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ABSTRACT
We study a generic class of time-evolving vacuum models which can provide a better phe-
nomenological account of the overall cosmological observations as compared to the � cold
dark matter (�CDM). Among these models, the running vacuum model (RVM) appears to be
the most motivated and favoured one, at a confidence level of ∼3σ . We further support these
results by computing the Akaike and Bayesian information criteria. Our analysis also shows
that we can extract fair signals of dynamical dark energy (DDE) by confronting the same
set of data to the generic XCDM and CPL parametrizations. In all cases we confirm that the
combined triad of modern observations on baryonic acoustic oscillations, large-scale structure
formation, and the cosmic microwave background, provide the bulk of the signal sustaining a
possible vacuum dynamics. In the absence of any of these three crucial data sources, the DDE
signal cannot be perceived at a significant confidence level. Its possible existence could be a
cure for some of the tensions existing in the �CDM when confronted to observations.

Key words: cosmological parameters – dark energy – large-scale structure of Universe –
cosmology: theory.

1 IN T RO D U C T I O N

Observations over the years seem to firmly support the current
acceleration of the Universe and therefore the possible existence
of a generic cause responsible for it which we call dark energy
(DE; see e.g. Riess et al. 1998; Perlmutter et al. 1999; WMAP
collaboration 2013; Planck collaboration XVI 2014; Planck collab-
oration XIII 2016; Planck collaboration XIV 2016, and references
therein). Cosmologists have worked hard to decipher the dark en-
ergy code, but we still ignore the physical nature of the DE and
hence of the ultimate cause of the observed acceleration of the Uni-
verse. Such theoretical conundrum is the so-called Cosmological
Constant Problem (CCP) (Weinberg 1989; Sahni & Starobinsky
2000; Padmanabhan 2003; Peebles & Ratra 2003; Copeland, Sami
& Tsujikawa 2006; Solà 2013). In fact, the cosmological constant
(CC), �, or equivalently the vacuum energy density associated to
it, ρ� = �/(8πG) (G being Newton’s gravitational coupling), is
usually regarded as the simplest possible explanation for the DE.
Historically, the CC was introduced by Einstein in the gravitational
field equations 101 yr ago (Einstein 1917). A positive, constant, tiny
value (in particle physics units) of order ρ� ∼ 2.7 × 10−47 GeV4 ∼
(2.3 × 10−3 eV)4 can explain the needed speed up of our cosmos
according to the observations. The standard or ‘concordance’ cos-
mological model embodies such an assumption as a fundamental
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built-in principle, together with the hypothesis of dark matter (DM),
and for this reason is called the �CDM model. Formulated in terms
of the current cosmological parameters, the �CDM assumes that
ρ� =const. throughout the history of the Universe, with �� � 0.7
and �m � 0.3 at present. Unfortunately, no convincing theoretical
explanation is provided about the measured value of ρ�. At the end
of the day, no fundamental theory, not even quantum field theory
(QFT), can explain this value; and, what is worse, the typical pre-
diction is preposterously large as compared to the measured value.
The difficulties inherent to this concept were recognized as of the
time when Y.B. Zeldovich first observed (Zeldovich 1967) that the
contribution from QFT to the vacuum energy density should be of
the order of ∼m4 for any quantum field of mass m, and therefore
many orders of magnitude bigger than the existing upper bound on
ρ� in those days.

Since long cosmologists have felt motivated to look for alternative
explanations for the DE beyond a rigid cosmological constant �.
The scalar field paradigm was then profusely used also to make
the cosmic vacuum dynamical: � = �(φ). In the old days, the
main aim was to adjust the large value of � typically predicted in
QFT to be zero. There were many early proposals (see e.g. Endo
& Fukui 1977, 1982; Fujii 1982; Dolgov 1983; Abbott 1985; Zee
1985; Barr 1987; Ford 1987; Peccei, Solà & Wetterich 1987; Weiss
1987; Barr & Hochberg 1988). In spite of the hopes raised by
these works at solving the ‘old CC Problem’, it was later shown
in Weinberg (1989) through the so-called no-go theorem that most
if not all the dynamical adjustment mechanisms existing in the
literature to date were plagued by more or less obvious forms of

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/478/4/4357/4996364 by U
N

IVER
SITAT D

E BAR
C

ELO
N

A. Biblioteca user on 24 O
ctober 2019

mailto:sola@fqa.ub.edu(JSP)
mailto:decruz@fqa.ub.edu(JdCP)
mailto:adriagova@fqa.ub.edu(AGV)


4358 J. Solà Peracaula, J. de Cruz Pérez and A. Gómez-Valent

subtly hidden fine tuning. For this reason, the subsequent use of
scalar fields in cosmology was mostly focused on trying to explain
another aspect of the CCP: the cosmic coincidence problem (viz.
the fact that ρ� happens to be so close to the matter density ρm right
now; see e.g. Peebles & Ratra 2003). The new wave of dynamical
scalar fields in cosmology crystalized in the notions of quintessence,
phantom fields and the like, which have had a tremendous influence
in cosmology till our days (see e.g. Peebles & Ratra 1988; Ratra
& Peebles 1988; Wetterich 1988; Wetterich 1995; Caldwell, Dave
& Steinhardt 1998; Zlatev, Wang & Steinhardt 1999; Amendola
2000; Caldwell, Kamionkowski & Weinberg 2003), the reviews
(Sahni & Starobinsky 2000; Padmanabhan 2003; Peebles & Ratra
2003; Copeland, Sami & Tsujikawa 2006), and the many references
therein. At the same time a blooming crest of models based on
ascribing a direct phenomenological time-dependence to the CC
term, � = �(t), broke with impetus into the market. For an account
of some of the old attempts, see Overduin & Cooperstock (1998,
and references therein).

In this work, rather than attempting to solve the underlying the-
oretical enigmas affecting the �CDM we wish to address more
practical matters. We wish to follow the original phenomenological
approach that made possible to unveil that ρ� is non-vanishing,
irrespective of its ultimate physical nature. The method was largely
empirical, namely ρ� was assumed to be a parameter and then fit-
ted directly to the data. Of course a minimal set of assumptions
had to be made, such as the validity of the Cosmological Principle
and hence of the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW)
metric, with the ensuing set of Friedmann equations for the scale
factor (Peebles 1993). In our case, we wish of course to keep these
minimal assumptions and make a phenomenological case study of
the possibility that � might be not just a parameter but a slowly
varying cosmic variable mimicking the �CDM-like behaviour. Fur-
thermore, we motivate our study by considering the possibility that
the inherent dynamics in ρ� is connected to fundamental aspects of
QFT. In fact, within the class of dynamical vacuum models (DVMs),
one of the main models under study is the ‘running vacuum model’
(RVM), which can be connected to important aspects of QFT in
curved space–time (see Solà 2013; Solà & Gómez-Valent 2015;
Solà 2016; Solà 2008, and references therein). One can think of this
framework as one in which the �CDM is replaced by �̄CDM
(Solà & Gómez-Valent 2015), with �̄ = �(H ), or equivalently
ρ� = ρ�(H ), playing the role of ‘running’ vacuum energy den-
sity. Interestingly, such a running with the expansion rate, H, can
be related to the renormalization group. For previous investigations
along these lines, see e.g. España-Bonet et al. (2003, 2004), Babić
et al. (2005), Basilakos, Plionis & Solà (2009), Solà (2011), Grande
et al. (2011), Basilakos, Polarski & Solà (2012), Basilakos & Solà
(2014), Gómez-Valent, Solà & Basilakos (2015a), Gómez-Valent &
Solà (2015), Solà, Gómez-Valent & de Cruz Pérez (2015), Gómez-
Valent, Karimkhani & Solà (2015b), Basilakos (2015), Geng, Lee &
Zhang (2016), and Geng, Lee & Yin (2017), and the closely related
recent works (Solà, Gómez-Valent & de Cruz Pérez 2017a,b,c,d;
Solà, de Cruz Pérez & Gómez-Valent 2018). It turns out that the
peak confidence level for DDE that we find in the context of the
DVMs is near �3.5σ at present. Interestingly, when we confront
the same data with a simple XCDM (Turner & White 1997) or CPL
(Chevallier & Polarski 2001; Linder 2003, 2004) parametrizations
of the DDE (Amendola & Tsujikawa 2015) we can still extract
significant evidence of vacuum dynamics, showing that the sig-
nal is not restricted to particular models but it is rather generic.
The first relatively recent signs of such dynamics were advanced
in Gómez-Valent et al. (2015a,b), Gómez-Valent & Solà (2015),

and Solà, Gómez-Valent & de Cruz Pérez (2015). Since then new
support to the dynamical DE from the observational point of view
has appeared in the literature using different methods and attaining
a similar confidence level (Zhao et al. 2017a).

Finally, in view of the practical nature of this work we keep
an eye to the fact that the �CDM is afflicted of several persistent
tensions when compared to the cosmological data. Such tensions
involve relevant parameters of cosmology, such as the Hubble pa-
rameter, i.e. the current value of the Hubble function, H(t0) ≡ H0,
and the current value of the rms of mass fluctuations at spheres
of 8 h−1 Mpc, i.e. σ 8(0). Such situation could be caused by as-yet
unrecognized uncertainties or hint at physics beyond the �CDM
(Freedman 2017). We cannot exclude e.g. that the peculiarities of
important cosmological processes, for instance those related with
structure formation, are conspicuously sensitive and even positively
receptive to a mild dynamical variation of the cosmic vacuum, which
certainly influences the gravitational interaction of matter. Recall
that a positive � suppresses the growth of structure formation and
this explains why the �CDM model is highly preferred to the CDM
one, in which � = 0. Therefore, it is natural to reconsider these pro-
cesses by considering the effect of a time modulation of the growth
suppression through ρ� = ρ�(t). We find that this helps to ame-
liorate the description of the large-scale structure (LSS) formation
data, so it is worthwhile testing it. For some studies addressing the
existing tensions from various perspectives, see e.g. Valentino et al.
(2017a), Valentino, Melchiorri & Mena (2017b), Zhai et al. (2017),
Solà, Gómez-Valent & de Cruz Pérez (2017c,d), and Gómez-Valent
& Solà (2017, 2018). See also Chen et al. (2016) and Yu, Ratra &
Wang (2018).

The guidelines of our work are as follows. In Section 2, we de-
scribe the DVMs. In Section 3, we report on the set of cosmological
data used, on distant Type Ia supernovae (SNIa), baryonic acoustic
oscillations (BAOs), the Hubble parameter values at different red-
shifts, the LSS data, and the cosmic microwave background (CMB)
from Planck. In Section 4, we discuss aspects of structure forma-
tion with dynamical vacuum. The numerical analysis of the DVMs
and a comparison with the standard XCDM and CPL parametriza-
tions is the object of Section 5. An ample discussion of the results
along with a reanalysis under different conditions is developed in
Section 6. Finally, in Section 7 we present our conclusions.

2 DY NA M I C A L VAC U U M M O D E L S

The gravitational field equations are Gμν = 8πG T̃μν , where Gμν =
Rμν − 1

2 gμνR is the Einstein tensor and T̃μν ≡ Tμν + gμν ρ� is the
full energy–momentum tensor involving the effect of both matter
and vacuum energy density, with ρ� = �/(8πG). The structure of
T̃μν shows that the vacuum is dealt with as a perfect fluid carry-
ing an equation of state (EoS) p� = −ρ�. When the matter can
also be treated as an ideal fluid and is distributed homogeneously
and isotropically, as postulated by the Cosmological Principle, we
can write T̃μν = (ρ� − pm) gμν + (ρm + pm)UμUν , where Uμ is the
bulk four-velocity of the cosmic fluid, ρm is the proper energy den-
sity of matter and pm its isotropic pressure. We assume the standard
cosmological framework grounded on the FLRW metric with flat
three-dimensional slices: ds2 = dt2 − a2(t) dx2, where t is the cos-
mic time and a(t) is the scale factor. However, we admit that matter
can be in interaction with vacuum, which is tantamount to saying
that ρ� = ρ�(ζ ) is a function of some cosmic variable evolving with
time, ζ = ζ (t). While this, of course, implies that ρ̇� ≡ dρ�/dt �= 0,
we assume that Ġ = 0 in our study (see Solà, Gómez-Valent & de
Cruz Pérez 2015, 2017a, for studies including the option Ġ �= 0).
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Such vacuum dynamics is compatible with the Bianchi identity (see
below) provided there is some energy exchange between vacuum
and matter. It means that matter cannot be strictly conserved in these
circumstances. The standard Friedmann and acceleration equations
for the present Universe remain formally identical to the standard
�CDM case:

3H 2 = 8π G
∑
N

ρN = 8π G (ρm + ρr + ρ�(ζ )) (1)

3H 2 + 2Ḣ = −8π G
∑
N

pN = −8π G (pr − ρ�(ζ )). (2)

Here, H = ȧ/a is the usual Hubble function, ρm = ρb + ρdm in-
volves the pressureless contributions from baryons and cold DM,
and ρr is the radiation density (with the usual EoS pr = ρr/3). We
emphasize once more that in the above equations we stick to the EoS
p� = −ρ�, although the vacuum is dynamical, ρ�(t) = ρ�(ζ (t)),
and its evolution is tied to the cosmic expansion. The sums above
run over all the components N = dm, b, r, �. In all of the DVMs
being considered here, the cosmic variable ζ is either the scale fac-
tor or can be expressed analytically in terms of it, ζ = ζ (a), or
equivalently in terms of the cosmological redshift, z = a−1 − 1, in
which we adopt the normalization a = 1 at present. From the basic
pair of equations (1) and (2), a first integral of the system follows:∑
N

ρ̇N + 3 H (ρN + pN )

= ρ̇� + ρ̇dm + 3Hρdm + ρ̇b + 3Hρb + ρ̇r + 4Hρr = 0. (3)

Such a first integral ensues also from the divergenceless property
of the full energy-momentum tensor T̃μν in the FLRW metric, i.e.
∇μT̃μν = 0. The last property is a consequence of the Bianchi iden-
tity satisfied by the Einstein tensor, ∇μGμν = 0, and the assumed
constancy of the Newtonian coupling G. It reflects the local conser-
vation law of the compound system formed by matter and vacuum,
and the consequent non-conservation of each of these components
when taken separately.

The concordance model assumes that matter and radiation are
self-conserved after equality. It also assumes that baryons and CDM
are separately conserved. Hence their respective energy densities
satisfy ρ̇b + 3Hρb = 0, ρ̇r + 4Hρr = 0 and ρ̇dm + 3Hρdm = 0. In
the presence of vacuum dynamics, it is obvious that at least one
of these equations cannot hold. Following our definite purpose to
remain as close as possible to the �CDM, we shall assume that
the first two of the mentioned conservation equations still hold
good but that the last does not, meaning that the vacuum exchanges
energy only with DM. The dilution laws for baryons and radiation
as a function of the scale factor therefore take on the conventional
�CDM forms:

ρb(a) = ρb0 a−3, ρr (a) = ρr0 a−4, (4)

where ρb0 and ρr0 are the corresponding current values. In contrast,
the density of DM is tied to the dynamics of the vacuum. Taking into
account the conserved components and introducing the vacuum–
dark matter interaction source, Q, we can write the interactive part
of (3) into two coupled equations:

ρ̇dm + 3Hρdm = Q , ρ̇� = −Q. (5)

The solution of these equations will depend on the particular form
assumed for Q, which determines the leakage rate of vacuum energy
into dark matter or vice versa. Such a leakage must certainly be much
smaller than the standard dilution rate of non-relativistic matter

associated to the cosmic expansion (i.e. much smaller than ∼a−3),
as otherwise these anomalous effects would be too sharp at the
present time. Therefore, we must have 0 < |Q| � ρ̇m. The different
DVMs will be characterized by different functions Qi (i= 1, 2, ...).

Two possible phenomenological ansatzes considered in the lit-
erature are (Salvatelli et al. 2014; Murgia, Gariazzo & Fornengo
2016; Li, Zhang & Zhang 2016; Zhao et al. 2017; Guo, Zhang &
Zhang 2018)

Model Qdm: Qdm = 3νdmHρdm (6)

Model Q�: Q� = 3ν�Hρ�. (7)

The dimensionless parameters νi = (νdm, ν�) for each model (Qdm,
Q�) determine the strength of the dark–sector interaction in the
sources Qi and enable the evolution of the vacuum energy density.
For ν i> 0, the vacuum decays into DM (which is thermodynamically
favourable Salim & Waga 1993; Lima 1996) whereas for ν i < 0 is
the other way around. This is also a relevant argument to judge the
viability of these models, as only the first situation is compatible
with the second law of thermodynamics. There are many more
choices for Q (see e.g. Bolotin et al. 2015; Costa et al. 2017), but
it will suffice to focus on these models and the RVM one defined
in the next section to effectively assess the possible impact of the
DVMs in the light of the modern observational data.

2.1 The running vacuum model (RVM)

The last DVM under study is the so-called running vacuum model
(RVM), which can be motivated in the context of QFT in curved
space–time (cf. Solà 2013; Solà & Gómez-Valent 2015, and refer-
ences therein). The model has some virtues and can be extended to
afford an effective description of the cosmic evolution starting from
inflation up to our days (Lima, Basilakos & Solà 2013, 2015, 2016;
Perico et al. 2013; Solà 2013, 2015; Solà & Gómez-Valent 2015).
For instance, in Solà (2015) it is suggested that the RVM could pos-
itively impinge on solving some of the fundamental cosmological
problems, including the entropy problem. Intriguingly, the inherent
tiny leakage of vacuum energy into matter within the RVM could
also furnish an explanation for the possible slow time variation of
the fundamental constants, an issue that has been examined in detail
in Fritzsch & Solà (2012, 2015) and Fritzsch, Solà & Nunes (2017).
See also the old work (Terazawa 1981). We shall not discuss here
the implications for the early Universe, but only for the part of
the cosmic history that is accessible to our measurements and can
therefore be tested phenomenologically with the current data.

As advertised, for the specific RVM case the cosmic variable ζ

in the field equations (1) and (2) can be identified with the Hubble
rate H. The form of the RVM for the post-inflationary epoch and
hence relevant for the current Universe reads as follows:

ρ�(H ) = 3

8πG

(
c0 + νH 2

)
. (8)

Such structure can be linked to a renormalization group (RG) equa-
tion for the vacuum energy density, in which the running scale μ

of the RG is associated with the characteristic energy scale of the
FLRW metric, i.e. μ = H. The additive constant c0 = H 2

0 (�� − ν)
appears because one integrates the RG equation satisfied by ρ�(H ).
It is fixed by the boundary condition ρ�(H0) = ρ�0, where ρ�0 and
H0 are the current values of these quantities; similarly �� = ρ�0/ρc0

and ρc0 = 3H 2
0 /(8πG) are the values of the vacuum density

parameter and the critical density today. The dimensionless co-
efficient ν encodes the dynamics of the vacuum at low energy and

MNRAS 478, 4357–4373 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/478/4/4357/4996364 by U
N

IVER
SITAT D

E BAR
C

ELO
N

A. Biblioteca user on 24 O
ctober 2019
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can be related with the β-function of the running of ρ�. Thus, we
naturally expect |ν| � 1. An estimate of ν at one loop in QFT
indicates that is of the order of 10−3 at most (Solà 2008), but here
we will treat it as a free parameter. This means we shall deal with
the RVM on pure phenomenological grounds, hence fitting actually
ν to the observational data (cf. Section 3).

In the RVM case, the source function Q in (5) is not just put
by hand (as in the case of the DVMs introduced before). It is a
calculable expression from (8), using Friedmann’s equation (1) and
the local conservation laws (4)–(5). We find

RVM: Q = −ρ̇� = ν H (3ρm + 4ρr ), (9)

where we recall that ρm = ρdm + ρb, and that ρb and ρr are known
functions of the scale factor – see equation (4). The remaining
densities, ρdm and ρ�, must be determined upon further solving the
model explicitly, see Section 2.2. If baryons and radiation would
also possess a small interaction with vacuum and/or G would evolve
with time, the cosmological solutions would be different (Basilakos
2015; Gómez-Valent & Solà 2015; Gómez-Valent et al. 2015a; Solà,
Gómez-Valent & de Cruz Pérez 2015, 2017a). We can see from (9)
that the parameter ν plays a similar role as (νdm, ν�) for the more
phenomenological models (6) and (7). The three of them will be
collectively denoted ν i.

2.2 Solving explicitly the dynamical vacuum models

The matter and vacuum energy densities of the DVMs can be com-
puted straightforwardly upon solving the coupled system of dif-
ferential equations (5), given the previous explicit forms for the
interacting source in each case and keeping in mind that, in the
current framework, the baryon (ρb) and radiation (ρr) parts are sep-
arately conserved. After some calculations the equations for the
DM energy densities ρdm for each model (RVM, Qdm, Q�) can be
solved in terms of the scale factor. Below we quote the final results
for each case:

RVM: ρdm(a) = ρdm0 a−3(1−ν) + ρb0

(
a−3(1−ν) − a−3

)
+ 4ν

1 + 3ν
ρr0

(
a−3(1−ν) − a−4

)
(10)

Qdm: ρdm(a) = ρdm0 a−3(1−νdm) (11)

Q�: ρdm(a) = ρdm0 a−3 + ν�

1 − ν�

ρ�0

(
a−3ν� − a−3

)
(12)

In solving the differential equations (5) we have traded the cosmic
time variable for the scale factor using the chain rule d/dt = aHd/da.
The corresponding vacuum energy densities can also be solved in
the same variable, and yield

RVM: ρ�(a) = ρ�0 + ν ρm0

1 − ν

(
a−3(1−ν) − 1

)

+ νρr0

1 − ν

(
1 − ν

1 + 3ν
a−4 + 4ν

1 + 3ν
a−3(1−ν) − 1

)

(13)

Qdm: ρ�(a) = ρ�0 + νdm ρdm0

1 − νdm

(
a−3(1−νdm) − 1

)
(14)

Q�: ρ�(a) = ρ�0 a−3ν� (15)

One can easily check that for a = 1 (i.e. at the present epoch)
all of the energy densities (10)–(15) recover their respective current

values ρN0 (N = dm, �). In addition, for ν i → 0 we retrieve for the
three DM densities the usual �CDM expression ρdm(a) = ρdm0a−3,
and the corresponding vacuum energy densities ρ�(a) boil down to
the constant value ρ�0 in that limit. The normalized Hubble rate E ≡
H/H0 for each model can be easily obtained by plugging the above
formulas, along with the radiation and baryon energy densities (4),
into Friedmann’s equation (1). We find

RVM: E2(a) = 1 + �m

1 − ν
(a−3(1−ν) − 1)

+ �r

1 − ν

(
1 − ν

1 + 3ν
a−4 + 4ν

1 + 3ν
a−3(1−ν) − 1

)
(16)

Qdm: E2(a) = 1 + �b

(
a−3 − 1

)
+ �dm

1 − νdm

(
a−3(1−νdm) − 1

) + �r

(
a−4 − 1

)
(17)

Q�: E2(a) = a−3ν� − ν�a−3

1 − ν�

+ �m

1 − ν�

(
a−3 − a−3ν�

)

+ �r

(
a−4 + ν�

1 − ν�

a−3 − a−3ν�

1 − ν�

)
(18)

In the above expressions, we have used the cosmological param-
eters �N = ρN0/ρc0 for each fluid component (N = dm, b, r, �),
and defined �m = �dm + �b. Altogether, they satisfy the sum rule∑

N�N = 1. The normalization condition E(1) = 1 in these formu-
las is apparent, meaning that the Hubble function for each model
reduces to H0 at present, as they should; and, of course, for ν i → 0
we recover the �CDM form for H, as should be expected.

From the structure of equations (13) and (16), we can readily see
that the vacuum energy density for the RVM can be fully written
as a function of a cosmic variable ζ , which can be chosen to be not
only the scale factor but the full Hubble function ζ =H. The result
is, of course, equation (8). In contrast, for the Qdm and Q� models
this is not possible, as it is clear on comparing equations (14) and
(15) and the corresponding ones (17) and (18). For these models,
ρ� can only be written as a function of the scale factor. Thus, the
RVM happens to have the greatest level of symmetry since its origin
is an RG equation in H whose solution is precisely (8).

2.3 XCDM and CPL parametrizations

Together with the DVMs, we fit also the same data through the sim-
ple XCDM parametrization of the dynamical DE, first introduced
in Turner & White (1997). Since both matter and DE are self-
conserved (i.e. they are not interacting), the DE density as a func-
tion of the scale factor is simply given by ρX(a) = ρX0 a−3(1+w0),
with ρX0 = ρ�0, where w0 is the (constant) EoS parameter of the
generic DE entity X in this parametrization. The normalized Hubble
function is

E2(a) = �m a−3 + �r a−4 + �� a−3(1+w0). (19)

For w0= −1, it boils down to that of the �CDM with rigid CC term.
The use of the XCDM parametrization throughout our analysis will
be useful to roughly mimic a (non-interactive) DE scalar field with
constant EoS. For w0 � −1, the XCDM mimics quintessence,
whereas for w0 � −1 it mimics phantom DE.
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Possible signals of vacuum dynamics 4361

Table 1. Best-fitting values for the �CDM, XCDM, CPL, and the three dynamical vacuum models (DVMs). The specific fitting parameters for each DVM
are νi = ν (RVM), νdm(Qdm) and ν�(Q�), whilst for the XCDM and CPL are the EoS parameters w0 and the pair (w0, w1), respectively. For the DVMs
and the �CDM, we have w0 = −1 and w1= 0. The remaining parameters are as in the �CDM and are not shown. For convenience, we reckon the values
of σ 8(0) for each model, which are not part of the fit but are computed from the fitted ones following the procedure indicated in Section 4.3. The (positive)
increments �AIC and �BIC (see the main text, Section 5.2) clearly favour the DDE options. The RVM and Qdm are particularly favoured (∼3.8σ c.l. and
3.6σ , respectively). Our fit is performed over a rich and fully updated SNIa+BAO+H(z)+LSS+CMB data set (cf. Section 3).

Model h �m νi w0 w1 σ 8(0) �AIC �BIC

�CDM 0.692 ± 0.004 0.296 ± 0.004 – −1 – 0.801 ± 0.009 – –
XCDM 0.672 ± 0.007 0.311 ± 0.007 – −0.923 ± 0.023 – 0.767 ± 0.014 8.55 6.31
CPL 0.673 ± 0.009 0.310 ± 0.009 – −0.944 ± 0.089 0.063 ± 0.259 0.767 ± 0.015 6.30 1.87
RVM 0.677 ± 0.005 0.303 ± 0.005 0.001 58 ± 0.000 42 −1 – 0.736 ± 0.019 12.91 10.67
Qdm 0.678 ± 0.005 0.302 ± 0.005 0.002 16 ± 0.000 60 −1 – 0.740 ± 0.018 12.13 9.89
Q� 0.691 ± 0.004 0.298 ± 0.005 0.006 01 ± 0.002 53 −1 – 0.790 ± 0.010 3.41 1.17

A slightly more sophisticated approximation to the behaviour of
a non-interactive scalar field playing the role of dynamical DE is
afforded by the CPL parametrization (Chevallier & Polarski 2001;
Linder 2003, 2004), in which one assumes that the generic DE entity
X has a slowly varying EoS of the form

wD = w0 + w1 (1 − a) = w0 + w1
z

1 + z
. (20)

The CPL parametrization, in contrast to the XCDM one, makes
allowance for a time evolution of the dark energy EoS owing to the
presence of the additional parameter w1, which satisfies 0 < |w1| �
|w0|, with w0 � −1 or w0 � −1. The expression (20) is seen to have
a well-defined limit both in the early Universe (a → 0, equivalently
z → ∞) and in the current one (a = 1, or z = 0). The corresponding
normalized Hubble function for the CPL can be easily found:

E2(a) = �m a−3 + �ra
−4 + ��a−3(1+w0+w1) e−3 w1 (1−a). (21)

The XCDM and the CPL parametrizations can be conceived as
a kind of baseline frameworks to be referred to in the study of
dynamical DE. We expect that part of the DDE effects departing
from the �CDM should be captured by these parametrizations,
either in the form of effective quintessence behaviour (w � −1)
or effective phantom behaviour (w � −1). The XCDM, though, is
the most appropriate for a fairer comparison with the DVMs, all of
which also have one single vacuum parameter ν i.

3 DATA SETS AND RESULTS

In this work, we fit the �CDM, XCDM, CPL, and the three DVMs to
the cosmological data from Type Ia supernovae (Betoule et al. 2014),
BAOs (Beutler et al. 2011; Kazin et al. 2014; Aubourg et al. 2015;
Delubac et al. 2015; Ross et al. 2015; Gil-Marı́n et al. 2017), the
values of the Hubble parameter extracted from cosmic chronometers
at various redshifts, H(zi) (Jiménez et al. 2003; Simon, Verde &
Jiménez 2005; Stern et al. 2010; Moresco et al. 2012, 2016; Zhang
et al. 2014; Moresco 2015), the CMB data from Planck 2015 (Planck
collaboration XIII 2016) and the most updated set of LSS formation
data embodied in the quantity f(zi)σ 8(zi); see the corresponding
values and references in Table2. It turns out that the LSS data
is very important for the DDE signal, and up to some updating
performed here it has been previously described in more detail in
Solà, Gómez-Valent & de Cruz Pérez (2017a). We denote this string
of cosmological data by SNIa+BAO+H(z)+LSS+CMB.

A guide to the presentation of our results is the following. The
various fitting analyses and contour plots under different conditions
(to be discussed in detail in the next sections) are displayed in four
fitting tables, Tables 1 and 3– 5, and in seven figures, Figs 1–7.

Table 2. Published values of f(z)σ 8(z), referred to in the text as the LSS
formation data.

Survey z f(z)σ 8(z) References

6dFGS 0.067 0.423 ± 0.055 Beutler et al. (2012)

SDSS-DR7 0.10 0.37 ± 0.13 Feix, Nusser & Branchini (2015)

GAMA 0.18 0.29 ± 0.10 Simpson et al. (2016)
0.38 0.44 ± 0.06 Blake et al. (2013)

DR12 BOSS 0.32 0.427 ± 0.056 Gil-Marı́n et al. (2017)
0.57 0.426 ± 0.029

WiggleZ 0.22 0.42 ± 0.07 Blake et al. (2011)
0.41 0.45 ± 0.04
0.60 0.43 ± 0.04
0.78 0.38 ± 0.04

2MTF 0.02 0.34 ± 0.04 Springob et al. (2016)

VIPERS 0.7 0.38+0.06
−0.07 Granett et al. (2015)

VVDS 0.77 0.49 ± 0.18 Guzzo et al. (2008); Song &
Percival (2009)

The main numerical results of our analysis are those recorded in
Table 1. Let us mention in particular Fig. 6, whose aim is to iden-
tify what are the main data responsible for the DDE effect under
study. Bearing in mind the aforementioned significance of the LSS
data, Fig. 7 is aimed to compare in a graphical way the impact of
the f(z)σ 8(z) and weak lensing data on our results. The remaining
tables and figures contain complementary information, which can
be helpful for a more detailed picture of our rather comprehensive
study. Worth noticing are the results displayed in Table 5, which
shows what would be the outcome of our analysis if we would
restrict ourselves to the fitting data employed by the Planck 2015
collaboration (Planck collaboration XIII 2016), where e.g. no LSS
data were used and no DDE signal was reported. Additional de-
tails and considerations are furnished of course in the rest of our
exposition.

4 ST RU C T U R E F O R M AT I O N W I T H
DY NA M I C A L VAC U U M

Despite the theory of cosmological perturbations has been dis-
cussed at length in several specialized textbooks (see e.g. Peebles
1993; Liddle & Lyth 2000, 2009; Dodelson 2003), the dynami-
cal character of the vacuum produces some changes on the stan-
dard equations which are worth mentioning. At deep subhorizon
scales, one can show that the matter density contrast δm = δρm/ρm
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Table 3. Same as in Table 1, but removing the LSS data set from our fitting analysis.

Model h �m νi w �AIC �BIC

�CDM 0.685 ± 0.004 0.304 ± 0.005 – −1 – –
XCDM 0.684 ± 0.009 0.305 ± 0.007 – −0.992 ± 0.040 −2.25 −4.29
RVM 0.684 ± 0.007 0.304 ± 0.005 0.000 14 ± 0.001 03 −1 −2.27 −4.31
Qdm 0.685 ± 0.007 0.304 ± 0.005 0.000 19 ± 0.001 26 −1 −2.27 −4.31
Q� 0.686 ± 0.004 0.304 ± 0.005 0.000 90 ± 0.003 30 −1 −2.21 −4.25

Table 4. Same as in Table 1 but removing the CMB data set from our fitting analysis.

Model h �m νi w �AIC �BIC

�CDM 0.679 ± 0.005 0.291 ± 0.005 – −1 – –
XCDM 0.674 ± 0.007 0.298 ± 0.009 – −0.960 ± 0.038 −1.18 −3.40
RVM 0.677 ± 0.008 0.296 ± 0.015 0.000 61 ± 0.001 58 −1 −2.10 −4.32
Qdm 0.677 ± 0.008 0.296 ± 0.015 0.000 86 ± 0.002 28 −1 −2.10 −4.32
Q� 0.679 ± 0.005 0.297 ± 0.013 0.004 63 ± 0.009 22 −1 −1.98 −4.20

Table 5. As in Table 1, but using the same data set as the Planck Collaboration (Planck collaboration XIV 2016).

Model h �m νi w �AIC �BIC

�CDM 0.694 ± 0.005 0.293 ± 0.007 – −1 – –
XCDM 0.684 ± 0.010 0.299 ± 0.009 – −0.961 ± 0.033 −1.20 −2.39
RVM 0.685 ± 0.009 0.297 ± 0.008 0.000 80 ± 0.000 62 −1 −0.88 −2.07
Qdm 0.686 ± 0.008 0.297 ± 0.008 0.001 08 ± 0.000 88 −1 −1.02 −2.21
Q� 0.694 ± 0.006 0.293 ± 0.007 0.001 67 ± 0.004 71 −1 −2.45 −3.64

Figure 1. Likelihood contours for the DVMs in the (�m, νi) plane for the values −2 lnL/Lmax = 2.30, 6.18, 11.81, 19.33, 27.65 (corresponding to 1σ , 2σ ,
3σ , 4σ , and 5σ c.l.) after marginalizing over the rest of the fitting parameters. We estimate that for the RVM, 94.80 per cent (respectively, 89.16 per cent) of the
4σ (respectively, 5σ ) area is in the ν > 0 region. For the Qdm we find that 95.24 per cent (respectively, 89.62 per cent) of the 4σ (respectively, 5σ ) area is in
the νdm > 0 region. Finally, for the Q� we estimate that 99.45 per cent (respectively, 90.22 per cent) of the 2σ (respectively, 3σ ) area is in the ν� > 0 region.
Subsequent marginalization over �m increases slightly the c.l. and renders the fitting values collected in Table 1. The �CDM (νi= 0) appears disfavoured at
∼4σ c.l. in the RVM and Qdm, and at ∼2.5σ c.l. for Q�.

obeys the following differential equation (cf. Basilakos & Solà
2014; Gómez-Valent et al. 2015a; Gómez-Valent & Solà 2018 for
details):

δ̈m + (2H + �) δ̇m − (
4πGρm − 2H� − �̇

)
δm = 0, (22)

where � ≡ −ρ̇�/ρm = Q/ρm, and the (vacuum–matter) interac-
tion source Q for each DVM is given in Section 2. For ρ� = const.
and for the XCDM and CPL there is no such an interaction and equa-
tion (22) reduces to δ̈m + 2H δ̇m − 4πGρm δm = 0, i.e. the �CDM

form (Peebles 1993). We note that at the scales under consideration
we are neglecting the perturbations of the vacuum energy density
in front of the perturbations of the matter field. The justification for
this has recently been analysed in detail (cf. Gómez-Valent & Solà
2018).

Let us briefly justify by two alternative methods, the modified
form (22), in which the variation of ρ� enters through the Hub-
ble function and the background quantity �, but not through any
perturbed quantity. We shall conveniently argue in the context of
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Possible signals of vacuum dynamics 4363

Figure 2. As in Fig. 1, but projecting the fitting results of the RVM onto the different planes of the involved parameters (H0 is expressed in Km s−1 Mpc−1).
The horizontal line ν = 0 in the plots of the last row corresponds to the �CDM. It is apparent that it is significantly excluded at ∼4σ c.l. in all cases. The peak
in the rightmost plot corresponds to the central value ν= 0.001 58 indicated in Table 1.

two well-known gauges, the synchronous gauge and the Newtonian
conformal gauge, thus providing a two-fold justification. In the syn-
chronous gauge, vacuum perturbations δρ� modify the momentum
conservation equation for the matter particles in a way that we can
easily get e.g. from the general formulae of Gómez-Valent & Solà
(2018) and Grande, Pelinson & Solà (2009), with the result

v̇m + Hvm = 1

a

δρ�

ρm

− �vm, (23)

where v = ∇vm is the associated peculiar velocity, with potential
vm (note that this quantity has dimension of inverse energy in nat-
ural units). By setting δρ� = a Q vm = a ρm � vm, the two terms
on the right-hand side of (23) cancel each other and we recover the
corresponding equation of the �CDM. On the other hand, in the
Newtonian or conformal gauge (Mukhanov, Feldman & Branden-
berger 1992; Ma & Bertschinger 1995) we find a similar situation.
The analogue of the previous equation is the modified Euler’s equa-
tion in the presence of dynamical vacuum energy,

d

dη
(ρmvm) + 4Hρmvm + ρmφ − δρ� = 0, (24)

where φ is the gravitational potential that appears explicitly in the
Newtonian conformal gauge, and η is the conformal time. Let an
overhead circle denote a derivative with respect to the conformal
time, f̊ = df /dη for any f. We define the quantities H = å/a =
aH and �̄ = −ρ̊�/ρm = a�, which are the analogues of H and
� in conformal time. Using the background local conservation
equation (3) for the current epoch (neglecting therefore radiation)
and rephrasing it in conformal time, i.e. ρ̊� + ρ̊m + 3Hρm = 0, we
can bring (24) to

v̊m + Hvm + φ = δρ�

ρm

− �̄vm. (25)

Once more the usual fluid equation (in this case Euler’s equation)
is retrieved if we arrange that δρ� = ρm �̄ vm = a ρm � vm, as then
the two terms on the right-hand side of (25) cancel each other. Alter-
natively, one can use the covariant form ∇μTμν = Qν for the local
conservation law, with the source four-vector Qν = QUν , where
Uν = (a, 0) is the background matter four-velocity in conformal
time. By perturbing the covariant conservation equation, one finds

δ
(∇μTμν

) = δQν = δQ Uν + QδUν, (26)
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Figure 3. As in Fig. 1, but for model XCDM. The �CDM is excluded in
this case at ∼3σ c.l. Marginalization over �m increases the c.l. up to 3.35σ

(cf. Table 1).

Figure 4. The f(z)σ 8(z) data (cf. Section 3) and the predicted curves by the
�CDM, XCDM, and the DVMs, for the best-fitting values in Table 1.

where δQ and δUν = a(φ,−v) are the perturbations of
the source function and the four-velocity, respectively.
Thus, we obtain

δ
(∇μTμν

) = a(δQ + Qφ,−Qv). (27)

From the ν = j component of the above equation, we derive anew
the usual Euler equation v̊m + Hvm + φ = 0, which means that the
relation δρ� = aQvm = a ρm � vm is automatically fulfilled. So
the analyses in the two gauges converge to the same final result for
δρ�.

After we have found the condition that δρ� must satisfy in each
gauge so as to prevent that the vacuum modifies basic conservation
laws of the matter fluid, one can readily show that any of the above
equations (23) or (25) for each gauge (now with their right-hand
side set to zero), in combination with the corresponding perturbed
continuity equation and the perturbed 00-component of Einstein’s
equations (giving Poisson’s equation in the Newtonian approxi-
mation), leads to the desired matter perturbations equation (22), in
accordance with the result previously derived by other means in ref-
erences Gómez-Valent et al. (2015a) and Basilakos & Solà (2014).
Altogether, the above considerations formulated in the context of
different gauges allow us to consistently neglect the DE perturba-
tions at scales down the horizon. This justifies the use of equation
(22) for the effective matter perturbations equation in our study
of linear structure formation in the framework of the DVMs. See
Gómez-Valent & Solà (2018) for an expanded exposition of these
considerations.

For later convenience, let us also rewrite equation (22) in terms
of the scale factor variable rather than the cosmic time. Using
d/dt = aH d/da and denoting the differentiation d/da with a prime,
we find

δ′′
m + A(a)

a
δ′
m + B(a)

a2
δm = 0, (28)

where the functions A and B of the scale factor are given by

A(a) = 3 + a
H ′(a)

H (a)
+ �(a)

H (a)
, (29)

B(a) = −4πGρm(a)

H 2(a)
+ 2�(a)

H (a)
+ a

� ′(a)

H (a)
. (30)

4.1 Initial conditions

In order to solve (28) we have to fix appropriate initial conditions
for δm(a) and δ′

m(a) for each model at high redshift, say at zi ∼ 100
(ai ∼ 10−2), when non-relativistic matter dominates both over the
vacuum and the radiation contributions. In practice, it can be fixed
at lower redshifts, say of the order of 10, where the subhorizon ap-
proximation is even more efficient (Gómez-Valent & Solà 2018), al-
though the differences are small. For small values of the scale factor,
the normalized Hubble rate (squared) for each model, and the en-
ergy densities for the various components, see equations (10)–(18),
can be significantly simplified. As a result we obtain the leading
form of the functions (29) and (30) for the different DVMs:

RVM: A = 3

2
(1 + 3ν) (31)

Qdm: A = 3

2
(1 + νdm) + 3

�dm

�m

νdm + O
(
ν2

dm

)
(32)

Q�: A = 3

2
, (33)

and

RVM: B = −3

2
+ 3ν + 9

2
ν2 (34)

Qdm: B = −3

2

(
1 − νdm − �dm

�m

νdm

)
+ O

(
ν2

dm

)
(35)

Q�: B = −3

2
. (36)
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Figure 5. Reconstruction of the contour lines for the RVM, from the partial contour plots of the different SNIa+BAO+H(z)+LSS+CMB data sources. The 1σ

c.l. and 2σ c.l. contours are shown in all cases. For the reconstructed final contour lines, we also plot the 3σ , 4σ , and 5σ confidence level regions.

Figure 6. As in Fig. 5, but considering the effect of only the BAO, LSS, and CMB in all the possible combinations: BAO+LSS, BAO+CMB, LSS+CMB, and
BAO+LSS+CMB. As discussed in the text, it is only when such a triad of observables is combined that we can see a clear �4σ c.l. effect, which is comparable
to intersecting the whole set of SNIa+BAO+H(z)+LSS+CMB data.

For ν i → 0, we recover the �CDM behaviour A → 3
2 and B → − 3

2 ,
as it should. This is already true for the Q� without imposing
ν� → 0, therefore its initial conditions are precisely the same as
for the concordance model. Once the functions (29) and (30) take
constant values (as it is the case here at the high redshifts where

we fix the initial conditions), the differential equation (28) admits
power-like solutions of the form δm(ai) = as

i . Of the two solutions,
we are interested only in the growing mode solution, as this is the
only one relevant for structure formation. For example, using (31)
and (34) for the case of the RVM, the perturbations equation (28)
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Figure 7. Contour lines for the XCDM (left) and RVM (right) using the same CMB+BAO+LSS data as in Table 1 (solid contours), and also when replacing
the LSS data (i.e. the f(z)σ 8(z) points) with the S8 value obtained from the weak gravitational lensing data (Joudaki et al. 2018, dashed lines).

becomes

δ′′
m + 3

2a
(1 + 3ν)δ′

m −
(

3

2
− 3ν − 9

2
ν2

)
δm

a2
= 0. (37)

The power-law solution for the growing mode gives the result
δm = a1 − 3ν , which is exact even keeping the O(ν2) term. Never-
theless, as warned previously, in practice we can neglect all O(ν2

i )
contributions despite we indicate their presence. Repeating the same
procedure for the other models, the power-law behaviour in each
case for the growing mode solution δm ∼ as is the following:

RVM : s = 1 − 3ν (38)

Qdm: s = 1 − νdm

(
6�m + 9�dm

5�m

)
+ O(ν2

dm) (39)

Q�: s = 1. (40)

Imposing the above analytical results to fix the initial conditions, we
are then able to solve numerically the full differential equation (28)
from a high redshift zi ∼ 100 (ai ∼ 10−2) up to our days. The result
does not significantly depend on the precise value of zi, provided
it is in the matter-dominated epoch and well below the decoupling
time (z ∼ 103), where the radiation component starts to be non-
negligible.

4.2 Linear growth and growth index

The linear growth rate of clustering is an important (dimensionless)
indicator of structure formation (Peebles 1993). It is defined as the
logarithmic derivative of the linear growth factor δm(a) with respect
to the log of the scale factor, ln a. Therefore,

f (a) ≡ a

δm

dδm

da
= dlnδm

dlna
, (41)

where δm(a) is obtained from solving the differential equation (28)
for each model. The physical significance of f(a) is that it determines
the peculiar velocity flows (Peebles 1993). In terms of the redshift
variable, we have f(z) = −(1 + z) dln δm/dz, and thus the linear
growth can also be used to determine the amplitude of the redshift
distortions. This quantity has been analytically computed for the
RVM in Basilakos & Solà (2015). Here, we shall take it into account
for the study of the LSS data in our overall fit to the cosmological
observations.

One usually expresses the linear growth rate of clustering in terms
of �m(z) = ρm(z)/ρc(z), where ρc(z) = 3H2(z)/(8πG) is the evolving
critical density, as follows (Peebles 1993):

f (z) � [�m(z)]γ (z) , (42)

where γ is the so-called linear growth rate index. For the usual
�CDM model, such an index is approximately given by γ � �
6/11 � 0.545. For models with a slowly varying equation of state
wD (i.e. approximately behaving as the XCDM, with wD � w0),
one finds the approximate formula γ D � 3(wD − 1)/(6wD − 5)
(Wang & Steinhardt 1998) for the asymptotic value when �m → 1.
Setting wD = −1 + ε, it can be rewritten

γD � 6 − 3ε

11 − 6ε
� 6

11

(
1 + 1

22
ε

)
. (43)

Obviously, for ε → 0 (equivalently, ωD → −1) one retrieves the
�CDM case. Since the current experimental error on the γ -index
is of the order of 10 per cent, it opens the possibility to discriminate
cosmological models using such an index (see e.g. Pouri, Basi-
lakos & Plionis 2014). In the case of the RVM and various models
and frameworks, the function γ (z) has been computed numerically
in Gómez-Valent et al. (2015a). Under certain approximations, an
analytical result can also be obtained for the asymptotic value (Basi-
lakos & Solà 2015):

γRVM � 6 + 3ν

11 − 12ν
� 6

11

(
1 + 35

22
ν

)
. (44)

This expression for the RVM is similar to (43) for an approximate
XCDM parametrization, and it reduces to the �CDM value for
ν = 0, as it should.

4.3 Weighted linear growth and power spectrum

A most convenient observable to assess the performance of our
vacuum models in regard to structure formation is the combined
quantity f(z)σ 8(z), viz. the ordinary growth rate weighted with σ 8(z),
the rms total matter fluctuation (baryons + CDM) on R8 = 8h−1 Mpc
spheres at the given redshift z, computed in linear theory. It has long
been recognized that this estimator is almost a model-independent
way of expressing the observed growth history of the Universe,
most noticeably it is found to be independent of the galaxy density
bias (Guzzo et al. 2008; Song & Percival 2009).
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With the help of the above generalized matter perturbations (equa-
tion 28) and the appropriate initial conditions, the analysis of the
linear LSS regime is implemented on using the weighted linear
growth f(z)σ 8(z). The variance of the smoothed linear density field
on R8 = 8h−1 Mpc spheres at redshift z is computed from

σ 2
8 (z) = δ2

m(z)
∫

d3k

(2π )3
P (k, p)W 2(kR8). (45)

Here, P (k, p) = P0 kns T 2(k) is the ordinary linear matter power
spectrum (i.e. the coefficient of the two-point correlator of the linear
perturbations), with P0 a normalization factor, ns the spectral index,
and T(k) the transfer function. Furthermore, W(kR8) in the above
formula is a top-hat smoothing function (see e.g. Gómez-Valent
et al. 2015a, for details), which can be expressed in terms of the
spherical Bessel function of order 1, as follows:

W (kR8) = 3
j1(kR8)

kR8
= 3

k2R2
8

(
sin (kR8)

kR8
− cos (kR8)

)
. (46)

Moreover, p is the fitting vector with all the free parameters, in-
cluding the specific vacuum parameters ν i of the DVMs, or the EoS
parameters wi for the XCDM/CPL parametrizations, as well as the
standard parameters.

The power spectrum depends on all the components of the fit-
ting vector. However, the dependence on the spectral index ns is
power-like, whereas the transfer function T (k, q) depends in a more
complicated way on the rest of the fitting parameters (see below),
and thus for convenience we collect them in the reduced fitting
vector q not containing ns. It is convenient to write the variance
(45) in terms of the dimensionless linear matter power spectrum,
P(k, p) = (

k3/2π2
)

P (k, p), with

P(k, p) = P0k
ns+3T 2(k, q). (47)

The normalization factor P0 = P0/2π2 will be determined in the
next section in connection to the definition of the fiducial model.

For the transfer function, we have adopted the usual BBKS form
(Bardeen et al. 1986), but we have checked that the use of the
alternative one by Eisenstein & Hu (1998) does not produce any
significant change in our results. Recall that the wave number at
equality, keq, enters the argument of the transfer function. However,
keq is a model-dependent quantity, which departs from the �CDM
expression in those models in which matter and/or radiation are
governed by an anomalous continuity equation, as e.g. in the DVMs.
In point of fact keq depends on all the parameters of the reduced
fitting vector q. For the concordance model, keq has the simplest
expression,

k�
eq = H0 �m

√
2

�r
= �mh2

2997.9

√
2

ωr
Mpc−1, (48)

where ωr = �rh2. In the second equality, we have used the relation
H−1

0 = 2997.9h−1 Mpc. For the DVMs, it is not possible to find
a formula as compact as the one above. Either the corresponding
expression for aeq is quite involved, as in the RVM case,

RVM: aeq =
[

�r(1 + 7ν)

�m(1 + 3ν) + 4ν�r

] 1
1+3ν

, (49)

or because aeq must be computed numerically, as for the models
Qdm and Q�. In all cases, for ν i = 0 we retrieve the value of aeq in
the �CDM.

4.4 Fiducial model

Inserting the dimensionless power spectrum (47) into the variance
(45) at z = 0 allows us to write σ 8(0) in terms of the power spectrum
normalization factorP0 in (47) and the primary parameters that enter
our fit for each model. This is tantamount to saying that P0 can be
fixed as follows:

P0 = σ 2
8,�

δ2
m,�

[∫ ∞

0
kns,�+3T 2(k, q�)W 2(kR8,�)(dk/k)

]−1

, (50)

where the chosen values of the parameters in this expression de-
fine our fiducial model. The latter is characterized by the vectors
of fiducial parameters p� and q�, defined in obvious analogy with
the original fitting vectors but with all their parameters taken to be
equal to those from the Planck 2015 TT,TE,EE+lowP+lensing anal-
ysis (Planck collaboration XIII 2016), with ν i = 0 for the DVMs
and w0 = −1, w1 = 0 for the XCDM/CPL parametrizations. The
subindex � carried by all the parameters denotes such a setting.
In particular, σ 8, � ≡ σ 8, �(0) in (50) is also taken from the afore-
mentioned Planck 2015 data. However, δm, � ≡ δm, �(0) in the same
formula is computable: it is the value of δm(z = 0) obtained from
solving the perturbations equation of the �CDM, using the men-
tioned fiducial values of the other parameters. Finally, plugging the
normalization factor (50) in (45) and using (47) one finds

σ8(z) = σ8,�

δm(z)

δm,�

√ ∫ ∞
0 kns+2T 2(k, q)W 2(kR8) dk∫ ∞

0 kns,�+2T 2(k, q�)W 2(kR8,�) dk
. (51)

For the fiducial �CDM, this expression just gives the scaling
of σ 8, �(z) with the redshift in the linear theory, that is to say,
σ 8, �(z)/σ 8, � = δm, �(z)/δm, �. But for an arbitrary model, equa-
tion (51) normalizes the corresponding σ 8(z) with respect to the
fiducial value, σ 8, �. This includes, of course, our fitted �CDM,
which is not the same as the fiducial �CDM. So all fitted models
are compared to the same fiducial model defined by the Planck 2015
results. Similarly, upon computing with this method the weighted
linear growth rate f(z)σ 8(z) for each model under consideration (in-
cluding the �CDM), the functions f(z)σ 8(z) for all models become
normalized to the same fiducial model. It is important to emphasize
that one cannot adjust the power spectrum and the f(z)σ 8(z) values
independently. Therefore, we first normalize with Planck 2015 re-
sults, as above described, and from here we fit the models to the
data, in which the LSS component takes an essential part.

The connection of the normalization factor (50) with As (Planck
collaboration XIII 2016) can be easily found using standard formu-
lae (Liddle & Lyth 2000, 2009; Dodelson 2003). We find

P0 = 4As

25

k1−ns∗
H 4

0 �2
m

, (52)

where k∗ = 0.05 Mpc−1 is the pivot scale used by Planck. This fol-
lows from the fact that P0 is related to δ2

H (the primordial amplitude
of the gravitational potential) through P0 = δ2

H /(H 3+ns

0 �2
m) and on

the other hand we have δ2
H = (4/25)As(H0/k∗)ns−1.

In Fig. 4, we display the theoretical results for f(z)σ 8(z) from the
various models, side by side with the LSS data measurements, using
the fitted values of Table 1. The values that we find for σ 8(0) for
each model, with the corresponding uncertainties, are reckoned in
Table 1. Inspection of Fig. 4 shows that the DVMs provide a better
description of the LSS data points as compared to the �CDM. The
XCDM parametrization takes an intermediate position, granting a
better fit than the �CDM but a poorer one than the RVM and Qdm.
One can see that it is necessary an overall reduction of ∼8 per cent
in the value of f(z)σ 8(z) with respect to the �CDM curve (the solid

MNRAS 478, 4357–4373 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/478/4/4357/4996364 by U
N

IVER
SITAT D

E BAR
C

ELO
N

A. Biblioteca user on 24 O
ctober 2019



4368 J. Solà Peracaula, J. de Cruz Pérez and A. Gómez-Valent

line on top of the others in that figure). Once �m is accurately fixed
from the CMB data, the �CDM model does not have any further
freedom to further adjust the low-z LSS data. This can be seen from
equation (52) and from the fact that the normalization amplitude of
the power spectrum As as given by Planck tolerates an error of order
2 per cent at most (Planck collaboration XIII 2016), and therefore
such residual freedom cannot be invested to adjust the structure
formation data, it is simply insufficient as we have checked. Thus,
there seems to be no way at present to describe correctly both CMB
and LSS data within the �CDM. This is of course at the root of the
so-called σ 8-tension, one of the important problems of the �CDM
mentioned in the introduction (see e.g. Macaulay, Wehus & Eriksen
2013; Battye, Charnock & Moss 2015; Basilakos & Nesseris 2016,
2017, for additional discussion and references).

In contrast, the DVMs can provide a possible clue. For example,
for the RVM case an analytical explanation has recently been pro-
vided in references Gómez-Valent & Solà (2017, 2018) showing
why the dynamical vacuum can help in relaxing such tension. Re-
call that for ν = 0 the equality point between matter and radiation as
given in equation (49) boils down to the �CDM value. However, for
ν �= 0 a non-negligible contribution is obtained, despite the small-
ness of ν. Indeed, one can show that the ν-effect causes a negative
correction to the transfer function, which at linear order in ν is pro-
portional to 6νln (�m/�r) � 50 ν. Since ν is fitted to be of the order
of ∼10−3 in Table 1, it follows that the aforementioned negative
correction can easily enhance the final effect up to near 10 per cent
level. Upon a careful analysis of all the contributions, it eventu-
ally amounts to a ∼8 per cent reduction of the weighted growth
rate f(z)σ 8(z) as compared to the �CDM value (Gómez-Valent &
Sol‘a 2017, 2018). This is precisely the reduction with respect to
the �CDM prediction that is necessary in order to provide a much
better description of the LSS data, see Fig. 4. Interestingly enough,
as a bonus one also obtains an excellent description of the current
weak-lensing data; see Section 6.3.

5 MA I N N U M E R I C A L R E S U LTS

For the statistical analysis, we define the joint likelihood func-
tion as the product of the likelihoods for all the data sets. Cor-
respondingly, for Gaussian errors the total χ2 to be minimized
reads:

χ2
tot = χ2

SNIa + χ2
BAO + χ2

H + χ2
LSS + χ2

CMB. (53)

Each one of these terms is defined in the standard way and they
include the corresponding covariance matrices.

Table 1 contains the main fitting results, whereas the other tables
display complementary information. We observe from Fig. 1 that
the vacuum parameters, ν and νdm, are neatly projected non-null and
positive for the RVM and the Qdm. In the particular case of the RVM,
Fig. 2 displays in a nutshell our main results in all possible planes
of the fitting parameter space. Fig. 4, on the other hand, indicates
that the XCDM is also sensitive to the DDE signal. In all cases, the
LSS data play an important role (cf. Fig. 4). Focusing on the model
that provides the best fit, namely the RVM, Figs 5 and 6 reveal
the clue to the main data sources responsible for the final results.
We will further comment on them in the next sections. Remarkably
enough, the significance of this dynamical vacuum effect reaches
up to about ∼3.8σ c.l. after marginalizing over the remaining
parameters.

5.1 Fitting the data with the XCDM and CPL
parametrizations

Here, we further elaborate on the results we have found by exploring
now the possible time evolution of the DE in terms of the well-
known XCDM and CPL parametrizations (introduced in Section
2.3). For the XCDM, w = w0 is the (constant) equation of state
(EoS) parameter for X, whereas for the CPL there is also a dynamical
component introduced by w1, see equation (20). The corresponding
fitting results for the XCDM parametrization is included in all our
tables, along with those for the DVMs and the �CDM. For the
main Table 1, we also include the CPL fitting results. For example,
reading off Table 1 we can see that the best-fitting value for w0 in
the XCDM is

w0 = −0.923 ± 0.023. (54)

It is worth noticing that this EoS value is far from being compatible
with a rigid �-term. It actually departs from −1 by precisely 3.35σ

c.l. In Fig. 3, we depict the contour plot for the XCDM in the (�m,
w0) plane. Practically, all of the 3σ -region lies above the horizontal
line at w0 = −1. Subsequent marginalization over �m renders the
result (54). Concerning the CPL, we can see from Table 1 that the
errors on the fitting parameters are larger, especially on w1, but it
concurs with the XCDM that DE dynamics is also preferred (see
also Section 5.2).

Remarkably, from the rich string of
SNIa+BAO+H(z)+LSS+CMB data we find that even the
simple XCDM parametrization is able to capture non-trivial signs
of dynamical DE in the form of effective quintessence behaviour
(w0 � −1), at more than 3σ c.l. Given the significance of this
fact, it is convenient to compare it with well-known previous
fitting analyses of the XCDM parametrization, such as the ones
performed by the Planck and BOSS collaborations 2–3 yr ago.
The Planck 2015 value for the EoS parameter of the XCDM reads
w0 = −1.019+0.075

−0.080 (Planck collaboration XIII 2016) and the BOSS
one is w0 = −0.97 ± 0.05 (Aubourg et al. 2015). These results
are perfectly compatible with our own fitting value for w0 given
in (54), but in stark contrast to it their errors are big enough as to
be also fully compatible with the �CDM value w0= −1. This is
not too surprising if we bear in mind that none of these analyses
included LSS formation data in their fits, as explicitly recognized
in the text of their papers.

In the absence of the modern LSS data, we would indeed find
a very different situation to that in Table 1. As our Table 3 clearly
shows that the removal of the LSS data set in our fit induces a
significant increase in the magnitude of the central value of the EoS
parameter for the XCDM, as well as of the corresponding error.
This happens because the higher is |w| the higher is the structure
formation power predicted by the XCDM, and therefore the closer
is such a prediction with that of the �CDM (which is seen to
predict too much power as compared to the data, see Fig. 4). Under
these conditions our analysis renders w = −0.992 ± 0.040 (cf.
Table 3), which is manifestly closer to (in fact consistent with) the
aforementioned central values (and errors) obtained by Planck and
BOSS teams. In addition, this result is now fully compatible with
the �CDM, as in the Planck 2015 and BOSS cases, and all of them
are unfavoured by the LSS data.

From the foregoing observations, it becomes clear that in order to
improve the fit to the observed values of f(z)σ 8(z), which generally
appear lower-powered with respect to those predicted by the �CDM
(cf. Fig. 4), |w| should decrease. This is just what happens in our
fit for the XCDM, see equation (54). At the level of the DVMs this
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Possible signals of vacuum dynamics 4369

translates into positive values of ν i, as these values cause the vacuum
energy to be larger in our past; and, consequently, it introduces a
time modulation of the growth suppression of matter. It is apparent
from Fig. 4 that the f(z)σ 8(z) curves for the vacuum models are
shifted downwards (they have less power than the �CDM), and
hence adapt significantly better to the LSS data points.

5.2 Comparing the competing vacuum models through Akaike
and Bayesian information criteria

We may judge the fit quality obtained for the different vacuum mod-
els in this work from a different perspective. Although the χ2

min value
of the overall fits for the main DVMs (RVM and Qdm) and XCDM
appear to be definitely smaller than the �CDM one, it proves ex-
tremely useful to reassess the degree of success of each competing
model by invoking the time-honoured Akaike and Bayesian infor-
mation criteria, denoted as AIC and BIC (Akaike 1974; Schwarz
1978; Kass & Raftery 1995). The Akaike information criterion is
defined as follows:

AIC = χ2
min + 2nN

N − n − 1
, (55)

whereas the Bayesian information criterion reads

BIC = χ2
min + n ln N. (56)

In these formulas, n is the number of independent fitting parameters
and N is the number of data points. The added terms on χ2

min repre-
sent the penalty assigned by these information criteria to the models
owing to the presence of additional parameters. To test the degree
of success of a dynamical DE model (versus the �CDM) with the
information criteria, we have to evaluate the pairwise differences
�AIC (�BIC) between the AIC and BIC values of the �CDM with
respect to the corresponding values of the models having a smaller
value of these criteria – in our case the DVMs, XCDM, and CPL.
The larger these (positive) differences are the higher is the evidence
against the model with larger value of AIC (BIC) – i.e. the �CDM
in the present case.

According to the standard usage, for �AIC and/or �BIC below 2
one judges that there is ‘consistency’ between the two models under
comparison; in the range 2–6, there exists a ‘positive evidence’ in
favour of the model with smaller value of AIC and/or BIC; for values
within 6–10, one may claim ‘strong evidence’ in favour of such a
model; finally, above 10, one speaks of ‘very strong evidence’. The
evidence ratio associated to acceptance of the favoured model and
rejection of the unfavoured model is given by the ratio of Akaike
weights, A ≡ e�AIC/2. Similarly, B ≡ e�BIC/2 estimates the so-called
Bayes factor, which gives the ratio of marginal likelihoods between
the two models (Amendola 2015; Amendola & Tsujikawa 2015).
Table 1 reveals conspicuously that the �CDM appears disfavoured
when confronted to the DDE models. The most favoured one is the
RVM, followed by the Qdm and next by the XCDM. In the case of
CPL and Q�, the improvement is only mild.

The AIC and BIC criteria can be thought of as a modern quan-
titative formulation of Occam’s razor, in which the presence of
extra parameters in a given model is conveniently penalized so
as to achieve a fairer comparison with the model having less
parameters.

6 D ISCUSSION

In this section, we consider in more detail some important aspects
and applications of our analysis. In particular, we identify which
are the most important data sources which are responsible for the

possible DDE signal and show that in the absence of any of these
important ingredients the signal becomes weakened or completely
inaccessible.

6.1 Testing the impact of the different data sets in our analysis
and comparing with Planck 2015

The current work follows the track of Solà, Gómez-Valent & de Cruz
Pérez (2015) and is also firmly aligned with Solà, Gómez-Valent &
de Cruz Pérez (2017a) and Solà, de Cruz Pérez & Gómez-Valent
(2018). Although the models analysed in Solà, Gómez-Valent & de
Cruz Pérez (2015, 2017a) have some differences with respect to the
ones treated here, the outcome of the analysis points to the very
same direction, to wit that some DVMs and the XCDM fit better
the available data than the �CDM. But we want to emphasize
some important aspects of the analysis carried out in this paper as
compared to other analyses:

(i) We have used a large and fully updated set of cosmological
SNIa+BAO+H(z)+LSS+CMB observations. To our knowledge, this
is one of the most complete and consistent data sets used in the
literature, see Solà, Gómez-Valent & de Cruz Pérez (2017a) up to
some updating introduced here, especially concerning the LSS data.

(ii) We have removed all data that would entail double counting
and used the known covariance matrices in the literature. As an
example, we have avoided to use Hubble parameter data extracted
from BAO measurements, and restricted only to those based on the
differential age (i.e. the cosmic chronometers).

(iii) We have duly taken into account all the known covariance
matrices in the total χ2-function (53), which means that we have
accounted for all the known correlations among the data. Not all
data sets existing in the literature are fully consistent, sometimes
they are affected from important correlations that have not been
evaluated. We have discussed the consistency of the present data in
Solà, Gómez-Valent & de Cruz Pérez (2017a).

We have conducted several practical tests in order to study the
influence of different data sets in our fitting analysis. As previously
mentioned, we have checked what is the impact on our results if
we omit the use of the LSS data (cf. Table 3), but in our study
we have also assessed what happens if we disregard the CMB data
(cf. Table 4) while still keeping all the remaining observations. The
purpose of this test is to illustrate once more the inherent σ 8-tension
existing between the geometry data and the structure formation data.
In both cases, namely when we dispense with the LSS or the CMB
data, we find that for all the models under study the error bars for the
fitted DDE parameters (wi, ν i) become critically larger (sometimes
they increase a factor 2–4) than those displayed in Table 1, and as
a consequence these parameters become fully compatible with the
�CDM values (in particular ν i = 0 for the DVMs) within 1σ c.l. or
less, which is tantamount to saying that the DDE effect is washed
out. At the same time, and in full accordance with the mentioned
results, the �AIC and �BIC information criteria become negative,
which means (according to our definition in Section 5.2) that none
of these DDE models fits better the data than the �CDM under these
particular conditions. These facts provide incontestable evidence of
the strong constraining power of the LSS as well as of the CMB
data, whether taken individually or in combination, and of their
capability for narrowing down the allowed region in the parameter
space. In the absence of either one of them, the �CDM model is
preferred over the DDE models, but only at the expense of ignoring
the CMB input, or the LSS data, both of which are of course of
utmost importance. Thus, the concordance model is now able to
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fit the LSS data better only because it became free from the tight
CMB constraint on �m, which enforced the latter to acquire a larger
value. Without such constraint, a lower �m value can be chosen by
the fitting procedure, what in turn enhances the agreement with the
f(z)σ 8(z) data points. We have indeed checked that the reduction of
�m in the �CDM directly translates into an 8.6 per cent lowering
of σ 8(0) with respect to the value shown in Table 1 for this model,
namely we find that σ 8(0) changes from 0.801 ± 0.009 (as indicated
in Table 1) to 0.731 ± 0.019 when the CMB data are not used. Such
substantial decrease tends to optimize the fit of the LSS data, but
only at the expense of ruining the fit to the CMB when these data
are restored. This is, of course, the very meaning of the σ 8-tension,
which cannot be overcome at the moment within the �CDM.

In stark contrast with the situation in the �CDM, when the vac-
uum is allowed to acquire a mild dynamical component the σ 8-
tension can be dramatically loosened; see Gómez-Valent & Solà
(2017, 2018) for a detailed explanation. This can be seen immedi-
ately on comparing the current auxiliary tables 3 and 4 with the main
Table 1. Recall that a positive vacuum energy suppresses the growth
of structure formation and this is one of the reasons why the �CDM
model is highly preferred to the CDM with � = 0. Similarly, but at a
finer and subtler level of precision, a time modulation of the growth
suppression through dynamical vacuum energy or in general DDE
should further help in improving the adjustment of the LSS data. In
our case, this is accomplished e.g. by the ν-parameter of the RVM,
which enables a dynamical modulation of the growth suppression
through the ∼νH2 component of the vacuum energy density – cf.
equation (8). The presence of this extra degree of freedom allows
the DVMs to better adjust the LSS data without perturbing the re-
quirements from the CMB data (which can therefore preserve the
standard �m value obtained by Planck 2015). The fact that this read-
justment of the LSS data by a dynamical component in the vacuum
energy is possible is because the epoch of structure formation is
very close to the epoch when the DE starts to dominate, which is
far away from the epoch when the CMB was released, and hence
any new feature of the DE can play a significant role in the LSS
formation epoch without disrupting the main features of the CMB.
Let us recall at this point that the presence of the extra parameter
from the DDE models under discussion is conveniently penalized
by the Akaike and Bayesian information criteria in our analysis, and
thus the DDE models appear to produce a better fit than the �CDM
under perfectly fair conditions of statistical comparison between
competing models describing the same data.

The conclusion of our analysis is clear: no signal of DDE can
be found without the inclusion of the CMB data and/or the LSS
data, even keeping the rest of observables within the fit. Both the
LSS and CMB data are crucial ingredients to enable capturing the
DDE effect, and the presence of BAO data just enhances it further.
This conclusion is additionally confirmed by our study of the de-
construction and reconstruction of the RVM contour plots in Figs 5
and 6 and is discussed at length in the next section.

We close this section by answering a most natural question. Why
the dynamical DE signal that we are glimpsing here escaped unde-
tected from the fitting analyses of Planck 2015? The answer can be
obtained by repeating our fitting procedure and restricting ourselves
to the much more limited data sets used by the Planck 2015 col-
laboration, more precisely in the papers (Planck collaboration XIII
2016; Planck collaboration XIV 2016). In contrast to Planck col-
laboration XIII (2016), where no LSS (RSD) data were used, in the
case of Planck collaboration XIV (2016) they used only some BAO
and LSS data, but their fit is rather limited in scope. Specifically,
they used only four BAO data points, one AP (Alcock–Paczynski

parameter) data point, and one single LSS point, namely the value
of f(z)σ 8(z) at z= 0.57 – see details in that paper. Using this same
data, we obtain the fitting results presented in our Table 5. They
are perfectly compatible with the fitting results mentioned in Sec-
tion 5.1 obtained by Planck 2015 and BOSS (Aubourg et al. 2015),
i.e. none of them carries evidence of dynamical DE, with only the
data used by these collaborations 2–3 yr ago.

In contradistinction to them, in our full analysis presented in Ta-
ble 1 we used 11 BAO and 13 LSS data points, some of them
available only from the recent literature and of high precision
(Gil-Marı́n et al. 2017). From Table 5, it is apparent that with
only the data used in Planck collaboration XIV (2016) the fitting
results for the RVM are poor enough and cannot still detect clear
traces of the vacuum dynamics. In fact, the vacuum parameters are
compatible with zero at 1σ c.l. and the values of �AIC and �BIC
in that table are moderately negative, showing that the DVMs do not
fit better the data than the �CDM model with only such a limited
input. In fact, not even the XCDM parametrization is capable of
detecting any trace of dynamical DE with that limited data set, as
the effective EoS parameter is compatible with w0 = −1 at roughly
1σ c.l. (w0 = −0.961 ± 0.033).

The features that we are reporting here have remained hitherto
unnoticed in the literature, except in Solà, Gómez-Valent & de Cruz
Pérez (2015, 2017a,b,c,d), and in Zhao et al. (2017). In the last
reference, the authors have been able to find a significant 3.5σ c.l.
effect on dynamical DE, presumably in a model-independent way
and following a non-parametric procedure, see also (Wang et al.
2015). The result of (Zhao et al. 2017) is well along the lines of this
work.

6.2 Deconstruction and reconstruction of the RVM contour
plots

We further complement our analysis by displaying in a graphical
way the deconstructed contributions from the different data sets to
our final contour plots in Fig. 1, for the specific case of the RVM.
One can do similarly for any of the models under consideration.
The result is depicted in Fig. 5, where we can assess the detailed
deconstruction of the final contours in terms of the partial contours
from the different SNIa+BAO+H(z)+LSS+CMB data sources.

The deconstruction plot for the RVM case is dealt with in Fig. 5,
through a series of three plots made at different magnifications. In
the third plot of the sequence we can immediately appraise that the
BAO+LSS+CMB data subset plays a fundamental role in narrowing
down the final physical region of the (�m, ν) parameter space, in
which all the remaining parameters have been marginalized over.
This deconstruction process also explains in very transparent visual
terms why the conclusions that we are presenting here hinge to a
large extent on some particularly sensitive components of the data.
While there is no doubt that the CMB is a high-precision component
in the fit, our study demonstrates (both numerically and graphically)
that the maximum power of the fit is achieved when it is combined
with the wealth of BAO and LSS data points currently available.

To gauge the importance of the BAO+LSS+CMB combination
more deeply, in Fig. 6 we try to reconstruct the final RVM plot
in Fig. 1 (left) from only these three data sources. First, we con-
sider the overlapping regions obtained when we cross the pairs of
data sources BAO+LSS, BAO+CMB, LSS+CMB and finally the
trio BAO+LSS+CMB (in all cases excluding the SNIa and H(z)
data). One can see that neither the BAO+LSS nor the BAO+CMB
crossings yield a definite sign for ν. This is consistent with the nu-
merical results in Tables 3 and 4, where the removal of the LSS and
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the CMB data, respectively, renders rather poor fits with negative
values of �AIC and �BIC.

Remarkably, it is the LSS+CMB combination the one that car-
ries a well-defined, positive, sign for ν, as it is seen from the
lower-left plot in Fig. 6, where �AIC and �BIC are now both
positive and above 6 for the main DVMs (RVM and Qdm), as we
have checked. Finally, when we next intersect the pair LSS+CMB
with the BAO data the signal peaks at 3.8σ c.l., the final contours
being now those shown in the lower-right plot of Fig. 6. The out-
come of this exercise is clear. For the RVM case, we have checked
that the final BAO+LSS+CMB plot in Fig. 6 is essentially the same
as the original RVM plot in Fig. 1 (the leftmost one). In other words,
the final RVM contour plot containing the information from all our
five data sources can essentially be reconstructed with only the triad
of leading observables BAO+LSS+CMB.

6.3 Vacuum dynamics, structure formation, and weak-lensing
data

Owing to the significant role played by the structure formation data
in the extraction of the possible DDE signal, we next inquire into
its impact when we use a different proxy to describe such data.
Let us note that an account of the LSS observations does not only
concern the f(z)σ 8(z) data, but also the weak gravitational lensing
constraints existing in the literature on the conventional quantity
S8 ≡ σ 8(�m/0.3)0.5 (Heymans et al. 2013; Hildebrandt et al. 2017;
Joudaki et al. 2018). In Fig. 7, we compare the respective re-
sults that we find for the XCDM (left) and the RVM (right)
when we use either the CMB+BAO+fσ 8 or the CMB+BAO+S8

data sources. For definiteness we use the recent study by Joudaki
et al. (2018), in which they carry a combined analysis of cos-
mic shear tomography, galaxy–galaxy lensing tomography, and
redshift-space multipole power spectra using imaging data by the
Kilo Degree Survey (KiDS-450) overlapping with the 2-degree
Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spec-
troscopic Survey (BOSS). They find S8 = 0.742 ± 0.035. Inci-
dentally, this value is 2.6σ below the one provided by Planck’s
TT+lowP analysis [4]. Very similar results can be obtained using
the weak gravitational lensing tomography data by KiDS-450 col-
laboration, S8 = 0.745 ± 0.039 (Hildebrandt et al. 2017), and also
by CFHTLenS, (�m/0.27)0.46 = 0.770 ± 0.040 (Heymans et al.
2013). In contrast, the result S8 = 0.783+0.021

−0.025 provided by DES
(DES collaboration 2017) is more resonant with Planck, but due to
its large uncertainty it is still fully compatible with Joudaki et al.
(2018), Hildebrandt et al. (2017), and Heymans et al. (2013). From
Fig. 7, we confirm (using both the XCDM and the RVM) that
the contour lines computed from the data string CMB+BAO+fσ 8

are mostly contained within the contour lines from the alternative
string CMB+BAO+S8 and are shifted upwards. The former data set
is therefore more precise and capable of resolving the DDE signal at
a level of more than 3σ , whereas with S8 it barely surpasses the 1σ

c.l. within the RVM and even less with the XCDM, thus rendering
essentially no DDE signal. The outcome of this additional test is
that the use of the weak-lensing data from S8 as a replacement for
the direct LSS measurements (fσ 8) is insufficient since it definitely
weakens the evidence in favour of DDE.

7 C O N C L U S I O N S

To conclude, in this work we aimed at testing cosmological physics
beyond the standard or concordance �CDM model, which is built

upon a rigid cosmological constant. We have presented a compre-
hensive study on the possibility that the global cosmological obser-
vations can be better described in terms of vacuum models equipped
with a dynamical component that evolves with the cosmic expan-
sion. This should be considered a natural possibility in the context
of QFT in a curved background. Our task focused on three DVMs:
RVM along with two more phenomenological models, denoted Qdm

and Q� – see Section 2.
At the same time, we have compared the performance of

these models with the general XCDM and CPL parametriza-
tions. We have fitted all these models and parametrizations to
the same set of cosmological data based on the observables
SNIa+BAO+H(z)+LSS+CMB. The remarkable outcome of this in-
vestigation is that in all the considered cases we find an improve-
ment of the description of the cosmological data in comparison to
the �CDM.

The ‘deconstruction analysis’ of the contour plots in Section 6.2
has revealed which are the most decisive data ingredients respon-
sible for the dynamical vacuum signal. We have identified that the
BAO+LSS+CMB components play a momentous role in the over-
all fit, as they are responsible for the main effects uncovered here.
The impact of the SNIa and H(z) observables appears to be more
moderate. While the SNIa data were of course essential for the de-
tection of a non-vanishing value of �, these data do not seem to
have sufficient sensitivity (at present) for the next-to-leading step,
which is to unveil the possible dynamics of �. The sensitivity for
that seems to be reserved for the LSS, BAO, and CMB data.

We have also found that the possible signs of DDE tend to favour
an effective quintessence behaviour, in which the energy density
decreases with the expansion. Whether or not the ultimate reason
for such a signal stems from the properties of the quantum vac-
uum or from some particular quintessence model, it is difficult to
say at this point. Quantitatively, the best fit is granted in terms
of the RVM. The results are consistent with the traces of DDE
that can also be hinted at with the help of the XCDM and CPL
parametrizations.

In our work we have also clarified why previous fitting anal-
yses based e.g. on the simple XCDM parametrization, such as
the ones by the Planck 2015 (Planck collaboration XIII 2015;
Planck collaboration XIV 2015) and BOSS collaborations (Aubourg
et al. 2015), missed the DDE signature. Basically, the reason stems
from not using a sufficiently rich sample of the most crucial data,
namely BAO and LSS, some of which were unavailable a few
years ago, and could not be subsequently combined with the CMB
data.

More recently, signs of DDE at ∼3.5σ c.l. have been reported
from non-parametric studies of the observational data on the DE,
which aim at a model-independent result (Zhao et al. 2017). The
findings of their analysis are compatible with the ones we have
reported here. Needless to say, statistical evidence conventionally
starts at 5σ c.l. and we will have to wait for updated observa-
tions to see if such a level of significance can be achieved in the
future.
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Basilakos S., Polarski D., Solà J., 2012, Phys. Rev. D, 86, 043010
Battye R. A., Charnock T., Moss A., 2015, Phys. Rev. D, 91, 103508
Betoule M. et al., 2014, A&A, 568, 22
Beutler F. et al., 2011, MNRAS, 416, 3017
Beutler F. et al., 2012, MNRAS., 423, 3430
Blake C. et al., 2011, MNRAS, 415, 2876
Blake C. et al., 2013, MNRAS, 436, 3089
Bolotin Y. L., Kostenko A., Lemets O. A., Yerokhin D. A., 2015, Int. J.

Mod. Phys. D, 24, 1530007
Caldwell R. R., Dave R., Steinhardt P. J., 1998, Phys. Rev. Lett., 80, 1582
Caldwell R. R., Kamionkowski M., Weinberg N. N., 2003, Phys. Rev. Lett.,

91, 071301
Chen Y., Ratra B., Biesiada M., Li S., Zhu Z.-H, 2016, ApJ, 829, 61
Chevallier M., Polarski D., 2001, Int. J. Mod. Phys. D, 10, 213
Copeland E. J., Sami M., Tsujikawa S., 2006, Int. J. Mod. Phys. D, 15,

V 1753
Costa A. A., Xu X. D., Wang B., Abdalla E., 2017, J. Cosmol. Astropart.

Phys., 1701, 028
Delubac T. et al., 2015, A&A, 574, A59
DES Collaboration, 2017, Dark Energy Survey Year 1 Results: Cosmolog-

ical Constraints from Galaxy Clustering and Weak Lensing, preprint
(arXiv:1708.01530)

Dodelson S., 2003, Modern Cosmology. Academic Press, New York
Dolgov A. D., 1983, in Gibbons G., Hawking S. W., Tiklos S. T., eds, The

very Early Universe. Cambridge Univ. Press, Cambridge, p. 449.
Einstein A., 1917, Kosmologische Betrachtungen zur allgemeinen Rela-

tivitätstheorie, Sitzungsber. Königl. Preuss. Akad. Wiss. phys.-math.
Klasse VI 142 (Submitted: February 8th, 1917)

Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Endo M., Fukui T., 1977, Gen. Relativ. Gravit., 8, 833
Endo M., Fukui T., 1982, Gen. Relativ. Gravit., 14, 769
España-Bonet C., Ruiz-Lapuente P., Solà J., Shapiro I. L., 2004, J. Cosmol.
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