquid reservoir with air pressure, 11-Phase sepa-

rator, 12-Experimental cell

uneven pressure distribution in it. To correct this effect we in-

troduce a screw-ring on each outgoing line of the manifold and

manually adjust their tightening on each tube in order to obtain

an even flow distribution through all lines. Not correcting this

effect would produce longer spatial transients in the duct before

the stationary distribution of the flow was reached and even the

occurrence of recirculation flows. To ensure as much as possi-

ble the required well developed turbulent co-flow conditions we

locate a wire mesh (with a thickness of 2.5 mm) at the base of

the duct with square holes of 10x10 mm2, which corresponds

to the characteristic scale of the most energetic eddies in steady

conditions in such a duct.

Each bubble injector consists of a T-junction with capillary

tubes of dT = 1.6 mm, in which air and water are injected sepa-

rately to generate a slug flow [22]. The outlet of the T-junction

connects to a glass tube of the same inner size, allowing to in-

ject the slug flow directly into the channel at a distance of 150

mm from the base. In this way we try to ensure the interaction

between an homogeneous and well developed turbulent co-flow

and the bubble jets. For the water flow entering into the T a sec-

ond water pump was used. The air flow was provided by a pres-

sure tank with a pressure regulator and, after distributed into the

corresponding four lines with another manifold, has also been

connected to the T-junctions. In order to obtain a controlled

small gas flow for each line, it has been added one precision

orifice (of typically 0.0012 in ≃ 30.5 µm in diameter) at each

air line just before the T-junction. These serve to soften large

gas pressure variations into small flow changes, providing re-

ally controlled gas flows as well as a useful way to decouple

the gas lines, achieving a good and independent performance

of the four bubble generators. A complete sketch of the whole

arrangement is presented in Figure 2.

Experiments have been performed using commercial mineral

water1. The presence of a minimal amount of solute in the liq-

uid has several important effects in bubbles: it increases the sur-

face tension, making the bubbles more spherical; it produces

a no-slip boundary condition at the gas-liquid interface; and

it significantly decreases the probability of coalescence when

bubbles collide. Note that in other experiments performed with

de-ionizated water, a slight deformability of bubbles of our typ-

ical size can be appreciated in the presence of buoyancy forces

[33]. This deformability has a relevant role in the vicinity of the

injectors, where bubbles suffer strong oscillations of their sur-

face due to the sudden deceleration and to the large gradients of

flow velocity affecting them in that region.

To record the experiments four high speed video cameras

have been used: one capturing the bubble injectors, another

filming the area roughly at the center of the duct, and two more

at the end of the channel, recording it from two perpendicular

directions.

The experimental protocol is as follows. Control parameters

and flows can be adjusted and monitored during several min-

utes with the experimental capsule at rest, and hence with grav-

ity. When flows are steady with the desired parameters cam-

eras start recording. Afterward the capsule is released and mi-

crogravity conditions are achieved, lasting during 4.7 s corre-

sponding to the free fall. Due to the limited capacity of the high

velocity cameras, the films are limited to approximately 8 s at

a frame rate of 1000 fps. For that reason for each experiment

only 3 s of bubbly flow prior to microgravity is recorded. A

total of 36 drops were performed. Several of them were used

to test the setup and to improve and refine the injection system,

and 11 drops were used for the data analysis.

2.2. Pressure compensation system

The T-junctions used to generate the slug flow injected into

the cavity produce the same outcome independently of the de-

gree of gravity due to the negligible effect of the buoyancy

forces upon the process of bubble formation and detachment.

Nevertheless, in our vertical configuration with the injectors lo-

cated below the large mass of water filling the duct, the sudden

loss of hydrostatic pressure when the microgravity conditions

are switched on will propagate through the system [34], pro-

ducing a large change in the operating conditions in the T, and

inducing a transient in its performance that may have a non neg-

ligible relaxation time, and that may have a significant effect on

the very early stages of the experiment.

To minimize the effects of the transition to microgravity in

the bubble injectors, we have used an appropriate procedure to

maintain the operating pressure in the T-junctions as constant

as possible during the gravity switch-off. This is achieved by

1Werretaler Aqua Mineralwasser. Ionic content in mg/l are: Na+ (16.4), K+

(2.4), Mg2+ (51.4), Ca2+ (184.5), Cl− (45.7), SO2−
4

(411.2) and HCO−
3

(278.5)
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Figure 3: Schematics for the co-flow liquid line with the pressure compensation

system. Gray areas represent elements filled with water while white ones are

filled with air.

increasing the reference pressure in the whole system by the

same amount as the hydrostatic pressure loss in the T-junctions.

Figure 3 show the schematics of the main water line for the

injection of the co-flow into the experimental channel. The gas

tank and the three valves are used in order to compensate the

pressure loss during microgravity. The specific procedure used

to this aim is the following:

1. On ground, with valves “A” and “B” open, we regulate the

pressure PT in the gas tank until the water column below

it reaches the height at which the T-junctions are placed.

By doing that, we are setting all the air in the tank (and

in its connecting tubes) at the same pressure as in the T-

Junctions.

2. After adjusting the pressure in the gas tank, valve “A” is

closed. From that point on, we can keep working in normal

gravity conditions, but only valve “B” should remain open

during this period.

3. At the start of microgravity, we close valve “B” and open

valve “C” instead. In that way PT ideally becomes the

new reference pressure while the hydrostatic pressure dis-

appears. Notice that we have kept valve “A” closed in order

to prevent possible co-flow deviations through the gas tank

that could happen if valves “A” and “C” were simultane-

ously open.

Note that some further adjustments of the initial pressure PT

on step 1 to optimize the procedure are necessary, since the

sudden change of pressure in the duct during this protocol (most

importantly in the superior part of the duct) will change the

volume of all the present bubbles, thus producing a small flow

through valve C and hence correcting the final value of PT .

3. Experimental results

3.1. Some considerations about the duct flow

Through the present work we will describe the degree of tur-

bulence in a duct flow by means of the Reynolds number, de-

fined as

Re =
UcLc

ν
, (1)

with ν being the kinematic viscosity of water, Uc the charac-

teristic velocity of the flow (its mean velocity) and Lc the char-

acteristic size of the system (the width of a transversal section

of the channel, i.e. Lc = 100 mm). Even though the degree

of turbulence in the range of Reynolds numbers studied here

is only moderate, it is convenient, as a theoretical reference, to

consider the values of the relevant scaling parameters for fully

developed turbulence. Table 1 shows the typical flow parame-

ters used in our experiments, corresponding to Re = 6000 and

Re = 13000.

Re λk λMax τk τMax Tc

6000 0.15 mm 10 mm 22 ms 360 ms 1700 ms

13000 0.08 mm 10 mm 7 ms 170 ms 770 ms

Table 1: Scales of turbulence in a duct flow, being λk and τk the Kolmogorov

scales, λMax and τMax the scales of the most energetic eddies and finally Tc =

Lc/Uc the characteristic time of the flow. τMax estimated using scaling relations

of fully developed turbulence applied to the size of the most energetic eddy

λMax

Furthermore the response time τB of the typical bubbles in-

jected into the channel [35] is

τB =
d2

B

36ν
≃

{

70 ms , for dB = 1.6 mm

170 ms , for dB = 2.5 mm
(2)

Comparing the scales of turbulence in Table 1 with those as-

sociated to bubbles, seen in equation (2), we find that λk .

dB . λMax and τk . τB . τMax, implying that bubbles may be

expected to exhibit an active behavior in relation to the smaller

structures of turbulence and, at the same time, not produce ma-

jor alterations on the main flow or on the most energetic pattern

of turbulence.

The achieved void fraction ϑ of gas injected into the channel

can be calculated by

ϑ =
4Qg

4Ql + 4Qg + Qco-flow

, (3)

where Ql and Qg stand, respectively, for the liquid and gas

flow rate injected at each one of the four equivalent T-junctions.

Qcoflow is the total liquid flow rate through the nine inlets. The

value of the void fraction ϑ 6 0.5% is quite small, pointing

in the direction of a limited impact of bubbles into the main

structure of turbulence. This value is even smaller for the ini-

tial bubbles, which have been injected during normal gravity

conditions and for which buoyancy forces have increased the

distance between them.
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Figure 4: Snapshots for experiments with Ql = 70 ml
min

and Qg = 46 ml
min

(dB ≃

1.6mm) from each injector. Scale in cm measures distance from the point where

bubbles are injected. Cases (a)-(e) correspond to Re = 13000, while (f) is for

Re = 6000. (a): Injection in 1g. (b): Injection in µg. (c): Bubbles in 1g.

(d): Bubble suspension in µg of bubbles injected during 1g conditions. (e)&(f):

Bubble suspension of bubbles already injected in µg conditions

3.2. Qualitative observations

When bubbles are injected under normal gravity conditions

they are strongly accelerated by buoyancy forces and rise

through the channel following either helical or zig-zag trajec-

tories [36]. In their path, they drag the liquid on their surround-

ings, inducing velocity fluctuations that can be either dissipated

by viscosity or strongly enhanced by cooperative interaction be-

tween collections of bubbles, up to scales of movement much

larger than the size of the bubble, thus creating what is known

as pseudo-turbulence [37]. The vertical injection of bubbles

creates roughly cylindrical columns of rising bubbles that inter-

act strongly and follow complex oscillatory rising paths. The

strong buoyancy forces and the pseudo-turbulence generated in

the neighborhood of the bubbles, confine them in these columns

regardless of the degree of turbulence inherent in the duct co-

flow.

Once the buoyancy is switched off, bubbles quickly deceler-

ate and relax to the local liquid flow velocity within their vis-

cous relaxation time. In a time scale of the order of Tc, the

flow becomes more homogeneous and bubbles spread to fill

the whole channel. Even though some remnants of the pseudo-

turbulence may have longer relaxation times, the time scale of

Figure 5: Snapshots for experiments with Ql = 18 ml
min

and Qg = 46 ml
min

(dB ≃

2.5mm) from each injector. Scale in cm measures distance from the point where

bubbles are injected. Cases (a)-(e) correspond to Re = 13000, while (f) is for

Re = 6000. (a): Injection in 1g. (b): Injection in µg. (c): Bubbles in 1g. (d):

Bubble suspension in µg of bubbles injected during 1g conditions. (e):&(f):

Bubble suspension of bubbles already injected in µg conditions

the experiment is sufficient to observe the emergence of a steady

regime dominated by the co-flow.

Figures 4 and 5 show two representative snapshots of the dif-

ferent aspects explained above for bubble sizes: dB = 1.6 mm

and 2.5 mm, respectively. For both figures, cases a and b com-

pare the performance of the injectors in normal gravity and in

microgravity. Case c shows the distribution of bubbles in nor-

mal gravity conditions. Despite that they have risen a distance

of nearly 60 cm within a turbulent flow, it is easy to see how

they still remain confined at the central part of the duct due

to the buoyancy forces. Case d shows the distribution of bub-

bles at the same distance in microgravity conditions, after the

spreading of bubbles takes place. Finally, cases e and f show the

higher density of bubbles achieved when those that have been

injected in microgravity reach the observation areas. That is

because bubbles injected during normal gravity conditions, de-

spite being generated at the same frequency by the T-junctions,

acquire a finite velocity with respect to the carrying flow, due to

buoyancy forces, implying that mean separation between bub-

bles is larger. On the contrary, bubbles injected in microgravity

disperse to a density only dependent on the injection parame-

ters, as previously seen in equation (3). Density is even bigger
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# Ql (ml/min) Qg (ml/min) Qco-flow (l/min)

D1 75 34 35

D2 30 16 35

D3 70 51 80

D4 70 51 35

D5 37 19 80

D6 70 46 35

D7 70 65 77

D8 70 46 81

D9 18 46 81

D10 70 46 81

D11 18 46 81

Table 2: Parameters of injection correspondent to the experimental drops used

for the data analysis in the present work.

in f, due to its slower co-flow.

3.3. Bubble velocity statistics

Particle tracking has been used to identify the paths described

by all the bubbles in the recordings. The injection parameters

for the cases analyzed here are listed in Table 2. For experi-

ments of isolated bubbles it would be possible in principle to

reconstruct their three-dimensional trajectory from the data ex-

tracted of the pair of video cameras that simultaneously film at

perpendicular planes of the duct. In practice, however, this is

not possible in our case due to the large number of bubbles, im-

plying a high degree of screening and the inherent difficulty of

matching the bubble identities in successive snapshots. There-

fore we are not able to measure the components of position and

velocity over the visual direction z, perpendicular to the pic-

tures, but only over directions x, in the direction of the co-flow,

and y, perpendicular to both the co-flow and the visual direc-

tion. In the data analysis it is thus necessary to take into ac-

count that local fields at positions (x, y) are in fact averaged

quantities in regions that may include significantly differences,

like regions far or near the sidewalls.

In the present case and to perform a statistical analysis of

the bubble velocity in the duct we have averaged their velocity

on each point over temporal intervals of 0.6 s (being t = 0 the

beginning of microgravity). In addition to this, we have also

averaged over the direction of the main flow (x), assuming it

to be homogeneous for the relatively small distance contained

in the observation field of one video camera (around 10 cm).

Averages are then performed by partitioning the transverse (y)

width into 10 intervals, so that a dependence of results on the y

coordinate can be obtained.

Figure 6 shows the profiles of mean velocity of bubbles for a

typical realization with Re = 13000 and bubble size dT = 1.6

mm. The irregularities shown in those profiles are due to the

poor statistics of the experimental averaging (note that the mi-

crogravity conditions for each experiment last only 4.7 s) and

provide a grasp of the large velocity fluctuations taking place in

a given realization of the flow, corresponding to the relatively

high degree of turbulence. In order to obtain the regular profiles
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Figure 6: Profiles of mean velocity of bubbles 〈ux〉 at various times of the

experiment for a single realization (D8) with Re = 13000
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Figure 7: Profiles of mean velocity of bubbles 〈ux〉 averaged over the measures

of 4 different cameras of two equivalent experiments (D8+D10) at Re = 13000,

at various times of the experiment

of mean velocity, we average the results over four equivalent re-

alizations with the same characteristics. The resulting profiles

of mean velocity and root-mean-square of velocity fluctuations

are shown on Figures 7 and 8, respectively. In both figures it can

be appreciated a decrease in time of their magnitudes, which is

attributed to the decay of pseudo-turbulence, and hence con-

stitutes a first rough characterization of the temporal evolution

associated to the relaxation of the flow dragged by buoyancy

forces prior to microgravity.

Due to the mentioned averaging over the visual direction,

and given also the unavoidable limited replicability of an ex-

periment and the large fluctuations inherent to the turbulence, it

makes no sense to try to obtain averaged information on a local

basis. Therefore we will compare the different cases by averag-

ing out the spatial information into a single parameter for each

profile. This averaging will be appropriately weighted using
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Figure 8: Profiles of velocity fluctuations σx of bubbles averaged over the

measures of 4 different cameras of two equivalent experiments (D8+D10) at

Re = 13000, at various times of the experiment

information from the same experiments as follows,

ūi =

∑

k

〈 ui(yk) 〉 n(yk)

∑

k

n(yk)
, (4)

σ̄i =

∑

k

σi(yk) n(yk)

∑

k

n(yk)
, (5)

where n(yk) stands for the mean number of bubbles on each

interval of the y direction for a given temporal period, and

σ2
i
= 〈u2

i
〉 − 〈ui〉

2 is the variance of the i component of velocity.

This averaging will reduce each profile into one characteristic

parameter of the flow while granting prevalence of the informa-

tion from the areas with larger number of bubbles, which are

statistically more significant. This reduces the impact of the

contributions closer to the sidewalls, while focusing on the cen-

tral areas of the duct, where the flow is really mixed and fairly

uniform and homogeneous. Note that we have used the mean

density of bubbles instead of using the total number of velocity

measurements since the latter are highly correlated in a single

trajectory of a given bubble.

Results for relative velocity fluctuations are plotted in Fig. 9.

They are obtained over the averaging of equivalent realizations

with Re = 13000 for two different sizes of bubbles, but main-

taining the injected gas void fraction constant, and normalized

to the characteristic velocity Uc of the co-flow (i.e., its mean

velocity, as measured by a flow-meter placed right after the

pump). Results show no noticeable difference on the relative

velocity dispersion for both sizes of bubbles, suggesting that

bubble size does not play a significant role in this characteriza-

tion of turbulence in our range of parameters.

3.4. Decay of pseudo-turbulence

The averaged velocity of bubbles as a function of time for

several realizations with various injection parameters is pre-
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Figure 9: Relative velocity fluctuations for bubbles of size dB = 1.6mm and

2.5mm. Each line has been averaged over the mesures of 4 cameras from two

equivalent experiments at Re = 13000
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Figure 10: Evolution in time of the mean velocity of bubbles ūx. Each color

correspond to a different single experiment (see the legend in Fig 11). Expo-

nential fittings in solid lines are described in Table 3.

sented in Figure 10. Here each color represents a different ex-

periment. Circles stand for cases with co-flows with Re = 6000

while crosses correspond to Re = 13000.

Experimental values have been fitted to an exponential decay

of the form

ūx =
(

a + be−t/τ
)

Uc , (6)

where a is the mean velocity of the stationary flow, b corre-

sponds to the added mean flow at t = 0 due to the effect of

buoyancy forces (both a and b are normalized in units of the

characteristic velocity Uc) and τ is an effective relaxation time.

Observed decays are much slower than the scale τB associ-

ated to the relaxation of bubble velocity to the local flow ve-

locity which, as seen on Eq. (2), depends on its size but it is

τB < 0.2 s for all the injection parameters studied in our ex-

periments. Therefore the observed relaxation is interpreted as

the decay of the local flows associated with pseudo-turbulence.
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Param Re a b τ (s)

ūx 6000 0.88 1.13 1.01

ūx 13000 0.93 0.31 1.09

σ̄x 6000 0.10 0.43 3.2

σ̄x 13000 0.11 0.08 3.2

σ̄y 6000 0.13 0.21 2.4

σ̄y 13000 0.08 0.05 2.4

Table 3: Exponential fittings of the form ūx =
(

a + be−t/τ
)

Uc, used in Fig.10

(for parameter ūx) and Fig.11 (for parameters σ̄x and σ̄y)

Table 3 shows that, in both cases of ūx, the decay of pseudo-

turbulence has a relaxation time τ ≃ 1 s that is essentially inde-

pendent from the Reynolds number of the carrying flow. That

indicates that the remnants of pseudo-turbulence persist for a

relatively long time after the relaxation of all bubbles to their

local flow velocity.

Figure 11 shows our results on the relative velocity fluctua-

tions. Each color denotes a specific experiment as in the pre-

vious figure. A first remarkable observation is that the exper-

iments with smaller Reynolds numbers exhibit a larger value

of the relative velocity fluctuations. Note that this would not

be consistent with simple scaling arguments which, for fully

developed turbulence, would suggest this observable to be es-

sentially independent of Re. A more precise analysis must rely

on numerical computation within the duct-flow geometry and

with the actual flow parameters of experiments. We have car-

ried out a Lattice-Boltzmann simulation of the duct flow with

the experimental parameters (data not shown), and have explic-

itly checked that, within statistical uncertainty, the average pro-

file of the relative velocity fluctuations at different sections of

the flow appear essentially independent of Re for passive trac-

ers. This analysis will be presented elsewhere [33, 38]. Conse-

quently, our result points toward an active coupling of bubbles

to the flow. It is worth remarking that since we are measuring

velocities of bubbles while we have no tracers of the actual liq-

uid flow, it is not possible to assert an actual modification of the

statistics of the carrying flow due to the presence of bubbles.

Strictly speaking we only observe that bubbles do not seem to

be tracing the carrying flow as passive tracers.

A detailed analysis shows that for all the experiments with

Re = 6000 (circles), fluctuations decay with a similar charac-

teristic time and seem to relax to the same asymptotic value,

even though the initial value of the velocity dispersion varies

largely from experiment to experiment. We have not found any

correlation of this initial dispersion with the injection parame-

ters of bubbles. We can only attribute this effect to an inherent

variability of the preparation of the initial condition, which can-

not be fully controlled.

For cases with Re = 13000 (crosses), unlike those with

smaller Reynolds number, pseudo-turbulence seems to have a

minor effect into the velocity fluctuations. The fitting curves in

the figures have been added to guide the eye through the evolu-

tion of the cloud of points. To define them, we have first fitted

a relaxation time τ (which is the parameter that seems more ro-

bust) for each direction of a characteristic experiment, and then
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Figure 11: Relative bubble velocity fluctuations for several different experi-

ments. Circles correspond at cases with Re = 6000, crosses are for Re = 13000.

(Left): Fluctuations on the direction of the main flow. (Right): Fluctuations

transversal to the main flow.

we have imposed these values of τ in the fitting of the rest of the

data. The resulting curves are in Table 3. From these fittings it

is interesting to observe the resulting relaxation times, τ = 3.2

s and 2.4 s respectively. These are significantly larger than the

values found for the relaxation of the mean velocity (τ = 1.0 s),

suggesting that velocity fluctuations of the pseudo-turbulence

effectively decay to the co-flow values in a slower time scale

than the mean velocity.

Finally, even though the asymptotic values of the relative

fluctuations (parameter a in the fittings in Table 3) are sub-

ject to relatively larger uncertainty than the corresponding time

scales, the transversal y-components show a significant depen-

dence of their relative fluctuations on the Reynolds number,

along the lines of the overall tendency to decrease for increas-

ing Re. For the longitudinal components, however, the fitted

asymptotic value does not exhibit any conclusive tendency in

this respect.
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4. Discussion and Conclusion

A new experimental setup for the generation and study of

monodisperse bubble suspensions in microgravity has been de-

signed, constructed and tested. The setup has been adapted to

the mechanical requirements of ZARM Drop Tower facility in

Bremen where 36 drops of 4.7 s of high quality microgravity

(< 10−5g) where conducted.

The experimental system has been designed to achieve ho-

mogeneous, monodisperse suspensions of spherical bubbles in

a turbulent flow, with the capability to control separately the

Reynolds number of the carrying flow, the size of the bubbles

and the density of bubbles, within ranges of parameters that are

relevant both to the fundamental study of turbulent two-phase

dispersions and to potential applications in space technology.

The method has been proven to be insensitive to gravity, and

to be capable to achieve highly homogeneous suspensions with

good control of the above three main physical parameters.

The method is based on a combination of several units of a

previously developed T-junction capillary injector [22] where

regular trains of bubble are created prior to injection. The bub-

ble jets formed by each injector are then mixed by a turbulent

carrying flow thus giving rise to a homogeneous. monodisperse

bubble suspension. Reynolds numbers for the carrying flow

with respect to the duct size of the order of Re = 6000 or larger

have proved to be high enough to uniformly spread the bub-

ble distribution. Efficient homogeneous spreading with mini-

mal degree of bubble coalescence to maintain monodispersivity

is typically achieved for bubble densities such that the mean

bubble separation is of the order of the most energetic eddies

of the flow, implying that the gas volume fraction is relatively

small, of a few percent. However, the bubble size in our exper-

iments was larger than the turbulent dissipative scale, implying

that bubbles are not passive tracers but can potentially modify

the carrying flow. Our range of parameters imply sufficiently

small Weber numbers such that bubbles remain spherical. This

is a convenient property to simplify the theoretical modeling of

the bubble suspension.

The system proposed is sufficiently versatile to allow broader

ranges of parameters than explored in the present proof-of-

principle tests. Monodispersivity of bubbles can be achieved

for sizes that are controlled by the diameter of the T-junction

injectors, and for a fixed diameter it can be fine-tuned within

a certain range controlling the gas and liquid injection rates

[22]. The performance of the individual injectors is gravity-

independent and has been characterized exhaustively in Refs.

[22, 23, 24]. Once the single-jet parameters have been fixed,

implying a given bubble size and frequency of bubble injection,

the overall gas volume fraction injected in the carrying flow can

be changed by varying the number of T-junction injectors. Fi-

nally the degree of turbulence of the carrying flow can be mod-

ified with the appropriate grid at the duct inlet, and controlling

the total volumetric flow of liquid.

In addition to demonstrate and characterize the performance

of the proposed setup in microgravity conditions, we have illus-

trated its use to collect relevant data for the study of turbulent

bubble suspensions. High speed video recording at different po-

sitions downstream combined with particle tracking techniques

have been used, for instance, to analyze the statistics of bubble

velocity fluctuations. In particular, the drop-tower experimental

protocol provides naturally a new way to approach to the study

of pseudo-turbulence, since gravity can be switched off when

a pseudo-turbulent bubble suspension is formed. Specifically,

we have illustrated this possibility with a first quantitative char-

acterization the decay time of pseudo-turbulence for different

Reynolds numbers.

As another illustration we have quantified bubble velocity

fluctuations and compared them with data obtained elsewhere

from Lattice-Boltzmann simulations under the same conditions

[33, 38]. A weak dependence observed on the relative bubble

velocity fluctuations with Reynolds number that does not seem

consistent with the Lattice-Boltzmann simulation data can be

interpreted as a signature of an active coupling of bubbles with

the flow even at the small volume fraction addressed.

Other interesting strategies to analyze particle-tracking data

would be concerned with the space-time statistics of bubble

pairs, and its comparison with that of passive tracers in sim-

ulations, with the aim at characterizing statistical properties of

bubble trajectories and their implications for the probability of

bubble coalescence and for the formation of bubble clusters.

These possibilities have not been addressed here but have been

discussed in Ref. [33].

To conclude, we would like to stress that the method here

proposed and tested provides a very versatile tool to acquire

valuable data on the physics of turbulent bubble suspensions

in microgravity, by providing good control of a variety of pa-

rameters irrespectively of the actual acceleration environment.

High-quality data of turbulent bubble flows in microgravity are

usually scarce and difficult to obtain, due to the difficulty of

bubble management in microgravity, and to the limited access

to high quality microgravity environments. We hope that our

method can contribute significantly to improve our understand-

ing of fundamental aspects of this challenging problem, and

that in turn it may eventually have practical relevance in space

technology applications.
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