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Abstract

We analyze in detail a previous proposal by Dvali and Gómez that black holes could
be treated as consisting of a Bose-Einstein condensate of gravitons. In order to do so
we extend the Einstein-Hilbert action with a chemical potential-like term, thus placing
ourselves in a grand-canonical ensemble. The form and characteristics of this chemical
potential-like piece are discussed in some detail. We argue that the resulting equations
of motion derived from the action could be interpreted as the Gross-Pitaevskii equation
describing a graviton Bose-Einstein condensate trapped by the black hole gravitational
field. After this, we proceed to expand the ensuring equations of motion up to second
order around the classical Schwarzschild metric so that some non-linear terms in the
metric fluctuation are kept. Next we search for solutions and, modulo some very plausible
assumptions, we find out that the condensate vanishes outside the horizon but is non-
zero in its interior. Inspired by a linearized approximation around the horizon we are
able to find an exact solution for the mean-field wave function describing the graviton
Bose-Einstein condensate in the black hole interior. After this, we can rederive some of
the relations involving the number of gravitons N and the black hole characteristics along
the lines suggested by Dvali and Gómez.
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1 Introduction

In an interesting saga of papers, Dvali, Gómez and others [1,2] have put forward an intriguing
suggestion: black holes (BH) could perhaps be understood as Bose-Einstein condensates of
gravitons. If correct, this would reveal a deep quantum nature of such fascinating objects
and could lead to an alternative understanding of some of the most striking features of BH;
for instance, Hawking radiation [3] could be understood as being due to leakage from the
condensate. Besides, this picture brings new ideas about the Bekenstein entropy [4], the
absence of hair [5], as well as the quantum nature of information storage and the possible
information loss in BHs [6].

The main point of these works is that the physics of BH can be understood in this picture
in terms of a single number N , the number of (off-shell) gravitons contained in the Bose-
Einstein condensate (BEC). These condensed gravitons have a wavelength λ ∼

√
NLP , LP

being the Planck length; they have a characteristic interaction strength αg ∼ 1/N and the
leakage leads to a Hawking temperature of order TH ∼ 1/

√
NLP , equal to the inverse of

λ. The mass of the BH is M ∼
√
NMP and its Schwarzschild radius therefore is given by

rs ∼
√
NLP , thus agreeing with the Compton wavelength of the quantum gravitons λ, in

accordance with the uncertainty principle that dictates λ ≃ rs in the ground state of the
quantum system. Therefore, up to various factors of the Planck mass everything is governed
by N , the number of intervening gravitons. Modulo some assumptions, all these results stem
from the basic relation (unless otherwise stated we work in units where ~ = 1)

rg =
N

M
(1)

that relates the number of gravitons N , the mass of the gravitating object M and its gravi-
tational radius rg. For a Schwarzschild BH rg = rs.

We found these results intriguing and we set up to try and understand them in a different
language and, if possible, attempt to be more quantitative. On the process we have separated
slightly from the original line of thought of the authors. The original approach of [1, 2] is
not geometric at all. There is no mention of horizon or metric. Here we will adopt a more
conservative approach. We will assume the pre-existence of a classical gravitational field
created by an unspecified source that generates the Schwarzschild metric. As it is known,
nothing can classically escape from a BH so if we wish to interpret this in potential terms
(which of course is not correct but serves us for the purpose of creating a picture of the
phenomenon) it would correspond to a confining potential. On and above this classical
potential one can envisage a number of quantum fields being trapped. For sure there is
a gravity quantum field present inside the horizon; hence gravitons. Other quanta may
get trapped by the BH potential as well, but a possible graviton BEC seems particularly
challenging to treat and this is the purpose of this work.

Continuing with our semi-classical analogy, these trapped gravitons as well as other quanta
present have had a long time to thermalize in a (eternal) Schwarzschild BH and it is therefore
natural to expect that after cooling they can form a Bose-Einstein condensate. Of course
these ‘gravitons’ are in no way freely propagating transverse gravitons. They are necessarily
off-shell (q2 6= 0) and have some sort of effective mass. It may help to get a picture of the
phenomenon to think of them as quasiparticles.

It is well known in BEC theory that Bose–Einstein condensation of a spatially homoge-
neous gas with attractive interactions is precluded by a conventional phase transition into
either a liquid or solid. When confined to a trap; however, such a condensate can form, if its
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occupation number is low. Repulsive forces act to stabilize the condensate against collapse.
Knowing this, one would immediately think that gravitons do not have repulsive interactions,
at least naively, and that therefore a BEC is impossible to sustain, particularly as we expect
N to be very large. To this objection one could reply in a twofold way. First, it is up to
the equations to determine whether such a condensate is possible or not (we will see below
that indeed it is, at least in the case of vanishing angular momentum). Secondly one might
also answer that, in theories of emergent gravity, the ultimate nature of gravitons may be
some type of fermionic degrees of freedom (such as e.g. in the model suggested in [7]). Then,
repulsion is assured at some scale and fundamental collapse prevented.

We will try to identify and propose a consistent set of equations describing a BEC con-
structed on top of the classical field created by a BH1. We will succeed and we will see that
remarkably enough the characteristics of the resulting BEC are uniquely described in terms
of the Schwarzschild radius of the BH and the value of a dimensionless parameter, interpreted
as a chemical potential. A condensate appears not only to be possible but actually intimately
related to the classical field that sustains it and determines its characteristics.

It would therefore be tempting to go one step beyond and reverse the order of the logical
implication and eventually attempt to derive the classical field as a sort of mean field potential
à la Hartree-Fock. However we will stop short of doing so here. In any case, even without
embarking in the discussion just mentioned, we are aware of the speculative nature of the
present study.

2 Building up a condensate over a Schwarzschild background

In what follows we shall adhere to the following notational conventions: the Einstein tensor
Gµν = Rµν − 1

2gµνR is constructed with the metric gµν in the usual way. We will denote
by g̃µν the background metric that in our case will invariably be the Schwarzschild metric.
Perturbations above this background metric will be denoted by hµν , so gµν = g̃µν + hµν . We
will use the Minkowskian metric convention ηµν = diag(−1, 1, 1, 1).

To initiate our program we should, first of all, identify an equation (or set of equations)
that could provide a suitable description of a BEC in the present context. In other words, we
have to find the appropriate generalization of the Gross-Pitaevskii equation. The graviton
condensate has necessarily to be described by a tensor field that within our philosophy has
to be connected necessarily with a perturbation of the classical metric.

In order to keep things as simple as possible we will attempt to describe only condensates
with quantum states having l = 0. This will translate to spherically symmetric perturbations
of the gravity field only

ds2 =
[

−
(

1− rs/r
)

+ htt

]

dt2 +
[

(

1− rs/r
)−1

+ hrr

]

dr2 + r2dΩ2 . (2)

The Einstein tensor derived from the previous metric will be expanded up to second order in
hµν to retain the leading non-linearities (self-interactions of the desired condensate).

It is well known that Birkhoff’s theorem [8,9] guarantees the uniqueness of the solution of
Einstein’s equations in vacuum with the properties of having spherical symmetry and being
static. As every dimensionful quantity can be expressed as a function of the Schwarzschild
radius rs = 2GM , the difference between a given Schwarzschild metric and any perturbed
solution built upon it must necessarily correspond to a change in the mass M to M + δM .

1A classical field is not the same as a quantum condensate, although the latter may trigger the former.
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The fact that spherical symmetric perturbations are related to shifts in mass, indicates a
correspondence between any perturbation hµν (i.e. each ‘graviton’) and a certain amount of
energy that is reflected in a change of the BH mass.

2.1 Einstein equations as Gross-Pitaevskii equations

The familiar Gross-Pitaevskii equation [10] employed to describe Bose-Einstein condensates is
a non-linear Schrödinger equation; i.e. an equation of motion that contains self-interactions
(hence the non-linearity), a confining potential for the atoms or particles constituting the
condensate, and a chemical potential, the conjugate thermodynamic variable of the number
of particles or atoms contained in the condensate.

Among all these ingredients, the Einstein equations perturbed around a BH metric con-
tain most of them. They are already non-linear and while there is no an explicit confining
potential (as befits a relativistic theory) they do confine particles, at least classically, because
if the selected background corresponds to a Schwarzschild BH, the strong gravitational field
classically traps particles inside the horizon. In addition, they are the only known consistent
equations describing a rank-two tensor. Finally, the background (i.e. the BH metric) is a
solution of Einstein equations; therefore they are necessarily part of the answer. However,
there is one ingredient still missing, namely the equivalent of the chemical potential. There-
fore we have to extend the formulation of perturbations around a classical BH solution to the
grand-canonical ensemble by adding to the appropriate action a chemical potential term.

As it is well known since the early days of quantum field theory [11] there are no conserved
currents or continuity equations for fundamental fields that are chargeless (such as a real
Klein-Gordon field). Therefore there is no way of defining a number operator for freely
propagating gravitons or photons. Nonetheless, in the picture of [1] and [2] the situation is
different. If a BEC is present with ‘gravitons’ acquiring all the same momenta ∼ 1/rs and
being weakly interacting for a macroscopic BH (recall αg ∼ 1/N) the total energy stored in
the condensate should be ∼ N/rs and this quantity would be a conserved one. Therefore,
lest rs change, N would be conserved. The previous reasoning shows very clearly that the
‘gravitons’ contemplated in the present scenario, if realized, have nothing to do with freely
propagating gravitons.

The energy contained in a given volume occupied by a non-interacting scalar field is

E = −1

2

∫

dV φ∇2φ ; (3)

by analogy, in the present case

E =
1

2

∫

dV ε2ĥαβ ĥ
αβ =

∫

dV ε ρ
ĥ
, (4)

where we assume that the energy per graviton ε is constant and approximately given by 1/rs,
and

ρ
ĥ
≡ 1

2
ĥαβ

1

λ
ĥαβ , (5)

with ĥαβ = MPhαβ . While there is no formally conserved current, the above quantity can
be interpreted as a ‘graviton’ number density, and the integral of the graviton density (5) in
the interior of the BH has to be interpreted as the number of constituents of the BEC.

The above considerations can now be phrased in a Lagrangian language. The chemical
potential term in the action should be related to the graviton density of the condensate
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inside a differential volume element dV . In order to respect the basic symmetry of General
Relativity (GR), the simplest form of introducing such a term is by means of

∆Schem.pot. = −1

2

∫

d4x
√−g µ ĥαβĥαβ . (6)

This term does of course resemble a mass term for the spin-2 excitation and indeed it is some
sort of effective mass in practice as the ‘gravitons’ in the BEC are quasi-non-interacting.
However we will see that GR eventually requires for the quantity µ to actually be position
dependent, i.e. µ = µ(r), and transform as a scalar.

Given the resemblance of the term that we interpret as chemical potential to a mass term,
it is legitimate to ask why not use the Fierz-Pauli form of the mass term, that is known to
be able to provide ghost-free propagation of gravitons (see e.g. [12] for a detailed discussion
of massive gravity). The answer is simple: our ‘gravitons’ correspond to time-independent
solutions; they do not propagate and the issue of ghosts is totally irrelevant in the present
discussion. We do not advocate adding (6) as a fundamental ingredient of gravity, but only
as a means of describing in an effective and thermodynamical way the formation of a BEC
condensate —exactly what the Gross-Pitaevskii equation is meant to implement. From a
more pragmatic point of view, modifications of (6) in the sense of making this term look
like a Fierz-Pauli mass term do not really change the results at the qualitative level, but we
emphasize that it is not really necessary to worry about the ghost issue at this point.

Although the additional term may look odd, it is invariant under the gauge group of
diffeomorphisms. Part of this statement is shown in [13]: under an infinitesimal displacement
in the coordinates of the form δDx

µ = ξµ the full metric changes as δgµν = ξµ;ν + ξν;µ. The
same gauge transformation rules the background metric. As the perturbation is defined by
hµν = gµν − g̃µν , under the same perturbation of the coordinate system, the same rule of
covariant transformation is obtained. Together with the fact that the chemical potential
µ behaves as a scalar under a general coordinate transformation, ensure automatically the
general covariance of the theory. However, while the formalism is diff invariant, it is not

background independent. The separation gµν = g̃µν + hµν leads to an action that depends
on the choice of the background metric, which is the one of the BH. Likewise µ(r) also will
depend on the background metric. We will not postulate any particular dependence of µ
on r. In fact, at this point it would be conceivable that the only consistent solution implies
µ = 0. This will not be the case however and µ(r) will be determined in the subsequent from
the requirement of self-consistency of the proposal. Therefore an appropriate action for the
field hαβ is

S(h) =MP
2

∫

d4x
√−g R(g)− 1

2MP
2

∫

d4x
√−g µ hαβhαβ . (7)

Indices are raised and lowered using the full metric gµν = g̃µν + hµν . A completely covariant
expansion in powers of hαβ can be performed up to the desired order of accuracy. By con-
struction these equations will be non-linear, but we will keep only the leading non-linearities
to maintain the formalism simple and analytically tractable. It is worth noting again that
the action (7) is as shown reparametrization invariant, but it is not background independent.
The fact that fluctuations take place above a BH background –in whatever coordinates one
chooses to describe it– does matter.

The action principle yields the two equations of motion for the field hαβ = diag(htt, htt, 0, 0),
namely

Gα
β(g̃ + h) = µ

(

hα
β − hασh

σβ + 1
4 h

2 δβα
)

, (8)
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where δβα is the Kronecker delta and h2 = hαβh
αβ . It is important to keep in mind the follow-

ing: we are working here in the grand canonical ensemble; this implies that the magnitude µ is
an external field and does not vary in the action. In particular, for these equations of motion
µ is independent of hαβ , so δµ/δhαβ = 0. This should be the way of introducing the chemical
potential. Otherwise, were µ not an external field, it would be necessary to take it into ac-
count when performing variations to derive the equations of motion. An equation of motion
would be obtained for µ and this equation would nullify automatically the perturbation as
well as the chemical potential itself, i.e. hαβ = 0 and µ = 0. Therefore, the external field
µ is introduced in the theory as some kind of Lagrange multiplier. As Lagrange multipliers
have constraint equations, the chemical potential of the theory may not be arbitrary at all.
It must satisfy binding conditions with hαβ. The main difference is that these constraints are
implicit in a GR theory. The restriction of µ is through the general covariance conditions for
the action. In other words, the diffeomorphisms covariance implies the covariant conservation
of the Einstein tensor, and this in itself entails the same for the chemical potential term

∇βGα
β = 0 =⇒

[

µ
(

hα
β − hασh

σβ + 1
4 h

2 δβα

)]

;β
= 0 . (9)

The covariant derivative is defined using the full metric gαβ = g̃αβ + hαβ . This differential
equation of motion is valid up to every order in perturbation theory.

Hereinafter, we will proceed to find acceptable solutions of these equations and interpret
them. We will separate the problem into two regions: outside and inside the BH horizon. We
certainly expect that the graviton condensate will disappear quickly in the outside region;
imposing this as a boundary condition for r ≫ rs we will see that in fact the condensate is
identically zero on this side of the horizon. On the contrary, a unique non-trivial solution
will be found in the interior of the BH.

3 Outside the horizon

In this section it will be shown that even after the inclusion of µ there is not other normal-
izable solution outside the black hole horizon than the trivial solution for the perturbation.
If we place ourselves far away from the BH, in the r → ∞ limit, one is able to keep only
dominant terms in the Einstein equations. In this perturbative treatment the chemical poten-
tial, far away from the condensate, is expected to behave as a perturbative small parameter.
Therefore, on the LHS side of the equations of motion (8), possible terms of the form µh2 will
be considered as O(h3) and neglected. We will make use of another equation that, although
it does not contribute with new information, will make explicit how the components of the
perturbation behaves between each other; namely, any of the two angular components of
the Einstein tensor Gθ

θ = Gφ
φ = 0. In this limit, as we want a vanishing perturbation at

infinity, the following ansatz is imposed in the faraway region:

htt =
A

ra
; hrr =

B

rb
; µ =

C

rc
; with a, b, c > 0 . (10)

Before proceeding, an additional consideration is needed: since for us h represents a
localized BEC, in analogy with the wave function of a confined particle, the perturbation
must be a square-integrable function. This is

∫ ∞

0
d3x

√−g h2 ≡
∫ ∞

0
d3x

√−g
(

htt
2 gtt 2 + hrr

2 grr 2
)

<∞ . (11)
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There are two reasons that lead us to the previous requirement. Let us review first why one
has to request square-integrability. Note that the solutions of (8) should not be understood
as a quantum field, but rather as solutions of the Gross-Pitaevskii equation. Here we adopt
Bogoliubov theory [14] and its interpretation of the GP wave function. This is the commonly
accepted interpretation and essentially it boils down to the fact that in the large occupation
limit (N → ∞) the creation and annihilation operators of the ground state can be approx-
imately treated as commuting c-numbers, and hence the many body quantum problem is
described by a classical function called the ‘macroscopic wave function’ or simply the ‘order
parameter’. Because the modulus square of this quantity is proportional to a0

† a0, it is there-
fore proportional to N . Hence the order parameter itself is proportional to

√

N/V . If the
potential is not uniform, N may of course depend on the coordinates. From this the need to
require square-integrability follows. This interpretation is in the present case also supported
by the dimensionality of ρ

ĥ
.

Why then this precise condition? The leading role of the geometry has been to provide, in
an indirect manner, a “confining potential” that traps gravitons inside the horizon. Therefore,
from this point of view when giving a physical interpretation to the chemical potential (see
section 4) one implicitly assumes that the geometry of the spacetime is flat and that geometry
acts via the external potential and the chemical one. In the present situation, it turns out
that

√
g ∝ r2 sin θ coincides with the one corresponding to a 3 dimensional spatial flat metric

in spherical coordinates; therefore d3x
√
g is reparametrization invariant in 3 dimensions. This

interpretation is equivalent to defining a wave function normalized by the temporal component
of the metric tensor, ψ = 4

√
gtt h. Then, any magnitude computed by means of an integration

over a 3-spatial volume d3V = d3x
√−γ is effectively written in a fully covariant way as

d3V |ψ|2 = d3x
√−γ√gtt h2 = d3x

√
g h2, since the 4-dimensional metric can be decomposed

as gµν = gttγij , with i, j = r, θ, φ if the metric is diagonal. Therefore, the volume element is
coordinate dependent as well as the square modulus of the macroscopic wave function ψ, but
the combination of both is not; and we end up finally with the corresponding volume element
to the previously discussed flat spacetime.

Whatever the case, in this perturbative limit the components of the Schwarzschild metric
accomplish g̃tt 2, g̃rr 2

r→∞−−−→ 1; then the integral in Eq. (11) should fulfill

4π

∫ ∞

0
dr r2

[

htt
2 + hrr

2 +O(h3)
]

<

∫ ∞

0

dr

r
= ∞ (Logarithmic divergence) . (12)

For this to happen, if a power law ansatz at infinity is imposed, the exponents must obey
a, b > 3/2. Then the equations corresponding to Gt

t, Gr
r and Gθ

θ respectively become

(1− b)
B

rb+2
− (1− 2 b)

B2

r2b+2
=
AC

ra+c

(

rs
r

+ a

)

A

ra+2
− B

rb+2
+

(

rs
r

+ a

)

A2

r2a+2
−

(

rs
r

+ a

)

AB

ra+b+2
+

B2

r2b+2
=
B C

rb+c

(

rs
r
+ a2

)

2A

ra+2
+

(

rs
r

− b

)

2B

rb+2
+

(

2rs
r

+ 3 a2
)

A2

r2a+2
−

(

rs
r

− b

)

4B2

r2b+2

−
[

(2 + b)
rs
r

+ 2 a2 + a b

]

AB

ra+b+2
= 0 .

(13)
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The requirement of the solution being square-integrable exclude that a and b could be zero.
This implies automatically the neglection of the terms proportional to the Schwarzschild
radius. Even more, with the previous considerations, (13) reduce to the following asymptotic
identities

(1− b)
B

rb+2
=
AC

ra+ρ
;

Aa

ra+2
− B

rb+2
=
B C

rb+c
; (14)

2Aa2

ra+2
− 2B b

rb+2
= 0 . (15)

From the angular equation (15), it is mandatory for both terms to contribute at infinity. If
this is not the case, this would nullify A (or B), and then, via both equations in (14), fix
B = 0 (or A = 0) and C = 0; i.e. hαβ = µ = 0. The competition of both terms is possible if
and only if a = b. This condition modifies the angular equation (15) as

(Aa−B)
2 a

ra+2
= 0 =⇒ Aa = B . (16)

Then, from the second equation in (14) the following relationship can be read

(Aa−B)
1

ra+2
= 0 =

BC

ra+c
. (17)

This automatically leads to a null chemical potential as the only possible solution for this
region with the proposed ansatz.

We have also explored the possibility of exponentially vanishing chemical potential when
r → ∞ with analogous conclusions. If we change the ansatz and impose an exponential
decreasing solution for the perturbations at infinity,

htt = Aea r ; hrr = B eb r ; µ = C ec r with a, b, c < 0 , (18)

the linear order dominates in front of the higher ones. As decreasing solutions are expected,
the parameters a, b and c must be not null. If one use this ansatz in the Einstein equations
partially evaluated at infinity, one finds that in the angular equation there is no way for both
leading terms to compete between each other

Gθ
θ : −2Aa2 ea r − 2B b

eb r

r
= 0 . (19)

In conclusion, depending on the fact whether if a is bigger or not than β, A = 0 or B = 0.
For the first case, if A = 0, the leading terms of the temporal equation

Gt
t : B b

eb r

r
= AC e(a+c) r (20)

fixes B = 0. Being both, A and B null, the chemical potential disappears from the theory
in this region. For the second case, if B = 0, the same equation Gt

t nullifies A (as no null
solutions for C are expected). No perturbation makes the chemical potential senseless. To
sum up, this ansatz implies as well that the only solution at infinity is a null perturbation,
hαβ = 0, and the disappearance of the chemical potential from the theory, µ = 0. Likewise it
can be seen that a much faster Gaussian decay is also excluded with analogous calculations.

Before concluding this section we will give additionally a numerical argument that con-
firms the vanishing of the condensate and the chemical potential in the outer region when
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the perturbations are null at infinity. The following change of variables allows rewriting the
relevant equations (8) in terms of dimensionless quantities

z =
rs
r
; X(z) = µ(r) r2 . (21)

This quantities are universal as rs and µ are the only physical parameters. This redefinition
maps the exterior part into a compact interval: r = ∞ is transformed into z = 0 and r = rs
into z = 1. It is well known that Schwarzschild space-time is asymptotically flat; therefore,
at infinity (z = 0) it is expected for the perturbation to vanish (hαβ = 0). Nevertheless
equations are difficult to deal with because they are singular at z = 0, i.e. it is not possible
to isolate the higher order derivatives.

Let us see how we can proceed. As mentioned before, we have to settle for a point z ∼ 0
(but z 6= 0) to set up boundary conditions for the numerical integration procedure to start.
Likewise setting hrr = 0 at any arbitrary value of z outside the event horizon, immediately
triggers divergences at the first step of the routine. Therefore we take a “small” initial value
for the perturbation in a point near infinity (z ∼ 0), and then decrease this initial value;
this is hαβ(r ∼ ∞) → 0. With the set of solutions for the components of hαβ obtained for
each of the initial condition imposed, it is possible to compute the quantity

∫

dV h2 defined
in Eq. (11); the integral extends over the exterior of the BH (i.e. z runs between 0 and 1).
In Figure 1 the behaviour of the integral of h2 outside the BH is presented when the initial

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14

10-25

10-22

10-19

10-16

10-13

10-10

10-7

10-4

  
dz

 
 -g

 h
2

 

 

Decreasing boundary condition

Figure 1: Each point represents a magnitude proportional to the integral of h2 out-
side the event horizon, computed for a particular initial condition for the perturbation
placed near infinity, hµν(∞). The graph is presented in a log–log scale. A linear fit
gives a slope that asymptotically approach 2 as the boundary condition is nullified; this
implies that the integral vanishes quadratically. The closer the limit to an asymptoti-
cally flat space-time is (i.e. decreasing the initial condition near infinity), the smaller
this integral becomes.

9



condition for the integration approaches zero at a fixed point far away from the condensate
(near infinity or z ∼ 0). The numerical analysis results very stable and the initial condition
can be reduced as many orders of magnitude as desired. The graph is presented in a log–log
scale, hence the linear behaviour. The points are fitted by a linear function with a slope
approaching 2 as more points with lower initial condition are added. This implies that the
integral converges quadratically to zero as the initial condition for hαβ nullifies. This seems to
confirm —also numerically— that there is no condensate, i.e. hαβ = 0 and no dimensionless
chemical potential X = 0 in the outer region of the BH.

4 Inside the horizon

In order to study the behaviour of our equations when the horizon is crossed, it is convenient
to keep working in the z = rs/r and X = µ r2 variables introduced in the previous section
and redefine the perturbations as

htt(r) = (1− z) γtt(z) ; hrr(r) = (1− z) γrr(z) . (22)

With the new definitions the Einstein equations become more compact. At the same order
as before, the temporal, radial and angular components of the Einstein tensor read as

(2z + 1)(z − 1)2γrr + z(z − 1)3γrr
′ − (4z + 1)(z − 1)4γrr

2 − 2z(z − 1)5γrr γrr
′

−(z − 1)2γrr − z(z − 1)γtt
′ − z(z − 1)γtt γtt

′ + z(z − 1)3γrr γtt
′ + (z − 1)4γrr

2

2z(z − 2)(z − 1)γrr + z(z − 2)(z − 1)2γrr
′ − z(5z − 2)γtt

′ − 2z2(z − 1)γtt
′′

−2z(z − 2)(z − 1)4γrrγrr
′ + z(7z − 2)(z − 1)2γrrγtt

′ − z(5z − 2)γtt γtt
′

+z2(z − 1)3γrr
′ γtt

′ − z2(z − 1)γtt
′2 + 2z2(z − 1)3γrr γtt

′′

−2z2(z − 1)γtt γtt
′′ .

(23)

4.1 Linearization near the event horizon

In order to get a feeling for possible solutions to these equations we consider their linearized
approximation. Only terms linear in γtt, γrr and their derivatives are kept in the region
z → 1. No a priori assumption for the dimensionless chemical potential X is made, therefore
Xγαβ is a priori considered as a linear contribution in the perturbation. That is

3(z − 1)2γrr + (z − 1)3γrr
′ = Xγtt

(z − 1)2γrr + (z − 1)γtt
′ = −X(z − 1)2γrr

2(z − 1)γrr + (z − 1)2γrr
′ + 3γtt

′ + 2(z − 1)γtt
′′ = 0 .

(24)

Let us now make the following ansatz for the new perturbations

γtt ∼ A(z − 1)a ; γrr ∼ B(z − 1)b , (25)
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while we leave the chemical potential X = X(z) as a free function. The three equations take
respectively the following form

B(3 + b)(z − 1)b+2 = XA(z − 1)a

B(z − 1)b+2 +Aa(z − 1)a = −XB(z − 1)b+2

B(2 + b)(z − 1)b+1 +Aa(1 + 2a)(z − 1)a−1 = 0 .

(26)

It is worth noting that if a = b+2, all terms contribute as we get closer to the event horizon
and X behaves as a constant. In this situation, we obtain three equations for the coefficients

B(1 + a) = XA ; B + aA = −XB ; a[B +A(1 + 2a)] = 0 . (27)

The system of equations is algebraic for the variable X (that as we have seen should behave
as a constant as z → 1); therefore, it is possible to eliminate X by combining the temporal
and radial equation. In the present ansatz this leads to

B2(1 + a) +AB +A2a = 0 . (28)

Together with the angular equation, this determines the solutions up to a single constant.
There are two possible solutions for this system

i) a = 0 b = −2 A = −B =⇒ γtt = A γrr = − A

(z − 1)2
(29)

ii) a = −1 b = −3 A = B =⇒ γtt =
A

(z − 1)
γrr =

A

(z − 1)3
. (30)

In any case, at least one of the perturbations is divergent over the event horizon. Nonetheless,
the first solution appears to be integrable, while this is not the case for the second one. In
case i) X = −1 while if ii) is taken as solution X = 0 (i.e. no chemical potential at all).2

However, because these solutions do not vanish when z → 1, justified doubts can be
cast on the relevance of the linearized equations. Let us examine this point taking into
consideration only the solution i), which is integrable according to the considerations of the
previous section.

In order to see if this solution is modified when non-linearities are switched on, we sub-
stitute it back in the O(γ2) equations system where self-interactions matters, and see if the
solution survives or how would it get modified. In view of the foregoing, near z ∼ 1 the full
temporal, radial and angular equations read

−3(z − 1)2γrr − (z − 1)3γrr
′ + 5(z − 1)4γrr

2 + 2(z − 1)5γrr γrr
′

= X
{

−γtt − 2γtt
2 + 1

4

[

γtt
2 + (z − 1)4 γrr

2
]} (31)

−(z − 1)2 γrr − (z − 1)γtt
′ − (z − 1)γtt γtt

′ + (z − 1)3γrr γtt
′ + (z − 1)4γrr

2

= X
{

(z − 1)2 γrr − 2 (z − 1)4 γrr
2 + 1

4

[

γtt
2 + (z − 1)4 γrr

2
]}

γrr
(32)

2Solution ii) represents however a volume-preserving fluctuation at the linear order.
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2(z − 1)γrr + (z − 1)2γrr
′ + 3γtt

′ + 2(z − 1)γtt
′′ − 4(z − 1)3γrr

2 − 2 (z − 1)4γrr γrr
′

+3γtt γtt
′ − 5(z − 1)2γrr γtt

′ − (z − 1)3γrr
′ γtt

′ + (z − 1)γtt
′2 + 2(z − 1)γtt γtt

′′

−2(z − 1)3γrr γtt
′′ = 0,

(33)

respectively. Replacing the possible solution, γtt = A—this eliminates any derivative of γtt—
and γrr = − A

(z−1)2
into these equations, we obtain the following relations

3A− 2A+ 5A2 − 4A2 = (1 +A)A = −X
(

A+ 3
2A

2
)

(34)

A+A2 = (1 +A)A = −X
(

A+ 3
2A

2
)

(35)

− 2A

(z − 1)
+

2A

(z − 1)
− 4A2

(z − 1)
+

4A2

(z − 1)
= 0 . (36)

Therefore, quite surprisingly, the linear solution is still an exact solution of the non-linear
quadratic differential equations. Thus, we conclude that

γtt = A γrr = − A

(z − 1)2
(37)

are solutions of the second order system of equations.
In addition, this exercise gives an interesting result: X ≃ −(1 − A/2), where A is so far

arbitrary, also in sign. Note that at the linear level we got X = −1 and the fact that the
quadratic equation gives an O(A) correction to this result is consistent as we are implicitly
assuming that |hαβ | ≪ |g̃αβ |, i.e. |A| ≪ 1. The constant A itself is arbitrary and is not
determined by the structure of the equations. Changes in A appear as an overall factor in
the solution.

So far we have seen that the solution given in (37) satisfies not only the linearized approx-
imation but also the full quadratic equations. This conclusion is reinforced after performing
a numerical integration of the basic equations (8) expanded up to O(hαβ

2). We found that
the numerical study reproduces the general features of the analytical study: γtt as well as the
function related to the dimensionless chemical potential X, turns out to be constant in the
interior of the BH. No other solutions are found.

The equations look simpler if expressed in terms of the functions γαβ but to understand
what this solution means is better to undo the redefinition of the components of the wave
function (i.e. γαβ → hαβ) by means of (22) for the solution (37). It is of interest to raise one
index of the components of the perturbation with the inverse full metric gµν . The function
so obtained happens to be constant throughout the interior of the BH

hαβg
αβ = ht

t = hr
r = constant . (38)

The solution for the perturbation hαβ turns out to be proportional to the corresponding
metric element where each of the two belongs; i.e. htt = ht

tgtt and hrr = hr
rgrr with hα

α

constant. The angular degrees of freedom remain unchanged, hθ
θ = hφ

φ = 0.
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4.2 Exact solution

Inspired by the previous analysis, we reformulate our main equations in terms of the metric
fluctuation with mixed indices (one covariant, one contravariant). Let us write

ht
t = ϕt ; hr

r = ϕr ; hθ
θ = hφ

φ = 0 . (39)

The full metric would become

gµν = diag
( 1

1− ϕt
g̃tt ,

1

1− ϕr
g̃rr , g̃θθ , g̃φφ

)

(40)

and seems to impose an upper limit3 for the constant values ϕt and ϕr. The exact equations
of motion for the theory simplify enormously and reduce to the following ones

Gt
t = −ϕr

r2
= µ

[

ϕt +
1

4

(

−3ϕ2
t + ϕ2

r

)

]

Gr
r = −ϕr

r2
= µ

[

ϕr +
1

4

(

ϕ2
t − 3ϕ2

r

)

]

.

(41)

These Eqs. are valid also for the external solution; however, in the case of the external sector,
we know that Minkowski metric must be recovered far from the sources. This condition
implies that ϕt = ϕr = 0 as explained in Section 3.

Among the two possible solutions of the latter algebraical system of equations, only one is
compatible with an acceptable limit for small perturbations, namely ϕt = ϕr ≡ ϕ (we expect
0 < ϕ < 1). All things considered, the two equations in (41) are linearly dependent, hence
the resulting equation of motion for a constant ϕ becomes

− ϕ

r2
= µϕ− 1

2
µϕ2 . (42)

Within our philosophy (8) is understood as a Gross-Pitaevskii equation for a condensate wave
function hα

α ≡ ϕ. It is a non-linear Schrödinger-like equation that produces a unique solution
for the condensate and the chemical potential described by Eq. (42). Because the solution
is constant, the ‘kinetic’ term drops and one is left with a purely algebraic, mean-field-like,
equation4.

The previous equation defines a dimensionless chemical potential X ≡ µr2 that behaves
as a negative constant and, for small perturbations, is related to the mean-field solution by

X = − 1

1− 1
2ϕ

≃ −1− 1

2
ϕ+ . . . . (43)

Notice that we are retrieving the solution found in the perturbative analysis when ϕ plays
the role of the integration constant −A.

Before moving on, it is mandatory to make a comment on the covariant conservation
of our equations. At the end of section 2.1 we have pointed out that the diffeomorphism

3The upper bound for the wave function will become clear when computing the number N of constituents
of the condensate; such value for the wave function corresponds to the limit N → ∞.

4One usually thinks of the GP equation as a non-linear Schrödinger equation, hence with second order
derivatives. Actually this is not always so; for uniform gas of interacting atoms the GP equation is simply
gϕ2 = µ, where g is the interacting (repulsive) constant and µ, needless to say, is the chemical potential.
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invariance entails a differential equation for the chemical potential, namely (9). The covari-
ant conservation of the Einstein tensor implies automatically the same for the LHS of our
equations of motion

µ,β
(

hα
β − hασh

σβ + 1
4h

2δβα
)

+ µ
(

hα
β − hασh

σβ + 1
4h

2δβα
)

;β = 0 . (44)

The latter equation is a set of 4 equations, α = t, r, θ, φ, but only one is non trivial; this
equation is the radial one, α = r. When the perturbations are equal and constant, i.e.
ht

t = hr
r = ϕ, the general covariance condition yields the following differential equation for

the chemical potential µ
(

ϕ− ϕ2

2

)(

∂rµ+
2µ

r

)

= 0 . (45)

The integration is direct and the only degree of freedom is a boundary condition when inte-
grating the differential equation that governs the chemical potential

µ = µ0 r
−2 =⇒ X = µ0 . (46)

This value should coincide with the value of our negative and constant dimensionless chemical
potential in (43); this is X = µ0 = −1− 1

2ϕ.
The qualitative result is the existence of a normalizable solution that can be interpreted as

the collective wave function of a graviton condensate. A unique relation is obtained between
this (constant) wave function and a (also constant) dimensionless chemical potential.

5 Connection with previous proposals.

It is immediate to see that the solution found for the wave function is of finite norm. Taking
into account that the perturbation hαβ is null from the event’s horizon onwards, the endpoint
on the integration limit can be fixed at the Schwarzschild radius. This way, the integral is

∫ ∞

0
d3x

√−ghαβhβ
α = 4π

∫ rs

0
dr r2

ht
t 2 + hr

r 2

√

(1− htt)(1− hrr)
= 4π rs

3 2ϕ2

3 (1− ϕ)
(47)

and states that the integral of the square modulus of the wave function has a constant value.
The volume element for the full metric d3x

√−g = drdΩ r2 sin θ/(1 − ϕ) has been used.
The fact that this magnitude is constant automatically ensures a constant behaviour for the
probability density of the wave function defined in (5), as hα

βhβ
α = hαβh

αβ . Retrieving the
missing constants, we can relate the latter quantity in (47) to the integral of the density ρ

ĥ
.

Then, we are able to compute the total number of gravitons of the condensate. From the
arguments in section 2

N =
8π

3
MP

2 ϕ2

(1− ϕ)
rs

2 =⇒ rs =

√

3 (1 − ϕ)

8πϕ2

√
NLP . (48)

Here again the upper limit for the wave function enters explicitly; if ϕ → 1, then N → ∞
and the metric becomes singular. At this point we should attempt to make contact with the
results of [1,2]. Under the maximum packaging condition λ = rs our previous relation agrees
nicely with their proposal. The rest of relations of their work can be basically derived from
this.

Possibly our more striking results are that the dimensionless chemical potential X =
µ(r)r2 stays constant and non-zero throughout the interior of the BH, and that so does the
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quantity hα
α = ϕ previously defined and entirely determined by the value of the dimen-

sionless chemical potential X. Therefore, it is totally natural to interpret X as the variable
conjugate to N , the number of gravitons.

As seen above the dimensionless chemical potential has a rather peculiar behaviour. As
X = µ r2 is a constant function, then µ ∝ 1/r2 and it is not null over the event horizon.
Outside it appears to be exactly zero. Let us now for a moment forget about the geomet-
rical interpretation of BH physics and let us treat the problem as a collective many body
phenomenon. It is clear why gravitons are trapped behind the horizon: the jump of the
chemical potential at r = rs would prevent the ‘particles’ inside to reaching infinity. From
this point of view it is quite natural to have a lower chemical potential inside the horizon than
outside (where is obviously zero) as otherwise the configuration would be thermodynamically
unstable. In the present solution particles (‘gravitons’ in our case) cannot escape.

However this is not completely true as the picture itself suggests that one of the modes
can scape at a time without paying any energy penalty if the maximum packaging condition
is verified. Let us do a semiclassical calculation inspired by this picture; using M ∼MP

√
N :

dM

dt
≃MP

1

2
√
N

dN

dt
=

1

2rs

dN

dt
. (49)

To estimate dN/dt (which is negative) we can use geometrical arguments to determine the
flux. If we assume that for a given value of rs only one mode can get out (as hypothesized
above) and that propagation takes place at the speed of light, elementary considerations5

lead to
dM

dt
≃ −3

2

1

r2s
. (50)

This agrees with the results of [2] —for instance Eq. (35)— and yields T ≃ 1/rs. Within
this picture, several questions concerning the long-standing issue of loss of information may
arise as the outcoming state looks thermal [15] but apparently is not; or at least not totally
so. However we shall refrain of dwelling on this any further at this point.

The main result from the previous rather detailed analysis is that the BH is able to sustain
a graviton BEC and surely similar BECs made of other quanta [16]. But is that condensate
really present? Our results do not answer that question, but if we reflect on the case where
the limit N → 0 is taken, without disturbing the BH geometry (i.e. keeping rs constant)
this requires taking ϕ → 0 in a way that the ratio

√
N/|ϕ| is fixed. Then one gets X = −1.

This value appears to be universal and independent of any hypothesis. The metric is 100%
Schwarzschild everywhere. We conclude that a BH produces necessarily a (trapping) non-
zero chemical potential when the physical system is expressed in terms of the grand-canonical
ensemble. Outside the BH, X = 0 (µ = 0).

Another way of reaching this conclusion is by taking a closer look to our exact equations
in the previous section. If one sets X = 0 then necessarily ϕ = 0 and one gets the classical
Schwarzschild solution everywhere, but the reverse is not true. One can have ϕ = 0 but
this does not imply X = 0. Let us emphasize that these results go beyond the second order
perturbative expansion used in parts of this article.

As gravitons cross the horizon and are trapped by the BH classical gravitational field
they eventually thermalize and form a BEC. The eventual energy surplus generated in this
process is used to increase the mass and therefore the Schwarzschild radius of the BH. ϕ is now

5To determine the rate of variation of N we have to multiply the surface (4πr2s) times the flux; i.e. the
density of the mode times the velocity, assumed to be c = 1 in our units. Since the density of the mode is
constant in the interior, it is just 3/4πr3s .
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non-zero; it is directly proportional to
√
N , the number of gravitons, and the dimensionless

chemical potential departs from the value X = −1, presumably increasing it in modulus. As
soon as ϕ 6= 0 the metric inside the BH is not anymore Schwarzschild (but continues to be
Schwarzschild outside). Note that the metric is destabilized and becomes singular for ϕ = 1,
so surely this is an upper limit where N → ∞.

Yet another possible interpretation, that we disfavour, could be the following. Each BH
has associated a given constant value of X, hence of ϕ. Then Eqs. (48) would imply that
after the emission of each graviton, the value of rs is readjusted. The problem with this
interpretation is that it would require a new dimensionless magnitude (X) to characterize a
Schwarzschild BH; something that most BH practitioners would probably find hard to accept.

6 Conclusions and outlook

We shall now conclude. The purpose of this work was to have some insights in the refor-
mulation of a quantum theory of black holes in the language of condensed matter physics.
The key point of the theory is to identify the black hole with a Bose-Einstein condensate of
gravitons.

We have conjectured the set of equations that play the role of the Gross-Pitaevskii non-
linear equation; they are derived from the Einstein-Hilbert Lagrangian after adding a chemical
potential-like term. We have used a number of different techniques to analyze these equations
when the perturbation (i.e. the tentative condensate) has spherical symmetry. The equations
appear at first sight rather intractable, but by doing a perturbative analysis around the BH
Schwarzschild metric at quadratic order (i.e. including the leading non-linearities) we found
that the chemical potential necessarily vanishes in the exterior of the BH. On the contrary, in
the interior we have found two sets of solutions, one of them has to be discarded as producing
a non-normalizable result. The other one leads to a non-zero chemical potential in the interior
of the BH that behaves as 1/r2. Therefore, there is a finite jump on the chemical potential
at the BH horizon. Surprisingly —or maybe not so— this solution modifies the coefficient
of the tt and rr terms in the Schwarzschild solution, but not its functional form. Of course
if there is no chemical potential at all, the modification vanishes, in accordance with well
known theorems. However, if the former is non zero, the modification affecting the metric is
also necessarily non-zero.

The perturbative analysis triggers a unique physical solution for the non-perturbative
(exact) theory. This solution is characterized by a constant density of the wave function for
the condensate. From the existence and knowledge of this solution, an unambiguous relation
between the number of gravitons and the geometric properties of the BH is obtained. Hence,
we find an expression for the Schwarzschild radius that involves an a priori independent and
tuneable parameter, the dimensionless chemical potential X (related to the mean-field wave
function of the condensate ϕ). We find this somewhat strange as this would be a new black
hole parameter. Therefore we favour the universal value X = −1 as discussed in the text.
From this expression for the Schwarzschild radius, most relations obtained in [1, 2] can be
rederived.

As should be obvious to the reader who has followed our discussion, our approach is some-
what different from the one developed in the initial papers by Dvali, Gómez and coworkers.
We assume from the start the existence of a classical geometry background that acts as
confining potential for the condensate. The fact that the functional form of the metric per-
turbation induced by the condensate is exactly the same as the original background, of course
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gives a lot of credence to the possibility of deriving the latter from the former in a sort of
self-consistent derivation. We have not explored this possibility in detail yet.

It is quite plausible that one could entertain the presence of condensates of other quantum
fields inside the BH horizon (why only gravitons?). While we do not expect much of a
conceptual difference, it would be very interesting to see the similarities and differences with
the case of quantum gravitons.
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