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Whole genome landscapes of major melanoma subtypes 
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Summary 

Cutaneous, acral and mucosal subtypes of melanoma were evaluated by whole-
genome sequencing. The heavily mutated landscape of coding and non-coding 
mutations in cutaneous melanoma resolved novel signatures of ultraviolet radiation 
mutagenesis. However, acral and mucosal melanomas were dominated by structural 
changes and mutation signatures of unknown aetiology, not previously identified in 
melanoma. The number of genes affected by recurrent mutations disrupting non-
coding sequences was similar to that affected by recurrent mutations to coding 
sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in 
cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in 
mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of 
all, however, neither they nor ATRX mutations, which correlate with alternative 
telomere lengthening, were associated with greater telomere length. Most melanomas 
had potentially actionable mutations, the majority in components of the mitogen-
activated protein kinase and phosphoinositol kinase pathways. 

Melanoma genomes have the highest mutation load of any cancer1,2 and a predominant C>T 

nucleotide transition signature attributable to ultraviolet radiation (UVR)1. However, some 

melanomas lack this signature and have fewer point mutations3,4. Non-UVR driven 

melanomas are uncommon in cutaneous sites, but dominate those occurring in eyes, 

mucosal surfaces, and acral (hands and feet) sites; the latter account for a much higher 

proportion of melanomas in Asians5 than Europeans. Elucidating mutational processes and 

genomic drivers in all subtypes is key to further progress in melanoma epidemiology, 

prevention and targeted treatment globally.  

The Cancer Genome Atlas (TCGA) study of 333 melanomas2 excluded acral, mucosal and 

ocular subtypes and used exome and low-pass whole genome sequencing (WGS). 

Examination of mutational process signatures, and of structural changes that drive 

melanoma was restricted, and mutations outside the exome were not surveyed. Other 

sequencing studies have included acral and mucosal melanomas6,7, but have been limited 

by sample size and/or restriction to exome sequencing.  

We present the first large, high-coverage WGS study of melanomas from cutaneous, acral 

and mucosal sites, revealing distinct mutation processes, profiles and drivers across 

subtypes, the landscape of non-coding mutations, and paradoxical relationships between 

telomere maintenance gene mutations and telomere length. Mutational signatures of UVR 

exposure dominated cutaneous melanomas, while structural variants formed the majority of 
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aberrations in acral and mucosal melanomas. These latter subtypes fundamentally differ in 

pathogenesis and therapeutic targets from cutaneous melanoma.  

 

Study sample and mutation burden 
The 183 melanoma samples comprised 75 primary tumours, 93 metastases and 15 cell lines 

derived from metastases; 35 were acral melanomas (arising from palms, soles or nail beds 

of the hands or feet), eight were mucosal and the remainder cutaneous (Supplementary 

Table 1). WGS identified 20,894,255 substitutions (range 1,610 to 777,275 per tumour) and 

96,467 small insertions/deletions (indels) (range 0 to 10,114 per tumour) at an average rate 

of 38.23 mutations per megabase (Mb) (range 0.54 to 260 mutations/Mb) (Supplementary 

Table 1 and Fig. 1), the 156,770 coding mutations (range 19 to 5,536 per tumour) 

comprising 0.8% (Supplementary Table 2). Single nucleotide variant (SNV) and indel 

frequencies varied by melanoma subtype (t-test, P <1 X 10-7), with >18 times more of these 

mutations in cutaneous (mean 49.17 mutations/Mb, range 0.71 to 259.69 mutations/Mb) 

than in acral and mucosal melanomas (mean 2.64 mutations/Mb, range 0.54 to 15.25 

mutations/Mb) (Fig. 1b). Somatic structural variants (SV) were more frequent in acral and 

mucosal (mean 342.40, range 6 to 1,148) than in cutaneous melanomas (mean 101, range 3 

to 1,123) (t-test, P <1 X 10-6) (Fig. 1c,d). Greater proportions of the acral and mucosal 

melanoma genomes showed copy number variation (CNV), as in previous exome 

sequencing3; more regions were amplified (Mann-Whitney test, P < 1.46 X 10-4) and more 

genomes were aneuploid (chi-square test, P = 0.049) than in cutaneous melanomas 

(Extended Data 1).  

 

UVR and non-UVR mutation spectra 
An algorithm using the sequence context of each mutation1 identified 12 signatures, which 

varied considerably by melanoma subtype (Fig. 2a-c). Most melanomas (total n = 139; 136 

cutaneous) were dominated by three novel signatures of UVR exposure (signatures 7a, 7b, 

and 7c), recapitulating UVR signature 7 previously identified by exome sequencing1 

(Extended Data 2). The predominantly C>T substitutions at TpC dinucleotides (mutated 

base underlined) of signature 7a are likely due to repair of 6,4-photoproducts8. Signature 7b 

involves C>T substitutions at CpC and CpC, characteristic of cyclobutane pyrimidine 

dimers8. Signature 7c has high levels of T>C and T>A mutations, potentially due to indirect 

DNA damage after UVR. Forty-four tumours, comprising 40 acral or mucosal melanomas 

and four cutaneous, all from infrequently sun-exposed sites, showed striking differences 

from the UVR-dominant group (Fig. 2). Six of nine signatures observed in this group have 

been described in other cancers9 but never previously in melanoma and are presumably 

unrelated to UVR exposure. The most frequent were signature 1, the result of endogenous 



	 5	

spontaneous deamination of 5-methylcytosine, and signature 5, ubiquitous in cancers of 

many types and of unknown aetiology10 (Extended Data 2). Signature 13, attributed to 

activity of AID/APOBEC cytidine deaminases, occurred in 52 samples (28%) and all 

melanoma subtypes. Signatures 8, 17 and 18, of unknown aetiology, occurred in all 

melanoma subtypes at a combined frequency of 7-28%. Signature 6, associated with 

defective mismatch repair, was seen in the single cutaneous melanoma with a high 

MSIsensor11 score. 

 

Structural variants, telomere length 
The combined frequency of all SV (deletions, duplications, tandem duplications, and 

foldback inversions), was higher in acral and mucosal melanomas than in cutaneous 

melanomas (t-test, P < 1 X 10-6) (Fig. 1c and Supplementary Table 3). Acral and mucosal 

melanomas exhibited substantially more clusters of breakpoints, indicating more frequent 

complex rearrangements such as breakage-fusion-bridge and chromothripsis (Extended 

Data 3a). We detected complex rearrangements including breakage-fusion-bridge-like in 

18% (n = 32) of tumours, most of which (n = 20, 63%) were acral or mucosal melanomas 

(Extended Data 4, 5). 

 

WGS provided the first opportunity to assess effects of mutagenic processes and driver 

mutation profiles of melanoma on immortalisation via telomere length12,13 (Methods and 

Extended Data 6b). Telomere length varied widely among the 183 samples, ranging from 6-

fold shorter to 10-fold longer than the matched normal for each patient (Extended Data 6a). 

Telomere length was not correlated with melanoma subtype (Extended Data 6c), 

chromothripsis, or breakage-fusion-bridge events (Extended Data 3). 

 

Non-coding mutations 
All mutations were annotated for genomic context including regulatory, untranslated and 

protein coding regions, the first such comprehensive survey in melanoma and one of the first 

in any cancer. TERT promoter mutations14,15 were most common (Sanger sequencing), with 

115/167 (69%) overall and 86% of cutaneous melanomas mutated at one or more of four 

positions upstream of the initiation codon (Extended Data 6d). These mutations created new 

binding sites for the ETS family transcription factor GABP16, and were mutually exclusive 

with the exception of two samples with extremely high mutation burdens. In keeping with 

previous findings for acral melanoma17, these mutations were less prevalent in acral and 

mucosal melanomas (4/38: 11%), accounting for their association with lower SV and higher 

SNV burden (Fisher's exact test, P < 1 X 10-17). There was no association between TERT 

promoter and BRAF mutation (chi-square test, P > 0.09), in contrast to previous reports18. 
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These putatively activating TERT promoter mutations were associated with modestly 

reduced telomere length (Mann-Whitney, P = 0.0022) (Extended Data 6e-g). Telomere 

elongation in cancer depends either on TERT or a process of alternative lengthening of 

telomeres (ALT)19, often driven by mutations in ATRX20. The latter occur mutually exclusively 

with TERT promoter mutations in glioblastoma21. Ten melanomas (all cutaneous) had 

predicted loss-of-function mutations in ATRX, including two nonsense mutations, but 

paradoxically nine of these tumours also carried mutations in the TERT promoter and there 

was no association between ATRX mutation and telomere length (data not shown). 

Therefore, mutational activation of TERT does not simply facilitate telomere length 

extension, and the relationships between alternative telomere maintenance mechanisms, 

telomere length and immortalisation in melanoma must be complex. 

 

All genes with recurrent mutations in the promoter, 5’-UTR or 3’-UTR are listed 

(Supplementary Tables 4-6). To detect non-coding elements with an accumulation of 

functional mutations we used OncodriveFML22, which detects signals of positive selection in 

mutations of coding and non-coding elements. Because of the high mutation rate at active 

transcription factor binding sites (TFBS) in melanoma22, we used a version of OncodriveFML 

(version 1.1) that permutes mutations locally to assess if the mutations observed disrupt or 

create TFBS more often than expected by chance. Promoter regions of nine genes were 

significantly (q-value < 0.25) biased towards high impact mutations: creating new TFBS in 

BLCAP, KBTBD8, TERT and ZNF778, disrupting them in NSUN6 and RNF185, and with 

other impacts in RALY, RPL29 and RPS27 (Supplementary Table 4). Only in the case of 

TERT (as previously reported15), RNF185 and RPS27 was an effect of these mutations on 

gene expression supported. In a further six genes with five or fewer occurrences of a 

promoter mutation (NUDT10, PNPLA2, CCP110, UAP1, UBAC2 and ZWINT) OncodriveFML 

predicted creation of novel TFBS, however too few tumours had such mutations for 

expression comparisons with wild type tumours to be informative. 

 

Recurrent mutations in the promoter of NFKBIE were present in 10/183 (5%) tumours 

including 3/9 desmoplastic melanomas23. The commonest (chr6: 44233400) occurred in five 

melanomas, all cutaneous but lacking a desmoplastic component (Extended Data 7b). 

Mutations at this and one other position (chr6: 44233417) have been reported previously, but 

the other four sites are novel (Extended Data 7b) and presumably lie outside the captured 

exome in the previous study. NFKBIE promoter mutations are thus enriched in desmoplastic 

melanomas (Fisher’s exact test, P < 0.0084), but are also potential drivers of other 

cutaneous melanomas.  
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The most frequent 5’-UTR hotspot mutation, detected in 19/183 samples, was at the 

transcription start site of RPS27 (chr1: 153963239 C>T)2,24and a dinucleotide mutation was 

detected in one patient (chr1: 153963239-153963240 CT>TC). RPS27 also had several 

recurrent promoter mutations (Extended Data 7c), none predicted to cause gain or loss of 

TFBS. Recurrent mutations also occurred in the 5’-UTR of PES1 (Extended Data 7d), 

RPS14, CHCHD2 and MRPS31 (Supplementary Table 5), the latter identified as a common 

hotspot coding mutation by TCGA2. The 5’-UTR regions of ERGIC3, PSMD8 and TGS1 

were significantly biased towards high functional impacting mutations and were expressed in 

most tumours, however none showed expression differences associated with mutation 

status so their significance as drivers remains uncertain. 

 

TCGA did not report 3’-UTR mutations; we observed recurrent (n≥5) 3’-UTR mutations in 18 

genes (Supplementary Table 6). Only 11 of these genes were expressed in the tumour 

cohort and none has been associated with melanoma, except PTPRT which was recently 

reported to have frequent coding mutations25.  

 

Key coding mutations and TCGA genomic subgroups 
Two tools were used to identify significantly mutated genes (SMG) in each of the three 

melanoma subtypes (MutSigCV and OncodriveFML, q<0.1; Supplementary Table 7). Four 

cutaneous melanoma SMG were supported by both methods (BRAF, CDKN2A, NRAS and 

TP53), and five (ARID2, CWH43, NF1, PTEN and RB1) were supported by one method. 

SF3B1 was identified as a SMG, for the first time in mucosal melanoma, by OncodriveFML. 

In acral melanoma, OncodriveFML identified BRAF, KIT, MAP2K2, NF1 and NRAS as SMG.   

 

Mutation frequencies of previously reported melanoma driver genes2,3,25-29, varied 

considerably between melanoma subtypes. For example, no acral or mucosal melanomas 

had mutations in TP53, PTEN, DDX3X, RASA2, PPP6C, RAC1 or RB1, indicating that the 

molecular pathways driving these melanoma subtypes differ markedly from those driving 

cutaneous melanoma. In line with previous studies30, KIT mutations occurred more 

frequently in acral (3/35) and mucosal melanomas (2/8) than in cutaneous melanomas 

(6/140) (chi-square test, P < 0.044). The distribution of mutations in selected melanoma 

genes (Supplementary Table 8) is shown in Fig. 3. SV and CNV contributed heavily to the 

overall mutation frequency of some melanoma driver genes, especially NF1, TP53, PTEN 

and KIT (Extended Data 1b,c; Fig. 3). BRAF hotspot mutations were usually amplified, and 

these SV tended to involve MET, adjacent on chromosome 7. Similarly, KIT and PDGFRA, 

co-located within 0.35 Mb on chromosome 4, were frequently co-amplified. MITF 
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amplifications were present in 10% of samples, and in all three melanoma subtypes. Many 

acral and mucosal melanomas had SV and high-level amplifications on the long arm of 

chromosome 11, often targeting CCND1 (Extended Data 3c). 

 
We analysed the genomic subgroups of melanoma proposed by TCGA: BRAF mutated, 

RAS mutated, NF1 mutated or triple wild-type (Extended Data 8 and 9, Fig. 3a)2. NF1 

aberrations occurred in 32/183 (17%) samples, and in 14 they were bi-allelic; 23 had point 

mutations/small indels only (15 nonsense, four missense, three splice site and one frame-

shift). SV contributed heavily (Fig. 3b) to mutation burden in NF1, so previous studies in 

which SV were not assessed will have underestimated the NF1-mutated group and 

overestimated the proportion of triple wild-type melanomas. NF1 mutation was found to co-

occur with RASA2 mutation (Fisher’s exact test, P < 0.003), as recently described28,31. 

 

Most mucosal and acral (n = 22/43, 51%) melanomas, but only 15/140 (11%) cutaneous 

melanomas lacked BRAF, NRAS or NF1 mutations; mutations in other cancer driver genes 

were frequent in this triple wild-type group. The latter included loss-of-function mutations in 

CDKN2A, TP53 and ARID2, and activating hotspot mutations in GNAQ and SF3B1. Notably, 

one GNAQ and three SF3B1 mutations, commonly mutated in uveal32,33 but not cutaneous 

melanoma2, were found exclusively in four of six triple wild-type mucosal melanomas, 

marking an unappreciated set of driver genes and pathways shared by mucosal and uveal 

melanomas. Seven triple wild-type melanomas carried mutations in KIT, five of which had 

high-level amplifications. Triple wild-type melanomas had more focal amplifications of KIT, 

CCND1, MDM2 and KRAS than did non-triple wild-type melanomas (Fisher’s exact test, P < 

5.4 X 10-5, 1.8 X 10-5, 0.018, 0.003, respectively). 

 

Gene fusions 
Gene fusions targeted several genes previously associated with melanoma (RAF134, RAC13, 

MAP2K235,  GRM336, MAP3K929, TRRAP37 and PLCB437) (Supplementary Table 3) and 

known melanoma tumour suppressor genes: NF1 (n = 3), PARK2 (n = 2), TP53, PTEN, and 

PPP6C. RAF1 gene fusions, shown to increase MEK phosphorylation compared to wild-type 

RAF1, were observed in one triple wild-type and one NF1-mutated tumour38. The same 

RAF1 exons were retained in both fusions, albeit fused to different genes (CDH3 and 

GOLGA4) (Extended Data 9). In RNAseq of 44 samples 17 of 136 potential fusion genes 

were expressed (Supplementary Table 3). 

 

Fusions involved several kinase genes (Supplementary Table 3), the most frequently 

affected being PAK1 (n = 5 samples: four acral melanomas, two of which were triple wild-
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type, and one cutaneous carrying a BRAF V600E mutation). These PAK1 fusions are 

unlikely to be activating: the kinase domain was retained in four of five samples, in each 

case there was a different gene fusion partner (AQP11, FCHSD2, TENM4, OR9Q1) and two 

to four additional breakpoints within the PAK1 gene. The next most frequently fused kinase 

gene was DGKB, with two fusions in acral triple wild-type melanomas and one in a 

cutaneous BRAF V600E mutated sample, each with multiple breakpoints within the DGKB 

gene with likely loss of function. 

 

Signalling activation and clinical implications 
All subtypes were dominated by mutations to the MAPK, PI3K pathways and RTK 

(Supplementary Table 9, Fig. 4b). The MAPK signalling pathway was enriched 1.34 fold 

(Fisher's exact test, q < 1 X 10-51) and bore mutations in 179 of 183 (98 %) samples. 

Samples that harboured a mutated gene in both the MAPK and PI3K pathways had the 

highest proportion of p-ERK positive tumour nuclei, whereas samples that were wild-type for 

all genes in the PI3K and MAPK pathways had the lowest proportion (Fig. 4c, 4d). The 

highest p-AKT activation levels were seen in cases with only PI3K altered, whereas MAPK 

only and MAPK/PI3K wild-type cases had the lowest (differences not significant, one-way 

ANOVA and post hoc Tukey’s test). 

 

Nearly all cutaneous (138/140, 99 %) and most non-cutaneous (39/43, 91 %) melanomas 

harbored a SNV/indel or SV breakpoint in one or more genes that can confer sensitivity to an 

agent that is FDA-approved or currently in a cancer clinical trial (Extended data 10). The 

frequency of mutation and CNV of some potentially actionable genes (CCND1, CCND2, KIT, 

KRAS, MDM2 and PIP5K1A) was significantly higher in non-cutaneous compared with 

cutaneous melanomas (two-proportion z-test, all P < 0.05). 
  

Discussion 
This is the largest WGS analysis of melanoma to date and the largest to compare 

cutaneous, acral and mucosal subtypes. Acral and mucosal melanomas showed a 

dramatically different genomic landscape from cutaneous melanoma, with a far lower 

mutation burden dominated by large-scale structural variants. Novel mutagen signatures in 

cutaneous melanomas likely reflect uncharacterised mechanisms of UVR damage. The 

principal mutation mechanisms driving mucosal and most acral melanomas were, in 

contrast, not attributable to UVR and imply novel carcinogenic exposures that are shared 

with cancers other than skin cancer. Notably, some mucosal melanomas exhibited SMG 

(GNAQ, SF3B1) previously characteristic of uveal melanoma. In further contrast to 

cutaneous melanomas, acral and mucosal melanomas were infrequently driven by TP53, 
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PTEN or RB1 pathway lesions, and exhibited a variety of “triple wild-type” mechanisms such 

as KIT mutations and focal amplifications of KIT, CCND1, MDM2 and KRAS. Novel 

recurrently fused genes were also identified (PAK1, DGKB). Most cutaneous and non-

cutaneous melanomas exhibited mutations in genes for which targeted therapies exist or are 

being evaluated in clinical trials. 

Non-coding mutations were surveyed for the first time at scale in melanoma, and their 

significance assessed taking into account the high mutation load at TFBS in melanoma24. 

The number of genes affected by recurrent non-coding mutations predicted to have a strong 

functional impact was equivalent to the number of genes affected by recurrent significant 

coding mutations. Eight genes in addition to TERT showed potential driver promoter 

mutations (BLCAP, KBTBD8, NSUN6, RALY, RNF185, RPL29, RPS27 and ZNF778). 

Recurrent, likely functional 5’-UTR mutations were observed in CHCHD2, PES1 and RPS14, 

as well as in genes previously reported as mutated (RPS27, MRPS31). Recurrent 3’-UTR 

mutations were common, and of uncertain significance, although PTPRT also carries 

frequent coding mutations27.  

Finally, we show the highly prevalent TERT promoter mutations in melanoma must confer 

selective advantage via dysregulation of telomere protection, whether via telomerase or the 

ALT mechanism, since they result in reduced, not increased telomere length. 
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FIGURES 

 

 

Figure 1 | Mutation burden. a, Rate of substitution/indel (SNV, upper panel) and structural 

(SV, lower panel) mutations. b, Differences in SNV frequency by subtype (t-test P < 1 x 10-

7): acral and mucosal melanomas carried >18-fold fewer mutations than cutaneous 

melanomas. c, Differences in SV frequency by subtype (t-test P < 1 x 10-6): more SV in acral 

and mucosal than cutaneous melanomas. d, Relative abundance of aberrations by body site 

of the antecedent primary tumour. Highest (red) average SNV counts occurred in sun-

exposed areas; highest SV counts occurred in sun-shielded body sites of mucosal and acral 

origin.   
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Figure 2 | Mutational processes. a, Proportion of somatic base changes: melanomas 

segregate into two groups with nearly all cutaneous melanomas showing a high proportion of 

C>T transitions. Twelve mutational signatures shown as b, mutations/Mb and c, percentage. 

Cutaneous melanomas were dominated by three novel UVR signatures, whereas 

melanomas with low mutation burden were dominated by signature 1 (associated with age), 

signature 5 (aetiology unknown and ubiquitous in diverse cancers), and signature 8 (seen in 

medulloblastoma and breast cancer).  
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Figure 3 | Mutations and copy number changes in selected published melanoma 
driver genes. a, Somatic coding mutation rate. b, Mutations in significantly mutated genes 

(underlined) and selected published melanoma driver genes (Supplementary Table 8); 

BRAF and RAS aberrations coloured by mutation type; genes marked (*) differentially 

mutated between subtypes (Fisher's exact test, P < 0.05; missense, nonsense or SV, or 

hotspot for BRAF and RAS), each in cutaneous more than in acral/mucosal melanoma. c, 
Copy number changes in selected melanoma-associated genes: loss (green), high gain (≥6 

copies, red). Melanoma subtype shown below. 
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Figure 4 | Genes and signaling pathways recurrently altered in melanoma.  
a, Percentage of samples with protein-affecting aberrations in candidate driver genes, 

grouped by pathway: substitution/indels (blue), structural variants (red), copy number 

amplification (copy number >5, yellow), homozygous deletion (green).  b, Frequency of 

aberrations in pathways as percentage of cutaneous (n = 140) or non-cutaneous melanomas 

(n = 43). c and d, Percentage of tumour nuclei immunoreactive to p-ERK or p-AKT by 

multiplex-immunofluorescent staining; cases grouped according to mutated genes from the 

MAPK and PI3K pathways.	
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Methods 
Human melanoma samples 
The fresh-frozen tissue and blood samples analysed in the current study were obtained from 

Australian melanoma biospecimen banks, including the Melanoma Institute Australia (MIA) 

(n=160), Australasian Biospecimen Network-Oncology Cell Line Bank QIMR-Berghofer 

Institute of Medical Research (QIMR) (n=15; all lines authenticated by DNA profiling and 

tested for Mycoplasma contamination), Ludwig Institute for Cancer Research (n=4), Peter 

MacCallum Cancer Centre/Victorian (n=4) biospecimen banks. All tissues and bloods form 

part of prospective collection of fresh-frozen samples accrued with written informed patient 

consent and institutional review board approval. Fresh surgical specimens were macro-

dissected and tumour tissues were procured (with as little contaminating normal tissue as 

possible) and snap frozen in liquid nitrogen within 1 hour of surgery. All samples were 

pathologically assessed prior to inclusion into the study, with samples requiring greater than 

80 % tumour content and less than 30 % necrosis to be included. All samples were 

independently reviewed by expert melanoma pathologists (RAS, REV) to confirm the 

presence of melanoma and qualification of the above criteria. Samples requiring tumour 

enrichment underwent macrodissection or frozen tissue coring (Cryoxtract, Woburn MA 

USA) using a marked H&E slide as a reference.  

 

The histopathology of all mucosal and acral samples was reviewed by RAS to confirm the 

diagnosis. Acral melanomas were classified as occurring within acral skin of the palm of the 

hand, sole of the foot and under nail beds. The lack of hair follicles, thickened stratum 

corneum and clinical site was confirmed in all cases. Mucosal melanomas were defined as 

occurring in the mucosal membranes lining oral, respiratory, gastrointestinal and urogenital 

tracts. The H&E slides of the primary melanomas were reviewed for all mucosal and acral 

samples and any tumour that arose in the junction of the acral/mucosal and cutaneous skin 

was excluded. Occult/unknown primary melanomas were considered cutaneous, since their 

genome landscape is indistinguishable from that of melanomas arising in the skin39. 

 
DNA extractions 
Tumour DNA was extracted using DNeasy Blood and Tissue Kits (69506, Qiagen Ltd), 

according to the manufacturer’s instructions. Blood DNA was extracted from whole blood 

using Flexigene DNA Kits (51206, Qiagen Ltd). All samples were quantified using the 

NanoDrop (ND1000, Thermoscientific) and Qubit® dsDNA HS Assay (Q32851, 

Lifetechnologies) and DNA size and quality were tested using gel electrophoresis. Samples 

with a concentration of less than 50 ng/µl, or absence of a high molecular weight band in 

electrophoresis gels, were excluded from further analyses. 
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Whole genome sequencing (WGS) 
WGS was performed on Illumina Hiseq 2000 instruments (Illumina, San Diego, CA, USA) at 

three Australian sequencing facilities (Australian Genomic Research Facility, Ramaciotti 

Centre for Genomics, John Curtin School of Medical Research) and Macrogen (Geumcheon-

gu, Seoul, South Korea). All facilities performed library construction using TruSeq DNA 

Sample Preparation kits (Illumina) as per Illumina instructions. The subsequent 100 bp pair-

end libraries were sequenced using Truseq SBS V3-HS kits to average depth 85x (range 43-

219x) in the tumour sample and 64x (range 30-214x) in the matched normal. 

 
Whole genome sequence processing and quality control 
Sequence data was aligned to the GRCh37 assembly using multi-threaded BWA 0.6.2-mt 

resulting in sorted lane level files in sequence alignment/mapping (SAM) format which were 

compressed and converted to binary file (BAM) created by samtools 0.1.19. Sample-level 

merged BAMs, one each for matched germline and tumour samples were produced by in-

house tools and duplicate reads marked with Picard MarkDuplicates 1.97 

(http://picard.sourceforge.net). Quality assessment and coverage estimation was carried out 

by qProfiler and qCoverage (http://sourceforge.net/projects/adamajava). To test for the 

presence of sample or data swaps all sequence data were assessed for concordance at 

approximately 1.4 million polymorphic genomic positions including the genotyping array data 

by qSignature.  

 

Somatic mutation analysis 
Somatic mutations and germline variants were detected using a dual calling strategy using 

qSNP40 and GATK41 and indels of 1–50 bp in length were called with Pindel42 and GATK. All 

mutations were submitted to the International Cancer Genome Consortium (ICGC)43 Data 

Coordination Centre (DCC). Mutations were annotated with gene consequence using 

Ensembl gene annotation with SnpEff. Somatic genes which were significantly mutated were 

identified using two approaches: MutSigCV and OncodriveFML 1.122 using a threshold of 

q<0.1. Significant non-coding elements were detected using OncodriveFML 1.122. 

 

Somatic copy number and ploidy were determined using the TITAN tool44. SV were identified 

using the qSV tool and chromosomes containing highly significant non-random distributions 

of breakpoints were identified as previously described45. Chromosomes identified to have 

clustering of breakpoints were inspected against criteria for chromothripsis46 and the 

breakage-fusion-bridge cumulative rearrangement model47. Chromosomes with high 
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numbers of translocations were identified with a minimum threshold of 10 translocation 

breakpoints per chromosome following manual review. 

 

Mutational signatures were predicted in each sample using a published framework1. 

Essentially the substitution mutations across the whole genome in all cases were analysed 

in context of the flanking nucleotides (96 possible trinucleotide combinations). Identified 

signatures were compared to other validated signatures and the frequency of each signature 

per Mb was determined.   

 

Recurrent non-coding mutations 
Statistical significance of recurrent non-coding mutations was estimated using a permutation 

test. A null distribution of recurrence was estimated by randomly shuffling all mutations 

within each sample and record number of recurrent mutations within the regions of interest. 

To take into account not only the varying mutation burden but also the different mutation 

signatures, we restricted the random shuffling such that the mutation in the middle of a 

trinucleotide, ABC, was only shuffled to the same trinucleotide. 

 

Functional impact bias of mutations in promoters, 3' UTRs and 5' UTRS 

Promoters and UTRs that are likely to play a role in tumorigenesis were identified with 

OncodriveFML22: a framework able to detect signals of positive selection in both the coding 

and the non-coding regions of the genome by measuring the bias toward the accumulation 

of functional mutations. The functional impact of mutations in gene promoters was assessed 

using the CADD (Combined Annotation Dependent Depletion)48, TFBS creation, and TFBS 

disruption scores. The CADD scores measure the deleteriousness of mutations, and are 

calculated by integrating multiple annotations into a single metric by contrasting variants that 

survived natural selection with simulated mutations. The scores for TFBS creation (motif 

gain) and disruption (motif break) were computed by following the steps described by Fu et 

al.49. The score value indicates the difference between position weight matrix matching 

scores of the germline and mutant alleles. 5’ UTRs were analyzed using the TFBS disruption 

scores while 3’ UTRs were analyzed using the CADD scores. The statistical significance of 

promoters and UTRs was derived by comparing the average functional impact score of the 

mutations in the element with the functional impact scores obtained by permuting 100,000-

fold the observed mutations, maintaining their trinucleotide context. In addition, since the 

rate of somatic mutations in melanoma is highly increased at active transcription factor 

binding sites (TFBS)24, OncodriveFML was adapted (version 1.1) to perform a strictly local 

permutation in windows of 51 bp (25 nucleotides at each side of the mutation). This variation 

in the background model of OncodriveFML allowed us to better estimate whether the 
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mutations observed in tumours disrupted or created TFBS more than expected by chance. 

The statistical significance of promoters and UTRs mutated in at least two samples was 

adjusted with the Benjamini-Hochberg correction for multiple testing. 

 

We also used miRanda v3.3a to predict whether the recurrent 3’UTR mutations alter (disrupt 

or create) miRNA binding sites. The 50 base sequence surrounding each 3’UTR was used 

as input to miRanda. miRNAs that were predicted to hit either the wild-type or mutant 

sequence (but not both) were considered potential targets and further filtered as follows. We 

required a hit to perfectly align against the seed region of the miRNA (nt 2-8), that the 

mutation lay within the seed, and that the predicted binding energy was higher (lower dG) in 

the non-hit than in the hit. 

 

Telomere length estimation 
To estimate telomere length we counted telomere motifs in the whole gene data using the 

qPCR-validated qmotif tool (https://sourceforge.net/p/adamajava/wiki/qMotif) implemented in 

JAVA using the Picard library (version 1.110). qmotif is driven by a single plain-text 

configuration file in the “Windows INI-file” style and the input is a WGS BAM file that has 

been duplicate-marked and coordinate-sorted. Essentially, qmotif uses a two-stage matching 

system where the first stage is a quick-but-strict string match and the second stage is a 

slower but more flexible regular expression match; only reads that pass stage 1 go on to the 

much slower match in stage 2. For telomere quantification, a string that represents 3 

concurrent repeats of the canonical telomere motif (TTAGGGTTAGGGTTAGGG) was used 

as the stage 1 match and a simple pattern match for stage 2 which captures any read with 2 

or more concurrent occurrences of the telomeric repeat with variation allowed in the first 3 

bases. The relative tumour telomere length was then estimated by comparing the tumour 

read counts to the matched normal sample. Telomere length was validated by qPCR50. 

 

Sanger sequencing of TERT promoter 
Direct PCR amplification and Sanger sequencing was performed using primers: hTERT_F 

ACGAACGTGGCCAGCGGCAG and hTERT_R  CTGGCGTCCCTGCACCCTGG which 

amplify a 474 bp region of the TERT promoter51. PCR was carried out in a 13 μl volume 

containing 1 μl of 20 ng/μl gDNA, 1.25 μl 10X MgCL2, 2.5 μl Betaine, 1.25 μl dNTPs (2.5 

mM), 1 μl of 10 μM primers and 0.25 μl of PFU Turbo (#600250, Agilent). PCR reactions 

were performed under the following conditions: 95 °C for 5 mins, followed by four cycles of 

95 °C for 30 sec, annealing at 66 °C for 1 min and polymerization at 72 °C for 1 min. This 

was followed by 4 more cycles with a lowered annealing temperature of 64 °C for 1 min, 

followed by 28 cycles with annealing temperatures of 62 °C. Subsequent PCR products 
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were sequenced on a (AbiPrism 3130xl Genetic Analyzer, Applied Biosystems) and data 

analysed using Sequence Scanner Software 2 (Applied Biosystems) with reference to the 

sequences from the NCBI gene database, TERT (chr5: 1,295,071 - 1,295,521). 

 
Ultra-deep custom amplicon sequencing of non-coding mutations  
The Illumina TruSeq Custom Amplicon V1.5 was used to validate 20 recurrent non-coding 

point mutations in the promoter (n=11), 3’-UTR (n=3) and 5’-UTR (n=6) regions of genes 

with frequent non-coding mutations in 164 of the 183 samples. The Illumina DesignStudio 

(Illumina, Inc., San Diego, CA, USA) was used to design 250 bp sequences of the target 

regions. Sequencing libraries were prepared using the TruSeq Custom Amplicon Library 

Preparation Guide and the TruSeq Custom Amplicon Index Kit and sequenced on a MiSeq 

Illumina sequencer V2 (Illumina, Inc.). Sequences were aligned to the reference genome 

(GRCh37/hg19) using BWA 0.6.2-mt. A pileup approach was used to determine the base 

count at each position of interest. A mutation was considered verified if the mutant allele 

frequency was >10 %. 

 

Exome sequencing 
Exome capture was performed on 1 μg of DNA extracted from tumour and normal blood 

using the Illumina TruSeq Exome Library Prep Kit. Libraries were sequenced (2 x 100 bp 

paired-end sequencing) on the Illumina HiSeq2000 platform with a minimum coverage of 

75X. Exome sequence data was produced for 53 patients in the cohort and used to validate 

coding mutations detected by whole-genome sequencing. 

 

RNA extraction and sequencing 
Total RNA was extracted from fresh frozen tissue using the mirVana™ miRNA Isolation Kit 

(Applied Biosystems, Cat# AM1560). RNA quality and presence of a small RNA fraction 

were measured using the Agilent 2100 RNA 6000 Nano and small RNA kits. RNA-

sequencing was performed using 1 μg of total RNA, which was converted into mRNA 

libraries using the lllumina mRNA TruSeq kit. RNA sequencing was performed using 2x75 bp 

paired end reads on the Illumina Hiseq2000. Small RNA-Sequencing was performed using 1 

μg of total RNA which was converted into a small RNA libraries, size selection range 145-

160 bp (RNA of 18-33 nt) using Illumina’s TruSeq Small RNA Library Preparation Kit and 

sequenced on an Illumina Hiseq2000 using 50 bp single read sequencing with 1 % control 

spiked in.  

 

RNA sequence reads were aligned to transcripts corresponding to ensemble 70 annotations 

using RSEM52.  RSEM data were normalized using TMM (weighted trimmed mean of M-
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values) as implemented in the R package ‘edgeR’. For downstream analyses, normalized 

RSEM data were converted to counts per million (c.p.m.). Genes with at least 5 c.p.m. in at 

least 2 samples were considered expressed. 
 
Body site distribution of SNV/indel and SV 
Total numbers of SNV/Indel and SV were compared according to primary melanoma body 

site, categorized into abdomen, acral hand, acral foot, back, lower arm, lower leg, mucosal, 

neck, shoulder, thorax, upper arm, upper leg and face and scalp. Any samples with an 

unknown primary site or occult classification were excluded from analysis. Heat maps were 

produced in Spotfire-Tibco (version 6.0, spotfire.tibco.com) based on the combined total 

number of SNV and indels, or by SV. A two-colour heat map (red high, blue low) was 

produced and colours were overlaid using Illustrator CS6 (Adobe) onto an adapted SVG 

human body diagram that was created using Illustrator CS6 (Adobe). We thank Doug 

Stetner for computing assistance. 

 

Clinically actionable genes 
The frequency of clinically actionable mutations was assessed by annotating genomic 

variants using the IntOGen Cancer Drivers Actionability (ICDA) database (2014), which 

identifies mutations that may confer sensitivity to therapeutic agents53. The ICDA database 

was used to assign an activating or loss of function role to mutated genes” .  Loss of 

heterozygosity, silent mutations, deletions to activating genes or amplifications to loss of 

function genes were not included in the analysis. Additionally, visual inspection using the 

Integrative Genome Viewer (IGV, Broad) was used to identify only high confidence structural 

rearrangement breakpoints with clustered supporting reads with both discordant read pair 

and soft clipping evidence. SVs with a high incidence of random non-clustered background 

signal surrounding the breakpoints along with low numbers of supporting non-duplicate 

reads were excluded from analysis for this figure (Extended Data 10). The proportion of 

tumours with a mutation to a particular actionable gene was calculated and classified based 

on mutation type into: 1) SNV/indel, 2) SNV/indel and SV, 3) SV or 4) copy number variation 

only.  

 

Commonly mutated genes and pathways 
A hand-curated list of commonly mutated tumour suppressor genes and oncogenes was 

created and analysed for the frequency of mutation (Fig. 4a). Mutations were defined as 

SNV/indel, SV, copy number amplifications and copy number deletions.  Loss of 

heterozygosity, silent mutations, RNA mutations, deletions to oncogenes or amplifications to 

tumour suppressor genes were not included in the figure. SV breakpoints were subjected to 
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manual inspection using the Integrative Genome Viewer (IGV, Broad) and only events 

confirmed as somatic and predicted to alter transcription processing were considered further. 

We then overlaid the alterations from Fig. 4a onto pathways defined by KEGG and GO gene 

sets from MSigDB v5.0. A pathway was considered altered in a given sample if at least one 

gene in the pathway contained an SNV/indel or SV. The pathways were then stratified 

according to cutaneous or non-cutaneous subtypes. A mutation file with samples IDs and 

their mutated pathways was entered for analysis into the OncoPrinter tool 

(http://cbioportal.org).  

 

Multiplex immunofluorescent staining 
MAPK and PI3K pathway status was also assessed by multiplex immunofluorescent staining 

for phosphorylated ERK and AKT (106/183). All immunohistochemical staining was 

performed on a Dako Autostainer Plus (Dako, Glostrup, Denmark) using the Dako Envision 

Flex detection kit (K8000, Dako) and OPAL 7-color IHC Kit for visualisation 

(NEL797B001KT, PerkinElmer). Consecutive staining rounds included p-AKT (1:100, NCL-L-

Akt-Phos, Leica), p-ERK (1:1600, CS4370, Cell Signalling) and SOX10 (1:800, ACI 3099A, 

Biocare). Multispectral quantitative image analysis was performed on a Vectra 3 slide 

scanner (PerkinElmer, USA). The captured multispectral images were analysed using the 

quantitative InForm image analysis software (PerkinElmer, USA).  

 

Data deposition 
All somatic variants for this study have been submitted to the ICGC Data Coordination 

Centre (DCC) and are publicly available through the ICGC DCC Data Portal 

(https://dcc.icgc.org). The BAM files are in the EGA (accession EGAS00001001552). 

 

Code availability 
Tools used in this publication that were developed in-house are available from the 

SourceForge public code repository under the AdamaJava project 

(http://sourceforge.net/projects/adamajava/). 
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EXTENDED DATA 
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Extended Data 1 | Copy number and ploidy in melanoma. a. The proportion of each of 

the melanoma genomes that were affected by loss (copy number 1 or 0), copy neutral loss 

of heterozygosity and high gain (≥6 copies) are shown in the histogram. The melanoma 

subtype and degree of ploidy are illustrated in the colour bar beneath the histogram. GISTIC 

analysis was performed to determine significant regions of recurrent copy number change in 

the b cutaneous and c acral and mucosal tumours.   	
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Extended Data 2 | Mutation signatures in melanoma. Twelve mutation signatures in 

melanoma were identified taking into account the sequence context immediately before and 

after the mutation. Each signature is displayed showing the probability for each of the 96 

mutation types. a, Three novel signatures, associated with ultraviolet radiation (UVR), were 

identified. These signatures perfectly recapitulate the UVR mutation signature previously 

extracted from exome sequencing data. Signature 7a is predominately C>T transitions 

occurring at TpC dinucleotides and, based on similarity with the sequence context, it is most 

likely due to the formation of 6,4-photoproducts. Signature 7b is described by C>T 

transitions at CpC dinucleotides. This sequence context is characteristic for the formation of 

cyclobutane pyrimidine dimers due to UVR exposure. Signature 7c has a high proportion of 

C>T substitutions, and high levels of T>C and T>A mutations, demonstrating the ability of 

UVR to generate both transitions and transversions. The underlying processes damaging 

DNA and resulting in signature 7c are currently unknown but they could potentially be due to 
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indirect DNA damage. b. Of the nine non-UVR associated signatures, three (signature 1, 5 

and 17) have previously been observed in melanoma and six have been seen in other 

cancer types but not previously noted in melanoma. Signature 1 is the result of an 

endogenous mutational process initiated by spontaneous deamination of 5-methylcytosine 

and is associated with age of the patient. Signature 5 (aetiology unknown) was the dominant 

signature in tumours with no UVR signature; it is together with signature 1 the most common 

signature, observed in diverse cancer types. Signature 17 (aetiology unknown) has been 

seen in melanoma previously and was here observed in 52 tumours (exclusively cutaneous 

and acrals).  Signature 8 was one of the dominant signatures in tumours with no UVR 

signature (together with signature 5 and 1); it has previously been observed in breast cancer 

and medulloblastoma and was evident in 39 melanomas. Signatures 2 and 13 have been 

attributed to activity of the AID/APOBEC family of cytidine deaminases and are often 

observed in the same samples; here most non-UV samples showed both signatures, but the 

highest level of signature 2 was observed in a cluster of four samples in which signature 2, 

7a, and 7c were observed. Signature 6 is associated with defective DNA mismatch repair 

and typically found in microsatellite-unstable tumours; it was observed in one melanoma in 

this cohort. Signature 18 has been observed frequently in neuroblastoma; it was identified in 

13 melanomas. Signature R2 reflects a sequencing artefact.	
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Extended Data 3 | Structural variants clustering on chromosome 11 in acral 
melanoma. a. The number and type of SV is shown for each tumour (n=183). b. 
Chromosomes containing complex rearrangements are shown in red defined as 
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chromosomes with a  clustered arrangement of breakpoints (Kolmogorov-Smirnov goodness 

of fit test P < 0.0001) and a high density of breakpoints (number of breakpoints exceeds the 

extreme threshold value of the upper quartile plus 5* inter-quartile range for the 

chromosomal distribution of breakpoints).  The observed pattern of breakpoint clusters and 

copy number events was used to classify tumours as breakage-fusion-bridge associated, 

complex, highly rearranged or no clusters of events. TERT promoter mutations are also 

shown. c. Patterns of SV and copy number in all acral melanomas that contained a cluster of 

SV on chromosome 11. Graphs show the most frequent translocations and other SV (copy 

number red=gain, green=loss). 
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Extended Data 4 | Fine structure of two structural variants. a. Circos plot of MELA_0010 

shows a cluster of SV on chromosomes 5 and 12. The outer coloured ring on the Circos plot 

represents each chromosome, the next ring is the copy number (red = gain and green = 

loss), the next ring is the B-allele frequency, and the SV are shown by the lines in the centre 

of the plot. b. The cluster of rearrangements on chromosome 5 in MELA_0010 are shown 

from top to bottom: translocations (blue), all other rearrangements, copy number status, logR 

ratio and B allele frequency. c. The cluster of rearrangements on chromosome 12 in 

MELA_0010 shows evidence of breakage-fusion-bridge (BFB) with loss of telomeric region 

and inversions with increased copy number. d. Circos plot of MELA_0018 shows a cluster of 

structural rearrangements on chromosomes 5 and 18. The cluster of rearrangements in e, 

MELA_0018 on chromosome 5 and f, chromosome 18 are shown from top to bottom: 
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translocations, all other rearrangements, copy number status, logR ratio and B allele 

frequency.  
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Extended Data 5 | Complex structural rearrangements are frequent in acral 
melanomas. Circos plots are shown for all 35 acral melanomas in the study. The outer 

coloured ring on the Circos plot represents each chromosome, the next ring is the copy 
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number (red = gain and green = loss), the next ring is the B-allele frequency, and the SV are 

shown by the lines in the centre of the plot. Tumours that contain breakage-fusion-bridge 

events, complex rearrangements, highly rearranged genomes or those that contain no 

clusters of SV are indicated. 
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Extended Data 6 | Telomere length and TERT promoter mutations. A. The relative 

melanoma telomere length in each tumour compared to the matched normal. B. Verification 

of telomere length in 31 samples by PCR. c, The telomere length was not associated with 

melanoma subtype. d. Somatic mutations in the promoter of the TERT gene were detected 

by whole-genome sequencing and/or capillary sequencing. Mutations were found at -57, -

124, -138 and -146 from the ATG site. Tumours with TERT promoter mutations were 

associated with (Mann-Whitney test) e, telomere length; f, the number of structural 

rearrangements; and g, the number of mutations per Mb.  
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Extended Data 7 | Recurrent DPH3, NFKBIE, RPS27 and PES1 promoter mutations. 
Height and colour of sticks indicate recurrence and mutant base, respectively. Tandem 

mutations are indicated with black horizontal bars. a. Recurrent mutations in promoter of 

DPH3 at loci 8 (n=20), 9 (n=22), and 12 (n=3) basepairs upstream from the transcription 

start site (TSS). The ETS transcription factor family core motif is shaded in gray. b, 
Recurrent mutation (n=5) at chr6:44,233,400 in first exon of NFKBIE-001 isoform and 129 

bases upstream from TSS of NFKBIE-004, which typically is the expressed transcript in most 

tissue including melanoma. Four novel mutations were identified further 500kb upstream. c, 
Recurrent mutations on and upstream from the TSS of RPS27. d, Recurrent mutations 

upstream of PES1. 
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Extended Data 8 | BRAF, RAS and NF1 mutations. a and b, BRAF somatic mutations 

were identified in 86 of the 183 samples (47 %). V600E substitutions accounted for 48 (56 

%) of these mutations. Other activating mutations at codons 600 and 601 were less frequent 

(V600K, n=17; V600R, n=2; V600D, n=1; K601E, n=2). c and d, NRAS was mutated in 51 

(28 %) tumours, 49 of these mutations occurred at ‘hotspot’ codons 12, 13 or 61. e, HRAS 

mutations occurred in 8 tumours, 5 of which were in ‘hotspot’ codons 12, 13 or 61. f, KRAS 
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mutations occurred in 4 tumours, but none occurred at the commonly activating hotspot 

codons. g, NF1 aberrations occurred throughout the gene in 32/183 (17 %) tumours and 

included point mutations/small indels only (15 nonsense, 1 frameshift, 3 splice site and 4 

missense). SV predicted to cause loss of function were frequent within NF1 (SV breakpoints 

indicated by reverse arrows). Some rearrangements were associated with a copy number 

change (green = loss; red = gain). 
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Extended Data 9 | Candidate RAF1 gene fusions. Whole genome sequencing data was 

used to identify genomic rearrangements which could result in a gene fusion product. a, The 

RAF1 gene and protein are shown. b, A RAF1 gene fusion was detected with a small 

transcript of CDH3. The gene fusion is expected to produce a protein that retains the ref1 

kinase domain. c, A RAF1-GOLGA4 gene fusion was detected which is expected to produce 

a protein that retains the ref1 kinase domain. d, IGV view of RAF1-GOLGA4 gene fusion. 

DNA breakpoints (red arrows) marked by discordantly aligned red coloured read pairs that 

are in an incorrect orientation and too far apart. There is no matching evidence observed in 

the normal control sample. Supportive evidence for an expressed gene fusion is visible in 

RNAseq data (bottom horizontal panel) where discordantly aligned reads are highlighted in 
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turquoise and the orientation of a junction fusion between exon 11 of GOLGA4 and exon 8 

of RAF1 is indicated by the green arrow. 
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Extended data 10 | Alterations to potentially actionable genes in cutaneous and non-
cutaneous melanomas. Proportion of samples with a somatic variant containing gene that 

confers sensitivity to an FDA-approved or therapeutic agent being utilized in a clinical trial (in 

any cancer): non-silent substitution or indel (SNV/indel) blue), both SNV/indel and SV (light 

red), SV only (dark red) or copy number variation (CNV, high-level amplification green and 

homozygous deletion yellow). Genes are ordered by the difference between the frequencies 

of mutated genes (excluding CNV) in cutaneous versus non-cutaneous melanomas, with 

genes with a higher mutation frequency in cutaneous melanomas on the left. 

	

	


