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PERIODS OF MODULAR GL2-TYPE ABELIAN VARIETIES

AND p-ADIC INTEGRATION

XAVIER GUITART AND MARC MASDEU

Abstract. Let F be a number field and N ⊂ OF an integral ideal. Let f be a modular newform
over F of level Γ0(N) with rational Fourier coefficients. Under certain additional conditions,
[GMŞ16] constructs a p-adic lattice which is conjectured to be the Tate lattice of an elliptic curve
Ef whose L-function equals that of f . The aim of this note is to generalize this construction when
the Hecke eigenvalues of f generate a number field of degree d ≥ 1, in which case the geometric
object associated to f is expected to be, in general, an abelian variety Af of dimension d. We
also provide numerical evidence supporting the conjectural construction in the case of abelian
surfaces.

1. Introduction

Let F be a number field and N ⊂ OF an integral ideal. Let f be a modular newform over
F of level Γ0(N) with rational Fourier coefficients. Under certain additional conditions, [GMŞ16]
constructs a p-adic lattice which is conjectured to be the Tate lattice of an elliptic curve Ef whose
L-function equals that of f . The aim of this note is to generalize this construction when the
Hecke eigenvalues of f generate a number field of degree d ≥ 1, in which case the geometric object
associated to f is expected to be, in general, an abelian variety Af of dimension d. That is, we
attach to f a lattice that conjecturally uniformizes Af over Cp. In the particular case of abelian
surfaces, we provide numerical verifications of the conjecture, as well as some further arithmetic
applications.

To put this construction into perspective, let us first briefly recall the situation for classical
modular forms over Q. Let f =

∑
n≥1 anq

n momentarily denote a weight two newform for the

congruence subgroup Γ0(N) ⊂ SL2(Z), and let Kf = Q({an}n≥1) be the field generated by the
Hecke eigenvalues of f . A construction of Eichler and Shimura (cf. [Shi71, §7.5]) associates to f
an abelian variety Af/Q of dimension d = [Kf : Q] and conductor Nd that satisfies the equality of
L-functions

L(Af/Q, s) =

d∏

i=1

L(σif, s),(1.1)

where the σi run over the embeddings of Kf into Q, and σf =
∑

n≥1 σ(an)q
n. Moreover, the algebra

Q⊗ End(Af ) of endomorphisms defined over Q is isomorphic to Kf .
Recall that in this setting Γ0(N) acts on the complex upper half plane H, and the compact-

ification of the quotient space Γ0(N)\H are the C-points of the modular curve X0(N)/Q. The
Eichler–Shimura construction realizes Af quite explicitly as a simple factor of the Jacobian of
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X0(N), and in a manner that is amenable for numerical calculations. In particular, the lattice
uniformizing Af ⊗ C can be given as

Λf =

{(∫

γ

ω1, . . . ,

∫

γ

ωd

)
: γ ∈ H1(X0(N),Z)

}
⊂ Cd,(1.2)

where ωi denotes the differential form corresponding to σif(z)dz. This lattice can be efficiently
computed by means of the modular symbols method [Cre97], [Ste07] and, in the case of dimension
one, namely when Af is an elliptic curve, is the base for producing exhaustive tables of elliptic curves
up to a certain conductor (currently, the Cremona database ([Cre16]) contain all elliptic curves up
to conductor 380,000). There is also extensive literature on higher dimensional computations,
specially in dimension 2 (see, e.g., [Wan95], [FLS+01], [GJGG02], [GGR05]). When Af admits a
principal polarization, some of these works also provide methods to compute equations of genus 2
curves whose Jacobian is isogenous to Af .

When f is a modular form over a number field F other than Q, an abelian variety Af satisfying
(1.1) is also expected to exist in general1. This is only known in some cases for totally real fields F ,
but if F has some complex place the conjecture is completely open. We will state this conjecture
more precisely in Section 2 below, but in order to describe the contents of the article let us give a
brief overview.

We will only treat the case where F has narrow class number one, so we make this assumption
from now on. In this setting, the newform f over F can be identified with a harmonic differential
form on the orbifold

Γ0(N)\(Hr ×Hs
3),

where r (resp. s) is the number of real (resp. complex) places of F and H3 = C × R>0 denotes
the hyperbolic upper half space. The only situation where the Eichler–Shimura construction over
Q generalizes satisfactorily is when F is totally real and f admits a Jacquet–Langlands transfer
to a modular form fB for some arithmetic subgroup ΓB0 (m) ⊂ B, with B/F a quaternion algebra
that ramifies at all infinite places but one. The form fB corresponds in this case to a holomorphic
differential form on ΓB0 (m)\H, which are the C-points of a Shimura curve XB defined over F . Then
Af , as a variety over F , can be constructed as a quotient of the Jacobian of XB. Over C, one can
describe its period lattice as in (1.2); that is, as periods of the differentials attached to fB and its
conjugates.

When F is totally real and f does not admit a suitable Jacquet–Langlands lift (the simplest case
where this happens is when [F : Q] = 2 and N = OF ) no construction of Af is known. However,
a conjecture of Oda [Oda82] describes the complex period lattice of Af in terms of certain periods
of the Hilbert modular form f , and is the basis of the algorithm introduced in [Dem08] to compute
equations of Af in the 1-dimensional case. More recently, abelian surfaces of trivial conductor over
real quadratic fields attached to Hilbert modular forms have been computed using this approach in
[DK16a], thus providing numerical evidence also for Oda’s conjecture in higher dimension.

The situation seems to be even more mysterious when F is not totally real. Indeed, in this case
there is no apparent connection to algebraic geometry because Γ0(N)\(Hr × Hs

3) has no complex
structure if s > 0. Since no algebraic variety seems to present itself as a natural candidate to give
rise to Af , no geometric construction of Af is known in this context. In fact, to the best of our
knowledge, such a construction has not even been conjectured.

1Note that condition (1.1) characterizes Af up to isogeny; we will abuse notation and denote by Af any variety

satisfying (1.1).
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In the one-dimensional case, there is a huge amount of experimental evidence supporting the
existence of elliptic curves attached to modular forms over non totally real fields (see [GHM78],
[Cre84], [CW94], [GHY12], [GY12], [Jon14], [DGKMY15]). In this setting, [GMŞ15] contains two
conjectural analytic constructions of the period lattice of the elliptic curveAf . The first construction
concerns the complex lattice of Af , and is a generalization of Oda’s conjecture to number fields
having at least one real place, in the spirit of the work of Darmon–Logan [DL03] and Gartner
[Gär12]. The second, which builds on constructions of Darmon [Dar01] and Greenberg [Gre09] in
the context of Stark–Heegner points, is for the p-adic Tate lattice of Af . Numerical evidence for
the p-adic construction, as well as an algorithm to compute the equation of the elliptic curve Af
from its p-adic periods were presented in [GMŞ16].

The aim of the present note is to generalize the construction of the p-adic lattice of Af to the
case where d = dimAf > 1. In the case of F = Q this generalization was obtained by Dasgupta
in [Das05a] and by Longo–Rotger–Vigni in [LRV12] (see also the work [RS12] for a generalization
to modular forms of higher weight). The construction that we present is valid for number fields of
arbitrary degree and signature, under the assumption that there exists a prime p dividing exactly
the level of the modular form f . We show that in that case the abelian variety Af , if it exists,
admits a p-adic uniformization: there exists a lattice Λf ⊂ (C×

p )
d such that

Af (Cp) ≃ (C×
p )

d/Λf ,

where p = p ∩ Z and Cp is the completion of an algebraic closure of Qp. The main construction of
the present article associates to the modular form f a certain p-adic lattice Λ′

f defined by means of

a p-adic integration pairing, which can be regarded as a p-adic analog of (1.2). We then conjecture
that (C×

p )
d/Λ′

f and (C×
p )

d/Λf are isogenous abelian varieties, thus providing a conjectural p-adic

analytic construction of the abelian variety Af satisfying (1.1).
An alternative way of phrasing the conjecture above is as asserting the equality of the L-invariant

of Λ′
f and the L-invariant of Af . Indeed, equality of the L-invariants of two p-adic lattices of rank

d with an action of a number field of degree d is equivalent to the corresponding rigid analytic
tori being isogenous. The L-invariant of Λ′

f can then be regarded as an automorphic Darmon-style
L-invariant. The theme of relating automorphic L-invariants to other L-invariants, such as the
geometric one, is also relevant for its connections with p-adic L-functions. The reader can consult
[Dar01], [Das05b], [DG12], [LRV12], [Sev13], or [Spi14] for results and conjecutures in this direction.

The paper is organized as follows. Section 2 contains some background material on the relation
between modular forms and certain cohomology classes, as well as to the abelian varieties conjec-
turally attached to them. We also record some results on p-adic uniformization and p-adic lattices.
We describe the construction of the lattice that conjecturally uniformizes Af in Section 3, which
in fact is a natural generalization of the elliptic curve case of [Dar01], [Gre09], and [GMŞ16]. One
of the main points of the present note is to provide numerical evidence supporting the conjecture
in the case where dimAf = 2, and this is the main content of Section 4: in §4.1 we discuss the
algorithms that we used for the calculations (which work under the additional assumption that the
number field has at most one complex place); in §4.2 we recall the formulas of Teitelbaum [Tei88]
to compute p-adic lattices of genus two curves; and in §4.3 we report on the explicit computation
of the p-adic lattice Λ′

f of a modular form over a number field F of signature (1, 1) whose Hecke

eigenvalues generate a quadratic number field. We check (up to the working precision of 50 p-adic
digits) that this lattice is isogenous with the p-adic lattice of a genus two curve whose Jacobian is
Af . Finally, in Sections 5 and 6, we give two additional applications of our construction. The first
one is to computing equations of genus two curves whose Jacobian is the variety Af attached to f ,
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by means of the explicit uniformization formulas for genus two curves of [Tei88]. The second is to
the (conjectural) computation of the p-adic L-invariant of Af .

Notation. If F is a number field we denote by OF its ring of integers, and we say that F is of
signature (r, s) if it has r real places and s complex places. For an abelian variety A defined over
F , we denote by End(A) the endomorphisms of A defined over F . For an extension L/F , AL
denotes the base change A×SpecK SpecL; consequently End(AL) stands for the endomorphisms of
A defined over L.

Acknowledgments. We wish to thank Lassina Dembele, Ariel Pacetti, Haluk Sengun, John Voight,
and Xavier Xarles for feedback and helpful conversations during this project. Masdeu thanks
the Number Theory group of the University of Warwick for provinding an outstanding working
environment, and Guitart is thankful to the Essen Seminar for Algebraic Geometry and Arithmetic
for their hospitality during his stay. Guitart was supported by MTM2015-66716-P and MTM2015-
63829, and Masdeu was supported by MSC–IF–H2020–ExplicitDarmonProg. This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 682152).

2. Modular forms, cohomology classes, and p-adic uniformization

We begin this section by formulating a precise version of the conjecture that associates an abelian
variety to any modular form over a number field, mainly following the presentation of [Tay95]. We
describe it not only for modular forms over GL2, but over arbitrary quaternion algebras over F . By
the Jacquet–Langlands correspondence, the systems of Hecke eigenvalues on quaternion algebras
already arise on the split algebra GL2, so one does not gain much from a theoretical point of view.
However, as we will see in Section 4, for computational purposes it is sometimes helpful to transfer
the problem to a non-split quaternion algebra.

The complex upper half plane H is endowed with an action of PSL2(R) by fractional linear
transformations. Similarly, the hyperbolic upper half space H3 is acted on by PSL2(C) as follows:
if we let Q = C⊕jC denote Hamilton’s quaternions and we identify H3 with {x+jy ∈ Q : y ∈ R>0},
then a matrix acts on z ∈ H3 by the formula

(
a b
c d

)
· z = (az + b) · (cz + d)−1 (the multiplication is in Q).

In the construction of Section 3 we will consider modular forms over F with the property that there
is a prime dividing N exactly, so we introduce this assumption in the levels of the modular forms
considered in this section. In fact, let us assume from now on that N admits a factorization into
coprime ideals of the form

N = pdm, with p prime and d square-free.

The condition that there exists a prime p dividing N exactly is inherent to this kind of construction,
and it was already present in the works of Darmon and Greenberg [Dar01] [Gre09]. The condition
that d is square-free arises because we want to translate the problem to a quaternion algebra. Let
B/F be a quaternion algebra of discriminant d and which is split at n ≤ r real places of F . We
remark that d is allowed to be trivial. If in addition n = r, then B is simply the matrix algebra
M2(F ).

Let R0(pm) ⊂ R0(m) be Eichler orders in B of levels pm and m respectively. Let R0(pm)×1
and R0(m)×1 denote their group of norm 1 units and put Γ0(pm) = R0(pm)×1 /{±1} and Γ0(m) =
R0(m)×1 /{±1}. By fixing isomorphisms B ⊗σ R ≃ M2(R) for all real places σ of F at which B is
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split and B⊗σ C ≃ M2(C) for all complex places of F , the group Γ0(pm) acts on Hn×Hs
3. Results

of Harder [Har87] allow to interpret modular forms for Γ0(pm) either as harmonic differential forms
on the quotient Γ0(pm)\(Hn×Hs

3) or, equivalently, as cohomology classes in the Betti cohomology
group Hn+s(Γ0(pm)\(Hn ×Hs

3),C). We will take from now on the latter point of view.
For the sake of simplicity, we shall assume that Γ0(pm) is torsion free. This implies, in particular,

that for any abelian group A we have canonical isomorphisms

Hn+s(Γ0(pm)\Hn ×Hs
3, A) ≃ Hn+s(Γ0(pm), A) ≃ Hn+s(Γ0(pm),Z)⊗A,

where the group on the left is Betti cohomology and the others represent group cohomology.
For any B×/F×-module V and any ideal n ⊂ OF , the cohomology groups Hi(Γ0(n), V ) are

endowed with the action of the Hecke operators defined by means of the formalism of double
coset operators (see, for example, [AS86, §1.1]): for every prime l of F not dividing d there is an
endomorphism

Tl : H
i(Γ0(n), V ) −→ Hi(Γ0(n), V ).

In addition, for every infinite place v of F splitting in B there is an involution Tv of the same
space. All these operators commute. We denote by T the Hecke algebra, by which we mean the
free polynomial ring over Z generated {Tl}l∤d and {Tv}, regarded as formal variables. The Hecke

algebra T acts on the cohomology groups Hi(Γ0(n), V ) by letting each formal variable act as the
corresponding Hecke operator.

We will say that a cohomology class f ∈ Hn+s(Γ0(pm),C) is an eigenclass if for all primes l ∤ d
we have that

Tlf = al(f)f, for some al(f) ∈ C.

In this case, the field Kf = Q({al(f)}l∤d) is a number field and, since we are considering subgroups
of the form Γ0, it is in fact totally real.

We will say that f is trivial if al(f) equals |l|+ 1 for all l ∤ pmd (here |l| stands for the norm of
l). Finally, if there does not exist any g ∈ Hn+s(Γ0(m

′),C) with m′ | pm and Tlg = al(f)g for all
but finitely many primes l, then we say that f is new. The following conjecture attaches an abelian
variety to any nontrivial new eigenclass; it was formulated essentially in this form in [Tay95], the
only difference being that below we make explicit the expected relation between the level of the
newform and the conductor of the abelian variety.

Conjecture 2.1. Let f ∈ Hn+s(Γ0(pm),C) be a nontrivial new eigenclass of level N = pmd. Then
one of the following holds:

(1) There exists a simple abelian variety Af/F of dimension d = [Kf : Q] and conductor Nd

such that Q⊗ End(A) contains Kf and

#Af (OF /l) = NKf/Q(1 + |l| − al(f)) for all l ∤ N;

(2) There exists a simple abelian variety Af/F of dimension 2d and conductor N2d, and a
quaternion division algebra D over Kf such that Q⊗ End(Af ) contains D and

#Af (OF /l) = NKf/Q(1 + |l| − al(f))
2 for all l ∤ N.

Moreover, Af does not have complex multiplication (CM) defined over F , and if F has at least one
real embedding then (2) does not occur.
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We note that in [Tay95] the conjecture is stated for modular forms of arbitrary level, not neces-
sarily of the form N = pmd with p || N. Our running assumption that there exists a prime dividing
the level exactly is necessary for our construction, but not for the (conjectural) existence of Af .
However, this condition is also useful in addressing an issue concerning the case in which Af belongs
to the second case in Conjecture 2.1. The point is that the construction of Section 3 associates to
the eigenclass f a p-adic lattice in (C×

p )
d, which is conjectured to be the lattice of Af . But a lattice

in (C×
p )

d can only correspond to an abelian variety of dimension d (see §2.1 below). Therefore, if
for a given f the variety Af turned out to be of dimension 2d it would not be clear a priory what
our construction would be giving, even conjecturally. This is the question that we shall address
now.

Suppose that Af is as in case (2) of Conjecture 2.1. In particular, dimAf = 2d and there is an
injection of the quaternion division algebraD into End(Af )⊗Q. Observe that, in fact, this must be
an isomorphism D ≃ End(Af ) ⊗Q. Indeed, if we let D′ = End(Af ) then D

′ is a division algebra,
since Af is simple. Then D′ acts on H1(Af,C,Q) which has dimension 4d over Q; this implies that
[D′ : Q] ≤ 4d and since [D : Q] = 4d we have D = D′. Therefore, since D is the endomorphism
algebra of a simple abelian variety it belongs to either type II or type III in Albert’s classification
(see [Mum08, §21, Theorem 2]). In particular, D is either totally definite or totally indefinite.

The next proposition will show that the case where D is totally indefinite cannot occur, since
we are assuming that the conductor of Af has valuation 2d at p.

Proposition 2.2. Let A/F be a simple abelian variety of dimension 2d and conductor L. Let K
be a totally real number field with [K : Q] = d and D a totally indefinite quaternion division algebra
over K with D ≃ Q⊗ End(A). Then vp(L) ≥ 4d for each prime p dividing L.

Proof. Let ℓ be a prime different from the residue characteristic of p. Let Vℓ = Tℓ⊗Qℓ be the rational
ℓ-adic Tate module of A, which is of rank 4d over Qℓ. Let M be a maximal subfield of D; it is a
quadratic extension of K and therefore [M : Q] = 2d. Since M is contained in End(A)⊗Q, we have
that Vℓ is an M ⊗Qℓ module of rank 2 and Vℓ⊗Qℓ

Q̄ℓ breaks as the direct sum of 2d representations
of dimension 2, each of them conjugate to a given representation, say ρ : Gal(F̄ /F ) → Aut(Vℓ).

The exponent at p of the conductor of ρ is equal to codim(V
Ip
ℓ ) + δp, where Ip is the inertia at p

and δp is the Swan exponent. Therefore

vp(L) = 2d(codim(V
Ip
ℓ ) + δp)

and we see that vp(L) is a multiple of 2d. We are assuming that p divides L and therefore that A has

bad reduction at p. By the criterion of Néron–Ogg–Shaffarevic this implies that codim(V
Ip
ℓ ) ≥ 1

and therefore vp(L) ≥ 2d. In order to finish the proof, it is then enough to rule out the possibility

that vp(L) = 2d; that is to say, we need to rule out the possibility that codim(V
Ip
ℓ ) = 1 and δp = 0.

Aiming for contradiction, assume that codim(V
Ip
ℓ ) = 1 and δp = 0. Let A′ be the connected

component of the special fiber of the Néron model of A over OFp
. It sits in an exact sequence

0 −→ T × U −→ A′ −→ B −→ 0,(2.1)

where T is a torus, U is a unipotent group, and B is an abelian variety over the finite field OF /p.
If we let t = dimT and u = dimU , then t+ u+ dimB = 2d, implying t ≤ 2d.

We claim that A has potentially good reduction; that is to say, t = 0 (cf. [Rib81, Theorem 3]).
Indeed, if t > 0 then by functoriality D acts on T , and we get an inclusion

D →֒ End(T )⊗Q ≃ Mt(Q).(2.2)
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We can interpret Mt(Q) as EndQ(V ), where V is a Q-vector space of dimension t. The inclusion
(2.2) endows V with the structure of a D-module. Now we see that

t = dimQ(V ) = dimD(V ) · dimQ(D) = dimD(V ) · 4d
and therefore t ≥ 4d. But t ≤ 2d and this forces t = 0, as we claimed.

Therefore (2.1) can be written as

0 −→ U −→ A′ −→ B −→ 0,

with u+dimB = 2d. Since δp = 0 and A has potentially good reduction, we have that vp(L) = 2u
(cf. [ST68] Theorem 4 and the Remarks in page 500). Since we are assuming that vp(L) = 2d this
implies that dimB = d.

Let M be a maximal subfield of D, which we can choose to be totally real because D is totally
indefinite. By functoriality we have an inclusion D →֒ End(B)⊗Q. Let B ∼ Bn0

0 ×· · ·×Bnr
r be the

decomposition of B into simple varieties up to isogeny. Then D′ = End(Bn0

0 )⊗Q is a simple algebra
with an embedding D →֒ D′. Let L be the center of D′. By the results of Tate on endomorphism
algebras of abelian varieties over finite fields [Tat66] we have that

2 dim(Bn0

0 ) = [L : Q]
√
[D′ : L].

See, for example, [WM71, Theorem 8] where this is stated for simple varieties, from which the
case of isotypic varieties follows directly. Therefore, since dimBn0

0 ≤ dimB = d we see that

[L : Q]
√
[D′ : L] ≤ 2d. But [L : Q]

√
[D′ : L] is the dimension over Q of the maximal subfields of D′.

Since we have an inclusion D →֒ D′, the field M is also a subfield of D′, hence M is a maximal
subfield2 of D′ because [M : Q] = 2d. In particular L is contained in M . Since M is totally real,
this implies that L is totally real as well and that D′ is split at the real places of L (because a
maximal subfield of a simple algebra is a splitting field). But this contradicts [Tat66, Theorem 2
(d)], which asserts that the endomorphism algebra of an isotypic variety over a finite field does not
split at any real place of the center. �

The same argument does not allow us to rule out the case where D is totally definite. However,
in this case f is necessarily a modular form with complex multiplication. More precisely, the
L-function of Af is a product of L-functions of Hecke characters of F .

Proposition 2.3. Let A/F be an abelian variety of dimension 2d. Suppose that D = Q⊗End(A)
is totally definite quaternion division algebra over a totally real number field K and [K : Q] = d.
Then there exist Hecke characters χi : A

×
F → C× such that L(A, s) =

∏
i L(s, χi).

Proof. Since D is totally definite and 2[K : Q] = dimA, a theorem of Shimura [Shi63, Proposition
15] ensures that A is Q-isogenous to the square of a CM abelian variety B of dimension d. Now
the idea is to use the well known relation between L-functions of CM abelian varieties and Hecke
characters. But we have to be careful in this case, because the complex multiplication of A is not
defined over K. Next, we will show that A satisfies the hypothesis of [Mil72, §3], and then Theorem
4 of loc. cit. implies the conclusion of the proposition.

To begin with, we remark that B might not be simple. But it easy to see that AQ is isotypical.
Indeed, if AQ ∼ B1 × B2 where B1 and B2 are not isogenous, then D would act on each Bi; in

2In the context of L-simple algebras, by a subfield of D′ one understands a field contained in D′ and that contains
L. But this is the case for M . Indeed, the compositum LM is a subfield in this sense, and therefore its dimension
over Q is ≤ 2d; then it has to equal 2d and LM = M .
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particular it would act on H1(Bi,Q) which have dimension < 4d, and since [D : Q] = 4d this is not
possible. Therefore, we see that necessarily AQ ∼ Cr for some simple CM variety C.

If we let N = End(C) then End(AQ) ≃ Mr(N) and we can identify N with Z(End(AQ)). Let

L be the smallest extension of F such that Z(End(AQ)) ⊂ End(AL). We choose also a maximal
subfield M ⊂ D with the property that M does not contain N . This is possible because the
intersection of two maximal subfields of D is K, and K does not contain N because N is a CM field
and K is totally real. We identify M with a subfield of Q ⊗ End(AQ) by means of the embedding

D →֒ Q ⊗ End(AQ), and we let E = MN . It is a subfield of End(AQ), because N commutes with

M . Moreover, we have that [E : Q] = 4d; indeed, on the one hand 2d | [E : Q] and since N 6⊂ M
necessarily [E : Q] > 2d, but on the other hand [E : Q] ≤ 2 dimA = 4d.

Therefore, we have constructed a field E such that AL has complex multiplication by E defined
over L. Moreover, E is stable under the action of Gal(L/F ). This is because N is the center of
End(AQ) and is stable, and M consists on endomorphisms defined over K and it is also stable.

Therefore, we are in the assumptions of [Mil72, Theorem 4] (they are stated in the last paragraph
of p. 186), and the proposition follows from this theorem. �

We assume for the rest of the article that f does not have CM. In view of propositions 2.3 and
2.2, this implies that Af has dimension d, rather than 2d.

The next step is to show that Af has purely multiplicative reduction at p (this implies that Af
admits a p-adic uniformization, see §2.1 below). As before let A′ be the connected component of
the special fiber of the Néron model of Af over OFp

, which sits in an exact sequence

0 −→ T × U −→ A′ −→ B −→ 0,(2.3)

where T a torus, say of dimension t, U is a unipotent group, and B is an abelian variety over the
finite field OF /p. The variety Af is said to have purely multiplicative reduction at p if t = d.

Recall our running assumption that p||N, which implies that the exponent of p in the conductor
of Af is d. It is a well known result that if an elliptic curve has exponent at p of the conductor
equal to 1, it has multiplicative reduction at p. The following is a generalization of this statement
to dimension d > 1, under the assumption that there is a totally real number field of degree d acting
on the abelian variety.

Proposition 2.4. Let A/F be an abelian variety of dimension d, equipped with an embedding
K →֒ End(A) ⊗ Q of a totally real number field K of degree d over Q. Suppose that p is a prime
such that the exponent of the conductor of A at p is d. Then A has purely multiplicative reduction
at p.

Proof. First of all we claim that if A does not have potentially good reduction at p, then it has
purely multiplicative reduction. Indeed, if A does not have potentially good reduction then t > 0.
By functoriality K acts on the torus T , and we get an inclusion

K →֒ End(T )⊗Q ≃Mt(Q).

This implies that d ≤ t, and since we already know that t ≤ d this proves the claim.
Therefore, in order to finish the proof it is enough to show that A does not have potentially good

reduction. Let ℓ be a prime different from p∩Z and consider the Tate module Vℓ(A) = Tℓ(A)⊗Q.
Since [K : Q] = dimA we know that Vℓ(A)⊗ Q̄ℓ is the direct sum of d representations of dimension
2, all conjugate to a given one, say to ρ : Gal(F̄ /F ) → Vℓ. Since they are all conjugate, each
of them has conductor exponent at p exactly 1. The exponent of the conductor of ρ at p is

codim(V
Ip
ℓ ) + δp, where Ip is the inertia subgroup of any extension of p to K̄ and δp is the Swan
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part of the exponent. By the criterion of Néron–Ogg–Shafarevich, since A has bad reduction at p

necessarily codim(V
Ip
ℓ ) ≥ 1. This implies that δp = 0 and dimV

Ip
ℓ = 1. Thus ρ|Ip is of the form(

ψ ⋆
0 1

)
for some character ψ. Since K is totally real, by [Rib76, Lemma 4.5.1] the determinant of

Vℓ is the (unramified) cyclotomic character. Therefore ψ = 1 and ρ|Ip = ( 1 ⋆0 1 ). In particular, the
image of Ip under ρ is infinite. By [ST68, Theorem 2] this implies that A does not have potentially
good reduction at p. �

2.1. Uniformization and p-adic lattices. We next recall the basic facts that we will use on p-
adic uniformization of abelian varieties. Let A/F be an abelian variety of dimension d with purely
multiplicative reduction at p. Then A admits a p-adic uniformization: there exist free abelian
groups X,Y , and a pairing

i : X × Y −→ F×
p(2.4)

such that the composition ordp ❛i : X ⊗ Q × Y ⊗ Q → Q is a perfect pairing and induces an
isomorphism

A(F̄p) ≃ Hom(Y, F̄×
p )/Λ,

where Λ is the image of X in Hom(Y, F̄×
p ) under the map induced by i. The subgroup

Λ ⊂ Hom(Y, F×
p ) ≃ (F×

p )d

is a lattice, i.e., a free discrete subgroup of rank d.
We will be interested in how the lattices of isogenous abelian varieties are related. Suppose that A

and A′ are abelian varieties over Fp, uniformized by lattices Λ and Λ′ in (F×
p )d. Let {v1, . . . , vd} and

{w1, . . . , wd} be bases of Λ and Λ′ respectively. Put V = (vij) ∈Md(Fp) and W = (wij) ∈Md(Fp)
the matrices whose columns are the vectors of these bases. Following a notation introduced in
[Kad07], for B = (bij) ∈ Md(Z) we denote by V B the matrix with entries

bij = vbi11j v
bi2
2j · · · vbiddj .

Similarly, for C = (cij) ∈ Md(Z) we denote by CW the matrix with entries

cij = w
c1j
i1 w

c2j
i2 · · ·wcdjid .

Alternatively, these matrices can also characterized as follows. Let λ : F×
p → R be any group

homomorphism of F×
p to the additive group of a ring R, and for a matrix U = (uij) denote by λ(U)

the matrix with entries λ(uij); then

λ(V B) = Bλ(V ) and λ(CW ) = λ(W )C. for all λ.(2.5)

The following result of Kadziela characterizes isogenies of abelian varieties over Fp in terms of their
uniformizing lattices.

Theorem 2.5 ([Kad07], Theorem 3). The abelian varieties A and A′ are isogenous if and only if
there exist matrices B,C ∈ Md(Z) such that V B = CW .
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3. Integration pairing and construction of the lattice

Let f ∈ Hn+s(Γ0(pm),C) be a new eigenclass and let Kf = Q({al(f)}) be the number field,
say of degree d, generated by the eigenvalues of f . We suppose that f is also an eigenclass with
eigenvalue +1 for all the involutions at infinity3; that is, Tvf = f for all real places v of F that split
in B. Then f gives rise to a character of the Hecke algebra

λ = λf : T −→ C,

via the formulas λ(Tl) = al(f) for all l ∤ d and λ(Tv) = 1 for the infinite places v. For any embedding
σ : Kf →֒ C there is a conjugate newform σf , characterized by the fact that its character, that we
will denote λσ, is given by λσ(Tl) = σ(λ(Tl)) and λσ(Tv) = 1.

We denote by

Hn+s(Γ0(pm),Q)f ⊂ Hn+s(Γ0(pm),Q)(3.1)

the T-irreducible subspace such that f belongs to Hn+s(Γ0(pm),Q)f ⊗C. Since f is a newform, by
multiplicity one this space decomposes over C as the sum of d one-dimensional T-eigenspaces:

Hn+s(Γ0(pm),Q)f ⊗ C =
⊕

σ:Kf →֒C

Hn+s(Γ0(pm),C)λσ ,

where for any C⊗ T-module M and any character α : T → C we put

Mα = {m ∈M : Tm = α(T )m for all T ∈ T}.
Define also

Hn+s(Γ0(pm),Z)f = Hn+s(Γ0(pm),Q)f ∩Hn+s(Γ0(pm),Z).

The Hecke algebra also acts on the homology groups, with the same systems of Hecke eigenvalues.
Similarly as before, we define Hn+s(Γ0(pm),Q)f to be the Hecke constituent such that the system
of Hecke eigenvalues {al(f)}l∤d arises in Hn+s(Γ0(pm),Q)f ⊗ C, and

Hn+s(Γ0(pm),Z)f = Hn+s(Γ0(pm),Q)f ∩Hn+s(Γ0(pm),Z).

Note that both Hn+s(Γ0(pm),Z)f and Hn+s(Γ0(pm),Z)f are free abelian groups of rank d.
In this section we will recall and slightly generalize the constructions of [GMŞ16], which can be

formulated as the existence of a multiplicative integration pairing

〈·, ·〉 : Hn+s(Γ0(pm),Z)f ×Hn+s(Γ0(pm),Z)f −→ F×
p2 ,(3.2)

where Fp2 stands for the quadratic unramified extension of Fp. We will then conjecture that this
pairing can be identified with the uniformization pairing (2.4) for Af . The construction, which
follows very closely the ideas introduced in [Gre09], is based on passing to the cohomology of a
certain S-arithmetic group Γ related to Γ0(m) and Γ0(pm).

Let OF,{p} denote the elements of F with non-negative valuation at the primes different from p,
and set

R = R0(m)⊗OF
OF,{p}.

As usual, R×
1 stands for the group of norm 1 elements of R, and we denote by Γ the image of R×

1

in B×/F×.

3We remark that the construction of the lattice works for any choice of signs at infinity, and we expect Conjecture
3.3 to hold for any choice. However, our numerical experiments have been done for eigenclasses with eigenvalues +1
at infinity, so we prefer to consider this case.
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Recall that B splits at p. By fixing an isomorphism B ⊗F Fp ≃ M2(Fp) we can regard Γ as a
subgroup of PGL2(Fp). Similarly as before, for any PGL2(Fp)-module V the (co)homology groups
Hi(Γ, V ) and Hi(Γ, V ) are equipped with the action of Hecke operators Tl for l ∤ pd and involutions
at infinity Tv for the infinite places of F that split in B.

Let A be an abelian group. An A-valued measure on P1(Fp) is a function

ω : {Open compact subgroups of P1(Fp)} −→ A

such that ω(U1 ∪ U2) = ω(U1) + ω(U2) if U1 and U2 are disjoint. We denote by Meas0(P
1(Fp), A)

the set of such measures which in addition satisfy that ω(P1(Fp)) = 0. There is a natural action
of PGL2(Fp) on measures, and therefore also of B×/F×, by means of (gω)(U) = ω(g−1U). In
particular, there are Hecke operators acting on the cohomology groups Hi(Γ,Meas0(P

1(Fp),Z)).
Let Hp = Fp2 \ Fp denote the Fp2 -rational points of the p-adic upper half plane. Given ω ∈

Meas0(P
1(Fp),Z) and x, y ∈ Hp the multiplicative integral ×

∫ y
x
ω is defined as

×
∫ y

x

ω = lim
U

∏

U∈U

(
tU − y

tU − x

)ω(U)

∈ F×
p2 ,

where U runs over the coverings of P1(Fp) by open-compacts with diameter tending to zero, and
tU is any sample point in U . This can be seen as a pairing

×
∫

: Meas0(P
1(Fp),Z)×Div0 Hp −→ F×

p2 ,

which induces a corresponding pairing in (co)homology, via cap product:

×
∫

: Hn+s(Γ,Meas0(P
1(Fp),Z))×Hn+s(Γ,Div0 Hp) −→ F×

p2 .

Finally, we proceed to explain how this gives rise to the pairing (3.2).
The first step is to show that there is a subspace of Hn+s(Γ,Meas0(P

1(Fp),Q)) which is iso-
morphic to Hn+s(Γ0(pm),Q)f as a Hecke module. We will make use of the following notation:
let

If = AnnT(H
n+s(Γ0(pm),Q)f)

denote the annihilator of T acting on the irreducible space Hn+s(Γ0(pm),Q)f ; then, for any T-
module M we define

Mf =
⋂

T∈If
ker(T ) ⊂M.

Observe that the notation is consistent with the one introduced before, in the sense thatHn+s(Γ0(pm),Q)f ,
as introduced in (3.1), indeed coincides with ∩T∈If ker(T ). The following is a generalization of
[Gre09, Proposition 25] and [GMŞ15, Proposition 4.5].

Proposition 3.1. There is a natural Hecke equivariant map

ρ : Hn+s(Γ,Meas0(P
1(Fp),Q)) −→ Hn+s(Γ0(pm),Q),

which induces an isomorphism

ρ : Hn+s(Γ,Meas0(P
1(Fp),Q))f ≃ Hn+s(Γ0(pm),Q)f .
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Proof. By [GMŞ15, Display (4.6)] there is a Hecke equivariant homomorphism

ρ : Hn+s(Γ,HC(Q)) −→ Hn+s(Γ0(pm),Q)p−new.

Here HC(Q) stands for the module of Q-valued harmonic cocycles on the Bruhat–Tits tree of
PGL2(Fp), which is isomorphic to Meas0(P

1(Fp),Q). Moreover, there is a short exact sequence

0 −→ cokerα −→ Hn+s(Γ,HC(Q))
ρ−→ Hn+s(Γ0(pm),Q)p−new −→ 0,

where α is the map denoted as αn+s+1 in [GMŞ15].
To finish the proof, we follow the argument of [Gre09, Proposition 25]. Indeed, for any T-module

M we have that Mf = HomT(T/If ,M). Applying the functor HomT(T/If , ·) to the above exact
sequence we obtain

0 −→ (cokerα)f −→ Hn+s(Γ,HC(Q))f −→ (Hn+s(Γ0(pm),Q)p−new)f −→ Ext1T(T/If , cokerα).

To finish the proof, it remains to show that both (cokerα)f and Ext1T(T/If , cokerα) are zero.
Since cuspidal cohomology vanishes in degree< n+s, the Hecke operators Tl act onH

n+s−1(Γ0(pm),Q)
as multiplication by |l| + 1. By construction, cokerα is a quotient of Hn+s−1(Γ0(pm),Q)2; this
implies that Tl acts on cokerα as multiplication by |l| + 1. Since f is cuspidal, we see that
(cokerα)f = 0.

Finally, we show that Ext1T(T/If , cokerα)
f = 0 as well. Suppose that

0 −→ cokerα −→ E
π−→ T/If −→ 0(3.3)

is a T-module extension of T/If by cokerα, and we will see that it splits. Let s′ be a section of
π as Q-vector spaces. This might not be a T-module homomorphism, but it can be modified to
obtain a section of T-modules: observe that Tl − |l| − 1 acts on T/If ≃ Kf as multiplication by
dl := al(f)− |l| − 1, and since f is cuspidal dl 6= 0; then we define s : T/If → E as

s(x) = (Tl − |l| − 1)s′(
x

dl
).

It is easy to check that s is indeed a section of T-modules, and therefore (3.3) splits. �

The group Γ is isomorphic to the amalgamated product of two copies of Γ0(m) over Γ0(pm) (see,
e.g., [Ser80]). The Mayer–Vietoris sequence in this setting [Bro82, Chapter II, §7] is then

· · · −→ Hn+s+1(Γ0(m),Q)2 −→ Hn+s+1(Γ,Q)
η−→ Hn+s(Γ0(pm),Q)

∂−→ Hn+s(Γ0(m),Q)2 −→ · · ·

Lemma 3.2. The map η induces an isomorphism

η : Hn+s+1(Γ,Q)f
≃−→ Hn+s(Γ0(pm),Q)f .

Proof. We claim that Hn+s(Γ0(pm),Q)f lies in the kernel of ∂. Indeed, it is enough to show this
for Hn+s(Γ0(pm))f ⊗ C; but this has a basis of eigenclasses which are new, and the fact that
they are new at p is equivalent to being in the kernel of ∂. Moreover, η is injective because
Hn+s+1(Γ0(m),Q)f = 0 (since f is a newform of level pm, its system of eigenvalues can not be
found in lower level). �

Now consider the exact sequence of B×/F× modules

0 −→ Div0 Hp −→ DivHp −→ Z −→ 0.
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It induces a long exact sequence in group homology; we are interested in the connecting homomor-
phism

δ : Hn+s+1(Γ,Z) −→ Hn+s(Γ,Div0 Hp).

Finally, we define the pairing

〈·, ·〉f : Hn+s(Γ0(pm),Z)f ×Hn+s(Γ0(pm),Z)f −→ F×
p2(3.4)

as follows: given ω ∈ Hn+s(Γ0(pm),Z)f and γ ∈ Hn+s(Γ0(pm),Z)f , then

〈ω, γ〉f = ×
∫

δ ❛d−1γ

ρ−1(ω).

We conjecture that the pairing (3.4) uniformizes Af/Fp up to isogeny. To make this state-
ment more explicit, let γ1, . . . .γd be a basis of Hn+s+1(Γ0(pm),Z)f and ω1, . . . , ωd a basis of
Hn+s+1(Γ0(pm),Z)f . Define Λ′

f ⊂ (F×
p2)

d to be the subgroup generated by the d vectors

(〈ωi, γ1, 〉, . . . , 〈ωi, γd, 〉) , i = 1, . . . , d.(3.5)

Also, denote by Λf ⊂ (F×
p )d the p-adic lattice of Af .

Conjecture 3.3. The vectors of (3.5) belong to (F×
p )d, and (F×

p )d/Λ′
f is isogenous to (F×

p )d/Λf .

Some instances of this conjecture are known in the case d = 1. If F = Q and B = M2(Q)
this is a theorem of Darmon [Dar01]. For B a quaternion division algebra over Q it was proven
independently in [DG12] and [LRV12]. For higher weight the result is due to Seveso [Sev13], and
for totally real F some cases are proven in [Spi14, Proposition 5.9]. In the next section we provide
some numerical evidence for the conjecture in the case d = 2 and F a cubic field of signature (1, 1).

Remark 3.4. Using the same arguments as in [Gre09, §11], which appear also in more detail in
[RS12] and [GS16], one can see that the pairing

ordp ❛〈·, ·〉f : Hn+s(Γ0(pm),Z)f ×Hn+s(Γ0(pm),Z)f −→ Q(3.6)

is non-degenerate, which implies that Λ′
f is a lattice. The non-degeneracy of (3.6) is a consequence,

on the one hand, of the naturality of the several (co)homological maps involved in the definition of
the pairing and, crucially, of the combinatorial description of ordp ❛〈·, ·〉f as stated, for instance, in
[Gre09, Lemma 28]. If we denote by η∗ : Hn+s(Γ0(pn),Q)f ≃ Hn+s+1(Γ,Q)f the map arising from
η via the universal coefficients theorem, then the penultimate display in [Gre09, p. 573] shows that
ordp〈η∗(−), η(−)〉f coincides with the natural pairing

Hn+s+1(Γ,Z)f ×Hn+s+1(Γ,Z)
f −→ Q.

4. The case of abelian surfaces: calculations and numerical evidence

In this § we present some computational evidence for Conjecture 3.3 in the case where Af is of
dimension 2. We report on the numerical calculation of the lattice Λ′

f for a concrete modular form

f , which turns out to coincide (up to our working precision of 50 p-adic digits) with a lattice which
is isogenous to the lattice of Af .

In §4.1 we briefly describe the algorithms that we have used to compute the period lattice Λ′
f ,

which are actually an adaptation of the ones described in [GMŞ16] for the case of elliptic curves.
In §4.2 we review Teitelbaum’s explicit formulas to compute the p-adic lattice of the Jacobian of
a genus two curve of [Tei88], which we use to compute the lattice of Af . In §4.3 we present the
results of our numerical calculations of Λ′

f for a modular form f over a number field F of signature
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(1, 1). In this case, Af turns out to be isogenous to the Jacobian of a genus two curve Cf for which
we know an explicit equation. Using Teitelbaum’s formulas we can compute its period lattice Λf ,
and check that it is isogenous (up to high precision) to the lattice Λ′

f .

4.1. Algorithms for the computation of the p-adic lattice. The code that we use to compute
the pairing (3.4) in dimension 2 can be found at https://github.com/mmasdeu/darmonpoints.
The algorithms are mainly an adaptation of the ones presented in [GMŞ16] for the one dimensional
case, and thus we give a brief overview of then, emphasizing the points which require to be modified
in higher dimension. A complete discussion of the details that we omit can be found in [GMŞ16,
§3].

Recall our running notation: F is a number field of narrow class number one and N ⊂ OK is
an ideal that decomposes into coprime ideals N = pmd, where p is prime and d is squarefree. Also
B/F is a quaternion algebra of discriminant d and Γ0(pm) ⊂ Γ0(m) are the norm 1 units of Eichler
orders of level pm and m, respectively. We denote by n the number of split real places of B and
by s the number of complex places of F . Our goal is, first of all, to decide whether there exists a
newform f ∈ Hn+s(Γ0(pm),C) with [Kf : Q] = 2; in case it does, we aim to compute it and to
compute the integration pairing (3.4) and the lattice Λ′

f . The algorithms that we next describe
only work under the assumption that n+s = 1. In other words, if B splits at a single infinite place.
From now on we assume this:

Assumption 4.1. n+ s = 1.

There are two reasons for this restriction. The first one is that the (co)homology groups are then
in degree 1, and higher degrees are more difficult to deal with algorithmically; the second is that
under Assumption 4.1 we can use the algorithms of Voight [Voi09] (if n = 1) and Page [Pag15] (if
s = 1) that compute generators and relations of Γ0(pm) and provide an effective solution of the
word problem.

If G is a group and A a G-module, a convenient way of thinking of the homology groups is in
terms of the bar resolution, in which the group of i-th chains are

Ci(G,A) = Z[G]⊗Z
(i)· · · ⊗ZZ[G] ⊗Z A.

In order to compute H1(Γ0(pm),Z), it is also useful to use the canonical isomorphism with the
abelianization

H1(Γ0(pm),Z) ≃ Γ0(pm)ab.

From the generators and relations for Γ0(pm) it is straightforward to obtain generators and relations
for the Γ0(pm)ab.

Then computing the Hecke operator at a prime l ∤ N essentially boils down to finding an element
πl ∈ R0(pm) whose reduced norm generates l and is positive at the real places. This can be done
with the routines for quaternion algebras implemented by Voight in [Voi05] and available in Magma
[BCP97]. Once πl is found one can find a decomposition of the double coset Γ0(pm)πlΓ0(pm) of the
form

Γ0(pm)πlΓ0(pm) =

|l|⊔

i=0

giΓ0(pm).
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If c =
∑
g ng · g ∈ Z[G] is a cycle, the Hecke operator acting on the homology class [c] is given by

the explicit formula

Tl([c]) =

|l|∑

i=0

∑

g

ng · ti(g),

where ti(g) is defined by the equality g−1gi = gjti(g)
−1 for some (unique) j. Similar explicit

formulas exist for the operators Tl for l | pm and for the Hecke operators at the infinite places
Tv. Now, if c1, . . . , ct is basis of H1(Γ0(pm),Z) one can compute Tl(ci) using the above formula,
and express it in terms of the basis by using the explicit solution to the word problem provided
by the algorithms of Voight and Page. We are not interested in torsion homology classes, so if
(say) c1, . . . , cm are the free generators we obtain an m × m matrix of Tl acting on the torsion
free part of H1(Γ0(pm),Z); equivalently, we can also think that this is the matrix of Tl acting on
H1(Γ0(pm),Q).

We have implemented the algorithms under the assumption that the ideal m is trivial. This is
not a restriction of the method and it could be dispensed with, but we restricted to this case in
order to simplify some of the steps in the calculation. So let us suppose from now on that m = (1).

The first step is to compute the p-new part of H1(Γ0(p),Q). Let ωp ∈ R0(p)
× be an element

whose reduced norm is positive at the real places of F and that normalizes Γ0(p). Then, if we

let Γ̂0(1) = ω−1
p Γ0(1)ωp we can identify the group Γ introduced in page 10 with the amalgamated

product Γ0(1) ⋆Γ0(p) Γ̂0(1) (all the groups viewed as subgroups of Γ). The inclusions Γ0(p) ⊂ Γ0(1)

and Γ0(p) ⊂ Γ̂0(1) induce maps

α : H1(Γ0(p),Q) −→ H1(Γ0(1),Z), α̂ : H1(Γ0(p),Z) −→ H1(Γ̂0(1),Z).

Then the p-new part is H1(Γ0(p),Q)p−new = ker(α) ∩ ker(α̂), which can be easily computed from

the generators and relations of Γ0(p)
ab and Γ0(1)

ab. We compute next H1(Γ0(p),Q)+p−new, the
subspace on which Tv acts as +1 where v is the real place of F that splits in B (this is only needed
if n = 1). Now we compute the matrix of Tl1 acting on H1(Γ0(p),Q)+p−new for some small prime
l1 ∤ N. This module decomposes into a direct sum of submodules, given by the factorization of the
minimal polynomial of Tl1 into coprime factors. If some factor is irreducible, then the corresponding
submodule is an irreducible T-module. To each non-irreducible submodule, we apply the same
procedure for the Hecke operator Tl2 for some other prime l2, and so on. In this way, after applying
a finite number of Hecke operators Tl1 , Tl2 , Tl3 , . . . we will have decomposed H1(Γ0(p),Q)+p−new into
a direct sum of irreducible T-modules. Then the submodules of rank 2 correspond to newforms f
with [Kf : Q] = 2, and the submodule is what we denoted H1(Γ0(p),Q)f . At this point we have
explicitly computed a basis γ̃1, γ̃2 of H1(Γ0(p),Q)f . Since we are interested in integral classes, we
set γ1 = γ̃a1 and γ2 = γ̃b2, for a, b ∈ Z such that γ1, γ2 ∈ H1(Γ0(p),Z)

f .
The next step is for each γ ∈ {γ1, γ2} to compute δ ❛d−1(γ) ∈ H1(Γ,Div0 Hp). By construction

γ lies in ker(α) ∩ ker(α̂). Therefore, γ is trivial when viewed as an element in both Γ0(1)
ab and

Γ̂0(1)
ab, so that it is a product of commutators in Γ0(1) and in Γ̂0(1). Using the effective solution

to the word problem in Γ0(1) provided by the algorithms of Voight and Page, one can compute this
decomposition explicitly. Now using the explicit formula of [GMŞ16, Lemma 3.2] one computes

elements z ∈ Z[Γ0(1)]⊗Z[Γ0(1)] and ẑ ∈ Z[Γ̂0(1)]⊗Z[Γ̂0(1)] such that ∂z = γ and ∂ẑ = γ. Both z
and ẑ can be naturally viewed as elements of Z[Γ] ⊗ Z[Γ]; then c = z − ẑ ∈ Z[Γ] ⊗ Z[Γ] is a cycle
and its class [c] ∈ H2(Γ,Z) maps to γ under the map d. Now let τ be any element in Div0 Hp. If
we write c =

∑
nigi ⊗ hi, then by [GMŞ15, Lemma 3.3] the cocycle δ ❛d−1 is represented by the
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cycle
∑

nihi ⊗ (g−1
i τ − τ).

The computations on cohomology groups are practically the same as for the one-dimensional sit-
uation. More precisely, we identify the cohomology group H1(Γ0(p),Q) as the dual of H1(Γ0(p),Q).
In particular, the basis {γ1, γ2} gives rise to a dual basis {c1, c2}, whose elements actually lie in
H1(Γ0(p),Z)

f . These correspond, under the isomorphism of Proposition 3.1 to cohomology classes

ω1, ω2 ∈ H1(Γ,Meas0(P
1(Fp),Z))

by means of an explicit formula. The main point is that if B is a ball in P1(Fp), then either B or
P1(Fp) \B is of the form gOFp

for some g ∈ Γ/Γ0(p). Thus a measure in Meas0(P
1(Fp),Z) can be

regarded as an element in CoindΓΓ0(p)Z, satisfying certain additional properties. Now the Shapiro
isomorphism gives

H1(Γ0(p),Z) ≃ H1(Γ,CoindΓΓ0(p)Z).

This isomorphism can be given at the level of cocycles by an explicit formula, as follows. Let {γe}
be a system of representatives of Γ/Γ0(p); for h ∈ Γ denote by γe(h) the representative such that
h ∈ γe(h) · Γ0(p). Then, for a cocycle c : Γ0(p) → Z its image under the above isomorphism is
represented by the cocycle g 7→ ωg, where ωg(h) = c(r) for the unique r ∈ Γ0(p) such that

γe(h)g = rγe′ , for some representative γe′ .

The element ωg in principle belongs to CoindΓΓ0(p)Z. With an appropriate choice of the represen-

tatives {γe} introduced in [LRV12] (see also [GMŞ16, §3.3]), one sees that ωg in fact belongs to
Meas0(P

1(Fp),Z) for all g ∈ Γ. In this way we compute the cocycles ω1 and ω2.
The last step is to compute the integration pairing. That is to say, for γ ∈ {γ1, γ2} and ω ∈

{ω1, ω2} we need to compute (an approximation) of ×
∫
δ ❛d−1γ ρ

−1(ω). This presents no difference

with the case of dimension 1, and we use exactly the same algorithm presented in [GMŞ16, §3.4].

4.2. p-adic periods of genus two Mumford curves. In §4.3 we will compute the period lattice
attached to a modular form f . In order to numerically test Conjecture 3.3, we need a method to
compute the period lattice of the abelian surface Af . In our examples, Af can be taken to be the
Jacobian of a genus two curve Cf . Then we can use Teitelbaum’s formulas [Tei88], which provide
formulas for the p-adic periods of a genus two Mumford curve in terms of the coefficients of an
equation of the curve. The strategy of [Tei88] is to first express the coefficients of an equation as
power series in the p-adic periods of the curve, and then to invert these series. In a sense, this is
similar to the case of Tate elliptic curves, whose j-invariant in terms of the Tate period is given by

j =
1

q
+ 744 + 196884q+ · · · ,

and the expression for the Tate period in terms of the j-invariant in obtained by inverting the series.
The formulas in the genus two case are rather more complicated, but since they are a key tool in
our computations we give an account on how they are obtained (and we also take the chance to
correct some minor typos in the formulas of [Tei88]).

Let F be a complete local field. Denote by OF its ring of integers, π a uniformizer, and k
the residue field, which we assume to be of characteristic 6= 2. Let X be a genus two Mumford
curve over F ; that is, X is smooth, irreducible, projective, and it has a stable model over OF
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such that all components of its generic fiber are isomorphic to P1
k and all double points are k-

rational. Then Mumford’s uniformization theory guarantees the existence a free subgroup of rank
two ΓX ⊂ PGL2(F ) such that Xan ≃ Ω/ΓX (here Ω ⊂ P1

F is the set of non-limit points of ΓX and
Xan denotes the rigid analytic space attached to X). Manin and Drinfeld [MD73] constructed a
symmetric pairing

〈·, ·〉 : ΓX × ΓX −→ F×(4.1)

that uniformizes the Jacobian ofX . That is, (4.1) embeds ΓX as a discrete subgroup of Hom(ΓX , F
×)

and, if we call Λ the image of ΓX , then the quotient Hom(ΓX , F
×)/Λ is isomorphic to Jac(X).

Let us assume that the Weierstrass points ofX are defined over F . The reduction ofX determines
a partition of the set of Weierstrass points into three subsets S1, S2, S3 of two elements, which can
be read off from the distribution of the Weierstrass points in the special fiber of a minimal regular
model forX [Tei88, Proposition 9]. To be more precise, the set of Weierstrass points reduce to either
three points w1, w2, w3 of multiplicities 2, 2, 2, or to four points w1, w2, w3, w

′
3 with multiplicities

2, 2, 1, 1. For i = 1, 2 the set Si consists of the points that reduce to wi. In the first case, S3

consists on the points that reduce to w3, whereas in the second case it consists on those points that
reduce to w3 or w′

3. Observe that the ordering of the Si’s is not uniquely determined, although in
the second case the set S3 is distinguished.

For each i we choose a labeling of the points in Si as Si = {P+
i , P

−
i }. Let γ1, γ2, γ3 ∈ ΓX be

the elements associated to the choice of this labeling as in [Tei88, §2.1]. For our purposes, we do
not need to know much about these elements, just that they generate ΓX and that γ1γ2γ3 = 1.
Teitelbaum defines the fundamental periods of X as

q1 = 〈γ2, γ3〉−1, q2 = 〈γ1, γ3〉−1, q3 = 〈γ1, γ2〉−1.

Observe that a period lattice of Jac(X) is given by the columns of the matrix
(
A B
B D

)
:=

(
〈γ1, γ1〉 〈γ1, γ2〉
〈γ2, γ1〉 〈γ2, γ2〉

)
,(4.2)

so indeed the lattice Λ can be recovered from the qi’s. For later use, we note that the periods can
also be recovered from the lattice:

q1 = BD, q2 = AB, q3 = B−1.(4.3)

A related notion, which plays a key role in Teitelbaum’s formulas, are the so-called half-periods
of X , defined as

p1 = χ12(γ2), p2 = χ23(γ3), p3 = χ31(γ1),

where χ12, χ23, and χ31 are the elements in Hom(ΓX , F
×) defined in [Tei88, Definition 17]. The

χij ’s are defined by very explicit expressions, but we do not need them actually. Indeed, one of
the main results of [Tei88] is an expression of the coefficients of an equation of X as power series
in the pi’s; by inverting these series one obtains formulas for the pi’s in terms of an equation of X .
These are the formulas that we are interested in, since the pi’s are related to the qi’s by the simple
relation qi = p−2

i (which also justifies the name of half periods).
Before stating the formulas, we still need to introduce some more notation. Let

(·, ·) : ΓabX × ΓabX −→ F×(4.4)

be the bilinear pairing defined by (γi, γj) = p−1
k for different i, j, k (observe that this determines

the pairing completely because of the relation γ1γ2γ3 = 1), and let θ : Hom(ΓX , F
×) −→ F× be
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the theta function defined by the formula

θ(χ) =
∑

γ∈Γab
X

(γ, γ)χ(γ).

Table 1 of [Tei88] defines 15 characters, denoted as χP,Q for various choices of

P,Q ∈ {P+
1 , P

−
1 , P

+
2 , P

−
2 , P

+
3 , P

−
3 },

by means of explicit formulas in terms of the half periods. These characters, together with the
trivial character χ1, are the set of 2-torsion points of the Jacobian of X (under the identification
Jac(X) ≃ Hom(ΓX , F

×)/Λ).
Let x be the function on X that has a double pole at P+

1 , a double zero at P+
2 , and such that

x(P+
3 ) = 1. Then, possibly after adding the square root of some element of F , we can assume that

X has a model given by

y2 = x(x − 1)(x− x(P−
1 ))(x− x(P−

2 ))(x − x(P−
3 )).

Then by [Tei88, Theorem 28] we have that

x(P−
3 ) =

θ2(χP+

2
,P−

2

)θ2(χP−

1
,P+

2

)

θ2(χP+

1
,P−

1

)θ2(χP+

1
,P−

2

)
,(4.5)

x(P−
1 )− 1

x(P−
1 )

=
θ2(χP+

3
,P−

3

)θ2(χP−

2
,P+

3

)

θ2(χP+

2
,P−

2

)θ2(χP+

2
,P−

3

)
,

1

1− x(P−
2 )

=
θ2(χP+

1
,P−

1

)θ2(χP−

3
,P+

1

)

θ2(χP+

3
,P−

3

)θ2(χP+

3
,P−

1

)
.

Note that there is a typo in display (23) of [Tei88], in which the left hand sides of the last two
equations are swapped. These formulas express x(P−

1 ), x(P−
2 ), and x(P−

3 ) in terms of the half
periods p1, p2, and p3, which can be calculated using the definitions of the characters χP,Q and of
θ; explicitly:

θ(χP+

1
,P−

1

) =
∑

i,j∈Z

pi
2

2 p
j2

1 p
(i−j)2
3 (−1)j, θ(χP+

2
,P−

2

) =
∑

i,j∈Z

pi
2

2 p
j2

1 p
(i−j)2
3 (−1)i,

θ(χP+

3
,P−

3

) =
∑

i,j∈Z

pi
2

2 p
j2

1 p
(i−j)2
3 (−1)i+j , θ(χP−

1
,P+

2

) =
∑

i,j∈Z

pi
2−i
2 pj

2−j
1 p

(i−j)2
3 (−1)i+j ,

θ(χP+

1
,P−

2

) =
∑

i,j∈Z

pi
2−i
2 pj

2−j
1 p

(i−j)2
3 , θ(χP−

2
,P+

3

) =
∑

i,j∈Z

pi
2+i
2 pj

2

1 p
(i−j)2+(i−j)
3 (−1)j ,

θ(χP+

2
,P−

3

) =
∑

i,j∈Z

pi
2+i
2 pj

2

1 p
(i−j)2+(i−j)
3 , θ(χP−

3
,P+

1

) =
∑

i,j∈Z

pi
2

2 p
j2+j
1 p

(i−j)2−(i−j)
3 (−1)i,

θ(χP+

3
,P−

1

) =
∑

i,j∈Z

pi
2

2 p
j2+j
1 p

(i−j)2−(i−j)
3 .

Note that there is a typo in display (25) of [Tei88] in the sign affecting the sum. In this way,
these expressions give the coordinates x(P−

1 ), x(P−
2 ), and x(P−

3 ) as power series in the half periods
p1, p2, and p3.
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If one starts with a genus two Mumford curve X/F , one can compute its half periods pi, and
therefore its periods qi = p−2

i , as follows. Consider a hyperelliptic model y2 = f(x), with f(x) of
degree 6. After possibly changing F we can assume that f has its six roots in F , and hence the
Weierstrass points are defined over F ; the next step is to label them as P+

1 , P
−
1 , P

+
2 , P

−
2 , P

+
3 , P

−
3 .

The reduction f̃ of f (mod π) factors either as

f̃(x) = (x − x̃1)
2(x− x̃2)

2(x − x̃3)
2,

or as

f̃(x) = (x− x̃1)
2(x − x̃2)

2(x− x̃3)(x− x̃′3).

In the first case we take x(P±
i ) as the roots reducing to x̃i (in any order). In the second, x(P±

1 )
(resp. x(P±

2 )) reduce to x̃1 (resp. x̃2), and x(P
±
3 ) are the points reducing to x̃3 and x̃′3 (again, in

any order). Next, apply the transformation

x 7→ (x− x(P+
2 ))(x(P+

3 )− x(P+
1 ))

(x− x(P+
1 ))(x(P+

3 )− x(P+
2 ))

,

which sends P+
1 to ∞, P+

2 to 0, and P+
3 to 1; denote again by x(P−

1 ), x(P−
2 ), and x(P−

3 ) the
x-coordinates of the P−

i after applying the transformation. Then the half periods are obtained by
plugging these values in (4.5), and solving for p1, p2, and p3. The power series can be inverted,
as is done in [Tei88, p. 141]. However, computationally it is more efficient to solve the system
numerically, by applying a three-dimensional Newton scheme.

4.3. A numerical verification. Consider the cubic field F = Q(α), where α is a root of the
polynomial x3 − x2 + 3x − 2. This field has signature (1, 1). Let p = (α2 + 1), which has norm
p = 5, and let d = (−2α2 + 4α− 7), of norm 173. We see that in this example Fp = Qp = Q5.

Let B be the (unique) quaternion algebra over F of discriminant d. It is generated by i and
j satisfying i2 = −4α2 + 4α − 7 and j2 = −173. We have computed the cohomology group
H1(Γ0(p),C) associated to norm-one units of an Eichler order of level p in B, and found it to be
of dimension 4. The Hecke operator Tl, where l = (α), acts on it with characteristic polynomial
(x2+x−4)(x2+x−1). Therefore there are two irreducible 2-dimensional components. We consider
the component corresponding to the factor x2 + x − 1, which corresponds to a newform f whose
eigenvalues generate the quadratic field Q(

√
5).

Using the methods described in §4.1 (the actual code for the implementation can be found in
https://github.com/mmasdeu/darmonpoints) we find a basis {ϕ1, ϕ2} of H1(Γ0(p),Z)

f . Sim-
ilarly, we find a basis {θ′1, θ′2} of H1(Γ0(p),Z)

f . If we identify H1(Γ0(p),Q)f with the dual of
H1(Γ0(p),Q)f , these two bases are not dual to each other: the matrix of cap-product pairings is

(
−142456600326 −18

94971066876 12

)
,

which has determinant −144. This leads us to consider a new basis for the homology which is a
“pseudo”-dual basis for {ϕ1, ϕ2} and which has the property that the resulting cap-product is

(
−144 0

0 −144

)
.

On this new basis {θ1, θ2}, the Hecke operator Tl acts as
(
Tlθ1
Tlθ2

)
=

(
−2 1
2 1

)t(
θ1
θ2

)
.
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Computing the integration pairing (3.4) we obtain the periods:

A0 = 〈ϕ1, θ1〉 = 545 · 227015308497264163898130173143 (mod 587),

B0 = 〈ϕ1, θ2〉 = 30930079006020210124765717907 (mod 542).

The periods C0 = 〈ϕ2, θ1〉 and D0 = 〈ϕ2, θ2〉 are readily obtained from A0, B0 and the matrix Tl,
by Hecke-equivariance of the pairing. In this particular case, for example:

C0 = B2
0 D0 = A0B

3
0 .

The lattice Λ′
f is therefore generated by the columns of the matrix

(
A0 B0

C0 D0

)
.

Now, we want to verify that Λ′
f is isogenous to the period lattice of Af . For this, consider the

genus two curve X/F given by the following equation:

y2+(x3 + (−α− 1)x2 − αx+ 1)y =

(2α2 − 4α+ 2)x4 + (4α2 − 8α+ 3)x3 + (5α2 − 7α+ 3)x2 + (3α2 − 3α+ 1)x+ α2 − α.

We have obtained this curve by specializing the parameters in the Brumer family (see [Has00]), and

therefore the endomorphism algebra of Jac(X) contains Q(
√
5). The conductor of Jac(X) can be

computed using the Magma: it is precisely p2d2. Moreover, we have computed the eigenvalue al(f)
and we have checked that the relation

#Af (OF /l) = NQ(
√
5)/Q(1 + |l| − al(f))

holds. These properties lead us to think that, in all likelihood, Jac(X) is isogenous to Af . Since
we have the equation of X , we have been able to use Teitelbaum’s formulas recalled in Section 4.2
to compute an approximation (up to 50 digits) to the p-adic periods A, B, D of Jac(X) as in (4.2).
This is precisely the lattice Λf .

Now, in order to check that Λf and Λ′
f are isogenous, as predicted by Conjecture 3.3, we need

to find matrices Y, Z ∈ M2(Z) such that V Y = ZW , where V = ( A B
B D ) and W =

(
A0 B0

C0 D0

)
. What

we do, in fact, is to find matrices satisfying the weaker relation (see (2.5) for the notation):

Y ℓ(V ) = ℓ(W )Z,(4.6)

where ℓ denotes a p-adic logarithm. To this purpose, lattice reduction techniques allow us to express
the logarithms of the Teitelbaum periods A, B and D that we computed for X in terms of small
linear combinations of the integration periods A0, B0. In this particular example, the following
relation holds (up to the working precision):



logA
logB
logD


 =




9 −6
−6 3
9 −3




(
logA0

logB0

)
.

Since A0 and B0 are assumed to be algebraically independent, (4.6) yields a homogeneous system
of eight equations in eight variables (the entries of Y and Z). It turns out that this system has
a two-dimensional space of solutions, which allows us to extract the sought (non-zero) matrices Y
and Z. For example, one can take the Kadziela matrices

Y =

(
1 4
0 −1

)
Z =

(
−15 30

6 −9

)
.
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A posteriori we check that the multiplicative relation V Y = ZW holds as well, thus giving numerical
evidence that indeed the lattice Λ′

f is isogenous to the lattice of Af .

5. Equations of genus two curves

In the previous section we have computed the period lattice Λ′
f and, in order to compute the

periods of Af and check Conjecture 3.3, we have crucially used that in that case Af is the Jacobian
of a genus two curve X/F . We remark that the equation of X was known beforehand.

In this section, we describe a method to recover a model for the curve X directly from the lattice
Λ′
f . Since Λ′

f is computed using only information of the modular form f , this can be seen as the
higher dimensional analog of the method to compute the equation of the elliptic curve Af when f
has rational Hecke eigenvalues that was introduced in [GMŞ15].

The idea of the method is as follows. First of all we compute the matrix W =
(
A0 B0

C0 D0

)
whose

columns are the basis of Λ′
f by means of the integration pairing. Suppose that Af is isogenous to

the Jacobian of a genus two curve X/F , and let V = (A B
C D ) be the period matrix of X . Granting

Conjecture 3.3, these two matrices will be related by

V Y = ZW,

for some matrices Y, Z ∈ M2(Z). Assuming for now that we can find Y and Z (we will say later on
how to do it), we can solve for V , and therefore obtain the periods A, B, D of the curve X . From
this, one readily recovers the periods q1, q2, q3 using the relations (4.3):

q1 = BD, q2 = AB, q3 = B−1.

Taking square roots one recovers the half periods pi = q
−1/2
i , which can be plugged in the power

series for the Theta series (4.5) and ultimately give the Weierstrass points of X . The resulting
approximations to the Weierstrass points, although algebraic, are not defined over F in general and
we cannot hope to recognize them algebraically from these p-adic approximations. Instead, what
we can to is to compute a p-adic approximation of the (absolute) invariants of the curve X , which
are defined as

i1 =
I52
I10

, i2 =
I32I4
I10

, i3 =
I22I6
I10

.

Here, I2, I4, I6, I10 are the Igusa–Clebsch invariants, defined as certain symmetric polynomials in
the Weierstrass points of X . Since X is defined over F , then i1, i2, i3 do belong to F .

Now, from the approximations to the Weierstrass points we can compute approximations to the
invariants, say ĩ1, ĩ2, ĩ3. If we have enough precision we will be able to recognize them as elements
of F . This gives us the method for finding the matrices Y and Z: we run over pairs of 2× 2 integer
matrices and, for each trial, we compute the resulting approximation to the invariants ĩ1, ĩ2, ĩ3; if
we are not able to identify them as elements of F , this likely means that Y and Z are wrong and
we try with a different pair.

Trying over pairs of matrices Y, Z a priori involves exploring an eight-dimensional lattice, but
one can reduce the search by imposing that the resulting matrix V is symmetrical. The finding of
Y and Z, which is the two-dimensional generalization of the problem of guessing the valuation of
the Tate parameter of an elliptic curve from its p-adic L-invariant, is one of the places that makes
the computation challenging.

In addition to this, this strategy soon reveals another problem: the absolute invariants have very
large height compared to the coefficients of a minimal Weierstrass model. If for a given pair Y, Z
we are not able to recognize ĩ1, ĩ2, ĩ3 as elements in F , this could also be because the height of the
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invariants i1, i2, i3 is too large to be recognized with our working precision, and it would prevent
the method to work unless one was able to compute to extremely high precision.

Instead, there is an improvement to the method that makes the computation feasible in some
cases: since we are aiming at curves with a specific conductor (obtained from the level of the
modular form from which we started), we have a certain control on what the discriminant of the
curve should be. Unlike the case of elliptic curves, the support of the discriminant of the genus
two curve may be larger than that of its conductor, and hence it is in principle possible that there
are more primes in the discriminant than those appearing in our level. We expect this not to
happen except for small primes, which we can include in our search. Suppose that we guess the
discriminant I10 of the curve. Then from the approximations (̃i1, ĩ2, ĩ3) to the invariants we can
extract approximations to I2 = (i1I10)

1/5, I4 = i2I10I
−3
2 and I6 = i3I10I

−2
2 , which are defined over

F (because I10 belongs to F ) and have lower height than I10 itself.
As a proof of concept, we illustrate the method with an example for which we had the target

curve beforehand. Consider the number field F = Q(α), with α a root of the polynomial x3−x2+1,
which has signature (1, 1). We consider the quaternion algebra with relations i2 = 9α2 − 3α− 11,
j2 = −2α2, which has discriminant d = (8α2 − 10α− 1) of norm 821. Let p = (−2α2 + α) be the
unique prime of norm 7 in F . In this case we find a 2-dimensional component of the cohomology
and homology, on which Tl (with l = (α2 + α − 2), a prime of norm 11) acts with characteristic
polynomial x2 − 2x − 19. In fact, with respect to the chosen pseudo-orthogonal bases {ϕ1, ϕ2},
{θ1, θ2}, the operator Tl acts on the homology via the matrix

(
Tlθ1
Tlθ2

)
=

(
−1 −4
−4 3

)t(
θ1
θ2

)
.

This corresponds then to a newform f such thatKf ≃ Q(
√
5), and we aim to compute the invariants

of a curve X/F such that Jac(X) = Af .
The first step is to compute the periods of the lattice Λ′

f by means of the integration pairing, as
in the previous section. They are:

A0 = 7−4 · 27132321333884163473566078077966608077268973477 (mod 752)

B0 = 397745278075295216478310410412961033205591801491513 (mod 760).

Guessing the Kadziela matrices

Y =

(
−1 −1
−1 0

)
Z =

(
1 1
1 0

)
,

which can be done by looping over matrices with small entries, we can compute a new set of periods

A = 7−1 · 180373636240760651045145390062543188665673147874+O(755)

B = 101858856942719452845868815022429183828273612324+O(756)

D = 7−1 · 80209973804903028832117210143467211207304220322+O(755)

This yields q1, q2, q3:

q1 = 7−1 · 180373636240760651045145390062543188665673147874+O(755)

q2 = 7−1 · 146582506580515644910043665072399073999059180487+O(755)

q3 = 2524063863085285102995202849415046621669591961+O(756).
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From this we compute the half periods taking square roots and the Weierstrass points using formula
(4.5). With the Weierstrass points, we can compute approximations to the invariants

i1 = I52I
−1
10 = 7−2 · 383000380988298534086703050832398358583029537+O(751)

i2 = I32I4I
−1
10 = 7−2 · 216286438165031483296107998530348655636952080+O(751)

i3 = I22I6I
−1
10 = 7−2 · 17712448343391292208503851621997332642044090+O(750).

The discriminant of the sought hyperelliptic curve should have support {2, p, d}. In this case, the
fundamental unit of F is α, so we have tried discriminants of the form

I10 = αa2b(−2α2 + α)2(8α2 − 10α− 1)2.

That is, for different pairs of a and b we have computed I2, I4, I6, and we have tried to identify them
as elements of F . This has worked for a = −12 and b = 12, so that our guess of the discriminant is

I10 = α−12212(−2α2 + α)2(8α2 − 10α− 1)2

With this I10, we have recognized I2, I4, and I6 to be the following elements in F :

I2 = 576α2 − 712α+ 840,

I4 = 7396α2 − 11208α+ 9636,

I6 = 2882256α2 − 4646648α+ 3543824.

It is worth remarking how the quantities I2, I4, I6 were actually found. If one has access to
arbitrarily high precision, one can simply use the algdep commands that exist in Sage or Pari,
which return a polynomial approximately satisfied by the input. However, since we are expecting
to find elements in F we may be more successful finding linear dependency relations among the
input and a power basis of F . In this example, while 50 p-adic digits suffice to recover the Igusa
invariants, the algdep command would require instead about 90 p-adic digits, which would make
the computation nearly unfeasible with the computational resources available to us.

Under Conjecture 3.3, the invariants (I2, I4, I6, I10) should correspond to the invariants of a genus
two curve X/F such that Jac(X) = Af . At this point, and one can run Mestre’s algorithm, which
is implemented in Magma to find the equation of a curve X ′/F with these invariants. The curve X ′

will be then a twist of X , and by looking at its conductor one can untwist it to recover X . This is
the strategy used, in a similar situation, in [DK16b, §4.1.1]. However, in this case the model that
Mestre’s algorithm outputs has very large height (as is usually the case), and since F is not totally
real we do not currently dispose of algorithms to reduce it to a more manageable size.

For this example, we provide an independent check of the fact that the above invariants seem to
correspond to the invariants of a curve whose Jacobian is Af . Consider the curve given by:

y
2 + (x3 + (−α

2
− 1)x2

− α
2
x+ 1)y = (−α

2 + 1)x4
− 2α2

x
3 + (−α

2
− 3α− 1)x2 + (−3α− 2)x− α− 1.

As in the previous section, we have obtained it by specialization of the parameters in the Brumer
family, so the endomorphism algebra of its Jacobian contains Kf = Q(

√
5). Moreover, it has

conductor p2d2, and we have checked that the number of points modulo l that lie on the curve
agrees with the expected value according to the eigenvalue of f . It seems to correspond, then, to
the abelian surface Af , and one can check that its Igusa–Clebsch invariants coincide with the ones
found above. This gives evidence that method presented in this section can be used to compute
the Igusa invariants of a genus two curve whose Jacobian is Af in terms of the integration pairing
〈·, ·〉f .
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6. p-adic L-invariants

The Hecke-equivariant pairing 〈·, ·〉f of Equation (3.4), together with Conjecture 3.3, allows for
the definition of a p-adic L-invariant of f . In the case of dimension 2, it can be computed explicitly
by means of the methods of Section 4. The fact that it coincides when F = Q with the p-adic
L-invariant introduced in [MTT86] allows for an alternative method of computation as well.

We define the p-adic L-invariant only for abelian surfaces, the higher dimensional case is anal-
ogous. Let Tf ⊂ End(H1(Γ0(pm),Q)f ) be the set of endomorphisms generated by the Hecke
operators acting on H1(Γ0(pm),Q)f . We have that Tf ⊗ Q is a number field isomorphic to Kf ,
which also acts on H1(Γ0(pm),Q)f in a way compatible with 〈·, ·〉f . Moreover, H1(Γ0(pm),Q)f and
H1(Γ0(pm),Q)f are Kf -modules of rank 1.

Now consider the maps α, β : H1(Γ0(pm),Q)f → Hom(H1(Γ0(pm),Q)f , Fp) given by

α(θ)(ϕ) = ordp(〈θ, ϕ〉f ), β(θ)(ϕ) = logp(〈θ, ϕ〉f ),
where ordp denotes the order at p and logp a p-adic logarithm (say, the one that takes a generator
of p to 0). Under Conjecture 3.3 the map ordp〈·, ·〉f is non-degenerate, making α an isomorphism.
The p-adic L-invariant is defined as the unique element Lp(f) ∈ Tf ⊗ Fp such that β = Lp(f)α.

6.1. Examples over Q. Teitelbaum introduced in [Tei88] a method to compute p-adic L-invariants
of Jacobians of genus two modular curves. In this section we compute the p-adic L-invariants
attached to 2-dimensional simple factors of Jacobians of modular curves of genus larger than 2, for
which in principle one cannot use the methods of [Tei88].

As a first example, consider the space of modular forms of level Γ0(165) (note that 165 = 3·5·11).
We work with the indefinite quaternion algebra B of discriminant 15 and with p = 11. We find
a two-dimensional factor of the cohomology H1(ΓB0 (11),Z), on which the Hecke operator T2 acts
with characteristic polynomial x2 + 2x − 1. This corresponds to a modular form f whose Hecke
eigenvalues generate the field Q(

√
2). This defines an isomorphism Tf ⊗Z Qp ∼= Qp2 = Qp(T2), and

we find that Lp(f) is
11 · 2434708053353386815382354389779+ 112 · 1134757179957513984261268713424 · T2 +O(1131).

As a second example, consider this time Γ0(357) (note that 357 = 3 · 7 · 17). We work with
the quaternion algebra of discriminant 3 · 17, and with p = 7. In this case, the Hecke algebra is
generated by T5 which has characteristic polynomial x2 +2x− 1 (the fact that it is the same as the
previous example is a mere coincidence), giving an isomorphism Tf ⊗Z Qp ∼= Qp2 = Qp(T5), and in
this case we find that Lp(f) is

7 · 15066781074161344457224002+ 72 · 1814973922464853030271319 · T5 +O(731).

6.2. Examples over cubic number fields. We have also computed p-adic L-invariants of some
modular forms over number fields Q(α). Here is the summarized data for the modular forms of the
examples in the previous sections.

The example of §4.3, with minimal polynomial for α being: x3 − x2 + 3x− 2:

• Level p · d: (α2 + 1)5 · (−2α2 + 4α− 7)173.
• Characteristic polynomial of T : x2 + x− 1.
• L5(f) = 7483779755785384529304478059+ 1668041363337346469653221493 · T +O(540).

The example of §5, with minimal polynomial for α being x3 − x2 + 1:

• Level p · d: (−2α2 + x)7 · (8α2 − 10α− 1)821.
• Characteristic polynomial of T : x2 − 2x− 19.
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• L7(f) = 7 · 20049683766104040108804775+ 7 · 10498143651203088689572467 · T +O(731).
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