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Introduction

The purpose of this thesis is to determine how far is an Artin local ring from being
Gorenstein and to study those Artin Gorenstein rings that reach this minimal distance.

Huneke claims in [30] that one of the most read articles in commutative algebra is the
paper by Hyman Bass named On the ubiquity of Gorenstein rings, see [3]. As the title
already points out, Gorenstein rings appear in a natural way in many different contexts.
Around the decade of 1960, the work of Northcott and Rees on irreducible systems of
parameters and Cohen-Macaulay rings, Gorenstein and Rosenlicht on plane curves and
complete intersections, Grothendieck and Serre on duality and Bass on rings of finite
injective dimension...all of it boiled down to the Gorenstein property.

Living up to their ubiquity expectations, Gorenstein rings appear today far beyond
commutative algebra and algebraic geometry. According to Lam in [B3], they are widely
used in non-commutative algebra, arithmetic geometry, invariant theory, combinatorics
and number theory. In fact, a key step of Andrew Wiles’s proof of Fermat’s Last Theorem
involves understanding when certain Gorenstein rings are complete intersections, see
[46, p.451].

Quoting Huneke in [30, p.76]: ”Regular rings are the most basic rings in the study of
commutative rings. However, Gorenstein rings are the next most basic and [...] one can

approximate arbitrary local commutative rings quite closely by Gorenstein rings.”

In this thesis we address the problem of approximating local rings by Gorenstein
rings in the zero-dimensional case. The study of Artin Gorenstein rings is particularly
relevant since a local Gorenstein ring of arbitrary dimension can always be turned into
zero-dimensional Gorenstein when considering it modulo an ideal generated by a system
of parameters.

xiii



Let A be an Artin local k-algebra, where k is an arbitrary field. Hence we may
assume that A is a quotient of the ring of formal power series R = k[xz1,...x,], for
some integer n < 1, by an ideal I in R. We denote by m = (1, ..., z,) the maximal
ideal of R and by n = m/I the maximal ideal of A = R/I. The length ¢(A) of A stands
for the dimension of A as k-vector space.

In [[1]] Ananthnarayan introduces the notion of Gorenstein colength of an Artin local
ring A, denoted by gcl(A), as the minimum ¢(G) — £( A) where G is an Artin Gorenstein
ring such that A ~ G /H for some ideal H C G, see Definition [L.3.3. We call any such
ring G a Gorenstein cover of A. If, in addition, G reaches the gcl(A), then we say that it
is a minimal Gorenstein cover. Notice that A is Gorenstein if and only if gcl(A) = 0.

The next class of rings which are closest to be Gorenstein are Teter rings. In [44],
Teter studied the rings that appear when considering an Artin Gorenstein ring G modulo
its socle ideal, denoted by soc(G). Later on, Huneke and Vraciu improved Teter’s carac-
terization in [31] and establish that non-Gorenstein rings A ~ G/ soc(G) are precisely
those that satisfy gcl(A4) = 1.

Recall that the lengths of a ring A and its canonical module w4 always coincide.
Moreover, if A is Gorenstein, then A ~ w 4. In other words, A is Gorenstein if and only
if there is an epimorphism ¢ : w4 — A. In [B1] Huneke and Vraciu proved that A is
Teter if and only if there is an epimorphism ¢ : w4 — n. Ananthnarayan extends their
result to any ring of low Gorenstein colength in [[l, Theorem 5.5]:

THEOREM (Ananthnarayan) Let A = R/I be an Artin ring and let m be the maximal
ideal of R. Suppose that I C m® and char(k) # 2. Then the following are equivalent:

(i) gel(A) < 2.
(ii) There exists an ideal ¢ C A such that ¢ ~ Hom 4 (q,w4) and £(A/q) < 2.
(iii) There exists an epimorphism f : w4 —> q, where q satisfies the properties in (iz).

Therefore, the approach of Teter, Huneke-Vraciu and Ananthnarayan is based on the
existence of these A-module epimorphisms ¢ : w4 — q, where q is an ideal of A which
is self-dual with respect to the contravariant functor defined by the canonical module and
satisfies £(A/q) = gcl(A).

An alternative approach is given by Elias and Silva in [20]. Since the canonical
module w4 of an Artin ring A = R/I can be identified with Macaulay’s inverse system
I+ of I, it is natural to apply all the tools available for this device. Considering the R-
module structure of S = k[yi, ..., y,] given by contraction, see Section , in [20,

Xiv



Theorem 3.4] the authors improve the results of Huneke-Vraciu:

THEOREM (Elias-Silva) Let A = R/I be an Artin ring with n > 2, maximal ideal n and
socle degree s > 1. Then the following conditions are equivalent:

(i) gel(A) = 1.

(ii) There exists a degree s+ 1 polynomial F' € Ssuchthat I+ = (z,0F, ..., x,0F).
(iii) There exists an epimorphism of A-modules I+ — n.
(iv) A is a Teter ring.

In particular, if A is a Teter ring, then the Cohen—Macaulay type of A is n and G =
R/ Anng F is a minimal Gorenstein cover of A.

One of the main results we present in this thesis is the characterization of rings of
low colength A = R/I in terms of the relationship between I+ and any inverse system
J+ associated to a minimal Gorenstein cover G = R/.J of A. This relation is measured
by the colon ideal K = (I : J*), see Definition R.1.5.

THEOREM (Theorem R.1.7) Let A = R/I be an Artin ring such that gcl(A) < 2. If
G = R/J is a minimal Gorenstein cover of A and K = (I* :x J%), then

(i) embd(G) = embd(A),
(i) IcKandI*>C JC I

Moreover, after a linear isomorphism of R we may assume:

R, if  gcl(A) =0;
K=4¢ m, if  gel(4)=1;
(1, Tp_1,22), if gcl(A) =2

In addition, we provide an analogous characterization to Elias-Silva for rings of
Gorenstein colength 2, which in turn, improves and extends Ananthnarayan’s result:

THEOREM (Theorem R.2.5) Let A = R/I be an Artin ring with maximal ideal n and
socle degree s > 1. We assume that A is neither Gorenstein nor Teter, [ C m® and
char(k) # 2. Then the following conditions are equivalent:

(i) gel(A) =2,
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(ii) after a linear isomorphism of R there exists a polynomial F' € S of degree s + 1
ors+2suchthat [+ = (z;0F,... 2, 10 F,22 o F),

(iii) there exists an epimorphism of A-modules f : I+ — g, where q is a self-dual
ideal of A such that £(A/q) = 2.

In particular, if any of the previous equivalent conditions hold, G = R/ Anng F is a
minimal Gorenstein cover of A.

For higher colength, that is, gcl(A) > 3, the colon ideal K = (I*+ :x J*) has
no longer unique analytic type as in Theorem R.1.7. It may even have infinitely many
analytic types when gcl(A) > 7, see [40]. Therefore, the previous results cannot be
extended to higher Gorenstein colength using analogous arguments, see Section 2.3.

After computing the Gorenstein colength of A and finding a minimal cover G of
A, the natural question that arises is whether we can determine all minimal Gorenstein
covers of A. In[20], Elias and Silva start addressing this problem for Teter rings. Observe
that if G = R/ Anng F is a Teter cover of A = R/I, then (F')/I+ is a 1-dimensional
sub-k-vector space of S<,1/I+, where S<,1 is the R-module of all polynomials of
degree equal or less than s + 1 with the contraction structure. Therefore, G' defines a
point [F] in the projective space over S<s1/I+.

With this philosophy of identifying Teter covers with certain points of a suitable
projective space P, in [20, Proposition 4.2] the authors introduce the notion of Teter
variety TC(A) of A.

THEOREM (Elias-Silva) The Teter variety TC(A) of a Teter ring A is a non-empty Zariski
open subset of a linear sub-variety of PY¥. In particular, TC(A) is an irreducible and
non-singular variety of PJ .

In order to extend the idea of Teter variety to rings A with arbitrary colength ¢, we
first need to determine where do polynomials F' defining minimal Gorenstein covers
G = R/ Anng, F live. If A has socle degree s, then the R-module S<,; would be the
natural choice. Nevertheless, it can be refined to the smaller sub- R-module fmt I+ of
S<s++ formed by polynomials F in S such that m* o F' C [+,

We introduce this notion of integral of an R-module M with respect to an ideal K,
denoted by | M, that can be regarded as an inverse operation to contraction, see Def-
inition B.1.1. We provide a recursive procedure, Algorithm [l (see p.74), to effectively
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compute the resulting module based on the integration method for inverse systems pro-
posed by Mourrain in [39].
Our main contribution is the generalization of Teter varieties to varieties of minimal

Gorenstein covers M GC(A) via the following existence theorem:

THEOREM (Theorem B3.2) Let A = R/I be an Artin ring of Gorenstein colength ¢.
There exists a quasi-projective sub-variety M GC(A) of Py (. I*/I*) whose set of
closed points are the points [F], F € [_, I+, such that G = R/ Anng F is a minimal
Gorenstein cover of A.

We attack the problem of finding an explicit description of M GC(A) from a com-
putational point of view for rings of low Gorenstein colength.

THEOREM (Theorem B.4.8) Let A = R/I be a Teter ring with n > 2, let h be the dimen-

sionof [ I L /I+ as k-vector space and let a be the homogeneous ideal in a polynomial
ring with h variables defined in Section B.4.3. Then

MGC(A) = Pr"\V,(a).
Moreover, for any non-Gorenstein Artin ring A, gcl(A) = 1 if and only if a # 0.

THEOREM (Corollary B-4.20) Let A = R/I be a ring of Gorenstein colength 2 and let
be the dimension of fm2 I+ /I+ as k-vector space. Let b be a homogeneous ideal in the
ring of polynomials with & variables and let a and ¢ be bihomogeneous ideals in the ring
of polynomials with 4 +n variables as defined in Section B.4.3. Let 7; be the projection
map from Pﬁ_l x P to ]P’ﬁ_l. Then

MGC(4) = Vo (6)\m1 (V4. (e) NV (a).

In Algorithm [ (see p.75) and Algorithm [ (p.87) we provide methods to explic-
itly calculate the varieties of minimal Gorenstein covers for given rings of Gorenstein
colength 1 and 2, respectively.

Next we focus on the study of Gorenstein covers in codimension 2. The approach in
this setting is no longer from the inverse system perspective, but instead we use specific
tools that only apply to n = 2 such as the Hilbert-Burch theorem. Hence we come across
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with the problem of determining canonical Hilbert-Burch matrices for any m-primary
ideal I of R = k[x,y].

In [8], Conca and Valla parametrize ideals in k[z, y] with a given leading term ideal F
with respect to the lexicographical order. In particular, they parametrize the affine space
of all m-primary ideals K in k[z,y] such that Ltj.x(K) = E by defining a canonical
Hilbert-Burch matrix of K. A similar result is provided by Constantinescu in [9] for
the reverse-degree lexicographical order. See Section for more details on these
parametrizations.

Our main contribution is the extension of Conca-Valla parametrization of ideals in
k[, y] to the local setting by using a local degree ordering 7 induced by the lexicograph-
ical order, see Section [L.5. We define a canonical Hilbert-Burch matrix for any ideal
with lex-segment leading term ideal L. In other words, we parametrize any m-primary
ideal K C R with a given Hilbert function & up to a generic change of coordinates, since
Gin(K) = Lex(h).

THEOREM (Theorem @.1.24) Given a lex-segment ideal L in R with canonical Hilbert-
Burch matrix H, see Definition §.1.4, the set V(L) = {K C R : Lt=(K) = L} is an
affine space parametrized by the bijection

Ui ML) — V(L)
N — L(H+N),
where M (L) is the set of matrices with entries n; ; in k[y] from Definition .1.21. Any

ideal K in V(L) can be identified with a point px in AN by taking coordinates the
coefficients ¢’ ; of polynomials n; ;.

In particular, this result allows to take N + H, with N = W~1(K), as definition
of canonical Hilbert-Burch matrix of any ideal K in V(L). Thanks to the connection
between the minimal number of generators of an ideal with the rank of a Hilbert-Burch
matrix, see Corollary #.2.3, we can explicitly describe the Gorenstein ideals .J in V'(L).

COROLLARY (Corollary B:2.9) Let L be a lex-segment ideal. The set Vs (L) of Gorenstein
ideals .J such that Lt=(.J) = L is a quasi-affine variety. In particular,

Vo (L) ~ AE\V(CSJ T C?+1,t)-

In order to use this approach to find Gorenstein covers G = R/J of a given ring
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A = R/I, we require the inclusion J C I, which happens to be a closed condition on

variables ¢} ;:

COROLLARY (Corollary B.2.11) Let A = R/I be an Artin ring and let L be a lex-segment
ideal. The set Vizo () (L) of ideals .J in V(L) such that G = R/.J is a Gorenstein cover
of A is a quasi-affine variety. In particular,

Vac(a) (L) ~=V(p,... apT)\V(Cg,lcg,Q T C?+1,t—1)’

where cf ; are the coefficients of the polynomials n; ; in k[y] of matrices N in M(L)
and p; are polynomials in variables c]f ; that occur as coefficients of the reduction of .J

modulo /.

However, inclusion is not preserved by a generic change of coordinates, hence it is
not enough to parametrize ideals with lex-segment leading term ideal when we want to
find Gorenstein covers. For a general m-primary monomial ideal F of R, we give the
following result on the set V(E):

PROPOSITION (Proposition#.1.9) Let E be a monomial m-primary ideal in R with canon-
ical Hilbert-Burch matrix H, let V' (E) be the set of ideals K of R such that Lt=(K) = F
and let \/(E) be the set of matrices from Definition 4.1.§. Then there is a surjection

0: N(E) — V(E)
N — I(H+N).

Since Proposition does not provide a notion of canonical Hilbert-Burch matrix
for ideals K with monomial leading term ideal Lt=(K) = E, we cannot replicate the
parametrization in Corollary for Vo (a)(E). Moreover, imposing the Gorenstein
property on K requires more effort than in Corollary §.2.9.

Nevertheless, in Algorithm [ (see p.125), we propose a routine to compute the affine
variety V(a) in AJY whose points correspond to non-Gorenstein ideals .J in V (E), even
though different points might correspond to the same ideal. Since the treatment of the
inclusion of ideals J C I does not vary, we can ensure that the quasi-affine variety
V(p1,...,pr)\V(a), where pi,...,p, are built as in Corollary §.2.9, consists of all
points p that correspond to Gorenstein covers G = R/J of A = R/I. Again, this
is not a parametrization but it allows us to sweep V' (E) for Gorenstein covers.
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All the computations in this thesis have been done with the commutative algebra
software Singular, [[11]. We use the Singular library InverseSyst.lib for inverse system
related computations, see [[13] for a manual on how to use the library. All the algorithms
appearing in this work have been implemented in a new library GorensteinCovers.lib
created for the purpose of computing Gorenstein covers, see Appendix [Al.

Let us provide an outline of the contents and structure of this thesis.

In Chapter 1 we provide all the necessary background, adapted to the scope of this
work, about Artin and Gorenstein rings, Hilbert functions, Macaulay’s inverse systems
and how to extend results from the graded setting to the local case.

Chapter 2 is devoted to the study of low Gorenstein colength rings and establishes a
connection among Macaulay inverse systems, minimal Gorenstein covers and self-dual
ideals.

The first main result of this chapter provides a characterization of rings of low Goren-

stein colength in terms of its inverse systems:

THEOREM (See Theorem P.1.7.) Let A be an Artin ring such that gcl(A) < 2. If G is a
minimal Gorenstein cover of A, then
(i) embd(G) = embd(A),
(ii) if A = R/I with dim(R) = embd(G) = embd(A) and F is a generator of J*,
G =R/J,then I C K and
IPcJcl

Moreover, after a linear isomorphism of R we may assume:

R, if  gcl(A4) = 0;
Kp=4 m, if  gcl(A) = 1;
(1, Tp_1,22), if gcl(A) =2

The second essential result is Theorem R.2.5, which extends and improves the char-
acterization of Artin rings A = R/I of Gorenstein colength two in [, Theorem 5.5]:

THEOREM (See Theorem P.2.5.) Let A = R/I be an Artin ring with maximal ideal n
and socle degree s > 1. We assume that A is neither Gorenstein nor Teter, I C m® and
char(k) # 2. Then the following conditions are equivalent:

XX



(i) gel(4) =2,
(ii) after a linear isomorphism of R there exists a polynomial F' € S of degree s + 1
ors+2suchthat It = (z,0F,... .2, 10 F,22 0 F),
(iii) there exists an epimorphism of A-modules f : I+ — g, where q is a self-dual
ideal of A such that (A/q) = 2.

As a closure of the chapter, we address the complexity of the generalization of these
results to rings of higher colength.

In Chapter 3 we study minimal Gorenstein covers of an Artin ring A. We start with
the introduction of the notion of integral of a module with respect to an ideal and the
extension of Mourrain’s integration method to compute it.

The main achievement of this chapter is Theorem B.3.3, that proves the existence
of a quasi-projective sub-variety MGC™(A) of Py ([, I/I*) whose set of closed
points are associated to polynomials F in S such that the ring G = R/ Anng F is a
minimal Gorenstein cover of A. This result allows us to extend the notion of Teter va-
riety by Elias-Silva to a minimal Gorenstein cover variety M GC(A) for rings A with
arbitrary Gorenstein colength and to give a precise description of the M GC(A) variety
for gcl(A) < 2 as follows:

THEOREM (See Theorem B.4.6.) Let A = R/I be a Teter ring with n > 2, let h be the
dimension of fm I+ /I+ as k-vector space and let a be the homogeneous ideal defined
in Section in a polynomial ring with % variables. Then

MGC(A) =Py N\V, (a).
Moreover, for any non-Gorenstein Artin ring A, gcl(A) = 1 if and only if a # 0.

THEOREM (See Corollary B.4.20.) Let A = R/I be a ring of Gorenstein colength 2 and
let h be the dimension of me I+ /I+ as k-vector space. Let b be a homogeneous ideal
in the ring of polynomials with A variables and let a and ¢ be bihomogeneous ideals in
the ring of polynomials with & + n variables as defined in Section B.4.3. Let 7; be the
projection map from ]P’l}z_1 X Pﬁ_l to Pﬁ_l. Then

MGC(4) = Vo (6)\m1 (V4 () NV (a).
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We end the chapter by providing algorithms to explicitly compute M GC(A) for low
Gorenstein colength and several computation examples.

Chapter 4 deals with rings of codimension 2. The first part of the chapter is devoted to
the extension of Conca-Valla parametrization of ideals in k[, y] to the local setting. The
main results presented here are the complete parametrization of all the ideals with lex-
segment leading term ideal and the partial analogous for general m-primary monomial
ideals.

THEOREM (See Theorem §.1.24.) Given a lex-segment ideal L in R with canonical
Hilbert-Burch matrix H, the set V(L) = {K C R : Ltz(K) = L} is an affine space
parametrized by the bijection

U: ML) — V(L)
N +— IL(H+N),
where M(L) is the set of matrices from Definition }.1.21].

PROPOSITION (See Proposition .1.9.) Consider a monomial m-primary ideal E in R
with canonical Hilbert-Burch matrix H, let V' (E) be the set of ideals K of R such that
Lt-(K) = E and let N'(E) be the set of matrices from Definition §.1.§. The map

. N(BE) — V(B)
N +— IL(H+N),

is surjective.

In the second part of the chapter we focus on constructing Gorenstein covers from
the canonical Hilbert-Burch matrices defined by the previous parametrizations. The main
result in this part is the parametrization of all Gorenstein covers G = R/I of A = R/I
that occur as a deformation of a lex-segment ideal L:

COROLLARY (See Corollary §.2.11.) Let A = R/I be an Artin ring and let L be a lex-
segment ideal. The set Vizc(a)(L) of ideals .J in Vg (L) such that G = R/.J is a Goren-
stein cover of A is a quasi-affine variety. In particular,

Vaoay (L) = V(p1,...,pr)\V(5 1] o+ 1 41),

where ¢ ; are the coefficients of the polynomials n; ; in k[y] of matrices N in M(L)
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and p; are polynomials in variables cﬁ ; that occur as coefficients of the reduction of J

modulo 1.

We also provide a method, Algorithm |, to compute all Gorenstein covers G = R/.J
of A = R/I that occur as a deformation of any monomial ideal F, where the parame-
trization in Corollary is no longer valid.

Chapter 5 is devoted to the study of certain families of Artin rings such as stretched
k-algebras or monomial ideals. On one hand, we study in depth all analytic types of k-
algebras A with ¢(A) < 6 taking as guide Poonen’s classification of such algebras in [40].
On the other hand, we put special emphasis on understanding whether the properties of
minimal Gorenstein covers from Theorem hold for higher colength gcl(A) > 2:

PROPOSITION (See Proposition 5.0.3.) Let A = R/I be an Artin ring. In the following
cases we have that there exists a minimal Gorenstein cover G = R/J of A such that
embd(G) = embd(A) and I> C J C I:

(i) £(A) <6,
(ii) A is stretched,
(iii) 7 = m’ forsome t > 1,

Moreover, the preservation of the embedding dimension works for all minimal Goren-
stein covers of stretched rings.

Appendix A consists on a manual on how to use the library GorensteinCovers.lib.
One of its most relevant features is the description and comparison of 3 different methods
to compute Macaulay’s inverse systems.

In Appendix B, we recall the structure theorem of stretched and Gorenstein almost
stretched k-algebras in terms of their analytic types, summarizing the fundamental results
of [21] and [15].

In Appendix C, we provide the explicit expression of varieties of minimal Gorenstein
covers M GC(A) of all low Gorenstein colength k-algebras A such that £(A) < 6 up to
analytic type.
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Notation

b

=

»n N o~

dim A
dimk A

char(A)

Anng (M)

Anna (q)

depthz (M)

ring of formal power series in variables 1, ..., x,, and coefficients
ink
unique maximal ideal (z1,...,x,) of R

equicharacteristic Artin local ring R/I

maximal ideal m/J

residue field of R, residue field of A

polynomial ring in variables x4, .. ., z,, and coefficients in k
polynomial ring in variables y1, .. ., ¥, and coefficients in k
polynomials in .S of degree equal or less than d

Krull dimension of A

k-vector space dimension of A

characteristic of the ring A

contraction operation

annihilator of the R-module M

annihilator of the ideal q of A

depth of the R-module M
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embd(A)
GC(A)
gel(4)

Gin(I)

I*

ida (M)

Lt=(1)
LC=(f)
Lt=(f)
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embedding dimension of A
set of Gorenstein covers of A
Gorenstein colength of an Artin ring

generic initial ideal of 1

associated graded ring of A with respect to the maximal ideal n

height of the ideal I
Hilbert function of the associated graded ring of A

continuous dual space

Homp(—, F)
Homp(—, R)
ideal of A

initial form of f € R

initial ideal of I

injective dimension of the A-module M

injective hull of the A-module M

injective hull of the residue field k of R

integral of the R-module M with respect to the ideal K in R
R-module [ , I+ /I+, where A = R/I

inverse system of /

k-vector space S generated by polynomials Fi, ..., F,
leading term ideal of the I with respect to a local ordering 7
leading coefficient of the series f € R with respect to 7

leading term of the series f € R with respect to 7



Vac(ay(E)

length of an A-module, dimension as k-vector space
lex-segment ideal associated to the Hilbert function h
variety of minimal Gorenstein covers of A

minimal number of generators of the ideal I in R
canonical module of A

orderof f € R

projective dimension of the A-module M

free resolution

dual free resolution with respect to (—)*

sub-R-module of S generated by polynomials Fi,..., F, with re-
spect to the contraction structure

socle ideal of the ring A

socle degree of the ring A

support of a series f € R

module of syzygies of an R-module M
Cohen-Macaulay type of A

term ordering in P

local ordering in R induced by 7 in P

Teter variety of A

set of ideals J in k[[z, y]] with Lt=(J) = E
set of Gorenstein ideals J in V' (E)

set of ideals J in V' (E) such that G = R/J is a Gorenstein cover of
A=R/I.
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CHAPTER 1

Preliminaries

In this first chapter, besides fixing the notation, we will provide the necessary back-
ground to understand both the object of our study and the different tools we will apply. In
order to keep it to a reasonable number of pages, some elementary commutative algebra
notions will not be defined or only a partial definition restricted to the zero-dimensional
case will be given. For complete proofs and general results, see [5].

1.1 Artin and Gorenstein rings

According to Cohen’s structure theorems, any local equicharacteristic Artin ring A
is isomorphic to a quotient of the regular local ring R = k[x1, ... xz,], for some n > 1,
by an m-primary ideal I of R, where m = (z1,...,x,) is the unique maximal ideal of
R. From now on, whenever we consider an Artin ring we refer to

A~Kk[xy,...z,]/1,

with maximal ideal n = m/I and residue field k. We denote by ¢(A) the length of A,
that is, the dimension of A as k-vector space.

DEFINITION 1.1.1 The socle degree of A = R/I is the smallest integer s such that
m*+! C I and it is denoted by socdeg A.

Note that we can also characterize the socle degree as the largest integer s such that
ns £ 0.
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DEFINITION 1.1.2 The socle of the Artin ring A = R/I, denoted by soc(A), is the anni-
hilator of the maximal ideal n in A, that is, soc(A) := Annap (n).

Observe that soc(A) is the largest ideal of A such that the A-module structure gives
at the same time an A /n-module structure on it. Therefore, the socle ideal is the largest
ideal equipped with a natural k-vector space structure.

DEFINITION 1.1.3 The Cohen-Macaulay type of A = R/I, denoted by 7(A), is the
dimension of the socle ideal soc(A) as k-vector space.

Note that 0 # n*°°d°8 4 C soc(A) C A, hence 1 < 7(A) < £(A).

EXAMPLE 1.1.4 Fields have socle degree 0 and Cohen-Macaulay type 1. Indeed, the
unique maximal ideal of k is (0) and sock = k.

Let us assume that in the representation R/I of A we are choosing the ring of power
series with a minimal number of variables n. In other words, ht(I) = dim R, where
ht(7) stands for the height of the ideal I. Using the well-known Auslander-Buchsbaum
formula and the Cohen-Macaulayness of both R and A, we have

pdp(A) = depthz(R) — depthp(A) = dim R — dim A = ht(I) = n,

where pdj(A) denotes the projective dimension of A as R-module. Therefore, we have
a minimal free resolution of A as R-module of length n

¢n ¢1

fnty 2 ph R A 0.

F.:0 R RVn

The Cohen-Macaulay type can also be retrieved from the last Betti number of A, that
is, T7(A) = by,.

DEFINITION 1.1.5 Consider the left exact contravariant functor (—)* = Hompg(—, R).
The canonical module, denoted by w 4, of an Artin ring A ~ R/I is the cokernel of
the dual map &% : (R*»-1)" — (R"»)". In literature it is often also called dualizing
module.

It can be proved that Anng(w4) = I, hence the canonical module w4 is also an
A-module.

REMARK 1.1.6 The cohomology of F; are precisely the Extg(A, R) modules. Observe
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that Ext’ (A, R) = 0 for any i # n and Ext%(A, R) ~ wa. In fact, F} is a free
resolution of w4 as R-module:

F;:0 Ry (/’"”(Rbnfl)*L(Rbn)*HwAHO.

We denote by F 4 (k) the injective hull of the residue field, that is, the minimal in-
jective A-module containing k. Since A is Artin local, thanks to Matlis theorem, any
injective module is isomorphic to a power of the unique indecomposable injective A-
module F4(k). It can be proved that the canonical module w4 is isomorphic to the
injective hull £ 4 (k).

DEFINITION 1.1.7 We denote by id 4 (A) the injective dimension of A as A-module, that
is, the length of the minimal exact sequence of injective A-modules

0— A Bk Lo E C s S p s L

In the zero-dimensional case, all rings are Cohen-Macaulay. Therefore, any Artin
ring A = R/I can be placed in one of the layers of the following hierarchy:

regular local ring

4

complete intersection ring

4

Gorenstein ring

4
Cohen-Macaulay ring

Artin regular local rings are fields. Zero-dimensional complete intersections are quo-
tients of R = k[x1,...2,] by an ideal I generated by a regular sequence of n elements.
We now want to focus on Artin Gorenstein rings. To finish this section, we will
provide several equivalent characterizations of such rings in terms of the socle ideal,
injective dimension or canonical modules, to mention a few of them. For a complete

review on Gorenstein rings both in arbitrary and zero dimension, see [30].
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DEFINITION 1.1.8 A zero-dimensional Gorenstein ring is an Artin local ring with min-
imal socle ideal, that is, 1-dimensional socle.

In other words, A is Gorenstein if and only if 7(A) = 1. Therefore, in terms of
minimal resolutions of A, this can be translated into b,, = 1. In fact, in this situation, the
Betti numbers b,,, . . . , by are symmetric around the middle of the resolution.

We can also approach the characterization of Gorenstein rings in terms of its canon-
ical module: A is Gorenstein if and only if its canonical module w4 is a free A-module
of rank 1, that is, w4 ~ A. In this case, F can also be regarded as a free resolution of a
A. Following this philosophy, we can say that free resolutions of a Gorenstein ring are
self-dual.

From the point of view of injective modules, Gorenstein rings are precisely rings of
finite injective dimension. In dimension zero, this can be translated into self-injective
rings A ~ E4 (k).

Now let us now summarize the previous equivalent characterizations of Gorenstein
zero-dimensional rings:

THEOREM 1.1.9 Let A be an Artinian local ring. The following are equivalent:

() ida(A4) < 0.

(i) ida(A) = 0.

(i) A= wy.

(iv) A is injective as a module over itself.

(v) A= Ex(k).

(vi) soc(A) is a 1-dimensional k-vector space, i.e. 7(A) = 1.
(vii) The ideal (0) in A is irreducible.
(viii) For every ideal qin A, (0:4 (0:4 q)) =q.

1.2 Hilbert functions

The Hilbert function of a local ring A with maximal ideal n is defined as the Hilbert
function of the associated graded ring Gry(A) = > ;5 n'/n* hence HF 4 : N — N
with -

HFA(Z) = dimk ni/n”l .

By definition, HF 4 (0) = 1.
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DEFINITION 1.2.1 We call the embedding dimension of A, denoted by embd(A), the
value of the Hilbert function of A evaluated at 1, that is, embd(A) := HF 4(1).

Observe that, if I C m?, then embd(A) = dim R. Hence, in the representation
A = R/I, we can always choose R to have HF 4(1) variables.

Again from the definition, HF 4 (i) = 0 for all ¢ > socdeg A. Therefore, the Hilbert
function produces a finite succession of integers {1, 7, HF 4(2),...,HF 4(s)}, where s
is the socle degree of A.

Besides having finitely many non-zero values, a lot more is known about the shape
of Hilbert functions of Artin rings.

DEFINITION 1.2.2 The expansion

Cn Cpn—1 Cj
CcC = —+ + -+ ,
n n—1 j

such that ¢, > ¢,—1 > ¢; > j > 1, is called the Macaulay’s n-th representation of c.

The values ¢, . .., ¢; are called Macaulay’s n-th coefficients of c.

Such a decomposition of ¢ exists and it is unique. The algorithm of this construction
is simple: take the greatest c,, satisfying ¢ > (). Repeat the step changing ¢ for c— ()
and n for n — 1. Proceed in a similar way until the difference is zero or we reach c;.

DEFINITION 1.2.3 For any n > 1, we define 0 =0, and for ¢ > 1,

cn+1 Cn—1+1 ci+1
+ + -+
n+1 n j+1

) —

The following result describes exactly how Hilbert functions of Artin rings look like.
Even more, it says that given any such numerical function, there exist an Artin ring

realizing it.
THEOREM 1.2.4 Let F' : N — N be a numerical function. The following are equivalent:

(i) Exists an Artin local ring A = R/I such that HF 4 (i) = F'(4), for any ¢ > 0.
(i) F(0)=1,F(i+1) < F(i), forall i > 1, and F(i) = 0 for i large enough.
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1.2.1 Hilbert functions of Gorenstein rings

What do Hilbert functions of Artin Gorenstein rings G = R/T look like? A lot of lit-
erature exists on this subject, see [32]. In the general case, the known results only provide
necessary conditions on numerical functions in order to correspond to Hilbert functions
of Gorenstein rings. However, in codimension 2, they are explicitly characterized.

Consider a Gorenstein ring GG of socle degree s. Note that n® = socG is a one
dimensional k-vector space and n**! = 0, hence HF;(s) = 1. Therefore, any Hilbert
function associated to a zero-dimensional Gorenstein ring must be of the form {1, n,
HFg(Q), ey HFg(S — 1), 1}.

Another useful tool is the so-called shell formula provided by Iarrobino in [B2].
Again, it only enables us to discard some particular numerical functions from being the
Hilbert function of a Gorenstein ring whenever it fails the test, but it never ensures this
Gorenstein ring exists whenever it passes the test.

The idea of the shell formula is based on the fact that in the graded situation we know
that Gorenstein rings have symmetric Hilbert functions. We will briefly introduce the Q-
decomposition of a Gorenstein algebra G, that allows us to link the Hilbert function of
G with the Hilbert function of a suitable Gorenstein graded algebra.

Consider the Artin Gorenstein ring G = R/I of socle degree s and its associated

graded ring
s+1

Gro(G) = @Pn'/m .
i=0

Several different filtrations can be considered in G. Combining the standard n-adic
filtration {n’};>o and the Lowy filtration {(0 :g n%)};>0, we can define for any a in
{0,1,...,s+ 1} the Gr,(G)-module

(0 :nstlza=i)ynnt

C(a)7 = (0 . ns-‘rl—a—i) N nitl g Gi’

where G; denotes the piece of degree 7 of the graded ring Gr,(G). Then

C(a) = P Cla);

i>0

is a graded G, (G)-module and, in particular, G;C(a); C C(a);;.
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PROPOSITION 1.2.5 [45, Proposition 7.1.1] With the previous notations one has:

(i) C(0); =0foralli > s.

(ii) If @ > 1 then C'(a); = 0 forall i > s — a.
(iii) Gro(G)=C(0) D C(1)D---DC(s)=0
(iv) C(a) is a k-vector space of finite dimension.

DEFINITION 1.2.6 Forany a € {0,1,...,s — 1} we define the graded Gr,(G)-module

Q(a) = C(a)/Cla+1).

The set {Q(0),Q(1),...,Q(s — 1)} is called the ()-decomposition of G.

PROPOSITION 1.2.7 [45, Proposition 7.1.4] Let GG be an Artin Gorenstein ring of socle
degree s. Then Q(0) = Gr,(G)/C(1) is, up to isomorphism, the only Artinian graded
Gorenstein quotient of Gr,(G) of socle degree s.

PROPOSITION 1.2.8 [45, Proposition 7.1.5] Let G be an Artinian Gorenstein ring of socle
degree s. The following facts are equivalent:

(i) Gra(G) is Gorenstein of socle degree s;
(i) C(1) =0;
(iii) C(a) =0, forall a > 1;
)
(

(iv) Q(a) =0, forall a > 1;
V) Gro(G) = Q(0).

In general, the associated graded algebra G, (G) of a Gorenstein ring G is not Goren-
stein. In fact, Gr,(G) is Gorenstein if and only if HF ;; is symmetric, see [45, Theorem
7.2.6].

THEOREM 1.2.9 (Shell formula) Let G be an Artinian Gorenstein ring of socle degree s.
Then, for all 7 > 0,

HF ¢ (4) Z Hoa (i)

where Hg(,) are symmetric functions satisfying Hg(q)(i) = Hga)(s — a — i) and
HF (o) satisfies Macaulay’s conditions.
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EXAMPLE 1.2.10 Consider an Artin ring A with Hilbert function {1,3,4,1}. If A is
Gorenstein, then

2
HF A (i) = Z HF g (a)(4),
a=0

where HF ¢ (,) are symmetric functions. In particular, HF(1)(0) = HF()(2) and
HF g(2)(0) = HF g(2)(1). Hence any Q-decomposition of A has the following possible
associated Hilbert function decomposition:

i o 12 3
Hat)) |1 34 1
QO) |1 b b 1
Q) [0 cl 0 0
Q2 |0 0 0 0

Note that | is the symmetry axis of HF ooy and | is the symmetry axis of HF (3).
But this decomposition is not possible because b = 4 and b+ ¢ = 3. Therefore, there
exists no Gorenstein ring with Hilbert function {1, 3,4,1}.

In codimension 2, there is a numerical characterization of the Hilbert function of the
ring A = R/I in terms of the minimal number of generators () of I, see [4] for more
details:

THEOREM 1.2.11 Let F = {1,2,...,d, hg,...,hs} be a numerical function satisfying
d=hg_1> hg > hd+1 >--->hg>1,letp = max{hj,l —hj 1 g > d} and let m
be a positive integer. The following facts are equivalent:

(i) There exists an ideal / C R = k[x,y] such that HF p,; = F and (1) = m.
(i) p+1<m<d+1.

Gorenstein rings of codimension 2 are complete intersections, hence they are of the
form A = k[xz,y]/I, where I is minimally generated by two elements. From The-
orem [L.2.11], it follows that the jump between two consecutive elements of its Hilbert
function cannot be bigger than 1.

EXAMPLE 1.2.12 Any ring with Hilbert function {1,2,3,4,3,3,1} will not be Goren-
stein, whereas {1, 2, 3,4, 3,3,2, 1,1} does admit a Gorenstein ring.
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1.3 Gorenstein covers and Gorenstein colength

The following fact is a well-known commutative algebra result:

LEMMA 1.3.1 Let A = R/I be a local Artin ring. Then A is a quotient of an Artin
Gorenstein ring G = R/ J.

In fact, G can be taken as Nagata’s idealization G = A X w4, see [B, Theorem 3.3.6].

DEFINITION 1.3.2 We say that an Artin Gorenstein k-algebra GG is a Gorenstein cover
of A if there is a power series ring R = k[z1,...,2,] suchthat A = R/I, G = R/J
and J C I. We denote by GC'(A) the set of Gorenstein covers of A.

Then we can define the Gorenstein colength of A as follows:

DEFINITION 1.3.3 The Gorenstein colength of A is
gcl(A) = min{¢(G) — £(A) | G is a Gorenstein cover of A}.

A Gorenstein cover G of an Artin ring A is minimal if £(G) = ¢(A) + gcl(A).

1.4 Inverse systems

Inverse systems are a useful tool to deal with local Artin k-algebras and, in a more
general setting, to study isolated points in a variety. Some properties of ideals in R that
have a difficult computational approach have a particularly nice translation into inverse
systems: quotient ideals, elimination of variables or even differential equations. See [23,
Sections 7.1.5-7.1.8] for more details.

Macaulay’s inverse systems are the main tool we use along this thesis to study the
Gorenstein colength of an Artin ring A and to find minimal Gorenstein covers G of A. We
devote this section to the introduction of the basic notions surrounding inverse systems.
In Section , inverse systems are introduced as Matlis duals, see [[14] for more details.
On the other hand, in Section inverse systems are presented as orthogonal k-vector
spaces, see [39] and [23].
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1.4.1 Matlis and Macaulay dualities

Let E be the injective hull Er (k) of the residue field k of R. Recall that the con-
travariant functor (—)¥ = Hompg(—, E) is exact.

DEFINITION 1.4.1 Given an R-module M, we call Homg (M, Er(k)), denoted by M"Y,
the Matlis dual of M.

Matlis duals satisfy the following properties, see [[14]:

THEOREM 1.4.2 Let M be a finitely generated R-module. Then

(i) RV ~ Eand EY ~ R.

(i) £(M) =e(MY).
(iii) k kY, R~ RV and £ ~ EVV.
(iv) Eis Artin.

The previous result applies to a more general setting of noetherian complete local
rings, but we restrict to the ring of formal power series R for the sake of simplicity,
given that it is enough for the scope of this work. Now we state the well-known Matlis
duality in our setting:

THEOREM 1.4.3 (Matlis duality) The functor (—)V defines an anti-equivalence between
finitely generated R-modules and Artin R-modules. (—)" is the identity functor in both
the category of R-modules and the category of Artin R-modules. In particular, if M is
either a finitely generated R-module or an Artin R-module, M"Y ~ M.

Let S = K[yi, ..., yn] be the polynomial ring with n variables and let us we denote
by m the homogeneous maximal ideal (yi, ..., y,) of S. The ring S can be considered
as an R-module by contraction:

RxS — S
B—a .
Y B za
(@%y%) = 2oyl = ’
0, otherwise.
Note that we are using multi-index notation: & = (o, ..., a,)inN", o] = Y0 | a;

and z = ' - - - x%~. We say that 5§ > « if and only if 8; > «; forall 1 <i < n.

10



1.4. Inverse systems

If char(k) = 0 then S is also an R-module with the module structure induced by the
usual derivation.

THEOREM 1.4.4 (Gabriel) [26] If k is of characteristic zero then
Er(k) = (S, derivation) = (S, contraction).

If k is of positive characteristic then Er (k) = (.S, contraction).

Since the characteristic of the ground field k is arbitrary, from now on we will use
the structure of S as R-module defined by contraction.

We denote by (F7, ..., F,.) the sub-R-module of S generated by polynomials F},
..., F,. of S. Note that (F1, ..., F,) can also be regarded as a k-vector space generated
by all the contractions of F7, ..., F,.

DEFINITION 1.4.5 Given an m-primary ideal I C R, we call the Macaulay inverse sys-
tem of I, denoted by I+, the sub-R-module {g € S | I o g = 0} of S. Given a
sub-R-module M of S, we denote by M+ the ideal {f € R| fog=0forallg € M}
of R.

Observe that the inverse system of I is precisely the Matlis dual of the Artin R-
module R/I:

Artin R-modules <+— finitely generated R-modules
R/I +—— (R/I)V =1+
MY =M+ «— M

Now, from Theorem , we can recover the classical result of Macaulay, see [36],
[R4] and [32].

PROPOSITION 1.4.6 (Macaulay’s duality) There is an order-reversing bijection | between
the set of finitely generated sub-R-submodules of .S and the set of m-primary ideals of
R given by: if M is a submodule of S, then M+ = (0:z M) and I+ = (0 :5 I) for an
ideal I C R. Moreover, A = R/I is Gorenstein of socle degree s if and only if I+ is a
cyclic R-module generated by a polynomial of degree s.

Observe that we can identify I ~ (0 :5 I) ~ (0 :p, ) = Ea(k) ~ wa. For the
sake of simplicity, we will only use the inverse systems notation, that is, 1.

11



Chapter 1. Preliminaries

1.4.2 The orthogonal of an ideal

The goal of this section is to introduce inverse systems in an analogous way as Mour-
rain and Elkadi did in their book [23]. Thus we can use the tools presented in [39] to deal
with inverse systems, that is, the integration method (see Chapter f). Their framework
is more general but we will focus on the local zero-dimensional case. See [24] for more
details.

The ring R = k[z1, ..., z,] is a topological k-vector space with the m-adic topol-
ogy. The field k can also be endowed with a topological structure by considering the
discrete topology.

DEFINITION 1.4.7 We denote by R* the continuous dual space of R, that is, the k-vector
space of continuous k-linear maps ¢ : R — k.

REMARK 1.4.8 Observe that R* is a sub-k-vector space of the dual space of R, that is,
Homy (R, k).

LEMMA 1.4.9 ¢ : R — k is continuous with respect to the m-adic topology in R and
the discrete topology in k if and only if p(m?) = 0 for some ¢ > 0.

Proof: Recall that 0 is an open set in k with respect to the discrete topology, then it is
enough to check that ker ¢ is an open set with respect to the m-adic topology. [

Therefore, any continuous k-linear map ¢ € R* is completely determined by its
image at finitely many monomials 2z in R. Set

v: R — k
¥ — d,

such that d,, = 0 for any || > t, where ¢ is some positive integer. The image of any
series f = > nn @™ € R can be defined by k-linearity as

o(f)=¢ ( > aw“) = > aap(a®).

e e Nﬂ, a e N’Il
Note that this is well-defined because only finitely many terms in the formal sum are non-

zero. We can think of (d,).en» as a sequence in k, hence A =} yn day®

aeNn

12



1.4. Inverse systems

is a polynomial in S = k[y1, ..., yn].
Recalling the contraction structure we defined in the previous section, we have

1, ifa=7;
(a24) (0) =
0, otherwise.
Given the polynomial A =} . doy® in S, note that (z* o A) (0) = d,, for any
a € N7, hence we get the following maps:

R* — D k — S
@ (0@ ))aenn P Daen 9@y
R — k o
(%o A)(0))penn A

PROPOSITION 1.4.10 (See [24, Proposition 1].) The map A : R* — S defined by
Ap) = D qenn @(x®)y® is an isomorphism of topological k-vector spaces.

Moreover, we can define an R-module structure on R* via the multiplicative action

g-¢p: R — k
fo— elgf)

forany g € R and ¢ € R*. Note that g - A is indeed k-linear and continuous.

PROPOSITION 1.4.11 Consider the R-module structure in .S given by contraction. Then
A is an isomorphism of R-modules.

Proof: For any 3 € N, define ¢z such that ¢g(z*) = d4,3, where d, g is the Kro-
necker delta. Note that this is the dual k-basis in R*. Consider 27 € R, then

a7 pp) =Y (@7 p)@®)y® = D wp(a?T )y =y
aeNn a€eN™

13



Chapter 1. Preliminaries

On the other hand,

2 oNpp) =270 Y wpa)y* =170y’ =y
aeNn

Therefore, the R-module structures on R* and S given by - and o, respectively, are
compatible. [J

From now on we will identify maps ¢ : R — k in R* with polynomials A in S.
Observe that the multiplication by z; acts on the elements A of S as the product by the
inverse of the variable y;. Indeed, taking A = 3/°, we get

(i - y?)(f) =y (i f) = ((if) 0 y”) (0) = (f o (wi0y?)) (0) =
(foyflmyfi*l“-yﬁ") (0) =gyl Tyl (),

for any f € R. Thatis, x; can be identified with v, ! and this justifies the terminology
of inverse systems as claimed in [23].

DEFINITION 1.4.12 Given an m-primary ideal I C R, we define its orthogonal as the
sub-k-vector space of R* given by

It ={A € R*: A(f) =Oforany f € I}.

REMARK 1.4.13 The m-primality condition on I arises naturally when we require [ to be
contained in ker ¢ for a continuous map ¢.

Note that the definition of orthogonal ideal is consistent with the notion of inverse
system in Definition [L.4.5:

PROPOSITION 1.4.14 Let I be an ideal in R. Then

{Ae S| foA=0forany feI}={A € S|(foA)(0)=0forany f € I}.

Proof: The right inclusion is direct. If (f o A)(0) = 0 for any f € I, in particular it

14



1.4. Inverse systems

holds for a system of generators f1, ..., f,, of I and hence, forany 1 < i < m,

fioh= > ay €S arck
1<|LISN

Consider the highest non-zero term ary” of f; o A, then
zFo(fioA)=ay €k.
But 2 f; € I, hence (2% f;) o A = 0. Therefore, az, = 0 and hence f; o A = 0. O

Observe that the elements of I can be regarded as continuous k-linear maps on
R/I. Consider the projection map = : R — R/I. Forany A’ : R/I — k we obtain a
linear map A’ o on R. Forany f € I, (A’ o) (f) = 0 and hence A’ o € I+. On the
other hand, consider a linear map A on R such that it vanishes on all polynomials in 7,
that is, I C ker(A). Then it factors through  in the sense that there exists A’ € (R/I)"
such that A = A’ o 7. Therefore, 7 induces an isomorphism

T (R/D)" — I+

AN — ANonm

REMARK 1.4.15 Note that the continuous dual space (R/I)* is, in fact, the dual space of
R/I. Indeed, the m-primality of I ensures continuity of any k-linear map ¢ : R — k
that vanishes on I, since m* C I C ker ¢ for some ¢ > 0, see Lemma .

Hence Macaulay’s duality can then be reprashed as:
THEOREM 1.4.16 The m-primary ideals in R are in bijection with sub-k-vector spaces of
S stable by contraction.

See [24], [B6], [28] and [B7] for more details about these bijections:

finitely generated
m-primary finitely generated
-

& k-vector spaces of S
ideals of R sub- R-modules of S

stable by contraction

15



Chapter 1. Preliminaries

REMARK 1.4.17 Observe that in [23], I is considered as an ideal of the ring of polynomi-
als S and I is defined in the dual of S, which is isomorphic to the ring of power series
R. Consider the maximal ideal mg in S corresponding to the point at the origin in k™ and
assume that / is an mg-primary ideal. By [23, Proposition 7.30], it can be proved that
I+ is actually formed only by polynomials. On the other hand, since I C mg contains
no polynomials with non-zero constant terms, the extension /R of [ in R is m-primary
and S/I ~ R/IR. Therefore, I can be regarded as an m-primary ideal of R and I as
a sub- R-module of S.

1.4.3 Dictionary

Well-known results and properties can be reproved using inverse systems. A paradig-
matic example is Lemma [L.3.1], where adding this tool simplifies the proof considerately:

LEMMA 1.4.18 (See Lemma [[.3.1.) Let A = R/I be a local Artin ring. Then A is a
quotient of an Artin Gorenstein ring G = R/J.

Proof: If s is the socle degree of A then I+ is generated by polynomials of degree
at most s, by [20, Proposition 2.5], so I+ C S<s. Since S<s C (y5---y5), the ideal
J = Anng(y; - - - y3) satisfies the claim. O

Moreover, several invariants of Artin rings can be translated easily in terms of inverse
systems. Next we will provide some examples. For extended details, see [[14].

PROPOSITION 1.4.19 Let A = R/I be an Artin local ring. For any i > 0,

N It NS<i+ S

()= ——a ——
S

is an R-module with the contraction structure and

e foralli <0, HF 4(i) = dimy (I+);;
« (socA)Y =TIt/ (molt);
« 7(A) = dimy I/ (mo It) = p(Ih).

In particular, if n = 2, then u(I) = 7(A4) + 1.

16



1.5. From graded rings to local rings

1.5 From graded rings to local rings

In this section, we will recall some facts around the idea of extending results from
graded rings to local rings. In particular, we introduce local orderings, standard basis and
Grauert’s division theorem.

REMARK 1.5.1 Let P = k[zy,...,2,]. Given a zero-dimensional ring A = R/I, we
can find polynomial generators f1, ..., f,, of I. Hence

R P

I (fi,- o, fm)P’

We will abuse notation and denote by I the ideals generated by f1, ..., fm in both R and
P, which will always be clear by context.

If I is a homogeneous ideal, then A = R/I can be identified with the graded ring P/I
and everything we know about graded rings applies. However, if I is not homogeneous
we can still find a homogeneous ideal J and a monomial ideal F in P such that

HFR/I = HFP/J = HFP/E

From both the computational and theoretical point of view, to deal with ideals, it is
extremely practical to extend the notion of Grobner basis in a polynomial ring P to the
local case. To that end, we need to define a total ordering compatible with the local
structure.

Any element f € R can be writtenas 3, > ca.

DEFINITION 1.5.2 We define the order of f € R as ord(f) = min{|a| : ¢, # 0} and
the initial form of f € R as the homogeneous polynomial f* =}, _,.q(s) CaZ™-

DEFINITION 1.5.3 Given an ideal I C R, we define the initial ideal of I as the homoge-
neous ideal of P generated by the initial forms, i.e.

I"=(f":fel)pCP=Kk[zi,...,z,)

DEFINITION 1.5.4 We call f1,..., f,, a standard basis of I if I = (fy,..., f,,) and
I* = (fy,..., fr). Thatis, f1,..., fi is a system of generators of I, not necessarily

17



Chapter 1. Preliminaries

minimal, that also generates its initial ideal.

Consider a term ordering 7 in P. This induces a reverse-degree ordering 7 in R such
that for any monomials m, m’ in R, m >+ m' if and only if

deg(m) < deg(m')
or
deg(m) = deg(m') and m >, m'.
We will call 7 a local degree ordering induced by the global ordering 7.

DEFINITION 1.5.5 We call the support of f = Z\a|>0 car® € R, the set

Supp(f) :={z% : ¢cq #0}.

We define the leading term of f € R with respect to 7, denoted by Lt=(f), as the
monomial 2% € Supp(f) such that z* >+ m for any m € Supp(f). LC=(f) = ¢4 is
its leading coefficient and tail(f) = f — LC#(C) Lt=(f) is its tail.

DEFINITION 1.5.6 Given an ideal I C k[z1,...,x,], we define the leading term ideal
of I as the monomial ideal in P generated by the leading terms with respect to the local
degree ordering 7, i.e.

Ltr(I) = (Lte(f) : f € )p C P =K1, 2.

DEFINITION 1.5.7 We call f1,..., f,, a T-enhanced standard basis of I if I = (fi,
covs fm) and Lt=(I) = (Lt=(f1),...,Lt=(fm)). Thatis, fi,..., fm is a system of
generators of 7, not necessarily minimal, that also generates its leading term ideal with
respect to 7.

REMARK 1.5.8 The terminology of standard basis is not consistent in literature. The
notation used here is the same as in [4], [[19]. However, in another reference we often
cite, [27], a T-enhanced standard basis is called standard basis.

The analogous notion to the enhanced standard basis in the polynomial case corre-
sponds, as expected, to Grobner basis. Let us rephrase the definition as follows:

18
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DEFINITION 1.5.9 Consider an ideal J C P and a term ordering 7 in P. Wecall g1, .. .,
Jgm @ T-Grobner basis of J if it is a system of generators of .J and generates the leading
term ideal of J with respect to 7, i.e.

Lt (J) = (Lt-(g1),- .-, Lt-(gm))-
Some basic properties are proved in [4, Proposition 1.5, Corollary 1.6] and [[19]:

PROPOSITION 1.5.10 Given an m-primary ideal I of R, the following properties hold:

() Lt=(f) = Lt-(f").
(i) Lt=(I) = Lt (I*).
(iii) fi1,..., fm is a T-enhanced standard basis of I if and only if f{,..., f isa 7-
Grobner basis of ™.
(iv) Any 7-enhanced standard basis is also a standard basis.
(v) HFr/; =HFp/1- = HFp,Lio(1)-

The following example from [[19] shows that a standard basis is not always a 7-

enhanced standard basis:

EXAMPLE 1.5.11 Consider the ideal I = (g1, g2) in k[z,y], where g; = 22 + %2 and
g2 = 2y +y°>. Then g7 = 2% +42, g5 = 2y, Lt=(g1) = 22, Lt=(g2) = zy. Observe that
(91,92) = (97, 95), hence I is homogeneous and g1,g2 is a standard basis. In particular,
y3 = ygi —xg3 isin I. However, y* does not belong to (Lt=(g1 ), Lt=(g2)), hence g1,92
is not a 7-enhanced standard basis of I.

THEOREM 1.5.12 (Grauert’s Division Theorem) Let f, f1, ..., f,, be elements in R. Then,
there are q1, ..., qm, 7 in R such that

f= Z gifi+r
i=1
satisfying the following properties:

(i) No monomial of r is divisible by any Lt=(f;), for 1 <i < m.
(i) If ¢; # 0, Ltz(qi fi) <7 Lt=(f).
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DEFINITION 1.5.13 We say that a finite subset G of R is reduced with respect to 7 if the
following conditions hold:

(i) 0eG.

(ii) Lt=(f) 1 Lt=(g) for any two different elements f, g € G.
(iii) LC=(f) = 1 forany f € G.
(iv) Forany f € G, if M € Supp(tail(f)), then M ¢ Lt=(G).

DEFINITION 1.5.14 The residue r of this division is called the normal form of f with
respect to a finite subset GG of R and it is denoted by

NF(f | G) = 1.

This normal form is, in fact, a reduced normal form. The existence of a reduced normal
form is fundamental in order to inherit in R all properties from Grébner basis in P:

 If Sy, 5, are T-enhanced standard basis of I and f € R, then NF(f | S;) =
NF(f | S2). In other words, the normal form of an element in R is unique when
computed with respect to any 7-enhanced standard basis.

» Buchberger’s criterion. See Theorem below, for complete details see [27,
Theorem 1.7.3].

* A reduced T-enhanced standard basis is uniquely determined.

DEFINITION 1.5.15 Consider f, g in R with leading terms Lt=(f) = z* and Lt=(g) =
2. Sety := (max(ay, f1), . .., max(ay, 3,)). Then we define the S-polynomial of f
and g as

LC=(f) s

S(9) =27 ~ {0

THEOREM 1.5.16 (Buchberger’s Criterion) Consider a finite subset G of elements f1, ...,
fm in R. Let NF(— | G) be the reduced normal form provided by Grauert’s division
theorem. The following are equivalent:

(i) G is a T-enhanced standard basis of .
(ii)) NF(f,G) =0forall f € I.
(iii) Each f € I has a standard representation with respect to NF(— | G).
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1.5. From graded rings to local rings

(iv) G generates I and NF(S(f;, f;) | G) =0,forl1 <i<j<m.
(v) G generates I and NF(S(f;, f;) | Gij) = 0, for a suitable subset G;; C G and
1<i<j<m.

THEOREM 1.5.17 (See [27, Theorem 6.4.3].) Let P C R be equipped with compatible
local degree orderings 7/, 7 respectively. Let f1,..., f., be the generators of an ideal
J in P such that Ltz (J) = (Lt=(f1), ..., Lt7(fm)), then fi,..., fm is a T-enhanced
standard basis of I = JR.

The previous theorem implies that, whenever an ideal I of R is generated by poly-
nomials fi,..., f, in R, we can look for its standard basis in J = I N P. We must be
careful here, since in general, f1,..., fr is not a system of generators of J in P, even
when it is a reduced 7-enhanced standard basis.

PROPOSITION 1.5.18 Given a 7-enhanced standard basis f1, . . ., f,,, of azero-dimensional
ideal I C R, we can always find polynomials f7,..., f/, that form a 7-enhanced stan-
dard basis of I such that Lt=(f;) = Lt=(f/) and deg f; < s + 1, where s is the socle
degree of R/I.

Proof: Consider a 7-enhanced standard basis f1, ..., f,, € R of I, where
fi= Z clx®.
|or|>0

Now set new elements f; by removing from f; the terms of degree higher than s+ 1 and
define

fmfie Y dat= Y dan
lal>s+1 la|<s+1

Clearly f/ € P and Lt=(f]) = Lt=(f;). Set I’ = (f1{,...,f},) C R, note that
Lt=(f;) € Lt=(I"), hence Lt=(I) C Lt=(I").

Since a; = 37,5511 Cox® € m*H C I, then f] = f; —a; € I. Hence I’ C I. But
then Lt=(I) C Lt=(I") C Lt+(I) and hence Lt+(I") = Lt=(I).

Therefore, by [4, Corollary 1.6], HF g;; = HF p/ 111y = HF p; Li-(1r) = HF g/
In particular, £(R/I) = ¢(R/I), and the equality I = I’ follows. O
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Another result that can be translated into the local setting is Schreyer’s theorem. In [4,
Theorem 1.10], Bertella proves that a system of generators of the module of syzygies of
Lt=(I) can be lifted to a system of generators of the module of syzygies of I:

THEOREM 1.5.19 Let I be anideal of Randlet f1, ..., f,, be a7-enhanced standard basis
of I. Let ¥ = {o1,...,0:} be a homogeneous system of generators of Syz(Lt=(I)).
Then Syz(T) is generated by m, . .., m;, where m; is a lifting of o;.
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CHAPTER 2

Low Gorenstein colength

The Gorenstein colength of an Artin local ring A = R/I, denoted by gcl(A), is an
invariant introduced by Ananthnarayan in [ that tells us how far from A is the closest
Artin Gorenstein ring G = R/.J, see Definition [I.3.3. Although the computation of this
invariant is still an open problem except for very special families of rings, see [2], some
characterizations have been provided for gcl(A) < 2. We say that these rings have low
Gorenstein colength.

In [44, Theorem 2.3], Teter characterized what later on Huneke and Vraciu, see [31],
would call Teter rings or almost Gorenstein rings. They are local Artin rings A for which
there exists an Artin Gorenstein ring G such that A ~ G/ soc(G). Then

¢:G— G/soc(G) ~ A andhence gcl(A) < 4(G) —L(A) =1.

For embd(A) > 2, Teter rings correspond exactly to rings of Gorenstein colength 1, see
Proposition .1.3.

The approach of Teter, Huneke-Vraciu and Ananthnarayan is based on the existence
of self-dual ideals of A with respect to the functor (_)+ = Hom (—,w4), where wy is
the canonical module of A.

THEOREM 2.0.1 (Teter) Let A = R/Ibean Artinring. Then the following are equivalent:

(i) gel(A) < 1.
(ii) Either A is Gorenstein or there is an isomorphism ¢ : n — n* such that p(z)(y) =
o(y)(x), for every z,y in n.

We name the symmetric property of ( as Teter’s condition, which is precisely what
Huneke and Vraciu overcome in [31, Theorem 2.5]:
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THEOREM 2.0.2 (Huneke-Vraciu) Let A = R/I be an Artin ring such that char(k) # 2
and soc(A) C n?. Then the following are equivalent:

(i) gel(A) < 1.
(ii) Either A is Gorenstein or n is a self-dual ideal of A.
(iii) There exists an epimorphism f : w4 — n.

Ananthnarayan extends in [[l, Theorem 5.5] the previous result to any ring of low
Gorenstein colength.

THEOREM 2.0.3 (Ananthnarayan) Let A = R/I be an Artinring and let m be the maximal
ideal of R. Suppose that I C m® and char(k) # 2. Then the following are equivalent:

(i) gel(A) <2.
(ii) There exists a self-dual ideal ¢ C A such that £(A/q) < 2.
(iii) There exists an epimorphism f : w4 — ¢, where q is a self-dual ideal of A such
that £(A/q) < 2.

Since the canonical module w4 can be identified with the inverse system [ L see
Section [.4.1, another natural approach to the problem is considering it from the inverse
system perspective. This was first done by Elias and Silva to study Teter rings. In [20,
Theorem 3.4], the restrictions on the characteristic and the socle of Huneke-Vraciu are
dumped and a new characterization of Teter rings in terms of their Macaulay inverse
system is provided:

THEOREM 2.0.4 (Elias-Silva) Let A = R/I be a non-Gorenstein Artin ring with maximal
ideal n and socle degree s > 1. Then the following conditions are equivalent:

(i) gcl(A) =1.

(ii) There exists a degree s+ 1 polynomial ' € Ssuchthat I+ = (z,0F,...,x,0F).
(iii) There exists an epimorphism of A-modules I+ — n.
(iv) A is a Teter ring.

In particular, if A is a Teter ring, then the Cohen—Macaulay type of A is n.

This chapter is devoted to the study of low Gorenstein colength rings and establishes
a connection among Macaulay inverse systems, minimal Gorenstein covers and self-dual
ideals.
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In Section .1, we present the first main result of this chapter. Theorem shows
the exact relationship between the inverse system I+ of A = R/ and the inverse system
J+ of a minimal Gorenstein cover G = R/.J by considering the colon ideal K - defined
as (J* :g (F)):

THEOREM 2.0.5 (See Theorem P.1.7.) Let A be an Artin ring such that gcl(A) < 2. If G
is a minimal Gorenstein cover of A, then
(i) embd(G) = embd(A),
(i) if A = R/I with dim(R) = embd(G) = embd(A) and F is a generator of J*,
G =R/J,then I C K and
I’cJcl

Moreover, after a linear isomorphism of R we may assume:

R, if  gcl(A) =0;
Krp=4¢ m, if  gcl(A) = 1;
(21, s Tp_1,72), if gcl(A) =2

n

Several examples are given to answer natural questions regarding the uniqueness of
such covers. Section .9 contains the second main result, Theorem P.2.5, which extends
and improves the characterization of Artin rings A = R/I of Gorenstein colength two
in [[Il, Theorem 5.5]:

THEOREM 2.0.6 (See Theorem for more details.) Let A = R/I be an Artin ring
with maximal ideal n and socle degree s > 1. We assume that A is neither Gorenstein
nor Teter, I C m® and char(k) # 2. Then the following conditions are equivalent:

(i) gel(A) =2,
(ii) after a linear isomorphism of R there exists a polynomial F' € S of degree s + 1
ors+2suchthat It = (z; 0 F,... .2, 10 F,22 o F),
(iii) there exists an epimorphism of A-modules f : I+ — q, where q is a self-dual
ideal of A such that £(A/q) = 2.

Examples and families of Gorenstein colength two rings are provided with explicit
descriptions of both the self-dual ideals and the epimorphisms that appear in the previous
characterization. In Section .3, we finish the chapter giving some hints on what occurs
in higher colength and a detailed example for gcl(A) = 3.
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We perform all the computations in Singular, [[11], using the Singular library [[13] for
inverse system related computations.

Part of the results of this chapter are published in [[16].

2.1 Gorenstein covers

Let us start by redefining the notion of minimal Gorenstein cover in terms of the
Macaulay’s inverse system.

DEFINITION 2.1.1 We say that G = R/J, with J = Anng F, is a minimal Gorenstein
cover of A = R/I if and only if I+ C (F) and /(G) = ¢(A)+ gcl(A).

REMARK 2.1.2 Note that, a priori, embd(A) and embd(G) are not necessarily the same.
Nevertheless, according to the main result in this section, Theorem , if gcl(A) <2
then the embedding dimensions of A and any minimal Gorenstein cover G of A coincide
and the number of variables n of R can always be taken as HF 4 (1) = HF (1) in this

case.

In the next proposition we recall some basic results on Gorenstein colength.

PROPOSITION 2.1.3 Let A be a local Artin k-algebra.

(i) 0 < gcl(A) < £(A),
(ii) gcl(A) = 0 if and only if A is Gorenstein,
(iii) if embd(A) > 2, then gcl(A) = 1 if and only if A is Teter.

Proof: (i) We know that any Artin ring A is a quotient of the Artin Gorenstein ring
G = A X wa, where x stands for Nagata’s idealization [b, Theorem 3.3.6]. On the other
hand, since A is a k-algebra, G is a k-algebra as well. Notice that if the embedding
dimension of A is b, then the embedding dimension of G isn = b+ 7(A), so Aand G
are quotients of R and G is a Gorenstein cover of A. Since the length of G is 2/(A), we
get the claim.

(i) is trivial. (¢44) Assume that gcl(A) = 1. Then there exists a Gorenstein cover
G = R/J of A = R/I such that ¢(G) = ¢(A) + 1. In particular ¢(I/J) = 1. Hence
H = I/J C G is the socle of G. From this is easy to deduce that A = G/soc(G).
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Conversely, if A = G/soc(G), where G is a Gorenstein cover of A, then gcl(A4) < 1.
From [20, Proposition 3.7] we get the claim. [J

From now on we will assume that the embedding dimension of A = R/I is the
dimension of R. Note that, since we are interested in non-Gorenstein rings A, we can
also assume that embd(A) > 2. Otherwise, if R = k[x], any ideal of R is of the form
I =(z"),n > 1. Then I+ = (y"~1) is cyclic and hence A = k[x]/(x™) is Gorenstein
(in fact, it is much more: a complete intersection ring).

We can present G = R’/J, with R’ a power series ring such that the embedding
dimension of G coincides with the dimension of R/, see Remark P.1.2.

Let A = R/I be an Artin ring with R a power series ring over k such that n =
dim R = embd(A). Then there is an R-module monomorphism

oIt — S=Xy,...,un)

Let G = R’/J be a Gorenstein cover of an Artin ring A = R/I with R’ a power se-
ries ring over k such that n+¢ = dim R’ = embd(G). We assume that R is a quotient of
R’ by a linear regular sequence, i.e. we may assume that R’ = K[z1,...,Zn, Tpi1,-- -,
Zn+t]. Then we have a commutative diagram:

S — 9

& ]

IL JL

where S is a polynomial ring of dimension n+t over k on the variables y1, . . ., Yn, Yn-+1,

.. Yntt. We denote by S_, the sub-R’-module of S” consisting of all polynomials of
degree equal or less that <. Note that S’ ~ k and it is contained in any non-zero sub-
R'-module of S. In other words, if F' = Yo
homogeneous polynomials of degree 4, then (F') = (F — Fp).

F; is a polynomial in S’, where F; are

PROPOSITION 2.1.4 Let G = R'/J be a Gorenstein cover of an Artin ring A = R/I
with dim R > 2. Then there exists a generator ' € .J* such that ord(F) > 2.

Proof: Let F =) . F; be a generator of J +, where s = socdeg G and F; are forms
of degree i. Since J C (m’)?, where m’ is the maximal ideal of R/, we have S’, C J=.
From Fy + Fy € S, we deduce that (F — (Fy + Fy)) C (F) is an inclusion of
R’-modules. B
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Since embd(G) > embd(A) > 2, then HF (1) = n + ¢ > 2 cannot be the last
non-zero value of the Hilbert function because G is Gorenstein, i.e. socdeg(G) > 2.
Hence S, C m’ o I. Therefore, the equality

<F>:<F7(FQ+F1)>+‘[TI,OF

holds and we can apply Nakayama’s Lemma. We get (F) = (F — (Fy+ F})) or, in other
words, J* = (Fy + -+ F). O

We are now interested in knowing what is the exact relationship between the inverse
system of a Gorenstein cover and the inverse system of the base ring. To that aim, we
consider the following colon ideal:

DEFINITION 2.1.5 Let A = R/I be an Artin ring. For all F' € S’ such that I+ C (F),
we consider the ideal K of R’ defined by

KF = (IJ' ‘R’ <F>)

If J = Anng(F), then G = R’/J is a Gorenstein cover of A and J C K. Indeed,
J o J+ = 0 by definition and hence, J o J+ C I*.

The following proposition enables us to establish a connection between the colon
ideal K of any cover G = R/ Anng F (not necessarily minimal) of A and the Cohen-
Macaulay type of A. Even more, it provides an upper bound on gcl(A) given by the
length of R’/ K.

PROPOSITION 2.1.6 Let A = R/I be an Artin ring. For all F' € S’ such that I+ C (F)
we write J = Anng (F). It holds:

() It =KpoF,I=(J:g Kp),
(ii) there is an R’-module isomorphism

R’ , )
Kr It
a — aolk

(iii) if G = R/ J, then /(G) — ¢(A) = {(R'/KF),
(iv) 7(A) = dimg(Kp/mKp + J).
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Proof: (i) Kr o F C I+ directly from the definition of K. To prove the reverse
inclusion, it is enough to observe that if g € I, then g € (F), i.e. ¢ = a o F for some
a € R'. But then a € K again by definition of K, hence g € K o F.

On the other hand, the inclusion I C (J :g Kp) comes from the fact that

(IKp)oF =Io(KpoF)=1I1o0oIt=0,

hence I K- C .J. For the reverse inclusion, it is sufficient to see that (.J : g Kp)oI* = 0.
Indeed,

(J ‘R KF)OIL = (J ‘R KF)O(KFOF) = ((J ‘R KF)KF)OFC JOJL =0.
(#4) Consider the R’-module epimorphism ¢ defined by

R — (F) — 0

a +— aoF +— aoF

Its kernel consists of all the elements @ in R’ such that ¢ o F is in I+, hence ker p=Kp.
(¢i7) Since the length of aring A = R/I coincides with the length of the inverse system
of I, then £(G) — £(A) = £((F)) — £(I+). We have a short exact sequence

0— It —Jt—Jt/ 1+ —o,

hence ¢(J+) — ¢(I+) = ¢(J+/I+). From (ii), we obtain £(J* /I+) = {(R'/KF).
(tv) From (¢) we get the epimorphism

. Kr oF I+
¢ mKg molL
a — aokl

with kernel ker(¢) = (mKp + J)/mKp. Hence

di I+ . Kr
my ——— = —_—
K moll mKp +J

and from [20, Proposition 2.6] we get the right expression for 7(A). O
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THEOREM 2.1.7 Let A be an Artin ring such that gcl(A) < 2. If G is a minimal Goren-
stein cover of A, then

(i) embd(G) = embd(A),
(i) if A = R/I with dim(R) = embd(G) = embd(A) and F is a generator of J=,
G =R/J,then I C K and
rPcicl

Moreover, after a linear isomorphism of R we may assume:

R, if  gcl(A4) = 0;
Krp =4 m, it gcl(A) =1;
(1, Tp_1,22), if gcl(A) =2

Proof: We assume that A = R/I with R = Kk[z1,...,z,] where n = embd(A). In
particular, I C m2.

If gcl(A) = 0 then A is Gorenstein. Hence G = A and K = R. From this we
trivially get (¢) and I C Kp.

Assume that gcl(A) = 1. Let G = R’/J be a minimal Gorenstein cover of A
with R’ = k[z1,...,Zn, Tnt1, .., Tntt] and embd(G) = n + t. From Proposi-
tion R.1.6.(iii) we get that K = (1,..., %, Zni1,- -, Tnye). Let F be a generator
of J1, then

(mlv'"7$n7xn+17"'7$n+t)OF:IJ_ CS:k[yhvyn}

Since ord(F) > 2 by Proposition R.1.4, we get that F' € S. Hence we may assume that
t=0and I C Kr C R.

Assume now that gcl(4) = 2. From Proposition R.1.6. (i) we get that Kp =
(I, lpge—1, ZELH), where l1, ..., [, ; are homogeneous linear forms defining a min-
imal system of generators of the maximal ideal of R/, with embd(G) = n + ¢. We have
to consider two cases:

Case I. After a suitable permutation of the linear forms [y, . . ., [, 1+, we can assume that
I+ is contained in k[l1, . . ., [,,]. Since ord(F) > 2 by Proposition 2.1.4, we get that the
variables l,,1,...,l,1¢ 1 do not appear in F' and the monomials /7, ,, r > 3, do not
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2.1. Gorenstein covers

appear in F' either. Then F' can be written as follows
F=H(,...,l,)+al2,,
with a € k. Sincek C (Iy,...,1,) o H we get that
It =1y lpge1, 2 ) o F = (I, ..., 1) o H

Furthermore, the ring R/ Anng (H) is a Gorenstein cover of A. From the structure of
F we get {({(H)) < £((F)). Since F is a minimal Gorenstein cover, /' = H and we
deduce (7) and (7).

Case II. Assume that, after a suitable permutation, /- C S = K[l1,. oy ln—1,lnyt)-
Next we discuss which monomials can appear in F'.

I1.1 Let us consider a monomial [ of F multiple of lilj,with L e N**t i€ {1,...,n—
1}andj € {n,...,n+t—1}. Since l; € K, the contraction of F' by [; lives in /. In
particular, lL /l; is a monomial of [; 0 F' € T L ¢ S that contains l;. This is not possible.
II.2 Let us consider a monomial of F' of the form l?ltht withj € {n,...,n+t—1}
and a,b > 1. If b > 2, then the contraction of F by [2,, € Kp gives that l;-llf;j isa
monomial of lfL woF el 1+ ¢ S. This is not possible, so b < 1. If a > 2, after the
contraction of F' by [; € K we get that l?illb

b, isamonomial of [j o F € I+ C S.

This is not possible, so a < 1. Hence F' is of the form
F= H(lla ey ln—17 ln+t) + l7l+t(anln R an+t—1ln+t—1)

witha,,...,a,+¢ € k.

Assume that ¢ > 1. Notice that, since embd(G) = n+t, we have that; € (F) = J+
soa; 0,i=mn,...,n+t—1.

We set R = k[l1,...,ln—1,ln+] and consider H' = H + al?, for some a € k
such that /,,4; € R o H'. Notice that R o H' is the sub-R-module (H’) of S generated
by H’ whereas (F') denotes the sub-R’-module of k[l1, .. .,,;] generated by F.
Claim 1. [* C Ro H'.

Recallthat I+ = KpoF,soitis enough to provethatl;oF € RoH',i=1,...,n+t—1,
and/2,,0F € RoH'. Foralli=1,...,n — 1, we have

lioF =l;0oH=1l,0H ¢ RoH',
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and foralli =n,...,n+t— 1, we get
lioF =ail,,s € RoH'.
Finally
2ooF=0,0H=12,0H —acRoH.

Hence I+ C Ro H’, thatis, R/ Anng (H') is a Gorenstein cover of A.

Claim 2. (R o H') < (((F)) — t.

It is enough to prove that /(m o H') < ¢((F)) — t — 1 where m is the maximal ideal of
R. First we prove that mo H’ C (F'). Indeed, foralli =1,...,n — 1 we have

liOH/:liOHZZiOFE<F>;

and

n+t—1
ln+t e} H/ = l71,+t oH + aln_,_t = ln+t oF — Z a,;l,- + aln+t € <F>

1=n

The next step is to prove that
mo H' N{(F, Ly, ... lntt—1)x = 0.

Let us consider
>\1F + >\nln +- >\n+t—1ln+t—l cmo HI

with A1, Ap, ..., Apre—1 € k. Hence

n+t—1
MY aililnrs + Maln -+ Anpeotlnseor € R.
i=n
Sincea; #0fori=mn,...,n+t—1,wegetthat \y =\, =--- = A\1+—1 =0.
Bothmo H' and (F,l,,...,l,t+—1)K are contained in (F"). Hence a k-vector space

dimension computation gives Claim 2.

From previous claims we get that R/ Anng (H') is a Gorenstein cover of A of length
at most £(A) 4+ 2 — t. But then gcl(A) < 1, which is not possible. Therefore ¢ = 0 and
we proved that I € S = k[ly,...,l,]. From this we get (i) and I C m?> C Ky =
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(I1,...,ln_1,12). Since I C K we deduce
I’oFCc(IKp)oF=Io(KpoF)=1IoI+=0.

From this we get 12 C J. O

COROLLARY 2.1.8 If gcl(A) = 2, socdeg(A) = s > 1 and G is a minimal Gorenstein
cover of A, then the socle degree of G is either s + 1 or s + 2.
If socdeg G = s + 2, then

HF 4(2), if i<s;
, if i=s+1,5+2;
0, if 71>s4+3.

Proof: By TheoremP.1.7, I* = Kpo F = (10 F,...,x,_1 o F,z2 o F), where
F generates J* and G = R/.J is any minimal Gorenstein cover of A. Since the socle
degree of A is s, we get

2
F ;o F} =s.
1Srg1£aé<_l{degxn oF,degz;o F} =s
If this maximum is reached by z; o F, forsome 1 < j < n — 1, thendeg I’ = s + 1.
Otherwise, it will be reached by 22 o F and hence deg F' = s + 2. [J

We end this section by providing examples that answer several natural questions on
Gorenstein covers.

Hilbert functions of minimal Gorenstein covers of a certain Gorenstein colength two
ring are not unique in general. We can even have no uniqueness in its socle degree.
In the following two examples we consider particular cases of Artin local rings A with
gcl(A) = 2 and socdeg(A) = 3. Example shows a case where both minimal
Gorenstein covers of socle degrees 4 and 5 exist. On the contrary, in Example it
is proved that we only have minimal Gorenstein covers of socle degree 4.

EXAMPLE 2.1.9 Consider A = R/I = k[z1, 2]/ (21,2123, 23), with Hilbert func-
tion {1,2,2,1}. I+ = (y1y2,3) is contained in the sub-R-modules generated by
polynomials F; = y;y3 and F» = y?y> + y5. Then both G; = R/ Anng(F}) and
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G2 = R/ Anng(F5,) are Gorenstein covers of A with Hilbert functions {1,2,2,2,1}
and {1,2,2,1,1, 1}, respectively, and ¢(G1) — £(A) = £(G3) — £(A) = 2. Hence,
gel(A) < 2. A is clearly not Gorenstein and, by [20, Proposition 4.5], we can also
deduce that it is not Teter. Therefore, Gorenstein colength of A is exactly 2 and G,
G2 are minimal Gorenstein covers of socle degree 4 and 5, respectively. Note that
Kr, = Kg, = (21, 73).

EXAMPLE 2.1.10 Take A = k[z1, 22, 23]/ (xlmg,xlzvg,,xgxg, x3, 13 — a:i’), with Hil-
bert function {1,3,1,1}. Note that 7(A) = 2 and embd(A) = 3. Hence A is not
Gorenstein and, by [20, Theorem 3.4], also not Teter since 7(A) # embd(A). The poly-
nomial F' = y} + y1y2 + y3 generates the inverse system of a Gorenstein cover G of A
with HF ¢ = {1, 3,2, 1, 1}. Therefore, gcl(A) = ¢(G) — ¢(A) = 2 and G is a minimal
Gorenstein cover of socle degree 4. Note that K = (21, x2,23).

Let us now assume that there is a minimal Gorenstein cover G’ = R/.J of A with
socle degree 5. According to Corollary P.1.8, its Hilbert function is {1,3,1,1,1,1}
and, by [21], G’ is isomorphic to k[z1, z2, 23]/ (2122, 2123, 2223, 25 — 27, 2% — 27).
Since J* = (y} + y3 + y3), the only possible choice for a sub-R-module K~ of J=+
such that HF p/x = {1,3,1,1} is

KL = <17y1ay27y3ay%ay:1)’>k C JJ_ = <17ylay2ay37y%7y%7y%ay§ +y% +y?2,>k

By Proposition 2.6 [20], 7(R/K) = u(K~+) = 3. But 7(A) = 2 and hence there is no
minimal Gorenstein cover G’ of A with socdeg G’ = 5.

Even in the situation where we have unicity of the Hilbert functions of all minimal
Gorenstein covers, such covers are not necessarily unique. The next example shows a
ring with two non-isomorphic minimal covers with the same Hilbert function.

EXAMPLE 2.1.11 Consider A = R/I with R = k[x1,z2, 23] and [ = (2122, 1223, 23).
Set char(k) = 0 and note that HF4 = {1, 3, 2}. This ring has Cohen-Macaulay type 2,
hence it is not Gorenstein not Teter, using the same argument as in previous example. No-
tice that the following polynomials generate R-modules containing I+ = (y1y3, y2y3):

(i) Fi = y1yays, (w1, 2, 23) o (Fy) = I+,
() Fo = y1y2y3 — U3, (v1,22,23) o (Fy) = I+
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Set G; = R/ Anng (Fy) and G2 = R/ Anng (F»). Since {(G1) — {(A) = ¢(G2) —
¢(A) = 2, Gy and G4 are minimal Gorenstein covers of A. Both rings have Hilbert
function {1, 3,3, 1} but in characteristic zero it is known that they are not isomorphic,
[18, Proposition 3.7]. To prove that any minimal Gorenstein cover G = R/J of A must
have this Hilbert function, we use the fact that the only other possible Hilbert function
is {1,3,2,1, 1}, again by Corollary P.1.8. This corresponds to an almost stretched k-
algebra and, by [[15], we know what Gorenstein rings with such Hilbert functions look
like. Using a similar reasoning as in Example P.1.10, we get that any ring R/K such
that K+ C J+ and HF ;¢ = {1, 3,2} has a Cohen-Macaulay type different than 2.

Let us look at it from the opposite perspective and consider an Artin Gorenstein ring.
We can ask ourselves whether it can be a minimal Gorenstein cover of non-isomorphic
rings. In the following example we show a Gorenstein ring which is, at the same time,
minimal cover of several Artin rings of Gorenstein colength 2 and Teter cover of a Teter
ring.

EXAMPLE 2.1.12 Consider the Gorenstein ring G = R/.J, where R = k[x1, 22, x3] and
J = (2%, z122, 2125, 23, 23 + 323x3), with Hilbert function {1, 3,3, 1}. This ring has
inverse system J+ = (y2ys — y;) and contains the following R-modules:

() (22 —x1,23,23) 0 T+ = (yF +y2y3,93) = Ii;

(i) (21 + 22,22 + x3,23) 0 = = (7 — Y23, 92y3 + ¥3) = I3

(i) (21, 22,73) 0 J* = (y?, yoys) = I3
Ay = R/I, As = R/I, and A3 = R/I3 are non-isomorphic Artin local rings with
Hilbert function {1, 3,2} and Cohen-Macaulay type 2, by the classification provided by
Poonen in [40]. Using again the arguments above, A, A,, A are not Gorenstein nor
Teter and £(G) — (A1) = £(G) — £(A2) = £(G) — £(A3) = 2. Hence G is a minimal
Gorenstein cover to all these rings of Gorenstein colength 2.
Let us now consider A = R/I, where I = Anng (mo J*). Then

It =mo Jt = (yi,y2u3.¥3) = (U3, Y23, Y3, Y1, Y2, Y3, L.

Its Hilbert function is {1, 3, 3}, hence not Gorenstein. Since {(G) — ¢(A) =1, G isa
Teter cover of the Teter ring A.

Recall that Artin stretched k-algebras are those with Hilbert function of the form
{1,n,1,...,1}, see [21] for more details. The next example provides us with a family
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of Artin stretched rings of Gorenstein colength 2 where we can explicitly compute all its
minimal Gorenstein covers.

EXAMPLE 2.1.13 Consider any Artin stretched k-algebra A = k[[z1,...,z,]]/] with
Cohen-Macaulay type n — 1 > 1. Set socdeg A = s > 2. Note that such A is clearly
not Gorenstein and, by [20, Proposition 3.4], also not Teter since 7(A) # n. Therefore,
to prove that gcl(A) = 2 it is enough to find a Gorenstein cover G of A with ¢(G) =
n + s + 2. Using the classification theorem of stretched algebras provided by [21]], we
get I = ({@;z;}1<icj<n, {2?}2<i<n-1,2% — ) and it can be proved that its inverse

systemis I = (ya,...,Yn_1,¥} +42). Choosing F' = ¢ +y1y2 +y3+- - +42_,,
we obtain I+ = (zy,...,2,_1,72) o J* and
1, if i=0;
n, if Q=1
HFG(i) =4 2. if i=2
1, if 3<i<s+1;
0, if i>s+2

Any minimal Gorenstein cover G of A has the Hilbert function above and, in particular,
all of them have socle degree s + 1. Indeed, suppose that exists G = R/J with

1, if i=0;
n, if i=1;
HF (i) =
1, if 2<i<s+2:

By [R1], J* = (yi*2 + y3 + --- + y2) up to analytic isomorphism. If K+ C J* such
that HF g ;¢ = HF 4, then K+ = (y5,v2,...,yn). But 7(R/K) = p(K*+) = n and
T(A)=n—1.

If we restrict to the case char(k) = 0, we can explicitly describe all minimal Goren-
stein covers G of A by [[15]. Suchrings G = R/.J are almost stretched k-algebras of type
(s + 1,2) and therefore the ideal J is isomorphic to one and only one of the following
ideals:
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(i) Cases+1=3:

— 2 3 2 2 2
Ioq = ({xifﬂj}1§z‘<a‘Sn,<i,j)¢(1,2)7 T3 — Xy, T L2, Ty — T1l2 — xl)

1
— 2 3 2 2 2
10,71/4 = ({xixj}1<i<j<n,(i,j)7£(1,2)7x3 — X1, T2, Ty — T1T2 — 13?1

(ii) Case s+ 1 > 4:
2 s+1 2 2
Iog = ({zizjh<icion,.h)20,2) {27 — 27 Yacicn, 2wz, a3 — 1122 — 27)

I = ({xixj}1§i<j§n,(i,j)7ﬁ(1,2)a {5%2 - xi“}:sgign,x%xmfg - fff)

Therefore A has only two minimal non-isomorphic Gorenstein covers. Note that Exam-
ple is a particular case of this example.

2.2 On self-dual ideals and Gorenstein colength

In the first part of this section we study the link between the family of ideals q of R
such that I+ — ¢ and the family of Gorenstein covers of A = R/I. In the second part,
we characterize Artin rings of Gorenstein colength two.

PROPOSITION 2.2.1 Let A be an Artin ring.
(i) Let G = R/J be a Gorenstein cover of A = R/I. Let F be a generator of J-. Then
there is an R—module morphism

5FIIL—>A

defined as follows: forall b € I+, §p(h) =@ forany a € R such thata o F' = h.
It holds

(1) ker(6p) = (Io F)NI+,im(0r) = Kp + I/1, and
(2) dimy(coker(dp)) < U(G) —L(A).

(i) There is a set map
Ay : GC(A) — Homu(I+, A)/A*

such that A 4(G) = 0 for a (all) generator F of J+.

37



Chapter 2. Low Gorenstein colength

Proof: (i) Since h € I+ C J* = (F), thereisana € R such thatao F = h. Let b be
an element of R such thatbo F' = h, then (a —b) o F' = 0. Hencea — b € J C I and
@ = bin A. The map  is a morphism of A-modules. Indeed, let h € I+ anda € R
suchthata o F' = h. Forall c € Rwe get (ac) o F'=co(ao F) = coh. Then

(SF(CO h) =ac = C(SF(/”L)

Consider h € ker(dr). If a € Rsuchthat ao F' = h, then a € I. On the other hand,
if h = ao F witha € I, then 5 (h) = 0. Hence we deduce that ker(§p) = (Io F)NI+.
Since dimy I+ = dimy A and ker(6r) C I o F, we get

dimy (coker(dp)) = dimy (ker(dz)) < dimy (I o F').

The map
— [IoF

Q I~

— aok

is an isomorphism, hence we obtain that
dimg (coker(dp)) < £(G) — L(A).

By the definition of K = (I :5 (F))), we deduce that im(0p) = Kp + I /1.

(7i) Assume that G = R/J is a Gorenstein cover of A. If F, F; are two generators of
J+, then there exists an invertible power series u € R* such that F5 = u o F;. From
this we can prove that 0p, = udp,. O

We write (—)T = Hom 4 (—, I1). We say that an ideal q C A is self-dual if ¢ = q*.
Let g C A be a self-dual ideal and consider q <%s A. This induces an epimorphism
I+ =~ A+ 5 g% and hence a morphism f : I+ — A such that im(f) = g, see [,

~

Remark 3.3]. We say that an isomorphism ¢ : q = g% satisfies Teter’s condition if
¢(z)(y) = ¢(y)(x) forall z,y € q.

The next step is to link the morphisms §r to self-dual ideals of A. The following
result is [[1, Lemma 3.4]. We include it here for readers convenience.

LEMMA 2.2.2 Let q be an ideal of A. The following conditions are equivalent:
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(i) There is an isomorphism ¢ : q = q7,
(ii) There is an epimorphism f : I+ — qsuch that ker(f) = (0 :;. q) = Q* where
q=Q/I

Proof: Applying the functor (—)* to 0 — q Sy A-— A /q — 0, we get the exact
sequence of A-modules

T
0— (0:0q) — I+ 5 qt —0.

Assuming (i), f = ¢~ 1oit : [+ — qis an A-module epimorphism satisfying ker(f) =
ker(it) = (0 :;1 q). Conversely, by (ii), we have an exact sequence of A-modules

0— (0 q) — I+ Log—o.

Recall that 0 — (0 :;. q) — I+ KA g+t — 0 is also exact. Hence, q = q*. OJ

PROPOSITION 2.2.3 Given a Gorenstein cover G = R/J of an Artinring A = R/I, let
F be a generator of J* and q = im(Jx). Then

(i) the ideal q is independent of the generator F of J+,
(ii) q is a self-dual ideal by means of an isomorphism ¢ : q = q* satisfying Teter’s
condition.

Proof: (i) Let G be a second generator of J-. There is an invertible element v € R
such that G = wo F. Given @ = dg(h) € im(dg), we know that h = a o G € I+,
Since h = (au) o F, we get §p(h) = wa € im(dr). Hence im(dg) C im(dr) and by
symmetry we get the claim.

(#4) First we prove that ker(dp) = (0 :;+ q). Given h € ker(dp), let a be a series in R
suchthath = ao F. Thena = d0p(h) = 0,s0a € I. Forany T € q, there is y € R such
that T = dp(y o F'), with x — y € I. Then we have

xoh=yoh=yo(aoF)=ao(yokF).

Sinceyo F € [t anda € I, wegetao (yo F)=0. HenceT o h = z o h = 0, that is,
h e (0 gy q)
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Let us now consider & € (0 :;+ q), so qo h = 0. Since h € I+, we have that
h = ao F for some a € R and then §r(h) = @. Let z o F be a general element of .
Then T = dp(x o F) € q and hence

0=Zoh=zoh=zo(aoF)=ao(zoF),

Since a € R annihilates a general element of I+, we getthata € I. Thendx(h) =a =0
or, in other words, h € ker(dr). By Lemma R.2.2.(ii), q is a self-dual ideal.

Next we prove that ¢ satisfies Teter’s condition. From Lemma we get that ¢ is
defined as follows. Given o, 3 € q there exist a,b € Kp such that « = @ and 8 = b.
Since h, = ao I and hy = bo F are elements in I+, then 6z (h,) = v and 65 (hy) = f3.
Recall that ¢ : ¢ = g = Homa(q, [*), so

dla): g9 — I+
B8 s boh,.

By symmetry, we get that

?(a)(B) — ¢p(B)(a) =bohy —aohy=bo(aoF)—ao(boF)=0.

LEMMA 2.2.4 Consider a maximal regular sequence ay, ..., a, of R = k[z1,...,2,]
and polynomials Hy,...,H, in S = k[y1,...,y,] such that a; o H; = a; o H; for
any 1 <4 < j < n. Then exists a polynomial F' in S such that a; o F' = H;, for any
1< <n.

Proof: Let us consider the first terms of Koszul’s resolution of R defined by the regular
Sequence aj, . . ., ay:
Ke: - —Ko=RGE) 2K =R % Ky=R— R/(ay,...,an) — 0.
We consider the natural R-basis {e; j}1<i<j<n of Ko and {e;}1<;<y, 0f K;. Then
do(e; ;) = aje; —asejforl <i<j<nanddi(e;) =a;fori=1,...,n.
Dualizing K, we get the exact sequence

n

KY: 00— (ap,...,an) — Ky =5 I KY =57 2 ky =5G) — .
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where
dY(F)=(a10F,...,ap0F)

and
dg/(Fl,,Fn): Z (aionfajoFi)e,;J.
1<i<j<n
Since (Hi, ..., H,) € ker(dy) there exists F' € S such that dY (F) = (Hy, ..., Hy),
ie.a;oF=H;,1=1,...,n.

Now we give an analogous characterization of Artin rings of Gorenstein colength
two in terms of its Macaulay inverse system and we improve the result [[l, Theorem 5.5]
by weakening the hypothesis I C m®.

THEOREM 2.2.5 Let A = R/I be an Artin ring with maximal ideal n and socle degree
s > 1. We assume that A is neither Gorenstein nor Teter, / C m? and char(k) # 2.
Then the following conditions are equivalent:

(@) gel(4) =2,
(ii) after a linear isomorphism of R there exists a polynomial ' € S of degree s + 1
ors+2suchthat [t = (z;0F,... 2, 10 F,220F),
(iii) there exists an epimorphism of A-modules f : I+ — g, where q is a self-dual
ideal of A by means of an isomorphism satisfying Teter’s condition and ¢(A/q) =
2.

In particular, if gcl(A) = 2 then the Cohen-Macaulay type of A is n.

Proof: Let F be a generator of the inverse system of a minimal cover of A. Letq = Q/I
be the module im(dp).

(¢) implies (4i%). By Theorem and Proposition we have that Q = K, hence
{(A/q) = ¢(R/KF) = 2. If we consider the epimorphism J : I+ — g, then by
Proposition we get (4i7).

(74¢) implies (i¢). Since ¢(R/Q) = ¢(A/q) = 2, after an analytic isomorphism of R
we may assume that ¢ = Q/I, where Q = (z1,...,7,_1,22). Since q is self-dual, by
LemmaR.2.2, ker f = Q+ = (y,) C I+

Let Gy, ...,G,, be elements of I* such that f(G;) = Z;, with1 < i < n — 1, and
f(G,) = T2. Consider o € I+, then we have f(a) = 7' \iZ; + \,72. Hence
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fla— Z?;ll NG — A\Gp) = 0and a € (Gy,...,G,) + ker f. This implies that
It =(Gy,...,G,) +ker f.

Notice that since I C m®, then S<4 C I+ and S<3 C mo I*. Since Q = (y,,) C
S<1 C S<s, thenker f C m o I+ and hence

It =(Gy,...,Gp) +mo Tt

By Nakayama Lemma we deduce that G4, . .., G, is a minimal system of generators of
I+
Forall 1 <i < j <n —1itholds

f((L‘Z‘ o Gj —x;0 Gz) = x;T; — z;T; =0,

sothereis a; j = Aij + i jyn € QF, Nij, ptij € k,suchthatz;0Gj —z;0G; = .
By symmetry, we have oj ; = —c; ;. Using the same argument forall: =1,...,n—1,
thereis a; 5, = Aj p + [bi.nYn € Q-+, Ains i n € k, suchthat z; 0 G, — 120G, = O .
By symmetry again, oy, ; = — o p.

Let us consider the elements of I+

i—1 n—1
1 1 1,
H;=G; - 5 ;ylal,i + 5 Z Y11 + iynaiﬂn’

I=i+1
fori=1,...,n—1,and
1 n—1
Hn = Gn - 5 Zylalm-
=1
Since yja j, Y2, € S<3 C mo I+ we get that Hy, ..., H, is a minimal system of

generators of 1+ as well.
Forall1 <i < j <n—1wehave

1 1
zioH; —x;0H; =2;0G,; — g% —ijGi—gai,j =0
and
$iOHn*$iOHz‘ :IioaniOli’n*IiOGi*iaiynio.
Since 2 is a maximal R-sequence of R, by Lemma there exists
Tiyeney 1,2y, q » DY

42



2.2. On self-dual ideals and Gorenstein colength

F e Ssuchthatz;0 F = H;,i=1,...,n,and 22 o F' = H,,. Hence
It =(z,0F,...,z,_10F 220 F).

(i3) implies (i). Since (z1,...,2,_1,22) C Kp, by Proposition R.1.6.(iii) /(G) —
l(A) =¢(R/KFr) < 2 and hence gcl(A) = 2.

If gcl(A) = 2, combining (ii) and (iii) we get (q) < u(I*) < n and hence the
Cohen-Macaulay type of A is n. O

REMARK 2.2.6 Observe that condition 7 C m® of last result is indeed a restriction. In
all previous examples, I C m? is not satisfied and yet Theorem still holds except
for the Cohen-Macaulay type. The key fact used in the proof to compute the Cohen-
Macaulay type of R/I is that u(q) < 7(R/I) < n. Recall that q = Kp/I, Kp =
(x1,...,7p_1,22) and I C m?. Therefore ;i(q) = dimy Kr/(mKp + I) can be either
n or n — 1 depending on whether the ideal I is contained in mKr or not. Under the
conditions of the theorem, it is always true that I C mK . In fact, I C m3 is a sufficient
- though not necessary - condition to ensure that. On the other hand, it can be checked
that self-dual ideals ¢ = Kp/I of A = R/I from Example to Example
are minimally generated by n — 1 elements. Hence the Cohen-Macaulay type of such
rings is allowed to be n — 1. See Example for rings that actually are under the
conditions of Theorem P.2.5.

REMARK 2.2.7 It can be proved that for any k-algebra of length less or equal than 6,
both conditions I C m® and char(k) # 2 can be dropped. Moreover, in Table b.2 of
Chapter | we provide a complete list of all analytic types of A such that ¢ (A) < 6 using
the classification given by Poonen in [40].

Let us consider again some of the examples of rings of Gorenstein colength 2 we
showed at the end of Section P.1l. We explicitly describe the maps d provided by gen-
erators F' of inverse systems of the minimal Gorenstein covers and compute the corre-
sponding self-dual ideals.

EXAMPLE 2.2.8 (See Example P.1.9.) Consider the ring A = k[z1,25]/ (22, 2123, 23).
Recall that the polynomials of different degree I, = y;v3 and Fy = y2y» + y5 generate
inverse systems of two non-isomorphic minimal covers of A. By Proposition .2.1, & o)
is a morphism of R-modules with ker(6r,) = Kz = (y2) and imép, = Kp, /1.
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Therefore, this is an epimorphism:

Op, : Il:<y1y2,y§> — q:(th%)/f
Yiy2 +—— I3

Y3 — T

By Lemma R.2.7, q = (21,23)/I is a self-dual ideal of A. Also ((A/q) = (Kf ) =2
and the same works for ,:

op, : It — q=(x1,23)/I
Y1y2 +—— T1

3
Yy +—— T

Note that, despite the fact that ' and F5 are polynomials of different degree, the self-dual
ideals given by the images of the corresponding morphisms d , and é, are equal because
Kp, = Kp, = (x1,23). Observe that the self-dual ideal q is minimally generated by
71,73 and hence p(q) = 7(A) = 2.

EXAMPLE 2.2.9 (See Example .1.13.) For any Artin stretched algebra A with 7(A) =

n — 1 we can consider the generator ' = yf“ +1192 +y3 +---+y>2_, of the inverse

system of a minimal Gorenstein cover G of A. Since Kr = (x1,...,2,_1,72), then
ker 6 = (yo) and im 6 = (21,...,2n_1,22)/1.

6p: I =i+ yi v, syn—1) — q= (21, xpr,20) /1
yity2 — T

Y2 +—— T2

Yn—1 > Tp-1

Note that the self-dual ideal q is minimally generated by the n—1 elements Z1, . .. , Ty, —1.

We now provide a family { R/I; }+>3 of Artin local k-algebras of Gorenstein colength
2 such that I; C m'. For any t > 5, the ring R/I; is under the conditions of Theo-

rem 2.2.5.

44



2.2. On self-dual ideals and Gorenstein colength

EXAMPLE 2.2.10 Consider the family of ideals J; = (zf,...,2%) of R = k[x1, ..., z,],
witht > 3and n > 2. Gy = R/J; is a Gorenstein Artin ring with inverse system JtL =
(yi=t...yt=1) socdeg G; = n(t — 1) and symmetric Hilbert function. We are only
interested in computing the first three terms of its Hilbert function, which do not depend
on t, as we will see now. Since ¢ > 3, all degree 2 polynomials are in J- and hence
HF g, (2) = n(n+ 1) /2. Therefore, HF g, = {1,n,n(n+1)/2,...,n(n+1)/2,n,1}.

Contracting by an appropriate ideal K = (z1,...,7,_1,22) we obtain a sub-R-
module I;- of J;* such that £(J;*) — ¢(I;-) = 2. Indeed,

L =Ko dim =y oy el e U Yt )

Hence the Hilbert function of A; = R/I; only changes in pieces of degree n(t—1)—1
and n(t — 1): HF4, = {1,n,n(n + 1)/2,...,n(n + 1)/2,n — 1}. Clearly G; is a
Gorenstein cover of A; but we want to prove that it is minimal. For any n > 2, A; is not
Gorenstein because 7(A4;) = u(I;*) = n.

Let us now suppose that A; is Teter. Then, by [20], there exists a Gorenstein minimal
cover G}, of A; with Hilbert function {1, n, n(n+1)/2,...,n(n+1)/2,n—1, 1} whichis
no longer symmetric due to the piece of degree n(¢t— 1) — 1. We will use the shell formula
to prove that no Gorenstein ring could have such Hilbert function, see Theorem [1.2.9
for more details. Since Q(0) is an Artin Gorenstein k-algebra with symmetric Hilbert
function, all HF ;) (0) must be zero for any i > 1 and so must be its symmetric pieces.
Hence a; = HFg(0)(1) = HFg(g)(n(t—1)—1) = n—1 and any possible decomposition
must start as in the table below:

) 0 1 2 oo n(t=1)=2 nt-1)—-1 n(t-1)
G, |1 n n(n+1)/2 ... n(n+1)/2 n—1 1
Q0) |1 n—-1 a a n—1 1
o | o b by by 0 0
02) [0« e 0 0 0

Macaulay conditions [5, Theorem 4.2.10] give us the upper bound HF ¢ g, (1) for
HFg(0)(2). Hence

n nn—1
az = HF g(0)(2) < HF (o) (1)™" = , | = %
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Chapter 2. Low Gorenstein colength

On the other hand, b = n(n +1)/2 — as > n. Butthenn — 1 + b; > 2n — 1 and
hence HF (o) (1) + HF g(1)(1) > HF ¢/ (1) = n for any n > 2. Therefore, there is no
Gorenstein ring with such Hilbert function and A, is not Teter. Then gcl(4;) = 2.

2.3 Higher Gorenstein colength

When dealing with rings of Gorenstein colength higher than 2 we have two main dif-
ferences with respect to the low colength scenario. Let us focus on the simplest situation
to provide some insight into the difficulties we are facing: gcl(A) = 3.

On one hand, since Proposition holds for arbitrary colength, we have that any
K corresponding to a minimal Gorenstein cover G = R/ Anng F of A = R/I satisfies
¢/(R/KF) = 3. Unlike in case ¢(R/Kr) < 2, now K has no longer a unique analytic
type. See Appendix B for a formal definition of analytic type. Poonen’s classification in
[40] provides two different analytic types for any ideal K C Rsuchthat{(R/Kp) = 3:

(Ly,...,Ly_1,L3),
(L17 ey Ln72) + (L’n717 Ln)27

Kr =

where L4, ..., L, are independent linear forms in R and n = dim R.

On the other hand, we do not know whether the embedding dimension of the minimal
Gorenstein covers is preserved or is increased.

Therefore, we pose the following two questions for rings of higher colength:

Question A: Given gcl(A) = t, is there a unique analytic type of ideals X' C R such that
{(R/K) = teligible to be K = (I+ :p J*), where G = R/J is a minimal cover of
A=R/I?

Question B: Given any Artin ring A = R/I, is there a minimal Gorenstein cover G =
R/ J of A such that embd(G) = embd(A)?

The answer to the first question is no. We show in the following example that both
analytic types of K such that /(R/K) = 3 can occur as colon ideals of inverse systems:

EXAMPLE 2.3.1 Consider the family of ideals J; = (2}, z%) of R = k[x1,x2], with
t > 5. Gy = R/J; is a Gorenstein Artin ring with inverse system generated by the
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polynomial F' = 3!~ 'y%~! and symmetric Hilbert function

HFc, = {1,2,3,...,t —1,t,t —1,...,2,1}.
Contracting by K = (23, 2122, #3) we obtain
o= Ko = i A,

with HF g7, = {1,2,... 6 — 1, t,t—1,...,4,3}.
Contracting by Ko = (1, z3) we get

Iy, = Ky o Ji- = (yi 2y Lyl yb ™),

with HFg/p, , = {1,2,...,t = 1,t,t —1,...,4,2,1}.

In codimension 2, Theorem ensures that the Hilbert function ~ with minimal
length that admits a Gorenstein ring and satisfies HF 4 () < h(i) for any ¢ > 0 is
h=A{1,2,...,t —1,¢,t—1,...,4,3,2,1}. Therefore, gcl(R/I; ;) = 3 fori =1,2.

Summing up, for any ¢ > 5, there are two non-isomorphic rings A; ; and A, ; of
Gorenstein colength 2 that share the same minimal Gorenstein cover G:

e A1y = R/(2}, ob, o 2k 2 28722571 is a family of rings with Cohen-Macaulay
type 3 and colon ideal K.

« Ayy = R/(xt, b, 2t 2t 73) is a family of rings with Cohen-Macaulay type 2
and colon ideal K.

Regarding the embedding dimension of minimal Gorenstein covers, even for Goren-
stein colength 3, an analogous argument to the one used in Theorem only works to
prove embd(A) = embd(G) for the analytictype Kg = (L1, ..., Ly—2)+(Ln_1, L)%

However, we do have bounds on the embedding dimension that can be deduced di-
rectly from Proposition and therefore hold for any arbitrary colength:

PROPOSITION 2.3.2 Let G = R/J be a minimal Gorenstein cover of A = R/I. Then

embd(A) < embd(G) < 7(A) + gcl(A) — 1.

Proof: Set A= R/I and G = R’/J such that embd(A4) = dim R and embd(G) =
dim R’. We denote by m and m’ the maximal ideals of R and R’, respectively. From
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Proposition R.1.6.(4), it is easy to deduce that K/ (mKp + .J) ~ I'-/(m o I'+). Hence
7(A) = dimk Kr/(mKp + J) by [20, Proposition 2.6]. Then

embd(G) + 1 = dimy R'/(m')? < dimy R'/(mKp + J) = gcl(A) + 7(A),
where the last equality follows from Proposition .1.6.(ii7). O

The expression 7(A) + gcl(A) — 1 can be arbitrarily higher than n. However, no
examples of minimal Gorenstein covers of higher embedding dimension are known so
far. In Chapter § we provide more insight about the bound on embd(G) for certain
families of Artin rings.

Let us now summarize the bounds on Gorenstein colength and socle degree that we
do have available in the general case:

PROPOSITION 2.3.3 Let A = R/I be a non-Gorenstein Artin ring with embd(A4) =
dim R = n and G = R’/.J a minimal Gorenstein cover of A. Then

(i) socdeg A < socdeg G,
(ii) socdeg G < gcl(A) + socdeg A,
(iii) gel(A) >n—7(A4)+ 1.

Proof: (i) Consider a generator F' of J-. Since A is not Gorenstein, there exists an
ideal K C R with /(R/K) = gcl(A) > 1such that I* = K o F. Thenany H € I+
has degree at most deg F' — 1, hence socdeg A < socdeg G.

(i1) Following the same notation, since /(R/K) = gcl(A), then m&!(4) C K and hence
me(4) o F C I+, Therefore, deg F' — gcl(A) < socdeg A.

(#ii) Direct from Proposition .3.2. (]

Another interesting property that holds for low colength is the inclusion of ideals
I? C J C I, for any minimal Gorenstein cover G = R/J of A = R/I, see Theo-
rem 2.1.7. It is natural to ask whether this also occurs in higher colength. Let us give an
equivalent condition:

LEMMA 2.3.4 Consider an Artin local ring A = R/I and a Gorenstein cover G = R/J
of A. The following conditions are equivalent:

() I2cJcl,
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(i) I C Kp.

Proof: (i) = (ii). I? is contained in J, hence the contraction /? o .J vanishes. In other
words, I o (I o F) = 0. Thus I o F is contained in /* = Ky o F and then I C K.

(i) = (). From I C K, it follows that I> C I K and hence
IPoFC(IKp)oF =To(KpoF)=TIol+=0.
Therefore, 12 C J. O

Again we are able to prove that the inclusion of ideals 72 C J C I holds for certain
families of rings:

PROPOSITION 2.3.5 Let A = R/I be an Artin ring. In the following cases we have that
there exist a minimal Gorenstein cover G = R/J of A such that I2 C J C I:

@) £(A) <6,

(i) A is stretched,
(iii) I = m® for somet > 1,
(iv) dim(R) = 2.

Proof:

For the proofs of (i), (i4), (iii), see Chapter f.

(iv) Assume that dim(R) = 2. From Briangon-Skoda theorem we have 12 C .J for
all reduction J of I, see [B4]. Recall that any minimal reduction of I is a complete
intersection, in particular a Gorenstein ideal. Hence we get the claim. [
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CHAPTER 3

Variety of minimal Gorenstein covers

In Chapter P we provided a characterization of k-algebras of low Gorenstein colength
A = R/I interms of the Macaulay’s inverse system of /. Even more, we connected rings
A of arbitrary colength ¢ with their minimal Gorenstein covers G = R/ Anng F through
colon ideals K of R of minimal length /(R/Kr) = t such that It = Kp o F, see
Proposition R.1.6. Two natural questions arise:

Question A: How can we explicitly compute the Gorenstein colength ¢ of a given local
Artin k-algebra A?

Question B: Which are all the minimal Gorenstein covers G = R/ Anng F of a given
local Artin k-algebra A?

In [20, Proposition 4.2], Elias and Silva introduce the notion of Teter variety of A as
the set of points [F] € PY, for a suitable N, such that G = R/ Anng F is a minimal
Gorenstein cover of A such that ¢(G) — ¢(A) = 1. The result in [20, Proposition 4.5]
already suggests that a method to explicitly compute such covers is possible.

In this chapter we address questions A and B by extending the idea of Teter variety
in Gorenstein colength 1 to the variety of minimal Gorenstein covers M GC(A) where
A has arbitrary Gorenstein colength .

Observe that, given an ideal K of R, we can ask whether it is possible to find a
polynomial F' defining a cover G = R/ Anng F of A = R/I such that [+ = K o F.
Our key contribution is the introduction of an inverse operation to contraction of sub-
R-modules of S' and a recursive procedure to effectively compute the resulting module
based on the integration method for inverse systems proposed by Mourrain in [39].

In Section B.1 we introduce this notion of integral of an R-module M of S with
respect to an ideal K of R, denoted by [, M. By Definition B.1.1, for any F in S such
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that I+ = K o I we have

FG/IL.
K

Therefore, if gcl(A) = ¢, then all polynomials defining minimal Gorenstein covers of
A = R/Ilay insome sub-R-module [, I+ of S, for suitable ideals K with {(R/K) = t.
This approach is exploited in Section B.J by identifying the inverse system of a minimal
Gorenstein cover G = R/ Anng F' with the class of any of its generators F' in S in
the R-module fmt I+/I+. This connection is described in detail in Proposition B.2.5.
The section ends with Theorem B.2.7, that sets the theoretical background to compute a
k-basis of | xl + extending Mourrain’s integration method.

In Section E, the main result of this chapter, Theorem , proves the existence of
a quasi-projective sub-variety M GC™(A) of Py (. I /1) whose set of closed points
are associated to polynomials ' in S such that G = R/ Anng F' is a minimal Gorenstein
cover of A.

Section B.4 is devoted to algorithms: explicit methods to compute a k-basis of fmf, I+
and M GC(A) for colengths 1 and 2. In this context, we give a precise description of the
varieties of minimal Gorenstein covers for rings of low Gorenstein colength:

THEOREM 3.0.1 (See Theorem B.4.6.) Let A = R/I be a Teter ring with n > 2, let h
be the dimension of fm I+/I+ as k-vector space and let a be the homogeneous ideal
defined in Section 3.4.2 in a polynomial ring with A variables. Then

MGC(A) =Py 1"\V, (a).

Moreover, for any non-Gorenstein Artin ring A, gcl(A) = 1 if and only if a # 0.

THEOREM (See Corollary B.4.20.) Let A = R/I be aring of Gorenstein colength 2 and
let h be the dimension of [ _, I*-/I+ as k-vector space. Let b be a homogeneous ideal
in the ring of polynomials with / variables and let a and ¢ be bihomogeneous ideals in
the ring of polynomials with & + n variables as defined in Section B.4.3. Let 7 be the
projection map from ]P"lz_1 X ]P’ﬁ_l to Pﬁ_l. Then

MGC(A) = Vi (b)\my (Vi(c) NV (a)).

Finally, in Section B.5 we provide several examples of varieties of minimal Goren-
stein covers and list the comptutation times of M GC(A) for all analytic types of k-
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algebras with gcl(A) < 2 appearing in Poonen’s classification, see [40].
All algorithms appearing in this chapter have been implemented in Singular, [[11], by
creating a new library, see Appendix [A.

Part of the results of this chapter will be published in [[17].

3.1 Integrals and inverse systems

Consider an Artin local ring A = R/I and fix an ideal K of R. We want to find, if it
exists, a polynomial F' € S such that K o F' = I, In other words, we want a Gorenstein
cover G = R/ Anng F such that K = (I* :g (F)). Therefore, it makes sense to think

of an inverse operation to contraction:

DEFINITION 3.1.1 Consider an R-submodule M of S. We define the integral of M/ with
respect to the ideal K, denoted by f M, as

/M:{G€S|KOGCM}.
K

Note that the set N = {G € S | Ko G C M} is, in fact, a sub-R-submodule
N of S equipped with the contraction structure. Indeed, given G1,G> € N we have
Ko(Gi+Gy)=KoG1+KoGy C M,hence G; + Gy € N. Forall a € R and
Ge Nwehave Ko(aoG)=aKoG=ao0(KoG)C M,henceaoG € N.

PROPOSITION 3.1.2 With the above notations it holds
/ M= (KMY)".
K

Proof: LetG € (KML)L. Then (KM=*) o G = 0,50 M+ o (K o G) = 0. Hence
KoG C M,ie. G € [, M. We have proved that (KMJ-)L C [ M. Take G in
[ M. By definition, K oG C M, so M+ o (K oG) = 0andhence (M+K) oG = 0.
Therefore, G € (MLK)J'. O

One of the key results of this paper is the effective computation of || M that we
present in Algorithm fll, see Section B.4.1. Proposition provides a method to com-
pute the integral of a module consisting of two Macaulay duals. As shown in Sec-
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tion [A.1.4, this can be an expensive computation. Therefore, Algorithm f] is instead
based on Mourrain’s integration method, see Theorem B.2.7, that we will explain next.

Before moving on, let us list some of the basic properties of integrals that can be
proved directly from the definition of integral:

PROPOSITION 3.1.3 Given ideals K, L of R and sub-R-modules M, N of S, we have

(i) If K C L, then [, M C [, M.
(i) If M C N, then [, M C [, N.
(i) [, M = M.

(iv) Ko [, McC M.

V) M C [ KoM.

We give now two examples to show that equality does not hold in general for state-
ments (iv) and (v).

EXAMPLE 3.1.4 Letus consider R = k[l‘l,fﬂg,x:;]], K= (I17I271‘3), S = k[yl,yg,y:g],
1

and M = (y1y2,y3). We have [, M = (KM™*)" = (yi, 9192, 193, Y3, Y2Y3, ¥3)

and K o [, M =wmo (yi, y1y2, Y13, Y3, Y23, ¥a) = (Y1, y2,¥5) C M.

EXAMPLE 3.1.5 Using the same notation as in Example B.1.4, we get KoM = (y1, %2, y3),
and

1
/ (KoM)=(K(KoM)")" = (yl,y1y2, 193, Y5, ¥2y3,v3) € M.
K

In the particular case where we integrate with respect to a principal monomial ideal
K = (z%) in R, the expected equality for integrals

xO‘O/ M=M

holds. Indeed, for any m € M, take G = y“m. Since z® oy® = 1, then z* o y*m = m
and the equality is reached.

REMARK 3.1.6 In general we cannot extend the above identity to linear forms. Consider
k: C,L =1 +Zl‘2 andP:y1 +Zy2 ThenLofL<P> g_ <P>

Let us now consider an even more particular case: the integral of a cyclic module
M = (F) with respect to the variable ;. Since the equality x; o fz M = M holds,
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there exists G € S such that z; o G = F. This polynomial G is not unique because it
can have any constant term with respect to x;, thatis G = 4; F + p(Y1, - - -, Gy« -, Yn)-
However, if we restrict to the non-constant polynomial we can define the following:

DEFINITION 3.1.7 The i-primitive of a polynomial F' € S with respect to contraction
is the polynomial G € S, denoted by [, F, such that

(i) zioG=F,
(i) G

yi=0 = 0.

This notion of ¢-primitive of a polynomial ' € S with respect to the variable z; € R
was provided in [23] using the derivation structure:

DEFINITION 3.1.8 The ¢-primitive of a polynomial ' € S with respect to derivation is
the polynomial G' € S, denoted by fl F, such that

@i 90,,G=F,
(i) Gly,—o =0.

Therefore, we can think of the integral of a module with respect to an ideal as a
generalization of the i-primitive proposed by Elkadi and Mourrain.

From now on, when we use the notation fml F it refers to the contraction case. Since
we are considering the R-module structure given by contraction instead of derivation,
the ¢-primitive is precisely

/ F=y,F.
i

Indeed, z; o (y;F) = F and (y;F)
ness can be easily proved. Consider Gy, G5 to be i-primitives of F. Then z; o (G; —
G2) = 0 and hence G1 — G2 = p(y1,...,0i,---,Yn). Clearly (G1 — G2)|y,=0 =
p(Y1,---,Gis- -+, Yn). On the other hand, (G1 — G2)ly,=0 = G1ly;=0 — G2ly,=0 = 0.
Hence p = 0 and G; = Gbs.

y;=0= 0, hence (i) and (ii) hold. Unique-

REMARK 3.1.9 Note that, by definition, zj, o fk F = F. Any F' can be decomposed in
F = F} + F5, where the first term is a multiple of y;, and the second has no appearances
of this variable. Then

/LEkOF:/l‘kOFl—F/J?kOFQ=F1+/0.
k k k k
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Therefore, in general,

Flz/xkoF;«éa:ko/F:F.
k k

F;
/’I’kOF:ylil:IkO/F.
l Yk l

However for all [ # k

Now consider an ideal I of R generated by f1, ..., f,,. From Definition we can
deduce that polynomials A in S that belong to the inverse system I+ can be characterized
as follows by imposing conditions only on the generators of I:

fioA=0, 1<i<m. 3.1)

Observe that the resulting equations are not linear in general. If we want linear condi-
tions, we can use the equivalent characterization of I+ given by Definition f.4.12:

(foA)(0)=0, forany fel. (3.2)

From the proof of Proposition we know that it is not enough to impose 3. only on
f1,--+, fmm- The following example shows that there are polynomials A € S that satisfy
B.2 but not B.1 on the generators of 1.

EXAMPLE 3.1.10 Consider the ideal I = (z122,23 — 23) of R = k[z1, 22] and the
polynomial A = y3ys of S = k[y1, y2]. Note that the condition (f o A) (0) = 0 holds
for the generators of I:

(1‘11‘2 o} y%yg) (0) = 0,
((21 —23) oyiy2) (0) = 0.
But 122 0 y7y> = z and (2% — 23) o yfy, = 0, hence A ¢ I.

To overcome this problem, Elkadi and Mourrain add some extra conditions involving
integrals to B.2. In [23, Theorem 7.36], they characterize the elements A of the inverse
system I up to a certain degree d.

We will rewrite both the theorem and the proof using the contraction structure for
the sake of completeness. But first, let us make a few comments on the notation we will
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use and give a technical lemma regarding some properties of the i-primitives that will be
needed for the proof. Given an Artin ring A = R/I with s = socdeg(A),

« D, stands for the sub-R-module 7+ N S<qof S,forany 1 <d < s;
* bly,—a, where b € S'and a € k, denotes b(y1,...,Yj—1,0,Yj41s-- - Yn)-

LEMMA 3.1.11 Consider a polynomial b € S. Then

b lysr=r=yn=0 +/ Ti41 00 |ypypmemypm0 +o o0 + / Tn0b=Db.
k+1 n

Proof: Since any polynomial b € S can be decomposed as b +b" such that b = y,,c,,
and b%" € k[y1, ..., yn_1), then

/mnOb:/anb":/cn:yncn:b".
n n n

Now decompose %" = p%7~1 1 p"~1 with "' = y,,_1¢,_1, where ¢,,_; is a polyno-
mial in K[y1,...,y,_1] and 8"~ 1 € k[yy,...,Yn_2]. Since b = b0~ 4 pn=1 4 pn,
then

0,n—1 -1\ _ -1 _
/ Tp—10b |yn=0: / Tp—1© (b R ) = / Tp_10b" " =
n—1 n—1 n—1

n—1
:/ Cn—1 = Yn—-1Cpn—1 = b .
n—1

By recurrence, we have that for any & < | < n— 1, we can decompose b%/+1 = p%! 4 pl,
where %! € k[yy,...,y-1] and b' = y;¢;, with ¢; € [y, ..., y;]. Then

R R A

and all the terms in b'*1, ..., b™ contain at least one of the variables 3, 1, . . ., y,,. Hence

/lxl 0bly 1= =y,=0 = /lxl o (bo’l + bl) = /lxl obl = /zCl =y = bl

Finally, b%*+1 = 0% + pF with 8% € k[yi,...,yr_1] and b¥ = ypcx, with ¢, in
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K[y1, ..., yu]. Then b = 6% 4 b 4 55+1 ... 1 p" hence
b lypsr==yo=0= b"F 4+ b*
and we are done. [

We are now in the position to state [23, Theorem 7.36]. Note that, since Dy, = [ <
this result leads to the algorithm proposed by Mourrain in [39] to effectively compute
a k-basis of the inverse system. For the sake of completeness, we rewrite the complete
proof using the contraction setting instead of derivation.

THEOREM 3.1.12 (Elkadi-Mourrain) Given an ideal I = (f1,..., f;,) and d > 1. Let
bi,...,b, , be ak-basis of Dy_;. The polynomials of D, with no constant term are of
the form

ta—1 ta—1 ta—1

A=)\ /1bj|y2:.4.:yn:0+ > A§/26j|y3:..:yn:0+--~+ > A;.l/bj, (3.3)
=1 j=1 j=t "

where A% € k, such that

ta—1 ta—1
> M(zioby) =Y M(arob) =01<k<l<n, (34)
j=1 j=1
and
(fioA)(0)=0, forl <i<m. (3.5)
Proof: We will first prove that any element of D; C k[y1, . .., y,] with no constant term

can be written in the form of B.3 and satisfies both B.4 and B.5. Consider a polynomial
A in Dy with no constant term. There is a unique decomposition

A:Al(yly7y7L)+A2(y2?7yn)++A(y”)

such that, for any 1 < ¢ < n, all monomials in A; are in K[y, ..., yn\K[Yit1, - -, Ynl,
y,=0= 0 and, by Definition B.1.7,

that is, A; is a multiple of y;. Hence A;
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On the other hand, m o D; C Dy_1. Indeed, A € D; = I+ N S<q is equivalent to
A € I+ and deg A < d. Because of the R-module structure of I+, any contraction of A
remains in the inverse system and clearly deg(z; o A) < d — 1.

In particular, 1 o A = 1 0 Ay € Dyg—1 = (b1,...,bs,_,)x and hence there exist
unique scalars )\Jl« € ksuchthat z1 o A = Z?‘:‘f /\} b;. Then

ta—1 ta—1

Alz/l‘lOAl:/Z)\}bj:Z)\}/bj.
1 1j:1 j=1 1

Consider now 90 A = x90A1+x90A5 € Dy_1. There exist unique scalars )\? ek
_ ta—1 y2
such that z5 0 Ay = Zj:1 Ajbj. Then

A2=/$20A2=/ZC2OA—/$20A1=
2 2 2

ta—1 ta—1
/Z)\?bjf/xgof\l:Z)\i/bjf/:cgo/\l.
255 2 =1 2 2

Let us focus on f2 22 0 Aq. Note that it corresponds to the part of A; that depends on ys-.
We want to prove that [, 2o 0 Ay = A; — Ay |y,—o. Indeed,

(l) o O (A1 — A1 |y2:0) = T2 O A1 — I9 © A1 |y2:0: X9 O Al,
(i) (A1 — A1 |y,=0) [yo=0= A1 [y,=0 — (A1 |y,=0) [yo=0= 0.

Therefore,
ta—1
A=Y A?/bj — (A1 = Aqyp=0)
j=1 2
and
tqg_1 ta—1 tg—1 ta—1
A1+A2:ZA}/bj+ZA§/bj— ZA;/bj— ZA;/bj =
e 1 = 2 =1 1 = 1

y2=0

ta—1 ta—1

= ZA}/bj|y2:0+ in/bj.
j=1 1 j=1 2
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An analogous computation applied to 3 o A provides
ta—1

Ag = Z )‘?/bj — (02 — 02|y3:0)a
j=1 73

hence
ta—1 ta—1 ta—1
A+ As+A3=) A /bj|y2:y3:O +> )\?/bj|y3:0 +> Ag/bj.
= 1 = 2 = 3
By recurrence, we obtain B.3:
ta—1 ta—1 ta—1

A=\ /bj\yzz---:yn:o +> A?/bﬂys:-»-:ynzo ok >N / b
=1 1 =1 72 g=t "

For any 1 <[ < n, we have

ta—1 ta—1 ta—1
o= A}/bj|y2:...:y,:0 +> A?/bﬂys:...:yl:o ot YN /bj, (3.6)
i—1 1 i—1 2 1 1
J J J
where oy := A; +--- + A, and
ta—1
Al = Z /\é /bj - (0’1_1 —0]-1 |yz:0) . (3.7)
j=1 7
In order to verify that B.4 holds, let us first note that, since A; € k[y;, ..., %,], then
x o A; = 0 whenever 1 < k < I < n. Hence contracting @ by xx, with k£ < [, we get
ta—1
Z Aé /l’k o bj = Xk © (O’l_l —O0|—1 |yl:0) .
j=1 7
Contracting the previous expression by x; gives

ta—1

PIRY (ml ° /xk ° bj) =10 (zk 0 (01-1 = 011 |y=0))
j=1 !
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and it can be rewritten as

Z (zgobj)=z0(xp00_1). (3.8)
=1
On one hand,
k -1 k
Tp o o1 :xkOZAi+$ko Z A; ZxkOZAi = T} 0 O,
i=1 i=k+1 i=1

for k < I. On the other hand, when contracting B.6 with I = k by x;,, we get

ta—1 ta—1 ta—1

Tp OO = Z)\}/zkobj F +'--—|—ZA§ (zko/ > Z)\k
j=1 L j=1

Therefore, we can rewrite B.g as

ta—1

Z)\ (@ 0 bj) Zl)\(,rZOb)
j=1

hence B.4 holds.

Condition E of the theorem is a direct consequence of A € Dy C I+. Indeed,
foA=0forany f € I and, in particular, (f o A)(0) =

Conversely, we want to know whether every element of the form B.3 satisfying B.4
and B.5 is in D,. First of all we will see that it is enough to prove that

zroAN€EDy_1, 1<k<n. 3.9
Indeed, if B.9 holds, then 2, o A € I+ and hence
(zrfi)oA=fio(zproA)=0, 1<k<n,1<i<m.
More generally, we have that

(ml)oA=To(moA)=0,
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that is, A € (mI)". Therefore, (f o A) (0) = 0 for any f € mI. Since

I:<f17"'afm>k+ml7

from B.5 we deduce that (f o A) (0) = 0 forany f € I.
Now let us check that B.9 is indeed true. Contracting B.3 by z, 1 < k < n, we get

S

s
=3 M 3N .
zp oA = /\ij |yk+1:"‘:yn:0 + /\j /k Tk © b] ‘yk+2:'“:yn:0 +
+1

Jj=1 j=1

The [-primitive of B.5, for any k < | < n, gives

Z)\?/xlobj:Z)\é/zkobj,
=1 7 =1 7

hence

zpo A=) M (bj lysp1=-=yn=0 +/ Tht1 0 0j lyy o= =y,=0 +
j=1 k+1
+---+/xn0bj).
By Lemma B.1.11, we have 2, o A = Z‘;:l A?b]’ € D,4_1, hence B.d holds. O

REMARK 3.1.13 From the proof of Theorem B.1.17, it follows that B.4 can be replaced
by
rroNEDy_1, 1<k<n.

In other words, what we actually require in B.4 is D, to be stable by contraction.
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3.2. Using integrals to obtain Gorenstein covers of Artin rings

3.2 Using integrals to obtain Gorenstein covers of
Artin rings

Given an Artin k-algebra A = R/I, a priori we do not know which are the possible
choices for the colon ideal K» C R that provides the relationship between the inverse
system (F) of a minimal Gorenstein cover G = R/ Anng F of A and I+. However,
once we fix a colength ¢, we do know a lot about the shape of the ideals K associated
to a polynomial F such that ¢(G)) — ¢(A) = t. Rephrasing Proposition R.1.6, we get the
following result:

PROPOSITION 3.2.1 Let A = R/I be a local Artin algebra and G = R/J, with J =
Anng F', a minimal Gorenstein cover of A. Then,

(i) I-=KroPF,
(i) gel(A) = £(R/KF).

Moreover,
R, if  gcl(A4) = 0;
Kp=4 m, if  gcl(A) = 1;
(Ly,...,Ly_1,L2), if gcl(A) =2,
where L4, ..., L, are suitable independent linear forms in R.

REMARK 3.2.2 If gcl(A) = 1, then any minimal Gorenstein cover G = R/ Anng F'

satisfies
F e / I+
m

However, even if gcl(A) = 2, the ideal K7 depends on the particular choice of F'.
Although it is certainly true that

Fe / I,
(L1,~~7L7L71’L$L)

this is not a useful condition to impose in order to find /" because the ideal (L1, . .., L1,
L?) already depends on F'. For colength higher that 2, things get more complicated since
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the K1 can even have different analytic type. See Section P.3 for a detailed description
of the situation when gcl(A4) = 3.

The dependency of the integral on F' can be removed by considering only the condi-

Fe/ I+,
mt

for a suitable integer ¢, which gives an effective way to compute a (too big) set where

tion

all minimal Gorenstein covers live. In Proposition we provide all the details of this
construction. We first need to dig deeper into the structure of the integral of a module
with respect to a power of the maximal ideal. The following result permits an iterative
approach:

LEMMA 3.2.3 Let M be a finitely generated sub- R-module of S and d > 1, then

Jo )= [

Proof: Let us prove first the inclusion [ ([ .., M) C [_, M. Take the polynomial
Ain [ ([ a-s M), thenmoA C [ , , M andhencem?o A =m?'o(moA)C M.
Therefore, A € [ _, M. To prove the reverse inclusion, consider A € [ , M, that
is, m!' o (moA) = m?o A C M. In other words, mo A C [ , , M and A in

Joo (g M) O

Since fmt M is a finitely dimensional k-vector space that can be obtained by inte-
grating ¢ times M with respect to m, we can also consider a basis of fmt M which is
constructed by extending the previous basis at each step.

DEFINITION 3.2.4 Let M be a finitely generated sub-R-module of S. Given an integer
t, we denote by h; the dimension of the k-vector space [ , M/ [ ..  M,i=1,--- ,t.
An adapted k-basis of fmt M/M is a k-basis F;, i=1,---,t,5j =1,--- hy, of
Jiwt M/M such that FY,--- ,F} € [ . M and their cosets in [, M/ [ ._, M form a
k-basis,i =1--- ,t.

Let A = R/I be an Artin ring, we denote by £ 4 the R-module [ , I*+/I-+.

The following proposition is meant to overcome the obstacle of non-uniqueness of
the ideals K.
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PROPOSITION 3.2.5 Given a ring A = R/I of Gorenstein colength ¢ and a minimal
Gorenstein cover G = R/ Anng F of A,

() Felf, I
(i) forany H € [, I*-, the condition I C (H) does not depend on the representa-
tive of the class H in £ 4 ¢.

In particular, any F’ € [, I* such that F/ = F in L4, defines the same minimal
Gorenstein cover G = R/ Anng F.

Proof: (i) By Proposition R.1.6, we have gcl(A) = ¢(R/KF), where K o F' = T+
for any polynomial F' that generates a minimal Gorenstein cover G = R/ Anng F
of A. From the definition of integral we have F' € [, I*. Since {(R/KFr) = t,
then socdeg(R/Kr) < t — 1. Indeed, the extremal case corresponds to the most ex-
panded Hilbert function {1, 1, ..., 1}, that is, a stretched algebra (see Appendix [B)). Then
HFg/k, (i) = 0, for any i > t, regardless of the particular form of K, and hence

m! C Kp. Therefore,
Fe / It c / It
KF m"

(ii) Consider a polynomial H € [ _, I* such that I* C (H). By Proposition P.1.6,
Kpg o H =TI+, Consider H' € [ , I suchthat H = H'in L4 ,s0 H = H' + G for
some G € I-. We want to prove that

KyoH +molt=KyoH+molt =T (3.10)

The second equality is direct from Kz o H = I. Let us check the first. Take h o H' +
molt e KyoH +mol+, withh e Ky Cm,

hoH +molt =hoH—-hoG+molt=hoH+mol+ C KyoH+mol".

The same argument holds for the reverse inclusion. Therefore, holds and we can
apply Nakayama’s lemma to get Ky o H' = I+. Hence I+ C (H'). In particular,
(H') = (H). Indeed, since H' = H — G and (G) C (It) C (H), then H' € (H) +
(G) = (H) and a similar argument gives H € (H'). O

Observe that the proposition says that, although not all F' in fmt I+ correspond to
covers G = R/ Anng F of A = R/I, if F is actually a cover, then any F’ in fmt It
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such that 7 = F € L4 provides the exact same cover. That is, R/ Anng (F) =
R/ Anng (F").

COROLLARY 3.2.6 Let A = R/I be an Artin ring of Gorenstein colength ¢ and consider

R/J there is a generator F' of J* such that F' can be written as
F=aiFl +-+ay Ff +- +a F{ + - +aj, Ff, e/ It d ek
mt

Moreover, deg F' < s + t, where s = socdeg A.

Proof: InL,,wehave F=>"_, Zjl’zl aiF’andhence F = Y, , Z;‘Zl aiFi+G
with G € I+. By Proposition B.2.5, any representative of the class F' provides the same
Gorenstein cover. In particular, we can take G = 0 and we are done.

Now consider F' € fm I+. By definition, m o F' € I, Since any polynomial in
It has degree at most the socle degree of A, then deg (z; 0 F) < sforany 1 < i < n.
Therefore, deg F' < s + 1 and at each integral with respect to m, the degree can only be

increased by 1. [

Our goal now is to compute the integral of the inverse system with respect to a power
of the maximal ideal. Assume we have a k-basis of /- and we want to find a k-basis of
fm I+. Consider an element A in fm I+. By definition, it must satisfy

moA C It =D, (3.11)

where s = socdeg(A) and Dy = I+ N S<g, as defined in Section B.1. Thanks to
Remark B.1.13, we know that is equivalent to condition B.4 of Elkadi-Mourrain
result for inverse systems, Theorem B.1.12. Condition B.5 of Theorem B.1.19is no longer
needed because we do not require A to be in 7+ anymore.

Therefore, the most natural approach to find all elements A of fm I+ is to apply
the procedure of Theorem to a k-basis of D, = I+ removing the condition of
orthogonality with respect to the generators of the ideal I.

The theorem below tells us what the elements of fm M look like, for any sub-R-
module M of S. It sets the theoretical ground for an algorithm that effectively computes
a k-basis of the integral of a module with respect to any power of the maximal ideal,
see Algorithm [l. Since the proof we present is very similar to the one given in Theo-
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rem B.1.17, we only emphasize the parts that differ, consult it for complete details.

THEOREM 3.2.7 Consider a sub-R-module M of S and let by, ..., bs be a k-basis of M.
Let A € S be a polynomial with no constant terms. Then A € fm M if and only if

A:ZA;/lbﬂyF...:yn:ﬁZ A?/ij|y3:,,,=yn=0+...+z A;P/bj, Ay ek,
j=1 j=1 j=1 n

(3.12)
such that

S S

> N(aoby) =Y M(arob) =01<k<l<n (3.13)
j=1 j=1

Proof: To prove that any element A in fm M is of the form and satisfies condition
B.4, we just have to note that, by definition, mo A C M = (b1,...,bs)k. Everything
else follows exactly as in Theorem B.1.12.

Conversely, we want to know if every element of the form satisfying B.4 is in
J.. M. By definition, A € [ M if and only if m o A C M. Therefore, it is enough
to prove that z;, o A € M forany 1 < k < n. As in Theorem B.1.19, contracting and
integrating with respect to appropriate variables we obtain z; o A = ijl A? bj e M
and we are done. [

From the previous theorem and Lemma the next corollary follows directly.

COROLLARY 3.2.8 Consider a sub-R-module M of Sandd > 1. Letby,...,b;, , bea
k-basis of [ ,_, M and let A be a polynomial with no constant terms. Then A € [, M
if and only if it is of the form

ta—1 ta—1 ta—1

A= ZA;/bj\yF..:yn:OJrZ Af/bj\ysz,,,zyn=0+...+z A;P/ bj, A€k,
=1 1 =1 72 =1 7
(3.14)
such that
d—1 ta—1
> M(zioby) = > M(akob) =0,1<k<l<n. (3.15)
j=1 j=1
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REMARK 3.2.9 It can be proved that

Dy=1" m/ Dy_1,
m
forany 1 < d < s. Indeed, by Theorem B.1.12, Dy is stable by contraction, hence Dy
is contained in /- N [ Dy_1. Conversely, any element A in ([ Dg_1) N I+ satisfies
moA CDy 1 =1"NS<4 1. Thendeg A < d and hence A € I+ N S<y = Dy.

We end this section by considering the low Gorenstein colength cases.

3.2.1 Teter rings

Let us remind that Teter rings are those A = R/I such that A = G/ soc(G) for some
Gorenstein ring G. According to [20, Proposition 2.1.3], Teter rings can be character-
ized as rings of Gorenstein colength 1, whenever their embedding dimension is equal or
greater than 2. Otherwise, if A is a Teter ring with embd(A) = 1, then A is Gorenstein.
Rings of Gorenstein colength 1 are a special case to deal with because the K i associated
to any generator /' € S of a minimal cover is always the maximal ideal. We provide
some additional criteria to characterize such rings:

PROPOSITION 3.2.10 Let A = R/I be a non-Gorenstein local Artin ring of socle degree
s> landlet {F;}i<;<y be an adapted k-basis of £ 4 ;. Then gcl(A) = 1 if and only if
there exist a polynomial F' = Z?Zl a; F; € fm I+, a; € k, such that dimy(mo F) =
dimk IJ‘ .

Proof: The first implication is straightforward from Corollary and Teter rings
characterization in [20, Proposition 2.1.3]. Reciprocally, if F' € fm I+, thenmoF C I+
by definition, and from the equality of dimensions, it follows that mo F' = I+, Therefore,
0 < gcl(A) < ¢(R/m) = 1 and we are done. [J

EXAMPLE 3.2.11 Recall Example with I+ = (y1y2,93) and

/ IJ_ = <y%7yly27y1y3ay%ay2y37y§>'
m

Then %%, 7,75, U3, Yo Us, s is a k-basis of £ 4 1. As a consequence of Proposition B.2.10,
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3.2. Using integrals to obtain Gorenstein covers of Artin rings

A is Teter if and only if there exists a polynomial
F = a1y7 4 asynys + asys + aayays + asys

suchthatmo F = [, Butmo F = (ayy1 + a2ys, azya + asys, asy1 + asyz + asys)
and clearly y;y> does not belong here. Therefore, gcl(A) > 1.

3.2.2 Gorenstein colength 2

By Theorem [.2.5, we know that A is of Gorenstein colength 2 if and only if there
exists a polynomial F of degree s 4 1 or s + 2 such that K o F = I+, where K =
(L1,...,Ly—_1,L2), where L; are suitable independent linear forms.

Observe that a completely analogous characterization to the one we did for Teter rings
is not possible. If A = R/I has Gorenstein colength 2, by Corollary B.2.6, there exists
F = Zle 2?1:1 a’Fle [, I+, where {F;}lgigg)lgjghi is a k-basis of £ 4 o, that
generates a minimal Gorenstein cover of A and then trivially I+ C (F). However, the

reverse implication is not true.

EXAMPLE 3.2.12 Consider A = R/ m3, where R is the ring of power series in 2 variables,
and consider F = y}y3. Itis easy to see that F € [ , I+ = Scqand I+ C (F).
However, it can be proved that gcl(A) = 3 with [2, Corollary 3.3]. Note that K = m?
and hence ¢/(R/Kp) = 3.

Therefore, given F' € [ , I 1, the condition I C (F) is not sufficient to ensure that
gcl(A) = 2. We must require that /(R/Kr) = 2 as well.

PROPOSITION 3.2.13 Given a non-Gorenstein non-Teter local Artin ring A = R/I,
gcl(A) = 2if and only if there exist a polynomial F' = Zle Z;”:l a§ Fj € [ I+ such
that {F; }1<i<2,1<;<n, is an adapted k-basis of L4 2 and (L1, ..., L1, L2)o F = I+

for suitable independent linear forms L1, ..., L,.

Proof: We will only prove that if F" satisfies the required conditions, then gcl(A) = 2.
By definition of K, if (Ly,...,L,_1,L2) o F = I+, then (Ly,...,L,_1,L2) is
contained in K. By Proposition R.1.6, gcl(A) < ¢(R/K ) and hence gcl(A) is equal
or less than ¢ (R/(L1,...,Ln—1,L2%)) = 2. Since gcl(4) > 2 by hypothesis, then
gel(A) =2.0
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EXAMPLE 3.2.14 Recall the ring A = R/ in Example B.2.11. Since

/2Pf%ﬁw@%wﬁwiﬁmwww&ﬁwwwémﬁw@
m
and gel(A) > 1, its Gorenstein colength is 2 if and only if there exist some F in

(U3 Y192, Y193, Y3 Y2U3, Ys» Y Ui Y2, V1Y, Yoo Y13, Y1Y2Ys, YaUs, Y13, Y2Ya, Y3 )k
such that (L1, ..., L,_1,L2) o F = It. Consider F' = y3 + y%ys, then
(xl,xg,mg) oF =(x10F, J;S oF,z30F) = (ylyg,y§>

and hence gcl(A) = 2.

3.3 The variety of minimal Gorenstein covers

We are now interested in providing a geometric interpretation of the set of all minimal
Gorenstein covers G = R/J of a given local Artin k-algebra A = R/I. From now on,
we will assume that k is an algebraically closed field. The following result is well known
and it is an easy linear algebra exercise.

LEMMA 3.3.1 Let ¢; : k* — kb, i = 1--- ,r, be a family of Zariski continuous maps.
Then the function ¢* : k* — N defined by ¢*(2) = dimk{(p1(2),- -, ©r(2))x is
lower semicontinous, i.e. for all zy € k® there is a Zariski open set zo € U C k® such
that for all z € U it holds ¢*(2) > ¢*(20).

THEOREM 3.3.2 Let A = R/I be an Artin ring of Gorenstein colength ¢. There exists a
quasi-projective sub-variety M GC"(A), n = dim(R), of Py (£ 4,;) whose set of closed
points are the points [F], F' € L4, such that G = R/ Anng F is a minimal Gorenstein
cover of A.

Proof: Let E be a sub-k-vector space of fmt I+ such that

/1¢2E@H,
mt
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3.3. The variety of minimal Gorenstein covers

we identify £4, with E. From Proposition , for all minimal Gorenstein covers
G = R/ Anng F we may assume that F' € E. From Corollary B.2.6, we also know that
deg F < s +t. Given F' € E, the quotient G = R/ Anng F is a minimal cover of A if
and only if

(1) dimg(F) = dimk(A) + ¢, and
(2) dimy(I+ + (F)) = dimy (F).

Define the family of Zariski continuous maps {¢q }|a|<s4t> @ € N™, where

Yo: EF — FE

F — z%oF

In particular, g = I'dr. We write

p*: FE — N
F — dimg(z®o F: o] < s+t

Note that ¢*(F) = dimy (F) and, by Lemma B.3.1, ©* is a lower semicontinuous map.
Hence U; = {F € E | dimy (F) > dimy A + t} is an open Zariski set in E. Using the
same argument, U = {F' € E | dimy (F) > dimgx A + ¢ + 1} is also an open Zariski
setin F and hence Z; = F\U, is a Zariski closed set such that dimy (F) < dimy A +¢
forany F € Z;. Then Z; NU; = {F € E | dimy(F) = dimg A+1t} isalocally closed
set.

Let G1,--- ,G, be a k-basis of I+ and consider the constant map

foranyi=1,---,r. By LemmaB.3.1,

W E — N
F — dimk(<F>+Il‘):dimk<{xaOF}|a‘§s+t,G1,...,Gr>k

is a lower semicontinuous map.
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Chapter 3. Variety of minimal Gorenstein covers

Using an analogous argument, we can prove that 7' = {F € E | dimy (I + (F)) =
dimy A + t} is a locally closed set. Therefore,

W =(ZinU))NT ={F € E | dimy A +t = dimy (I'* + (F)) = dimy (F)}

is a locally closed subset of E' whose set of closed points can be identified with poly-
nomials F in F satisfying (1) and (2), that is, F' € S such that G = R/ Anng F'is a
minimal Gorenstein cover of A.

Moreover, since (F') = (AF') for any A € k*, conditions (1) and (2) are invariant
under the multiplicative action of k* on F' and hence

MGC”(A) = Pk(W) - ]Pk(E) =Py (£A7t> .

Recall that we have the upper bound 7(A) +gcl(A) — 1 for the embedding dimension
of any minimal Gorenstein cover given by Proposition 2.3.2.

DEFINITION 3.3.3 Given an Artin ring A = R/I, the variety MGC(A) = MGC"(A),
withn = 7(A)+gcl(A) —1, is called the minimal Gorenstein cover variety associated
to A.

REMARK 3.3.4 In Theorem we proved that for low Gorenstein colength of A4, i.e.
gcl(A) < 2, then embd(G) = embd(A) for any minimal Gorenstein cover G of A. In
this situation we can define M GC(A) as the variety M GC"(A) with n = embd(A).

Observe that this notion of minimal Gorenstein cover variety generalizes the defini-
tion of Teter variety introduced in [20], which applies only to rings of Gorenstein colength
1, to any arbitrary colength.

3.4 Computing M GC(A) for low Gorenstein
colength

In this section we provide algorithms and examples to compute the variety of minimal
Gorenstein covers of a given ring A whenever its Gorenstein colength is 1 or 2. These
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3.4. Computing M GC(A) for low Gorenstein colength

algorithms can also be used to decide whether a ring has colength greater than 2, since it
will correspond to empty varieties.

To start with, we provide an auxiliary algorithm to compute the integral of 7+ with
respect to the ¢-th power of the maximal ideal of R. If there exist polynomials defining
minimal Gorenstein covers of colength ¢, they must belong to this integral.

3.4.1 Computing integrals of modules

Let b a k-basis b1, . . ., b; of a finitely generated sub- R-module M of S and consider

T o b; = 22:1 aébj, forany 1 < i < tand 1 < k < n. Let us define matrices

Ui = (a%)1<j.i<¢ for any 1 < k < n. Note that

al ... af
(mkobl...l'kobt): (bl"'bt)
ag e ag
Now consider any element » € M. Then
¢ t ¢
Tpoh =xj 0 Z hib; = Z(mk o hib;) = Z(xk ob;i)h; =
i=1 i=1 i=1
h1 hy
= (zgoby - xR 0by) = (by---b) Uy ,
hy Iy

where hq,...,h; € k.

DEFINITION 3.4.1 Let Uy, 1 < k < n, be the square matrix of order ¢ such that
T © h=Db Uk ht7

where h = (hq, ..., h) forany h € M, with h = 25:1 hib;. We call U, the contrac-
tion matrix of M with respect to zj, associated to a k-basis b of M.
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Chapter 3. Variety of minimal Gorenstein covers

REMARK 3.4.2 Since xpx; o h = zjxy, o h for any h € M, we have U,U; = U;Uy, with
1<k<i<n.

In [39], Mourrain provides an effective algorithm based on Theorem that com-
putes, along with a k-basis of the inverse system I+ of an ideal I of R, the contraction
matrices Uy, . .., U, of I'* associated to that basis.

EXAMPLE 3.4.3 Consider A = R/I, with R = k[x,75] and I = m?. Then1,y;,y isa
k-basis of I+ and Uy, Us, are its contraction matrices with respect to x1, 2, respectively:

01 0 0 0 1
Ui=| 00 0], Uz2=| 0 0 0
00 0 00 0

We present Algorithm [, based on Theorem B.2.7, which computes the integral of a
finitely generated sub-R-module M with respect to the maximal ideal. The algorithm
can use the output of Mourrain’s integration method as initial data: a k-basis of /- and
the contraction matrices associated to this basis.

REMARK 3.4.4 Observe that the classes in fm M /M of the output by 1, ..., byyp of Al-
gorithm [I| form a k-basis of [ M /M. Moreover, since the algorithm returns the con-
traction matrices of fm M, we can iterate the procedure in order to obtain a k-basis of
fm’“ M for any k£ > 1. By construction, the elements of this k-basis that do not belong
to M form an adapted k-basis of [ , M/M.

EXAMPLE 3.4.5 Consider A = R/I, with R = k[z1,22] and I = m?. Then 1, y1, ¥,
y%, Y1Y2, y% is a k-basis of fm I+t = S<2 with the following contraction matrices:

N
I

o o o o o o
o o o o o =~
o o o o o o
o o o o o o
o ©o o ~ o o
o o o o ~ o
o o o o o o
o o o o o o
o o o o o =
o o o ~ o o
o o o o = o
o o o o o o
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3.4. Computing M GC(A) for low Gorenstein colength

Algorithm 1 Compute a k-basis of | M and its contraction matrices
Input: D = by, ...,b; k-basis of M;

Ui, ...,U, contraction matrices of M associated to the k-basis D.
Output: D =by,...,by,byy1,. .., by, k-basis of [ M;

Ui,...,U/ contraction matrices of fm M associated to the k-basis D.

Steps:

(i) Set A\; = (A -+ X\})¢, forany 1 < i < n. Solve the system of equations
Ug M — U A =0forany 1 < k <l <n. (3.16)

(i) Consider a system of generators Hy, ..., H,, of the solutions of B.16.
(iii) Forany H; = [A1,...,\,], 1 < ¢ < m, define the associated polynomial

n t
_ k .
Agm, = E g )\j/b]|yk+1:"':yn:0
1 \j=1 k

k=
@iv) If Ag, ¢ (D)k, then by 1 := Ay, and D = D, b ;. Repeat the procedure for
Ay, o Al .
(v) Set h as the number of new elements in D.

(vi) Define square matrices U}, of order ¢ + h and set U}[i] = U [i] for 1 < i <.
(vii) Compute zj, o b; = Z;’:l u;'-bj fort+1 <4 <t+ handset

U,’cm:(ug e 0 - O)t_

3.4.2 Computing M GC(A) for Teter rings

Let us consider a non-Gorenstein local Artin ring A = R/I of socle degree s. Fix
a k-basis b1, ..., b; of I+ and consider a polynomial F' = Z?Zl a;Fj € [ I+, where
Fq,...,Fpis an adapted k-basis of £4 ;. According to Proposition , F' corre-
sponds to a minimal Gorenstein cover if and only if dimy(m o F') = t. Therefore, we
want to know for which values of a1, .. ., a;, this equality holds.

Note that deg FF < s+ land zy2z; 0 FF = zyz o F. Thenmo F = (z*o F : 1 <
|a| < s+ 1)k. Eacha® o F € I+, hence 2% o F = Z;:l ulb; for some p, € k.
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Chapter 3. Variety of minimal Gorenstein covers

Consider the matrix A = (pg)lﬂa‘SHL 1<j<t» whose rows are the contractions
2 o F expressed in terms of the k-basis by, . .., b, of I, The rows of A are a system of
generators of mo F as k-vector space, hence dimy (mo F') < tif and only if all order ¢ mi-
nors of A vanish. Let a be the ideal generated by all order ¢ minors py, . .., p, of A. Note
that the entries of matrix A are homogeneous polynomials of degree 1 in k[ay, ..., ax].
Hence a is generated by homogeneous polynomials of degree ¢ in k[a1, . .., ay]. There-
fore, we can view the projective algebraic set

V'F(a):{[al:”':ah]epﬁ_l |qu(a1,-.-,ah):0, ISZST}a

as the set of all points that do not correspond to Teter covers. We just proved the following
result:

THEOREM 3.4.6 Let A = R/I be an Artin ring with gcl(A) =1, h = dimy £4 1 and a
be the ideal of minors previously defined. Then

MGC(A) = PP 1\V, (a).

Moreover, for any non-Gorenstein Artin ring A, gcl(A4) = 1 if and only if a # 0.

Proof: The first part is already proved. On the other hand, if a = 0, then V, (a) is
the whole ]P’ﬁ*1 and MGC(A) = 0. In other words, there exist no Teter covers, hence
gcl(A) > 1.0

Algorithm [ provides a method based on Theorem to decide whether a non-
Gorenstein ring A = R/T has colength 1 and, if this is the case, it explicitly computes
its MGC(A).

With the following example we show how to interpret the output of the algorithm:

EXAMPLE 3.4.7 Consider A = R/I, with R = k[x1, x5] and I = m? [20, Example 4.3].
From Example we gather all the information we need for the input of Algorithm P:
Input: by = 1,by = y1,b3 = yo k-basis of I+; I} = y%, Fy = y1y2, F3 = y? adapted
k-basis of £ 4 1; Ui,U; contraction matrices of fm It

Output: rad(a) = a3 — ajaz.

We consider points (a; : az : az) € P2 Then MGC(A) = P*\{a} — ajaz = 0}
and any minimal Gorenstein cover G = R/ Anng F of A is given by a polynomial
F = a1y5 + asy1y» + azy? such that a3 — ajaz # 0.
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3.4. Computing M GC(A) for low Gorenstein colength

Algorithm 2 Compute the Teter variety of A = R/I withn > 2
Input: s socle degree of A = R/I;

by,..., b, k-basis of I+;

Fi,..., Fy adapted k-basis of L4 1;

Ui, ..., U, contraction matrices of fm I+,
Output: ideal a such that MGC/(A) = Pi~1\V, (a).

Steps:

(i) Set F = a1Fy + - +apFp, and F = (ay,...,ap)t, where ay,...,a are
variables in k.

(i) Build matrix A = (N?)1<\a\<s+1,1<j<t’ where

t
USF =3 pugby, U =U U
j=1

(iii) Compute the ideal a generated by all minors of order ¢ of the matrix A.

3.4.3 Computing M GC(A) in colength 2

Consider a local Artin ring A = R/I with gcl(A) > 1, a k-basis by, ..., b; of I+
and an adapted k-basis Fy,...,Fy,,G1,...,Gh, of L4 (see Definition B.2.4) such
that

© bi,...,by, Fu, .. Fy, isak-basisof [ I+,
*bi,.., b, Fu,o Fyy Gh, o Gy is akebasis of [, T+,

If a minimal Gorenstein cover G = R/ Anng H of A such that /(G) — ((A) = 2
exists, then, by Corollary B.2.6, H is a polynomial of the form

h1 hg
H=Y oF;+» BiGi a;pi€k
i=1 i=1
We want to obtain conditions on the «a’s and 3’s under which H actually generates a

minimal Gorenstein cover of colength 2. By definition, H is in fm? I+, hence z, o H is
inmo [ ([ I*)C [ I*and

t h1

xpo H = Zuibj —|—Zp§ch, wr, pr € k.

j=1 j=1
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Set matrices Ay = (/ﬂe) and By = (pi) Let us describe matrix By explicitly. We

have
hl h2

zpo H = Zai(xk oF}) + Zﬁz(xk o Gj).

i=1 i=1

Note that each xy 0 G;, forany 1 < i < ho,isin fm T+ and hence it can be decomposed

as
¢ hy
o Gi= Y Aj'b Y ai Fy, X et €k
Jj=1 j=1
Then
h1 ho t . ha ‘
ot =St )+ 35 (3o, 3 ) -
i=1 i=1 j=1 =1
h1 ho
—0a 3 (St 5,
j=1 \i=1
where b= 312, (g 0 i) + 3002, i (23:1 A?’ibj) € I+, Observe that
. ha .
pe=2a" B, (3.17)
i—1
hence the entries of matrix By can be regarded as polynomials in variables 31, . . ., 4,

with coefficients in k.

LEMMA 3.4.8 Consider the matrix By = (pi) as previously defined and let B}, = (gi)
be the matrix of the coefficients of Ly o H = Z?;l Q‘Z:Fj € L4 where Ly,..., L,
are independent linear forms. Then,

1+
(i) tk By = dimy m°+>

(ii) rk By =rk By.

IJ_

h1

Proof: Notethat 7, 0 H = Y '%, p,F; € L4, and

<x1OH7"'7x7LOH>k:(mOH_FIL)/IJ_'

Since F'y,..., Fp, is ak-basis of L4 1 and (mo H + I1)/I+ C L4 1, then (i) holds.
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For (ii) it will be enough to prove that

(x10H,...;,2noH)y =(L1oH,...,L, 0 H).

Indeed, since L; = Y_'_ Nix; forany 1 <i < n,thenL;0o H =" )\;(xj o H) in

J=17 j=1
(x1 0 H,...,x, o H). The reverse inclusion comes from the fact that (Lq, ..., L,) is
the maximal ideal, hence x; can be expressed as a linear combination of Ly, ..., L,. O

LEMMA 3.4.9 With the previous notation, consider a polynomial H € fm2 I+ with co-
efficients f1,..., B, of G1,...,Gp,, respectively, and its corresponding matrix By.
Then the following are equivalent:

() By #0,
(i) mo H ¢ I+,
(i) (B1,---,Bn,) # (0,...,0).

Proof: (i) implies (ii). If By # 0, by Lemma B.4.§, (mo H + I*)/I* # 0 and hence
moH ¢ I+.

(i1) implies (éé). If mo H ¢ I+, by definition H ¢ [ I+ and hence H belongs to
Jiu2 I\ [, 1. Therefore, some (3; must be non-zero.

(¢11) implies (7). Since G; € [ , I\ [ I+ forany 1 < i < hy and, by hypothesis,
there is some non-zero 3;, we have that H € [ , I\ [ I+. We claim that 2, o H is
in [ I-\I* for some 1 < k < n. Suppose the claim is not true. Then zj, o H € I+
for any 1 < k < n, or equivalently, m o H C I. But, by definition, this means that
H e fm I, which is a contradiction. Since

hi

h2
oo H=b+>_ (Z @afﬂ) F; € / IN\IY, belt,
j=1 \i=1 m
for some 1 < k < n, then pf; # 0, for some j € {1,..., h;1}. Therefore, By # 0. O

LEMMA 3.4.10 Consider the previous setting. If By = 0, then either gcl(A) = 0 or
gcl(A) = 1 or R/ Anng H is not a cover of A.

Proof: 1f By = 0,thenmo H C I and hence /(H) —1 < ¢(I*). If I+ C (H), then
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G = R/ Anng H is a Gorenstein cover of A such that ¢(G) — ¢(A) < 1. Therefore,
either gcl(A) < 1 or G is not a cover. [J

We already have techniques to check whether A has colength 0 or 1. Therefore, we
can assume gcl(A) > 2. The previous two lemmas allow us to take into considera-
tion only those polynomials H such that (01, ..., ,) # 0 or, equivalently, By # 0.
According to Proposition B.2.13, gcl(A) = 2 if and only if

(Li,... Ly, L2) o H =1
for some H of the previously stated form and some independent linear forms L1, ..., L.

PROPOSITION 3.4.11 Assume that By # 0. Then rk By = 1 if and only if
(Li,.oo Ly, L2) o HC T

for some independent linear forms L, ..., L,.

Proof: Recall that, since we are under the assumption that By # 0, there exists k& such

that 7, o H ¢ I+. Without loss of generality, we can assume that x,, o H ¢ I+. If

rk By = 1, then any other row of By must be a multiple of row n. Therefore, for any

1 <i < n—1, there exists \; € k such that (z; — \;z,,) o H € I'+. Take L,, := x}, and

L; == z;—\;z,. Itisclearthat Ly, ..., L, are linearly independent and that L,0 H € I +

forany 1 <i <n — 1. Moreover, L2 0 H =27 o H e m?o [ , I+ C I+
Reciprocally, let B, = (o7,) be the matrix of the coefficients of

hi
LyoH = ZQ{CF]‘ S ACAJ.
j=1
By Lemma B.4.8, since By # 0, then B’; # 0. We are assuming that L; o H = --- =

L,_10H = 0but, since By; # 0, then L,, o H # 0. It is clear that rk B; = 1 and
hence, again by Lemma B.4.4, rk By = 1. O

Recall that (H) = (\H) for any \ € k*. Therefore, as pointed out in Theorem B.3.2,
for any H # 0, a Gorenstein ring G = R/ Anng H can be identified with a point [H] in
Pk (L 4,2) by taking coordinates (cvg : -+ : ap, = 81 : -+t Bp,). Observethat Py (L£4,2)
is a projective space over k of dimension h; 4+ hy — 1, we denote it by Pﬁﬁhrl.
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On the other hand, from the expression we can deduce that any minor of the
matrix By = (,0{6) is a homogeneous polynomial in variables /31, ..., 8x,. Therefore,
we can consider the homogeneous ideal b generated by all order-2-minors of By in
the polynomial ring k[a, .. ., apn,, B1, - - -, Br,]- Hence V. (b) is the projective variety
consisting of all points [H] € ]P’ﬁﬁhrl such that tk By < 1.

REMARK 3.4.12 In this section we will use the notation M GC5(A) to denote the set
of points [H] € Pﬁ1+h2_1 such that G = R/ Anng H is a Gorenstein cover of A with
£(G)—{(A) = 2. Since we are considering rings such that gcl(A) > 1, we can character-
ize rings of higher colength than 2 as those such that M GC5(A) = 0. On the other hand,
gcl(A) = 2 if and only if MGC32(A) # 0, hence in this case MGCy(A) = MGC(A),
see Definition and Remark 3.3.4.

COROLLARY 3.4.13 Let A = R/I be an Artin ring such that gcl(A) = 2. Then

MGCy(A) C V, (b) C Pprthe—t,

Proof: By Proposition R.1.6.(i7), points [H] € MGC4(A) correspond to Gorenstein
covers G = R/Anng H of A such that I* = (Ly,...,L,_1,L?) o H for some

Li,...,L,. Since By # 0 by Lemma B.4.10, then we can apply Proposition
to deduce that tk By = 1. [

Note that the conditions on the rank of By do not provide any information about

which particular choices of independent linear forms L, ..., L,, satisfy the inclusion
(L1,..., Lp—1, LfL) o H C I+. In fact, it will be enough to understand which are the
L,, that meet the requirements.

To that end, we fix L,, = viz1 + -+ + v, Zp, where v = (vy,...,v,) # 0. We
can choose linear forms L; = Aizy + -+ + Az, where \; = (\¢,...,\}) # 0, for
1 <¢<n-—1,suchthat Lq,..., L, are linearly independent and A; - v = 0. Itis a
linear algebra exercise to check that the k-vector space generated by Lq,...,L,_; can
be expressed in terms of vy, ..., v,. Indeed,

(Ly,...,Lp—1)x = (vag — vy : 1 <k <1< nyx.
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Chapter 3. Variety of minimal Gorenstein covers

Let us now add the coefficients of L,, to matrix By by defining the following matrix
depending both on H and v:

h
Pt U1

1 h
Pn - pnl Un

PROPOSITION 3.4.14 Assume By # 0 and consider L, ..., L, linearly independent
linear forms such that L,, = vi21 + -+ + v, 2y, where v = (vq,...,v,) # 0. Then
tk Cy ., = lifand only if (Ly,..., L,—1,L2) 0 H C I+,

Proof: If rk Cy, = 1, then all 2-minors of C'fy ,, vanish and, in particular,

Ulpi—vkp{:Oforany1§k<l§nand1 <j<h. (3.18)
Recall from that
(nizg —vgx)) o H =0+ Z (vlpf€ — vkp{) F;, where b € IJ‘, (3.19)
j=1

hence (v;zy — vx;) o H € I+, Therefore, L; o H € I+ for 1 <i < n — 1. Moreover,
L%OHEmzomeIJ— cIt.

Conversely, if (L1,...,Ly_1, L%) oH C I+, thentk By =1 by Proposition .
Hence rk C'y ,, = 1 if and only if holds. Since L; o H € I+ forany 1 <i <n—1,
then (v;zy — vp2;) o H € I+ and we deduce from that is indeed satisfied. [

DEFINITION 3.4.15 We say that v = (v, ..., v,) is an admissible vector of H if v # 0
andvlpi —Ukp{ =0foranyl <k <l<nandl <j<h;.

LEMMA 3.4.16 Given a polynomial H of the previous form such that rk By = 1:

(i) there always exists an admissible vector v € k™ of H;
(ii) if w € k™ such that w = Av, with A € k*, then w is an admissible vector of H;
(iii) the admissible vector of H is unique up to multiplication by elements of k*.
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Proof: (i) Since rky B = 1, Proposition ensures the existence of linearly inde-
pendent linear forms L1, ..., L, suchthat (Ly,..., L, _1,L?) o H C I'+. By Proposi-
tion B.4.14, the vector whose components are the coefficients of L,, is admissible.
(44) Since v is admissible, w = Av # 0 and wlp{C - wkp{ = )\(vlpi - vkp{) =0.
(ii1) Since By # 0, there exists p), # 0 for some 1 < j < hy and 1 < k < n. We will
first prove that v;, # 0. Suppose that v, = 0. By Definition B.4.15, there exists v; # 0,
1 # k, and v; pi — vg pz = 0. Then v; pf; = 0 and we reach a contradiction.

Consider now w = (wy, . .., wy,) admissible with respect to H. From pi v — p{ Vv =
0 and piwl — p{wk =0, we get v, = (p{/pi) v and w; = (p{/pi) wy. Set N\ 1=
p{/,o?C Forany 1 < < n, with [ # k, from v; = \jvy, and w; = \jwy, we deduce that
w; = (wg/vg) v;. Hence w = Av, where A = wy, /vy, and any two admissible vectors
of H are linearly dependent. []

We now want to provide a geometric interpretation of pairs of polynomials and ad-
missible vectors and describe the variety where they lay. Let us first note that whenever
By = 0, any v # 0 is an admissible vector. With this observation and Lemma [3.4.16,
for any polynomial H such that rk By < 1, we can consider its admissible vectors v as
points [v] in the projective space P. ' by taking homogeneous coordinates (v; : -+ - :
Up)-

Letus consider the ideal generated ink[a1, . .., @py, 81y -« - s Bhys V1, - - -, Un] by poly-
nomials of the form

phob = phpl, 1<k<m<n1<j<I<h; (3.20)
wpl —vkpl, 1<k<l<n1<j<h. (3:21)

It can be checked that all these polynomials are bihomogeneous polynomials in the sets of
variables aq, ..., an,,B1,- .., Br, and vy, . . ., vy,. Therefore, this ideal defines a variety
in Pﬁﬁhz*l X }P’ﬁ_l the points of which satisfy equations B.20 and B.21].

We denote by ¢ the ideal in k[avy, ..., an,, 81, .- Bhyy V1, - - -, Uy generated by all
order 2 minors of C'zr,,. We denote by V. (¢) the variety defined by ¢ in PﬁlJrh?_l X
Pp-t,

LEMMA 3.4.17 With the previous definitions, the set of points of V (¢) is

{([H], [v]) € Piath2=t 5 pr=1 | [H] € V, (b) and v admissible with respect to H} .
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Chapter 3. Variety of minimal Gorenstein covers

Proof: Tt follows from and B.21. O

LEMMA 3.4.18 Let 7 be the projection map from Py 271 x =1 to P +72=1 Then
71 (V4 (c)) = V1 (b). Moreover, 7, is a bijection when restricted to the subset of V. (¢)
where rk By = 1.

Proof: Any element of V, (c) is of the form ([H],[v]) described in Lemma B.4.17.
Then 71 ([H], [v]) = [H] € V,(b). Conversely, given an element [H] € V,(b), we
have rk By < 1. If By = 0, then any v # 0 satisfies ([H], [v]) € V4 (¢). If tk B = 1,
by Lemma B.4.16, there exists a unique admissible v up to scalar multiplication, hence
([H], [v]) is the unique point in V (c¢) such that 1 ([H], [v]) = [H]. O

From Corollary B.4.13, we know that all covers G = R/ Anng H of A = R/I
colength 2 correspond to points [H] € V. (b) but, in general, not all points of V_ (b)
correspond to such covers. Therefore, we need to identify and remove those [H] such
that (Ly,...,Ly,_1,L2)0 H C I+,

As k-vector space, (L1, ..., L,_1,L2) o H is generated by

o (g —vpz) o Hy1 <k <l <n;
e 2’0o H,2< 0| <s+2.

Since (Ly,...,L,_1,L2) o H C I+, we can provide an explicit description of these

generators with respect to the k-basis by, .. ., b; of I+ as follows:

(xkvl — xlvk) oH =

t

h1 h1 ha ha
ki Li ki L
v ) oG — vk E Qi+ E BiX;" — vk E BiX;" | by,
1 =1 =1 i=1 i=1

J

forl <l <k <mn,withzgoF;, =5 b andzyo0G; = S A 4
} . , : g=1 M5 % J=173 7
Z?;l a?’le, where ,uf”, /\f”, a?’i are in k;

h1

" h
2o H = Z (Z Mf-’ioéi + i A?’%z‘) bj,
i=1 i—1

i=1
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3.4. Computing M GC(A) for low Gorenstein colength

where2 < [0 <s+2,2% 0 Fy =Y, ;L?’ibj and
t .
.’E9 ] Gl = Z )\?’ij7
=1

with u?’i and A?’i in k.

We now define matrix U, such that its rows are the coefficients of each generator
of (Ly,...,Ly_1,L2) o H with respect to the k-basis b1, ..., b; of I*:

T by e by
1 t
($2U1 —331112) oH 01 0,
(Tpp—1 — Tp_1vp) 0 H 1 ¢
nUn—1 n—1Un ‘anl,n anl,n
2 1 ‘
zfo H $(2,0,..,00 T 5(2,0,...,0)
1 t
1220 H | SGi0 0) 7 S(1,1.0,..0)
2 1 .. t
Tn o H 5(0,...,0,2) <(0....,0,2)
2 ! oot
Ty o H 5(0,...,0,54+2) $(0,...,0,542)
where
h1 ha ho ho
J o= E st § L E : ki Z Li
Ql,k =0 al:u] — Uk aiuj + vy Bl)\J — Vg ﬂl)\j
i=1 i=1 i=1 i=1
and

ha ha
, 0. 0.
G = E 14 ‘o + E Aj B
i=1

i=1
It can be easily checked that the entries of this matrix are either bihomogeneous polyno-
mials g{k in variables ((«, 8),v) of bidegree (1, 1) or homogeneous polynomials gg in
variables (a, ) of degree 1. Let abe the ideal ink[av1, ...,y 81y« -« Bhoy U1y -« -5 Un)
generated by all minors of Uy, of order ¢ = dimy I+.
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It can be checked that a is a bihomogeneous ideal in variables ((«, 5),v), hence we
can think of V() as the following variety in P#1+hz2=1 » pr—1:

Vi (a) = {([H], [v]) € PPFh2=t x Pt | 1k Uy, < t}.

PROPOSITION 3.4.19 Assume gcl(A) > 1. Consider a point ([H],[v]) € Vi(c) in
Phith2=1  pr—=1 Then

[H] € MGCy(A) <= ([H], [v]) ¢ Vi(a),

Proof: From Corollary we deduce that if [H] is a point in M GC5(A), then
rk By < 1. The same is true for any point ([H], [v]) € Vi (c). Let us consider these
two cases:

Case By = 0. Since gcl(A) > 1, then R/ Anng H is not a Gorenstein cover of A
by Lemma B.4.10, hence [H] ¢ MGCsy(A). On the other hand, as stated in the proof of
Lemma B.4.18, ([H], [v]) € V4 (c¢) for any v # 0. By Lemma and gcl(A) # 1, it
follows that

(Liy... Ly 1, L2)oHCmoHC I+

forany L4, ..., L, linearly independent linear forms, where L,, = viz1 + -+ + vpxy,.
Therefore, the rank of matrix Uy, is always strictly smaller than dimy [/ L. Hence
([H],[v]) € V4(a) for any v # 0.

Case tk By = 1. If [H] € MGC5(A), then there exist Lq,..., L, such that
(Ly,...,Lp_1,L2) o H = I+. Take v as the vector of coefficients of L,, it is an
admissible vector by definition. By Lemma B3.4.18, ([H], [v]) € V. (¢) is unique and
tk Uy, = dimy I+, Therefore, ([H], [v]) ¢ V().

Conversely, if ([H],[v]) € Vi(c) NV (a), then tkUp, < dimy I and hence
(Ly,...,Lp_1,L2) 0 H C I+, where L,, = vyx1 + - -+ + v,2,. By unicity of v, no
other choice of L4, ..., L, satisfies the inclusion (L, ..., L,_1, LfL) o H C I, hence
[H] ¢ MGCy(A). O

COROLLARY 3.4.20 Assume gcl(A) > 1. With previous definitions,

MGCy(A) = Vi (b)\m1 (Vi (c) NV (a)).
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Proof: Tt follows from Lemma and Proposition B.4.19. O

Finally, let us recall the following result for bihomogeneous ideals, see [[10]:

LEMMA 3.4.21 Let ideals a, ¢ be as previously defined, ® = a + ¢ be the sum ideal and
m ¢ PInthe=l o pr=l _, phitha=1 he the projection map. Let d be the projective
elimination of the ideal ? with respect to variables vy, ..., v,. Then,

T (Vi (@) NV (c) = V4 (2).

Algorithm 3 Compute M GC2(A) of A = R/I withn > 2 and gcl(A4) > 1
Input: s socle degree of A = R/I; by,...,b; k-basis of the inverse system I L.

Fi,...,Fp,,G1,...,Gp, an adapted k-basis of L4 2; Ui, ..., U, contraction ma-
trices of [ , I+,

Output: ideals b and d such that MGCq(A) = V. (6)\V,(2).
Steps:

(i) Set H =anF1+---+ap, Fn, + f1G1+- - -+ Br,Gh,, where o, § are variables
in k. Set column vectors H = (0,...,0,, )" and v = (v1,...,v,)" in R =
k[a, 8, v], where the first ¢ components of H are zero.

(ii) Build matrix By = (p])i<i<n,1<j<h,» Where U;H is the column vector
(7 07 SO RN ) L

(iif) Build matrix Cy,, = ( Bgy | v ) as an horizontal concatenation of By and
the column vector v.

(iv) Compute the ideal ¢ C R generated by all minors of order 2 of By.

(v) Build matrix Upg, as a vertical concatenation of matrices
(0] )1<i<hi,1<1<h<n and () )2<|p|<s2, 1< <, Such that (v, Uy, — vpU))H =
(Olgr0/%,0,---,0)" and U'H = (g},--+,5*,0,---,0)', with
1<k<l<nand2<|f <s+2.

(vi) Compute the ideal a C R generated by all minors of order ¢ of Up ,, and the
ideald=a+cCR.

(vii) Compute ? C R’ = k[o, 3], where ~ denotes the projective elimination of the
ideal in R with respect to variables vy, ..., v,.
(viii) Compute the ideal b :=¢ C R'.
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Algorithm [ effectively computes M GCy(A) for any ring A = R/I with Goren-
stein colength strictly higher than 1. Its output can be interpreted as M GCs(A) =
V4 (b)\V,(d). Moreover, any point [y : -~ : ap, : B1 : -+ ¢ Bn,] in MGCy(A)
corresponds to a minimal Gorenstein cover G = R/ Anng H of colength 2 of A, where
H=o1F1+-- +oap, Fn, + 511G+ - '+Bh2Gh2- IfMGOQ(A) 7é 0, thengcl(A) =2
and hence MGC(A) = M GC3(A). Otherwise, gcl(A) > 2.

EXAMPLE 3.4.22 Consider A = R/I, with R = k[z1,75] and I = (23,2123, 23).
Applying Algorithm [ twice we get the necessary input for Algorithm J:

Input: by = 1,by = y1,b3 = y2,bs = y3,b5s = y1y2,bs = v3 k-basis of [+; | =
3, Fo = y1y3, Fs = yi, G1 = yiys, Go = y1y3, Gs = 5, G4 = y} adapted k-basis of
L 4,2; Uy, Uz contraction matrices of me It

Output: b = (bsby, babs), 0 = (bsby, baby, b3 — bybs).

MGCy(A) = V. (bzbg, baby)\V (b3by, boby, b3 — bibz) = V (b3by, baby)\V, (b3 —
b1b3). Note that if b3by = boby = 0 and by # 0, then both by and b3 are zero and
condition b2 — by b3 = 0 always holds. Therefore, gcl(A) = 2 and hence

MGC(A) = Vi (ba)\V (b3 — bibg) = P*\V (b3 — biby),

where (a1 : as : ag : by : b : b3) are the coordinates of the points in P>, Moreover, any
minimal Gorenstein cover is of the form G = R/ Anng H, where

H = a1ys + asy1y3 + azyi + biyiys + bay1ys + bsys

satisfies b3 — b1bs # 0. All such covers admit (1, 22) as the corresponding K ;.

3.5 Computations

The first aim of this section is to provide a wide range of examples of the computation
of the minimal Gorenstein cover variety of a local ring A. In [40], Poonen provides a
complete classification of local algebras over an algebraically closed field of length equal
or less than 6. Note that, for higher lengths, the number of isomorphism classes is no
longer finite. We will go through all algebras of Poonen’s list and restrict, for the sake
of simplicity, to fields of characteristic zero.

On the other hand, we also intend to test the efficiency of the algorithms by collecting
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the computation times. We have implemented algorithms 1, 2 and 3 of Section B.4 in the
commutative algebra software Singular [[11]. The computer we use runs into the operat-
ing system Microsoft Windows 10 Pro and its technical specifications are the following:
Surface Pro 3; Processor: 1.90 GHz Intel Core i5-4300U 3 MB SmartCache; Memory:
4GB 1600MHz DDR3.

3.5.1 Teter varieties

In this first part of the section we are interested in the computation of Teter varieties,
that is, the M GC(A) variety for local algebras A of Gorenstein colength 1. All the
results are obtained by running Algorithm [ in Singular.

EXAMPLE 3.5.1 Consider A = R/I, with R = k[x1, 22, 23] and I = (22, 2179, 2173,
Tox3, T3, ¥3). Note that HF 4 = {1,3,2} and 7(A) = 3. The output provided by our
implementation of the algorithm in Singular [111] is the following:

F;
a(4)*x(2)M3+a(1)*x(3)M3+a(6)*x(1)"2+a(5)*x(1)*x(2)
+a(3)*x(1)*x(3)+a(2)*x(2)*x(3)

radical(a);

a(1)*a(4)*a(6)

We consider points with coordinates (a; : a2 : ag : a4 : a5 : ag) € P>, Therefore,
MGC(A) = P°\V, (ajasae) and any minimal Gorenstein cover is of the form G =
R/ Anng H, where H = a1y3 + asy2ys + asy1ys + asys + asy1y2 + agy; with
aragag 7 0.

In Table B.1] below we show the computation time (in seconds) of all isomorphism
classes of local k-algebras A of gcl(A) = 1 appearing in Poonen’s classification [40].
In this table, we list the Hilbert function of A = R/I, the expression of the ideal I
up to linear isomorphism, the dimension & — 1 of the projective space P"*~! where the
variety M GC(A) lies and the computation time. Note that our implementation of Al-
gorithm P includes also the computation of the k-basis of fm I+, hence the computation
time corresponds to the total amount of time.
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HFR,; I h—11 t(s)
1,2 (11, 22)? 2 0,06
1,2,1 xlxg,mg,x‘i’ 2 0,06
1,3 (21,72, 73)> 5 0,13
1,2,1,1 22,1120, 75 2 0,23
1,2,2 mlxg,x‘;’,ajg 2 0,11
xlxg, x%, a:% 2 0,05

1,3,1 xlxg,xlxg,:cgzg,xg,x%,x? 5 0,16
1,4 (71, 22,3, 74)? 9 2,30
1,2,1,1,1 T1T2, 77,73 2 0,17
1,2,2,1 T1To, 23, 75 2 0,09
22 + a3, m 23, 24 2 0,1

1,3,1,1 xlscg,xlajg,,xg:vg,m%,x%,x‘f 5 3,05
1,3,2 23,1122, 1123, T3, o3, T3 5 0,33
x%,xlx%xlxg,xzxg,x‘g,xg 5 0,23

1,4,1 mlxg,xlxg,x1x4,x2x3,x2x4,x3x4,x§,x§,xﬁ7ﬁ’ 9 3,21
1,5 (21,72, 23,24, T5)? 14 1,25

TABLE 3.1 Computation times of M GC(A) for A = R/I with £(A) < 6 and gcl(A4) = 1.

See Appendix [ for an explicit description of M GC/(A) for all the ideals represented
in Table B.1].

3.5.2 Minimal Gorenstein covers variety in colength 2

Now we want to compute M GC(A) for gcl(A) = 2. All the examples are obtained

by running Algorithm [ in Singular.

EXAMPLE 3.5.2 Consider A = R/I, with R = k[z1,22,23] and I = (
Z1Z9, x123). Note that HF 4 = {1,3,1} and 7(A) = 2. The output provided by our

implementation of the algorithm in Singular [11] is the following:

90

2 2 2
Xy, T3, I3,




3.5. Computations

H;
b(10)*x(1)A3+b(7)*x(1)72*x(2)+
+b(8)*x(1)*x(2)72+b(9)*x(2)"3+
+b(1)*x(1)72*x(3)+b(2)*x(1)*x(2)*x(3)+
+b(3)*x(2)A2*x(3)+b(4)*x(1)*x(3)"2+
+b(6)*x(2)*x(3)A2+b(5)*x(3)"3+
+a(5)*x(1)"2+a(4)*x(1)*x(2)+
+a(3)*x(2)"2+a(2)*x(1)*x(3)+
+a(1)*x(3)"2

radical(b);
_[11=b(8)"2-b(7)*b(9)
_[2]=b(7)*b(8)-b(9)*b(10)
_[31=b(6)*b(8)-b(4)*b(9)
_[41=b(3)*b(8)-b(2)*b(9)
_[5]=b(2)*b(8)-b(1)*b(9)
_[6]=b(1)*b(8)-b(3)*b(10)
_[71=b(7)"2-b(8)*b(10)
_[81=b(6)*b(7)-b(4)*b(8)
_[91=b(4)*b(7)-b(6)*b(10)
_[181=b(3)*b(7)-b(1)*b(9)
_[111=b(2)*b(7)-b(3)*b(10)
_[121=b(1)*b(7)-b(2)*b(10)
_[131=b(3)*b(6)-b(5)*b(9)
_[141=b(2)*b(6)-b(5)*b(8)
_[151=b(1)*b(6)-b(5)*b(7)
_[161=b(2)*b(5)-b(4)*b(6)
_[171=b(4)"2-b(1)*b(5)
_[18]=b(3)*b(4)-b(5)*b(8)
_[191=b(2)*b(4)-b(5)*b(7)
_[201=b(1)*b(4)-b(5)*b(10)
_[217=b(2)*b(3)-b(4)*b(9)
_[221=b(1)*b(3)-b(4)*b(8)
_[231=b(2)"2-b(4)*b(8)
_[241=b(1)*b(2)-b(6)*b(10)
_[25]=b(1)"2-b(4)*b(10)
_[261=b(3)*b(5)*b(10)-b(6)"2*b(10)

_[27]=b(3)"2*b(10)-b(6)*b(9)*b(10)
_[28]=b(4)*b(6)"2-b(5)"2*h(8)
_[291=b(6)"3*b(10)-b(5)"2*b(9)*b(10)

radical(d);
_[11=b(8)"2-b(7)*b(9)
_[21=b(7)*b(8)-b(9)*b(10)
_[31=b(6)*b(8)-b(4)*b(9)
_[41=b(3)*b(8)-b(2)*b(9)
_[51=b(2)*b(8)-b(1)*b(9)
_[61=b(1)*b(8)-b(3)*b(10)
_[71=b(7)"2-b(8)*b(10)
_[8]=b(6)*b(7)-b(4)*b(8)
_[91=b(4)*b(7)-b(6)*b(10)
_[101=b(3)*b(7)-b(1)*b(9)
_[11]=b(2)*b(7)-b(3)*b(10)
_[121=b(1)*b(7)-b(2)*b(10)
_[131=b(3)*b(6)-b(5)*b(9)
_[141=b(2)*b(6)-b(5)*b(8)
_[151=b(1)*b(6)-b(5)*b(7)
_[16]=b(2)*b(5)-b(4)*b(6)
_[171=b(4)72-b(1)*b(5)
_[18]=b(3)*b(4)-b(5)*b(8)
_[191=b(2)*b(4)-b(5)*b(7)
_[20]=b(1)*b(4)-b(5)*b(10)
_[211=b(2)*b(3)-b(4)*b(9)
_[22]=b(1)*b(3)-b(4)*b(8)
_[23]1=b(2)"2-b(4)*b(8)
_[24]=b(1)*b(2)-b(6)*b(10)
_[251=b(1)"2-b(4)*b(10)

_[26]=b(3)*b(5)*b(10)-b(6)"2*b(10)
_[27]=b(3)"2*b(10)-b(6)*b(9)*b(10)
_[281=b(4)*b(6)"2-b(5)A2*h(8)
_[291=a(5)*b(3)*b(5)-a(5)*b(6)"2
_[30]=a(5)*b(3)"2-a(5)*b(6)*b(9)
_[311=b(6)"3*b(10)-b(5)"2*b(9)*b(10)
_[32]=a(5)*b(6)"3-a(5)*b(5)"2*b(9)

We can simplify the output by using the primary decomposition ﬂle b; of the ideal

b. Then,

k

k
MGC(A) = | |JV4(6:) | \V1(0) = [ (V4 (6)\V1(2)) -
i=1

i=1

Singular [L1] provides a primary decomposition b = by N by that satisfies

Therefore, we get

Vi (b2)\V(2) = 0.

MGC(A) =V, (b1, by, by, by, bg, big, bsbg — bsby)\ (V4 (as) UV, (d)) C PM,

where 0 = (—b3 + b2bg, b3bs — b3, b3 — bgbg). We can eliminate some of the variables
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and consider M GC(A) to be the following variety:
MGC(A) = V4 (bsbs—bsbo)\ (V4 (as) UV, (b2bg — b3, bsbs — b2, b2 — beby)) C P8,
Therefore, any minimal Gorenstein cover is of the form G = R/ Anng H, where

H = ayy3 + agy1ys + asys + aayryz + asy; + bsysys + bsys + beyays + by

satisfies b3bg — bsbg = 0 and a5 # 0 and at least one of the following conditions:
b2bg — b3 # 0, bybs — b2 # 0 or b2 — bbg # 0.

Moreover, note that V4 (¢)\Vi(a) = Vi (¢;)\V4(a), where ¢ = ¢; N cq is the
primary decomposition of ¢ and ¢; = by + (v1, v2bs — v3bg, v2bs — v3bg). Hence, any
K such that Ky o H = I+ will be of the form Ky = (L1, Lo, L2), where Ly, Lo, L3
are independent linear forms in R such that Ly = voxy + v3xs, with vabs — v3bg =
b3 — v3bg = 0.

EXAMPLE 3.5.3 Consider A = R/I, with R = k[z1,22,23] and I = (z122, 2123,
xox3, 13, v3 — x3). Note that HF 4 = {1,3,1,1} and 7(A) = 2. The output provided

by our implementation of the algorithm in Singular [[11] is the following:

H;
-b(10)*x(1)M+b(9)*x(1)A2*x(2)+
+b(7)*x(1)*x(2)"2+b(8)*x(2)"3+
+b(6)*x(1)A2*x(3)+b(1)*x(1)*x(2)*x(3)+
+b(2)*x(2)72*x(3) +b(3)*x(1)*x(3)"2+
+b(4)*x(2)*x(3)"2+b(5)*x(3)"3+
+a(5)*x(1)*x(2)+a(4)*x(2)"2+
+a(3)*x(1)*x(3)+a(2)*x(2)*x(3)+
+a(1)*x(3)"2

radical(b);

_[11=b(8)*b(10)

_[2]=b(7)*b(10)

_[3]=b(4)*b(10)

_[4]=b(2)*b(10)

_[51=b(1)*b(10)
_[61=b(6)*b(8)-b(2)*b(9)
_[71=b(7)"2-b(8)*b(9)
_[8]=b(6)*b(7)-b(1)*b(9)
_[91=b(4)*b(7)-b(3)*b(8)
_[10]=b(3)*b(7)-b(4)*b(9)
_[111=b(2)*b(7)-b(1)*b(8)
_[121=b(1)*b(7)-b(2)*b(9)
_[13]=b(4)*b(6)-b(5)*b(9)

_[141=b(2)*b(6)-b(4)*b(9)
_[151=b(1)*b(6)-b(3)*b(9)
_[16]=b(4)"2-b(2)*b(5)

_[171=b(3)*b(4)-b(1)*b(5)
_[181=b(2)*b(4)-b(5)*b(8)
_[191=b(1)*b(4)-b(5)*b(7)

_[20]=b(3)72-b(5)*b(6)+b(3)*b(10)

_[211=b(2)*b(3)-b(5)*b(7)
_[22]=b(1)*b(3)-b(5)*b(9)
_[23]=b(2)"2-b(4)*b(8)
_[24]=b(1)*b(2)-b(3)*b(8)
_[25]=b(1)"2-b(4)*b(9)
_[26]=b(5)*b(9)*b(10)
_[27]=b(3)*b(9)*b(10)
radical(d);
_[11=b(8)*b(10)
_[2]=b(7)*b(10)
_[31=b(4)*b(10)
_[41=b(2)*b(10)
_[51=b(1)*b(10)
_[61=b(6)*b(8)-b(2)*b(9)
_[71=b(7)"2-b(8)*b(9)
_[8]=h(6)*b(7)-b(1)*b(9)

_[91=b(4)*b(7)-b(3)*b(8)
_[10]=b(3)*b(7)-b(4)*b(9)
_[111=b(2)*b(7)-b(1)*b(8)
_[12]=b(1)*b(7)-b(2)*b(9)
_[13]=b(4)*b(6)-b(5)*b(9)
_[14]=b(2)*b(6)-b(4)*b(9)
_[151=b(1)*b(6)-b(3)*b(9)
_[16]=b(4)"2-b(2)*b(5)
_[171=b(3)*b(4)-b(1)*b(5)
_[181=b(2)*b(4)-b(5)*b(8)
_[191=b(1)*b(4)-b(5)*b(7)
_[20]=b(3)"2-b(5)*b(6)+b(3)*b(10)
_[21]1=b(2)*b(3)-b(5)*b(7)
_[22]=b(1)*b(3)-b(5)*b(9)
_[23]=b(2)"2-b(4)*b(8)
_[241=b(1)*b(2)-b(3)*b(8)
_[251=b(1)"2-b(4)*b(9)
_[261=b(5)*b(9)*b(10)
_[27]=b(3)*b(9)*b(10)
_[28]=a(4)*b(5)*b(10)
_[29]=a(4)*b(3)*b(10)

Singular provides a primary decomposition b = b;NbyNbs such that V, (6)\V_(d) =
V, (b2)\V, (3). Therefore, MGC(A) corresponds to

V+(bl, bg, b4, b7, bg, bg, b% — b5b6 + b3b10)\ (V+(a4) U V+(b10) U V+(b3, b5)) C PM.
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3.5. Computations

We can eliminate some of the variables and consider M GC(A) to be the following va-
riety:

MGC(A) =V, (b3 — bsbg + bsbio)\ (Vi (as) UV, (bio) UV, (b3, bs)) C P5.
Therefore, any minimal Gorenstein cover is of the form G = R/ Anng H, where

H = a1y + a2y2y3 + asy1ys + asys + asyiye + bsyays + bsys + beyiys — bioy:

satisfies b3 — bsbg + bzbip = 0, ayg # 0, big # 0 and either by # 0 or b5 # 0 (or both).
Moreover, note that V (¢)\Vy(a) = Vi (c,)\Vi(a), where ¢ = ¢ Nea Ncg s
the primary decomposition of ¢ and ¢o = by + (va, v1b5 — v3b3 — v3b10, V1b3 — V3bg).
Hence, any K such that Kz o H = I+ will be of the form Ky = (L, Lo, L2),
where L1, Lo, L3 are independent linear forms in R such that L3 = viz1 + vsxs, with

'U1b5 — 'Ugbg - ’l)3b10 = 'Ulbg - ’L)3b6 =0.

EXAMPLE 3.5.4 Consider A = R/I, with R = k[x1, 22, x3] and I = (23, 23, 23, x122).
Note that HF 4 = {1, 3,2} and 7(A) = 2. Doing analogous computations to the previous
examples, Singular provides the following variety:

MGC(A) =P\V, (b3 — b1b3).

The coordinates of points in M GC/(A) are of the form (ay : -+ : ag: by : ba : b3 :
bs) € P7 and they correspond to a polynomial

H = biyiys + bayiyays + bsysys + bays + a1y3 + asys + asyiys + asyi

such that b3 — b1b3 # 0. Any G = R/ Anng H is a minimal Gorenstein cover of
colength 2 of A and all such covers admit (1, 22, 23) as the corresponding K ;.

EXAMPLE 3.5.5 Consider A = R/I, with R = k[x1, 72,23, 24] and I = (2%, 23, 2%,
T3, 11T, T173, T1T4, ToT3, T2x4). Note that HF 4 = {1,4,1} and 7(A4) = 3. Do-
ing analogous computations to the previous examples, Singular provides the following
variety:

MGC(A) =V (bebro — bobis)\ (V1 (01) UV (d2)) C P'?,
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Chapter 3. Variety of minimal Gorenstein covers

where 01 = (ayag —a3) and 03 = (b3b16 — b3y, bebg — b3y, b2 —b1ob1s). The coordinates
of points in MGC(A) are of the form [H] = (ay : -+ : ag : bg : by : b1g : big) € P12,
where

H = bieys + bey3ya + bioysys + boyi + aoyi + asyr1yz + arys+

+asy1ys + asy2ys + asys + asyiya + azyoys + ar1y;-

Then G = R/ Anng H is a minimal Gorenstein cover of colength 2 of A if and only
if [H] € MGC(A). Moreover, any K such that Ky o H = I+ will be of the form
Ky = (L1, Ly, L3, L?), where Ly, Lo, L3, L4 are independent linear forms in R such
that Ly = vsxs + vaxy, with vzbg — v4b1g = v3bg — v4b16 = 0.

As in the case of colength 1, we now provide a table with the computation times of
MGC(A) for all analytic types of local k-algebras A of length equal or less than 6 such
that gcl(A4) = 2.

HFR/] I t(S)
1,3,1 xlxg,xlmg,x%,xg,xg 0,42
1,2,2,1 x%,xw%,x% 0,18
1,3,1,1 $1$2,$1$3,l‘2$3,x%,l‘§ —x? 3,56
1,3,2 wlmg,x2x37x§,x§ — $1x37x? 4.4
T1Ta, x%, T1X3 — Tals, x% + x% —x1x3 1254,34
xla:g,mlxg,xg,xg,xi’ 3,33
T1Tg, X123, TaT3, BT + 23 — T3 4,61
x%, T1X2,ToT3, L1T3 + m% — ac§ 4,09
x%,zlxg,xg, x% 0,45
1,4,1 xf,x%,x%,xi,xlxg,xlxg,x1x4,xgx3,x2x4 242,28

TABLE 3.2 Computation times of M GC(A) for A = R/I with £(A) < 6 and gcl(A4) = 2.

See Appendix [ for an explicit description of M GC/(A) for all the ideals represented
in Table B.2.
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CHAPTER 4

Gorenstein colength in codimension
two

In this chapter we focus on codimension two local Artin rings A = R/I, hence we
can assume that R = k[z,y] and I C (z,y)?.

Our goal is again to find minimal Gorenstein covers G = R/J of A = R/I using
tools that are only available in codimension two. For instance, by Hilbert-Burch theorem,
see [[12, Theorem 20.15], any minimal free resolution of R/K is of the form

M

0 R—1 R! R R/K ——0
and K = I;(M), where I;(M) stands for the ideal generated by the maximal minors of
the matrix M.

DEFINITION 4.0.1 A monomial ideal L € R is called a lex-segment ideal with respect
to x if it is minimally generated by elements x*, 2*~1y™1 ... y™¢ for some ¢t > 1 and

a succession of integers 0 = mg < my < --- < Mmy.

By Macaulay’s theorem [35], given any homogeneous ideal H in P = k[z, y| with
Hilbert function h, there exists a unique lex-segment ideal L = Lex(h) with the same
Hilbert function. From Proposition [1.5.10, given an ideal K of R with Hilbert function
h, it follows that

HF p/x = HFp/g« = HFp/p, .
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Chapter 4. Gorenstein colength in codimension two

Given a Hilbert function h = {1,2,...,¢,h¢t1,..., s}, the minimal free graded
resolution of P/ Lex(h) is

0 @y P (= = 1) > PO (1) @y P (1 = j) ——

P P/L 0,
where e; := |h; — hj_1| for every j > 0.

Rossi and Sharifan prove in [41] that for each sequence of zero or negative con-
secutive cancellations on the previous resolution, an ideal K of R with this resulting
resolution can be realized. This procedure allows us, whenever the Hilbert function i
admits it, to explicitly construct Gorenstein rings G = R/J such that HF; = h. See
Theorem for a characterization of which Hilbert functions admit Gorenstein rings
in codimension 2.

However, to decide whether a Gorenstein cover of A with a given Hilbert function
h exists, we need not only some but all Gorenstein rings G with HF ¢ = h. A natural
question arises:

Question A: Can we build all Gorenstein ideals with a given Hilbert function % via de-
formations of Lex(h)? And, more generally, can we build any ideal with a given Hilbert
function in this way?

In [8], Conca and Valla parametrize all ideals K in P = k[x, y] that share the same
leading term ideal with respect to the lexicographical order in terms of a certain canonical
Hilbert Burch matrix of K. In [9], Constantinescu provides an analogous parametrization
for the degree lexicographical order whenever the leading term ideal is a lex-segment
ideal.

The first section of this chapter is devoted to the extension of this result to the local
setting for the local order 7 induced by the lexicographical order. In Section we
review the parametrizations given by Conca-Valla and Constantinescu. The main result
of the chapter is given in Section §.1.2:

THEOREM 4.0.2 (See Theorem for more details.) Given a lex-segment ideal L in
R with canonical Hilbert-Burch matrix H, the set V(L) = {K C R : Ltz(K) = L} is
an affine space parametrized by the bijection
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U M(L) — V(L)
N +— IL(H+N),

where M (L) is the set of matrices from Definition §.1.21.

Note that ¥ associates to each ideal in V'(L) a canonical Hilbert-Burch matrix H+N.
In particular, the coordinates of the affine space A correspond to the coefficients of the
polynomials in k[y] that can occur as entries of the matrix N in M(L).

More relevantly, observe that W parametrizes any m-primary ideal K of R with a
given Hilbert function % up to a generic change of coordinates, since Gin(K) = Lex(h).
Observe that the realization given in [41, Remark 4.7] of an ideal with a resolution ob-
tained via zero and negative cancellation of the resolution of Lex(h) is a particular defor-
mation of Hilbert-Burch matrices of Lex(h), whereas ¥ gives all possible deformations.

Moreover, we can answer Question A: all Gorenstein ideals J such that HF g, ; = h
can be obtained as a deformation of the canonical Hilbert-Burch matrix H of Lex(h) by
adding a suitable matrix N € M, again up to a generic change of coordinates.

However, when we look for a Gorenstein cover G = R/J of a givenring A = R/I
we also ask for J to be contained in /. In general, this inclusion property is not preserved
after a generic change of coordinates on the generators of .J. Therefore, for the purpose
of seeking covers it is not enough to parametrize deformations of the lex-segment ideal
Lex(h). The question we need to ask then is the following:

Question B: Can we build all Gorenstein covers G of A with a given Hilbert function A
via similar deformations of all monomial ideals F such that HF g/ = h?

For a general m-primary monomial ideal F of R, we give the following result on the
set V(E):

PROPOSITION 4.0.3 (See Proposition for more details.) Consider a monomial m-
primary ideal F in R with canonical Hilbert-Burch matrix H, let V' (E) be the set of ideals
{K C R: Lt=(K) = E} and let N'( E) be the set of matrices defined in Definition #.1.4.
The map

v: N(E) — V(E)
N s L(H+N),

is surjective.
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Chapter 4. Gorenstein colength in codimension two

In Section §.4 we address the problem of obtaining Gorenstein covers of a given ring.
Despite the lack of injectivity in Proposition §.1.9, the map ¢ provides Hilbert-Burch
matrices N + H for all ideals in V' (E). This allows us to scan through all the ideals in
V(F) in search of Gorenstein ideals .J with Lt=(.JJ) = E. Consider aring A = R/I and
a monomial ideal E such that HF o (i) < HF /(i) for any i > 0, we are interested in
determining which matrices N € N (E) define Gorenstein covers J = I;(N + H) of A
such that Lt=(J) = E.

First, we give to the subset V(L) of Gorenstein ideals in V(L) a structure quasi-
affine variety.

COROLLARY 4.0.4 (See Corollary %.2.9.) Let L be a lex-segment ideal. The set Vz(L) of
Gorenstein ideals J such that Lt=(.J) = L is a quasi-affine variety.

Even more, we completely describe the subset Vi;¢(4)(L) of ideals that correspond
to Gorenstein covers of A:

COROLLARY 4.0.5 (See Corollary #.2.11.) Let A = R/I be an Artin ring. Consider a
Hilbert-function 4 such that HF 4 (i) < h(7) for any ¢ > 0. If Lex(h) C Lt=(I), then
the set of Gorenstein covers G = R/J of A such that Lt+(J) = Lex(h) is a quasi-affine
variety parametrized by points p in

V(p1,--. 7pr)\V(Cg,1C9L,2 e cz(t)+17t71)a

k

where c; ; are the coefficients of the entries of matrices IV in M(Lex(h)) and p; are

polynomials in variables cf) ; that occur as coefficients of the reduction of .J modulo I.

On the other hand, for any monomial ideal E, Algorithm | helps us to compute the
set Vi (E) of Gorenstein ideals J such that Lt+=(J) = E. We get as output the quasi-
affine variety A\ V(a) whose points correspond to Gorenstein ideals .J in V(E), even
though different points might correspond to the same ideal.

Using computational tools to determine inclusion of ideals, we can ensure that the
quasi-affine variety V(p1, ..., p,)\V(a), where p1, ..., p, is built as in Corollary %.2.9,
consists of all points that correspond to Gorenstein covers G = R/J of A = R/I.
Again, this is not a parametrization but it allows us to all determine Gorenstein covers
with a given leading term ideal.

Note that given a Hilbert function h, as the length increases, the amount of monomial
ideals F such that HFr,p = h is extremely large. As a closure of the chapter, we
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4.1. Parametrization of ideals in k[[x, /]]

pose the problem of determining which particular monomial ideals £ we must deform to
obtain Gorenstein covers of A with Hilbert function /. This question remains open but
we suggest an interesting direction to follow by showing several examples.

The first part of this chapter is a result of a collaboration with Anna-Lena Winz, from
Freie Universitdt Berlin, under the supervision of Maria Evelina Rossi.

4.1 Parametrization of ideals in k[[z, y]]

In this section, our goal is to parametrize m-primary ideals J of R = k[z, y] with
a given leading term ideal . Therefore, we need to fix a local ordering: consider the
local degree ordering 7 induced by the lexicographic order 7 = lex where > y. Note
that 7 coincides with local ordering induced by deglex. Moreover, in 2 variables, the
lexicographical order and reverse-lexicographical also coincide.

DEFINITION 4.1.1 Given an m-primary monomial F ideal in R, we denote by V' (E) the
set of ideals J C R such that Lt=(.J) = E.

REMARK 4.1.2 Note that if Lt=(J) is an m-primary ideal, then J is also an m-primary
ideal of R. The converse is also true.

Any m-primary monomial ideal £ of R must contain pure powers 2%, y° for some
a,b > 1. Moreover, E is minimally generated by elements of the form z¢, x‘“ybl, A
xorybr yb witha > a; > -+ > a,and by < --- < b, < b for some > 0.

It is always possible to extend this minimal system of generators to a lex-segment-
like system of generators xt, z/~1y™1, ... x!7iy™i . y™ with 0 = my < my <
-+ < my. Indeed, we set t = a, m; = b and, whenever a power ¢ — ¢ of z is missing,
we add the monomial mt_iybﬂ', where 1 < j < rsuchthataj_; >t —1i> a;.

REMARK 4.1.3 Note that F is a lex-segment ideal if and only if 0 < m; < -+ < my.

DEFINITION 4.1.4 We call canonical Hilbert-Burch matrix of the monomial ideal £ =
(xt, ... at~iymi .. y™) the Hilbert-Burch matrix of E of the form
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Chapter 4. Gorenstein colength in codimension two

yh 0 0
—z oy 0
0 -z 0
H= ,
0 0 y
0 0 —x

where d; = m; — m;_; forany 1 <i <t.

DEFINITION 4.1.5 The degree matrix U of F is the (¢+ 1) x ¢ matrix with integer entries
U =mj—mi—1+i—j,forl <i<t+1land1 <j <t

It follows from the definition that u; ; = d; and u;41; = 1,for1 <¢ <.

4.1.1 Parametrizations of ideals in k[, 1]

Let us now recall the parametrization of ideals in the polynomial ring with the same
leading term ideal with respect to the lexicographical order, given by Conca and Valla
in [B]. Let P = Kk[z,y] be the polynomial ring in two variables and let m = (x,y)
the maximal ideal generated by the variables. Given a monomial ideal E = (z¢, ..
xt~ty™i .., y™) in P, denote by V,(FE) the set of m-primary ideals J C P such
that Ltjex(JJ) = E. Consider the canonical Hilbert-Burch matrix H of F defined as in
Definition §.1.4. We denote by T5(F) the set of matrices N of size (t + 1) x t with

entries in k[y] such that

.

* n;; = 0foranyi < j,
* deg(n; ;) < d; forany i > j,
* ord(n; ;) > 1 wheneverd; > 0and j +1 < ¢ <k + 1, where

k=min{v:j <v <t, m, =m;}.

THEOREM 4.1.6 [8, Theorem 3.3, Corollary 3.1] Given a monomial ideal F = (2, ...,
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4.1. Parametrization of ideals in k[[x, /]]

x!=iy™i ..., y™)in P = k[z,y] with canonical Hilbert-Burch matrix H, the map

d: TH(E) — Vi(E)
N +— L(N+H)

is a bijection. In particular, V5(F) is an affine space of dimension dimy k[z,y]/E —
min{j: 27 € E}.
Observe that this theorem allows us to define the canonical Hilbert-Burch matrix of

any m-primary ideal .J of P as H + ®~(.J), where H is the canonical Hilbert-Burch
matrix of the monomial ideal Ltjc,(.J) as defined in Definition §.1.4.

On the other hand, Constantinescu parametrizes in [9] the variety Vieglex(E) = {J C
P : Ltqeglex(J) = E'}, where the leading term ideals are considered with respect to the
degree-lexicographical order, for F lex-segment. Let us denote by A(E) the set of f
(t + 1) x t matrices A = (a; j)1<i<it+1, 1<j<¢ With entries in k[y] such that all its non-
zero entries satisfy
uij+1, 1 <7;
deg(ai ;) = ! ’
Ui j, 1> 7.
and u; ; are the entries of the degree matrix U of E.

THEOREM 4.1.7 [9, Theorem 3.1] Given a lex-segment ideal L in P = klz, y] with
canonical Hilbert-Burch matrix H, the map

D A(L) — Vdeglex(L)

is a bijection.
The proof of well-definition and surjectivity of ® holds for any monomial ideal £ =

(xt,... 2t~ tymi .. y™¢), non necessarily lex-segment. However, the lex-segment

hypothesis cannot be dropped because it is needed to prove injectivity.
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Chapter 4. Gorenstein colength in codimension two

4.1.2 Canonical Hilbert-Burch matrices of m-primary ideals in
the local ring k[[z, y]]

We want to obtain canonical Hilbert-Burch matrices for m-primary ideals in k[[z, y]]
in an analogous way to Section #.1.1. Therefore, we look for a parametrization of the
ideals in V(F)) as in Theorem and Theorem [.1.7. Let us start by defining a sets of
matrices whose maximal minors generate all the ideals with the same leading term ideal
with respect to the local order 7.

DEFINITION 4.1.8 We define the set V'(E) of (t+1) x ¢ matrices N = (n; ;) with entries
in k[y] such that all its non-zero entries satisfy
ui,j —+ 1, Z é j;

max{d;, 1} > degn; ; > ord(n; ;) >
Ui 5, 1> 7.

PROPOSITION 4.1.9 Given a monomial ideal E = (zf,. .., 2! ~iy™: ... y™¢)in R with
canonical Hilbert-Burch matrix H and degree matrix U, let V(E) be the set of ideals
{K C R: Lt=(K) = E} andlet N'( F) be the set of matrices defined in Definition 4.1.4.
The map

v: NE) — V(E)
N +— L(H+N)
is surjective.
We prove this proposition in two steps: well-definition in Lemma and surjec-
tivity in Lemma .
LEMMA 4.1.10 The map ¢ is well-defined.
Proof: Given a monomial ideal £ = (2!, z'='y™ ... y™) with canonical Hilbert-

Burch matrix H and associated degree matrix U, we want to prove that the leading term
ideal Lt= (I;(H + N)) is the mononomial ideal F for any matrix N € N(E).
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Let us consider the matrix

yh + n1,1 niz2 e nig
—x+ng1 yP +ngy - N2t
M=H+N =
N1 N2 R Tt
Net1,1 Net1,2 R Al (AR

From the order bounds on the polynomials n; ;, for1 <7 <tand1 < j <t+1, we

have ord(mm-) = Ui 4 ord(miﬂ’i) = Uj41,5 and

u; i+ 1, 1< J;
ord(m; ;) > I
Wj,j, ©>9—1.

Set f; = det[M];+1, for any 0 < ¢ < ¢, where [M];41 is the square matrix that we
get after removing row ¢ + 1 of M. It has the following shape:

d
Yy +niy n1,2 s N1, N1,i+1 e Nt
d
—r+mng1 Y?+mneo - n2 N2,i+1 e N2t
1 ni2 ey + Uz T i41 e Tt
Ni4+21 Ni4+2,2 ce Ti424 —T+Ni42i+1 - Ni42.t
Nt4+1,1 Nt41,2 cee Nt41,4 Ni41,i4+1 R Al (AR

Since fi = 3_,cs, 580(0) [[1<p<iy1, ki1 M,0(k), We focus on the study of the
leading terms of polynomials of the form h =[], ;<4 kit1 Mo (k)

If h is the product of elements of the main diagonal, then Lt=(h) = y - .- y%igt~ =

x!~ty™i. We claim that any other h # 0 satisfies Lt=(h) <= 2!~*y™:. Indeed, since

Lt=(h) = H Lt=(mp,0k)),
1<k<t+1, ktitl
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Chapter 4. Gorenstein colength in codimension two

then

ord(h) = Z ord(my o (x)) > Z Uk or ()
1<k<t+1, k#it+1 1<k<t+1, ki1
To reach the equality ord(h) = >y j<;y1 ptit1 Uk,o(k) it is necessary that each
M »(;) is either in the lower triangle of M, its main diagonal or right above its main
diagonal from row ¢ + 1 onwards. However, this forces

i t+1
h = H(Z/dk + Nk k) H Mo (k)
k=1 k=i+1

hence the maximal power of x is only reached at the main diagonal. Thus, any & # 0
different from the main diagonal satisfies Lt=(h) <= z'~*y™ and, therefore, Lt=(f;) =
ptiymi,

Now we need to show that fy,. .., f; form a T-enhanced standard basis of I;(M).
By [4, Theorem 1.11] it is enough to show that ht ((Lt=(fo), - - ., Lt=(f¢))) = 2, whichis
clear because this ideal contains pure powers z¢ and ™. Therefore, Lt+ (I;(M)) = E.
O

The proof of surjectivity of the map ¢ follows the essential ideas of Conca, Valla
and Constantinescu. However, we must use other tools, such as Grauert’s division or
homogenization, to deal with the local order 7 in an analogous way as the authors dealt
with the lexicographical or degree lexicographical orders in [8] and [9]. Let us pose
the following definiton that links the order and the degree of a polynomial and will be
essential in the homogenization process:

DEFINITION 4.1.11 We define the ecart of f € P as the difference between the degree
and the order of the polynomial f, that is, ecart(f) := deg f — deg Lt=(f).

LEMMA 4.1.12 ¢ is surjective.

Proof: Using the same notation as in the previous proof, we will show that any ideal
J C R such that Lt=(J) = E is of the form J = I;(M), where M = H + N for some
N e N(E).

Since Lt=(J) = (x!,xt~1y™1 ... y™t), there exist a 7-enhanced standard basis
fo, .-, f of J such that Lt=(f;) = o'~%y™ for any 0 < i < t. We can assume that
all these elements have leading coefficient 1 and, by Proposition [.5.18, that they are
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polynomials of degree at most s, where s = socdeg R/J + 1.

By Grauert’s division theorem (see Theorem [1.5.12), we can also assume that the
monomials in the support of the f;’s are not divisible by z*, except for Lt=(fo).

Forany 1 < j < t, consider the S-polynomials S; := S(fj_1, f;) = y% fj—1 —x f;.
If 2 < j < t, monomials in the support of S; are not divisible by zt. In S, =y fo—afi,
the term ! = Lt=(fo) only appears multiplied by y%. Therefore, no monomial in
Supp(S;) is divisible by z**! forany 1 < j < ¢.

We claim that under the previous conditions,

t
Sj = Z G5 fis
i=0

for some ¢; ; € kly| such that Lt=(g; ; f;) < Lt=(S;). In fact, we will prove that this
holds for any f € .J such that 2'*! does not divide any monomial in Supp( f). Consider
such an f, then Lt=(f) = z°y" for some 0 < s < ¢. On the other hand, from the fact
that Lt=(f) belongs to Lt=(J), it follows that 2*~*y™: must divide Lt+(f) for some
0<i¢<t.Thent—i<sandm; <r hence mi_y < m; <r.

Now consider the homogenization f" of f with respect to a new variable z. On the
set of monomials in variables z, z, y, we can define the following global order:

2Pty >y 2%%y°

ifeitherp+a+b>qg+c+dorp+a+b=q+c+dandz%y® >+ 2y,

See [27, Definition 1.2.4] for a definition of global ordering and [27, Algorithm
1.7.6] for more information on this construction. It can be proved that Lty (f") =
tecart(f) Lt=(f), see [27, Definition 1.7.5]. Hence Lty (f") = 2*z®y", where a =
ecart(f). We define a new polynomial in the following way:

gh _ fh _ LCh(fh)Za—at,syr—mt,s h

t—s-*

Note that Lty, (fI* ) = 2%—sx%y™—+, where a; = ecart(f;), and hence

Lth(za—at,syr—mt,s thfs) _ Za—oct,syr—mt,sZozt,sxsymt,s _ Zocxsyr.
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Therefore, the leading monomials of f* and LCy,( ")z~ @t—sy"—me—s fhwith re-
spect to the ordering A cancel and hence Lty (g") <; Ltn(f"). By construction, the
monomials of g = g" |,—; are not divisible by x*!, so g satisfies the same properties
as f and we can apply the same procedure. Since h is a global ordering, after repeating
this process finitely many times, it will reduce to zero. This provides an expression

t
=Y "Pifl
=0

where P; € k|z,y]. By specializing to z = 1, we get

t
F=Y"aifi,
i=0

where ¢; € k[y] and ¢ = P,.
For any 0 <4 < t, set 8; = ord(g;), then we have Lt=(q; f;) = Lt=(q;) Lt=(f;) =
xt~iymitBi  Therefore, the power of z is different at each Lt=(g; f;) and hence they

cannot cancel each other. This yields

t
Lt=(/) = Ltz (Z qifz) = max{Li=(g:fi) : 0 < < 1,
i=0 T
hence Lt=(f) > Lt=(q; fi)-

Setm;; = —qit1,5, forany 1 <i<t+1,1<j <t Then

t+1
ydjfj_l — .Iff]' + Zni7jfi—1 = 0, for 1 S] <t. (4.1)

i=1

Note that the expressions in .1 are liftings of y®% Lt( fi—1) —x Lt=(f;) = 0. Writ-
ing the later expressions in a matrix shape gives the canonical Hilbert-Burch matrix H
associated to the monomial ideal E. The columns o4, ...,0; of H are a homogeneous

system of generators of Syz(Lt=(J)).
Since [£.1] can be translated into a matrix M = H + N with column j
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1,5

n2,j

m] = ydj _|_ n]d s

T A N1

Ni+1,5

by Theorem [L.5.19, m, . .., m; generate the module of syzygies of .J. Since we are
in codimension 2, by Hilbert-Burch theorem, .J is generated by the maximal minors of
the matrix M that has as columns the generators of the module of syzygies of J, i.e.
IL(M)=J.
The order bounds on the entries of IV are obtained from Ltz(n; ; fi—1) <7 Ltz(S;).
Indeed, from Lt=(n; ; fi) < Lt=(y% f;_1 — x f;) it follows that
xt7i+1ymi—1+ﬁi,]’ <= ngX{Lt?(ydj fj—l)a Lt?(xfj)} _ xtfjJrlymj 7
where Lt=(n; ;) = y®+i. By definition,
:L.t—i"rlymi—l"'ﬂi,j <= xt—j-i-lymj
ifandonlyif 8; j +t—i4+1+m;—1 >t—j+1+mjor
ﬂm-—ﬁ—t—i—i—l—i-mi,l :t—j+1+mjandt—i+1<t—j+1.
Note that the previous inequalities mean that either
Bij >1—J+m; —mi_1 = u

or

Bij=1—J+m;—mi_1=uy,

which can only occur if t — ¢ < ¢t — 7, thatis, ¢ > j.
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Now let us prove that we can slightly modify, if needed, polynomials fo, ..., f; in
order to make sure that the matrix N generated by the previous construction satisfies the
degree bounds on the entries of NV and hence N € N(E). Define new polynomials

fl=fi+ab t—itb=s+1.

Notethat (f{, ..., f{) = (fo,- .-, ft), Ltz(f]) = Lt=(f;) and the monomials in Supp( f/)
are still not divisible by 2. The only exceptions are z* and z‘y", but they only occur
in Supp( f§). Therefore, all the previous steps of the proof apply and the matrix N’ built
from f{, ..., f{ satisfies the order bounds on the entries and provides J = I,(N’ + H).
Let us now rename f/ as f;.

Consider the degree lexicographical order 7/. By construction, Lt,(f;) = xt =iy
and the leading terms with respect to 7" do not cancel each other. Hence

t+1
yh fion—af; + Zni,jfi—l =0
i=1
yields
Lt-,—’(Sj) = mz}X{LtTv(ni,jfi,l) 01 S ) S t+ 1}. (42)

On the other hand, since Lt (y% f;_1) = o' =9+ 1ybi-1%di and Lt (2 f;) = 2t =+ ybs,
then

deg Lt (S;) < max{deg Lt,(y¥ f;j_1),deg Lt (zf;)} = max{s + 1 + d;, s + 2}.

(4.3)
Note that deg(S;) = deg Lt (S;), hence from §.9 and .3 we deduce that deg n;jfic1 <
max{s + 1 + d;,s + 2}. Since deg f; = s + 1 by construction, then degn,;; <
max{d;,1}. O

However, as we can see in the following example, ¢ is not injective even in the lex-

segment case:

EXAMPLE 4.1.13 Consider the lex-segment ideal L = (23, 2%y, 2y, v°). Let H be its
canonical Hilbert-Burch matrix and U its degree matrix:
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Y 0 0 1 2 3
—x P 0 1 2 3
H: s U:
0 -z z? 0 1 2
0 0 -z -1 0 1
Hence
0 0 O
0 0 O
N = e N(L)
0 0 O
0 0

Y
and Is5(H + N) = L. Then ¢(0) = ¢(NV), hence ¢ is not injective.

REMARK 4.1.14 Observe that if L is a lex-segment ideal, then the sets /(L) and T (L)
are very similar.

On one hand, any matrix N € A/ (L) is a lower triangular matrix with main diagonal
0. First of all, we deduce from 0 = mg < m; < --- < mythatd; > 1and {m; —i}o<i<¢
is a monotonously increasing sequence. For any ¢ < 7, it holds that

ujj=mj;—mi—1+i—j=d;+(mj_1—(j—1)) = (mi—1— (i —1)) > dj,

hence
dj < Ui+ 1< ord(nm) < degni,j < dj.

Therefore, n; ; = 0 for any 7 < j.

On the other hand, any matrix in T5(L) is always a lower triangular matrix with
main diagonal 0. But if L is lex-segment, the condition on the order can be translated to
ord(nit1,) > 1 forany 1 < < ¢. This is always true for matrices in /' (L).

Therefore, the two sets only differ in two things:

. deg N < dj in TQ(L) whereas deg N5 < dj in N(L),
« the entries in V(L) have lower bounds on ordn; ; for i > j + 2 whereas in 7T»(L)
there are no such bounds.

It is reasonable to think that the degree of the entries of matrices in A/ (E) can by
dropped by one. However, we only have been able to prove it in the lex-segment case so
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far. The proof uses a very strong fact: for any ideal J whose leading term ideal is a lex-
segment ideal L, there exists a 7-enhanced standard basis of .J that it is also a Grobner
basis with respect to the lexicographical order. This implies that we can use Conca and
Valla’s parametrization of V(L) in this scenario.

Let us start by determining under which conditions a 7-enhanced standard basis of a
lex-segment ideal L is also a lex-Grébner basis.

LEMMA 4.1.15 Let J be an ideal in R such that Lt=(J) = FE, where E is the mono-
mial ideal (z?, 2!~ 1y™1 ... y™). If fo,..., f; is a T-enhanced standard basis of .J
such that Lt=(f;) = Ltiex(fi) = 2'~y™:, then fo, ..., f; is a Grobner basis of J =
(fo,- -, fi)k[x,y] with respect to the lexicographic term order and Ltjex (J) = E.

Proof: By Lemma [.1.12, there exist polynomials n, ; € k[y] such that
t
y' fioa *IfiJanvz,jfj =0. (4.4)
j=0

For any n; j # 0, if we can prove that Ltjex (1 j f;) <iex Ltiex(y% fi—1 — 2 f;), then
it means that the S-polinomials S; = y% f;_; — = f; reduce to zero. Hence f, ..., f; is
a Grobner basis of (fo, .. ., f:)k[z, y] with respect to the lexicographical order. Indeed,
setting Ltiex (n; ;) = y”#7, where 3; ; = deg(n; ;), we have

Ltiex (ni j fj) = Ltiex (ni j)a"y™ = o' =dymithii,

Note that, by hypothesis, each Lticx(n;,; f;) has a different power of x, hence they
cannot cancel each other:

t
Lbtese (Y% fi-1 — i) = Ltiex (- Zni,jfj> = Org?ft{]——ltlex(ni,jfj)}v

i=0
hence Liiex (ni,; fj) <tex Lbtex (4% fi—1 —  fi). O
We prove now that all ideals with lex-segment leading term ideal satisfy this property:

LEMMA 4.1.16 Let .J be anideal in R such that Lt=(J) = L, where L is the lex-segment
ideal (2!, z'=1y™ ... y™)and fo,..., f; is the reduced 7-enhanced standard basis of
J. Then Ltiex (f;) = Lt=(f;) = 2t ~*y™i forany 0 < i < t.
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Proof: Since L is a lex-segment ideal, 2*, 2=y, ... y™t is a minimal system of
generators of L. The unique reduced 7-enhanced standard basis fy, ..., f; of J must
satisfy Lt=(f;) = a'~%y™: after reordering the elements appropriately. Let tail(f;) be
the tail of f; with respect to the local order, that is, tail(f;) = f; — x'~y™:. Let us
suppose that Ltie, (f;) = xFy! # 2t ~iy™:, Since 2'~'y™: € Supp(f;), then

xkyl >lex -'L't_zymi

and hence there are two possible situations:

Casel: k =t—iandl > m;. Ltiex(fi) = 2t~y is in the support of tail(f;) but 2~y
is in (z'~'y™i) = (Lt=(fi)) C Lt=(J) and this contradicts the reducedness hypothesis
0nf07"'7ft-

Case IT: k > t —i. Then we can set k = ¢ — j for some j < i. Since Lty (fi) = 2! 72!
and Lt=(f;) = o'~ *y™, then

t —i+m; = deg(z!ly™) < deg(x'yl) =t —j +1.

If there is an equality, the local order is equal to the lex order and then Lt=(f;) = x*~74/,
which contradicts Lt=(f;) = x!~y™i. Therefore, we have

t—i4+m; <t—7+1L. (4.5)
If I > m,, the argument of Case I holds. Otherwise, if [ < m;, then
t—j+i<t—j+m;=t+(m;—j).

Since L is a lex-segment ideal, m; — i is monotonously increasing (see Remark {.1.14)
and hence
t—j+li<t+m;—j<t+m; —i<t—7+I,

where the last inequality comes from @.5. OJ

REMARK 4.1.17 Note that a 7-enhanced standard basis fjy, . . ., f; of J with leading terms
Lt=(f;) = 2!~ 'y™i can only be reduced if .J is a lex-segment ideal. Otherwise it is not
reduced because condition (iz) of Definition always fails.

In general, we lose the property Ltjex(fi;) = Lt=(f;) if we remove the assumption
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of E lex-segment, but it is not an if and only if. It is easy to prove that equality on the
leading terms with respect to both local and global orders has other equivalences:

LEMMA 4.1.18 Let J C R be an ideal such that Lt=(J) = E. The following are equiv-
alent:

(i) there exists a lower triangular matrix N € A/(F) such that J = I,(N + H),
(ii) there exists a 7-enhanced standard basis fo,..., f; of J such that Lt=(f;) =
Ltlex(fi),
(iii) there exists a 7-enhanced standard basis fy, ..., f; of J such that 2*~% does not
divide any monomials in the tail of f;.

Let us show an example of an ideal .J with Ltz(J) = E not lex-segment where we
can build a 7-enhanced standard basis fy, ..., f; of J such that Ltjex (f;) = Lt=(fi).

EXAMPLE 4.1.19 Consider J = (25, zy% — y°,9®), then E = Lt=(J) = 25, 2592, v%y?,
23y, 2%y?, vy?, y®) and dy = 2,dy = d3 = dy = d5 = 0, dg = 6, hence Lt=(J) is not
lex-segment. The reduced 7-enhanced standard basis x°, zy? — y°, 38 of J satisfies that
its leading terms are the same with respect both local and global order. Then the most
natural way to build a 7-enhanced standard basis fq, ..., fg with the same property is
completing it with f;_; = x f; whenever d; = 0. Indeed,

fo = a°

fi = 2%y —aty
fo = aty? — 2By
fs = 2%y —a?yp
fa = 2%y —ay’
fs = ay’ -y

fo =

is a T-enhanced standard basis of J such that Ltjex (fi) = Lt=(f:).

By Lemma [.1.15, any ideal satisfying the equivalent conditions of Lemma
can be generated by a Grébner basis with respect to the lexicographical order and, there-
fore, it can be obtained via ® from a matrix in 75(F), see Theorem 4.1.6.
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PROPOSITION 4.1.20 If J is under any of the equivalent conditions of Lemma §.1.18,
then there exists a unique matrix N € N'(E) N T>(E) such that J = I;(N + H).

Proof: The syzygies of the leading terms are exactly the same with respect to both 7

and 7:

Yy Lbiex(fj-1) — @ Ltiex (f3) = ¥ Lt=(fj—1) — x Lt=(f;) = 0.

They can be lifted to syzygies of the generators of J with respect to both orders.
Lifting with respect to 7 provides a matrix N such that J = I[,(N + H) and, by
Lemma f.1.13, N € N(FE). Lifting with respect to 7 provides a matrix A such that
J=1;(A+ H) and, by [B], A € T>(E). Denote by C1, ..., C; the columns of the ma-
trix N+ H and C1, . . ., C{ the columns of the matrix A+ H. These columns provide two
systems of generators of the module of syzygies of .J, hence Syz(.J) = (C1,...,C}) =
(C1,...,C}). We know the explicit shape of the columns:

nlyj 0
na j; 0
Ci = ydj + Njj and Czl = ydj
—T ANyt Tt a4
41,5 At+1,5

Every C; must be described by an R-linear combination ¢{C} + --- + ¢iC} with
i € R. Start with Cy = ¢}C] + -+ - + ¢{ C{. Then

yh4ng g = cyh, hence ¢t = 1,n; 1 = 0;
—24+mna; = —x+as;+chy®, hence n2 1 = as 1 + ciy??;
1 1,d 1 1,.ds.
ns1 = as1+cy(—x +ag1)+c3y®, hencecy =0,n31 = as;1 + c3y®e;
_ 1 1,d 1_ _ 1,ds.
Na1 = Q41 + C3(7I + CL371) + Y 4, hence C3 = O,n4,1 = Q4,1 + Ly 4,
_ 1 1_
Ni+1,t =  Ag41,1 + Cy (—l‘ + at+1,t), hence C; = 0.
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To ensure that ¢} = 0 for 2 < i < ¢, we perform the following reasoning: assume
¢t # 0, then the only way of cancelling x is by having a; ;_1 € R* and setting c; to
be the inverse element of —x + a1 ;1. But we know that —x 4 a; ;1 is a polynomial,
hence ¢! must be a series and then n; 1 = a;;—1 + c;y% would also be a series, which
is a contradiction. Therefore, ¢! = 0. Repeating the same procedure we obtain that
nij =a;;foralll <i<t+1,1<j <t Hence N =A € N(E)NT(E).

Uniqueness follows by the injectivity of ® given by [8]. [J

Therefore, we can extend the definition of canonical Hilbert-Burch matrix from mono-
mial ideals E to any ideal J under the equivalent conditions in Lemma B.1.18. Let us
define the smaller set of matrices that comes out from the proposition:

DEFINITION 4.1.21 We define the set M(E) = N(E) N T (E).

DEFINITION 4.1.22 Given an ideal J that admits a 7-enhanced standard basis fo, ..., f:
such that Lt=(f;) = Ltjex(f;) forany 1 < 4 < ¢, we define the canonical Hilbert-Burch
matrix of J as the unique matrix N in the set M(E) such that J = I;(N + H), where
H is the canonical Hilbert-Burch matrix of ' = Lt=(.J) as defined in Definition {.1.4.

We show an example on how to use Proposition and the construction of ma-
trices N in A/(E) from Lemma to obtain the canonical Hilbert-Burch matrix in
M(E).

EXAMPLE 4.1.23 Consider again the ideal J = (2, xy? —°, y®). From Example
we know that J is under the conditions of Lemma §.1.18, hence Proposition ap-
plies and there exists a canonical Hilbert-Burch matrix H + N of J with N € M(E).

LetS; = y% f;_1 —xf; be the S-polynomial S(f;_1, f;). Recall that, by Lemma }.1.12,
t+1

the entries n; ; in N € N(FE) correspond to S; = — . 7] n; j fi—1. Consider the 7-
enhanced standard basis from Example §.1.19, then Sy = --- = S5 = 0. Note that

Se = y¥ fs —xfs = —y'' = —y>f6. Since degy® < dg = 6, ny6 = y> is under
the conditions of N = (n; ;) € M(E). But S; = y® fo — 2 f; = 25y°, which is not
possible to describe as a combination of fy, . .., f¢ multiplied by polynomials in k[y] of
degree strictly less that d; = 2. Then we can modify f, by adding terms of higher degree
that are already in J:
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fo = a®— oty

fi = atfs =aby? —atyP
fr = 2fs =aty? — oy
fs = 2?fs =a%y? — a%yP
fi = afs =2y —xyP
fs = xy® =y’

fo = 38

Note that now S; = y fo — xf; = 0. Therefore,

e M(E)

o O o o o o

I
© o o o o o o
w

o O o o o o O
o O o o o o o
S O o o o o o
o O o o o o o

<

and J = I4(N + H).

Despite the existence of canonical Hilbert-Burch matrices beyond the lex-segment
case, we still need the assumption of ' lex-segment to make sure that any .J with leading
term ideal Lt=(J) = FE actually has a canonical Hilbert-Burch matrix. Therefore, we
finally state the parametrization of affine spaces V' (L):

THEOREM 4.1.24 Let L = (at,... a'~ty™i ... y™)bealex-segment ideal with canon-
ical Hilbert-Burch matrix H. Then

U M(L) — V(L)
N +— IL,(H+N)

is a bijection.
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Proof: The map 1 is the restriction of ¢ to the set M (L) = N (L) N T»(L), hence
Lemma ensures that ¢ is well-defined. Moreover, since L is lex-segment, then
Lemma ensures that all J such that Lt=(J) = L are under the conditions of
Lemma . Hence Proposition §.1.20 ensures there exists a unique matrix N € M
suchthat J = I,(N + H). O

Note that when L is a lex-segment ideal, then the set M (L) has a simple description.
It is formed by matrices of size (¢ 4+ 1) x ¢ with entries in k[y| such that

0, i< 46)
N5 = - . o .
CZ;;Jyui,j + CZ}vJ+1in,j+1 4+ Czdj] 1ydj*17 > 7.
COROLLARY 4.1.25 Let L be the lex-segment ideal (2!, z'=1y™ ... y™) with degree

matrix U = (ui,j)1§i§t+171§j§t and dj =mj; —MmMj_1 for any 1 < j < t. Then V(L)
is an affine space of dimension IN, where

N= > (dj-uy).

2<j+1<i<t+1

Proof: By Theorem 4.1.24, each ideal .J in V(L) is uniquely associated to a matrix N
in M(L) with entries in k[y]. Then we can identify J with a point p; in the affine space
AN, for a suitable N, by taking as coordinates the coefficients cf, ; of the polynomials
N j in {.6 for any i > j + 1:

_ su21 uza+tl di—1 us;1 di—1 Ut41,1 di—1
pJ—(c2)1,02,1 s €O e Gl G T s it
U3, 2 do—1 Ut41,2 do—1 Ut1,t d:—1
€35 s o1 €3y s Copld sy Cot2s s Cogtd e es Cittt)

In particular, the dimension of the affine space is the total number of coefficients cﬁ ; for

Let us show the details of the parametrization of V(L) as an affine space A} with
an example:

EXAMPLE 4.1.26 Consider the lex-segment ideal L = (23, 2%y, zy3, y°) from Exam-
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ple B.1.13. By Theorem [.1.24, any Hilbert-Burch matrix A/ = H + N, with N in
M(L), associated to an ideal J in V(L) is of the form

Y 0 0

2
—x 0

M= Y
31 —r+cyay y?

0 0 1 1
Ci1 Cip+CiaY —T+Ci3Y
We identify any ideal J = I3(M) with the point
o o0 1 0 1 1 6
ps = (C31,€41,C32,C1,Cs0:C13) € AR

In other words, V(L) can be identified with the affine space A?. Note that the point
at the origin in AY corresponds to the lex-segment ideal L.

4.2 Obtaining Gorenstein covers via Hilbert-Burch
matrices

The goal of this section is to obtain all Gorenstein covers G = R/J of A = R/I
with a given Hilbert function A such that HF 4 (i) < h(i), for i > 0. Theorem
determines when a Hilbert function h admits Gorenstein rings, that is, there exist any
Gorenstein ring G = R/J with HF ¢ = h.

By Proposition §.1.9, we know that any m-primary ideal J of R is generated by the
maximal minors of the matrix H + N, where H is the canonical Hilbert-Burch matrix
of E = Lt=(J) and N is a matrix in the set A'(E), see Definition ¢.1.8. All ideals
J such that Lt=(J) = E can be generated with this procedure, although the systems of
generators are not unique. Recall that when Lt=(.J) is the lex-segment ideal L = Lex(h),
then any ideal J is uniquely generated by the maximal minors of H+ N with N in M (L),
see Theorem and Definition §.1.21.

We now focus on determining which matrices N in A/ (F) define Gorenstein covers
J =1,(N + H) of A= R/I. This means we impose two unrelated conditions on .J:

« G = R/J is Gorenstein.
- JCI
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REMARK 4.2.1 A brief comment on notation: throughout the section we denote by FE the
leading term ideal (¢, z'~1y™1,... y™¢) of J in the general case and we denote it by L
whenever it corresponds to the lex-segment ideal. In any case, H denotes the canonical
Hilbert-Burch matrix of Lt=(J) and U its degree matrix.

Let us recall the link between the minimal number of generators of the ideal J with

a system of generators of its syzygies, see [4, Lemma 2.1]:

PROPOSITION 4.2.2 Let .J be an ideal of R and let M in Mat;;1)x(R) be a matrix
whose columns (i, ..., C; are a system of generators of Syz(J). Denote by M the
matrix having as entries the classes in R/m of the corresponding entries in M. Then

pu(J) =t+1—rk(M).

Therefore, we can characterize Gorenstein ideals J C R in terms of the rank of any
of its Hilbert-Burch matrices N + H, where N € N (E), as follows:

COROLLARY 4.2.3 Let J be an ideal of R and consider any matrix M = N + H such that
J = I;(M), where N € N'(E). Then J is Gorenstein if and only if rk(M) = ¢ — 1.

Proof: In codimension 2, J is Gorenstein if and only if it is minimally generated by 2
elements. Since M is under the conditions of Proposition §.2.2, then rk(A) =t — 1. O

According to Theorem §.1.24, whenever J has a lex-segment leading term ideal
Lt=(J) = L, we can chose M to be of the form

ydl 0 0 ce 0 0
—x +ng; ydz 0 - 0 0
n3,1 —rtngs oyt - 0 0
M = ,
dy
ng 1 g2 n¢3 e Nt t—1 Yy
Ng4+1,1 Nt41,2 Ner1,3 0 Mpar1e—1 —T+ Npgp1ge

where u; ; < ord(n; ;) < deg(n; ;) < d; and u, ; is the (¢, j)-entry of the degree matrix
Uof H.
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4.2. Obtaining Gorenstein covers via Hilbert-Burch matrices

Since u;41; = 1, considering the entries of A/ in R/m and the notation from @,

we get
0 0 0 0 0
0 0 0 0 0
0
€31 0 0 0 0
M = 0271 0272 0 0 0
0 0
Ct1 Ct 2 Ct,3 0 0
0 0 0 0
Ct+1,1 G412 G413 0 G-l 0
Define
€34 0 0 0
0
€41 Cio 0 0
., .
M =
0 0 0
Ct1 Ct 2 Ct3 T 0
0 0 0 0
Ci+1,1 G412 Cy13 0 Ciyrp—1

Then rk(M) = t — 1 if and only if det(M') = A1y )y 1 # 0. Therefore,
J is Gorenstein if and only if n; 2 ; is a polynomial with non-zero constant term for any
1 < i < t—1. In particular, this holds for the lex-segment ideal case, see Lemma }.1.16:

PROPOSITION 4.2.4 Let L be a lex-segment ideal with canonical Hilbert-Burch matrix H
and let J be anideal with Lt=(.J) = L. Then Jis Gorensteinif and only if n3 1, n4 2, . .., n¢41,0-1
are polynomials in y with non-zero constant terms, where N = (n; ;) is the unique ma-
trix in M(L) such that J = I,(H + N).
Even more, the entry 7,42 ; of N admits a non-zero constant term only if the order

of n;42,; is zero. But this is only possible if u;;2; < 0.

COROLLARY 4.2.5 Let L be a lex-segment ideal with associated degree matrix U =
(wij)1<i<t+1,1<j<¢t- A Gorenstein ideal J such that Lt=(J) = L exists if and only
ifui_;,_gﬂ‘ < Oforanyl < ) <t-— 1.
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Chapter 4. Gorenstein colength in codimension two

REMARK 4.2.6 The characterization of Gorenstein-admissible Hilbert functions in The-
orem can be reproved using Corollary 4.2.5. See [41, Corollary 4.6] for more
details. Note that a Hilbert function % is Gorenstein-admissible if and only if we can
obtain Gorenstein ideals from a deformation of Lex(h).

Consider a Hilbert function 4 that admits a Gorenstein ring. In [41, Remark 4.7],
Rossi and Sharifan give a procedure to explicitly construct a Gorenstein ring J whose
resolution is obtained by consecutive and zero cancellation of the resolution of L =
Lex(h), hence its Hilbert function is preserved. The method consists in taking the ideal
of maximal minors of the canonical Hilbert-Burch matrix H of L with 1’s added in all
entries in position (7 + 2,17).

Let us show how this procedure allows us to obtain a Gorenstein deformation of the
lex-segment ideal:

EXAMPLE 4.2.7 Consider the lex-segment ideal L = (23, 2%y, xy®, y°) associated to the
Hilbert function » = {1,2,3,2,1}. Its canonical Hilbert-Burch matrix H is computed

in Example B.1.13. Set

o = O O
= o o o
o o o O

Then J = I3(H + N) = (2% — 2zy%, 2%y — 3, 2y3,9°) is a Gorenstein ideal with
Hilbert function (1,2,3,2,1). Note that N € M(L).

Observe that the matrix with 1’s in the second main diagonal always belongs to the set
of matrices M (L), see Definition §.1.21. Using the parametrization in Theorem
and the rank criteria given by Proposition {.2.4, we can provide the explicit description
of all Gorenstein ideals .J such that Lt=(.J) = L.

Let us broaden Example and give a parametrization of all the Gorenstein ideals
inV(L):

EXAMPLE 4.2.8 Consider again the lex-segment ideal L = (23, 2%y, zy3, 3°). In Exam-
ple we showed the general form of canonical Hilbert-Burch matrices M = H+ N
associated to ideals J = I3(M) in V(L). Then the matrix whose entries are the class of
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4.2. Obtaining Gorenstein covers via Hilbert-Burch matrices

entries in A/ modulo R/m is

<
I

€31

o o o o

O WO

¢ 2

ro o o o

1 ¢

By Proposition #.2.4, J = I5(M) is Gorenstein if an only if ¢ ;¢ , # 0. Then the set
of Gorenstein ideals .J with Ltz(J) = L can be identified with A{\V(c§ ;¢ ,).

COROLLARY 4.2.9 Let L be a lex-segment ideal. The set V(L) of Gorenstein ideals J
such that Lt=(.J) = L is a quasi-affine variety.

Proof: By Corollary 4.1.25, V(L) can be identified with AY for a suitable N by taking
coordinates cﬁ ;- By Proposition U.2.4, J is a Gorenstein ideal if and only if coordinates
A1, ), of the point py in AN are all non-zero. Hence .J is Gorenstein if and
only if

s € AE\V(Cg,l )

At this stage, we have only considered the Gorenstein condition. Now we want to
introduce the inclusion condition J = I;(M) C I for a given A = R/I in order to
determine Gorenstein covers.

Let us show through an example how we can find such Gorenstein covers using the
canonical Hilbert-Burch matrices provided by Theorem §.1.24:

EXAMPLE 4.2.10 Consider the ideal I = (23 — 2zy?, 2%y — 2y3,9°).

1 012 3 4

HFp; |1 2 3 1
HFgp,; |1 2 3 2 1

By Theorem .2.11, h = {1,2,3,2,1} is the smallest Hilbert function such that
HF 4(¢) < h(i), for any ¢ > 0, and admits Gorenstein rings. We want to know whether
the lex-segment ideal . = Lex(h) can be deformed into a Gorenstein cover of A. Note
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that L = (2%, 2%y, 2y/°, y®) is the ideal from Example §.2.8, hence we know that
Vo (L) =~ Aﬁ\V(C%lcg,z)-

For any ideal J = I3(M) in V(L), the T-enhanced standard basis obtained from its
maximal minors is the following:

fo=2a"— 6411,217?43 - 02,1?J4 - (‘%,2 + Cz11,3)$2y - (Cg,1 - 65,20}1,3 + 02,2)131/2 + Cg,10411,3y3
fi=2y— c}my‘l - (Czl’,,z + 0411,3)I92 - (02,2 - C}i,Qc}l,S)yS
fo = ay® —ciay’
fa=1°
Consider a standard basis S of I, let us compute the normal forms of fy, f1, f2, f3 of
J = I3(M) with respect to S:

NF(fo | S) = (=81 + c3ochs — o+ 2)2y?
NF(f1|S) = (Czls,l + 0411,3)551/2

NF(f2]S) =

NF(f5]S) =

Note that the inclusion of J in I depends on the vanishing of the expressions in
variables ci-f ; that appear in the computation of the normal forms. Hence any point p;
in the affine variety V(—c§, + ¢3oci 3 — ¢4 + 2,¢3, + ¢ 3) satisfies the inclusion
property J C 1.

Therefore, J is a Gorenstein cover of A if and only if

0 11 0 1 1 0 0

ps EV(—cgq te30¢13—Cio+2,¢51 +c43)\V(cg1c40)
Note that it is not empty since p; with ¢§ ; = ¢, = land ¢}, = ¢35, = ¢}, =
c}L,3 = 0, belongs to the quasi-affine variety. The point (1,0, 0, 1,0,0) in A corresponds

to the Gorenstein cover G = R/.J, where J = (z2%y — 33, 23 — 224?). In particular, we
proved that gcl(A) = 2.
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COROLLARY 4.2.11 Let A = R/I be an Artin ring. Consider a Hilbert-function » such
that HF 4(¢) < h(i) for any ¢ > 0. If Lex(h) C Lt#(I), then the set of Gorenstein
covers G = R/J of A such that Lt=(.J) = Lex(h) is a quasi-affine variety parametrized
by points p; in

V(p1,... 7pr)\V(Cg,1CZ,2 e C?—i—l,t—l)a

where cﬁj are the coefficients of the entries of matrices NV in M (Lex(h)) and p; are

polynomials in variables cf, ; that occur as coefficients of the reduction of ./ modulo I.

REMARK 4.2.12 Observe that the condition Lex(h) C Lt=(I) is a necessary but not
sufficient condition to ensure that J = I,(M) C I.

If I is a monomial ideal, then I = Lt+(I) and the condition Lex(h) C Lt+(I) can
be translated to Lex(h) C I. In this situation, there always exists a choice of cf, ; that
ensures the inclusion of some J = I;(M) in I. Indeed, the trivial case of taking zeros
corresponds to the lex-segment ideal L = Lex(h) and Lex(h) C I holds by assumption.

However, if I is not monomial, then we are no longer sure that some choice of cf) j
ensures that / is contained in some J = I;(M). In this situation, when we reduce .J
modulo 7, we might obtain coefficients on the polynomials that do not depend on the
variables ci—f ;- If this is the case, inclusion of I in I; (M) will never occur. But then some
p; will be a constant polynomial, hence V(p1, ..., p;) = ), which is consistent with the
idea that no Gorenstein covers exist.

REMARK 4.2.13 We can add to Corollary the hypothesis that h corresponds to a
Hilbert function that admits Gorenstein ideals. However, if A does not admit Gorenstein
rings, then

0 0 0 _ AN
V(03,104,2 T Ct+1,t—1) =Ay.

Now that we know how to obtain all Gorenstein covers G = R/J of AwithLt=(J) =
Lex(h), a natural question arises: if a ring A = R/I has Gorenstein covers with Hil-
bert function h, can we always find at least one such cover G = R/.J such that J is a
deformation of L = Lex(h)?

The answer is no. In general, there is no reason why the inclusion condition J C I
should hold when we deform Lex(h). Let us illustrate it in the following example:

EXAMPLE 4.2.14 Consider the ideal I = (22, zy?, y3).
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Chapter 4. Gorenstein colength in codimension two

1 012 3 4

HFgp; |1 2 3 1
HFgp,; |1 2 3 2 1

The numerical sequence h = {1,2, 3,2, 1} corresponds to the minimal Gorenstein-
admissible Hilbert function satisfying HF i,/ (i) < h(i), for any i > 0. We want to see
if there exist Gorenstein covers R/.J of R/I such that HF ,; = h.

Any ideal J C T satisfies Lt=(J) C Lt#(I) = I. Therefore, we must consider
Gorenstein deformations of all monomial ideals F contained in I with Hilbert function
of R/E equal to h. For each one, we have two conditions to check:

(1) tk(M) = t — 1 for some values of the entries of M.
(@) L(M)C I

There are three possibilities:
Case I. E = (x3,%?). FE is itself a Gorenstein cover of I but we want to find all the
deformations of E that still give a cover.
(1) The Cohen-Macaulay type of a deformation of E cannot increase, therefore any
I3(M) is Gorenstein, for M = H + N, where N € N'(E).
(2) The Hilbert-Burch matrix of any ideal with leading term ideal E is of the form

Y3 0 0
M- —x+ C%,ly =+ C%JZJQ =+ c§71y3 1+ C%,zy 08,3 + 05,334
03,1?/2 + Cg,lyS -+ C%,zy 1+ Cé.sy
i1y’ 0 —z +cj gy

It can be checked that I5(M) C I if and only if ¢5 ; + ¢} 5 + ¢j 3 = 0.
CaseIl. E = (23, 2y, y°).
(1) The Hilbert-Burch matrix of any ideal with leading term ideal E is of the form

y? 0 0
M- —r+cyy+ca .yt 14y 3 5y°
c§,1y2 -z + Czls,Qy y?

0 1 2 .2 0 1 1 2 .2, .3 .3
Ci1 T Cu 1Y +Ci1Y° CiotCioy —T+Cygy+Chgy” +cysy
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4.2. Obtaining Gorenstein covers via Hilbert-Burch matrices

Since

<
Il
o o o o

C

o o o o
o o = O

1 Ci2

then J = I3(M) is Gorenstein if and only if ¢ ; # 0.
(2) J = Is(M) C I'ifand only if ¢} ; 4 ¢} 5 + ¢} 5 = 0.
Case Ill. E = (2, 2%y, xy?,4?). Since

0 0 0 0974 c?ﬁ

010 0(2)74 0375
— 00 0 O 0
M =

00 0 1 0

000 O 0

00 0 0 0

has rank either 2 or 3, J = I5(M) will never be Gorenstein.

Observe that the lex-segment ideal L = (23, 2%y, zy3, ) is not contained in I and
hence none of its deformations will. Therefore, although there exist Gorenstein covers
of I with this Hilbert function, it is not possible to obtain them by deforming the lex-
segment ideal.

Since not all Gorenstein covers G = R/J of A = R/I with Hilbert function h can be
obtained from a deformation of the lex-segment ideal L = Lex(h), we need to consider
Gorenstein deformations .J of all monomial ideals £ with Hilbert function & such that
Lt=(J) = E C Lt=(I).

However, if F is not a lex-segment ideal, we do not have an easy criteria such as
Proposition to determine whether £ admits Gorenstein deformations. Hence we
must use Corollary directly. A simple algorithm can be implemented in order to
obtain the conditions, if possible, under which any monomial ideal E = (¢, A TUL

.., y™) can be deformed into a Gorenstein ideal. With this purpose, we present here
Algorithm H.
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Algorithm 4 Compute Gorenstein ideals .J such that Lt=(J) = E

Input: (mg,...,m;) integer vector.
Output: matrix M such that Lt=(I;(M)) = E, ideal a.
Steps:

(i) Compute d; =m; —m;_1, where 1 < j <t and mg = 0.
(ii) Build canonical Hilbert-Burch matrix

ym 0 0
—x yd2 0
I 0 —x 0 7
0 0 y
0 0 —x

(iii) Compute degree matrix U of H.
(iv) If m1 < mg < --- < my, then build matrix N = (n; ;) with

0, i < J;
N5 = . -
CZ}7yuzJ 4+ .+ Czd’J] 1ydj—1’ i> .
Else
a) Build matrix of order bounds OB = (a; ;) and degree bounds DB = (b; ;)
as

max{u;; + 1,0}, @ <j;
aij =
max{u; ;,0}, > ]
and bi,j = max{dj, 1}
b) Built matrix N, where N = (n; ;) has entries in k(y| such that

bi,j

R P YL T bij
Nij = ¢ 7Y + te iy,

k
(v) Define M = H + N.
(vi) Compute matrix M, whose entries are the class of the entries of M in R/m.

where ¢ ; are variables in k.

(vii) Compute the ideal a of (+ — 1)-minors of M.
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Let us interpret the output of Algorithm f: matrix M and ideal a. On one hand, matrix
k
4,5

any ideal J such that Lt=(.JJ) = E. Hence J can always be expressed as I; (M) for some

M, whose entries have parameters ¢ ., is the general form of a Hilbert-Burch matrix of
such M. Note that the choice of M is not necessarily unique when F is not lex-segment.

On the other hand, a is an ideal in the ring of polynomials with variables cf’ ;- fa=0,
then the rank of M is always strictly smaller than ¢ — 1. Therefore, E is deformable to
Gorenstein if and only if a # 0.

REMARK 4.2.15 If the input of Algorithm [ is a lex-segment ideal L, then the output
provides the quasi-affine variety defined in Corollary §.2.9.

REMARK 4.2.16 Emulating Corollary §.2.9, consider the quasi-affine variety AN \V(a),
where N is the total number of parameters ci—f ;- Any point p; in this set corresponds to a
Gorenstein ideal J = I;(M) with Lt=(.J) = E. However, AN\ V/(a) is not isomorphic
to Vi (E) because different points might correspond to the same ideal.

Consider an Artin ring A = R/I admitting Gorenstein covers with Hilbert function
h. We are interested in studying from which monomial ideals £ such that HFr /= h
we obtain Gorenstein deformations .J that satisfy the inclusion I C J.

Question: Given an Artin ring A = R/I, can we find some criteria to know which
particular monomial ideals £ with Hilbert function h are sufficient to check in order to
determine whether a Gorenstein cover G of A with HF ¢ = h exists or not?

This question remains open. Our guess so far is that it is enough to check those
monomial ideals F with minimal number of generators p(F) amongst all Gorenstein-
deformable ideals F such that £ C Lt=(I). In rest of the chapter we provide several
examples that support our claim.

We start with monomial ideals I, that is, Lt=(I) = I. The first two examples show
different reasons why the minimal cover does not come from a deformation of a mono-
mial ideal £ minimally generated by two elements. In Example §.2.17, there exist no
such ideals £ with p(F) = 2. In Example 4.2.1§, it exists, but the inclusion condition
E C I is not satisfied.

EXAMPLE 4.2.17 Consider the ideal I = (2%, zy,y?), HFg/; = {1,2,1,1,1}. We
know that gcl(A) = 1, hence the Hilbert function of any minimal Gorenstein cover
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ish =1{1,2,1,1,1, 1}. It can be checked that the minimal monomial Gorenstein cover
of I is J = (x®,y?), hence it is clearly not a minimal Gorenstein cover.
Let us consider all monomials E with Hilbert function h.

Case L = Lex(h) = (22, zy,y%). Lex-segment ideal with respect to z. Since L ¢ I, it
will not provide any cover.

Case E = (25, 2y, y?). Note that it is the lex-segment ideal with respect to y. Applying
Algorithm g with m = (1, 1,1, 1,1, 2), we obtain the matrix M defined by

1 0 1 0 1 0 1 0 1
Y Ci 2y Cl3+Cigy Clga+Ciy Cist+Cisy Cig+Cigy

1 1 0 1 0 1 0 1 0 1
—x+cy1y ldcogay cop3t+casy CagtCagy Co5t+ a5y CagtCagy

0 —T + Cé,zy 1+ C%,}S?J 03’4 + Cé,w Cg,s + Cé,sy Cg,ﬁ + Cé,esy
0 0 —r+cygy 14,y Aty et cigy
0 0 0 —x+ cé74y 1+ cé75y céﬁy

0 0 0 0 -+ Cé’g,y Y

0 0 0 0 5y —z+clgy

and K = (cf 3¢§ 4¢ 6 — ¥ 368 6 — & 4 6 + ] ). Since it can be easily checked that
J =Is(M) C Iifandonlyif ¢f 3 = ¢ 4, = 0, then J = IsM is a Gorenstein cover of
I'if and only if ¢f 5 # 0.

There is no other monomial ideal with Hilbert function F. In particular, there exists
no monomial ideals £ with Hilbert function 4 such that u(F) = 2.

EXAMPLE 4.2.18 Consider the ideal I = (2%, zy,y*), HF g,y = {1,2,2}. The Goren-
stein colength of A = R/I is 1, hence the Hilbert function of any of its minimal Goren-
stein covers is h = (1,2,2,1). Let us consider all monomials F with Hilbert function
h. As opposed to the previous example, the generators of I have symmetric roles of the
variables involved, hence we consider only one ideal in each case:

Case L = Lex(h) = (22, zy?, y*). Since L ¢ I, it will not provide any cover.
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Case E = (2%, zy,y*). Algorithm # with m = (1, 1,4) provides

y 129 i3y
—z+ck 1+cl el

M= 2.1Y 2,2Y 2,3Y
0 —x + c§72y Y3

0 1 0 1 1 2 .2, 3 .3
Cy1t €Y CaptcCioy —THcyzy+ciay”’+cygy

and K = (c ;). Since J = I3(M) C I holds if and only if ¢} 3 = 0, then J = I3(M)
is a Gorenstein cover if and only if cil # 0 and 0}1_3 =0.

Case E = (2°,y?). Since E ¢ I, we can ensure that no cover comes from a deformation
of the monomial ideal with less generators.

In the following example we want to show that having £ C I and E deformable
to Gorenstein is not enough to ensure that a Gorenstein cover J such that Ltz(J) = F
actually exists:

EXAMPLE 4.2.19 Now consider I = (2*, z%y, 2y*,y*), HF g/ = {1,2,3,1}. The Hil-
bert function h = {1,2,3,2,1} is the smallest Gorenstein-admissible Hilbert function
such that HF r7(7) < h(i) for any i > 0. Recall that in Example we where also
looking for Gorenstein ideals with this Hilbert function. It turns out that there are only 3
monomial ideals with this particular Hilbert function that can be deformed to Gorenstein:

s By = (22,y%), with u(E) = 2 and m = (3, 3, 3).
o By = (23, 2y2,9°), with u(E) = 3and m = (2,2,5).
+ E3 = Lex(h) = (23, 2%y, 2y, y%), with u(E) = 4 and m = (1, 3,5).

To check whether R/I has a Gorenstein cover with Hilbert function /# we only have
to check the last 2 ideals because £ ¢ 1.

Case Ey = (2°, 212, y°). Algorithm [ with m = (2,2, 5) provides the matrix M
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y? 0 0
—r+eziy+a3 iy’ 1dcioy c33y°
03,192 —T+ Cé,2y y?

0 1 2 .2 0 1 1 2 .2, .3 .3
Cy1 T Ci1Y T CLY° Caot+Cioy —T+Cyzy+cyzy” +cy3zy

and K = (c},). J = I3(M) C I'ifand only if ¢ 3 = ¢} ; = 0, hence .J cannot be
Gorenstein and a cover of I simultaneously.

Case Fs = (2, 2%y, zy°, y°). Algorithm f with m = (1,3, 5) provides

Y 0 0

2
—x 0

M = Y
31 —x+cyay y?

0 0 1 1
€41 Cip+CioY —T+C4i3Y

and K = (c§ ¢ ,). J = I3(M) C I'ifand only if ¢ y — ¢3 5¢5 3 = ¢} 36§ ; = 0. But

V(Cg,z - Cé,QCAIl,Sa c}173c§71)\V(c§71c372) =0,

hence J cannot satisfy simultaneously the inclusion and the Gorenstein property.

Therefore, gcl(R/I) > 2. If there exists G such that £(G) = 10, then its Hilbert
function must be HF¢ = {1,2,3,2,1,1}. Let us consider all the monomial ideals £
that can be deformed to Gorenstein ideals:

() By = (23, 2y%,y5), with u(E) = 3 and m = (2,2,6).
(i) Ey = (25, 2%y, y?), with u(E) = 3and m = (1,1,1,1,1, 3).
(iii) B3 = (23, 2%y, 2y3,y%) = Lex(HF ), with u(E) = 4 and m = (2,2, 6).
(iv) By = (25, 2%y, vy?,9*), with u(E) =4and m = (1,1,1,1,2,4).
Since E» ;(_ I, we only have to check the other 3. In E, the conditions I5 (M) Gorenstein
and Ig(M) C I are not compatible. However, both E; and E3 provide Gorenstein

deformations that are covers. Again, a cover is obtained by deformation of a minimally
generated monomial ideal, which is F;.
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Moreover, we just proved that gcl(A) = 3.

Finally, we provide an example of two non-monomial ideals /; and I that also sup-
ports our claim. This example is particularly interesting because I; and I have the same
leading term ideal but /; has Gorenstein covers with a certain Hilbert function h whereas
I5 has not. Let E be the monomial ideal with Hilbert function / with less minimal gen-
erators such that admits Gorenstein deformation. Although E C Lt#(I3), none of the
Gorenstein deformations are included in I». This turns out to be enough to determine
that there are no Gorenstein covers G of R/I; such that HF ¢ = h.

EXAMPLE 4.2.20 Let us consider the ideals I; = (z* — y*, 2%y?, zy* + 3°) and I, =
(wy* — 9o, 22y — 2293, 2* — 223y). Observe that both of them have 3 minimal gen-
erators and share the leading term ideal: Lt=(1;) = Lt=(I2) = (2%, 2%y?, zy*,¢%). In
particular, they both have Hilbert function {1, 2, 3,4,3,1}.

Consider the symmetric numerical function h = {1,2, 3,4, 3,2, 1}. We list all mono-
mial ideals £ with HF g, = h that can be deformed to a Gorenstein ideal classified by

n(E):

1) p(E)=2:m=(4,4,4,4).

(i) u(E) =3:m=(3,3,3,7), m = (2,2,6,6) and m = (L,5,5,5).
(i) p(E) =4:m = (2,2,5,7), m = (1,4,4,7) and m = (1,3,6,6).
@iv) u(E)=5:m=(1,3,5,7).

Let us check the smallest minimally generated E such that £ C Lt=(I):
E = (2%, 2%y%,y%), withm = (2,2,6,6).
Then the matrix M is

o2 0 0 0
—z+cy ytes,  l4c,y 359" 0
3.9° —z + ¢35y y! 0

0 1 2 .2 0 1 1 2 2 3 .3 .4 .4 1
Cy1 ey Yty Cip T Cio¥ —THCy3y+CyayY” +Cy Y +Cy Y 1+ C4,4Y

0 1 2 .2 0 1 2 2,3 .3, 4 .4 _ 1
C5q T C51Y+C51Y C5.0 1T C50Y C5,3Y" + C5 3y~ + C5 3y z+c5 5y

It can be checked that there exist Gorenstein covers J; = I4(M) of I; whereas
no Gorenstein ideal generated by maximal minors of M is included in I, that is, the
inclusion condition J C I is not compatible with J = I,(M) being Gorenstein.
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Chapter 4. Gorenstein colength in codimension two

Using our method to compute the variety of covers of Gorenstein colength 2, we
can make sure that gcl(R/I1) = 2 and gcl(R/I2) > 2. Hence this is consistent with
the conjecture: if the cover does not appear in the monomial ideal generated by less
generators, then there is no Gorenstein cover with this Hilbert function.

Let us now focus on Io. We first list the possible Hilbert functions of Gorenstein
rings G such that £(G) — ¢(R/1I3) < 4:

length | ¢ |O 1 2 3 4 5 6 7 8 9

14 | A1 2 3 4 3 1

16 1 2 3 4 3 2 1

17 1 2 3 4 3 2 1 1

18 1 2 3 4 3 2 1 1 1
1 2 3 4 3 2 2 1

For h = (1,2,3,4,3,2,1,1), we only need to check m = (2,2,5,8) because it is
the only monomial ideal F satisfying F C Lt=(I). It turns out that Gorenstein and
inclusion are not compatible. Again, for h = (1,2,3,4,3,2,1,1,1), we only need to
check m = (2,2,5,9) for the same reason and with the same outcome.

For h = (1,2,3,4,3,2,2,1), there are two monomial ideals E such that E C
Lt=(I):

o By = (24, 2292, 2y%,4®), with u(E) = 4 and m = (2,2,6,8).
« By = (2%, 2%y, y7), with u(E) = 3and m = (2,2,7,7).

We check first the ideal minimally generated by 3 elements. We are able to make sure
the existence of Gorenstein covers and provide a particular solution. It can be checked
that the ideal J = (2%y? — 22y —xy* +9°, 2* — 223y —23y? +22y3 +2y°) satisfies both
Lt=(J) = E5 and J C I, hence it is a Gorenstein cover. Again, this result is consistent
with the conjecture. Since we discarded the existence of any other cover with smaller
Hilbert function, we just proved that gcl(R/I2) = 4.

Moreover, E; also provides Gorenstein covers. Take as an example J = (x%y? —
2293, 2t — 223y — xy* + %),
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CHAPTER 5

Gorenstein colength of special
families

Along the previous chapters we become aware of the high difficulty to compute how
far a given Artin k-algebra A = R/I is from being Gorenstein. In Chapter J we give a
characterization of rings with gcl(A) < 2 in terms of their inverse systems but we already
point out in Section .3 which are the obstacles to providing analogous characterizations
for higher Gorenstein colength. Two main questions arise there:

Question A: Given any Artin ring A = R/I, is there a minimal Gorenstein cover G =
R/J of A such that embd(G) = embd(A)?

Question B: Given any Artin ring A = R/I, is there a minimal Gorenstein cover G =
R/J of Asuchthat I C J C I?

A stronger version of those two questions would be to ask whether this is true for all
minimal Gorenstein covers of A.

On the other hand, thanks to the results in Chapter [, we have algorithms to decide
whether A is at distance 0, 1 or 2, and we can compute the explicit expressions of its
Gorenstein covers G. In Chapter l, we obtain more insight in codimension two and even
give a constructive approach to study the Gorenstein colength but it gets more and more
inefficient as the colength increases because of the amount of Hilbert functions we have
to check. So, generally speaking, we do not have many tools available to compute the
Gorenstein colength of an arbitrary Artin ring A.

This chapter is devoted to the study of the Gorenstein colength of certain families of
rings such as stretched k-algebras or monomial rings. We address the questions posed at
the beginning by computing gcl(A) and studying its minimal Gorenstein covers.
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Chapter 5. Gorenstein colength of special families

In Section b.1 we study stretched k-algebras, see Appendix [B, and quotients of pow-
ers of maximal ideals. In characteristic zero, we get explicit formulas for their Gorenstein
colength in terms of invariants of the ring:

PROPOSITION 5.0.1 (See Proposition b.1.3.) Let A = R/I be a non-Gorenstein Artin
stretched ring. Then,
gcl(A) = embd(A) — 7(A) + 1.

PROPOSITION 5.0.2 (See [2, Theorem 3.1].) Let A = R/m!, then

n+t—2
t—2

gel(A) =

In Section f.J we do a deep study of all analytic types of k-algebras A with length
equal or less than 6, taking Poonen’s classification of such rings as a starting point, see
[40]. Regarding questions A and B, let us summarize the obtained results:

PROPOSITION 5.0.3 Let A = R/I be an Artin ring. In the following cases we have that
there exists a minimal Gorenstein cover G = R/.J of A such that embd(G) = embd(A)
and 2 C JCI:

(i) £(A) <6,
(ii) A is stretched,
(iii) 7 = m! for some t > 1.

Moreover, for stretched rings all minimal Gorenstein covers preserve the embedding
dimension of the base ring.

Finally, Section B.3 is dedicated to monomial ideals. In particular, we study when
minimal Gorenstein covers are monomial rings.

The examples in this chapter illustrate the complexity of the problem and provide
ways to construct examples of any given Gorenstein colength. All the computations
have been done using the Singular libraries InverseSyst.lib and GorensteinCovers.lib.
See Appendix [A] for a review of the latter.
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5.1. Some general families

5.1 Some general families

In this section, we will assume that k is a field of characteristic zero.

5.1.1 Stretched k-algebras

We now compute the Gorenstein colength of stretched k-algebras. Recall that an
Artin ring A = R/I is stretched if HF 4(2) = 1. Stretched rings were defined and
classified by Sally, see [42], [21]. See Appendix E for definition and structure theorems
regarding stretched rings.

PROPOSITION 5.1.1 Let A = R/I be an Artin stretched k-algebra with I C m?2. Let
7 = 7(A) be the Cohen Macaulay type of A and s > 2 its socle degree. Then,

IJ— = <y27"'ayT7yL19+y72—+1+"'+y72;,>'

Proof: By [21, Theorem 3.1],

I ({zizjh<icjen 27 ocicr {27 — i }rii<icn) . i 7(A) <ny

({z125}a<j<ns {zizsYacicjcn, 277) if 7(A) = n.
Since I C m?, then S<1C1 1. To prove the inclusion
<y27"'ay7'7yf+y3'+l ++y?L> C IJ_7

it is enough to check that I o (y§ + y2,, +--- +y2) = 0. Equality follows from the
fact that dimy I+ = ((A) =n +s. O

PROPOSITION 5.1.2 Let A = R/I be a non-Gorenstein Artin stretched ring. Let 7(A)
be the Cohen Macaulay type of A and s its socle degree with I C m?. Then,

gcl(A) = embd(A4) — 7(A) + 1.
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Chapter 5. Gorenstein colength of special families

If n = embd(A), then G = R/ Anng F', where
F=yt by o+ g2 g+ o,

is a minimal Gorenstein cover of A. Moreover,

KF = (IL ‘R F) = (1‘1,...,.’L‘-,—,.Z‘?Hrl,...,xi,{xixj}7+1§i<j§n).

In particular, G is a minimal Gorenstein cover of A with Hilbert function HF s =
{1,n,n—7(A)+1,1,...,1} and socdeg(G) = s + 1.

Proof: Set dim(R) = embd(A) = n and 7 = 7(A). Consider the sub-R-module
Jt = (F'), where F is the polynomial of the statement, and the ideal K = (z1, ..., z,,

.’E?_+1, ey m%,{$iiﬁj}7+1§i<]§n) of R. Then
KoJb = (ys,.,yr ¥ +yos1 + -+ )

By Proposition B.11, I+ = K oJL, hence G = R/ J is a Gorenstein cover of the Artin
stretched ring A = R/I. As k-vector space, the inverse system of .J can be written as

JL = <17y15'"ayTL?y%’yly‘r—&-la"'7y1ynay§a"'7yi7F>k~

Therefore, ((G) =2n — 7+ s+ 1 =¥0(A)+n—7+1and gcl(A) < n—7+ L
From Proposition we know that gcl(4) > embd(A) — 7(A) + 1, hence we get
the equality gcl(A) = n — 7 + 1. Then G = R/ Anng F is a minimal Gorenstein with
Hilbert function {1,n,n — 7(A) + 1,1,...,1}.

Moreover, K C Kp = (I* :g J*) and equality holds if /(R/K) = ((R/KF).
Indeed,

(1,21,...,2,)k +m?
(T1,...,27)k +m?

E(R/K):dlmk :dimk<I,fT+1,...,En>k:TL—T+1

coincides with /(R/Kr) =n — 7 + 1 by R.1.6. O

COROLLARY 5.1.3 If A is an Artin stretched ring, any minimal Gorenstein cover G of A
satisfies embd(G) = embd(A).
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Proof: By Proposition 2.3.2, n = embd(A) < embd(G) < gcl(A) + 7(A) — 1 = n.
O

REMARK 5.1.4 Observe that from Proposition we can deduce that the embedding
dimension of any minimal cover G is the same as the embedding dimension of A. This
is not enough to claim that any G has Hilbert function {1,n,n — 7 + 1,1,...,1}.
However, the examples we have studied suggest unicity. See the study of unicity of
I = (2129, 2173, T174, ToT3, TaTy, T3Ty, T3, T3 — 27, 27), with HF g/ = {1,4,1},in
Table .2, Case 22 of /(A) = 6.

COROLLARY 5.1.5 If A = R/I is an Artin stretched ring, then there exists a minimal
Gorenstein cover G = R/J of A suchthat I? C J C I.

Proof: By Proposition b.1.2, K = (21,...,2,22 1, ..., 22, {27} r41<icj<n)-
It can be easily checked that I C K. By Lemma P34, 1?2cJcI.O

5.1.2 Powers of the maximal ideal

In [44, Corollary 2.2], Teter shows that A = R/ m? is a Teter ring. Later on, in [20,
Proposition 3.6], Elias and Silva prove that any quotient of a power of the maximal ideal
A = R/m!is Teterif and only if either £ < 2 or its embedding dimension is 1. Combining
this result with [20, Proposition 3.7], we get the following characterization:

PROPOSITION 5.1.6 Consider the ring A = R/m!, where ¢ > 2 and n is the embedding
dimension of A. Then

(i) gel(A) =0if and only if n = 1.
(ii) gcl(A) = 1if and only if n > 2 and t = 2.

In [2, Theorem 3.1], Ananthnarayan provides an explicit formula to compute the
Gorenstein colength of suchrings A = R/m! for arbitrary values of n and ¢. In particular,
he proves that gcl(A) = ¢(R/m!~1). From this we deduce the following result:
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Chapter 5. Gorenstein colength of special families

PROPOSITION 5.1.7 Let A = R/m!, for some ¢t > 2. Then G = R/ Anng F where
F = (y1 + -+ y,)? 2, is a minimal Gorenstein cover of A and

n+t—2
t—2

gel(A) =

Proof: The Gorenstein colength follows from [2, Theorem 3.8]. Hence we only need
to prove that G = R/J has the right length and I+ C J+ = (F), where I = m! and
F= (gt tpa)"2

G has a symmetric Hilbert function with respect to piece of degree ¢t — 1:

n+t—1
. 0<i<t—1;
)
HFq (i) = n+k—1
L t<i=2-k-2<2-2 0<k<t—1,
k
0, P>t — 1.

Adding up the dimension of each piece, we check that ¢(G) = £(A) + gcl(A). For any
0 < i <t — 1, each piece J;* has maximal dimension ("*/~'), hence S<;,—1 C J*.
Since (mt)L = S<¢_1, we just proved that GG is a minimal Gorenstein cover of A. [

COROLLARY 5.1.8 Let A = R/m!, for some ¢ > 2. Then there exists a minimal Goren-
stein cover G = R/J such that I? C J C I, where [ = m'.

Proof: I* = (m')" =S<_y CJt = (F)C Scp_y = (m?)+ = (12)4. O

REMARK 5.1.9 Note that we proved that there always exists at least one minimal Goren-
stein cover with the same embedding dimension as the base ring, but we could not prove
that all of them must preserve the embedding dimension. Observe that the upper bound
on the embedding dimension provided by Proposition gives
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5.2. k-algebras of rank equal or less than 6

n+t—1
embd(G) < -1 (5.1)
t—1

on Gorenstein covers G of rings A = R/m!, which is bigger than embd(A) in general.
However, we did not find any example where embd(G) > embd(A4). On the con-
trary, we do have examples where the previous bound on the embedding dimension of G
is not reached. For A = k[z1, 2] /m?, the inequality B.1 gives embd(G) < 5, whereas
we prove in Section p.2 that embd(G) = 2 for any minimal Gorenstein cover. See Case

9, ¢(A) = 6 of Table .3 for more details.

5.2 k-algebras of rank equal or less than 6

In [4Q], Poonen provides a complete list of all the analytic types of Artin local alge-
bras over an algebraically closed field k of length less or equal than 6. His classification
holds for any characteristic of the ground field. However, for char(k) = 2 or 3, some
extra analytic types must be added.

The goal of this section is to compute the Gorenstein colength and describe minimal
Gorenstein covers of all finitely many analytic types of Artin local k-algebras A = R/T
with £(A) < 6. As Poonen already recalls in his paper, Suprunenko proved in [43] that
the number of isomorphism classes is infinite when £(A) > 7. Therefore, it is reasonable
to consider rings up to length 6. In Table 5.2 we present a complete list of all the analytic
types of such rings together with several invariants of both the base ring A = R/I and
its minimal covers G = R/ Anng F.

Let us start with posing some natural questions for /(A) < 6:

Question 1: How can we effectively compute /-?

The first issue we need to address is the computation of the inverse system of the
ideal I C R for any characteristic of the field k. Using Singular we can compute /- in
both zero and positive characteristic. See Appendix [A] for information on the different
methods available and how to use them. However, we are interested in an expression of
the inverse system which is valid for any characteristic of the residue field. Therefore, we
will perform the computations in characteristic zero and generalize the results to arbitrary
characteristic afterwards.
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Chapter 5. Gorenstein colength of special families

Observe in [40] that given an ideal I = (f1,..., fm) from Poonen’s list, its inverse
system I3~ in characteristic 0 is minimally generated by polynomials F1, ..., F,. such
that all its coefficients are 1. On one hand, for any F' € IOL, since

is true in characteristic zero, then it holds in arbitrary characteristic. Hence (F7, ..., F,)
is contained in I;-. On the other hand, the sub-module (F%,..., F,) of k[y1,...,yn],
where char(k) = p, is again minimally generated by F},..., F},. Therefore, since

{A) =((Iy) = Z(IL) then Il (F1,...,F.).
Question 2: How can we effectively compute gcl(A)?

We will now use alternative arguments to avoid, at this stage, the computation of
the variety of minimal Gorenstein covers and stick to the study of the inverse system.
Only by looking at the minimal number of generators of I+ as R-module, we obtain a
lot of information on the Gorenstein colength. Let n be the embedding dimension of
A and recall that (1) = 7(A), see Proposition [L.4.19. The relationship between the
embedding dimension and the Cohen-Macaulay type in rings of low Gorenstein colength
comes from the characterizations of such rings. In the Teter case, Theorem by Elias
and Silva determines that 7(A) = n. We obtain the same Cohen-Macaulay type for rings
A = R/I of Gorenstein colength 2 in Theorem whenever I C m®. But notice that
none of rings in Table f.J are under the conditions of the theorem. As it was already
noted in Remark 2.2.6, in this case 7(A) is either n — 1 or n. Summarizing:

o If u(I+) = 1, then gcl(A) = 0.
o If u(I+) # 1,n, then gcl(A) > 1
o If u(I+) # 1,n — 1, n, then gcl(A) > 2.

Therefore, if we find a Gorenstein cover G = R/ Anng F reaching the lowest pos-
sible colength according to the previous outline, we are done. This is also the case for
rings A such that gcl(A) > 2:

Case 9of /(A) = 6. A = R/I, with I+ = (2, y1y2,y3) and n = 2, satisfies p(I1) #
1,2. Then gcl(A) > 2. F = y?y3 gives a Gorenstein cover G = R/ Anng F of A such
that £(G)) — £(A) = 3, hence gcl(A) = 3.

Case 22 of £(A) = 6. A = R/I, with I+ = (yo,y? + y2 + y%) and n = 2, satisfies
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5.2. k-algebras of rank equal or less than 6

p(It) # 1,3,4. Then gcl(A) > 2. F = y} + y1y3 + y1y3 + y3 gives a Gorenstein
cover G = R/ Anng F of A such that ¢(G) — ¢(A) = 3, hence gcl(A) = 3.

REMARK 5.2.1 Observe that Case 9 of /(A) = 6 is a quotient by a power of the maximal
ideal, hence gcl(A) = ¢ (A/m?) = 3 by Proposition 5.1.7. On the other hand, Case 22
of /(A) = 6 is stretched, hence gcl(A4) = n — 7(A) + 1 = 3 by Proposition p.1.2. The
advantage of the argument about the Cohen-Macaulay type is that it works regardless
of the characteristic of the field whereas the other one depends on the structure theorem
of stretched k-algebras and Ananthnarayan’s work on quotients by powers of maximal
ideals, see Section b.1l.

However, if we are not able to find F, it requires a deeper study in order to prove that
no such polynomial exists. Only one analytic type in Poonen’s classification deserves
this special treatment.

Case 7 of £(A) = 6. Consider A = k[z1,x2]/I, I+ = (y1y2,y3). By [20, Proposition
4.5], A is Teter if and only if exists a non-singular matrix C' = (¢;;)1<i,j<2, With ¢;; in
k[y1,2] and deg ¢;; < 3 such that

H, €11 C12 Y1y2
o

3
H, Ca1  C22 Y3

satisfies x5 0 H] = z1 o Hs.

The Schwartz condition implies that cuolerclgoy% = c910Yys. Forany1 <14,5 < 2,
consider ¢;; = ¢}; + ¢j; + ¢}; + ¢};. Let us pay attention to what occurs in each degree
of this equality:

Degree 2: ¢, o y2 = 0, hence ¢!, = 0.
Degree 1: ¢}, oy + ¢}, 0o y2 = ¢J; oy, hence ¢, = 0.

A4, &
Then | 1t €12

1 3
gives a Gorenstein cover G = R/ Anng F of A such that ¢/(G) — ¢(A) = 2, hence
gel(A) = 2.

= 0, hence C is singular and gcl(A) > 1. The polynomial F' = y;y35

REMARK 5.2.2 Note that this procedure is a primitive version of Algorithm B to com-
pute Teter varieties, that is, the minimal Gorenstein cover variety for rings of Gorenstein
colength 1.
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Chapter 5. Gorenstein colength of special families

Question 3: Which are the possible Hilbert functions of a minimal Gorenstein cover G
of A?

Hilbert functions of Teter covers are unique regardless of the characteristic of the
field k. From Theorem we can deduce that, given a Teter ring A of socle degree s,
any minimal Gorenstein cover G of A satisfies

HFE4(i), ifi<s;
HFq(i) = 1, ifi=s+1;
0, otherwise.

See [20] for more details.

In Gorenstein colength 2, according to Theorem P.2.5, the socle degree of a minimal
Gorenstein cover G of A could be either s+ 1 or s+ 2. Hence, a priori, we cannot ensure
unicity of the Hilbert function. In fact, as shown in Example .1.9, in Case 7 of £(A) = 6
there are minimal covers with two different associated Hilbert functions.

From now on, we will assume that char(k) = 0 in order to use structure theorems of
stretched and almost stretched k-algebras, see Appendix B.

In characteristic zero, it can be proved that Hilbert functions of minimal Gorenstein
covers of A such that gcl(A) = 2 and ¢(A) < 6 are unique except for the so called
Case 7 of £(A) = 6. One approach to prove this uniqueness is to study the degree of the
polynomials associated to the M GC/(A) variety, since it provides a bound on the socle
degree of G. See Section [C.2 for more details. Another strategy is to study whether
Gorenstein rings with appropriate Hilbert functions are indeed covers of A, as done in

Example P.1.10.

In Gorenstein colength 3, determining which are the possible Hilbert functions of
minimal covers becomes specially relevant since, in particular, it addresses the problem
of embedding dimension in higher colength posed in Section P.3.

For rings A in Table 5.2 such that gcl(A) = 3 (cases 9 and 22 of /(A) = 6), we study
all the Gorenstein rings G such that ¢(G) — ¢(A) = 3 with HF (i) > HF 4 (i) for any
i >0.

Case 9 of /(A) =6. A = R/m? is a quotient by a power of the maximal ideal. By

Remark we have the upper bound ("*7") — 1 for the embedding dimension of

any minimal Gorenstein cover G of A. Since t = 3 and n = 2, embd(G) < 5.
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5.2. k-algebras of rank equal or less than 6

ilol1]2]3 4 5
Al1]2]3
Gl1]2]3|1 1 1 1)
2 1 )
3131 1 ©)
411 )
4131 (5)

In the table above we list all possible Hilbert functions of rings G = R/J with
multiplicity 9 ending in 1 such that HF ¢ (i) > HF 4(¢), ¢ > 0.

First werecall that F = 3?13 generates a minimal Gorenstein cover G = R/ Anng F
with symmetric Hilbert function {1,2,3,2,1}.

Next we list those Hilbert functions that do not correspond to Gorenstein rings:

(1) {1,2,3,1,1, 1}, since in codimension 2 Gorenstein rings only correspond to Hil-
bert functions with jumps of at most 1, see Theorem [.2.11].
(4) {1,3,4,1}, since there is no Q-decomposition, see Example [..2.10.

Finally, Hilbert functions (3) and (5) do admit Gorenstein rings but we want to prove
that they can never be covers of A. To do so, we first give a lemma that will help dealing
with covers of higher embedding dimension:

LEMMA 5.2.3 Let A = R/I be a ring with embedding dimension » and a Gorenstein
cover G = R'/J of A of embedding dimension n + k, where R’ = k[z1, ..., Zpn, Tnt1,
ooy Tpyr]- Then I+ C JEin S = K[y1, oo Yns Units -+ o s YUnikl-

Proof: Consider a system of generators f1,..., f, of the ideal I in R and define I’
as the ideal generated by f1,..., fm,®Tnt1,- .-, Tntg in R, Since A = R/I = R'/I,
then (I')* C J* by definition of Gorenstein cover.

Next we will prove that (I’)- = I*. Note that any F' € (I')* C §’, satisfies
Tpts 0 F=0forany 1 <+¢ < k. Then F must be a polynomial in variables x1, ..., z,.
But F also satisfies f;o ' = 0 forany 1 < i < m, hence F' € I*. Therefore (I')* C I+
and equality follows from ¢(R/I) = ¢(R'/I') = ¢(A). O
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Chapter 5. Gorenstein colength of special families

Let us see why Gorenstein rings G with Hilbert functions (3) and (5) cannot be covers

of A:

()

()

144

Consider a Gorenstein cover G of A with HFg = {1,3,3,1,1}. Let F, with
deg F' = 4, be a generator of .J*. Since gcl(A) = 3, then there are two possible
analytic types for K, hence either

It =(lyjoFly0FI30F)
or
It =(lioF,l30F,lsl30F,I30F).

Elements in /* have, at most, degree 2. To prove that such G can never be a cover
of A it is enough to show that, if elements in Kz o F' have degree at most 2, then
HF 4(2) < 2. Indeed, this contradicts HF 4(2) = 3.

Case K = (I1,12,13): Since deg F' = 4, then [3 o F' < 1 and hence HF 4(2) < 2.

Case Kr = (I1) + (I2,13)%: Since HF(3) = 1, there is essentially only one
polynomial in degree 3. Then either ls o F' = A(l3 o F'), for some A # 0, or

we can assume that deglo o F' < 2.

In the first scenario, both /30 F  and /3o F are multiples of [3l30 F, hence HF 4(2) <
2. In the second case, we get that the degrees of both 12 o F" and l513 o F are strictly
less than two, hence again HF 4(2) < 2.

Consider a Gorenstein cover G of A with HF g = {1,4, 3, 1}. Since dimy (/)2 =
3, from Lemma it follows that ./~ must contain three algebraically indepen-
dent polynomials F}, F5, F3 of degree 2 in variables [y, [5, where 1, [ are linear
forms in k([y1, y2, y3, y4]. Using same notation as in [6], we give in Table 5.1 a
representative of a generator of .J* for every analytic type of a Gorenstein ring GG
such that HF ¢ = {1,4,3,1}.

Now consider the ring homomorphism

¢: Kla,b,c] — K[z,y,z]
a — Fj
b — Iy
c — Fj
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with im ¢ = k[F}, F5, F3]. Hence

dim k[Fy, Fy, F5] = dim k[a, b, c]/ ker ¢.

If ker ¢ = 0, there is no linear R-isomorphism such that k[Fy, Fy, F3] = k[, l5],
that is, no suitable change of variables. We checked with Singular that this is
always the case for F; = z; o F, i = 1,2, 3, for any analytic type from Table p.1.
Therefore, I+ ¢ J + and hence G is not a cover of a ring with Hilbert function
{1,2,3}.

Summing up, any minimal Gorenstein cover G of A has Hilbert function {1, 2, 3,2, 1}.
In particular, embd(G) = embd(A) = 2 and the upper bound provided by Proposi-
tion is clearly not reached.

I(A) = 6, case 22: Since A is a stretched k-algebra, by Proposition embd(A) =
embd(G) and exists a cover G with Hilbert function {1, 4,3,1}. Let us list all possible
Hilbert functions of minimal Gorenstein covers of A:

¢t 01123 4 5

All]4|1

G|l1|4]1]1 1 1
2|1 1
3|1

+ A Gorensteinring G = R/J withHF ¢ = {1,4, 1,1, 1, 1} is a stretched k-algebra
with s = 5,n = 4 and 7 = 1. By Proposition b.1.1, F' = 47 + y2 + y2 + 42 is
a representative of the generator of .J* of the unique analytic type of such G. If
K™ is a subset of J* such that HF i = {1,4, 1}, then

KL = <1ay17y27y3ay47y%> - <1ay17y27y3ay47y%7y%7y4117F> = JL'

Hence G can only be a cover of rings of Cohen-Macaulay type 4 but 7(A) = 2.
* A Gorenstein ring G = R/J with HF = {1,4,2,1,1} is an almost stretched
k-algebra with s = 4, t = 2 and n = 4. By Theorem [B.3.2, there are only two
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5.2. k-algebras of rank equal or less than 6

analytic types for J: either J = I ; or J = I, see Definition B.3.1. Consider
K+ C J* such that HF g/ 5c = {1,4,1},

() if K+ C Iy = (y3 + 3 + y1y3 + 5 + yi), then 7(R/K) = 3,4;
(i) if K+ C IE = (y2 + y3 + y1v2 + v1), again 7(R/K) = 3,4.

Therefore, any minimal Gorenstein cover GG of A has Hilbert function {1,4,3,1}.

5.2.1 Poonen’s classification

We will now provide a set of tables listing all the analytic types of A = R/I together
with several details of both the base ring and its minimal covers G = R/ Anng F":

« Hilbert function HF 4,

¢ Cohen-Macaulay type 7(A),

« the representative I of the analytic type provided by Poonen’s list,

+ the inverse system I+,

+ apolynomial F such that G = R/ Anng F' is a minimal Gorenstein cover of A,

« all possible Hilbert functions HF ¢ of a minimal Gorenstein cover of A when
char(k) =0,

* the Gorenstein colength of A.

REMARK 5.2.4 In Table b.J, cases 2.2 in (A) =4,7.2in¢(A) and 5.2, 10.2, 14.2, 15.2,
18.2,21.2, 23.2 in {(A) = 6 have been computed in characteristic 2. Case 5.3 has been
computed in characteristic 3. The remaining cases have been computed in characteristic
zero but are still valid in arbitrary characteristic.

REMARK 5.2.5 For any A such that /(A) < 6, the property 12> C J C I holds for min-
imal Gorenstein covers G = R/.J of A listed in Table 5.2. Hence Proposition 2.3.5.(7)
is proved. Moreover, in characteristic zero, we can check that it is true for all minimal
Gorenstein cover G as long as the Hilbert function of G corresponds to rings whose
analytic types have been widely studied. This is the case for stretched (see [21] or The-
orem [B.2.1)), almost stretched (see [[15] or Theorem B.3.2), HF ¢ = {1,3,3,1} (see [18,
Proposition 3.7]) and HF ¢ = {1, 4, 3,1} (see [£]).

REMARK 5.2.6 Note that the Gorenstein colength never exceeds £(A4)/2.
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Chapter 5. Gorenstein colength of special families

TABLE 5.2 Gorenstein colength and minimal Gorenstein covers of rings A = R/I such that £(A) < 6.

| 0(A) | case | HF. [r(4) |1 It JL | HFo | ec(4) |
2 | 1 ] 11 |1 |43 n | 11 | o |

3 1 1,1,1 1 | 23 Y3 1,1,1 0
2 1,2 2 (11, 22)? Y1, Yo y3 + y3 1,2,1 1

4 1 1,1,1,1 1 rt v3 1,1,1,1 0
2 1,2,1 1| 22, 23 Y1Y2 1,2,1 0

2.2 1 172, 7 + 23 v +y3 1,2,1 0

3 2 179, 13, T3 Y3, Yo v+ y3 1,2,1,1 1

4 1,3 3 | (w1,22,25)? Y1, Y2, Y3 y? +y3 + 3 1,3,1 1

5 N T S O i 1,1,1,1,1 0
2 1,2,1,1 1| 2%+ 23, 5120 vi+ys 1,2,1,1 0

3 2 va &HHM,HW S,@w @w + @w 1,2,1,1,1 1

4 1,2,2 2 170, T3, 15 Y2, ys v+ s 1,2,2,1 1

5 2 22, 2%, 23 Y192, Y3 V195 + Y5 1,2,2,1 1

6 1,3,1 1 T1T2, T1X3, T2IL3, @m + @w + @w 1,3,1 0

a3 —af, a3 — ]
7 2 T1T2, 1173, 75, 3, 3 Y1, Y2Y3 Y3 + 203 1,3,2,1 2
7.2 2 T1T2, T1X3, T2T3, &w. Y2, @m + @w @w + ,S,Qw + @w 1,3,2,1 2
Hw + Hw
8 3 T1%2, T1T3, T2T3, Y2, Y3, Ui vi+ys +u3 1,311 1
9 1,4 4 (21,79, 73, 14)? Y1, Y2, Y3, Y4 | Y1+ Y5+ Y3 + vl 1,4,1 1
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Chapter 5. Gorenstein colength of special families

| (A) [ Case [ HF4 [ 7(4) | I I+ gt | HFG [ gel(4) |
6 142 | 1,32 2 22,22, 23 — z123, T273 Y1Y2, Y3 + y1Y3 Y1Y3 + yiys 1,3,3,1 2
15 2 RHHM,H:&,HW @w?@m@w Sw + @ww\w 1,3,3,1 2
22,23

152 2 T1Z2, 2123, T2T3, T3 + 12,23 y3,y2 + y2 vs 4+ Y5 + yoy? 1,331 2

16 2 T1x2,T1X3,T2X3, @w - @w,m\w + @w @w + @w + @w 1,3,3,1 2
o} + 23 — a3

17 2 af, x122, 2273, Y2 — y1ys, y1y3 + v2 Y1y + v + y3 1,331 2

r1T3 + Hw — Hw

18 2 x?,x120, 23, T3 Y193, Y2Y3 y3y3 + y3y3 1,3,3,1 2

18.2 2 22, ziwo, 22,03 — w123 y1y3 + y32,y2y3 y2ys + y1y2 + yiys 1,3,3,1 2

19 3 a3, x122, T103, Y1, Y293, Y3 y2 + yoy2 1321 1
&wq&mawq&w

20 3 &W“HH&PHH&M? @T@wq@w @m +@w +@w 1,3,2,1 1
awawqawqﬁw

21 1,4,1 1 &wq awq &wq awt T1T2 — T3T4, Y1Y2 + Y3ya 1,4,1 0

T123,T1T4,L2T3,L2T4
21.2 1 Hw +HW“HW +Hwyaw +Hwt @w +@w +@w +@M 1,4,1 0
T1X2,T1T3, T1T4, T2X3, T2T4, T34
22 2 T1T2, T1T3, T1Tg, T2T3, T2T4, y2, Y2 +y2 +y2 v +uyys + iyl +y2 | 1431 3
Hw&?&wéw - &W“HM — am
23 3 22,23, 23, 22, 2122, 2173, Y1, Y2, Y34 y2 + Y2 + y2ya 1,4,.2,1 2
T1T4,X2X3,2T2T4
23.2 3 &W“Hwa&w +HM“&HHP&HH? @T@w,mw +@M @m +@w +@w +@mm\m 1,4,2,1 2
T1T4,T2T3,T2T4, TILA
24 4 T1X2,T1X3,T1T4,T2X3,T2T4, @m“@uq@?@w @m +@w +@w +@w 1,4,1,1 1
Hw&fawq&w“&m,aw
25 1,5 5 (w1, 72, T3, T4, T5)> Y1,Y2, Y3, Y4, Y5 yit+y+ys+yi+y2 | 151 1
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5.3. Monomial ideals

5.3 Monomial ideals

Monomial ideals I of R have a lot of nice properties, see [29]. For instance, their
inverse system /- is also generated by monomials as an R-module and its generators as
a k-vector space coincide with a k-basis of R/I, see Corollary for more details.
Also the Gorenstein property has a nice translation in the monomial situation:

PROPOSITION 5.3.1 [29, A.6.5] Let A = R/I be an Artin ring and I a monomial ideal.
Then A is Gorenstein if and only if A is a complete intersection. If any of the equivalent
conditions hold, then I is generated by pure powers of the variables.

It is natural to ask whether the computation of Gorenstein colength and minimal
Gorenstein covers is simpler for monomial rings. The first relevant observation is that,
in general, monomial rings do not have monomial minimal Gorenstein covers.

EXAMPLE 5.3.2 Consider the monomial ideal I = (23, 23, 7122) in R = k[z1, 23], Case
3 of £(A) = 4 in Table 5.2. In the chart below, we represent I = (37, 1) in dark green
and J* = (y?ys) in light green.

Y2

A

Yo Y32
‘,,,,,,,,

® >

Y1

Note that 3?y- is the monomial of lowest degree that generates an inverse system con-
taining I+. But /(R/J) — ¢(R/I) = 2 and gcl(A) = 1, hence none of the minimal
Gorenstein covers of A are monomial rings.

However, we can always consider the minimal monomial Gorenstein cover:

DEFINITION 5.3.3 Given a monomial ring A = R/I, we say that G is a minimal meno-

mial Gorenstein cover if

(i) G = R/J is a Gorenstein cover,
(ii) J is monomial,
(iii) ¢(G) is minimal amongst the G satisfying (7) and (i1).
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Chapter 5. Gorenstein colength of special families

PROPOSITION 5.3.4 Let A = R/I be a monomial ring. Then G = R/J, where J is
the monomial ideal (z{*,...,z%") such that I Nk[x;] = (x), is a minimal monomial
Gorenstein cover of A.

Proof: Assume that I is a monomial ideal. Then there exist monomials =% with a;
in N” and such that, i = 1,--- ,n, I Nk[z;] = (z}*). J = (z7*,--- ,x&") is clearly
contained in I and it is Gorenstein by Proposition b.3.1. By constuction, G = R/.J has
the minimal length amongst all monomial Gorenstein covers. [

COROLLARY 5.3.5 If A = R/I is a monomial ring with monomial minimal Gorenstein
cover, then

n

gel(4) = [ J(ai — 1) = £(4),

i=1

where a; is the smallest integer such that z}" € I.

Proof: Take.J = (z%',...,z%") as in Proposition 5.3.4. Then q; is the smallest integer
such that z{* isin I and G = R/J is also a minimal Gorenstein cover. It is easy to check
that £(G) =[] (a; — 1). O

i=1

In this section we will provide some examples and partial results for monomial rings
in codimension 2 and review which monomial rings of Poonen’s classification in Ta-
ble .4 have monomial minimal Gorenstein covers.

5.3.1 Monomial rings in codimension 2

In Chapter [, monomial ideals take a leading role in the search for Gorenstein covers
of A = R/I. We deform monomial ideals F with an appropriate Hilbert function into
ideals J such that Lt=(.J) = E, preserving their Hilbert function. In this way, we provide
a constructive procedure where we eventually find Gorenstein ideals J such that J C I.
However, the effectivity of the method decreases dramatically as the colength increases
because of the combinatorics of both the admissible Hilbert functions and the associated
monomial ideals.

In this section we want to give expressions of the Gorenstein colength in terms of
the exponents of the generators of the ideal. Recall that 7(A) = n for Teter rings and
7(A) = n—1, nin colength 2. Therefore, if n = 2, non-Gorenstein rings of low colength

152



5.3. Monomial ideals

have Cohen-Macaulay type 2. By Proposition [L.4.19, I must be minimally generated by
3 elements in R. Hence we will restrict our study to monomial rings I = (2}, x5, 2¢25),
withl <g<t—landl1<b<s-—1.

5.3.1.1 Teterrings

Let us consider an ideal I = (z!,y%,2%°),with1 <a<t—land1 <b<s—1.
Note that its inverse system is [+ = (2t~ 1yt~ g2~ 1ys—1),

By [20], A is Teter if and only if exist polynomials H;, Ho of degree at most the
maximum between ¢ + b — 2 and a + s — 2 such that y o H; = z o Hs, where

1, 5-1
H, c11 €12 Ty’

t—1, b—1
Hy Co1  C22 Ty

and C = {c¢;; }1<i,j<2 is a matrix with polynomial entries such that det Cy # 0.
Hl =c¢q1 0 xaflysfl + ¢19 Oxtflybfl

a—1 t—1,b—1

Hy = co1 02 y"=t + cpp 021y

Since y o H; = x o Hs, then

11029 52 4 erg 0 281y = 1 0 292y 4 g9 0 2t 20 L.
If a = b = 1 we are considering an inverse system of the form [+ = (x!~1 y*~1).
In such case, F' = ¢ + y*® generates the inverse system of a minimal Gorenstein cover
of A. Indeed, (z,y)o F = (x'~1 y*~!) and a dimension computation of /- as k-vector
space gives that {(A) =t + s — 1 and 4(R/ Anng (F)) =t + s.
We can now assume that eithera > 1 orb > 1.

* Caseb+t>a+s.
In maximum degree b + ¢ — 3:

0 t—1 b-2 _ 0 _t—2 b—1
Cio% Y = CyX Y .

0
€11

Ifb > 1, then ¢y = ¢, = 0 and det Cy = = 0. Hence gcl(A) > 1.

0
cg; O
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Chapter 5. Gorenstein colength of special families

If b = 1, then in maximum degree ¢ — 2 we get ¢3,2°~2 = 0 and hence ¢3, = 0.
In degree a + s — 3 we have

0 a—1,s—2 _ 0 _a—2, s—1 k t—2
LT YT T =gt YT g0t

with 5y = ab,2%, k =t — a — s+ 1 and a4, € k. Therefore,

c(l)lxa—lys—Q — Cglxa—2ys—1 T al§2xa+s—3.
Since a > 1, then ¢§; = ¢3; = a%, = 0 and gcl(4) > 1.

* Caseb+t=a+s.
In maximum degreeb+t¢t —3=a+ s — 3:

0 a—1 s—2 , 0 =1 b=2 _ 0 .a=2 s—1 , 0 =2 b—1
CT YT T AT Y T = e YT et Ty

- a,b> 1.
Ifa—1<t—2orb—1<s—2thenc); =c = = = 0and
hence gcl(A) > 1.
Ifa—1=t—-2andb—1=s—2,thencly =9, =0andcd; =cJ,. In
this case, I+ = (x'~2y*~1 2t~ 1y*~2) and, taking C = Id, we get

Hi=zoF =22y = F =21y~ 4 p(y)
H2 =yo F = l't_lys_2 = F = .’L‘t_lys_l +p(x)
Hence J+ = (x!~1y*~1) is a minimal Teter cover of A.

— a = 1orb=1. Since a and b have symmetric roles in the expression above,
we can assume that ¢ = 1 and b > 1.

C(l)lys—z + C(l)2xt—1yb—2 _ cgzxt—be—l_
If ¢t = 2, then
A1y 2+ cyry” % = By
Hence

*Ifb—1< s—2 thency =), = 0. Henceifa = 1, ¢t = 2 and
1<b<s—1,thengecl(A4) > 1.
* Ifb=s— 1, then ¢9,3° ! + {yry®=2 = ,3° ! only gives ¢{, = 0.
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It can be checked that J+ = (zy*~!) provides a Teter cover of A.
If t > 2, then ¢, = ¢35, = 0 and hence gcl(A) > 1.

Summing up, if I is of the form (z*~1y*=2, 2*=2y°~1) for any s, > 2, then it

is Teter.
* Caseb+t<a+s.
Since = and y are symmetric, this is the same situation as in case b +t > a + s.

Therefore, monomial Teter rings in codimension 2 are of the following forms:

M) A =k[z,y]]/(z',y% 2"y ).
(H) A= k[[l‘,y”/(l‘t,ys,zy).

Note that rings of type (I) and (II) coincide when s = ¢ = 2. Also observe that
() always admits a monomial Teter cover G = k|[[z,y]]/(z?, y®) . (II) admits the Teter
cover G = k[[z,y]]/(xy, y*—=') but has no monomial minimal covers unless t = s = 2,

as the following picture clearly illustrates:
Y

A

s—1 t—1,s5—1
PR P < S TR SR SR RS RO

~

REMARK 5.3.6 In Gorenstein colength 2, an analogous argument can be performed but
the conditions we obtain on the exponents are not as elegant as in the Teter case.
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5.3.1.2 Ideals with 3 minimal generators

PROPOSITION 5.3.7 Let I = (2}, x5, 22%), with1 < a <t—1land1 <b<s—1,
be a monomial ideal of R = k[z1, z2] with u(I) = 3 such that R/ is an Artin ring of
codimension 2. If max{s,t} < a + b, then

gcl(R/I) = (t —a)(s—b)
and G = k[z1, x3]/(2!, z3§) is a minimal Gorenstein cover of R/I.

Proof: Recall that I+ = (yiflygfl, v~ tys~1). By symmetry of the roles of  and y,
we can assume without loss of generality that¢ > s. Since t > s and max{s,t} < a+b,
thens—1<t—-1<a+b-1.

Let us picture the extremal case s —1 <t—1=a+0b—1:

N
N N N
N N N
N N N
N N N
N N N
N\ N N
N\ N N
N\ N N
\ N N
N\ N N
N N N \ N N N N
N AN N N \ N N N (BN
N “ AN AN \ \ \ N | N
\ N N N RN —
\\ ‘\ N N \ N N N ‘a’jt lyb 1
N N \ N\ \‘
\ N N\ N N \ N N \
N N N\ N N \ N N N
N N N\ N N \ N N N
N N N\ N N \ N N AN
N N N\ N N \ N N N
N N N \ N N N
N N \\ N\ N N \ \ N
N N N N\ N N\ \ N N
N N N N\ N N \ N N
N N N N\ N N \ N N
N N N \\ N N \ N N
N N N N\ N
N N N N \ N N \ N
N N N N N\ N N \ N
N N N N N\ N N \ N
N N N A N\ N N \ N
N N A N\ L
N N N \ N
"

Next we represent the generalcase s — 1 <t —-1<a+b—2:
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A
N N
N N
N N
N N
N N
N\ \
N\ \
N\ \
\ \
N\ \
N \
N \
N \
N \
N \
N N N\ \ N N N
N N N\ \ \ N N
N N N\ \ N N N
N N \ \ N N N
N N N\ \ N N N
\
N
N N \\ N\ \ N N
N N N N \ N N
N N N\ \ N N
N N N N\ \ N N
N N N N\ \ N N
N
\
N N AN N N\ \ AN
N N N \ N N
N N N N \ “ <
N N N A \
N N \\ N \\ \\
\
4

T

From the representations above we can deduce that, whenever s — 1 < ¢t — 1 <
a + b — 1, the Hilbert function of A = R/I is

1+1, 0<i<s—2;

s, s—1<:1<t—1;

HF4 (i) =
h;, t<i<t+s—3;
0, t>t+s—2,

where h; <s+t—(i+ 1) foranyt <i<t+s—3.

By Theorem [[.2.11], the Gorenstein-admissible Hilbert function with minimal length
starting by the sequence {1,2,3,...,s,...,s} is the symmetric numerical function {1,
2,3,...,8...,88—1,s—2,...,2,1}. Thering G = k[x1, x2]/ (x5, z}) happens to
have exactly this Hilbert function:

1+ 1, 1< s—1;

S, s<i<t—1;
HFg() =

s+t—(i+1), t<i<t+s—2

0, 1>t+s—1.

Since I+ C (yi~'y5~') and ¢(G) — ¢(A) is minimal, G is a minimal cover of R/I.
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Finally, it is easy to check that £(G) — ¢(A) = (s — b)(t — a) because it corresponds
to the upper right rectangle that belongs to J* but not to /. Hence gcl(A4) = (s —
b)(t —a).O

Let us give an example which is under the conditions of Proposition and show
how its Gorenstein colength can be alternatively deduced from its Hilbert function:

EXAMPLE 5.3.8 t = s = 6, a = 2, b = 4. By Proposition 5.3.7, gcl(A4) = 8.
Yy

A

>
T

Observe that the numerical function HF  from the chart below is the minimal Hilbert
function admitting Gorenstein rings such that HF (i) > HF 4(¢), for ¢ > 0. Then
R/ (29, 25) is a Gorenstein cover of A with Hilbert function HF ¢, hence it is minimal.

lengh| ¢« |0 1 2 3 4 5 6 7 8 9 10

28 |HF4 |1 2 3 4 5 6 4 2 1 0 O
36 |HFg |1 2 3 4 5 6 5 4 3 2 1

Finally we provide a monomial ideal which is not under the conditions of Proposi-
tion 5.3.7, where we can easily determine that it has no monomial minimal Gorenstein
covers even if we cannot compute the Gorenstein colength.
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EXAMPLE 5.3.9 t = 17,s = 7,a = 3,b = 4, {(A) = 77. If a monomial minimal
Gorenstein cover exists, it must be G = k[zy, 2] /(2'7,y"). It can be checked that
G’ = k[x1, 23]/ Anng (22y1°+2193) is also a Gorenstein cover of A. But /(G) = 119
and ¢(G’) = 89, hence G is clearly not minimal. Observe that we cannot claim that G
is minimal, we merely proved that gcl(A4) < ¢(G’) — ¢(A) = 12.

5.3.2 Monomial rings of length equal or less than 6

In this last part of the chapter, we review Poonen’s classification in Table .2 and pay
special attention to non-Gorenstein monomial rings. We study whether they admit or not

monomial minimal Gorenstein covers.

REMARK 5.3.10 Observe that Case 7 of £/(A) = 6 only admits monomial minimal covers
in one of the two different Hilbert functions of its minimal Gorenstein covers: HF g =
{1,2,2,2,1}.
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TABLE 5.3 Non-Gorenstein monomial rings £(A) < 6. In turquoise, rings admitting monomial

minimal Gorenstein covers.

Case HF 4 I+ J+ gcl(A)
0(A) =3,2 1,2 1
0(A)=4,3 1,2,1 Yo, Y3 y3 + y3 1
((A) =4,4 1,3 Y1,Y2, Y3 v+ i +y3 1
0(A)=5,3 | 1,2,1,1 Y1, U5 v+ s 1
((A)=54 | 122 Y1 vs yi + 3 1
(A) =5,5 1
((A) =58 | 131 Y2, Y3, U3 yi + 5+ u3 1
((A)=5,9 1,4 Y1, Y2, Y3, Ya Y+ Y5+ Y3+l 1
0(A)=6,3 | 1,2,1,1,1 Y2, Yt Yo + 3 1
((A)=6,6 Y1 vs Yyl +ys 1
((A)=6,7 yiys + 5 2
0(A)=6,9 | 1,23 3
((A)=6,12 | 13,11 Y2, U3, Ui yi + Y5 +y3 1
0(A)=6,15| 1,32 Y1, Y2u3 Yi + Y53 2
0(A) = 6,18 2
{(A)=6,19 Y1, Y23, Y3 Y3+ y2u3 1
{(A) = 6,20 Y1,93, 93 yi+ 3+ o3 1
0(A)=6,24 | 141 Y2, Y3, Ya, Ui yi+ Y3+ i+ i 1
£(A)=6,25 L5 Y1,Y2, U3, Y0, Ys | Ui + Y5+ 5 +yi+ 3 1
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APPENDIX A

Singular manual for computing
minimal Gorenstein covers

All the algorithms presented in this thesis have been implemented with the commu-
tative algebra software Singular, [11]. This appendix is a review of the Singular library
GorensteinCovers.lib, which has been specifically created to do most of the computa-
tions that appear in the previous chapters.

The purpose of this library is, as its name suggests, to help with the computation of
Gorenstein covers G = R/J of a givenring A = R/I, where I is an m-primary ring of
R =Xk[xy,...,z,].

The main procedures contained in it can be classified into three blocks:

(i) Computation of the inverse system /- of I.
(ii) Computation of the integral of a module M with respect to an ideal K, i.e. | M.
(iii) Computation of the variety M GC(A) for low-colengthrings A, i.e. gcl(A) = 1, 2.

The Singular library InverseSyst.lib by Elias will also be needed, see [[13] for a
review of its contents.

Next we provide some important general remarks on how to use this library:

REMARK A.0.1 Since we are dealing with a local scenario, note that the ground ring
should be defined with a local ordering, that is

ring r=p,(x(1..n)),ord;

where p is the characteristic, n is an integer, and ord is a local ordering (ds, Is or Ds).
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REMARK A.0.2 The structure of S = k[y1, ..., yn] as R = k[z1,...,z,]-module is by
contraction. In InverseSyst.lib both derivation and contraction structures of S are taken
into account, hence we will only use the commands with ending NC (no coefficients) or
IHNC(injective hull with no coefficients).

REMARK A.0.3 A sub-R-module of S generated by F1, ..., F,. is handled in this LIB as
an ideal generated by F1, ..., F}., keeping with Elias’s treatment in InverseSyst.lib. His
library provides very useful procedures to operate with these ideals as R-modules.

A.1 Methods to compute inverse systems

Inverse systems are a useful tool to deal with local Artin k-algebras and, in a more
general setting, to study isolated points in a variety. Some properties of ideals in R that
have a difficult computational approach have a particularly nice translation into inverse
systems: quotient ideals, elimination of variables or even differential equations. See [23,
Sections 7.1.5-7.1.8] for more details.

Here we describe 3 different methods to compute a k-basis of the inverse system of
an m-primary ideal I of R = k[, ..., z,]. In all three situations, once we obtain a k-
basis, we can use Elias’ procedure minGensIHNC to obtain a minimal system of generators
of I+ as an R-module.

A.1.1 Method 1: system of equations

This method is implemented by Elias in the procedure invSystNC of the Singular
library InverseSyst.lib, see [13]. Givenanideal I = (f1,..., f,n) C R, we can compute
its inverse system by solving the system of equations

fioF =0, foranyl<i<m (A.1)

for enough polynomials F' € S = K[y1, ..., yn].
EXAMPLE A.1.1 Consider I = (z1,2? — x2) C k[z1,22], set fi = x} and fo =
23 — my. Consider the reverse-degree reverse lexicographical order (ds in Singular).

The Artin ring R/I has socle degree 3, hence all polynomials in I+ have degree at
most 3. We denote by S<3 the sub-R-module of k[y;, y2] formed by polynomials of
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degree equal or less than 3 and denote by (y“), the elements of the monomial k-basis
Y3, Y193, Y3, Yiy2, y1y2, Y2, Y1, y1, y1, 1 of S<s. Consider the linear map

@

Y

S<s

(6%

— S§3 X Sgg

—

(froy®, faoy®)

The matrix associated to ¢ is the following:

w(yg)

w(y1y§)

e (yd)

2
»(viy2)

e(y1v2)

e (y2)

e )

e(yd)

P(y1)

(1)
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y1v2
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The k-basis of the kernel of ¢ is precisely a k-basis of those polynomials £’ € S<3 such

that f; o ' = fo o F' = 0. Singular provides the following k-basis of ker ¢:

Therefore, we can retrieve I+ = (1, y1, y2 + ¥2, y1%2 + 43 k.

91
92
g3
94

(
(
(
(

0,0,0,0,0,0,0,0,0,1),
0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,1,0,1,0,0),
0,0,0,0,1,0,1,0,0,0).

)
)
)
)

)
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Algorithm 5 Computation of - via system of equations
Input: f1,..., f,, generators of the ideal I.
Output: by, ..., b, k-basis of I*.
Steps:
(i) Define s = socdeg(R/I).
(i) Set M = (y*)a<s. Note that M is a k-basis of S<.
(iii) Define the linear map

@ : SSS — SSSXSSSX'“XSSS

ya — (floyaaféoyaa---afmoya)

(iv) Compute a k-basis of the kernel of (.
(v) Define by, ..., b, as the elements of the k-basis of ker ¢ in polynomial notation.

REMARK A.1.2 The implementation of kinvSystNC in GorensteinCovers.lib follows the
idea of invSystNC in Inverse-Syst.lib but we remove the computation of the generators
of I+ as R-module. In this way, all three algorithms provide a k-basis and we are able
to compare them.

Next we show a sample session in Singular on how to use this procedure:

//load library 0

> LIB "GorensteinCovers.lib”; //compute k-basis
//define ring with local order > kinvSystNC(i);
> ring r=0,(x,y),ds; _[11=x3+xy
//define ideal _[2]=x2+y

> ideal i=x4,x2-y; _[3]=x

//check m-primality _[4]1=1

> dim(std(i));
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A.1.2 Method 2: reduction with respect to a normal form
modulo /.

In [23, Section 7.1.8] Elkadi and Mourrain provide a simple algorithm to construct a
k-basis of I+ via the reduction of polynomials with normal forms with respect to I. We
reproduce their fundamental results here translated into our setting.

Consider a k-basis (Z%)ncr 0f R/I, where E is a finite subset of N™. Recall that
I+ can be identified with the dual of R/I as a k-vector space, denoted by (R/I)*, see
Section . Therefore, we can consider a dual k-basis (Aoé)ae pofl L, in the sense
that, for any o, 8 € E,

1, ifa=p;
(27 0 Aa) (0) = ’ (A2)
0, otherwise.

Recall that (f o A)(0) = (g o A)(0) forany f,g € Rsuchthat f —g € I.

PROPOSITION A.1.3 [23, Proposition 7.23] Given the k-basis (Z%),c g of R/I, the fam-
ily
(ya + Z )\Q,Byﬁ)aeEv
BENT\E

where 7° = 3" _ 2 Ao 57 forany 3 ¢ E, forms a k-basis of I+.

acl

Proof: Consider the dual k-basis (Aq,),, ¢ of I+ with respect to the k-basis (Z*)ack
of R/I.

For any o € E, we can describe A, as Y BeNn tia.5y?, for finitely many scalars
fta,p 7 0. Note that 11q. 5 = (27 0 Ay) (0). If B € E, then piq,3 = 64,3 by A2, where
a5 is the Kronecker delta. Otherwise, if 3 ¢ E, there exist unique scalars (Ao g)acE
such that

7= XapZ” € R/I,
aclE

hence

(2% 0 Ay) (0) = (( > Aa,,ﬁxa) o Aa> (0).

a’'eE
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Again by [A.7 we get
Z )\ar,g (l’al OAQ> (0) = >\a,57

a’'eE

hence (o g = Ao g Therefore, A, = y* + Z Aoy’ O
BEE

REMARK A.1.4 Consider a k-basis (Z%),cp of R/I and let s be its socle degree. Since
m**+1 C I, then for any /3 such that || > s + 1, we have 2° € I. Hence \, s = 0 for
any « € F and
Ao=y"+ D> Aagy’.
BEE,|B|<s

EXAMPLE A.1.5 Consider I = (21,2? — z2) C k[z1,22]. The set (2*)per := {3,
22, x1, 1} is a k-basis of R/I and socdeg R/I = 3. Consider the set of monomials
M = (Iﬁ)ggg' Given a standard basis S = {xy — 22,21} of I (with respect to the
reverse-degree reverse lexicographical term ordering), we can compute the normal forms
NF(z? | S). With local order ds, we get

NF(M | S) = {0,0,0,0, 2%, 22, 23 22, 21,1},

We can express these normal forms as a matrix whose entries are the coefficients
Ao, With @ € E'and 3 < 3 of Proposition A3

M ¥3 mad 23 2ire mme e 2t 2P o 1
NF(M|S)| 0 0 0 0 3 22 23 2? a1
z$ 0 0 0 0 1 0 1 0 0 O

z? 0 0 0 0 0 1 0 1 0 0

z1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1

Hence from the rows of this matrix, we can retrieve the k-basis of /- by considering
the entries as coefficients of M: I+ = (y1y2 + v, y2 + 7, y1, Di.
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Algorithm 6 Computation of - via reduction with respect to a normal form modulo 1

Input: [ ideal.
Output: by, ..., b, k-basis of I*.
Steps:

(i) Sets =socdeg(R/I).

(i) Set M = (z°)5<s.

(iii) Compute a standard basis S of I.

(iv) Compute the normal forms NF (2 | S), for any 2° € M.

(v) Compute a k-basis F' = {f1,..., fit} of R/I.

(vi) Compute the matrix A of coefficients of NF(z# | S) over the k-basis F of R/I.
(vii) Compute the product of matrix A and column matrix M?.
(viii) Forany 1 <4 < t, set b; as the i-th entry of the column matrix AM?.

We now provide the implementation of Algorithm [ in Singular, where its default
example is precisely Example [A.1.5:

> LIB "GorensteinCovers.lib”;
> example inverseSystem;

// proc inverseSystem from lib GorensteinCovers.lib
EXAMPLE:

ring r=0,(x,y),ds;

ideal i=xM,x"2-y;
inverseSystem(i);

_[1]=xy+x3

_[2]=y+x2

_[3]=x

_[4]1=1

Let us note that, if I C R is a monomial ideal, the expression of the k-basis of I L in
Proposition can be simplified:

COROLLARY A.1.6 Let I C R be a monomial ideal. Given the k-basis (Z%)nc g of R/I,
the family (y%)qecx forms a k-basis of I+.

Proof: For each 3 ¢ E, there exists unique (Ao, )acr such that ” — 3 o Ay gz
in I. Since I is monomial, then z° € I, hence all Aa,p vanish. By Proposition ,
(y*)aer is a k-basis of I+. [
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> LIB "GorensteinCovers.lib”; _[7]=x

> ring r=0,(x,y),ds; _[8]1=1

//Define a monomial ideal //Computation of a k-basis
> ideal i=x3,xy2,y4; of the inverse system of I
//Computation of a k-basis of > inverseSystem(i);

the vector space R/I _[11=y3

> kbase(std(i)); _[2]=y2

_[1]=y3 _[31=x2y

_[2]=y2 _[4]=xy

_[3]=x2y _[5]=y

_[41=xy _[6]=x2

_[5]=y [71=x

_[6]=x2 _[8]=1

Algorithm 7 Computation of I+ for monomial ideals /

Input: I monomial ideal.
Output: by, ..., b, k-basis of I*.
Steps:

(i) Compute a k-basis b1, ...,b; of R/I.

> example invSystMon; _[7]=xy5 _[21]=x6y2
// proc invSystMon from lib _[8]=y5 _[22]=x5y2
//GorensteinCovers.lib _[9]=x5y4 _[23]=x4y2
EXAMPLE: _[10]=x4y4 _[24]=x3y2
ring r=0,(x,y),ds; _[11]=x3y4 _[25]=x2y2
ideal i=x"7,xM6*y/3, _[12]=x2y4 _[26]=xy2
xN2*yhe, Yy T; _[13]=xy4 _[27]=y2

invSystMon(i); _[14]=y4 _[28]=xby
_[1]=xyb _[15]=x5y3 _[29]=x5y
_[2]=yb _[16]=x4y3 _[30]=x4y
_[3]=x5y5 _[17]=x3y3 _[31]=x3y
_[4]=x4y5 _[18]=x2y3 _[32]=x2y
_[5]=x3y5 _[19]=xy3 _[33]=xy

_[6]=x2y5 _[20]=y3 _[34]=y
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_[35]=x6 _[381=x3 [417=1
_[36]=x5 _[39]=x2
_[37]=x4 _[40]=x

A.1.3 Method 3: integration.

In [23, Theorem 7.36], Mourrain and Elkadi set the background for an algorithm to
compute a k-basis of I+ where I C k[z1,...,x,]. We recall here Theorem B.1.12,
where we adapted their results to the local case I C k[z1,...,z,]:

THEOREM A.1.7 (Theorem B.1.13) Given anideal I = (fi,..., f,n) C Randd > 1. Let

{b1,...,bs,_,} be ak-basis of D;_;. The polynomials of Dy with no constant term are
of the form
ta—1 ta—1 ta—1

A=Y )\}/bj|y2=..:yn=o+ > A?/bj|y3:..:yn=0+...+ > Ay/bj, (A.3)
=1 71 =1 72 j=1

where /\é? € k, such that

> Nwioby) =Y N(akob) =0,1<k<l<n, (A.4)
j=1 j=1
and
(fioA)(0)=0, forl <i<m. (A.5)

Translating [39, Algorithm 4.3] into the our local setting, we obtain an algorithm to
compute the k-basis of I+ along with its contraction matrices, see Definition B.4.1. Ob-
serve that the following algorithm consists on the iteration of Algorithm [l until we reach
the socle degree with some extra constrictions derived from the orthogonality condition.

In the Singular implementation of the algorithm, given an ideal I C R, the output
is a list of two elements: an ideal whose elements are a k-basis of I+ and a list of its

contraction matrices Uy, ..., U,.

> LIB "GorensteinCovers.lib”; > list L=integrate(i);

> ring r=0,(x,y),ds; //First element of the list:

> ideal i=x4,x2-y; //k-basis of the inverse system of I
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Algorithm 8 Compute a k-basis of /- and its contraction matrices

Input: fi,..., f,, generators of the ideal I of R.
Output: Dy = by,...,bs, k-basis of I*;

U, ..

., U,, contraction matrices of I associated to the k-basis D.

(i) Setd:=0, Dy :=1, sq := 1, test := true.

(i) For1 < k <mn,setan 1 x 1 matrix Ui [1] := [0] and an m x 1 matrix A[1] :=

[(f1oyr)(0),..., (fmoyr)(0)], where Uy [1] and Ax[1] stand for the first column
of matrix U, and Ay, respectively.

(iii) While test = true, do

a) Set A; := (A} -+ AL )", forany 1 < i < n. Solve the system of equations

U\ = U A =0forany 1 <k << n;

(A.6)
A A\ =0forany 1 < k < n.
b) Consider a system of generators Hy, ..., H,, of the solutions of Equa-
tion (A.6).
c) Forany H; = [A\1,...,\;], 1 < i < m, define the associated polynomial

n

t
An, = Z Z/\?/bj‘ykﬂ:':ynzo

k=1 \j=1 k

d) If A, ¢ (Dg)k, then bg, 1 := Ag, and D := D,bs,,1. Repeat the
procedure for Am,,...,Amn,, . If no new polynomials appear in this step,
set test := false.

e) Set 5441 as the number of elements in D.

f) Forany 1 < k < n, define sq41 X $q4+1 matrices U], and m x s41 matrices
A} Set Uy [i] := Ugli] and A} [i] := Ag[d] for 1 < < sq.

Sd
g) Forsg + 1 < i < s441, compute ,u;'» € k such that x;, o b; = Zu?bj and

j=1
set

ULli] = (i i), AYli] = [(fl Y YT — U

C2E [y P— )

h) Setd :=d+1, U :=Uj, and Ay, := A},
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> L[]

_[11=1

_[2]=x

_[3]=y+x2

_[4]=xy+x3

//Second element of the list:
//list of contraction matrices.
> print(L[2][1]);

0,1,0,0,

A.1.4 Comparison of methods

Let us now compare the computation times of the previous algorithms.

0,0,1,0,
0,0,0,1,
0,0,0,0
> print(L[2][2]);
0,0,1,0,
0,0,0,1,
0,0,0,0,
0,0,0,0

EXAMPLE A.1.8 Let us compute the inverse system of I = (z%, 22> — 2v°, y° — zy).

> LIB "GorensteinCovers.lib”;
> ring r=0,(x,y),ds;
> ideal i=x4,x2y3-xy5,y5-xy;
> kinvSystNC(i);
_[1]1=1

_[2]=x

_[3]=x2

_[4]=x3

_[5]=y

_[6]=xy+y5

_[7]=y2

_[8]=xy2+y6

_[91=y3
_[10]=xy3+y7
_[11]=y4
_[12]=xy4+y8

> inverseSystem(i);
_[1]=xy4+y8
_[2]=xy3+y7
_[3]=xy2+y6
_[4]=xy+y5

_[5]=y4
_[6]=y3
_[71=y2
_[8]=y
_[91=x3
_[10]=x2
_[11]=x
_[12]=1

> list L=integrate(i);
> L[1];
_[11=1
_[2]=x
_[3]=y
_[4]=y2
_[5]=x2
_[61=y3
_[71=x3
_[8]=y4
_[9]=xy+y5
_[10]=xy2+y6
_[11]=xy3+y7

173



Appendix A. Singular manual for computing minimal Gorenstein covers

_[12]=xy4+y8 > print(L[2][2]);

> print(L[2][1]); 9,0,1,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,0,0,0, 9,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,0, 9,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,0, 9,0,0,0,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0

TABLE A.1 Computation times of the inverse system of I = (z*, z%y® — z3°, 4% — zy).

Procedure time (ms)

invSystNC 0
inverseSystem 0

integrate 290

EXAMPLE A.1.9 Let us check the computation times of the inverse system of the mono-
mial ideal I = (27, 25y3, 2245, y7).

TABLE A.2 Computation times of the inverse system of I = (z7, 2%y, %4, y").

Procedure time (ms)
invSystNC 20
inverseSystem 0
invSystMon 0
integrate 3810
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EXAMPLE A.1.10 Compute the inverse system of

and compare its computation times using different methods.

LIB "GorensteinCovers.lib”;

ring r=0,(x,y,z,t),ds;

ideal i=x3y,xz3t-zt2,x2t2,

y5,26,t3,x4;
hilb(std(i));

// 1t
// -2 th3
// -2 tM4
// 2 thh
// -2t
// 6 t"8
// -2 tMO
// -1 M1
// 1 tM2
// -4 tNM4
// 3 tM5
TABLEA.3

I = (23y, 225t — 2%, 2282 y°, 25,43, 2%)

// 1 the
// 4 tM
// 10 tA2
// 18 tA3
// 25 thd
// 30 th5
// 32 th6
// 28 tN7
// 21 tN8
// 14 tA9
// 8 tA0
// 3 M
// dimension (local) =10

// multiplicity = 194

Procedure time (ms)

invSystNC 7530
inverseSystem 30

integrate 3274940

Computation times of the inverse system of I = (z3y, z23t — 2t 2%t? 5 25 3, x%).

Let us perform a rough analysis of the arithmetic complexity of these methods to

understand better the experimental results we obtain. On one hand, Algorithm B has

been deeply studied by Mourrain in [39, Proposition 4.1]:
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PROPOSITION A.1.11 The total number of arithmetic operations in Algorithm f for com-
puting the inverse system I+ of an m-primary ideal I of R is bounded by

O ((n® +m)t> + n®mLt?),

where n = dim R, m = p(I), t = ¢(R/I) and L = ("**) is the number of monomials
of degree at most s, where s = socdeg(R/I).

On the other hand, observe that both Algorithm [ and Algorithm [ share the first step:
the computation of the socle degree s of R/I. In order to do so, it is required, at least,
to compute a standard basis of the ideal I. Mayr and Meyer established in [38] that the
complexity of the computation of standard basis is doubly exponential in the number of
variables in the worst key scenario. However, in this zero-dimensional scenario and the
degree-reverse lexicographical ordering, complexity can be reduced, see [25]. Quoting
[25]: ”In practice the computations are generally much faster and much feasible that with
any other ordering.”

For a thorough analysis of the complexity of Algorithm [ and Algorithm f we should
look into their steps in detail. This is out of the scope of this appendix, but let us point
out what should be taken into account in each algorithm.

As for Algorithm [, besides the computation of the socle degree of R/I, there is
a kernel computation the arithmetic complexity of which is bounded by O (mL3 / 2),
using the notation from Proposition . See [[7, Section 2.3.1] for more details on
the number of operations.

Regarding Algorithm [, the complexity is virtually the same complexity as comput-
ing the standard basis of the input ideal.

Finally, although the algorithm that appears to be faster in practice is Algorithm B,
for our purposes of finding Gorenstein covers Algorithm [H is more suitable because it
provides an adapted k-basis as outcome.

A.2 Computation of the integral of a module with
respect to an ideal

The computation of the integral of the inverse system with respect to a power of the
maximal ideal is a key step towards the study of the M GC/(A) variety. The available
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methods to compute inverse systems also provide two essentially different algorithms to
compute fmt I+: the 2-duals formula and the integration method.
The 2-duals formula is based in the following result:

PROPOSITION A.2.1 (Proposition B.1.7) Let M be a finitely generated sub- R-module of
S and let K be an ideal of R. Then

/ M= (KM*Y)*. (A7)
K

Observe that Proposition gives a much more general formula that applies not
only to inverse systems and powers of maximal ideals:

LIB "GorensteinCovers.lib”;
ring r=0,(x(1..3)),ds;
ideal M=x(1)*x(2),x(3)"3;
ideal K=x(1),x(2),x(3)"2;
integral(K,M);
_[1]=x(1)"2

_[2]1=x(1)*x(2)

_[3]1=x(2)"2
_[41=x(1)*x(3)"2
_[5]=x(2)*x(3)"2
_[6]=x(3)"5

vV V V V V

On the other hand, the integration method allows us to avoid the computation of two
duals by using Algorithm [}, a generalization of Algorithm .

EXAMPLE A.2.2 Consider the sub-R-module M = (y1y2,v3). To compute the integral
fm M in Singular using Equation (A7) we choose the procedure integral in Goren-
steinCovers.lib:

LIB "GorensteinCovers.lib”;
ring r=0,(x(1..3)),ds;
ideal M=x(1)*x(2),x(3)"3;
ideal K=maxideal(1);
integral(K,M);

_[1]=x(1)"2

vV V V V V

177



Appendix A. Singular manual for computing minimal Gorenstein covers

_[2]=x(1)*x(2)
_[3]=x(2)"2
_[4]1=x(1)*x(3)
_[51=x(2)*x(3)
_[6]=x(3)"4

The integration method to compute fmf, I+ is naturally used in a setting where we are
given the ideal I. Algorithm [ requires as input both a k-basis of ' and its associated
contraction matrices. Therefore, to compute fm M with this algorithm we need some ex-
tra steps. First, we need to retrieve I = Anng (M ). This computation can be performed
using procedure idealAnnNC in InverseSyst.lib, see [[13]. Second, given I, integrate
provides the desired k-basis and matrices of I*. Then the procedure integrationStep
in GorensteinCovers.lib gives a k-basis and contraction matrices of [ I+

// Compute the annihilator of M _[11]=x(2)M2
// in R _[12]=x(1)M2
> ideal I=idealAnnNC(M); //Contraction matrices

// Compute a k-basis of the inverse print(L[2][1]);
// system of I and its corresponding 0,1,0,0,0,0,0,0,0,0,0,0,

// contraction matrices 0,0,0,0,0,0,0,0,0,0,0,1,
> list R=integrate(I); 0,0,0,0,0,1,0,0,0,0,0,0,
//Use the previous output to 0,0,0,0,0,0,0,0,0,1,0,0,
> list L=integrationStep(R[1],R[2]); 0,0,0,0,0,0,0,0,0,0,0,0,
//k-basis of the integral 0,0,0,0,0,0,0,0,0,0,0,0,
>L[1]; 0,0,0,0,0,0,0,0,0,0,0,0,
_[11=1 0,0,0,0,0,0,0,0,0,0,0,0,
_[2]=x(1) 0,0,0,0,0,0,0,0,0,0,0,0,
_[31=x(2) 0,0,0,0,0,0,0,0,0,0,0,0,
_[41=x(3) 0,0,0,0,0,0,0,0,0,0,0,0,
_[51=x(3)"2 0,0,0,0,0,0,0,0,0,0,0,0
_[6]=x(1)*x(2) print(L[2]1[2]);

_[7]1=x(3)"3 0,0,1,0,0,0,0,0,0,0,0,0,
_[8]=x(3)M4 0,0,0,0,0,1,0,0,0,0,0,0,
_[91=x(2)*x(3) 0,0,0,0,0,0,0,0,0,0,1,0,
_[10]=x(1)*x(3) 0,0,0,0,0,0,0,0,1,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0 //Adapted k-basis of L_{A,1}
print(L[2](3]); >L[3];
0,0,0,1,0,0,0,0,0,0,0,0, _[11=x(3)"4
0,0,0,0,0,0,0,0,0,1,0,0, _[2]=x(2)*x(3)
0,0,0,0,0,0,0,0,1,0,0,0, _[31=x(1)*x(3)
0,0,0,0,1,0,0,0,0,0,0,0, _[4]1=x(2)"2
0,0,0,0,0,0,1,0,0,0,0,0, _[5]=x(1)"2

TABLE A.4 Computation times of [ M.

Procedure time (ms)

integral 40

integrationStep 180

Besides computational complexity, in our context of computing minimal Gorenstein
covers of A = R/I, arelevant advantage of Algorithm [l| is that the output provides an
adapted k-basis of £ 4 ;, see Definition B.2.4.

A.3 Computation of minimal covers

The most relevant procedures are teterVariety and MGC2 that implement algorithms
Algorithm B and Algorithm [ to provide the variety of minimal Gorenstein covers of
rings A with gcl(A4) = 1 and gcl(A) = 2, respectively.

Next we will provide some detailed examples on how to study the Gorenstein colength
of agivenring A = R/I.
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EXAMPLE A.3.1 [Teter ring] Let us compute the minimal Gorenstein cover variety of

A= R/I,where I = (v172, 1173, 73, 1223, 73, 17).

> ring r=0,(x(1..3)),ds;

> ideal i=x(1)*x(2),x(1)*x(3), // 1 the
X(2)72,%x(2)*x(3),x(3)"2,x(1)N5; // 3 M

> hilb(std(i)); // 1 tM2

// 1 the // 1 t13

// -5 tA2 // 1 tN4

// 6 th3 // dimension (local) =0
// -2 thM // multiplicity = 7

// -1 tA5 > cmType(i);

// 2 the 3

// -1t

Observe that it is a stretched algebra (see Appendix [B), hence gcl(A) = embd(A) —
7(A)+1=3—3+1 = 1 by Proposition 5.1.2. We check anyway whether gcl(A) = 1
with procedure isTeter:

> isTeter(i);
1

Since gcl(A) = 1, we can compute the Teter variety of A:

ideal a=teterVariety(i);

Dimension of the projective space where the Teter variety lies:
5

Ideal of non-Teter covers:

a(2)M2*a(6)-a(1)*a(4)*a(6)

Polynomial H defining Teter covers:
a(6)*x(1)M5+a(5)*x(1)*x(2)+a(4)*x(2)"2+a(3)*x(1)*x(3)
+a(2)*x(2)*x(3)+a(1)*x(3)"2

Therefore, MGC(A) = Py \V (a%as — aiasag) and each point (a; : as : ag : aq : as :
ag) € MGC(A) is identified with a polynomial

H = a1y + asy2ys + asy1ys + asys + asyiyz + asys.

180



A.3. Computation of minimal covers

Hence each minimal Gorenstein cover of A is of the form G = R/ Anng H, where H
satisfies a3ag — ajasag # 0.

EXAMPLE A.3.2 [Ring of Gorenstein colength 2] Let us compute the minimal Gorenstein

cover variety of A = R/I, where I = (23, 2123, 23).

> LIB "GorensteinCovers.lib”; // 1 th0
> ring r=0,(x,y),ds; // 2 tM
> ideal i=x2,xy3,y5; // 2 tN2
> hilb(std(i)); // 2 th3
// 1 tho // 1 thd
// -1 tM2 // dimension (local) =10
// -1t // multiplicity = 8
// 1 th6 > isTeter(i);
2

Since gcl(R/T) > 1, now let us study the set M GCs:
> def a,c,D,b=MGC2(1);
A first test is whether V., (b)\ 'V, (?) is empty or not.

> quotient(b,D);
_[11=b(4)

Since V. (b)\V,(d) = V. (by), it is possible that V  (b)\V, () # (. Let us do an
extra step to understand where M GC5(A) lies:

> ring s=basering; //To be able to retrieve ideals b,D afterwards
> setring r;

> def D,H=candidate(i);

> D*H;

_[1,11=b(3)*x(2)M6+b(2)*x (1)*x(2)M+a(1)*x(2)M5+a(2)*x (1) *x(2)"3
+h(4)*x(1)734b(1)*x(1)A2*x(2)+a(3)*x(1)"2

The points in M GC>(A) have coordinates (a1 : ag : as : by : ba : by : by) and are
identified with polynomials of the form

H = a1y5 + asy1ys + asyi + biyiys + bayiys + bsyS + bay?
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with some restrictions on the coefficients. Hence M GC5(A) C P¢. Observe that, since
by = 0in MGC5(A), we will be able to reduce by 1 the dimension where M GC5(A) is
embedded.

Next we need to study V. (b)\V, (d):

> setring s; //Primary decomposition of b
> b; > primdecGTZ(b);
b[1]1=b(3)*b(4) [11:

b[2]=b(2)*0b(4) [1]: //primary component
> D; _[1]1=b(4)
D[1]1=b(3)*b(4) [2]: //radical ideal
D[2]=b(2)*b(4) _[1]1=b(4)
D[3]1=b(2)"6*b(3)"2 [2]:

D[4]=b(2)"7*b(3) [1]: //primary component
D[51=b(1)*b(2)"6*b(3) _[11=b(3)

D[6]=b(2)"8 _[2]=b(2)
DL71=b(1)*b(2)N7 [2]: //radical ideal
D[8]=a(1)*b(2)A7-a(2)*b(2)"6*b(3) _[11=b(3)
D[9]1=b(1)"2*b(2)"6 _[2]=b(2)
D[10]=a(2)*b(1)*b(2)"6-a(3)*b(2)N7 > radical(D);
D[11]1=a(1)*b(1)*b(2)"6 _[1]=b(2)

-a(3)*b(2)"6*b(3) _[2]=b(3)*b(4)

Since b = (bs) N (b2, bs), then
Vi (b) = Vi (bs) UV (b2, b3),
hence the set M GC(A) is
Vo (ba) UV (b, b3)\V4. (b2, bba) = Vi (ba)\V 4 (b2, baba) = PE\V (b2).

To sum up, gcl(A) = 2 and its minimal Gorenstein covers arerings G = R/ Anng H,
where

H = a1y5 + asy1y + azyi + biyiys + bay1ys + bsys

with by # 0. H is identified with the point (a1 : as : ag : by : by : b3) in PP\ V4 (bs).
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Observe that if b3 = 0, the Hilbert function associated to G is {1,2,2,2,2,1}. Oth-
erwise, if b3 # 0, then HF ¢ = {1,2,2,2,1,1,1}.

EXAMPLE A.3.3 [Ring of higher colength] Let us compute the minimal Gorenstein cover

variety of I = (23, 239, 7123, 23).

> ring r=0,(x,y),ds; // 3t
> ideal i=x3,x2y,xy2,vy4; // 1 13
> hilb(std(i)); // dimension (local) =10
// 1 the // multiplicity =7
// -3 t13 > isTeter(i);
// 1 tNd 2
// 1 thb > def a,c,D,b=MGC2(i);
> quotient(b,D);
// 1 the _[11=1
// 2 tM

Since V4 (b)\V,(2) = V(1) = 0, then MGCy = (. Therefore, gcl(A) > 2.
To compute both its Gorenstein colength and its minimal Gorenstein covers we need to
another approach. Since A = R/I is a codimension two ideal, we can apply tools from
Section §.2.

A.4 Commands

We end this appendix by providing a list of the main procedures contained in Goren-
steinCovers.lib, together with a brief description of its usage.

INVERSE SYSTEMS

kinvSystNC(ideal I)
Computes inverse system of the ideal I. Returns:
[1] k-basis of the inverse system of I (ideal K).

inverseSystem(ideal I)

Computes inverse system of the ideal I. Returns:
[1] k-basis of the inverse system of I (ideal K).
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invSystMon(ideal I)

Computes inverse system of the ideal I. Returns:

[1] k-basis of the inverse system of I (ideal K).
OR -1 if the ring is not monomial.

integrate(ideal I)

Computes inverse system of the ideal I and its contraction matrices using

the integration method. Returns a list R with:

[1] R[1]=k-basis of the inverse system of I (ideal D),

[2] R[2]=1list of contraction matrices of the inverse system (list LU, matrices U).

INTEGRAL OF A MODULE WITH RESPECT TO AN IDEAL

integral(ideal K,ideal M)
Computes the integral of the module M with respect to the ideal K. Returns:
[1] sub-R-module of S (treated as ideal).

integrationStep(ideal D, list LU)

Computes the integral of the sub-R-module M of S with respect to the maximal
ideal of R. The input is a k-basis of M (treated as ideal b) and the contraction
matrices (list of matrices LU) associated to this k-basis. Returns a list L with:
[1] L[1]=k-basis of the integral (sub-R-module of S, treated as ideal D),

[2] L[2]=1list of contraction matrices of the integral (list LU of matrices U)
associated to k-basis L[1].

[3] L[3]=adapted k-basis of the quotient of the integral by the inverse system.

MINIMAL GORENSTEIN COVERS VARIETIES

isTeter(ideal I)

Checks wheter a ring A=R/I is Teter or not. Returns:
[1] integer

* 0, if gcl(A)=0;

* 1, if gcl(A)=1;

* 2, if gcl(A)>1.

teterVariety(ideal I)
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Given a Teter ring A=R/I, computes its Teter variety. Returns:
[1] an integer h-1
[2] an ideal a such that MGC(A)=PA(h-1)\V_+(a)

MGC2(ideal id)

Given a ring A=R/I with gcl(A)>1, computes MGC_2(A). Returns:
[1] ideal a,

[2] ideal c,

[3] ideal D,

[4] ideal b

such that MGC_2=V_+(b)\V_+(D), pi_1(V_+(c))=V_+(b),
pi_T(V_+(c)\cap V_+(a))=V_+(D).
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APPENDIX B

Stretched and almost stretched
algebras

This appendix intends to provide a summary on structure theorems for stretched and
almost stretched Artin k-algebras. Knowing the exact expressions of such rings has been
particularly useful in Chapter [ to determine the Gorenstein colength of some rings, see
Section b.1.1, or to study the unicity of the Hilbert functions of minimal Gorenstein
covers of A, see Section b.2.

Sally already proved in [42] that the analytic type of a stretched algebra A = R/T
is determined by its Cohen-Macaulay type. Elias and Valla provide in [21] a complete
structure theorem for the generators of the defining ideal I of each analytic type with
HF 4, ={1,n,1,...,1}.

Regarding almost stretched algebras, Elias and I provide in [[15] a complete analytic
classification of all Gorenstein such algebras, extending results from [21] and [22].

B.1 Basic notions

Let us start by defining stretched and almost stretched rings.

DEFINITION B.1.1 Let A = R/I be a local Artin ring with maximal ideal n, embd(A) =
dim R = n and socle degree s > 2. We say that A is stretched if n? is a principal ideal.

Recall that p (n?) = dimy n?/n® = HF 4(2), thus the Hilbert function of a stretched
ring A is completely determined by its embedding dimension . and its socle degree s:
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1, ifi=0;
ifi =1;
1, ifi=2... s

HF A(2) =
0, ifi>s+1.

DEFINITION B.1.2 Let A = R/I be alocal Artin ring with maximal ideal n, embd(A) =
dim R = n and socle degree s > 2. We say that A is almost stretched if n? is minimally
generated by two elements.

Therefore, if A is almost stretched, then HF 4 (2) = 2. In addition, if A is Gorenstein,
then s > 3 and HF 4 (s) = 1. In this case, the Hilbert function is

1, ifi=0;

n, ifi=1;
HFA(1)=4¢ 2, ifi=2,...,t

1, ifi=t+1,...,s

0, ifi>s+1;

for some 2 < t < s.

DEFINITION B.1.3 If an algebra has this Hilbert function we say that it is of type (s, t).
We say that a pair (s,t), 3 < t + 1 < s, is regular if there is not an integer r such
20r+1)=s—t+1.

Since both structure theorems in [21] and [[15] classify rings in terms of their analytic
type, let us now provide a precise definition of what it means.

DEFINITION B.1.4 Consider two k-algebras A; = k[x1,...x,]/I;, fori = 1,2. We say
that ¢ : A; — A, is an analytic k-algebra morphism if

() ¢|x =1d, and
(ii) ¢ is a ring morphism.

Note that giving an analytic morphism of Artin k-algebras is equivalent to giving a
substitution of variables by polynomials.
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DEFINITION B.1.5 Consider a k-algebra morphism ¢ : A; — A,. We say that ¢ is
an analytic k-algebra isomorphism if exists a morphism ¢ : As — A; such that
po =1Ida, and ) o p = Id4,. This will be denoted by A; =, A,.

Observe that an analytic isomorphism is precisely a change of coordinates.

DEFINITION B.1.6 We say that two Artin k-algebras A; and A, have the same analytic
type if there exists an analytic k-algebra isomorphism between A; and As.

Therefore, A; and A, have the same analytic type if and only if they only differ by
a change of coordinates.

B.2 Structure theorem for Artinian local stretched
rings

We reproduce here the structure theorem for generators of the defining ideal I of A
depending on their analytic type:

THEOREM B.2.1 [21, 3.1] Let A = R/I be alocal Artin of socle degree s, embd(A4) =
dim R = n and char(k) = 0. Let 7 := 7(A) be the Cohen-Macaulay type of A.

i 1<7<n.
(ii) If 7 < n, then we can find a basis {1, ..., z,} of m such that I is minimally
generated by the elements

{zizjhi<icj<n, {#7}2<i<r and {&f — wizi}r p1<icn,

where u; € R*.
(iii) If 7 = n, then we can find a basis {z1,...,z,} of m such that I is minimally
generated by the elements

{JUil‘jhgiqgm {Ilﬂfjbgjgn and x‘i+1.
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B.3 Analytic classification of GAAS algebras

In this section we reproduce the key result obtained in [[15]. The aim of the paper is to
provide a complete analytic classification of Gorenstein Artin almost stretched algebras
over a zero characteristic field k, called GAAS for short.

In [22] Elias and Valla give a complete characterization of the analytic types of Goren-
stein Artin almost stretched algebras under the assumption s > 2¢. For a general pair
(t,s), s > 2t, there are finitely many analytic types and for some special pairs (s, t)
there are finitely many analytic types plus finitely many of one-dimensional families of
analytic types.

To remove the restriction on the type of A, the techniques considered are Grauert’s
division theorem (see Theorem [L.5.12), the multivariate Hensel’s lemma and the resolu-
tion process of a zero-dimensional scheme.

DEFINITION B.3.1 [[15, Definition 2.2] For all s > ¢ + 1 we denote by J, ; the ideal
generated by

wiwy, 1 <i<j<n,(i,j) #(1,2); af—a7,3<j<n; x{zs.

Given w € R, for all integer 0 < g <t — 1 we denote by I, ,, the ideal of 12 generated

1 _
xt{Jr s t+1.

by Js; and 23 — xo — w1 I is the ideal generated by J, ; and z3 — 2§

THEOREM B.3.2 [[15, Theorem 4.9] Let A = R/I be a Gorenstein Artin almost stretched
algebra of type (s,t) with3 <t+1 < s.

If (s,t) isregular or s > 3t — 1, then I is isomorphic to one and only one of the following
ideals:

IO,l; Il,l; ceey Imin{t—l,s—t—l},l =Iy.

Assume that (s, t) is non-regular and s < 3¢t—2. Let r be the integer such that s—t+1 =
2(r+1).
If » = 0, then I is isomorphic to one and only one of the following ¢ ideals:

—[0,1; 10771/4; —[0771/4+:p‘1i7d: 17 >t_2
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If 1 <r < (t—2)/2, then the different isomorphism classes of I are

Ioa; <o+ Irevas Irvn1s -5 Iinge—1,s—13,1 = oo, and

(l) Ir,a; Ir,a-&-m‘f: d= -0y, ifa 7é 0, _717 2(;(_:7:2),

() I 23 I o1 ypg,d =1, 0 =17 =2,
(iii) Ir —etn 3 L i d=1,---,r—1.

Y3t +1) T3t tr1)

d>
+zf

If r > (t — 1)/2, then I is isomorphic to one and only one of the following ideals:
10,1; ceey Ir—l,l; {Ir,a}aek*; {L",a—&-acl }aek*; ceey {Ir,a+mifrf2 }aek*;

Ir+1,1; cees Imin{t—l,s—t},l =I.

REMARK B.3.3 The algebraically closed condition on k is used in [[L5, Proposition 2.3]
because to prove that certain ideals have the same analytic type we need to ensure the
existence of square roots.

Notice that the first case for which there is a continuous moduli is (s, t) = (7,4), i.e.
a non-regular case withr = 1 and s < 2¢ — 1:

EXAMPLE B.3.4 [[15, Example 4.10] Let us consider the non-regular case (s, t) = (7,4),
i.e. r = 1and s < 2¢t—1. Notice that this case is not covered by [22] because s < 2t —1.
The analytic types are are defined by the ideals

-1

Iogs I Isn; Tigya # 05 I gqe,,a # 0, 5

Notice that the continuous moduli are parametrized by k — {0} and k — {0, —1/6}.

EXAMPLE B.3.5 Let us consider the regular case (s,t) = (5, 3). This case is not covered
by [22] because s < 2¢ — 1. The analytic types are are defined by two ideals: Iy 1, 1 1.

If n = 2, which corresponds to the Hilbert function {1,2,2,2, 1,1}, then there are
the following two possible ideals:

Ioq = (2%y,y* — 2y — 2°), [ = (23y,y° — 2%y — 23).
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Varieties of minimal Gorenstein
covers

In this appendix we list the varieties of minimal Gorenstein covers of all analytic types
of k-algebras of low Gorenstein colength that appear in Poonen’s classification, see [4Q].
This means that we provide an explicit description for any M GC(A) for gcl(A) = 1,2
and /(A) < 6. We assume char(k) = 0 for the sake of simplicity.

For every representative A = R/I of an analytic type, we give the general form
of a polynomial H in £4 4, with ¢ = 1,2, and the expression of M GC(A). By Theo-
rem B.3.2, G = R/ Anng H is a minimal Gorenstein cover of A if and only if [H] in
MGC(A), by taking the coefficients of H as coordinates in M GC(A).

All the computations are done using our implementation of Algorithm P and Algo-
rithm [ in Singular, using library GorensteinCovers.lib, see Appendix [Al.

C.1 Teter varieties

Let us describe the variety of minimal Gorenstein cover for any Teter ring A with
L(A) <6.

Case 2 of £(A) = 3: H = azy} + asy1ye + a1y3 € Laa,

(a1 : as :az) € MGO(A) = P2\V, (a3 — ayaz).

Case 3 of E(A) =4: H= CLgyil3 + asy1y2 + alyg S LA,I:

(a1 tas ag) S MGC(A) = ]P’i\VJr(alag).
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Case 4 of ((A) = 4: H = agy} + asy1y2 + aay3 + azy1ys + asy2ys + a1y3 € Lan,

(ay:---:a6) € MGC(A) = PI\V (a3a4 — 2azazas + a1a2 + a3ag — ajasa).

Case 3 of {(A) =5: H = a1y3 + azy? + asy1y2 € La 1,

(a1 :ay:a3) € MGC(A) = PE\V, (aia3).

Case 4 of £(A) = 5: H = azy} + a1y3 + asy1y» € Lan,

(a1 tag a3) c MGC(A) = ]P’i\V+(a1a3).

Case 50f {(A) =5: H = a1y1y5 + azys + asy? € La 1,

(a1 : as :az) € MGC(A) = PE\V (a1).

Case 8 of £(A) =5: H = agy} + asy1ye + aay3 + azy1ys + asyays + a1y3 € La 1,

(a1:ag:as:aq4:a5:a6) € MGC(A) = Pi\VJr(a%aﬁ — a1a406).

Case 9 of £(A) = 5: H = a10y? +agy1y2 +asys + ary1ys + agyays + asys + asy1ya +
asya2ys + a2ysys + a1yi € La,

(a1 R al()) S MGO(A) = Pi\V+(a),

where the ideal a is generated by

a(4)M2*a(6)"2-2*a(3)*a(4)*a(6)*a(7)+a(3)"2*a(7)"2-a(4)"2*a(5)*a(8)
+2*a(2)*a(4)*a(7)*a(8)-a(1)*a(7)"2*a(8)+2*a(3)*a(4)*a(5)*a(9)-2*a(2)*a(4)*a(6)*a(9)
-2*a(2)*a(3)*a(7)*a(9)+2*a(1)*a(6)*a(7)*a(9)+a(2)"2*a(9)"2-a(1)*a(5)*a(9)"2
-a(3)"M2*a(5)*a(10)+2*a(2)*a(3)*a(6)*a(10)-a(1)*a(6)"2*a(10)
-a(2)"2*a(8)*a(10)+a(1)*a(5)*a(8)*a(10)

Case 3 of £(A) = 6: H = azy} + asy1ya + a1y3 € L a1,

(a1 : as :az) € MGC(A) = PE\V, (aya3).
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Case 6 of £(A) = 6: H = a1y5 + azy? + asyr1y2 € La 1,

(a1 :ay:a3) € MGC(A) = PE\V, (aia3).

Case 8 of {(A) = 6: H = a1y3 — a1y3y> + asy1y3 + asys € La 1,

(a1 sag 113) € MGC(A) = Pi\V+(a1)

Case 12 of £(A) = 6: H = agy} + asy1y2 + a4y3 + azyr1ys + asy2ys + a1y3 € La 1,

(a1:az:a3:aq4:as:ag) € MGO(A) = Pp\V, (a3as — arasag).

Case 19 of £(A) = 6: H = agy? + asy1y> + a4y3 + asy1ys + asys + a19y2y3 € La 1,

(a1 :ag:az:ayq:as:ag) € MGC(A) = PR\V, (ajae).

Case 20 of £(A) = 6: H = asy3 + a1y3 + agy; + asy1y2 + asy1ys + asyays € La 1,

(a1:a3:a3:aq4:as:ag) € MGO(A) = Pp\V, (araqa6).

See Example B.5.1.

Case 24 of £(A) = 6: H = a1y; + asysys + asyoYs + aay1ys + asys + acyeys +
ary1ys + asys + agyry2 + aroy; € La1,

(a1:---:a1) € MGCO(A) = PR\V (a),

where a = (a§a5a10 — 2(12&306&10 + alagalo + a%agalo — a1a5a8a10).

Case 25 of £(A) = 6: H = a1y2+a2yays +asysys+asy2ys +asy1ys+acys+arysys+
agy2ys + a9Y1Ys+ a10y§ + a11Y2Ys + a12Y1Y3 + a13Y3 + a14y1Y2 + a15yi € Lanq,

(0,1 Deee a15) S MGC(A) = ]Pll(4\V+(Cl),

where the ideal a is generated by:

a(5)"2*a(8)"2*a(10)-2*a(4)*a(5)*a(8)*a(9)*a(10)+a(4)"2*a(9)"2*a(10)
-2*a(5)"2*a(7)*a(8)*a(11)+2*a(4)*a(5)*a(7)*a(9)*a(11)+2*a(3)*a(5)*a(8)*a(9)*a(11)
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-2*a(3)*a(4)*a(9)"2*a(11+a(5)"2*a(6)*a(11)72-2*a(2)*a(5)*a(9)*a(11)"2
+a(1)*a(9)"2*a(11)"2+2*a(4)*a(5)*a(7)*a(8)*a(12)-2*a(3)*a(5)*a(8)"2*a(12)
-2*a(4)"2*a(7)*a(9)*a(12)+2*a(3)*a(4)*a(8)*a(9)*a(12)-2*a(4)*a(5)*a(6)*a(11)*a(12)
+2*a(2)*a(5)*a(8)*a(11)*a(12)+2*a(2)*a(4)*a(9)*a(11)*a(12)-2*a(1)*a(8)*a(9)*a(11)*a(12
+a(4)M2*a(6)*a(12)72-2*a(2)*a(4)*a(8)*a(12)"2+a(1)*a(8)"2*a(12)"2+a(5)"2*a(7)"2*a(13)
-2*a(3)*a(5)*a(7)*a(9)*a(13)+a(3)"2*a(9)"2*a(13)-a(5)"2*a(6)*a(10)*a(13)
+2*a(2)*a(5)*a(9)*a(10)*a(13)-a(1)*a(9)"2*a(10)*a(13)+2*a(3)*a(5)*a(6)*a(12)*a(13)
-2*a(2)*a(5)*a(7)*a(12)*a(13)-2*a(2)*a(3)*a(9)*a(12)*a(13)+2*a(1)*a(7)*a(9)*a(12)*a(13)
+a(2)72*a(12)A2*a(13)-a(1)*a(6)*a(12)A2*a(13)-2*a(4)*a(5)*a(7)"2*a(14)
+2*a(3)*a(5)*a(7)*a(8)*a(14)+2*a(3)*a(4)*a(7)*a(9)*a(14)-2*a(3)"2*a(8)*a(9)*a(14)
+2*a(4)*a(5)*a(6)*a(10)*a(14)-2*a(2)*a(5)*a(8)*a(10)*a(14)-2*a(2)*a(4)*a(9)*a(10)*a(14)
+2*a(1)*a(8)*a(9)*a(10)*a(14)-2*a(3)*a(5)*a(6)*a(11)*a(14)+2*a(2)*a(5)*a(7)*a(11)*a(14)
+2*a(2)*a(3)*a(9)*a(11)*a(14)-2*a(1)*a(7)*a(9)*a(11)*a(14)-2*a(3)*a(4)*a(6)*a(12)*a(14)
+2*a(2)*a(4)*a(7)*a(12)*a(14)+2*a(2)*a(3)*a(8)*a(12)*a(14)-2*a(1)*a(7)*a(8)*a(12)*a(14)
-2*a(2)"2*a(11)*a(12)*a(14)+2*a(1)*a(6)*a(11)*a(12)*a(14)+a(3)"2*a(6)*a(14)"2
-2*a(2)*a(3)*a(7)*a(14)"2+a(1)*a(7)"2*a(14)"2+a(2)"2*a(10)*a(14)"2-a(1)*a(6)*a(10)*a(14)"2
+a(4)"2*a(7)M2*a(15)-2*a(3)*a(4)*a(7)*a(8)*a(15)+a(3)"2*a(8)"2*a(15)-a(4)"2*a(6)*a(10)*a(15)
+2*a(2)*a(4)*a(8)*a(10)*a(15)-a(1)*a(8)"2*a(10)*a(15)+2*a(3)*a(4)*a(6)*a(11)*a(15)
-2*a(2)*a(4)*a(7)*a(11)*a(15)-2*a(2)*a(3)*a(8)*a(11)*a(15)+2*a(1)*a(7)*a(8)*a(11)*a(15)
+a(2)72*a(11)72*a(15)-a(1)*a(6)*a(11)A2*a(15)-a(3)"2*a(6)*a(13)*a(15)
+2*a(2)*a(3)*a(7)*a(13)*a(15)-a(1)*a(7)A2*a(13)*a(15)-a(2)"2*a(10)*a(13)*a(15)
+a(1)*a(6)*a(10)*a(13)*a(15)

C.2 Gorenstein colength 2

In this section, we study the variety of minimal Gorenstein cover for any ring A of
Gorenstein colength 2 with /(A) < 6.

Recall that minimal Gorenstein covers of Teter rings have a unique Hilbert func-
tion, see Theorem P.0.4, but in Gorenstein colength 2 we cannot deduce unicity from
Theorem R.2.5. As a side effect of the computation of £ 4,2 and MGC(A), we obtain
information on the possible Hilbert functions of any minimal Gorenstein cover G =
R/ Anng H of A. The socle degree of any minimal Gorenstein cover G cannot be
higher than the degree of any polynomial in £ 4 5. In particular, for any H € MGC(A),
socdeg R/ Anng H = deg H.

Along with M GC(A), we also provide all possible Hilbert functions of any minimal
Gorenstein cover. Note that in some cases, M GC(A) has a too long description to be
included here, hence we only give the generic form of a polynomial H in L 4 ».

Case 7 of £(A) = 5: H = a1y? + aoy1ys + azy3 + asy1yz + asy? + bsyays + bsys +

196



C.2. Gorenstein colength 2

b6y2y§ + bgyg, (a1 Q2 a3 :0a4:0as: bg : b5 : bG : bg) S MGC(A),
MGC(A) = V+(bgb6 — b5b9)\ (V+(a5) U V+(0)) - PS,

where 0 = (b%bg — bg, b3b5 — bg, b% — b6b9).
If [H] € MGC(A), then b3, bs, b, by do not vanish simultaneously, hence socdeg G =
3. Unique Hilbert function for any minimal Gorenstein cover G: HF¢ = {1,3,2,1}.

See Example B.5.2.
Case 7 of £(A) = 6: H = bsy + boy1ys + a1y3 + b1y3ys + aoy1y3 + asys,

((11 tag:az by by b3) S MGA(A) = Pi\V+(b% — b1b3).

If b3 # 0, then deg H = 5. Otherwise, if b3 = 0, then by # 0 and deg H = 4. There-
fore, minimal Gorenstein covers G can have one of the following two Hilbert functions:
HFg = {1,2,2,2,1} and HF ¢ = {1,2,2,1,1}. See Example R.1.9.

Case 11 of /(A) = 6: H = a1y3 +asyays +azy1ys +aays +asy1yz +bsyiy3 +bsy3 +
bby%yg — bl()yil, (a1 az a3 :0aq :0as: b3 : b5 : bG : blO) S MGC(A),

MGC(A) =V, (b3 — bsbg + bsbio)\ (Vi (a4) UV, (big) UV, (b3, bs)) C P5.
If [H] € MGC(A), then byy # 0, hence socdeg R/ Anng H = 4. Unique Hilbert func-
tion for any minimal Gorenstein cover G: HF ¢ = {1,3,2,1,1}. See Example B.5.3.

Case 13 of £(A) = 6: H = asy? +boyiy2+bsy1y3 +bry1y3 —bsys +bsyiys +asy1y2+
asyi1ys + asyays —+ alyg, (a1 tQ2 a3 a4 :as b5 N b7 : bg N bg) S MGC(A),

MGC(A) = Vi (bsbr + b2 + bsbo)\V1(d) C P,

where 0 = (bsbs, b2bs + 3b2b3bg + 2b3b3, bS — bS + Tb2b2b3 + 6b3b3).
If [H] € MGC(A), then bs, b7, bs, bg do not vanish simultaneously, hence socdeg G =
3. Unique Hilbert function for any minimal Gorenstein cover G: HF ¢ = {1,3,3,1}.

Case 14 of £(A) = 6: H = a1y3 + a2yay3 + azy1ys + aay1y2 + br1y1y2ys — ba(y3ys +
Y3) +b3y2y3 +bay3 + bs(Y3ys — v1y3 — yiys +3) + 0o (y3ys + y2y3 +y1y3 +y3) +
br(y1y3 — y3) — bsys + bo(ys — yiya) — bioys € Laa. Since deg H < 3 for any
H € L4, then socdeg G < 3 and there is a unique Hilbert function for any minimal
cover: HF = {1,3,3,1}.
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Case 15 of £(A) = 6: H = asy} + bsy3 + bay3ys + bey2y3 + bay3 + asyriyz + azys +
asYy1Y3 +a1y§, (a1 tQg:asg:ag:as:ibyibybg: bg) S MGC(A),

MGC(A) = V+(b2b6 — b4b8)\ (V+(a5) U V+(0)) C Pg,

where 0 = (—bg + bibg, b2b6 - b4b87 b2b4 - bg, b% — b@bg).
If [H] € MGC(A), then a5 # 0 and hence socdeg G = 3. Unique Hilbert function for
any minimal Gorenstein cover G: HF¢ = {1, 3,3, 1}.

Case 16 of /(A) = 6: H = a1y3 + a2y2ys + asy1ys + asy1y2 + b1y1yays + b2 (y13 +
Y193) + bayay3 + bay3 — bs(yd + yiys) + be(Y3ys + yd) + br(yrys — vi) — bsys +
bo(y3 — y?y2) — bioy? € Lao. Since deg H < 3forany H € L4 2, then socdeg G < 3
and there is a unique Hilbert function for any minimal cover: HF = {1, 3,3, 1}.

Case 17 of /(A) = 6: H = a1y3 + azyay3 + asyiyz + asyi + b1 (yiys + y1y2ys —
Y195) — bayd + bayays + bay3 + bs (Y3 + v193 + y1y3) + be(y3ys + ¥3) + +bryiye +
bsy1y3 — boys + b1oy3 € L2 Since deg H < 3 forany H € L 4, then socdeg G < 3
and there is a unique Hilbert function for any minimal cover: HF = {1, 3,3, 1}.

Case 18 of ((A) = 6: H = biyys+bay1y2y3+b3ysys+bays+a1y3 +asys+asyiyz+

2
a4yl)

(a1:a2:a3:a4:b1:by:b3:by) € MGC(A) = P7\V+(b§ — byb3).

If [H] € MGC(A), then by, by, bs do not vanish simultaneously, hence socdeg G = 3.
Unique Hilbert function for any minimal Gorenstein cover G: HF ¢ = {1,3,3,1}. See

Example B.5.4.

Case 23 of £(A) = 6: H = bigys + bey3ya + broysyi + boyi + agy? + agyiys +arys +
asy1ys + asyoys + asy3 + asyiys + asyoys + aryi, (a1 -+ ag : bg : by : big :
blG) c MGC(A),

MGO(A) = V+(b6b10 — bgblﬁ)\ (V+(d1) UV+(d2)) C Pu,

where d1 = (a7a9 — ag) and dg = (bgblﬁ — bi’o,bﬁbg — b%o,b% — bloblﬁ). If [H} is
in MGC(A), then bg, by, b19, b1s do not vanish simultaneously, hence socdeg G = 3.
Unique Hilbert function for any minimal Gorenstein cover G: HF¢ = {1,4, 3,1}. See

Example B.5.5.
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