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A B S T R A C T

The verification of the geographical origin of extra virgin (EVOO) and virgin olive oil (VOO) is crucial to protect
consumers from misleading information. Despite the large number of studies performed, specific markers are still
not available. The present study aims to evaluate sesquiterpene hydrocarbons (SHs) as markers of EVOO geo-
graphical origin and to compare the discrimination efficiency of targeted profiling and fingerprinting ap-
proaches. A prospective study was carried out on 82 EVOOs from seven countries, analyzed by Headspace Solid
Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). Classification models were
developed by Partial Least Square-Discriminant Analysis (PLS-DA) and internally validated (leave 10%-out cross-
validation). The percentage of correct classification was higher for the fingerprinting (100%) than for the
profiling approach (45.5–100%). These results confirm the suitability of SHs as EVOO geographical markers and
establish the fingerprinting as the most efficient approach for the treatment of SH analytical data with this
purpose up to date.

1. Introduction

As reported by EU Parliament (Parliament Resolution EU No 2013/
2091 (INI)), the cases of food fraud reduce the confidence of consumers
in the food chain, compromising its global image and causing a nega-
tive influence in the food sector. EU Regulation No 29/2012 states as
mandatory the country of origin in labeling extra virgin olive oil
(EVOO) and virgin olive oil (VOO) to inform the consumer regarding
their geographical origin. The geographical origin reported in the label
refers to i) a single EU Member State or third country, ii) oil blends of
European Union or non-European Union origin, or iii) certain protected
designations of origin or protected geographical indications according
to EU Regulation (Regulation (EU) No 1151/2012). The verification of
conformity of the label-declared geographical origin of EVOO and VOO
plays a key role, not only to protect consumers from misleading in-
formation and restore their confidence in the product, but also to detect
and prevent fraudulent practices and increase the competitiveness of
the sector. A large number of studies have been performed trying to face

up the EVOO geographical authentication. They have been based on
several chemical compounds such as triacylglycerols, fatty acids, phe-
nolic compounds, pigments, sterols and volatile compounds, by ap-
plying different analytical techniques as well as chemometric ap-
proaches (Bajoub, Bendini, Fernández-Gutiérrez, & Carrasco-Pancorbo,
2018; Conte et al., 2019). However, it is known that the levels of some
of these analytes change along EVOO shelf life (i.e. phenols and pig-
ments) and others are related to olive oil quality/purity (i.e. volatile
compounds), meaning that they can be affected by storage and pro-
cessing factors (García-González & Aparicio, 2010). Other studies fo-
cused on the olive oil chemical fingerprint by stable Isotope Ratio Mass
Spectrometry and Nuclear Magnetic Resonance (Alonso-Salces et al.,
2015; Camin et al., 2016). Even though their results were promising by
combining data from both analyses, they require smart instrumentation
that is not often affordable for common control laboratories. For these
reasons, we can state that there is room still for improvement in the
development of EVOO and VOO geographical markers.

To develop efficient tools for the geographical authentication of
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EVOO and VOO, it is necessary to identify the most robust markers and
analytical approaches. To be reliable, geographical markers of food
products should depend mainly climatic and agronomic factors linked
to a specific area, while keeping the influence of other factors to a
minimal degree (Vichi, Tres, Quintanilla-Casas, Bustamante, &
Guardiola, 2018). Additionally, the determination of such markers for
routine analysis should imply low cost, short times and automatable
procedures.

Recent studies reveal that sesquiterpene hydrocarbons (SHs) might
act as valid markers to address the genetic and geographical origin of
EVOO and VOO (Bortolomeazzi, Berno, Pizzale, & Conte, 2001; Zunin,
Boggia, Salvadeo, & Evangelisti, 2005; Vichi, Guadayol, Caixach,
Lopez-Tamames & Buxaderas, 2006; Vichi, Lazzez, Grati-Kamoun,
Lopez-Tamames & Buxaderas, 2010; Damascelli & Palmisano, 2013).
SHs are semi-volatile plant metabolites comprising an extremely wide
number of compounds in nature. In EVOO and VOO, SH composition is
highly dependent on the olive trees’ cultivar and growing area, and
scarcely influenced by other factors such as oil extraction conditions
and storage (Vichi et al., 2018). The effect of agronomic and pedocli-
matic conditions on olive oil SHs has been proven by the fact that
significant differences in the SH composition have been found between
samples from the same cultivar produced in different geographical
areas (Ben Temime, Campeol, Cioni, Daoud, & Zarrouk, 2006; Youssef
et al., 2011; Vichi, Lazzez, Méndez, & Caixach, 2015) and also between
EVOOs from different cultivars grown in the same parcel did (Vichi,
Lazzez, Grati-Kamoun, López-Tamames, & Buxaderas, 2010). However,
the suitability of SHs as geographical markers in a realistic scenario
should be tested with olive oils from different geographical areas under
the usual production practices, implying the use of monovarietal oils
from typical olive cultivars as well as their usual market blends, as
addressed by some studies (Zunin et al., 2005; Damascelli & Palmisano,
2013).

In the last years, the analysis of SHs has evolved from time-con-
suming methods (Bortolomeazzi et al., 2001) to simpler methods based
on the analysis of the volatile fraction such as solid phase micro-
extraction (SPME) (Vichi, Guadayol, Caixach, López-Tamames, &
Buxaderas, 2006), allowing further studies of these compounds in
EVOOs and VOOs and considering their use as possible authenticity
markers.

Concerning the analytical approach, the traditional way to assess
these semi-volatile compounds is based on a target-type analysis to
identify and determine the SH profile of samples. This approach in-
volves a peak identification step, which presents some difficulties be-
cause the mass spectra of these analytes contain the same specific ions
in different proportions, which causes that many SHs have not been
identified yet. Consequently, under a targeted profiling approach, as
defined by Ballin and Laursen (2019), part of the information is ig-
nored.

Nowadays, the emerging strategy in food authentication consists in
finding specific patterns in highly dimensional analytical data, known
as fingerprints, which might be based directly in raw analytical signals
such as a chromatogram (Berrueta, Alonso-Salces & Heberger, 2007;
Bosque-Sendra, Cuadros-Rodriguez, Ruiz-Samblas & de la Mata, 2012;
Melucci et al., 2016; Ballin & Laursen, 2019). When these distinctive
patterns are specific to a given food category, such as a particular
geographical origin, then can be used to verify its authenticity. Under
the fingerprinting approach, since peak identification and quantitation
are not necessary, some of the drawbacks related with the targeted
profiling approach mentioned above are overcome. Besides, since the
full analytical data is used, more information is considered and mis-
classifications are revealed easier.

With the aim to evaluate the suitability of SHs as geographical
markers for EVOO and VOO under real production conditions we car-
ried out a prospective study on EVOOs from seven different geo-
graphical origins, comprising monovarietal oils as well as market
blends of oils from various cultivars typically produced in these origins.

The SHs were determined by HS-SPME and gas chromatography-mass
spectrometry (GC–MS) and data was evaluated under targeted (pro-
filing) and non-targeted (fingerprinting) analytical approaches with the
aim to compare their discrimination-efficiency in the verification of the
geographical origin.

2. Material and methods

2.1. Sampling

A total of 82 authentic and traceable samples, declared as EVOO by
the suppliers, were obtained in the framework of OLEUM project (EC
H2020 Programme 2014–2020) from seven different EU and non-EU
countries: Croatia (HRV) (n=11); Slovenia (SVN) (n=8); Spain (ESP)
(n= 17); Italy (ITA) (n= 15); Greece (GRC) (n= 6); Morocco (MAR)
(n= 15) and Turkey (TUR) (n=10). With the aim of reflecting the real
production scenario, EVOO samples in this prospective study were
obtained under usual production practices for commercial purposes,
and thus consisted of both monovarietal oils as well as market blends of
olive cultivars typical of each geographical origin (Supplementary
material, Table S1).

2.2. Headspace-solid phase microextraction (HS-SPME)

SHs present in EVOO were analyzed using a Triplus autosampler
(Thermo Fischer Scientific, Bremen, Germany) at the conditions re-
ported by Vichi et al. (2006). Shortly, 2 g of oil was weighed into a
10mL vial fitted with a silicone septum and kept at 70 °C under agi-
tation. After 10min of sample conditioning, a divinylbenzene/car-
boxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber (2 cm length, 50/
30 μm film thickness) was exposed during 60min to the sample head-
space and then desorbed for 10min in the GC injection port (260 °C).
The thermal stability of SHs at these SPME conditions was previously
verified (Vichi et al., 2006). During the desorption step, the injector was
maintained in split-less mode during 5min. Oil samples were previously
spiked with a standard solution of indene to a final concentration of
10 µg/kg.

2.3. Gas chromatography-mass spectrometry (GC–MS)

Separation and detection of volatile compounds was performed by
GC coupled to an ion trap mass selective spectrometry using a
ThermoFinnigan Trace GC equipped with an ITQ MS (Thermo Fisher
Scientific, Waltham, MA) using helium as carrier gas at a constant flow
of 1.3mLmin−1. Analytes were separated on a Supelcowax-10
(Supelco, Bellefonte, PA) 60m×0.25mm i.d., 0.25 μm film thickness.
Column temperature was held at 40 °C for 3min, increased to 75 at
4 °Cmin−1, then to 200 at 8 °Cmin−1 and to 260 °C at 15 °Cmin−1,
holding the last temperature for 2min. The temperatures of the ion
source and the transfer line were 200 and 275 °C, respectively. Mass
spectra were recorded with a scan event time of 0.37 s; electron energy
was 70 eV. Acquisition in the complete scanning mode (SCAN) was in
the range m/z 40–300, to allow the identification of compounds in
EVOO samples.

2.4. Data processing

2.4.1. Profiling approach
Compounds were identified by comparing their mass spectra and

retention times to those of the standard compounds, or the ones
available in the NIST 2.0 mass spectrum library and in the literature.
Non-isothermal linear retention indices (LRI), using the definition of
Van den Dool and Kratz (1963), were calculated and compared with
those available in the literature (Supplementary material, Table S2).

Several common ions, only differing in their proportions, char-
acterize the mass spectra of SHs. Therefore, a quantitative assessment of
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SHs was carried out in Extracted Ion Chromatogram (EIC) by selecting
the following ions: m/z 69, 93, 107, 119, 135, 157, 159, 161, 189, 200,
202 and 204. The selection of quantification ions was done according to
Vichi et al. (2006) and the confirmation ions were the molecular ions
m/z 204, 202 or 200. Quantification was carried out by internal stan-
dard, considering a response factor equal to 1, and expressed as µg
equivalents of IS/kg of oil (Supplementary material, Table S2). Ac-
cording to Vichi et al. (2006), both SH and monoterpenes may be taken
into consideration to be studied as genetic or geographic markers of
virgin olive oil origin. However, monoterpene content suffers higher
variability due to their low-boiling point compared with sesquiterpenes,
introducing variability not related to the origin into the model (data not
shown). Since models developed with sesquiterpene data were suc-
cessful, it was not considered necessary to also include monoterpenes.

2.4.2. Fingerprinting approach
The EIC of specific SH ions (m/z 93, 107, 119, 135, 157, 159, 161,

189 and 204) were obtained from the Total Ion Current (TIC). The in-
tensities of scans comprised from 18th to the 30th minute (2467 scans)
were considered for each ion (2467 scans× 9 ions= 22,203 variables
per sample). To solve the retention time shifting, for each selected ion
the EICs of the 82 samples were aligned by icoshift algorithm in Matlab®
(Tomasi, Savorani, & Engelsen, 2011). Once aligned, the 9 matrices of
the 9 aligned EICs were concatenated conforming a two-way unfolded
matrix (82 samples× 22,203 variables).

2.4.3. Chemometrics
Univariate statistical analysis for the profiling approach was carried

out with SPSS software v25© (IBM Corp., NY USA). A one-way ANOVA
was applied: F test and Tukey multiple comparisons test were used
when variances were equal between groups. Instead, Welch test and
Games-Howell multiple comparisons test were applied when groups
presented unequal variances. P < 0.05 was considered significant.

Multivariate analysis of profiling and fingerprinting approaches was
performed with SIMCA software v13.0© (Umetrics AB, Sweden). After
data pre-processing (log10, mean centering and scaling for the target
data; first derivative, log10, mean centering and scaling for the fin-
gerprint data), a Principal Component Analysis (PCA) was developed
for both profile and fingerprint data to explore the natural grouping of
samples and detect potential outliers (according to Hotelling’s T2 range
and distance to the model parameters). Partial Least Square-
Discriminant Analysis (PLS-DA) classification models were built with
data obtained by profiling (34 variables) and fingerprinting analysis
(22,203 variables) to verify the geographical origin of EVOO samples
coming from 7 different countries: HRV, SVN, ESP, ITA, GRC, MAR and
TUR. PLS-DA is a supervised discriminant technique based on finding
the maximum correlation between the data (the SH profile or the SH
fingerprint) and each of the categories (each of the seven countries of
origin). By doing this, PLS-DA finds the most different features between
categories while minimizing those variables not related with a given
category. The models were internally validated by leave 10% out cross-
validation and the number of latent variables of PLS-DA models were
selected according to the lowest RMSEcv value. Model successfulness
was evaluated by their prediction power (Q2 value) and the % of correct
classifications. Random behavior and model over-fitting were assessed
through the ANOVA on the cross-validated predictive residuals (p-
value) and the permutation test, in which the prediction power (Q2

value) of 20 models developed after randomizing sample categories
(countries) was compared with that of the original model.

3. Results and discussion

3.1. Profiling approach

The chromatograms obtained extracting typical SH ions from the
TIC, showed an extremely complex fraction (Fig. 1). As commented

above, the identification of SHs is a challenging task because they
present very similar mass spectra. Despite this fact, a total of 34 peaks
were included in the SH profile; 23 of them were assigned to previously
reported SH (Bortolomeazzi et al., 2001; Vichi et al., 2006) while the
remaining ones were not found in literature but could be related to SH
compounds based on their mass spectra. The quantitative data of these
SHs, expressed as μg equivalents of IS/kg of oil, were used to perform
the univariate statistical analysis by a one-way ANOVA (Supplementary
material, Table S2). Although some differences were found for some
SHs, the high intra-class and inter-class variability caused that this
univariate approach was not successful in distinguishing the various
origins and that specific markers of origin could not be directly found.

Multivariate techniques under a profiling and a fingerprinting ap-
proach were assayed in order to better explore the differences between
samples from different countries. In the profiling approach, after data
pre-treatment and PCA exploration, no outliers were detected.
Therefore, the PLS-DA classification model for the targeted data was
developed with all the samples (n= 82) (Fig. 2a). After various pre-
processing techniques assayed, the model on the log10, mean centering
and data scaling to unit variance was the most successful, and with 8
latent variables it achieved the lowest global RMSEcv for most of the
categories.

Table 1 shows the classification results obtained from cross-valida-
tion by leave 10%-out and the respective RMSEcv values for each class.
The model rendered good percentages of correct classification for
samples from certain geographical origin, such as SVN (100%), TUR
(100%) and MAR (93.3%). However, in the case of oils from the rest of
the countries, it generated some misclassifications, particularly in the
case of HRV (45.5%), resulting in a non-satisfactory model. This agrees
with the fact that the global Q2 score (0.351) was low, which indicates a
low prediction power of the present classification model. On the other
hand, the ANOVA p-value (0.013) indicates that the model is significant
and thus, that the classification is not at random. Also, the Q2 values of
the permutation test for each category were below 0 indicating the
absence of a random classification and of model overfitting.

As aforementioned, the target analysis is limited to the number of
compounds that can be identified or tentatively identified based on
their mass spectrum and linear retention index (LRI). However, the
chromatograms obtained by extracting typical terpene fragment ions
(Fig. 1) show that the SH fraction is much more complex, and that many
SHs might have not been considered, meaning that the profiling ap-
proach might have missed part of the information of the SHs profile.

3.2. Fingerprinting approach

With the aim to extract exhaustive information from the SH fraction
in EVOO, a non-targeted fingerprinting analysis was evaluated. All data
points obtained from the selected region of each SH specific EIC were
used as variables so that every signal related to SH was taken into ac-
count by the model.

The two-way unfolded matrix obtained (82 samples× 22,203
variables) was subjected to data pre-processing and PCA exploration, in
which any outlier was detected. Then, a PLS-DA classification model
was performed. The model leading to the lowest RMSEcv used 6 latent
variables (Fig. 2b). In this case, the sample grouping according to the
origin was drastically improved compared to the profiling model. A
100% of correct classification (by leave 10%-out cross-validation) was
obtained for each of the 7 countries of origin (Table 1). ANOVA p-value
(1.6e-18) indicated that the model was significant and excluded a
random classification. Results from the permutation test were very sa-
tisfactory, with Q2 values below 0.2, suggesting that the optimized
classification model was not over-fitted.

The successful classification results obtained under this approach
agreed with the fact that the sub-models for each geographical origin
found patterns of the SH fingerprint that were character of each of
them, as revealed by the regression coefficient plots (Supplementary
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Fig. 1. Extracted ion chromatograms of sesquiterpene hydrocarbons: a) Quantification ions; b) Confirmation ions (molecular ions), obtained by analysing an extra
virgin olive oil from Spain by HS-SPME-GC–MS.

Fig. 2. Score scatter plot (first 3 latent variables) of classification models (PLS-DA) developed by country of origin, based on extra virgin olive oil sesquiterpene data
by applying a) profiling approach (34 variables); b) fingerprint approach (22,203 variables). HRV: Croatia, SVN: Slovenia, ESP: Spain, ITA: Italy, GRC: Greece, MAR:
Morocco and TUR: Turkey.

B. Quintanilla-Casas, et al. Food Chemistry 307 (2020) 125556

4



material, Fig. S1). To illustrate this, a section of EIC for m/z 119 of TUR
samples (Fig. 3a) is plotted against the corresponding regression coef-
ficients of the SHs fingerprint of TUR sub-model (Fig. 3b). It reveals that
some of the highest regression coefficients corresponded to peaks (i.e.
peaks 7, 9, 13 and 17) that had been quantified with the m/z 119 and
included in the profiling model. Nevertheless, other significant regres-
sion coefficients were related with parts of the EIC that had not been
included in the profiling approach, such as minor SHs or not well-re-
solved peaks. Thus, this explains the higher discrimination power of the
fingerprinting approach compared to the profiling approach.

This prospective study sets SHs as successful EVOO geographical
markers because even if various monovarietal EVOOs and EVOO cul-
tivar blends were included for each geographical origin (Supplementary
material, Table S1), the country of origin was correctly verified. This is
because PLS-DA was supervised per geographical origin (country), and
thus the model was addressed to focus on the SHs features more related
to the geographical area, beyond the cultivar. This means that the PLS-
DA model finds features that are common between samples from the
same region even if they are from different cultivars. In this way, even if
in some cases the same cultivar was present in different countries
[‘Arbequina’, ‘Leccino’ and ‘Istrska belica’ (Fig. 4)], the model correctly
classified the samples into the country of origin. This is especially re-
levant because it is known that genetic factors influence EVOO’s SH
profile (Guinda, Lanzon & Albi, 1996; Osorio-Bueno, Sanchez-Casas,
Montaño García & Gallardo González, 2005; Vichi et al., 2010). How-
ever, here, thanks to the sampling design and to the ability of PLS-DA to
extract information from the fingerprint correlated with the dis-
criminated characteristic (origin in this case), the influence of pedo-
climatic aspects on SHs could be exploited.

On the other hand, it is noteworthy that although the model was
supervised per country of origin, it naturally grouped samples into
smaller sub-regions within the same country (although the sub-region
information had not been provided to the model). Fig. 5 illustrates this
behavior by exemplifying the case of Italian and Turkish oils, where
samples from Tuscany, Sicily and Apulia (Fig. 5a), and samples from
North Aegean, Germencik and Antakya (Fig. 5b), respectively, conform
independent clusters within each class. This entails that the SH fin-
gerprint holds similar traits among samples from regions smaller than a
country and sets a promising scenario for downscaling the model to

verify the geographical origin of EVOO produced in smaller regions of
interest such as those from protected designations of origin (PDO) or
protected geographical indications (PGI).

4. Conclusions

This prospective study focused on the suitability of SHs as EVOO
geographical markers and the evaluation of the best approach for data
processing, allowed us i) to confirm that SH can be successfully used for
the verification of EVOO geographical origin, ii) to state that the fin-
gerprinting approach provided a model with a higher discrimination
capacity (100% correct classification) with respect to the targeted
profiling one (from 46 to 100% correct classification, depending on the
country). It is remarkable that this classification rate was achieved
under a real scenario of EVOO global production, which implied the use
of various monovarietal and blends of oils from cultivars typically
produced and marketed in each country. Also, samples from the same
olive cultivar coming from different countries were correctly classified
according to the geographical origin Moreover, as the SH fingerprint
holds similar traits among samples from sub-regions within a country, it
sets a promising scenario for downscaling the model to smaller regions
of interest such as PDO or PGI oils, as well as for challenging model
robustness with samples for various harvest years. Actually, evaluating
the effect of the harvest year has been shown to be crucial for some
authentication models developed for EVOO verification, because as
reviewed by Tres, van der Veer, and van Ruth (2013) the differences in
the climatic conditions might affect EVOO composition.

Overall, we can conclude that the successfulness of the model is the
result of a conjunction of factors: i) sesquiterpenes are suitable geo-
graphical markers, ii) the use of the sesquiterpene fingerprint permits to
exploit all the information obtained during the analysis in contrast of
the target approach, and iii) PLS-DA finds features in the sesquiterpene
fingerprint that are common between samples from the same region
even if they belong to different cultivars. Although we are aware that an
increment of samples (with more samples from these and other origins,
and from different harvest years) and external validation are still ne-
cessary to develop a more robust and elaborated model for the classi-
fication of samples according to their geographical origin, these pre-
liminary results confirm the suitability of SHs as geographical markers

Table 1
Misclassification results of classification models (PLS-DA) developed with Extra Virgin Olive Oil sesquiterpene profile (34 variables; log10, mean centering and
scaling to unit variance; 8 latent variables) and extra virgin olive oil sesquiterpene fingerprint (22,203 variables; 1st derivative, log10, mean centering and scaling to
unit variance; 6 latent variables), cross-validated by leave 10%-out.

Members Correct classification HRV SVN ESP ITA GRC MAR TUR No class (YPred < 0.5) RMSEcv

Profilinga

HRV 11 45.5% 5 0 0 0 0 0 0 6 0.28
SVN 8 100% 0 8 0 0 0 0 0 0 0.22
ESP 17 58.8% 0 0 10 0 0 0 0 7 0.38
ITA 15 53.3% 0 0 1 8 0 0 0 5 0.39
GRC 6 50% 0 0 0 0 3 0 0 3 0.25
MAR 15 93.3% 0 0 0 0 0 14 0 1 0.26
TUR 10 100% 0 0 0 0 0 0 10 0 0.17
Total 82 73.7% 5 8 11 8 3 14 10 22

Fingerprintingb

HRV 11 100% 11 0 0 0 0 0 0 0 0.25
SVN 8 100% 0 8 0 0 0 0 0 0 0.23
ESP 17 100% 0 0 17 0 0 0 0 0 0.32
ITA 15 100% 0 0 0 15 0 0 0 0 0.33
GRC 6 100% 0 0 0 0 6 0 0 0 0.23
MAR 15 100% 0 0 0 0 0 15 0 0 0.26
TUR 10 100% 0 0 0 0 0 0 10 0 0.19
Total 82 100% 11 8 17 15 6 15 10 0

Abbreviations used: HRV: Croatia, SVN: Slovenia, ESP: Spain, ITA: Italy, GRC: Greece, MAR: Morocco; TUR: Turkey; RMSEcv: Root Mean Square Error of cross-
validation.

a Profiling PLS-DA model: Q2: 0.351; ANOVA p-value: 0.013;
b Fingerprinting PLS-DA model Q2: 0.561; ANOVA p-value: 1.6e-18.
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Fig. 3. a) Section of m/z 119 EIC (from 23.8 to 27min) of Turkish extra virgin olive oils by HS-SPME-GC–MS; b) PLS regression coefficients of the fingerprinting
classification model, resulting from each data point in Figure a vs. ‘Turkey’ category (the highest coefficients are in red). Peaks considered in the profiling approach
are: 7: α-bergamotene; 8: β-gurjunene; 9: β-caryophyllene; 13: non-identified sesquiterpene; 17: α-zingiberene; 18: germacrene D; 21: (E,E)-α-farnesene; 24: δ-
cadinene. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Score scatter plot (first 3 latent variables) of sesquiterpene fingerprint classification model (PLS-DA) supervised by geographical origin, showing how extra
virgin olive oils (EVOO) from the same olive cultivar cluster according to the country of origin: a) ‘Arbequina’ EVOOs produced in Italy (ITA), Spain (ESP) and
Morocco (MAR); b) ‘Leccino’ EVOOs produced in Italy (ITA) and Croatia (HRV); c) ‘Istrska belica’ EVOOs produced in Croatia (HRV) and Slovenia (SVN).

B. Quintanilla-Casas, et al. Food Chemistry 307 (2020) 125556

6



and set the basis for the most efficient approach for the treatment of SH
analytical data with this purpose up to date.
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