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Tunable self-healing of magnetically propelling
colloidal carpets
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The process of crystallization is difficult to observe for transported, out-of-equilibrium sys-

tems, as the continuous energy injection increases activity and competes with ordering. In

emerging fields such as microfluidics and active matter, the formation of long-range order is

often frustrated by the presence of hydrodynamics. Here we show that a population of

colloidal rollers assembled by magnetic fields into large-scale propelling carpets can form

perfect crystalline materials upon suitable balance between magnetism and hydrodynamics.

We demonstrate a field-tunable annealing protocol based on a controlled colloidal flow above

the carpet that enables complete crystallization after a few seconds of propulsion. The

structural transition from a disordered to a crystalline carpet phase is captured via spatial and

temporal correlation functions. Our findings unveil a novel pathway to magnetically anneal

clusters of propelling particles, bridging driven systems with crystallization and freezing in

material science.
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In colloidal science, crystalline order is usually obtained from
equilibrium self-assembly, when a system spontaneously forms
an organized phase due to specific inter-particle interactions.

This general phenomenon has proven to be simple, robust, and
scalable, all appealing features that make colloidal crystals ideal
candidates for photonic band gap materials, optical switches, or
sensors. Investigating the assembly process of tunable colloidal
systems may also shed light on fundamental mechanisms under-
lying melting1 and crystallization2, which are general phenomena
occurring in a broad range of systems at different length scales3.

Recent trends in the field are now shifting the focus toward
structure formation in systems driven out-of-equilibrium by external
fields or forces. Examples are widespread and include the assembly
induced by external electric4,5, magnetic6,7, optic8 fields, or the
organization of active particles9–13. However, an important challenge
that still remains to be tackled is whether it is possible to realize
perfect crystalline lattices starting from a disordered collection of
driven particles, where the individual units display a net propulsive
dynamics. Such a feature would be important not only for practical
means, i.e., to rapidly realize periodic system on the visible wave-
length, but it will also provide a starting point for understanding the
fundamental mechanisms behind crystal formation in driven or
active out-of-equilibrium systems. We also note that a crystallization
process induced by a few active dopants in a bath of passive particles
has been demonstrated recently in computer simulation studies14,15.
Recent experiments with active particles report melting16,
clustering10,13, or interstitial dynamics17 but not annealing.

Here we advance in this field by demonstrating a novel field-
induced annealing process where an ensemble of propelling
particles is able to rapidly form a crystalline lattice upon magnetic
command. In particular, we study the dynamics of magnetic
colloidal rotors that are assembled into flat, two-dimensional
propelling carpets due to external magnetic field modulations. In
a previous work18, we demonstrate that the carpet could be used
as an efficient drug-delivery vector for transporting biological
cells across its surface. Beyond its technological applications, here
we report the discovery that such carpet could be used as a
general model system for nonequilibrium crystallization process,
by demonstrating a self-healing process that can be controlled by
an external magnetic field. We show that by increasing the field
amplitude the carpet displays a tread-milling dynamics, where
particles detach from the back of the carpet, travel across the
lattice, and reattach at the moving front. The dynamic phases of
the system may be understood from the delicate balance between
magnetism and hydrodynamics. This regrowth process represents
a novel annealing process that enables to rapidly regenerate col-
loidal structures upon magnetic command.

Results
Assembly and propulsion of colloidal carpets. We assemble the
colloidal carpets from a dispersion of paramagnetic colloids
having radius a= 1.4 μm and subjected to time-dependent
external fields. The particles are initially dispersed in water and
two-dimensionally confined above a glass substrate due to the
balance between gravity and electrostatic interactions (see
Methods). Figure 1a–f illustrate the complete process. To realize a
propelling carpet we start to apply a rotating magnetic field cir-
cularly polarized in the plane of the substrate bx;byð Þ,
B1ðtÞ ¼ B0½cosð2πftÞbx � sinð2πftÞby�, where B0 is the field
amplitude and f is its frequency. We use a narrow frequency
range f 2 ½20; 100�Hz, far away from resonance frequency (~400
KHz) as reported in the past19. For sufficiently high frequencies,
the rotating field induces attractive dipolar interactions that are
isotropic when time-averaged18. The dipolar interaction between
two equal dipoles mi,j at a distance rij = ri − rj is given by

Um ¼ �μ0=4πf½3ðmi � rijÞðmj � rijÞ=r5� � ðmi �mjÞ=r3g, and
becomes maximally attractive (repulsive) for particles with
magnetic moments parallel (normal) to rij. Performing a time
average of the potential gives an effective attractive interaction in
this plane hUmi ¼ �μ0m

2=½8πðx þ yÞ3�. Thus, a random disper-
sion of particles that would otherwise perform simple Brownian
motion, is forced to assemble into a compact cluster, as shown in
Fig. 1a, b. Under the rotating field, the cluster is also observed to
perform a spinning motion around its center, since the rotating
field applies a magnetic torque, Tm � B2

0, due to the finite internal
relaxation time of the particle, see Methods. Once the cluster is
formed, propulsion of the carpet is obtained with the following
strategy. The rotating in-plane field is transformed in a more
complex modulation composed by a field that rotates in the bx;bzð Þ
plane plus an oscillating component along the by direction with a
different frequency fy. The full expression is given as
B2ðtÞ ¼ B0½cosð2πftÞbx þ sinð2πfytÞby � ðBz=B0Þsinð2πftÞ�, where
fy ¼ f =2 (see Fig. 1b, c). The rotating field in the perpendicular
plane, bx;bzð Þ, is used to induce a magnetic torque on the indivi-
dual particles, which now rotate close to the glass substrate. As
the particles are hydrodynamically coupled to the plane20, this
rotational motion is converted into a net translational one. As a
consequence, all the cluster elements are now a collection of
microscopic rotors that make the whole carpet translating at a
constant average speed as shown in Fig. 1e, f (see also Supple-
mentary Movie 1 in the Supplementary Information). On the
other hand, the carpet is kept stable by the oscillating component
By that avoids lateral separation of the rotors due to attractive
dipolar interactions.

The carpet speed vc can be varied mainly by changing the field
amplitude B0 or the number of rotors N. In the latter case it
becomes constant above N ~ 300, which corresponds to a carpet
area S � 1800 μm2. Although a previous work18 analyzed the
dependence of vc on N, here we focus on much larger carpets
(N ≥ 1000 particles) and use only B0 to tune vc. Moreover,
previously the amplitude of the perpendicular field Bz was always
kept below a threshold value, in order to stabilize the structure
confined in two dimensions18. In contrast, here we show a series
of remarkable new phenomena that emerge when the propelling
carpet is forced to extend toward the third dimension by raising
Bz. We also find that, for a certain range of field amplitudes close
to the transition region in Fig. 1g, our method allows the relative
motion of two lattice planes of colloidal particles. This
phenomenon could offer new possibilities in the study of
frictional effects at the microscale in the presence of hydro-
dynamic lubrication.

In Fig. 1g we show the different dynamic states observed in the
(B0,Bz) space, where stable carpets with defects (vacancies) are
found at low perpendicular field Bz (“2D carpet”). Increasing Bz
forces the carpet to fold into a membrane in the third dimension.
However, competition with gravity breaks the monolayer into a
series of separate, rolling chains (“broken carpet”), see also
Supplementary Movie 2 and Supplementary Movie 3 in the
Supplementary Information. Between both dynamic states, we
found a stationary phase where particles are transported above
the carpet, while the entire structure continues to propel close to
the plane (“tread-milling”). We explain the different dynamic
phases observed in Fig. 1g by considering the balance between
magnetic and hydrodynamic interactions. For a pair of
paramagnetic particles located at a distance r, the dipole–dipole
interaction averaged over one period of the rotating field is given
by

hUmi ¼
ðVχB0Þ2
4πμ0r

3
1� B2

z

B2
0
� 3
2

1� B2
z

B2
0

� �
sin2θ

� �
; ð1Þ
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where V= (4/3)πa3, χ= 0.4 is the magnetic volume susceptibility
and μ0= 4π × 10−7 Hm. We then assume that the hydrodynamic
interactions between the two particles can be cast in terms of an
effective energy potential given by

Uh ¼ 3πηa3ωcθ ; ð2Þ
where η the solvent viscosity (water), θ is the angle between the
two particles (see Fig. 1h). Here ωc ¼ B0Bzχτrω½6ημ0ð1þ τ2rω

2Þ�by
is the particle angular velocity, which is in general lower than the
driving one, ω= 2πf, and τr is the magnetic relaxation time of the
paramagnetic colloids (see Methods). By combining the con-
tributions from the magnetic dipole–dipole interaction and
hydrodynamics, the effective total energy of the colloid that is
located at the edge becomes Utot=Um+Uh. This leads to the
dynamic equation for the angle θ as

_θ ¼ � 1
4ζa2

∂Utot

∂θ
; ð3Þ

where ζ is the friction coefficient, see Methods for a detailed
derivation.

From Eq. (3), the condition for obtaining a stable θ is given by:

sin2θj j ¼ 6B0Bz

χ B2
0 � B2

z

� � τrω

ð1þ τ2rω
2Þ

�����
����� � 1 : ð4Þ

Equation (4) allows us to understand how the particle behavior
changes at the rear edge of the carpet by varying the ratio of field
amplitudes, B2

z=B
2
0. (1) For small B2

z=B
2
0, there is a stable

solution θ∼π/2 corresponding to a structure where the colloid
at the rear edge tends to lie in the bx;byð Þ plane; (2) for moderate
values of B2

z=B
2
0, there is no stable solution of θ and then the

colloid at the rear edge of the carpet is transported toward the
front edge (“tread-milling”); (3) for large B2

z=B
2
0, there is a

solution θ∼0 and the colloid at the rear edge “stands up,” giving
rise to a structure in the by;bzð Þ plane (“Broken carpet”). As shown
in Fig. 1g, we find that the developed model is in excellent
agreement with the experimental data with the following
conditions: Bz=B0<0:84 for carpet confined in the bx;byð Þ plane,
and Bz=B0>1:19 for a disk in by;bzð Þ plane. The fit to the data are
obtained by using as sole adjustable parameter the relaxation time
τr ’ 10�4 s, which is in agreement with the value found in
separate experiments18.

Discussion
We next explore in more details the tread-milling phase and how
it induces a regeneration of the propelling carpet. By increasing
the amplitude of Bz, the particles are forced to detach from the
back of the carpet and are transported above the surface by the
hydrodynamic flow field. The detached particles move faster than
the underlying monolayer, but do not leave the structure when
they reach the end, as they remain strongly attracted there by
dipolar interactions. Due to this attraction, the particles follow
one of the crystallographic axes of the underlying lattice during
transport. As shown in Fig. 2a, b, three different situations can be
observed, illustrated also in Supplementary Movie 4 in the Sup-
plementary Information. The particles can be adsorbed in the
monolayer by filling vacancies that encounter during their
excursion, they can change direction when they reach a grain
boundary that merges domains with different crystalline orien-
tations, or they can reach the moving front and reattach there. In
the latter case, the particles form a growing interface that repli-
cates the carpet wedge and shows no defect or vacancies. This
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Fig. 1 Realization of a propelling carpet and out-of-equilibrium phase diagram. a–c Sequence of schematics showing the formation of a carpet due to a
rotating field in the plane bx;byð Þ (a, b) and its propulsion induced by a field rotating in the perpendicular plane bx;bzð Þ plus an oscillating component along theby direction (b, c). d–f Corresponding optical microscope images of a carpet assembled by a rotating field with amplitude B0= 1.6 mT and frequency f= 40
Hz (d, e), and transported by a field B2 with amplitudes B0, Bz= 1.7 mT, and frequencies fx= fz= f, fy= f/2 (e, f). In image f, the trajectory of one particle is
superimposed. Scale bar is 20 μm, see Supplementary Movie 1 in the Supplementary Information. g Diagram showing the different assembled structure
observed in the (B0, Bz) plane. The pink region denotes stable propelling structures (“2D carpet”), whereas the white region refers to the situation where
the paramagnetic colloids flow above the monolayer (“tread-milling”). The blue region indicates the formation of three-dimensional structures (“broken
carpet”). Scattered points are experimental data and continuous lines result from linear stability analysis as described in the text. Error bars are obtained
from the statistical average of different experiments. h Schematic illustrating the definition of the angle θ and position vector r. Videos illustrating the tread-
milling motion and formation of broken carpets (Supplementary Movie 2 and Supplementary Movie 3) are in the Supplementary Information. Scale bars of
the experimental images at the top are 20 μm
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process can be also appreciated from Supplementary Movie 2 in
the Supplementary Information. Furthermore, we calculate the
hydrodynamic flow field generated by the particles using a
boundary element simulation technique; see Fig. 2c for the cor-
responding velocity profile and the Methods section for more
details. The moving carpet generates a cooperative chiral flow
field, which advects continuously the monolayer of particles in a
similar way as a hydrodynamic conveyor belt. Although the flow
velocity is small below the carpet given the short distance with the
surface, it increases significantly close to the edge of the structure
and thus forces particle detachment there. The average speed of
the particles traveling above the carpet 〈vp〉 is twice the carpet
speed 〈vc〉 as shown in Fig. 2d. This result, which is consistent
with the kinematics of rolling motion, is confirmed in the
numerical simulation.

The tread-milling phase generates a net colloidal flow above
the carpet allowing to completely rebuild its structure in a rela-
tively short time scale. This occurs as the growing front of the
carpet crystallizes in a perfect periodic lattice of colloidal rotors,
while it smoothen the edge of the structure. The process is illu-
strated in Fig. 3a, where an initially disordered structure com-
posed by 1045 particles is propelled at a speed of 〈vc〉= 5.7 μm s
−1 and after t= 2 min it has regrown with a perfect crystalline

order. We analyze this process in terms of bond-orientational
correlation function

g6ðrijÞ ¼ Ψ�
6ðriÞΨ6ðrjÞ

D E
; ð5Þ

where Ψ6ðrjÞ ¼ 1
Nb

Pnn
k¼1 e

6iθjk
��� ���, Nb is the number of neighboring

particles k, and θkj is the angle between a fixed axis and the bond
joining particles k and j. The initial disordered state results from
the assembly of the carpet due to the rotating field and gives rise
to a hexatic structure, with an algebraic decay of g6ðrÞ � r�η6 that
characterizes quasi-long-range order. Here we find an exponent
η6 � 0:3, which is higher than the threshold value 1/4 as pre-
dicted by the KTNHY theory1 of melting in two- dimensional
(2D) at equilibrium. As time advances, the carpet front recrys-
tallizes and the nominal exponent of the correlation function
decreases (to values as small as η6 � 0:1). In this nonequilibrium
situation, all rotors are characterized by six nearest neighbors and
long-range order develops.

We then monitor the ability of the monolayer to recrystallize or
heal itself by varying the carpet speed vc via the external field
amplitudes B0 and Bz. As shown in Fig. 3c, in order to keep the
carpet within the tread-milling phase, we need to simultaneously
vary both amplitudes, which allows us to increase vc from 2.5 to ~
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6 μm s−1. The carpet speed can be calculated by considering a
triangular lattice of surface rotors, with lattice constant l (see
Methods section for more details). We can fit the experimental
data of Fig. 3c with Eq. (16) using l ~ 3.2 μm with the magnetic
relaxation time τr as an adjustable parameter. We obtain a value
of τr= 0.3 × 10−4 s that is consistent with the diagram in Fig. 1g.

The dynamics of the ordering process is then characterized via
both the nominal time-dependent exponent η6 of g6(r) (see
Supplementary Fig. 1 in the Supplementary Information) and the
global orientational order parameter averaged over all N particles,
ΨðtÞ ¼ 1

N

PN
i¼1 Ψ6;i shown in Fig. 3d. In all cases we find that the

increase in the carpet speed boosts the annealing process and
allows the carpet to reach the crystalline phase more quickly. We
confirm these observations by extracting the annealing time τc of
the carpet as a function of the applied magnetic field (Fig. 3e).
The time to eliminate a single defect in a carpet of area Lx × Ly
can be approximated as τp ’ Ly=vp, with the tread-milling speed
given by vp � B2

0χτrωa=½6ημ0ð1þ τ2rω
2Þ�. For a carpet with Nd

defects before annealing, the total annealing time can be
approximated as the corresponding annealing time of one col-
loidal row along the y axis, given by

τc ¼ nτp �
12NdLyημ0ð1þ τ2rω

2Þ
LxB

2
0χτrω

; ð6Þ

where n= 2Nd a/Lx is the number of the defects along one
colloid row. For Lx � Ly , the annealing time can be simplified as

τc � 12Ndημ0ð1þτ2rω
2Þ

B2
0χτrω

and can be used to fit the experimental data
shown in Fig. 3e.

We also investigate the scalability of the carpet formation
(Supplementary Fig. 2 in Supplementary Information), pro-
pulsion (Supplementary Fig. 3 in Supplementary Information),
and the tread-milling motion (Supplementary Fig. 4 in Sup-
plementary Information). By varying the number of particles in
the carpet, we find that the initial self-assembly process could
lead to an ordered crystalline structure below N= 150 particles,
as shown in Supplementary Fig. 2 in the Supplementary
Information. Larger carpets assembled by the rotating field
display grain boundaries and vacancies that require the tread-
milling motion to crystallize. The carpet speed increases with
the number of particles, reaching a saturation value above N ~
300 particles, as shown in Supplementary Fig. 3 in the Sup-
plementary Information. Also, we found that the tread-milling
behavior can be observed for all the carpet size, and until filling
completely the observation area of our experimental system for
N= 4000 particles (see Supplementary Fig. 4 in Supplementary
Information).

In active colloidal systems, increasing particle activity via
the propulsion speed leads to an increase in the effective dif-
fusion coefficient or effective temperature of the system, which
we might expect to give rise to a reduction of the global
order. Here we report exactly the opposite effect: the faster the
propelling carpets are, the more rapidly they form ordered
structures. Our novel results demonstrate the versatility of our
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active magnetic system, as the governing interactions are
based on a subtle interplay between hydrodynamics and
magnetism

In conclusion, we investigate the collective dynamics of pro-
pelling magnetic carpets in a range of field parameters, where the
colloidal structures are able to continuously transform into per-
fect crystalline lattices. The annealing process occurs due to the
detachment of individual rotors from the back of the carpet,
traveling above the carpet surface following a crystallographic
direction, and either filling vacancies or reaching and rejoining
the leading edge. We theoretically account for the out-of-
equilibrium phase diagram by using a delicate balance between
magnetism and hydrodynamics. The mechanism of the motility
of our carpets is cooperative and is based on the rectification of
the hydrodynamic flow generated by each rotor close to the
bounding wall. Moreover, the use of external field allows us to
steer and control the colloidal carpet and the corresponding flow
of magnetic colloids that dictate the annealing process. From an
application point of view, our annealing process could be easily
extended to other types of recently engineered microscale parti-
cles with heterogeneous and functional properties21–23, or used to
entrap, transport, and release non-magnetic particles across the
carpet surface18. All in all, our out-of-equilibrium colloidal model
system allows us to investigate crystallization in transported
systems and could thus provide deep insight for similar processes
occurring in systems at different length and time scales.

Methods
Experimental details. We use paramagnetic colloidal particles (Dynabeads M-270,
Invitrogen) with diameter d= 2.8 μm, density ρ= 1.3 g cm−3, and magnetic
volume susceptibility χ= 0.4. The particles are coated with surface carboxylic acid
group with an active chemical functionality of 150 μmol × g−1 per particle. When
dispersed in highly deionized water (18.2 MΩ × cm−1, MilliQ system), hydrogen
ions (H+) dissociate from such groups, leaving a negative charged surface and
inducing the formation of a double layer. The solution containing the particles is
introduced by capillarity in a rectangular microtube made of borosilicate glass
(inner dimensions 0.1 × 2.0 mm; CMC Scientific) that is immediately sealed. The
particles sediment close to a glass plate, where they remain quasi-2D confined due
to gravity, displaying a small thermal motion. The sample is placed in the center of
a triaxial coil system arranged on the stage of a light microscope (Eclipse Ni,
Nikon). External time-dependent magnetic fields are generated by passing an
alternate current through the coils via a waveform generator (TGA1244, TTi)
connected to different power amplifiers (AMP-1800, AKIYAMA, and BOP 20-
10M, Kepco). The particle position and dynamics are extracted using digital video-
microscopy with a charge-coupled device camera (Scout scA640-74fc, Basler)
working at 50 frames per second.

Theoretical model. Under a static external magnetic field B, a paramagnetic
colloid of radius a acquires an induced moment m= VχB/μ0, where V= 4πa3/3 is
the particle volume. For a dynamic field, such as the field B1(t) rotating in the bx;bzð Þ
plane, the paramagnetic colloid experiences a finite magnetic torque24

Tc ¼
B0BzVχτrω

μ0ð1þ τ2rω
2Þby ð7Þ

when the angular frequency of the magnetic field, ω= 2πf, is comparable with the
inverse of the magnetization relaxation time, ωτr � 1. Here, τr � 10�4 s for our
paramagnetic colloids18. Thus, a colloidal particle suspended in a fluid of viscosity
η will rotate with angular velocity ωc < ω. The hydrodynamic interaction with the
substrate induces a translational motion of the particle with velocity v � ωca. In
the case of translating carpet, the induced moment for the individual colloid is
given by,

m ¼ 4
3μo

πa3χB0 cosωt; sinω2t;�
Bz

B0
sinωt

� �
: ð8Þ

The energy due to the magnetic dipole–dipole interaction among the
magnetized colloids is:

Um ¼ �
X
i;j≠i

μ0 3ðmi � rijÞðmj � rijÞ �mi �mjr
2
ij

h i
4πr5ij

; ð9Þ

where rij denotes the vector pointing from the ith colloid to the jth one. Due to the
employed field strength, we will consider these interactions only at the level of

nearest neighbors. For two close particles as depicted in Fig. 1h, the magnetic
dipole–dipole interaction averaged over one period of the rotating magnetic field
can be explicitly expressed by Eq. (1), with the vector pointing from one colloid to
the other as,

r ¼ r sin θ cosϕ; sin θ sin ϕ; cosθð Þ; r � 2a: ð10Þ
Note that when Bz 	 B0, the averaged magnetic dipole–dipole interaction is

attractive in the bx;byð Þ plane and the particles will form a carpet.
The flow field that the colloids at the edges experience can be approximately by

a two-colloid model. Let us denote the colloid at the rear edge as colloid 1 and its
nearest neighbor in x̂ direction as colloid 2. The rotating colloid 2 induces a flow
field around it, which can be approximated by a rotlet. In this case, the flow velocity
that colloid 1 (edge colloid) experiences is approximately:

v ¼ T ´ r
8πηr3

¼ aωc ´br
4

ð11Þ

where the distance between the colloids is taken as r ≈ 2a. As a result, colloid 2 will
rotate around 1. Or effectively, it can be considered that there is an effective torque
acting on colloid 2 by the rotating colloid 1,

Th ¼ 3πηa3ωc ¼
πa3B0Bzχτrω

2μ0ð1þ τ2rω
2Þby: ð12Þ

We thus write an effective hydrodynamic potential as, Uh= Thθ that gives rise
to the total potential Utot=Um+Uh. The dynamic equation in terms of the
orientation of the colloid, i.e., Eq. (3) can be expressed as:

_θ ¼ 1
4ζa2

3ðVχB0Þ2
64μ0πa

3
1� B2

z

B2
0

� �
sin 2θ � 1

4ζa2
πa3B0Bzχτrω

2μ0ð1þ τ2rω
2Þ : ð13Þ

Thus, the conditions for obtaining stable θ become:

Bz

B0
≤
�cþ ffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 4
p

2
; ð14Þ

Bz

B0
≥
cþ ffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 4
p

2
; c ¼ 6τrω=½χð1þ τ2rω

2Þ� ð15Þ

or alternatively Eq. (4) in the manuscript.

Carpet speed. Here we calculate the mean speed of a carpet composed by a
triangular lattice of rotating paramagnetic colloids. An individual particle close to a
surface and subjected to a magnetic torque Tcex acquires a propulsion speed

v0 ¼ Tca
2

32πηh4 ey , where a is the radius of the particle and h its elevation from the

surface. We consider the hydrodynamic interactions of the particle in presence of
the surface and extend the calculations in ref. 25 to a 2D triangular lattice. If we
consider that the rotating particles form a triangular lattice with lattice constant l,
the particle position can be denoted by: l(iu+ jv), −N ≤ i, j ≤N, where u= (1, 0)
and v ¼ ð1=2; ffiffiffi

3
p

=2Þ are the base unit vectors of the lattice. By treating each
rotating colloid as a rotlet, the velocity of the colloid at the lattice center (0, 0) is
given by:

v ¼ v0 þ
PN

i¼�N

PN
j¼�N

a
h

� ��2 3ε2ðiþj=2Þ2
f1þ½ðiþj=2Þ2þð ffiffi

3
p

j=2Þ2 �ε2g5=2 v0

’ Tc
a2

32πηh4 þ 1
4ηl2


 �
ey :

ð16Þ

where ε= δ/2h with δ being the the center-to-center separation between con-
secutive colloids in the array.

Boundary element simulation. We describe the flow field v at a given point x
using a boundary integral formulation 26, which is a surface integral on the particle
surface as

viðxÞ ¼ � 1
8πη

XM
m

Z
Am

Gijðx; yÞqjðyÞdA ð17Þ

where G is the Blake tensor27, Am is the surface of m-th particle, and q is the
viscous traction acting at a point y on the surface. Integrating the traction force q
over a sphere surface gives the hydrodynamic force Fh and torque Th acting on the
particle. As each particle is in force- and torque-free conditions, these satisfy

Fh þ Fm ¼
Z
Am

qdAþ Fm ¼ 0; ð18Þ

Th þ Tm ¼
Z
Am

fq ´ ðx � x0ÞgdAþ Tm ¼ 0 ð19Þ

where x0 is the hydrodynamic center of the particle, and Fm and Tm are
external force and torque acting on m-th particle, respectively. The motion of
the particles are described by 6 degrees of freedom: i.e., three translational velocities
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U= (Ux, Uy, Uz) and three rotational velocities Ω= (ωx, ωy, ωz). Therefore, as the
boundary condition, a given surface material point xs on the particle moves with a
velocity

vðxsÞ ¼ U þ Ω ´ ðxs � x0Þ: ð20Þ
The surface of each sphere is divided into NE= 512 triangular elements and NN

= 258 nodes. According to Eqs. (17) and (20), the i-th node xi on the particle
surface has to satisfy a boundary condition

U þ Ω ´ ðxi � x0Þ þ
1

8πη

XM
m

XNE

e

Gðxi; yeÞqðyeÞΔAe

( )
¼ 0 ð21Þ

where ΔA is the surface area of the element, subscript e is the index of elements,
and ye is the position of the element e. The force- and torque-free conditions (18),
(19) can be discretized as XNE

e

qðxeÞΔAe ¼ �Fm; ð22Þ

XNE

e

qðxeÞ ´ ðxe � x0Þf gΔAe ¼ �Tm: ð23Þ

Note that four-point Gaussian quadrature is used to calculate the surface
integral over each element. For singular elements, we work in polar coordinates to
remove the 1/r singularity28.

The external magnetic field is imposed in xz-plain, Bex(t)= (B cos (2π ft), 0, −B
sin(2π ft)), and the torque acting on each particle can be obtained as

Tm ¼ m ´ fBex þ Bdd
m g ð24Þ

where Bdd is the magnetic field that is created by other particle:

Bdd
m ¼

X
j≠m

μ0
4πr3

f3ðmj � nÞn�mjg ð25Þ

where μ0 is the vacuum permeability, r is the particle distance, and n is the normal
vector pointing from particle m to j. We have three components for the external
force: the gravitational force Fg

m , the magnetic dipolar force Fdd
m , and the repulsive

force Frep
m , as follows

Fg
m ¼ � 4

3
πa3Δρgbz; ð26Þ

Fdd
m ¼

X
j≠m

3μ0
4πr4

f5ðmj � nÞðmm � nÞn� ðmm � nÞmj � ðmj � nÞmm � ðmm �mjÞng;

ð27Þ

Frep
m ¼

X
r<r0

kðr � r0Þn ð28Þ

where bz is a normal vector pointing +z direction, k is the spring constant, and r0 is
the natural length. The repulsive force is introduced in order to avoid overlap
between sphere–sphere and sphere–wall, and the force is present only when the
distance is less than the natural length.

The velocities are obtained by solving the linear equations Ax= b with a known
vector b= {v∞, −Fm, −Tm} and an unknown vector x= {q, U, Ω}, where A is the
dense matrix of size M(3NN+ 6) based on Eqs. (21)–(23). For details, see previous
works26,29,30.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request (ptierno@ub.edu).

Received: 20 January 2019 Accepted: 26 April 2019

References
1. Strandburg, K. J. Two-dimensional melting. Rev. Mod. Phys. 60, 161 (1988).
2. Cheng, Z., Russel, W. B. & Chaikin, P. M. Controlled growth of hard-sphere

colloidal crystals. Nature 401, 893–895 (1999).
3. Li, B., Zhou, D. & Han, Y. Assembly and phase transitions within colloidal

crystals. Nat. Rev. Mater. 1, 15011 (2016).
4. Vissers, T., van Blaaderen, A. & Imhof, A. Band formation in mixtures of

oppositely charged colloids driven by an ac electric field. Phys. Rev. Lett. 106,
228303 (2011).

5. Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat.
Mater. 15, 1095–1099 (2016).

6. Erb., R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic
assembly of colloidal superstructures with multipole symmetry. Nature 457,
999–1002 (2009).

7. Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking
synchronization to self-assembly using magnetic Janus colloids. Nature 491,
578–581 (2012).

8. Aubret, A., Youssef, M., Sacanna, S. & Palacci, J. Targeted assembly and
synchronization of self-spinning microgears. Nat. Phys. 14, 1114–1118
(2018).

9. Bialké, J., Speck, T. & Löwen, H. Crystallization in a dense suspension of self-
propelled particles. Phys. Rev. Lett. 108, 168301 (2012).

10. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living
crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

11. Soto, R. & Golestanian, R. Self-assembly of catalytically active colloidal
molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112,
068301 (2014).

12. Menzel, A. M., Takao, O. & Löwen, H. Active crystals and their stability. Phys.
Rev. E 89, 022301 (2014).

13. Ginot, F., Theurkauff, I., Detcheverry, F., Ybert, C. & Cottin-Bizonne, C.
Aggregation-fragmentation and individual dynamics of active clusters. Nat.
Commun. 9, 696 (2017).

14. Ni, R., Cohen, A. C. S. & Dijkstra, M. Pushing the glass transition towards
random close packing using self-propelled hard spheres. Nat. Commun. 4,
2704 (2013).

15. Ni, R., Cohen, A. C. S., Dijkstra, M. & Bolhuis, P. G. Crystallizing hard-sphere
glasses by doping with active particles. Soft Matter 10, 6609–6613 (2013).

16. Kümmel, F., Shabestari, P., Lozano, C., Volpe, G. & Bechinger, C. Formation,
compression and surface melting of colloidal clusters by active particles. Soft
Matter 11, 6187 (2015).

17. Dietrich, K. et al. Active atoms and interstitials in two-dimensional colloidal
crystals. Phys. Rev. Lett. 120, 268004 (2018).

18. Martinez-Pedrero, F. & Tierno, P. Magnetic propulsion of self-assembled
colloidal carpets: efficient cargo transport via a conveyor-belt effect. Phys. Rev.
Appl. 3, 051003 (2015).

19. Janssen, X. J. A., Schellekens, A. J., van Ommering, K., van Ijzendoorn, L. J. &
Prins, M. J. Controlled torque on superparamagnetic beads for functional
biosensors. Biosens. Bioelectron. 24, 1937 (2009).

20. Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous motion of a sphere
parallel to a plane wall-1 motion through a quiescent fluid. Chem. Eng. Sci. 22,
637 (1967).

21. Zerrouki, D., Baudry, J., Pine, D., Chaikin, P. & Bibette, J. Chiral colloidal
clusters. Nature 455, 380 (2008).

22. Sinn, I. et al. Magnetically uniform and tunable Janus particles. Appl. Phys.
Lett. 98, 024101 (2011).

23. Zhou, R., Bai, F. & Wang, C. Magnetic separation of microparticles by shape.
Lab. Chip. 17, 401 (2017).

24. Cebers, A. & Kalis, H. Dynamics of superparamagnetic filaments with finite
magnetic relaxation time. Eur. Phys. J. E 34, 1292 (2011).

25. Martinez-Pedrero, F., Ortiz-Ambriz, A., Pagonabarraga, I. & Tierno, P.
Colloidal microworms propelling via a cooperative hydrodynamic conveyor
belt. Phys. Rev. Lett. 115, 138301 (2015).

26. Pozrikidis, C. Boundary integral and singularity methods for linearized
viscous flow (Cambridge Univ. Press, 1992).

27. Blake, J. R. A note on the image system for a stokeslet in a no-slip boundary
Math. Proc. Camb. 70, 303–310 (1971).

28. Pozrikidis, C. Finite deformation of liquid capsules enclosed by elastic
membranes in simple shear flow. J. Fluid. Mech. 297, 123–152 (1995).

29. Ishikawa, T. T., Simmonds, M. P. & Pedley, T. J. Hydrodynamic interaction of
two swimming model micro-organisms. J. Fluid. Mech. 568, 119–160 (2006).

30. Matsunaga, D., Meng, F., Zöttl, A., Golestanian, R. & Yeomans, J. M. Focusing
and sorting of ellipsoidal magnetic particles in microchannels. Phys. Rev. Lett.
119, 198002 (2017).

Acknowledgements
We acknowledge Fernando Martinez-Pedrero for initial experiments. This project has
received funding from the European Unions Horizon 2020 research and innovation
program under Grant Agreement number 665440. H.M. and P.T. acknowledge support
from the ERC Grant “ENFORCE” (Number 811234). P.T. acknowledges support from
from MINECO (FIS2016-78507-C2, ERC2018-092827), DURSI (2017SGR1061), and
Generalitat de Catalunya under Program “ICREA Acadèmia”.

Author contributions
H.M.-C. performed the experiments. F.M. and D.M. conducted the theoretical and
computational part of the work. H.M.-C., F.M., D.M., R.G., and P.T. wrote the paper,
discussed, and interpreted the results.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10255-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2444 | https://doi.org/10.1038/s41467-019-10255-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-10255-4.

Competing interests: The authors declare nocompeting interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks Maximillian Wolff
and other anonymous reviewer(s) for their contribution to the peer review of this work.
Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10255-4

8 NATURE COMMUNICATIONS |         (2019) 10:2444 | https://doi.org/10.1038/s41467-019-10255-4 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-10255-4
https://doi.org/10.1038/s41467-019-10255-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Tunable self-healing of magnetically propelling colloidal carpets
	Results
	Assembly and propulsion of colloidal carpets

	Discussion
	Methods
	Experimental details
	Theoretical model
	Carpet speed
	Boundary element simulation

	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS




