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Introducࢢon

The purpose of this thesis is to determine how far is an Artin local ring from being
Gorenstein and to study those Artin Gorenstein rings that reach this minimal distance.

Huneke claims in [30] that one of the most read articles in commutative algebra is the
paper by Hyman Bass named On the ubiquity of Gorenstein rings, see [3]. As the title
already points out, Gorenstein rings appear in a natural way in many different contexts.
Around the decade of 1960, the work of Northcott and Rees on irreducible systems of
parameters and Cohen-Macaulay rings, Gorenstein and Rosenlicht on plane curves and
complete intersections, Grothendieck and Serre on duality and Bass on rings of finite
injective dimension...all of it boiled down to the Gorenstein property.

Living up to their ubiquity expectations, Gorenstein rings appear today far beyond
commutative algebra and algebraic geometry. According to Lam in [33], they are widely
used in non-commutative algebra, arithmetic geometry, invariant theory, combinatorics
and number theory. In fact, a key step of AndrewWiles’s proof of Fermat’s Last Theorem
involves understanding when certain Gorenstein rings are complete intersections, see
[46, p.451].

Quoting Huneke in [30, p.76]: ”Regular rings are the most basic rings in the study of
commutative rings. However, Gorenstein rings are the next most basic and [...] one can
approximate arbitrary local commutative rings quite closely by Gorenstein rings.”

In this thesis we address the problem of approximating local rings by Gorenstein
rings in the zero-dimensional case. The study of Artin Gorenstein rings is particularly
relevant since a local Gorenstein ring of arbitrary dimension can always be turned into
zero-dimensional Gorenstein when considering it modulo an ideal generated by a system
of parameters.
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Let A be an Artin local k-algebra, where k is an arbitrary field. Hence we may
assume that A is a quotient of the ring of formal power series R = k[[x1, . . . xn]], for
some integer n ≤ 1, by an ideal I in R. We denote by m = (x1, . . . , xn) the maximal
ideal ofR and by n = m/I the maximal ideal of A = R/I . The length ℓ(A) of A stands
for the dimension of A as k-vector space.

In [1] Ananthnarayan introduces the notion of Gorenstein colength of an Artin local
ringA, denoted by gcl(A), as the minimum ℓ(G)− ℓ(A) whereG is an Artin Gorenstein
ring such that A ≃ G/H for some ideal H ⊂ G, see Definition 1.3.3. We call any such
ringG a Gorenstein cover of A. If, in addition,G reaches the gcl(A), then we say that it
is a minimal Gorenstein cover. Notice that A is Gorenstein if and only if gcl(A) = 0.

The next class of rings which are closest to be Gorenstein are Teter rings. In [44],
Teter studied the rings that appear when considering an Artin Gorenstein ringGmodulo
its socle ideal, denoted by soc(G). Later on, Huneke and Vraciu improved Teter’s carac-
terization in [31] and establish that non-Gorenstein rings A ≃ G/ soc(G) are precisely
those that satisfy gcl(A) = 1.

Recall that the lengths of a ring A and its canonical module ωA always coincide.
Moreover, if A is Gorenstein, then A ≃ ωA. In other words, A is Gorenstein if and only
if there is an epimorphism φ : ωA −→ A. In [31] Huneke and Vraciu proved that A is
Teter if and only if there is an epimorphism φ : ωA −→ n. Ananthnarayan extends their
result to any ring of low Gorenstein colength in [1, Theorem 5.5]:

THEOREM (Ananthnarayan) Let A = R/I be an Artin ring and let m be the maximal
ideal of R. Suppose that I ⊆ m6 and char(k) ̸= 2. Then the following are equivalent:

(i) gcl(A) ≤ 2.
(ii) There exists an ideal q ⊆ A such that q ≃ HomA (q, ωA) and ℓ(A/q) ≤ 2.
(iii) There exists an epimorphism f : ωA −→ q, where q satisfies the properties in (ii).

Therefore, the approach of Teter, Huneke-Vraciu and Ananthnarayan is based on the
existence of theseA-module epimorphismsφ : ωA −→ q, where q is an ideal ofAwhich
is self-dual with respect to the contravariant functor defined by the canonical module and
satisfies ℓ(A/q) = gcl(A).

An alternative approach is given by Elias and Silva in [20]. Since the canonical
module ωA of an Artin ring A = R/I can be identified with Macaulay’s inverse system
I⊥ of I , it is natural to apply all the tools available for this device. Considering the R-
module structure of S = k[y1, . . . , yn] given by contraction, see Section 1.4.1, in [20,
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Theorem 3.4] the authors improve the results of Huneke-Vraciu:

THEOREM (Elias-Silva) Let A = R/I be an Artin ring with n ≥ 2, maximal ideal n and
socle degree s ≥ 1. Then the following conditions are equivalent:

(i) gcl(A) = 1.
(ii) There exists a degree s+1 polynomialF ∈ S such that I⊥ = ⟨x1◦F, . . . , xn◦F ⟩.
(iii) There exists an epimorphism of A-modules I⊥ � n.
(iv) A is a Teter ring.

In particular, if A is a Teter ring, then the Cohen–Macaulay type of A is n and G =
R/AnnR F is a minimal Gorenstein cover of A.

One of the main results we present in this thesis is the characterization of rings of
low colength A = R/I in terms of the relationship between I⊥ and any inverse system
J⊥ associated to a minimal Gorenstein cover G = R/J of A. This relation is measured
by the colon idealK = (I⊥ :R J⊥), see Definition 2.1.5.

THEOREM (Theorem 2.1.7) Let A = R/I be an Artin ring such that gcl(A) ≤ 2. If
G = R/J is a minimal Gorenstein cover of A andK = (I⊥ :R J⊥), then

(i) embd(G) = embd(A),
(ii) I ⊂ K and I2 ⊂ J ⊂ I .

Moreover, after a linear isomorphism of R we may assume:

K =


R, if gcl(A) = 0;

m, if gcl(A) = 1;

(x1, . . . , xn−1, x
2
n), if gcl(A) = 2.

In addition, we provide an analogous characterization to Elias-Silva for rings of
Gorenstein colength 2, which in turn, improves and extends Ananthnarayan’s result:

THEOREM (Theorem 2.2.5) Let A = R/I be an Artin ring with maximal ideal n and
socle degree s ≥ 1. We assume that A is neither Gorenstein nor Teter, I ⊂ m5 and
char(k) ̸= 2. Then the following conditions are equivalent:

(i) gcl(A) = 2,
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(ii) after a linear isomorphism of R there exists a polynomial F ∈ S of degree s + 1
or s+ 2 such that I⊥ = ⟨x1 ◦ F, . . . , xn−1 ◦ F, x2

n ◦ F ⟩,
(iii) there exists an epimorphism of A-modules f : I⊥ −→ q, where q is a self-dual

ideal of A such that ℓ(A/q) = 2.

In particular, if any of the previous equivalent conditions hold, G = R/AnnR F is a
minimal Gorenstein cover of A.

For higher colength, that is, gcl(A) ≥ 3, the colon ideal K = (I⊥ :R J⊥) has
no longer unique analytic type as in Theorem 2.1.7. It may even have infinitely many
analytic types when gcl(A) ≥ 7, see [40]. Therefore, the previous results cannot be
extended to higher Gorenstein colength using analogous arguments, see Section 2.3.

After computing the Gorenstein colength of A and finding a minimal cover G of
A, the natural question that arises is whether we can determine all minimal Gorenstein
covers ofA. In [20], Elias and Silva start addressing this problem for Teter rings. Observe
that if G = R/AnnR F is a Teter cover of A = R/I , then ⟨F ⟩/I⊥ is a 1-dimensional
sub-k-vector space of S≤s+1/I

⊥, where S≤s+1 is the R-module of all polynomials of
degree equal or less than s + 1 with the contraction structure. Therefore, G defines a
point [F ] in the projective space over S≤s+1/I

⊥.
With this philosophy of identifying Teter covers with certain points of a suitable

projective space PN
k , in [20, Proposition 4.2] the authors introduce the notion of Teter

variety TC(A) of A.

THEOREM (Elias-Silva) The Teter variety TC(A) of a Teter ringA is a non-empty Zariski
open subset of a linear sub-variety of PN

k . In particular, TC(A) is an irreducible and
non-singular variety of PN

k .

In order to extend the idea of Teter variety to rings A with arbitrary colength t, we
first need to determine where do polynomials F defining minimal Gorenstein covers
G = R/AnnR F live. If A has socle degree s, then the R-module S≤s+t would be the
natural choice. Nevertheless, it can be refined to the smaller sub-R-module

∫
mt I

⊥ of
S≤s+t formed by polynomials F in S such that mt ◦ F ⊆ I⊥.

We introduce this notion of integral of an R-moduleM with respect to an ideal K,
denoted by

∫
K
M , that can be regarded as an inverse operation to contraction, see Def-

inition 3.1.1. We provide a recursive procedure, Algorithm 1 (see p.74), to effectively
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compute the resulting module based on the integration method for inverse systems pro-
posed by Mourrain in [39].

Our main contribution is the generalization of Teter varieties to varieties of minimal
Gorenstein coversMGC(A) via the following existence theorem:

THEOREM (Theorem 3.3.2) Let A = R/I be an Artin ring of Gorenstein colength t.
There exists a quasi-projective sub-varietyMGC(A) of Pk

(∫
mt I

⊥/I⊥) whose set of
closed points are the points [F ], F ∈

∫
mt I

⊥, such that G = R/AnnR F is a minimal
Gorenstein cover of A.

We attack the problem of finding an explicit description ofMGC(A) from a com-
putational point of view for rings of low Gorenstein colength.

THEOREM (Theorem 3.4.6) Let A = R/I be a Teter ring with n ≥ 2, let h be the dimen-
sion of

∫
m
I⊥/I⊥ as k-vector space and let a be the homogeneous ideal in a polynomial

ring with h variables defined in Section 3.4.2. Then

MGC(A) = Ph−1
k \V+(a).

Moreover, for any non-Gorenstein Artin ring A, gcl(A) = 1 if and only if a ̸= 0.

THEOREM (Corollary 3.4.20) Let A = R/I be a ring of Gorenstein colength 2 and let h
be the dimension of

∫
m2 I

⊥/I⊥ as k-vector space. Let b be a homogeneous ideal in the
ring of polynomials with h variables and let a and c be bihomogeneous ideals in the ring
of polynomials with h+n variables as defined in Section 3.4.3. Let π1 be the projection
map from Ph−1

k × Pn−1
k to Ph−1

k . Then

MGC(A) = V+(b)\π1 (V+(c) ∩ V+(a)) .

In Algorithm 2 (see p.75) and Algorithm 3 (p.87) we provide methods to explic-
itly calculate the varieties of minimal Gorenstein covers for given rings of Gorenstein
colength 1 and 2, respectively.

Next we focus on the study of Gorenstein covers in codimension 2. The approach in
this setting is no longer from the inverse system perspective, but instead we use specific
tools that only apply to n = 2 such as the Hilbert-Burch theorem. Hence we come across
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with the problem of determining canonical Hilbert-Burch matrices for any m-primary
ideal I of R = k[[x, y]].

In [8], Conca and Valla parametrize ideals ink[x, y]with a given leading term idealE
with respect to the lexicographical order. In particular, they parametrize the affine space
of all m-primary ideals K in k[x, y] such that Ltlex(K) = E by defining a canonical
Hilbert-Burch matrix of K. A similar result is provided by Constantinescu in [9] for
the reverse-degree lexicographical order. See Section 4.1.1 for more details on these
parametrizations.

Our main contribution is the extension of Conca-Valla parametrization of ideals in
k[x, y] to the local setting by using a local degree ordering τ induced by the lexicograph-
ical order, see Section 1.5. We define a canonical Hilbert-Burch matrix for any ideal
with lex-segment leading term ideal L. In other words, we parametrize any m-primary
idealK ⊂ R with a given Hilbert function h up to a generic change of coordinates, since
Gin(K) = Lex(h).

THEOREM (Theorem 4.1.24) Given a lex-segment ideal L in R with canonical Hilbert-
Burch matrix H , see Definition 4.1.4, the set V (L) = {K ⊂ R : Ltτ (K) = L} is an
affine space parametrized by the bijection

Ψ : M(L) −→ V (L)

N 7−→ It(H +N),

whereM(L) is the set of matrices with entries ni,j in k[y] from Definition 4.1.21. Any
ideal K in V (L) can be identified with a point pK in AN

k by taking coordinates the
coefficients ck

i,j of polynomials ni,j .

In particular, this result allows to take N + H , with N = Ψ−1(K), as definition
of canonical Hilbert-Burch matrix of any ideal K in V (L). Thanks to the connection
between the minimal number of generators of an ideal with the rank of a Hilbert-Burch
matrix, see Corollary 4.2.3, we can explicitly describe the Gorenstein ideals J in V (L).

COROLLARY (Corollary 4.2.9) Let L be a lex-segment ideal. The set VG(L) of Gorenstein
ideals J such that Ltτ (J) = L is a quasi-affine variety. In particular,

VG(L) ≃ AN
k \V(c0

3,1 · · · c0
t+1,t).

In order to use this approach to find Gorenstein covers G = R/J of a given ring
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A = R/I , we require the inclusion J ⊂ I , which happens to be a closed condition on
variables ck

i,j :

COROLLARY (Corollary 4.2.11) Let A = R/I be an Artin ring and let L be a lex-segment
ideal. The set VGC(A)(L) of ideals J in V (L) such that G = R/J is a Gorenstein cover
of A is a quasi-affine variety. In particular,

VGC(A)(L) ≃ V(p1, . . . , pr)\V(c0
3,1c

0
4,2 · · · c0

t+1,t−1),

where ck
i,j are the coefficients of the polynomials ni,j in k[y] of matrices N inM(L)

and pl are polynomials in variables ck
i,j that occur as coefficients of the reduction of J

modulo I .

However, inclusion is not preserved by a generic change of coordinates, hence it is
not enough to parametrize ideals with lex-segment leading term ideal when we want to
find Gorenstein covers. For a general m-primary monomial ideal E of R, we give the
following result on the set V (E):

PROPOSITION (Proposiࢢon 4.1.9) LetE be amonomialm-primary ideal inRwith canon-
ical Hilbert-Burch matrixH , let V (E) be the set of idealsK ofR such that Ltτ (K) = E

and let N (E) be the set of matrices from Definition 4.1.8. Then there is a surjection

φ : N (E) −→ V (E)

N 7−→ It(H +N).

Since Proposition 4.1.9 does not provide a notion of canonical Hilbert-Burch matrix
for ideals K with monomial leading term ideal Ltτ (K) = E, we cannot replicate the
parametrization in Corollary 4.2.11 for VGC(A)(E). Moreover, imposing the Gorenstein
property onK requires more effort than in Corollary 4.2.9.

Nevertheless, in Algorithm 4 (see p.125), we propose a routine to compute the affine
variety V(a) in AN

k whose points correspond to non-Gorenstein ideals J in V (E), even
though different points might correspond to the same ideal. Since the treatment of the
inclusion of ideals J ⊂ I does not vary, we can ensure that the quasi-affine variety
V(p1, . . . , pr)\V(a), where p1, . . . , pr are built as in Corollary 4.2.9, consists of all
points pJ that correspond to Gorenstein covers G = R/J of A = R/I . Again, this
is not a parametrization but it allows us to sweep V (E) for Gorenstein covers.
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All the computations in this thesis have been done with the commutative algebra
software Singular, [11]. We use the Singular library InverseSyst.lib for inverse system
related computations, see [13] for a manual on how to use the library. All the algorithms
appearing in this work have been implemented in a new library GorensteinCovers.lib
created for the purpose of computing Gorenstein covers, see Appendix A.

Let us provide an outline of the contents and structure of this thesis.

In Chapter 1 we provide all the necessary background, adapted to the scope of this
work, about Artin and Gorenstein rings, Hilbert functions, Macaulay’s inverse systems
and how to extend results from the graded setting to the local case.

Chapter 2 is devoted to the study of low Gorenstein colength rings and establishes a
connection among Macaulay inverse systems, minimal Gorenstein covers and self-dual
ideals.

The first main result of this chapter provides a characterization of rings of lowGoren-
stein colength in terms of its inverse systems:

THEOREM (See Theorem 2.1.7.) Let A be an Artin ring such that gcl(A) ≤ 2. If G is a
minimal Gorenstein cover of A, then

(i) embd(G) = embd(A),
(ii) if A = R/I with dim(R) = embd(G) = embd(A) and F is a generator of J⊥,

G = R/J , then I ⊂ KF and
I2 ⊂ J ⊂ I.

Moreover, after a linear isomorphism of R we may assume:

KF =


R, if gcl(A) = 0;

m, if gcl(A) = 1;

(x1, . . . , xn−1, x
2
n), if gcl(A) = 2.

The second essential result is Theorem 2.2.5, which extends and improves the char-
acterization of Artin rings A = R/I of Gorenstein colength two in [1, Theorem 5.5]:

THEOREM (See Theorem 2.2.5.) Let A = R/I be an Artin ring with maximal ideal n
and socle degree s ≥ 1. We assume that A is neither Gorenstein nor Teter, I ⊂ m5 and
char(k) ̸= 2. Then the following conditions are equivalent:
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(i) gcl(A) = 2,
(ii) after a linear isomorphism of R there exists a polynomial F ∈ S of degree s + 1

or s+ 2 such that I⊥ = ⟨x1 ◦ F, . . . , xn−1 ◦ F, x2
n ◦ F ⟩,

(iii) there exists an epimorphism of A-modules f : I⊥ −→ q, where q is a self-dual
ideal of A such that ℓ(A/q) = 2.

As a closure of the chapter, we address the complexity of the generalization of these
results to rings of higher colength.

In Chapter 3 we study minimal Gorenstein covers of an Artin ring A. We start with
the introduction of the notion of integral of a module with respect to an ideal and the
extension of Mourrain’s integration method to compute it.

The main achievement of this chapter is Theorem 3.3.2, that proves the existence
of a quasi-projective sub-variety MGCn(A) of Pk

(∫
mt I

⊥/I⊥) whose set of closed
points are associated to polynomials F in S such that the ring G = R/AnnR F is a
minimal Gorenstein cover of A. This result allows us to extend the notion of Teter va-
riety by Elias-Silva to a minimal Gorenstein cover variety MGC(A) for rings A with
arbitrary Gorenstein colength and to give a precise description of theMGC(A) variety
for gcl(A) ≤ 2 as follows:

THEOREM (See Theorem 3.4.6.) Let A = R/I be a Teter ring with n ≥ 2, let h be the
dimension of

∫
m
I⊥/I⊥ as k-vector space and let a be the homogeneous ideal defined

in Section 3.4.2 in a polynomial ring with h variables. Then

MGC(A) = Ph−1
k \V+(a).

Moreover, for any non-Gorenstein Artin ring A, gcl(A) = 1 if and only if a ̸= 0.

THEOREM (See Corollary 3.4.20.) Let A = R/I be a ring of Gorenstein colength 2 and
let h be the dimension of

∫
m2 I

⊥/I⊥ as k-vector space. Let b be a homogeneous ideal
in the ring of polynomials with h variables and let a and c be bihomogeneous ideals in
the ring of polynomials with h + n variables as defined in Section 3.4.3. Let π1 be the
projection map from Ph−1

k × Pn−1
k to Ph−1

k . Then

MGC(A) = V+(b)\π1 (V+(c) ∩ V+(a)) .
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We end the chapter by providing algorithms to explicitly computeMGC(A) for low
Gorenstein colength and several computation examples.

Chapter 4 deals with rings of codimension 2. The first part of the chapter is devoted to
the extension of Conca-Valla parametrization of ideals in k[x, y] to the local setting. The
main results presented here are the complete parametrization of all the ideals with lex-
segment leading term ideal and the partial analogous for general m-primary monomial
ideals.

THEOREM (See Theorem 4.1.24.) Given a lex-segment ideal L in R with canonical
Hilbert-Burch matrix H , the set V (L) = {K ⊂ R : Ltτ (K) = L} is an affine space
parametrized by the bijection

Ψ : M(L) −→ V (L)

N 7−→ It(H +N),

whereM(L) is the set of matrices from Definition 4.1.21.

PROPOSITION (See Proposition 4.1.9.) Consider a monomial m-primary ideal E in R
with canonical Hilbert-Burch matrix H , let V (E) be the set of ideals K of R such that
Ltτ (K) = E and let N (E) be the set of matrices from Definition 4.1.8. The map

φ : N (E) −→ V (E)

N 7−→ It(H +N),

is surjective.

In the second part of the chapter we focus on constructing Gorenstein covers from
the canonical Hilbert-Burchmatrices defined by the previous parametrizations. Themain
result in this part is the parametrization of all Gorenstein covers G = R/I of A = R/I

that occur as a deformation of a lex-segment ideal L:

COROLLARY (See Corollary 4.2.11.) Let A = R/I be an Artin ring and let L be a lex-
segment ideal. The set VGC(A)(L) of ideals J in VG(L) such that G = R/J is a Goren-
stein cover of A is a quasi-affine variety. In particular,

VGC(A)(L) ≃ V(p1, . . . , pr)\V(c0
3,1c

0
4,2 · · · c0

t+1,t−1),

where ck
i,j are the coefficients of the polynomials ni,j in k[y] of matrices N inM(L)
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and pl are polynomials in variables ck
i,j that occur as coefficients of the reduction of J

modulo I .

We also provide a method, Algorithm 4, to compute all Gorenstein coversG = R/J

of A = R/I that occur as a deformation of any monomial ideal E, where the parame-
trization in Corollary 4.2.11 is no longer valid.

Chapter 5 is devoted to the study of certain families of Artin rings such as stretched
k-algebras or monomial ideals. On one hand, we study in depth all analytic types of k-
algebrasAwith ℓ(A) ≤ 6 taking as guide Poonen’s classification of such algebras in [40].
On the other hand, we put special emphasis on understanding whether the properties of
minimal Gorenstein covers from Theorem 2.1.7 hold for higher colength gcl(A) > 2:

PROPOSITION (See Proposition 5.0.3.) Let A = R/I be an Artin ring. In the following
cases we have that there exists a minimal Gorenstein cover G = R/J of A such that
embd(G) = embd(A) and I2 ⊂ J ⊂ I:

(i) ℓ(A) ≤ 6,
(ii) A is stretched,
(iii) I = mt for some t ≥ 1,

Moreover, the preservation of the embedding dimension works for all minimal Goren-
stein covers of stretched rings.

Appendix A consists on a manual on how to use the library GorensteinCovers.lib.
One of its most relevant features is the description and comparison of 3 different methods
to compute Macaulay’s inverse systems.

In Appendix B, we recall the structure theorem of stretched and Gorenstein almost
stretchedk-algebras in terms of their analytic types, summarizing the fundamental results
of [21] and [15].

In Appendix C, we provide the explicit expression of varieties of minimal Gorenstein
coversMGC(A) of all low Gorenstein colength k-algebras A such that ℓ(A) ≤ 6 up to
analytic type.
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Notaࢢon

R ring of formal power series in variables x1, . . . , xn and coefficients
in k

m unique maximal ideal (x1, . . . , xn) of R

A equicharacteristic Artin local ring R/I

n maximal ideal m/I

k residue field of R, residue field of A

P polynomial ring in variables x1, . . . , xn and coefficients in k

S polynomial ring in variables y1, . . . , yn and coefficients in k

S≤d polynomials in S of degree equal or less than d

dimA Krull dimension of A

dimk A k-vector space dimension of A

char(A) characteristic of the ring A

◦ contraction operation

AnnR(M) annihilator of the R-moduleM

AnnA(q) annihilator of the ideal q of A

depthR(M) depth of the R-moduleM

xxv



embd(A) embedding dimension of A

GC(A) set of Gorenstein covers of A

gcl(A) Gorenstein colength of an Artin ring

Gin(I) generic initial ideal of I

Grn(A) associated graded ring of A with respect to the maximal ideal n

ht(I) height of the ideal I

HFA Hilbert function of the associated graded ring of A

(−)× continuous dual space

(−)∨ HomR(−, E)

(−)∗ HomR(−, R)

q ideal of A

f∗ initial form of f ∈ R

I∗ initial ideal of I

idA(M) injective dimension of the A-moduleM

EA(M) injective hull of the A-moduleM

E injective hull of the residue field k of R∫
K
M integral of the R-moduleM with respect to the idealK in R

LA,t R-module
∫
mt I

⊥/I⊥, where A = R/I

I⊥ inverse system of I

⟨F1, . . . , Fr⟩k k-vector space S generated by polynomials F1, . . . , Fr

Ltτ (I) leading term ideal of the I with respect to a local ordering τ

LCτ (f) leading coefficient of the series f ∈ R with respect to τ

Ltτ (f) leading term of the series f ∈ R with respect to τ

xxvi



ℓ(M) length of an A-module, dimension as k-vector space

Lex(h) lex-segment ideal associated to the Hilbert function h

MGC(A) variety of minimal Gorenstein covers of A

µ(I) minimal number of generators of the ideal I in R

ωA canonical module of A

ord(f) order of f ∈ R

pdA(M) projective dimension of the A-moduleM

F• free resolution

F∗
• dual free resolution with respect to (−)∗

⟨F1, . . . , Fr⟩ sub-R-module of S generated by polynomials F1, . . . , Fr with re-
spect to the contraction structure

socA socle ideal of the ring A

socdegA socle degree of the ring A

Supp(f) support of a series f ∈ R

Syz(M) module of syzygies of an R-moduleM

τ(A) Cohen-Macaulay type of A

τ term ordering in P

τ local ordering in R induced by τ in P

TC(A) Teter variety of A

V (E) set of ideals J in k[[x, y]] with Ltτ (J) = E

VG(E) set of Gorenstein ideals J in V (E)

VGC(A)(E) set of ideals J in V (E) such that G = R/J is a Gorenstein cover of
A = R/I .
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CHAPTER 1

Preliminaries

In this first chapter, besides fixing the notation, we will provide the necessary back-
ground to understand both the object of our study and the different tools we will apply. In
order to keep it to a reasonable number of pages, some elementary commutative algebra
notions will not be defined or only a partial definition restricted to the zero-dimensional
case will be given. For complete proofs and general results, see [5].

1.1 Arࢢn and Gorenstein rings
According to Cohen’s structure theorems, any local equicharacteristic Artin ring A

is isomorphic to a quotient of the regular local ring R = k[[x1, . . . xn]], for some n ≥ 1,
by an m-primary ideal I of R, where m = (x1, . . . , xn) is the unique maximal ideal of
R. From now on, whenever we consider an Artin ring we refer to

A ≃ k[[x1, . . . xn]]/I,

with maximal ideal n = m/I and residue field k. We denote by ℓ(A) the length of A,
that is, the dimension of A as k-vector space.

DEFINITION 1.1.1 The socle degree of A = R/I is the smallest integer s such that
ms+1 ⊆ I and it is denoted by socdegA.

Note that we can also characterize the socle degree as the largest integer s such that
ns ̸= 0.
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Chapter 1. Preliminaries

DEFINITION 1.1.2 The socle of the Artin ring A = R/I , denoted by soc(A), is the anni-
hilator of the maximal ideal n in A, that is, soc(A) := AnnA(n).

Observe that soc(A) is the largest ideal of A such that the A-module structure gives
at the same time an A/n-module structure on it. Therefore, the socle ideal is the largest
ideal equipped with a natural k-vector space structure.

DEFINITION 1.1.3 The Cohen-Macaulay type of A = R/I , denoted by τ(A), is the
dimension of the socle ideal soc(A) as k-vector space.

Note that 0 ̸= nsocdeg A ⊆ soc(A) ⊆ A, hence 1 ≤ τ(A) ≤ ℓ(A).

EXAMPLE 1.1.4 Fields have socle degree 0 and Cohen-Macaulay type 1. Indeed, the
unique maximal ideal of k is (0) and soc k = k.

Let us assume that in the representation R/I of A we are choosing the ring of power
series with a minimal number of variables n. In other words, ht(I) = dimR, where
ht(I) stands for the height of the ideal I . Using the well-known Auslander-Buchsbaum
formula and the Cohen-Macaulayness of both R and A, we have

pdR(A) = depthR(R)− depthR(A) = dimR− dimA = ht(I) = n,

where pdR(A) denotes the projective dimension of A as R-module. Therefore, we have
a minimal free resolution of A as R-module of length n

F• : 0 // Rbn
ϕn // Rbn−1

ϕn−1
// . . .

ϕ2 // Rb1
ϕ1 // R // A // 0.

The Cohen-Macaulay type can also be retrieved from the last Betti number ofA, that
is, τ(A) = bn.

DEFINITION 1.1.5 Consider the left exact contravariant functor (−)∗ = HomR(−, R).
The canonical module, denoted by ωA, of an Artin ring A ≃ R/I is the cokernel of
the dual map ϕ∗

n :
(
Rbn−1

)∗ −→
(
Rbn

)∗. In literature it is often also called dualizing
module.

It can be proved that AnnR(ωA) = I , hence the canonical module ωA is also an
A-module.

REMARK 1.1.6 The cohomology of F∗
• are precisely the ExtR(A,R) modules. Observe
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1.1. Artin and Gorenstein rings

that Exti
R(A,R) = 0 for any i ̸= n and Extn

R(A,R) ≃ ωA. In fact, F∗
• is a free

resolution of ωA as R-module:

F∗
• : 0 // R× ϕ∗

1 // . . .
ϕ∗

n−1
//
(
Rbn−1

)∗ ϕ∗
n //

(
Rbn

)∗
// ωA

// 0.

We denote by EA(k) the injective hull of the residue field, that is, the minimal in-
jective A-module containing k. Since A is Artin local, thanks to Matlis theorem, any
injective module is isomorphic to a power of the unique indecomposable injective A-
module EA(k). It can be proved that the canonical module ωA is isomorphic to the
injective hull EA(k).

DEFINITION 1.1.7 We denote by idA(A) the injective dimension ofA asA-module, that
is, the length of the minimal exact sequence of injective A-modules

0 // A // EA(k)c0 d0
// EA(k)c1 d1

// . . .
di−1

// EA(k)ci
di

// . . . .

In the zero-dimensional case, all rings are Cohen-Macaulay. Therefore, any Artin
ring A = R/I can be placed in one of the layers of the following hierarchy:

regular local ring

⇓

complete intersection ring

⇓

Gorenstein ring

⇓

Cohen-Macaulay ring

Artin regular local rings are fields. Zero-dimensional complete intersections are quo-
tients ofR = k[[x1, . . . xn]] by an ideal I generated by a regular sequence of n elements.

We now want to focus on Artin Gorenstein rings. To finish this section, we will
provide several equivalent characterizations of such rings in terms of the socle ideal,
injective dimension or canonical modules, to mention a few of them. For a complete
review on Gorenstein rings both in arbitrary and zero dimension, see [30].
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Chapter 1. Preliminaries

DEFINITION 1.1.8 A zero-dimensional Gorenstein ring is an Artin local ring with min-
imal socle ideal, that is, 1-dimensional socle.

In other words, A is Gorenstein if and only if τ(A) = 1. Therefore, in terms of
minimal resolutions of A, this can be translated into bn = 1. In fact, in this situation, the
Betti numbers bn, . . . , b0 are symmetric around the middle of the resolution.

We can also approach the characterization of Gorenstein rings in terms of its canon-
ical module: A is Gorenstein if and only if its canonical module ωA is a free A-module
of rank 1, that is, ωA ≃ A. In this case, F∗

• can also be regarded as a free resolution of a
A. Following this philosophy, we can say that free resolutions of a Gorenstein ring are
self-dual.

From the point of view of injective modules, Gorenstein rings are precisely rings of
finite injective dimension. In dimension zero, this can be translated into self-injective
rings A ≃ EA(k).

Now let us now summarize the previous equivalent characterizations of Gorenstein
zero-dimensional rings:

THEOREM 1.1.9 Let A be an Artinian local ring. The following are equivalent:

(i) idA(A) <∞.
(ii) idA(A) = 0.
(iii) A ∼= ωA.
(iv) A is injective as a module over itself.
(v) A ∼= EA(k).
(vi) soc(A) is a 1-dimensional k-vector space, i.e. τ(A) = 1.
(vii) The ideal (0) in A is irreducible.
(viii) For every ideal q in A, (0 :A (0 :A q)) = q.

1.2 Hilbert funcࢢons
The Hilbert function of a local ring A with maximal ideal n is defined as the Hilbert

function of the associated graded ringGrn(A) =
∑

i≥0 n
i/ni+1, hence HFA : N −→ N

with
HFA(i) = dimk ni/ni+1.

By definition, HFA(0) = 1.
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1.2. Hilbert functions

DEFINITION 1.2.1 We call the embedding dimension of A, denoted by embd(A), the
value of the Hilbert function of A evaluated at 1, that is, embd(A) := HFA(1).

Observe that, if I ⊂ m2, then embd(A) = dimR. Hence, in the representation
A = R/I , we can always choose R to have HFA(1) variables.

Again from the definition, HFA(i) = 0 for all i > socdegA. Therefore, the Hilbert
function produces a finite succession of integers {1, n,HFA(2), . . . ,HFA(s)}, where s
is the socle degree of A.

Besides having finitely many non-zero values, a lot more is known about the shape
of Hilbert functions of Artin rings.

DEFINITION 1.2.2 The expansion

c =

 cn

n

+

 cn−1

n− 1

+ · · ·+

 cj

j

 ,

such that cn > cn−1 > cj ≥ j ≥ 1, is called theMacaulay’s n-th representation of c.
The values cn, . . . , cj are calledMacaulay’s n-th coefficients of c.

Such a decomposition of c exists and it is unique. The algorithm of this construction
is simple: take the greatest cn satisfying c ≥

(
cn

n

)
. Repeat the step changing c for c−

(
cn

n

)
and n for n− 1. Proceed in a similar way until the difference is zero or we reach c1.

DEFINITION 1.2.3 For any n ≥ 1, we define 0⟨n⟩ = 0, and for c ≥ 1,

c⟨n⟩ =

 cn + 1

n+ 1

+

 cn−1 + 1

n

+ · · ·+

 cj + 1

j + 1

 .

The following result describes exactly how Hilbert functions of Artin rings look like.
Even more, it says that given any such numerical function, there exist an Artin ring
realizing it.

THEOREM1.2.4 LetF : N −→ N be a numerical function. The following are equivalent:

(i) Exists an Artin local ring A = R/I such that HFA(i) = F (i), for any i ≥ 0.
(ii) F (0) = 1, F (i+ 1) ≤ F (i)⟨i⟩, for all i ≥ 1, and F (i) = 0 for i large enough.
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Chapter 1. Preliminaries

1.2.1 Hilbert funcࢢons of Gorenstein rings
What do Hilbert functions of Artin Gorenstein ringsG = R/I look like? A lot of lit-

erature exists on this subject, see [32]. In the general case, the known results only provide
necessary conditions on numerical functions in order to correspond to Hilbert functions
of Gorenstein rings. However, in codimension 2, they are explicitly characterized.

Consider a Gorenstein ring G of socle degree s. Note that ns = socG is a one
dimensional k-vector space and ns+1 = 0, hence HFG(s) = 1. Therefore, any Hilbert
function associated to a zero-dimensional Gorenstein ring must be of the form {1, n,
HFG(2), . . . , HFG(s− 1), 1}.

Another useful tool is the so-called shell formula provided by Iarrobino in [32].
Again, it only enables us to discard some particular numerical functions from being the
Hilbert function of a Gorenstein ring whenever it fails the test, but it never ensures this
Gorenstein ring exists whenever it passes the test.

The idea of the shell formula is based on the fact that in the graded situation we know
that Gorenstein rings have symmetric Hilbert functions. We will briefly introduce theQ-
decomposition of a Gorenstein algebra G, that allows us to link the Hilbert function of
G with the Hilbert function of a suitable Gorenstein graded algebra.

Consider the Artin Gorenstein ring G = R/I of socle degree s and its associated
graded ring

Grn(G) =
s+1⊕
i=0

ni/ni+1.

Several different filtrations can be considered in G. Combining the standard n-adic
filtration {ni}i≥0 and the Löwy filtration {(0 :G ni)}i≥0, we can define for any a in
{0, 1, . . . , s+ 1} the Grn(G)-module

C(a)i = (0 : ns+1−a−i) ∩ ni

(0 : ns+1−a−i) ∩ ni+1 ⊆ Gi,

where Gi denotes the piece of degree i of the graded ring Grn(G). Then

C(a) =
⊕
i≥0

C(a)i

is a graded Grn(G)-module and, in particular, GiC(a)j ⊆ C(a)i+j .
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1.2. Hilbert functions

PROPOSITION 1.2.5 [45, Proposition 7.1.1] With the previous notations one has:

(i) C(0)i = 0 for all i ≥ s.
(ii) If a ≥ 1 then C(a)i = 0 for all i ≥ s− a.
(iii) Grn(G) = C(0) ⊃ C(1) ⊃ · · · ⊃ C(s) = 0.
(iv) C(a) is a k-vector space of finite dimension.

DEFINITION 1.2.6 For any a ∈ {0, 1, . . . , s− 1} we define the graded Grn(G)-module

Q(a) = C(a)/C(a+ 1).

The set {Q(0), Q(1), . . . , Q(s− 1)} is called the Q-decomposition of G.

PROPOSITION 1.2.7 [45, Proposition 7.1.4] Let G be an Artin Gorenstein ring of socle
degree s. Then Q(0) = Grn(G)/C(1) is, up to isomorphism, the only Artinian graded
Gorenstein quotient of Grn(G) of socle degree s.

PROPOSITION1.2.8 [45, Proposition 7.1.5] LetG be an Artinian Gorenstein ring of socle
degree s. The following facts are equivalent:

(i) Grn(G) is Gorenstein of socle degree s;
(ii) C(1) = 0;
(iii) C(a) = 0, for all a ≥ 1;
(iv) Q(a) = 0, for all a ≥ 1;
(v) Grn(G) ≃ Q(0).

In general, the associated graded algebraGrn(G) of aGorenstein ringG is not Goren-
stein. In fact, Grn(G) is Gorenstein if and only if HFG is symmetric, see [45, Theorem
7.2.6].

THEOREM 1.2.9 (Shell formula) Let G be an Artinian Gorenstein ring of socle degree s.
Then, for all i ≥ 0,

HFG(i) =
s−1∑
a=0

HQ(a)(i),

where HQ(a) are symmetric functions satisfying HQ(a)(i) = HQ(a)(s − a − i) and
HFQ(0) satisfies Macaulay’s conditions.
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Chapter 1. Preliminaries

EXAMPLE 1.2.10 Consider an Artin ring A with Hilbert function {1, 3, 4, 1}. If A is
Gorenstein, then

HFA(i) =
2∑

a=0
HFQ(a)(i),

where HFQ(a) are symmetric functions. In particular, HFQ(1)(0) = HFQ(1)(2) and
HFQ(2)(0) = HFQ(2)(1). Hence any Q-decomposition of A has the following possible
associated Hilbert function decomposition:

i 0 1 2 3

HA(i) 1 3 4 1

Q(0) 1 b b 1

Q(1) 0 c 0 0

Q(2) 0 0 0 0

Note that | is the symmetry axis of HFQ(0) and | is the symmetry axis of HFQ(2).
But this decomposition is not possible because b = 4 and b+ c = 3. Therefore, there

exists no Gorenstein ring with Hilbert function {1, 3, 4, 1}.

In codimension 2, there is a numerical characterization of the Hilbert function of the
ring A = R/I in terms of the minimal number of generators µ(I) of I , see [4] for more
details:

THEOREM 1.2.11 Let F = {1, 2, . . . , d, hd, . . . , hs} be a numerical function satisfying
d = hd−1 ≥ hd ≥ hd+1 ≥ · · · ≥ hs ≥ 1, let p = max{hj−1 − hj : j ≥ d} and let m
be a positive integer. The following facts are equivalent:

(i) There exists an ideal I ⊆ R = k[[x, y]] such that HFR/I = F and µ(I) = m.
(ii) p+ 1 ≤ m ≤ d+ 1.

Gorenstein rings of codimension 2 are complete intersections, hence they are of the
form A = k[[x, y]]/I , where I is minimally generated by two elements. From The-
orem 1.2.11, it follows that the jump between two consecutive elements of its Hilbert
function cannot be bigger than 1.

EXAMPLE 1.2.12 Any ring with Hilbert function {1, 2, 3, 4, 3, 3, 1} will not be Goren-
stein, whereas {1, 2, 3, 4, 3, 3, 2, 1, 1} does admit a Gorenstein ring.
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1.3 Gorenstein covers and Gorenstein colength
The following fact is a well-known commutative algebra result:

LEMMA 1.3.1 Let A = R/I be a local Artin ring. Then A is a quotient of an Artin
Gorenstein ring G = R/J .

In fact,G can be taken as Nagata’s idealizationG = AnωA, see [5, Theorem 3.3.6].

DEFINITION 1.3.2 We say that an Artin Gorenstein k-algebra G is a Gorenstein cover
of A if there is a power series ring R = k[[x1, . . . , xn]] such that A ∼= R/I , G ∼= R/J

and J ⊂ I . We denote by GC(A) the set of Gorenstein covers of A.

Then we can define the Gorenstein colength of A as follows:

DEFINITION 1.3.3 The Gorenstein colength of A is

gcl(A) = min{ℓ(G)− ℓ(A) | G is a Gorenstein cover of A}.

A Gorenstein cover G of an Artin ring A is minimal if ℓ(G) = ℓ(A) + gcl(A).

1.4 Inverse systems
Inverse systems are a useful tool to deal with local Artin k-algebras and, in a more

general setting, to study isolated points in a variety. Some properties of ideals in R that
have a difficult computational approach have a particularly nice translation into inverse
systems: quotient ideals, elimination of variables or even differential equations. See [23,
Sections 7.1.5-7.1.8] for more details.

Macaulay’s inverse systems are the main tool we use along this thesis to study the
Gorenstein colength of anArtin ringA and to findminimal Gorenstein coversG ofA. We
devote this section to the introduction of the basic notions surrounding inverse systems.
In Section 1.4.1, inverse systems are introduced asMatlis duals, see [14] for more details.
On the other hand, in Section 1.4.2 inverse systems are presented as orthogonal k-vector
spaces, see [39] and [23].

9
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1.4.1 Matlis and Macaulay dualiࢢes
Let E be the injective hull ER(k) of the residue field k of R. Recall that the con-

travariant functor (−)∨ = HomR(−, E) is exact.

DEFINITION 1.4.1 Given an R-moduleM , we call HomR(M,ER(k)), denoted byM∨,
theMatlis dual ofM .

Matlis duals satisfy the following properties, see [14]:

THEOREM 1.4.2 LetM be a finitely generated R-module. Then

(i) R∨ ≃ E and E∨ ≃ R.
(ii) ℓ(M) = ℓ(M∨).
(iii) k ≃ k∨, R ≃ R∨∨ and E ≃ E∨∨.
(iv) E is Artin.

The previous result applies to a more general setting of noetherian complete local
rings, but we restrict to the ring of formal power series R for the sake of simplicity,
given that it is enough for the scope of this work. Now we state the well-known Matlis
duality in our setting:

THEOREM 1.4.3 (Matlis duality) The functor (−)∨ defines an anti-equivalence between
finitely generated R-modules and Artin R-modules. (−)∨ is the identity functor in both
the category of R-modules and the category of Artin R-modules. In particular, ifM is
either a finitely generated R-module or an Artin R-module,M∨∨ ≃M .

Let S = k[y1, . . . , yn] be the polynomial ring with n variables and let us we denote
by m the homogeneous maximal ideal (y1, . . . , yn) of S. The ring S can be considered
as an R-module by contraction:

R× S −→ S

(xα, yβ) 7→ xα ◦ yβ =

 yβ−α, β ≥ α;

0, otherwise.

Note that we are usingmulti-index notation: α = (α1, . . . , αn) inNn, |α| =
∑n

i=1 αi

and xα = xα1
1 · · ·xαn

n . We say that β ≥ α if and only if βi ≥ αi for all 1 ≤ i ≤ n.

10



1.4. Inverse systems

If char(k) = 0 then S is also an R-module with the module structure induced by the
usual derivation.

THEOREM 1.4.4 (Gabriel) [26] If k is of characteristic zero then

ER(k) ∼= (S, derivation) ∼= (S, contraction).

If k is of positive characteristic then ER(k) ∼= (S, contraction).

Since the characteristic of the ground field k is arbitrary, from now on we will use
the structure of S as R-module defined by contraction.

We denote by ⟨F1, . . . , Fr⟩ the sub-R-module of S generated by polynomials F1,
. . . , Fr of S. Note that ⟨F1, . . . , Fr⟩ can also be regarded as a k-vector space generated
by all the contractions of F1, . . . , Fr.

DEFINITION 1.4.5 Given an m-primary ideal I ⊂ R, we call theMacaulay inverse sys-
tem of I , denoted by I⊥, the sub-R-module {g ∈ S | I ◦ g = 0} of S. Given a
sub-R-moduleM of S, we denote byM⊥ the ideal {f ∈ R | f ◦ g = 0 for all g ∈M}
of R.

Observe that the inverse system of I is precisely the Matlis dual of the Artin R-
module R/I:

Artin R-modules ←→ finitely generated R-modules

R/I 7−→ (R/I)∨ = I⊥

M∨ = M⊥ ←−p M

Now, from Theorem 1.4.3, we can recover the classical result of Macaulay, see [36],
[24] and [32].

PROPOSITION 1.4.6 (Macaulay’s duality) There is an order-reversing bijection⊥ between
the set of finitely generated sub-R-submodules of S and the set of m-primary ideals of
R given by: ifM is a submodule of S, thenM⊥ = (0 :R M) and I⊥ = (0 :S I) for an
ideal I ⊂ R. Moreover, A = R/I is Gorenstein of socle degree s if and only if I⊥ is a
cyclic R-module generated by a polynomial of degree s.

Observe that we can identify I⊥ ≃ (0 :S I) ≃ (0 :ER(k) ≃ EA(k) ≃ ωA. For the
sake of simplicity, we will only use the inverse systems notation, that is, I⊥.

11
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1.4.2 The orthogonal of an ideal
The goal of this section is to introduce inverse systems in an analogous way as Mour-

rain and Elkadi did in their book [23]. Thus we can use the tools presented in [39] to deal
with inverse systems, that is, the integration method (see Chapter 3). Their framework
is more general but we will focus on the local zero-dimensional case. See [24] for more
details.

The ring R = k[[x1, . . . , xn]] is a topological k-vector space with the m-adic topol-
ogy. The field k can also be endowed with a topological structure by considering the
discrete topology.

DEFINITION1.4.7 Wedenote byR× the continuous dual space ofR, that is, thek-vector
space of continuous k-linear maps φ : R −→ k.

REMARK 1.4.8 Observe that R× is a sub-k-vector space of the dual space of R, that is,
Homk(R,k).

LEMMA 1.4.9 φ : R −→ k is continuous with respect to the m-adic topology in R and
the discrete topology in k if and only if φ(mt) = 0 for some t ≥ 0.

Proof: Recall that 0 is an open set in k with respect to the discrete topology, then it is
enough to check that kerφ is an open set with respect to the m-adic topology. �

Therefore, any continuous k-linear map φ ∈ R× is completely determined by its
image at finitely many monomials xα in R. Set

φ : R −→ k

xα 7−→ dα

such that dα = 0 for any |α| ≥ t, where t is some positive integer. The image of any
series f =

∑
α∈Nn aαx

α ∈ R can be defined by k-linearity as

φ(f) = φ

(∑
α∈Nn

aαx
α

)
=
∑

α∈Nn

aαφ(xα).

Note that this is well-defined because only finitely many terms in the formal sum are non-
zero. We can think of (dα)α∈Nn as a sequence in

⊕
α∈Nn k, hence Λ =

∑
α∈Nn dαy

α

12



1.4. Inverse systems

is a polynomial in S = k[y1, . . . , yn].
Recalling the contraction structure we defined in the previous section, we have

(
xα ◦ yβ

)
(0) =

 1, if α = β;

0, otherwise.

Given the polynomial Λ =
∑

α∈Nn dαy
α in S, note that (xα ◦ Λ) (0) = dα for any

α ∈ Nn, hence we get the following maps:

R× ←→
⊕

Nn k ←→ S

φ 7−→ (φ(xα))α∈Nn 7−→
∑

α∈Nn φ(xα)yα

R → k

xα 7→ (xα ◦ Λ)(0)
←−p ((xα ◦ Λ)(0))α∈Nn ←−p Λ

PROPOSITION 1.4.10 (See [24, Proposition 1].) The map λ : R× −→ S defined by
λ(φ) =

∑
α∈Nn φ(xα)yα is an isomorphism of topological k-vector spaces.

Moreover, we can define an R-module structure on R× via the multiplicative action

g · φ : R −→ k

f 7−→ φ(gf)

for any g ∈ R and φ ∈ R×. Note that g · Λ is indeed k-linear and continuous.

PROPOSITION 1.4.11 Consider the R-module structure in S given by contraction. Then
λ is an isomorphism of R-modules.

Proof: For any β ∈ Nn, define φβ such that φβ(xα) = δα,β , where δα,β is the Kro-
necker delta. Note that this is the dual k-basis in R×. Consider xγ ∈ R, then

λ(xγ · φβ) =
∑

α∈Nn

(xγ · φβ)(xα)yα =
∑

α∈Nn

φβ(xγ+α)yα = yβ−γ .

13



Chapter 1. Preliminaries

On the other hand,

xγ ◦ λ(φβ) = xγ ◦
∑

α∈Nn

φβ(xα)yα = xγ ◦ yβ = yβ−γ .

Therefore, the R-module structures on R× and S given by · and ◦, respectively, are
compatible. �

From now on we will identify maps φ : R −→ k in R× with polynomials Λ in S.
Observe that the multiplication by xi acts on the elements Λ of S as the product by the
inverse of the variable yi. Indeed, taking Λ = yβ , we get

(xi · yβ)(f) = yβ(xif) =
(
(xif) ◦ yβ

)
(0) =

(
f ◦ (xi ◦ yβ)

)
(0) =(

f ◦ yβ1
1 · · · y

βi−1
i · · · yβn

n

)
(0) = yβ1

1 · · · y
βi−1
i · · · yβn

n (f),

for any f ∈ R. That is, xi can be identified with y−1
i , and this justifies the terminology

of inverse systems as claimed in [23].

DEFINITION 1.4.12 Given an m-primary ideal I ⊆ R, we define its orthogonal as the
sub-k-vector space of R× given by

I⊥ = {Λ ∈ R× : Λ(f) = 0 for any f ∈ I}.

REMARK 1.4.13 Them-primality condition on I arises naturally when we require I to be
contained in kerφ for a continuous map φ.

Note that the definition of orthogonal ideal is consistent with the notion of inverse
system in Definition 1.4.5:

PROPOSITION 1.4.14 Let I be an ideal in R. Then

{Λ ∈ S | f ◦ Λ = 0 for any f ∈ I} = {Λ ∈ S | (f ◦ Λ)(0) = 0 for any f ∈ I}.

Proof: The right inclusion is direct. If (f ◦ Λ)(0) = 0 for any f ∈ I , in particular it

14
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holds for a system of generators f1, . . . , fm of I and hence, for any 1 ≤ i ≤ m,

fi ◦ Λ =
∑

1≤|L|≤N

aLy
L ∈ S, aL ∈ k.

Consider the highest non-zero term aLy
L of fi ◦ Λ, then

xL ◦ (fi ◦ Λ) = aL ∈ k.

But xLfi ∈ I , hence
(
xLfi

)
◦ Λ = 0. Therefore, aL = 0 and hence fi ◦ Λ = 0. �

Observe that the elements of I⊥ can be regarded as continuous k-linear maps on
R/I . Consider the projection map π : R −→ R/I . For any Λ′ : R/I −→ k we obtain a
linear map Λ′ ◦ π on R. For any f ∈ I , (Λ′ ◦ π) (f) = 0 and hence Λ′ ◦ π ∈ I⊥. On the
other hand, consider a linear map Λ on R such that it vanishes on all polynomials in I ,
that is, I ⊆ ker(Λ). Then it factors through π in the sense that there exists Λ′ ∈ (R/I)∗

such that Λ = Λ′ ◦ π. Therefore, π induces an isomorphism

π∗ : (R/I)∗ −→ I⊥

Λ′ 7−→ Λ′ ◦ π

REMARK 1.4.15 Note that the continuous dual space (R/I)∗ is, in fact, the dual space of
R/I . Indeed, the m-primality of I ensures continuity of any k-linear map φ : R −→ k
that vanishes on I , since mt ⊆ I ⊆ kerφ for some t ≥ 0, see Lemma 1.4.9.

Hence Macaulay’s duality can then be reprashed as:

THEOREM 1.4.16 Them-primary ideals inR are in bijection with sub-k-vector spaces of
S stable by contraction.

See [24], [36], [28] and [37] for more details about these bijections:

 m-primary

ideals of R

 ↔

 finitely generated

sub-R-modules of S

 ↔


finitely generated

k-vector spaces of S

stable by contraction


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REMARK 1.4.17 Observe that in [23], I is considered as an ideal of the ring of polynomi-
als S and I⊥ is defined in the dual of S, which is isomorphic to the ring of power series
R. Consider the maximal idealmS in S corresponding to the point at the origin in kn and
assume that I is an mS-primary ideal. By [23, Proposition 7.30], it can be proved that
I⊥ is actually formed only by polynomials. On the other hand, since I ⊂ mS contains
no polynomials with non-zero constant terms, the extension IR of I in R is m-primary
and S/I ≃ R/IR. Therefore, I can be regarded as an m-primary ideal of R and I⊥ as
a sub-R-module of S.

1.4.3 Dicࢢonary
Well-known results and properties can be reproved using inverse systems. A paradig-

matic example is Lemma 1.3.1, where adding this tool simplifies the proof considerately:

LEMMA 1.4.18 (See Lemma 1.3.1.) Let A = R/I be a local Artin ring. Then A is a
quotient of an Artin Gorenstein ring G = R/J .

Proof: If s is the socle degree of A then I⊥ is generated by polynomials of degree
at most s, by [20, Proposition 2.5], so I⊥ ⊂ S≤s. Since S≤s ⊂ ⟨ys

1 · · · ys
n⟩, the ideal

J = AnnR(ys
1 · · · ys

n) satisfies the claim. �

Moreover, several invariants of Artin rings can be translated easily in terms of inverse
systems. Next we will provide some examples. For extended details, see [14].

PROPOSITION 1.4.19 Let A = R/I be an Artin local ring. For any i ≥ 0,

(I⊥)i := I⊥ ∩ S≤i + S<i

S<i

is an R-module with the contraction structure and

• for all i ≤ 0, HFA(i) = dimk(I⊥)i;
• (socA)∨ = I⊥/

(
m ◦ I⊥);

• τ(A) = dimk I
⊥/
(
m ◦ I⊥) = µ(I⊥).

In particular, if n = 2, then µ(I) = τ(A) + 1.
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1.5 From graded rings to local rings
In this section, we will recall some facts around the idea of extending results from

graded rings to local rings. In particular, we introduce local orderings, standard basis and
Grauert’s division theorem.

REMARK 1.5.1 Let P = k[x1, . . . , xn]. Given a zero-dimensional ring A = R/I , we
can find polynomial generators f1, . . . , fm of I . Hence

R

I
≃ P

(f1, . . . , fm)P
.

Wewill abuse notation and denote by I the ideals generated by f1, . . . , fm in bothR and
P , which will always be clear by context.

If I is a homogeneous ideal, thenA = R/I can be identified with the graded ringP/I
and everything we know about graded rings applies. However, if I is not homogeneous
we can still find a homogeneous ideal J and a monomial ideal E in P such that

HFR/I = HFP/J = HFP/E .

From both the computational and theoretical point of view, to deal with ideals, it is
extremely practical to extend the notion of Gröbner basis in a polynomial ring P to the
local case. To that end, we need to define a total ordering compatible with the local
structure.

Any element f ∈ R can be written as
∑

|α|≥0 cαx
α.

DEFINITION 1.5.2 We define the order of f ∈ R as ord(f) = min{|α| : cα ̸= 0} and
the initial form of f ∈ R as the homogeneous polynomial f∗ =

∑
|α|=ord(f) cαx

α.

DEFINITION 1.5.3 Given an ideal I ⊂ R, we define the initial ideal of I as the homoge-
neous ideal of P generated by the initial forms, i.e.

I∗ = ⟨f∗ : f ∈ I⟩P ⊂ P = k[x1, . . . , xn].

DEFINITION 1.5.4 We call f1, . . . , fm a standard basis of I if I = (f1, . . . , fm) and
I∗ = (f∗

1 , . . . , f
∗
m). That is, f1, . . . , fm is a system of generators of I , not necessarily

17
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minimal, that also generates its initial ideal.

Consider a term ordering τ in P . This induces a reverse-degree ordering τ inR such
that for any monomialsm,m′ in R,m >τ m

′ if and only if

deg(m) < deg(m′)

or
deg(m) = deg(m′) andm >τ m

′.

We will call τ a local degree ordering induced by the global ordering τ .

DEFINITION 1.5.5 We call the support of f =
∑

|α|≥0 cαx
α ∈ R, the set

Supp(f) := {xα : cα ̸= 0}.

We define the leading term of f ∈ R with respect to τ , denoted by Ltτ (f), as the
monomial xα ∈ Supp(f) such that xα ≥τ m for any m ∈ Supp(f). LCτ (f) = cα is
its leading coefficient and tail(f) = f − LCτ (C) Ltτ (f) is its tail.

DEFINITION 1.5.6 Given an ideal I ⊂ k[[x1, . . . , xn]], we define the leading term ideal
of I as the monomial ideal in P generated by the leading terms with respect to the local
degree ordering τ , i.e.

Ltτ (I) = ⟨Ltτ (f) : f ∈ I⟩P ⊂ P = k[x1, . . . , xn].

DEFINITION 1.5.7 We call f1, . . . , fm a τ -enhanced standard basis of I if I = (f1,
. . . , fm) and Ltτ (I) = (Ltτ (f1), . . . ,Ltτ (fm)). That is, f1, . . . , fm is a system of
generators of I , not necessarily minimal, that also generates its leading term ideal with
respect to τ .

REMARK 1.5.8 The terminology of standard basis is not consistent in literature. The
notation used here is the same as in [4], [19]. However, in another reference we often
cite, [27], a τ -enhanced standard basis is called standard basis.

The analogous notion to the enhanced standard basis in the polynomial case corre-
sponds, as expected, to Gröbner basis. Let us rephrase the definition as follows:
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DEFINITION 1.5.9 Consider an ideal J ⊂ P and a term ordering τ in P . We call g1, . . . ,
gm a τ -Gröbner basis of J if it is a system of generators of J and generates the leading
term ideal of J with respect to τ , i.e.

Ltτ (J) = (Ltτ (g1), . . . ,Ltτ (gm)).

Some basic properties are proved in [4, Proposition 1.5, Corollary 1.6] and [19]:

PROPOSITION 1.5.10 Given an m-primary ideal I of R, the following properties hold:

(i) Ltτ (f) = Ltτ (f∗).
(ii) Ltτ (I) = Ltτ (I∗).
(iii) f1, . . . , fm is a τ -enhanced standard basis of I if and only if f∗

1 , . . . , f
∗
m is a τ -

Gröbner basis of I∗.
(iv) Any τ -enhanced standard basis is also a standard basis.
(v) HFR/I = HFP/I∗ = HFP/ Ltτ (I).

The following example from [19] shows that a standard basis is not always a τ -
enhanced standard basis:

EXAMPLE 1.5.11 Consider the ideal I = (g1, g2) in k[[x, y]], where g1 = x2 + y2 and
g2 = xy+y3. Then g∗

1 = x2 +y2, g∗
2 = xy, Ltτ (g1) = x2, Ltτ (g2) = xy. Observe that

(g1, g2) = (g∗
1 , g

∗
2), hence I is homogeneous and g1,g2 is a standard basis. In particular,

y3 = yg∗
1−xg∗

2 is in I . However, y3 does not belong to (Ltτ (g1),Ltτ (g2)), hence g1,g2

is not a τ -enhanced standard basis of I .

THEOREM1.5.12 (Grauert’s Division Theorem) Let f, f1, . . . , fm be elements inR. Then,
there are q1, . . . , qm, r in R such that

f =
m∑

i=1
qifi + r

satisfying the following properties:

(i) No monomial of r is divisible by any Ltτ (fi), for 1 ≤ i ≤ m.
(ii) If qi ̸= 0, Ltτ (qifi) ≤τ Ltτ (f).
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DEFINITION 1.5.13 We say that a finite subset G of R is reduced with respect to τ if the
following conditions hold:

(i) 0 ∈ G.
(ii) Ltτ (f) - Ltτ (g) for any two different elements f, g ∈ G.
(iii) LCτ (f) = 1 for any f ∈ G.
(iv) For any f ∈ G, ifM ∈ Supp(tail(f)), thenM /∈ Ltτ (G).

DEFINITION 1.5.14 The residue r of this division is called the normal form of f with
respect to a finite subset G of R and it is denoted by

NF(f | G) = r.

This normal form is, in fact, a reduced normal form. The existence of a reduced normal
form is fundamental in order to inherit in R all properties from Gröbner basis in P :

• If S1, S2 are τ -enhanced standard basis of I and f ∈ R, then NF(f | S1) =
NF(f | S2). In other words, the normal form of an element in R is unique when
computed with respect to any τ -enhanced standard basis.

• Buchberger’s criterion. See Theorem 1.5.16 below, for complete details see [27,
Theorem 1.7.3].

• A reduced τ -enhanced standard basis is uniquely determined.

DEFINITION 1.5.15 Consider f, g in R with leading terms Ltτ (f) = xα and Ltτ (g) =
xβ . Set γ := (max(α1, β1), . . . , max(αn, βn)). Then we define the S-polynomial of f
and g as

S(f, g) = xγ−αf − LCτ (f)
LCτ (g)

xγ−βg.

THEOREM 1.5.16 (Buchberger’s Criterion) Consider a finite subsetG of elements f1, . . . ,
fm in R. Let NF(− | G) be the reduced normal form provided by Grauert’s division
theorem. The following are equivalent:

(i) G is a τ -enhanced standard basis of I .
(ii) NF(f,G) = 0 for all f ∈ I .
(iii) Each f ∈ I has a standard representation with respect to NF(− | G).
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(iv) G generates I and NF(S(fi, fj) | G) = 0, for 1 ≤ i < j ≤ m.
(v) G generates I and NF(S(fi, fj) | Gij) = 0, for a suitable subset Gij ⊂ G and

1 ≤ i < j ≤ m.

THEOREM 1.5.17 (See [27, Theorem 6.4.3].) Let P ⊂ R be equipped with compatible
local degree orderings τ ′, τ respectively. Let f1, . . . , fm be the generators of an ideal
J in P such that Ltτ ’(J) = (Ltτ ’(f1), . . . ,Ltτ ’(fm)), then f1, . . . , fm is a τ -enhanced
standard basis of I = JR.

The previous theorem implies that, whenever an ideal I of R is generated by poly-
nomials f1, . . . , fr in R, we can look for its standard basis in J = I ∩ P . We must be
careful here, since in general, f1, . . . , fr is not a system of generators of J in P , even
when it is a reduced τ -enhanced standard basis.

PROPOSITION1.5.18 Given a τ -enhanced standard basis f1, . . . , fm of a zero-dimensional
ideal I ⊂ R, we can always find polynomials f ′

1, . . . , f
′
m that form a τ -enhanced stan-

dard basis of I such that Ltτ (fi) = Ltτ (f ′
i) and deg fi ≤ s + 1, where s is the socle

degree of R/I .

Proof: Consider a τ -enhanced standard basis f1, . . . , fm ∈ R of I , where

fi =
∑

|α|≥0

ci
αx

α.

Now set new elements f ′
i by removing from fi the terms of degree higher than s+ 1 and

define

f ′
i = fi −

∑
|α|>s+1

ci
αx

α =
∑

|α|≤s+1

ci
αx

α.

Clearly f ′
i ∈ P and Ltτ (f ′

i) = Ltτ (fi). Set I ′ = (f ′
1, . . . , f

′
m) ⊂ R, note that

Ltτ (fi) ∈ Ltτ (I ′), hence Ltτ (I) ⊂ Ltτ (I ′).
Since ai =

∑
|α|>s+1 c

i
αx

α ∈ ms+1 ⊂ I , then f ′
i = fi− ai ∈ I . Hence I ′ ⊂ I . But

then Ltτ (I) ⊂ Ltτ (I ′) ⊂ Ltτ (I) and hence Ltτ (I ′) = Ltτ (I).
Therefore, by [4, Corollary 1.6], HFR/I = HFP/ Ltτ (I) = HFP/ Ltτ (I′) = HFR/I′ .

In particular, ℓ(R/I) = ℓ(R/I), and the equality I = I ′ follows. �
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Another result that can be translated into the local setting is Schreyer’s theorem. In [4,
Theorem 1.10], Bertella proves that a system of generators of the module of syzygies of
Ltτ (I) can be lifted to a system of generators of the module of syzygies of I:

THEOREM1.5.19 Let I be an ideal ofR and let f1, . . . , fm be a τ -enhanced standard basis
of I . Let Σ = {σ1, . . . , σt} be a homogeneous system of generators of Syz(Ltτ (I)).
Then Syz(I) is generated bym1, . . . ,mt, wheremi is a lifting of σi.

22



CHAPTER 2

Low Gorenstein colength

The Gorenstein colength of an Artin local ring A = R/I , denoted by gcl(A), is an
invariant introduced by Ananthnarayan in [1] that tells us how far from A is the closest
Artin Gorenstein ring G = R/J , see Definition 1.3.3. Although the computation of this
invariant is still an open problem except for very special families of rings, see [2], some
characterizations have been provided for gcl(A) ≤ 2. We say that these rings have low
Gorenstein colength.

In [44, Theorem 2.3], Teter characterized what later on Huneke and Vraciu, see [31],
would call Teter rings or almost Gorenstein rings. They are local Artin ringsA for which
there exists an Artin Gorenstein ring G such that A ≃ G/ soc(G). Then

ϕ : G� G/ soc(G) ≃ A and hence gcl(A) ≤ ℓ(G)− ℓ(A) = 1.

For embd(A) ≥ 2, Teter rings correspond exactly to rings of Gorenstein colength 1, see
Proposition 2.1.3.

The approach of Teter, Huneke-Vraciu and Ananthnarayan is based on the existence
of self-dual ideals of A with respect to the functor (−)+ = HomA (−, ωA), where ωA is
the canonical module of A.

THEOREM2.0.1 (Teter) LetA = R/I be anArtin ring. Then the following are equivalent:

(i) gcl(A) ≤ 1.
(ii) EitherA is Gorenstein or there is an isomorphismφ : n→ n+ such thatφ(x)(y) =

φ(y)(x), for every x, y in n.

We name the symmetric property of φ as Teter’s condition, which is precisely what
Huneke and Vraciu overcome in [31, Theorem 2.5]:
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Chapter 2. Low Gorenstein colength

THEOREM 2.0.2 (Huneke-Vraciu) Let A = R/I be an Artin ring such that char(k) ̸= 2
and soc(A) ⊆ n2. Then the following are equivalent:

(i) gcl(A) ≤ 1.
(ii) Either A is Gorenstein or n is a self-dual ideal of A.
(iii) There exists an epimorphism f : ωA −→ n.

Ananthnarayan extends in [1, Theorem 5.5] the previous result to any ring of low
Gorenstein colength.

THEOREM2.0.3 (Ananthnarayan) LetA = R/I be anArtin ring and letm be themaximal
ideal of R. Suppose that I ⊆ m6 and char(k) ̸= 2. Then the following are equivalent:

(i) gcl(A) ≤ 2.
(ii) There exists a self-dual ideal q ⊆ A such that ℓ(A/q) ≤ 2.
(iii) There exists an epimorphism f : ωA −→ q, where q is a self-dual ideal of A such

that ℓ(A/q) ≤ 2.

Since the canonical module ωA can be identified with the inverse system I⊥, see
Section 1.4.1, another natural approach to the problem is considering it from the inverse
system perspective. This was first done by Elias and Silva to study Teter rings. In [20,
Theorem 3.4], the restrictions on the characteristic and the socle of Huneke-Vraciu are
dumped and a new characterization of Teter rings in terms of their Macaulay inverse
system is provided:

THEOREM 2.0.4 (Elias-Silva) Let A = R/I be a non-Gorenstein Artin ring with maximal
ideal n and socle degree s ≥ 1. Then the following conditions are equivalent:

(i) gcl(A) = 1.
(ii) There exists a degree s+1 polynomialF ∈ S such that I⊥ = ⟨x1◦F, . . . , xn◦F ⟩.
(iii) There exists an epimorphism of A-modules I⊥ � n.
(iv) A is a Teter ring.

In particular, if A is a Teter ring, then the Cohen–Macaulay type of A is n.

This chapter is devoted to the study of low Gorenstein colength rings and establishes
a connection amongMacaulay inverse systems, minimal Gorenstein covers and self-dual
ideals.
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In Section 2.1, we present the first main result of this chapter. Theorem 2.1.7 shows
the exact relationship between the inverse system I⊥ ofA = R/I and the inverse system
J⊥ of a minimal Gorenstein coverG = R/J by considering the colon idealKF defined
as (J⊥ :R ⟨F ⟩):

THEOREM 2.0.5 (See Theorem 2.1.7.) Let A be an Artin ring such that gcl(A) ≤ 2. IfG
is a minimal Gorenstein cover of A, then

(i) embd(G) = embd(A),
(ii) if A = R/I with dim(R) = embd(G) = embd(A) and F is a generator of J⊥,

G = R/J , then I ⊂ KF and
I2 ⊂ J ⊂ I.

Moreover, after a linear isomorphism of R we may assume:

KF =


R, if gcl(A) = 0;

m, if gcl(A) = 1;

(x1, . . . , xn−1, x
2
n), if gcl(A) = 2.

Several examples are given to answer natural questions regarding the uniqueness of
such covers. Section 2.2 contains the second main result, Theorem 2.2.5, which extends
and improves the characterization of Artin rings A = R/I of Gorenstein colength two
in [1, Theorem 5.5]:

THEOREM 2.0.6 (See Theorem 2.2.5 for more details.) Let A = R/I be an Artin ring
with maximal ideal n and socle degree s ≥ 1. We assume that A is neither Gorenstein
nor Teter, I ⊂ m5 and char(k) ̸= 2. Then the following conditions are equivalent:

(i) gcl(A) = 2,
(ii) after a linear isomorphism of R there exists a polynomial F ∈ S of degree s + 1

or s+ 2 such that I⊥ = ⟨x1 ◦ F, . . . , xn−1 ◦ F, x2
n ◦ F ⟩,

(iii) there exists an epimorphism of A-modules f : I⊥ −→ q, where q is a self-dual
ideal of A such that ℓ(A/q) = 2.

Examples and families of Gorenstein colength two rings are provided with explicit
descriptions of both the self-dual ideals and the epimorphisms that appear in the previous
characterization. In Section 2.3, we finish the chapter giving some hints on what occurs
in higher colength and a detailed example for gcl(A) = 3.
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Chapter 2. Low Gorenstein colength

We perform all the computations in Singular, [11], using the Singular library [13] for
inverse system related computations.

Part of the results of this chapter are published in [16].

2.1 Gorenstein covers
Let us start by redefining the notion of minimal Gorenstein cover in terms of the

Macaulay’s inverse system.

DEFINITION 2.1.1 We say that G = R/J , with J = AnnR F , is a minimal Gorenstein
cover of A = R/I if and only if I⊥ ⊂ ⟨F ⟩ and ℓ(G) = ℓ(A)+ gcl(A).

REMARK 2.1.2 Note that, a priori, embd(A) and embd(G) are not necessarily the same.
Nevertheless, according to the main result in this section, Theorem 2.1.7, if gcl(A) ≤ 2
then the embedding dimensions ofA and any minimal Gorenstein coverG ofA coincide
and the number of variables n of R can always be taken as HFA(1) = HFG(1) in this
case.

In the next proposition we recall some basic results on Gorenstein colength.

PROPOSITION 2.1.3 Let A be a local Artin k-algebra.

(i) 0 ≤ gcl(A) ≤ ℓ(A),
(ii) gcl(A) = 0 if and only if A is Gorenstein,
(iii) if embd(A) ≥ 2, then gcl(A) = 1 if and only if A is Teter.

Proof: (i) We know that any Artin ring A is a quotient of the Artin Gorenstein ring
G = AnωA, wheren stands for Nagata’s idealization [5, Theorem 3.3.6]. On the other
hand, since A is a k-algebra, G is a k-algebra as well. Notice that if the embedding
dimension of A is b, then the embedding dimension of G is n = b + τ(A), so A and G
are quotients of R and G is a Gorenstein cover of A. Since the length of G is 2ℓ(A), we
get the claim.
(ii) is trivial. (iii) Assume that gcl(A) = 1. Then there exists a Gorenstein cover
G = R/J of A = R/I such that ℓ(G) = ℓ(A) + 1. In particular ℓ(I/J) = 1. Hence
H = I/J ⊂ G is the socle of G. From this is easy to deduce that A = G/ soc(G).
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2.1. Gorenstein covers

Conversely, if A = G/ soc(G), where G is a Gorenstein cover of A, then gcl(A) ≤ 1.
From [20, Proposition 3.7] we get the claim. �

From now on we will assume that the embedding dimension of A = R/I is the
dimension of R. Note that, since we are interested in non-Gorenstein rings A, we can
also assume that embd(A) ≥ 2. Otherwise, if R = k[[x]], any ideal of R is of the form
I = (xn), n ≥ 1. Then I⊥ = ⟨yn−1⟩ is cyclic and hence A = k[[x]]/(xn) is Gorenstein
(in fact, it is much more: a complete intersection ring).

We can present G = R′/J , with R′ a power series ring such that the embedding
dimension of G coincides with the dimension of R′, see Remark 2.1.2.

Let A = R/I be an Artin ring with R a power series ring over k such that n =
dimR = embd(A). Then there is an R-module monomorphism

ξA : I⊥ −→ S = k[y1, . . . , yn].

Let G = R′/J be a Gorenstein cover of an Artin ring A = R/I with R′ a power se-
ries ring over k such that n+t = dimR′ = embd(G). We assume thatR is a quotient of
R′ by a linear regular sequence, i.e. we may assume thatR′ = k[[x1, . . . , xn, xn+1, . . . ,

xn+t]]. Then we have a commutative diagram:

S S′

I⊥ J⊥

ξA ξG

whereS′ is a polynomial ring of dimensionn+t overk on the variables y1, . . . , yn, yn+1,

. . . , yn+t. We denote by S′
≤i the sub-R′-module of S′ consisting of all polynomials of

degree equal or less that i. Note that S′
≤0 ≃ k and it is contained in any non-zero sub-

R′-module of S′. In other words, if F =
∑s

i=0 Fi is a polynomial in S′, where Fi are
homogeneous polynomials of degree i, then ⟨F ⟩ = ⟨F − F0⟩.

PROPOSITION 2.1.4 Let G = R′/J be a Gorenstein cover of an Artin ring A = R/I

with dimR ≥ 2. Then there exists a generator F ∈ J⊥ such that ord(F ) ≥ 2.

Proof: Let F =
∑s

i=0 Fi be a generator of J⊥, where s = socdegG and Fi are forms
of degree i. Since J ⊂ (m′)2, where m′ is the maximal ideal of R′, we have S′

≤1 ⊂ J⊥.
From F0 + F1 ∈ S′

≤1, we deduce that ⟨F − (F0 + F1)⟩ ⊆ ⟨F ⟩ is an inclusion of
R′-modules.
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Chapter 2. Low Gorenstein colength

Since embd(G) ≥ embd(A) ≥ 2, then HFG(1) = n + t ≥ 2 cannot be the last
non-zero value of the Hilbert function because G is Gorenstein, i.e. socdeg(G) ≥ 2.
Hence S′

≤1 ⊂ m′ ◦ F . Therefore, the equality

⟨F ⟩ = ⟨F − (F0 + F1)⟩+ m′ ◦ F

holds and we can apply Nakayama’s Lemma. We get ⟨F ⟩ = ⟨F −(F0 +F1)⟩ or, in other
words, J⊥ = ⟨Fs + · · ·+ F2⟩. �

We are now interested in knowing what is the exact relationship between the inverse
system of a Gorenstein cover and the inverse system of the base ring. To that aim, we
consider the following colon ideal:

DEFINITION 2.1.5 Let A = R/I be an Artin ring. For all F ∈ S′ such that I⊥ ⊂ ⟨F ⟩,
we consider the idealKF of R′ defined by

KF = (I⊥ :R′ ⟨F ⟩).

If J = AnnR(F ), then G = R′/J is a Gorenstein cover of A and J ⊂ KF . Indeed,
J ◦ J⊥ = 0 by definition and hence, J ◦ J⊥ ⊂ I⊥.

The following proposition enables us to establish a connection between the colon
idealKF of any cover G = R/AnnR F (not necessarily minimal) of A and the Cohen-
Macaulay type of A. Even more, it provides an upper bound on gcl(A) given by the
length of R′/KF .

PROPOSITION 2.1.6 Let A = R/I be an Artin ring. For all F ∈ S′ such that I⊥ ⊂ ⟨F ⟩
we write J = AnnR(F ). It holds:

(i) I⊥ = KF ◦ F , I = (J :R KF ),
(ii) there is an R′-module isomorphism

R′

KF
−→ ⟨F ⟩

I⊥

a 7→ a ◦ F

(iii) if G = R′/J , then ℓ(G)− ℓ(A) = ℓ(R′/KF ),
(iv) τ(A) = dimk(KF /mKF + J).
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2.1. Gorenstein covers

Proof: (i) KF ◦ F ⊆ I⊥ directly from the definition of KF . To prove the reverse
inclusion, it is enough to observe that if g ∈ I⊥, then g ∈ ⟨F ⟩, i.e. g = a ◦ F for some
a ∈ R′. But then a ∈ KF again by definition ofKF , hence g ∈ KF ◦ F .

On the other hand, the inclusion I ⊂ (J :R KF ) comes from the fact that

(IKF ) ◦ F = I ◦ (KF ◦ F ) = I ◦ I⊥ = 0,

hence IKF ⊂ J . For the reverse inclusion, it is sufficient to see that (J :R KF )◦I⊥ = 0.
Indeed,

(J :R KF ) ◦ I⊥ = (J :R KF ) ◦ (KF ◦ F ) = ((J :R KF )KF ) ◦ F ⊂ J ◦ J⊥ = 0.

(ii) Consider the R′-module epimorphism φ defined by

R′ � ⟨F ⟩ � ⟨F ⟩
I⊥

a 7→ a ◦ F 7→ a ◦ F

Its kernel consists of all the elements a inR′ such that a◦F is in I⊥, hence kerφ = KF .
(iii) Since the length of a ring A = R/I coincides with the length of the inverse system
of I , then ℓ(G)− ℓ(A) = ℓ(⟨F ⟩)− ℓ(I⊥). We have a short exact sequence

0 −→ I⊥ −→ J⊥ −→ J⊥/I⊥ −→ 0,

hence ℓ(J⊥)− ℓ(I⊥) = ℓ(J⊥/I⊥). From (ii), we obtain ℓ(J⊥/I⊥) = ℓ(R′/KF ).
(iv) From (i) we get the epimorphism

ϕ : KF

mKF

◦F−→ I⊥

m◦I⊥

a 7→ a ◦ F

with kernel ker(ϕ) = (mKF + J)/mKF . Hence

dimk
I⊥

m ◦ I⊥ = dimk
KF

mKF + J

and from [20, Proposition 2.6] we get the right expression for τ(A). �
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THEOREM 2.1.7 Let A be an Artin ring such that gcl(A) ≤ 2. If G is a minimal Goren-
stein cover of A, then

(i) embd(G) = embd(A),
(ii) if A = R/I with dim(R) = embd(G) = embd(A) and F is a generator of J⊥,

G = R/J , then I ⊂ KF and
I2 ⊂ J ⊂ I.

Moreover, after a linear isomorphism of R we may assume:

KF =


R, if gcl(A) = 0;

m, if gcl(A) = 1;

(x1, . . . , xn−1, x
2
n), if gcl(A) = 2.

Proof: We assume that A = R/I with R = k[[x1, . . . , xn]] where n = embd(A). In
particular, I ⊂ m2.

If gcl(A) = 0 then A is Gorenstein. Hence G ∼= A and KF = R. From this we
trivially get (i) and I ⊂ KF .

Assume that gcl(A) = 1. Let G = R′/J be a minimal Gorenstein cover of A
with R′ = k[[x1, . . . , xn, xn+1, . . . , xn+t]] and embd(G) = n + t. From Proposi-
tion 2.1.6.(iii) we get that KF = (x1, . . . , xn, xn+1, . . . , xn+t). Let F be a generator
of J⊥, then

(x1, . . . , xn, xn+1, . . . , xn+t) ◦ F = I⊥ ⊂ S = k[y1, . . . , yn].

Since ord(F ) ≥ 2 by Proposition 2.1.4, we get that F ∈ S. Hence we may assume that
t = 0 and I ⊂ KF ⊂ R.

Assume now that gcl(A) = 2. From Proposition 2.1.6.(iii) we get that KF =
(l1, . . . , ln+t−1, l

2
n+t), where l1, . . . , ln+t are homogeneous linear forms defining a min-

imal system of generators of the maximal ideal of R′, with embd(G) = n+ t. We have
to consider two cases:
Case I. After a suitable permutation of the linear forms l1, . . . , ln+t, we can assume that
I⊥ is contained in k[l1, . . . , ln]. Since ord(F ) ≥ 2 by Proposition 2.1.4, we get that the
variables ln+1, . . . , ln+t−1 do not appear in F and the monomials lrn+t, r ≥ 3, do not
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2.1. Gorenstein covers

appear in F either. Then F can be written as follows

F = H(l1, . . . , ln) + al2n+t

with a ∈ k. Since k ⊂ (l1, . . . , ln) ◦H we get that

I⊥ = (l1, . . . , ln+t−1, l
2
n+t) ◦ F = (l1, . . . , ln) ◦H.

Furthermore, the ring R/AnnR(H) is a Gorenstein cover of A. From the structure of
F we get ℓ(⟨H⟩) ≤ ℓ(⟨F ⟩). Since F is a minimal Gorenstein cover, F = H and we
deduce (i) and (ii).
Case II. Assume that, after a suitable permutation, I⊥ ⊂ S = k[l1, . . . , ln−1, ln+t].
Next we discuss which monomials can appear in F .
II.1 Let us consider a monomial lL of F multiple of lilj , withL ∈ Nn+t, i ∈ {1, . . . , n−
1} and j ∈ {n, . . . , n+ t− 1}. Since li ∈ KF , the contraction of F by li lives in I⊥. In
particular, lL/li is a monomial of li ◦F ∈ I⊥ ⊂ S that contains lj . This is not possible.
II.2 Let us consider a monomial of F of the form laj l

b
n+t with j ∈ {n, . . . , n + t − 1}

and a, b ≥ 1. If b ≥ 2, then the contraction of F by l2n+t ∈ KF gives that laj l
b−2
n+t is a

monomial of l2n+t ◦ F ∈ I⊥ ⊂ S. This is not possible, so b ≤ 1. If a ≥ 2, after the
contraction of F by lj ∈ KF we get that la−1

j lbn+t is a monomial of lj ◦ F ∈ I⊥ ⊂ S.
This is not possible, so a ≤ 1. Hence F is of the form

F = H(l1, . . . , ln−1, ln+t) + ln+t(anln + · · ·+ an+t−1ln+t−1)

with an, . . . , an+t ∈ k.
Assume that t ≥ 1. Notice that, since embd(G) = n+t, we have that li ∈ ⟨F ⟩ = J⊥

so ai ̸= 0, i = n, . . . , n+ t− 1.
We set R = k[[l1, . . . , ln−1, ln+t]] and consider H ′ = H + al2n+t for some a ∈ k

such that ln+t ∈ R ◦H ′. Notice that R ◦H ′ is the sub-R-module ⟨H ′⟩ of S generated
by H ′ whereas ⟨F ⟩ denotes the sub-R′-module of k[l1, . . . , ln+t] generated by F .
Claim 1. I⊥ ⊂ R ◦H ′.
Recall that I⊥ = KF ◦F , so it is enough to prove that li◦F ∈ R◦H ′, i = 1, . . . , n+t−1,
and l2n+t ◦ F ∈ R ◦H ′. For all i = 1, . . . , n− 1, we have

li ◦ F = li ◦H = li ◦H ′ ∈ R ◦H ′,
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Chapter 2. Low Gorenstein colength

and for all i = n, . . . , n+ t− 1, we get

li ◦ F = ailn+t ∈ R ◦H ′.

Finally
l2n+t ◦ F = l2n+t ◦H = l2n+t ◦H ′ − a ∈ R ◦H ′.

Hence I⊥ ⊂ R ◦H ′, that is, R/AnnR(H ′) is a Gorenstein cover of A.
Claim 2. ℓ(R ◦H ′) ≤ ℓ(⟨F ⟩)− t.
It is enough to prove that ℓ(m ◦H ′) ≤ ℓ(⟨F ⟩)− t− 1 where m is the maximal ideal of
R. First we prove that m ◦H ′ ⊂ ⟨F ⟩. Indeed, for all i = 1, . . . , n− 1 we have

li ◦H ′ = li ◦H = li ◦ F ∈ ⟨F ⟩;

and

ln+t ◦H ′ = ln+t ◦H + aln+t = ln+t ◦ F −
n+t−1∑

i=n

aili + aln+t ∈ ⟨F ⟩.

The next step is to prove that

m ◦H ′ ∩ ⟨F, ln, . . . , ln+t−1⟩k = 0.

Let us consider
λ1F + λnln + · · ·+ λn+t−1ln+t−1 ∈ m ◦H ′

with λ1, λn, . . . , λn+t−1 ∈ k. Hence

λ1

n+t−1∑
i=n

aililn+t + λnln + · · ·+ λn+t−1ln+t−1 ∈ R.

Since ai ̸= 0 for i = n, . . . , n+ t− 1, we get that λ1 = λn = · · · = λn+t−1 = 0.
Both m ◦H ′ and ⟨F, ln, . . . , ln+t−1⟩k are contained in ⟨F ⟩. Hence a k-vector space

dimension computation gives Claim 2.
From previous claims we get thatR/AnnR(H ′) is a Gorenstein cover ofA of length

at most ℓ(A) + 2− t. But then gcl(A) ≤ 1, which is not possible. Therefore t = 0 and
we proved that F ∈ S = k[l1, . . . , ln]. From this we get (i) and I ⊂ m2 ⊂ KF =
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(l1, . . . , ln−1, l
2
n). Since I ⊂ KF we deduce

I2 ◦ F ⊂ (IKF ) ◦ F = I ◦ (KF ◦ F ) = I ◦ I⊥ = 0.

From this we get I2 ⊂ J . �

COROLLARY 2.1.8 If gcl(A) = 2, socdeg(A) = s ≥ 1 and G is a minimal Gorenstein
cover of A, then the socle degree of G is either s+ 1 or s+ 2.

If socdegG = s+ 2, then

HFG(i) =


HFA(i), if i ≤ s;

1, if i = s+ 1, s+ 2;

0, if i ≥ s+ 3.

Proof: By Theorem 2.1.7, I⊥ = KF ◦ F = ⟨x1 ◦ F, . . . , xn−1 ◦ F, x2
n ◦ F ⟩, where

F generates J⊥ and G = R/J is any minimal Gorenstein cover of A. Since the socle
degree of A is s, we get

max
1≤i≤n−1

{deg x2
n ◦ F, deg xi ◦ F} = s.

If this maximum is reached by xj ◦ F , for some 1 ≤ j ≤ n − 1, then degF = s + 1.
Otherwise, it will be reached by x2

n ◦ F and hence degF = s+ 2. �

We end this section by providing examples that answer several natural questions on
Gorenstein covers.

Hilbert functions of minimal Gorenstein covers of a certain Gorenstein colength two
ring are not unique in general. We can even have no uniqueness in its socle degree.
In the following two examples we consider particular cases of Artin local rings A with
gcl(A) = 2 and socdeg(A) = 3. Example 2.1.9 shows a case where both minimal
Gorenstein covers of socle degrees 4 and 5 exist. On the contrary, in Example 2.1.10 it
is proved that we only have minimal Gorenstein covers of socle degree 4.

EXAMPLE 2.1.9 Consider A = R/I = k[[x1, x2]]/
(
x2

1, x1x
2
2, x

4
2
)
, with Hilbert func-

tion {1, 2, 2, 1}. I⊥ = ⟨y1y2, y
3
2⟩ is contained in the sub-R-modules generated by

polynomials F1 = y1y
3
2 and F2 = y2

1y2 + y5
2 . Then both G1 = R/AnnR(F1) and
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G2 = R/AnnR(F2) are Gorenstein covers of A with Hilbert functions {1, 2, 2, 2, 1}
and {1, 2, 2, 1, 1, 1}, respectively, and ℓ(G1) − ℓ(A) = ℓ(G2) − ℓ(A) = 2. Hence,
gcl(A) ≤ 2. A is clearly not Gorenstein and, by [20, Proposition 4.5], we can also
deduce that it is not Teter. Therefore, Gorenstein colength of A is exactly 2 and G1,
G2 are minimal Gorenstein covers of socle degree 4 and 5, respectively. Note that
KF1 = KF2 = (x1, x

2
2).

EXAMPLE 2.1.10 Take A = k[[x1, x2, x3]]/
(
x1x2, x1x3, x2x3, x

2
2, x

2
3 − x3

1
)
, with Hil-

bert function {1, 3, 1, 1}. Note that τ(A) = 2 and embd(A) = 3. Hence A is not
Gorenstein and, by [20, Theorem 3.4], also not Teter since τ(A) ̸= embd(A). The poly-
nomial F = y4

1 + y1y
2
3 + y2

2 generates the inverse system of a Gorenstein cover G of A
with HFG = {1, 3, 2, 1, 1}. Therefore, gcl(A) = ℓ(G) − ℓ(A) = 2 and G is a minimal
Gorenstein cover of socle degree 4. Note thatKF =

(
x1, x2, x

2
3
)
.

Let us now assume that there is a minimal Gorenstein cover G′ = R/J of A with
socle degree 5. According to Corollary 2.1.8, its Hilbert function is {1, 3, 1, 1, 1, 1}
and, by [21], G′ is isomorphic to k[[x1, x2, x3]]/

(
x1x2, x1x3, x2x3, x

2
2 − x5

1, x
2
3 − x5

1
)
.

Since J⊥ = ⟨y5
1 + y2

2 + y2
3⟩, the only possible choice for a sub-R-module K⊥ of J⊥

such that HFR/K = {1, 3, 1, 1} is

K⊥ = ⟨1, y1, y2, y3, y
2
1 , y

3
1⟩k ⊂ J⊥ = ⟨1, y1, y2, y3, y

2
1 , y

3
1 , y

4
1 , y

5
1 + y2

2 + y2
3⟩k.

By Proposition 2.6 [20], τ(R/K) = µ(K⊥) = 3. But τ(A) = 2 and hence there is no
minimal Gorenstein cover G′ of A with socdegG′ = 5.

Even in the situation where we have unicity of the Hilbert functions of all minimal
Gorenstein covers, such covers are not necessarily unique. The next example shows a
ring with two non-isomorphic minimal covers with the same Hilbert function.

EXAMPLE 2.1.11 Consider A = R/I withR = k[[x1, x2, x3]] and I = (x1x2, x2x3, x
2
3).

Set char(k) = 0 and note thatHFA = {1, 3, 2}. This ring has Cohen-Macaulay type 2,
hence it is not Gorenstein not Teter, using the same argument as in previous example. No-
tice that the following polynomials generate R-modules containing I⊥ = ⟨y1y3, y2y3⟩:

(i) F1 = y1y2y3, (x1, x2, x
2
3) ◦ ⟨F1⟩ = I⊥;

(ii) F2 = y1y2y3 − y3
3 , (x1, x2, x

2
3) ◦ ⟨F2⟩ = I⊥.
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Set G1 = R/AnnR(F1) and G2 = R/AnnR(F2). Since ℓ(G1)− ℓ(A) = ℓ(G2)−
ℓ(A) = 2, G1 and G2 are minimal Gorenstein covers of A. Both rings have Hilbert
function {1, 3, 3, 1} but in characteristic zero it is known that they are not isomorphic,
[18, Proposition 3.7]. To prove that any minimal Gorenstein cover G = R/J of A must
have this Hilbert function, we use the fact that the only other possible Hilbert function
is {1, 3, 2, 1, 1}, again by Corollary 2.1.8. This corresponds to an almost stretched k-
algebra and, by [15], we know what Gorenstein rings with such Hilbert functions look
like. Using a similar reasoning as in Example 2.1.10, we get that any ring R/K such
thatK⊥ ⊂ J⊥ and HFR/K = {1, 3, 2} has a Cohen-Macaulay type different than 2.

Let us look at it from the opposite perspective and consider an Artin Gorenstein ring.
We can ask ourselves whether it can be a minimal Gorenstein cover of non-isomorphic
rings. In the following example we show a Gorenstein ring which is, at the same time,
minimal cover of several Artin rings of Gorenstein colength 2 and Teter cover of a Teter
ring.

EXAMPLE 2.1.12 Consider the Gorenstein ring G = R/J , where R = k[[x1, x2, x3]] and
J =

(
x2

3, x1x2, x1x3, x
3
2, x

3
1 + 3x2

2x3
)
, with Hilbert function {1, 3, 3, 1}. This ring has

inverse system J⊥ = ⟨y2
2y3 − y3

1⟩ and contains the following R-modules:

(i) (x2 − x1, x3, x
2
2) ◦ J⊥ = ⟨y2

1 + y2y3, y
2
2⟩ = I⊥

1 ;
(ii) (x1 + x2, x2 + x3, x

2
3) ◦ J⊥ = ⟨y2

1 − y2y3, y2y3 + y2
2⟩ = I⊥

2 ;
(iii) (x1, x2, x

2
3) ◦ J⊥ = ⟨y2

1 , y2y3⟩ = I⊥
3 .

A1 = R/I1, A2 = R/I2 and A3 = R/I3 are non-isomorphic Artin local rings with
Hilbert function {1, 3, 2} and Cohen-Macaulay type 2, by the classification provided by
Poonen in [40]. Using again the arguments above, A1, A2, A3 are not Gorenstein nor
Teter and ℓ(G) − ℓ(A1) = ℓ(G) − ℓ(A2) = ℓ(G) − ℓ(A3) = 2. Hence G is a minimal
Gorenstein cover to all these rings of Gorenstein colength 2.
Let us now consider A = R/I , where I = AnnR

(
m ◦ J⊥). Then

I⊥ = m ◦ J⊥ = ⟨y2
1 , y2y3, y

2
2⟩ = ⟨y2

1 , y2y3, y
2
2 , y1, y2, y3, 1⟩k.

Its Hilbert function is {1, 3, 3}, hence not Gorenstein. Since ℓ(G) − ℓ(A) = 1, G is a
Teter cover of the Teter ring A.

Recall that Artin stretched k-algebras are those with Hilbert function of the form
{1, n, 1, . . . , 1}, see [21] for more details. The next example provides us with a family
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of Artin stretched rings of Gorenstein colength 2 where we can explicitly compute all its
minimal Gorenstein covers.

EXAMPLE 2.1.13 Consider any Artin stretched k-algebra A = k[[x1, . . . , xn]]/I with
Cohen-Macaulay type n − 1 > 1. Set socdegA = s ≥ 2. Note that such A is clearly
not Gorenstein and, by [20, Proposition 3.4], also not Teter since τ(A) ̸= n. Therefore,
to prove that gcl(A) = 2 it is enough to find a Gorenstein cover G of A with ℓ(G) =
n + s + 2. Using the classification theorem of stretched algebras provided by [21], we
get I =

(
{xixj}1≤i<j≤n, {x2

i }2≤i≤n−1, x
2
n − xs

1
)
and it can be proved that its inverse

system is I⊥ = ⟨y2, . . . , yn−1, y
s
1 +y2

n⟩. Choosing F = ys+1
1 +y1y

2
n +y2

2 + · · ·+y2
n−1,

we obtain I⊥ = (x1, . . . , xn−1, x
2
n) ◦ J⊥ and

HFG(i) =



1, if i = 0;

n, if i = 1;

2, if i = 2;

1, if 3 ≤ i ≤ s+ 1;

0, if i ≥ s+ 2.

Any minimal Gorenstein cover G of A has the Hilbert function above and, in particular,
all of them have socle degree s+ 1. Indeed, suppose that exists G = R/J with

HFG(i) =



1, if i = 0;

n, if i = 1;

1, if 2 ≤ i ≤ s+ 2;

0, if i ≥ s+ 3.

By [21], J⊥ = ⟨ys+2
1 + y2

2 + · · ·+ y2
n⟩ up to analytic isomorphism. If K⊥ ⊂ J⊥ such

that HFR/K = HFA, then K⊥ = ⟨ys
1, y2, . . . , yn⟩. But τ(R/K) = µ(K⊥) = n and

τ(A) = n− 1.
If we restrict to the case char(k) = 0, we can explicitly describe all minimal Goren-

stein coversG ofA by [15]. Such ringsG = R/J are almost stretched k-algebras of type
(s + 1, 2) and therefore the ideal J is isomorphic to one and only one of the following
ideals:
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(i) Case s+ 1 = 3:

I0,1 =
(
{xixj}1≤i<j≤n,(i,j) ̸=(1,2), x

2
3 − x3

1, x
2
1x2, x

2
2 − x1x2 − x2

1
)

I0,−1/4 =
(
{xixj}1≤i<j≤n,(i,j)̸=(1,2), x

2
3 − x3

1, x
2
1x2, x

2
2 − x1x2 −

1
4
x2

1

)
(ii) Case s+ 1 ≥ 4:

I0,1 =
(
{xixj}1≤i<j≤n,(i,j)̸=(1,2), {x2

i − xs+1
1 }3≤i≤n, x

2
1x2, x

2
2 − x1x2 − xs

1
)

I∞ =
(
{xixj}1≤i<j≤n,(i,j) ̸=(1,2), {x2

i − xs+1
1 }3≤i≤n, x

2
1x2, x

2
2 − xs

1
)

Therefore A has only two minimal non-isomorphic Gorenstein covers. Note that Exam-
ple 2.1.10 is a particular case of this example.

2.2 On self-dual ideals and Gorenstein colength
In the first part of this section we study the link between the family of ideals q of R

such that I⊥ � q and the family of Gorenstein covers of A = R/I . In the second part,
we characterize Artin rings of Gorenstein colength two.

PROPOSITION 2.2.1 Let A be an Artin ring.
(i) LetG = R/J be a Gorenstein cover of A = R/I . Let F be a generator of J⊥. Then
there is an R−module morphism

δF : I⊥ −→ A

defined as follows: for all h ∈ I⊥, δF (h) = a for any a ∈ R such that a ◦ F = h.
It holds

(1) ker(δF ) = (I ◦ F ) ∩ I⊥, im(δF ) = KF + I/I , and
(2) dimk(coker(δF )) ≤ ℓ(G)− ℓ(A).

(ii) There is a set map

∆A : GC(A) −→ HomA(I⊥, A)/A∗

such that ∆A(G) = δF for a (all) generator F of J⊥.
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Proof: (i) Since h ∈ I⊥ ⊂ J⊥ = ⟨F ⟩, there is an a ∈ R such that a ◦F = h. Let b be
an element of R such that b ◦ F = h, then (a− b) ◦ F = 0. Hence a− b ∈ J ⊂ I and
a = b in A. The map δF is a morphism of A-modules. Indeed, let h ∈ I⊥ and a ∈ R
such that a ◦ F = h. For all c ∈ R we get (ac) ◦ F = c ◦ (a ◦ F ) = c ◦ h. Then

δF (c ◦ h) = ac = cδF (h).

Consider h ∈ ker(δF ). If a ∈ R such that a ◦F = h, then a ∈ I . On the other hand,
if h = a◦F with a ∈ I , then δF (h) = 0. Hence we deduce that ker(δF ) = (I ◦F )∩I⊥.
Since dimk I

⊥ = dimk A and ker(δF ) ⊂ I ◦ F , we get

dimk(coker(δF )) = dimk(ker(δF )) ≤ dimk(I ◦ F ).

The map
I
J −→ I ◦ F

a 7→ a ◦ F

is an isomorphism, hence we obtain that

dimk(coker(δF )) ≤ ℓ(G)− ℓ(A).

By the definition ofKF =
(
I⊥ :R ⟨F ⟩

)
, we deduce that im(δF ) = KF + I/I .

(ii) Assume that G = R/J is a Gorenstein cover of A. If F1, F2 are two generators of
J⊥, then there exists an invertible power series u ∈ R∗ such that F2 = u ◦ F1. From
this we can prove that δF1 = uδF2 . �

We write (−)+ = HomA(−, I⊥). We say that an ideal q ⊂ A is self-dual if q ∼= q+.
Let q ⊂ A be a self-dual ideal and consider q

i
↪→ A. This induces an epimorphism

I⊥ ∼= A+ i� q+ and hence a morphism f : I⊥ −→ A such that im(f) = q, see [1,
Remark 3.3]. We say that an isomorphism ϕ : q ∼= q+ satisfies Teter’s condition if
ϕ(x)(y) = ϕ(y)(x) for all x, y ∈ q.

The next step is to link the morphisms δF to self-dual ideals of A. The following
result is [1, Lemma 3.4]. We include it here for readers convenience.

LEMMA 2.2.2 Let q be an ideal of A. The following conditions are equivalent:
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2.2. On self-dual ideals and Gorenstein colength

(i) There is an isomorphism ϕ : q ∼= q+,
(ii) There is an epimorphism f : I⊥ −→ q such that ker(f) = (0 :I⊥ q) = Q⊥ where

q = Q/I .

Proof: Applying the functor (−)+ to 0 −→ q
i−→ A −→ A/q −→ 0, we get the exact

sequence of A-modules

0 −→ (0 :I⊥ q) −→ I⊥ i+

−→ q+ −→ 0.

Assuming (i), f = ϕ−1◦i+ : I⊥ � q is anA-module epimorphism satisfying ker(f) =
ker(i+) = (0 :I⊥ q). Conversely, by (ii), we have an exact sequence of A-modules

0 −→ (0 :I⊥ q) −→ I⊥ f−→ q −→ 0.

Recall that 0 −→ (0 :I⊥ q) −→ I⊥ i+

−→ q+ −→ 0 is also exact. Hence, q ∼= q+. �

PROPOSITION 2.2.3 Given a Gorenstein cover G = R/J of an Artin ring A = R/I , let
F be a generator of J⊥ and q = im(δF ). Then

(i) the ideal q is independent of the generator F of J⊥,
(ii) q is a self-dual ideal by means of an isomorphism ϕ : q ∼= q+ satisfying Teter’s

condition.

Proof: (i) Let G be a second generator of J⊥. There is an invertible element u ∈ R
such that G = u ◦ F . Given a = δG(h) ∈ im(δG), we know that h = a ◦ G ∈ I⊥.
Since h = (au) ◦ F , we get δF (h) = ua ∈ im(δF ). Hence im(δG) ⊂ im(δF ) and by
symmetry we get the claim.
(ii) First we prove that ker(δF ) = (0 :I⊥ q). Given h ∈ ker(δF ), let a be a series in R
such that h = a ◦F . Then a = δF (h) = 0, so a ∈ I . For any x ∈ q, there is y ∈ R such
that x = δF (y ◦ F ), with x− y ∈ I . Then we have

x ◦ h = y ◦ h = y ◦ (a ◦ F ) = a ◦ (y ◦ F ).

Since y ◦ F ∈ I⊥ and a ∈ I , we get a ◦ (y ◦ F ) = 0. Hence x ◦ h = x ◦ h = 0, that is,
h ∈ (0 :I⊥ q).
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Let us now consider h ∈ (0 :I⊥ q), so q ◦ h = 0. Since h ∈ I⊥, we have that
h = a ◦ F for some a ∈ R and then δF (h) = a. Let x ◦ F be a general element of I⊥.
Then x = δF (x ◦ F ) ∈ q and hence

0 = x ◦ h = x ◦ h = x ◦ (a ◦ F ) = a ◦ (x ◦ F ),

Since a ∈ R annihilates a general element of I⊥, we get that a ∈ I . Then δF (h) = a = 0
or, in other words, h ∈ ker(δF ). By Lemma 2.2.2.(ii), q is a self-dual ideal.

Next we prove that ϕ satisfies Teter’s condition. From Lemma 2.2.2 we get that ϕ is
defined as follows. Given α, β ∈ q there exist a, b ∈ KF such that α = a and β = b.
Since ha = a◦F and hb = b◦F are elements in I⊥, then δF (ha) = α and δF (hb) = β.
Recall that ϕ : q ∼= q+ = HomA(q, I⊥), so

ϕ(α) : q −→ I⊥

β 7→ b ◦ ha.

By symmetry, we get that

ϕ(α)(β)− ϕ(β)(α) = b ◦ ha − a ◦ hb = b ◦ (a ◦ F )− a ◦ (b ◦ F ) = 0.

�

LEMMA 2.2.4 Consider a maximal regular sequence a1, . . . , an of R = k[[x1, . . . , xn]]
and polynomials H1, . . . , Hn in S = k[y1, . . . , yn] such that ai ◦ Hj = aj ◦ Hi for
any 1 ≤ i < j ≤ n. Then exists a polynomial F in S such that ai ◦ F = Hi, for any
1 ≤ i ≤ n.

Proof: Let us consider the first terms of Koszul’s resolution ofR defined by the regular
sequence a1, . . . , an:
K• : · · · −→ K2 = R(n

2 ) d2−→ K1 = Rn d1−→ K0 = R −→ R/(a1, . . . , an) −→ 0.
We consider the natural R-basis {ei,j}1≤i<j≤n of K2 and {ei}1≤i≤n of K1. Then

d2(ei,j) = ajei − aiej for 1 ≤ i < j ≤ n and d1(ei) = ai for i = 1, . . . , n.
Dualizing K• we get the exact sequence

K∨
• : 0 −→ (a1, . . . , an)⊥ −→ K∨

0 = S
d∨

1−→ K∨
1 = Sn d∨

2−→ K∨
2 = S(n

2 ) −→ . . .
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where
d∨

1 (F ) = (a1 ◦ F, . . . , an ◦ F )

and
d∨

2 (F1, . . . , Fn) =
∑

1≤i<j≤n

(ai ◦ Fj − aj ◦ Fi) ei,j .

Since (H1, . . . , Hn) ∈ ker(d∨
2 ) there exists F ∈ S such that d∨

1 (F ) = (H1, . . . , Hn),
i.e. ai ◦ F = Hi, i = 1, . . . , n. �

Now we give an analogous characterization of Artin rings of Gorenstein colength
two in terms of its Macaulay inverse system and we improve the result [1, Theorem 5.5]
by weakening the hypothesis I ⊂ m6.

THEOREM 2.2.5 Let A = R/I be an Artin ring with maximal ideal n and socle degree
s ≥ 1. We assume that A is neither Gorenstein nor Teter, I ⊂ m5 and char(k) ̸= 2.
Then the following conditions are equivalent:

(i) gcl(A) = 2,
(ii) after a linear isomorphism of R there exists a polynomial F ∈ S of degree s + 1

or s+ 2 such that I⊥ = ⟨x1 ◦ F, . . . , xn−1 ◦ F, x2
n ◦ F ⟩,

(iii) there exists an epimorphism of A-modules f : I⊥ −→ q, where q is a self-dual
ideal ofA by means of an isomorphism satisfying Teter’s condition and ℓ(A/q) =
2.

In particular, if gcl(A) = 2 then the Cohen-Macaulay type of A is n.

Proof: LetF be a generator of the inverse system of aminimal cover ofA. Let q = Q/I

be the module im(δF ).

(i) implies (iii). By Theorem 2.1.7 and Proposition 2.2.1 we have that Q = KF , hence
ℓ(A/q) = ℓ(R/KF ) = 2. If we consider the epimorphism δF : I⊥ −→ q, then by
Proposition 2.2.3 we get (iii).

(iii) implies (ii). Since ℓ(R/Q) = ℓ(A/q) = 2, after an analytic isomorphism of R
we may assume that q = Q/I , where Q = (x1, . . . , xn−1, x

2
n). Since q is self-dual, by

Lemma 2.2.2, ker f = Q⊥ = ⟨yn⟩ ⊂ I⊥.
Let G1, . . . , Gn be elements of I⊥ such that f(Gi) = xi, with 1 ≤ i ≤ n − 1, and

f(Gn) = x2
n. Consider α ∈ I⊥, then we have f(α) =

∑n−1
i=1 λixi + λnx

2
n. Hence
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f(α −
∑n−1

i=1 λiGi − λnGn) = 0 and α ∈ ⟨G1, . . . , Gn⟩ + ker f . This implies that
I⊥ = ⟨G1, . . . , Gn⟩+ ker f .

Notice that since I ⊂ m5, then S≤4 ⊂ I⊥ and S≤3 ⊂ m ◦ I⊥. Since Q⊥ = ⟨yn⟩ ⊂
S≤1 ⊂ S≤3, then ker f ⊂ m ◦ I⊥ and hence

I⊥ = ⟨G1, . . . , Gn⟩+ m ◦ I⊥.

By Nakayama Lemma we deduce that G1, . . . , Gn is a minimal system of generators of
I⊥.

For all 1 ≤ i < j ≤ n− 1 it holds

f(xi ◦Gj − xj ◦Gi) = xixj − xjxi = 0,

so there is αi,j = λi,j +µi,jyn ∈ Q⊥, λi,j , µi,j ∈ k, such that xi ◦Gj−xj ◦Gi = αi,j .
By symmetry, we have αj,i = −αi,j . Using the same argument for all i = 1, . . . , n− 1,
there is αi,n = λi,n +µi,nyn ∈ Q⊥, λi,n, µi,n ∈ k, such that xi ◦Gn−x2

n ◦Gi = αi,n.
By symmetry again, αn,i = −αi,n.

Let us consider the elements of I⊥

Hi = Gi −
1
2

i−1∑
l=1

ylαl,i + 1
2

n−1∑
l=i+1

ylαi,l + 1
2
y2

nαi,n,

for i = 1, . . . , n− 1, and

Hn = Gn −
1
2

n−1∑
l=1

ylαl,n.

Since ylαi,j , y
2
nαi,n ∈ S≤3 ⊂ m ◦ I⊥ we get that H1, . . . , Hn is a minimal system of

generators of I⊥ as well.
For all 1 ≤ i < j ≤ n− 1 we have

xi ◦Hj − xj ◦Hi = xi ◦Gj −
1
2
αi,j − xj ◦Gi −

1
2
αi,j = 0

and
xi ◦Hn − x2

n ◦Hi = xi ◦Gn −
1
2
αi,n − x2

n ◦Gi −
1
2
αi,n = 0.

Since x1, . . . , xn−1, x
2
n is a maximal R-sequence of R, by Lemma 2.2.4 there exists
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2.2. On self-dual ideals and Gorenstein colength

F ∈ S such that xi ◦ F = Hi, i = 1, . . . , n, and x2
n ◦ F = Hn. Hence

I⊥ = ⟨x1 ◦ F, . . . , xn−1 ◦ F, x2
n ◦ F ⟩.

(ii) implies (i). Since (x1, . . . , xn−1, x
2
n) ⊂ KF , by Proposition 2.1.6.(iii) ℓ(G) −

ℓ(A) = ℓ(R/KF ) ≤ 2 and hence gcl(A) = 2.
If gcl(A) = 2, combining (ii) and (iii) we get µ(q) ≤ µ(I⊥) ≤ n and hence the

Cohen-Macaulay type of A is n. �

REMARK 2.2.6 Observe that condition I ⊂ m5 of last result is indeed a restriction. In
all previous examples, I ⊂ m5 is not satisfied and yet Theorem 2.2.5 still holds except
for the Cohen-Macaulay type. The key fact used in the proof to compute the Cohen-
Macaulay type of R/I is that µ(q) ≤ τ(R/I) ≤ n. Recall that q = KF /I , KF =
(x1, . . . , xn−1, x

2
n) and I ⊂ m2. Therefore µ(q) = dimk KF /(mKF + I) can be either

n or n − 1 depending on whether the ideal I is contained in mKF or not. Under the
conditions of the theorem, it is always true that I ⊂ mKF . In fact, I ⊂ m3 is a sufficient
- though not necessary - condition to ensure that. On the other hand, it can be checked
that self-dual ideals q = KF /I of A = R/I from Example 2.1.10 to Example 2.1.13
are minimally generated by n − 1 elements. Hence the Cohen-Macaulay type of such
rings is allowed to be n − 1. See Example 2.2.10 for rings that actually are under the
conditions of Theorem 2.2.5.

REMARK 2.2.7 It can be proved that for any k-algebra of length less or equal than 6,
both conditions I ⊂ m5 and char(k) ̸= 2 can be dropped. Moreover, in Table 5.2 of
Chapter 5 we provide a complete list of all analytic types of A such that ℓ(A) ≤ 6 using
the classification given by Poonen in [40].

Let us consider again some of the examples of rings of Gorenstein colength 2 we
showed at the end of Section 2.1. We explicitly describe the maps δF provided by gen-
erators F of inverse systems of the minimal Gorenstein covers and compute the corre-
sponding self-dual ideals.

EXAMPLE 2.2.8 (See Example 2.1.9.) Consider the ring A = k[[x1, x2]]/
(
x2

1, x1x
2
2, x

4
2
)
.

Recall that the polynomials of different degree F1 = y1y
3
2 and F2 = y2

1y2 + y5
2 generate

inverse systems of two non-isomorphic minimal covers of A. By Proposition 2.2.1, δF1

is a morphism of R-modules with ker(δF1) = K⊥
F1

= ⟨y2⟩ and im δF1 = KF1/I .
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Therefore, this is an epimorphism:

δF1 : I⊥ = ⟨y1y2, y
3
2⟩ −→ q = (x1, x

2
2)/I

y1y2 7−→ x2
2

y3
2 7−→ x1

By Lemma 2.2.2, q = (x1, x
2
2)/I is a self-dual ideal of A. Also ℓ(A/q) = ℓ(K⊥

F1
) = 2

and the same works for δF2 :

δF2 : I⊥ −→ q = (x1, x
2
2)/I

y1y2 7−→ x1

y3
2 7−→ x2

2

Note that, despite the fact thatF1 andF2 are polynomials of different degree, the self-dual
ideals given by the images of the correspondingmorphisms δF1 and δF2 are equal because
KF1 = KF2 = (x1, x

2
2). Observe that the self-dual ideal q is minimally generated by

x1, x
2
2 and hence µ(q) = τ(A) = 2.

EXAMPLE 2.2.9 (See Example 2.1.13.) For any Artin stretched algebra A with τ(A) =
n− 1 we can consider the generator F = ys+1

1 + y1y
2
n + y2

2 + · · ·+ y2
n−1 of the inverse

system of a minimal Gorenstein cover G of A. Since KF = (x1, . . . , xn−1, x
2
n), then

ker δF = ⟨y2⟩ and im δF = (x1, . . . , xn−1, x
2
n)/I .

δF : I⊥ = ⟨ys
1 + y2

n, y2, . . . , yn−1⟩ −→ q = (x1, . . . , xn−1, x
2
n)/I

ys−1
1 + y2

n 7−→ x1

y2 7−→ x2
...

...

yn−1 7−→ xn−1

Note that the self-dual ideal q is minimally generated by the n−1 elements x1, . . . , xn−1.

We now provide a family {R/It}t≥3 of Artin localk-algebras of Gorenstein colength
2 such that It ⊂ mt. For any t ≥ 5, the ring R/It is under the conditions of Theo-
rem 2.2.5.
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2.2. On self-dual ideals and Gorenstein colength

EXAMPLE 2.2.10 Consider the family of ideals Jt = (xt
1, ..., x

t
n) of R = k[[x1, ..., xn]],

with t ≥ 3 and n ≥ 2. Gt = R/Jt is a Gorenstein Artin ring with inverse system J⊥
t =

⟨yt−1
1 · · · yt−1

n ⟩, socdegGt = n(t − 1) and symmetric Hilbert function. We are only
interested in computing the first three terms of its Hilbert function, which do not depend
on t, as we will see now. Since t ≥ 3, all degree 2 polynomials are in J⊥ and hence
HFGt

(2) = n(n+ 1)/2. Therefore, HFGt
= {1, n, n(n+ 1)/2, . . . , n(n+ 1)/2, n, 1}.

Contracting by an appropriate ideal K = (x1, . . . , xn−1, x
2
n) we obtain a sub-R-

module I⊥
t of J⊥

t such that ℓ(J⊥
t )− ℓ(I⊥

t ) = 2. Indeed,

I⊥
t = K ◦ J⊥

t = ⟨yt−2
1 yt−1

2 · · · yt−1
n , . . . , yt−1

1 · · · yt−1
n−2y

t−2
n−1y

t−1
n , yt−1

1 · · · yt−1
n−1y

t−3
n ⟩.

Hence the Hilbert function ofAt = R/It only changes in pieces of degreen(t−1)−1
and n(t − 1): HFAt

= {1, n, n(n + 1)/2, . . . , n(n + 1)/2, n − 1}. Clearly Gt is a
Gorenstein cover of At but we want to prove that it is minimal. For any n ≥ 2, At is not
Gorenstein because τ(At) = µ(I⊥

t ) = n.
Let us now suppose thatAt is Teter. Then, by [20], there exists a Gorenstein minimal

coverG′
t ofAt with Hilbert function {1, n, n(n+1)/2, . . . , n(n+1)/2, n−1, 1}which is

no longer symmetric due to the piece of degree n(t−1)−1. We will use the shell formula
to prove that no Gorenstein ring could have such Hilbert function, see Theorem 1.2.9
for more details. Since Q(0) is an Artin Gorenstein k-algebra with symmetric Hilbert
function, all HFQ(i)(0) must be zero for any i ≥ 1 and so must be its symmetric pieces.
Hence a1 = HFQ(0)(1) = HFQ(0)(n(t−1)−1) = n−1 and any possible decomposition
must start as in the table below:

i 0 1 2 . . . n(t− 1)− 2 n(t− 1)− 1 n(t− 1)

G′
t 1 n n(n+ 1)/2 . . . n(n+ 1)/2 n− 1 1

Q(0) 1 n− 1 a2 . . . a2 n− 1 1

Q(1) 0 b1 b2 . . . b1 0 0

Q(2) 0 c1 c2 . . . 0 0 0

Macaulay conditions [5, Theorem 4.2.10] give us the upper bound HFQ(0)(1)⟨1⟩ for
HFQ(0)(2). Hence

a2 = HFQ(0)(2) ≤ HFQ(0)(1)⟨1⟩ =

 n

2

 = n(n− 1)
2

.
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Chapter 2. Low Gorenstein colength

On the other hand, b1 = n(n+ 1)/2− a2 ≥ n. But then n− 1 + b1 ≥ 2n− 1 and
hence HFQ(0)(1) + HFQ(1)(1) > HFG′

t
(1) = n for any n ≥ 2. Therefore, there is no

Gorenstein ring with such Hilbert function and At is not Teter. Then gcl(At) = 2.

2.3 Higher Gorenstein colength
When dealing with rings of Gorenstein colength higher than 2 we have two main dif-

ferences with respect to the low colength scenario. Let us focus on the simplest situation
to provide some insight into the difficulties we are facing: gcl(A) = 3.

On one hand, since Proposition 2.1.6 holds for arbitrary colength, we have that any
KF corresponding to aminimal Gorenstein coverG = R/AnnR F ofA = R/I satisfies
ℓ(R/KF ) = 3. Unlike in case ℓ(R/KF ) ≤ 2, now KF has no longer a unique analytic
type. See Appendix B for a formal definition of analytic type. Poonen’s classification in
[40] provides two different analytic types for any idealKF ⊂ R such that ℓ(R/KF ) = 3:

KF =

 (L1, . . . , Ln−1, L
3
n),

(L1, . . . , Ln−2) + (Ln−1, Ln)2,

where L1, . . . , Ln are independent linear forms in R and n = dimR.
On the other hand, we do not knowwhether the embedding dimension of the minimal

Gorenstein covers is preserved or is increased.
Therefore, we pose the following two questions for rings of higher colength:

Quesࢢon A: Given gcl(A) = t, is there a unique analytic type of idealsK ⊂ R such that
ℓ(R/K) = t eligible to be K = (I⊥ :R J⊥), where G = R/J is a minimal cover of
A = R/I?

Quesࢢon B: Given any Artin ring A = R/I , is there a minimal Gorenstein cover G =
R/J of A such that embd(G) = embd(A)?

The answer to the first question is no. We show in the following example that both
analytic types ofK such that ℓ(R/K) = 3 can occur as colon ideals of inverse systems:

EXAMPLE 2.3.1 Consider the family of ideals Jt = (xt
1, x

t
2) of R = k[[x1, x2]], with

t ≥ 5. Gt = R/Jt is a Gorenstein Artin ring with inverse system generated by the
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2.3. Higher Gorenstein colength

polynomial F = yt−1
1 yt−1

2 and symmetric Hilbert function

HFGt = {1, 2, 3, . . . , t− 1, t, t− 1, . . . , 2, 1}.

Contracting byK1 = (x2
1, x1x2, x

2
2) we obtain

I⊥
1,t = K1 ◦ J⊥

t = ⟨yt−3
1 yt−1

2 , yt−2
1 yt−2

2 , yt−1
1 yt−3

2 ⟩,

with HFR/I1,t
= {1, 2, . . . , t− 1, t, t− 1, . . . , 4, 3}.

Contracting byK2 = (x1, x
3
2) we get

I⊥
2,t = K2 ◦ J⊥

t = ⟨yt−2
1 yt−1

2 , yt−1
1 yt−4

2 ⟩,

with HFR/I2,t
= {1, 2, . . . , t− 1, t, t− 1, . . . , 4, 2, 1}.

In codimension 2, Theorem 1.2.11 ensures that the Hilbert function h with minimal
length that admits a Gorenstein ring and satisfies HFA(i) ≤ h(i) for any i ≥ 0 is
h = {1, 2, . . . , t− 1, t, t− 1, . . . , 4, 3, 2, 1}. Therefore, gcl(R/Ii,t) = 3 for i = 1, 2.

Summing up, for any t ≥ 5, there are two non-isomorphic rings A1,t and A2,t of
Gorenstein colength 2 that share the same minimal Gorenstein cover Gt:

• A1,t = R/(xt
1, x

t
2, x

t−1
1 xt−2

2 , xt−2
1 xt−1

2 ) is a family of ringswith Cohen-Macaulay
type 3 and colon idealK1.

• A2,t = R/(xt
1, x

t
2, x

t−1
1 xt−3

2 ) is a family of rings with Cohen-Macaulay type 2
and colon idealK2.

Regarding the embedding dimension of minimal Gorenstein covers, even for Goren-
stein colength 3, an analogous argument to the one used in Theorem 2.1.7 only works to
prove embd(A) = embd(G) for the analytic typeKF = (L1, . . . , Ln−2)+(Ln−1, Ln)2.

However, we do have bounds on the embedding dimension that can be deduced di-
rectly from Proposition 2.1.6 and therefore hold for any arbitrary colength:

PROPOSITION 2.3.2 Let G = R/J be a minimal Gorenstein cover of A = R/I . Then

embd(A) ≤ embd(G) ≤ τ(A) + gcl(A)− 1.

Proof: Set A = R/I and G = R′/J such that embd(A) = dimR and embd(G) =
dimR′. We denote by m and m′ the maximal ideals of R and R′, respectively. From
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Chapter 2. Low Gorenstein colength

Proposition 2.1.6.(i), it is easy to deduce thatKF /(mKF + J) ≃ I⊥/(m ◦ I⊥). Hence
τ(A) = dimk KF /(mKF + J) by [20, Proposition 2.6]. Then

embd(G) + 1 = dimk R
′/(m′)2 ≤ dimk R

′/(mKF + J) = gcl(A) + τ(A),

where the last equality follows from Proposition 2.1.6.(iii). �

The expression τ(A) + gcl(A) − 1 can be arbitrarily higher than n. However, no
examples of minimal Gorenstein covers of higher embedding dimension are known so
far. In Chapter 5 we provide more insight about the bound on embd(G) for certain
families of Artin rings.

Let us now summarize the bounds on Gorenstein colength and socle degree that we
do have available in the general case:

PROPOSITION 2.3.3 Let A = R/I be a non-Gorenstein Artin ring with embd(A) =
dimR = n and G = R′/J a minimal Gorenstein cover of A. Then

(i) socdegA < socdegG,
(ii) socdegG < gcl(A) + socdegA,
(iii) gcl(A) ≥ n− τ(A) + 1.

Proof: (i) Consider a generator F of J⊥. Since A is not Gorenstein, there exists an
ideal K ⊂ R with ℓ(R/K) = gcl(A) ≥ 1 such that I⊥ = K ◦ F . Then any H ∈ I⊥

has degree at most degF − 1, hence socdegA < socdegG.
(ii) Following the same notation, since ℓ(R/K) = gcl(A), thenmgcl(A) ⊆ K and hence
mgcl(A) ◦ F ⊆ I⊥. Therefore, degF − gcl(A) ≤ socdegA.
(iii) Direct from Proposition 2.3.2. �

Another interesting property that holds for low colength is the inclusion of ideals
I2 ⊂ J ⊂ I , for any minimal Gorenstein cover G = R/J of A = R/I , see Theo-
rem 2.1.7. It is natural to ask whether this also occurs in higher colength. Let us give an
equivalent condition:

LEMMA 2.3.4 Consider an Artin local ring A = R/I and a Gorenstein cover G = R/J

of A. The following conditions are equivalent:

(i) I2 ⊂ J ⊂ I ,
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(ii) I ⊂ KF .

Proof: (i)⇒ (ii). I2 is contained in J , hence the contraction I2 ◦ J vanishes. In other
words, I ◦ (I ◦ F ) = 0. Thus I ◦ F is contained in I⊥ = KF ◦ F and then I ⊂ KF .

(ii)⇒ (i). From I ⊂ KF , it follows that I2 ⊂ IKF and hence

I2 ◦ F ⊆ (IKF ) ◦ F = I ◦ (KF ◦ F ) = I ◦ I⊥ = 0.

Therefore, I2 ⊂ J . �

Again we are able to prove that the inclusion of ideals I2 ⊂ J ⊂ I holds for certain
families of rings:

PROPOSITION 2.3.5 Let A = R/I be an Artin ring. In the following cases we have that
there exist a minimal Gorenstein cover G = R/J of A such that I2 ⊂ J ⊂ I:

(i) ℓ(A) ≤ 6,
(ii) A is stretched,
(iii) I = mt for some t ≥ 1,
(iv) dim(R) = 2.

Proof:
For the proofs of (i), (ii), (iii), see Chapter 5.
(iv) Assume that dim(R) = 2. From Briançon-Skoda theorem we have I2 ⊂ J for
all reduction J of I , see [34]. Recall that any minimal reduction of I is a complete
intersection, in particular a Gorenstein ideal. Hence we get the claim. �
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CHAPTER 3

Variety of minimal Gorenstein covers

In Chapter 2 we provided a characterization of k-algebras of lowGorenstein colength
A = R/I in terms of theMacaulay’s inverse system of I . Evenmore, we connected rings
A of arbitrary colength twith their minimal Gorenstein coversG = R/AnnR F through
colon ideals KF of R of minimal length ℓ(R/KF ) = t such that I⊥ = KF ◦ F , see
Proposition 2.1.6. Two natural questions arise:

Quesࢢon A: How can we explicitly compute the Gorenstein colength t of a given local
Artin k-algebra A?

Quesࢢon B: Which are all the minimal Gorenstein covers G = R/AnnR F of a given
local Artin k-algebra A?

In [20, Proposition 4.2], Elias and Silva introduce the notion of Teter variety of A as
the set of points [F ] ∈ PN

k , for a suitable N , such that G = R/AnnR F is a minimal
Gorenstein cover of A such that ℓ(G) − ℓ(A) = 1. The result in [20, Proposition 4.5]
already suggests that a method to explicitly compute such covers is possible.

In this chapter we address questions A and B by extending the idea of Teter variety
in Gorenstein colength 1 to the variety of minimal Gorenstein coversMGC(A) where
A has arbitrary Gorenstein colength t.

Observe that, given an ideal K of R, we can ask whether it is possible to find a
polynomial F defining a cover G = R/AnnR F of A = R/I such that I⊥ = K ◦ F .
Our key contribution is the introduction of an inverse operation to contraction of sub-
R-modules of S and a recursive procedure to effectively compute the resulting module
based on the integration method for inverse systems proposed by Mourrain in [39].

In Section 3.1 we introduce this notion of integral of an R-module M of S with
respect to an idealK of R, denoted by

∫
K
M . By Definition 3.1.1, for any F in S such
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that I⊥ = K ◦ F we have

F ∈
∫

K

I⊥.

Therefore, if gcl(A) = t, then all polynomials defining minimal Gorenstein covers of
A = R/I lay in some sub-R-module

∫
K
I⊥ ofS, for suitable idealsK with ℓ(R/K) = t.

This approach is exploited in Section 3.2 by identifying the inverse system of a minimal
Gorenstein cover G = R/AnnR F with the class of any of its generators F in S in
the R-module

∫
mt I

⊥/I⊥. This connection is described in detail in Proposition 3.2.5.
The section ends with Theorem 3.2.7, that sets the theoretical background to compute a
k-basis of

∫
K
I⊥ extending Mourrain’s integration method.

In Section 3.3, the main result of this chapter, Theorem 3.3.2, proves the existence of
a quasi-projective sub-varietyMGCn(A) of Pk

(∫
mt I

⊥/I⊥)whose set of closed points
are associated to polynomials F in S such thatG = R/AnnR F is a minimal Gorenstein
cover of A.

Section 3.4 is devoted to algorithms: explicit methods to compute ak-basis of
∫
mt I

⊥

andMGC(A) for colengths 1 and 2. In this context, we give a precise description of the
varieties of minimal Gorenstein covers for rings of low Gorenstein colength:

THEOREM 3.0.1 (See Theorem 3.4.6.) Let A = R/I be a Teter ring with n ≥ 2, let h
be the dimension of

∫
m
I⊥/I⊥ as k-vector space and let a be the homogeneous ideal

defined in Section 3.4.2 in a polynomial ring with h variables. Then

MGC(A) = Ph−1
k \V+(a).

Moreover, for any non-Gorenstein Artin ring A, gcl(A) = 1 if and only if a ̸= 0.

THEOREM (See Corollary 3.4.20.) Let A = R/I be a ring of Gorenstein colength 2 and
let h be the dimension of

∫
m2 I

⊥/I⊥ as k-vector space. Let b be a homogeneous ideal
in the ring of polynomials with h variables and let a and c be bihomogeneous ideals in
the ring of polynomials with h + n variables as defined in Section 3.4.3. Let π1 be the
projection map from Ph−1

k × Pn−1
k to Ph−1

k . Then

MGC(A) = V+(b)\π1 (V+(c) ∩ V+(a)) .

Finally, in Section 3.5 we provide several examples of varieties of minimal Goren-
stein covers and list the comptutation times of MGC(A) for all analytic types of k-

52



3.1. Integrals and inverse systems

algebras with gcl(A) ≤ 2 appearing in Poonen’s classification, see [40].
All algorithms appearing in this chapter have been implemented in Singular, [11], by

creating a new library, see Appendix A.

Part of the results of this chapter will be published in [17].

3.1 Integrals and inverse systems

Consider an Artin local ring A = R/I and fix an idealK ofR. We want to find, if it
exists, a polynomial F ∈ S such thatK ◦F = I⊥. In other words, we want a Gorenstein
cover G = R/AnnR F such thatK = (I⊥ :R ⟨F ⟩). Therefore, it makes sense to think
of an inverse operation to contraction:

DEFINITION 3.1.1 Consider anR-submoduleM of S. We define the integral ofM with
respect to the idealK, denoted by

∫
K
M , as∫

K

M = {G ∈ S | K ◦G ⊂M}.

Note that the set N = {G ∈ S | K ◦ G ⊂ M} is, in fact, a sub-R-submodule
N of S equipped with the contraction structure. Indeed, given G1, G2 ∈ N we have
K ◦ (G1 + G2) = K ◦ G1 + K ◦ G2 ⊂ M , hence G1 + G2 ∈ N . For all a ∈ R and
G ∈ N we haveK ◦ (a ◦G) = aK ◦G = a ◦ (K ◦G) ⊂M , hence a ◦G ∈ N .

PROPOSITION 3.1.2 With the above notations it holds∫
K

M =
(
KM⊥)⊥

.

Proof: Let G ∈
(
KM⊥)⊥. Then

(
KM⊥) ◦ G = 0, soM⊥ ◦ (K ◦G) = 0. Hence

K ◦ G ⊂ M , i.e. G ∈
∫

K
M . We have proved that

(
KM⊥)⊥ ⊆

∫
K
M . Take G in∫

K
M . By definition,K ◦G ⊂M , soM⊥ ◦ (K ◦G) = 0 and hence

(
M⊥K

)
◦G = 0.

Therefore, G ∈
(
M⊥K

)⊥. �

One of the key results of this paper is the effective computation of
∫

K
M that we

present in Algorithm 1, see Section 3.4.1. Proposition 3.1.2 provides a method to com-
pute the integral of a module consisting of two Macaulay duals. As shown in Sec-
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tion A.1.4, this can be an expensive computation. Therefore, Algorithm 1 is instead
based on Mourrain’s integration method, see Theorem 3.2.7, that we will explain next.

Before moving on, let us list some of the basic properties of integrals that can be
proved directly from the definition of integral:

PROPOSITION 3.1.3 Given idealsK,L of R and sub-R-modulesM,N of S, we have

(i) IfK ⊂ L, then
∫

L
M ⊂

∫
K
M.

(ii) IfM ⊂ N , then
∫

K
M ⊂

∫
K
N.

(iii)
∫

R
M = M .

(iv) K ◦
∫

K
M ⊂M .

(v) M ⊂
∫

K
K ◦M .

We give now two examples to show that equality does not hold in general for state-
ments (iv) and (v).

EXAMPLE 3.1.4 Let us considerR = k[[x1, x2, x3]],K = (x1, x2, x3), S = k[y1, y2, y3],
and M = ⟨y1y2, y

3
3⟩. We have

∫
K
M =

(
KM⊥)⊥ = ⟨y2

1 , y1y2, y1y3, y
2
2 , y2y3, y

4
3⟩,

andK ◦
∫

K
M = m ◦ ⟨y2

1 , y1y2, y1y3, y
2
2 , y2y3, y

4
3⟩ = ⟨y1, y2, y

3
3⟩ (M.

EXAMPLE3.1.5 Using the same notation as in Example 3.1.4, we getK◦M = ⟨y1, y2, y
2
3⟩,

and ∫
K

(K ◦M) =
(
K(K ◦M)⊥)⊥ = ⟨y2

1 , y1y2, y1y3, y
2
2 , y2y3, y

2
3⟩ *M.

In the particular case where we integrate with respect to a principal monomial ideal
K = (xα) in R, the expected equality for integrals

xα ◦
∫

xα

M = M

holds. Indeed, for anym ∈M , takeG = yαm. Since xα ◦yα = 1, then xα ◦yαm = m

and the equality is reached.

REMARK 3.1.6 In general we cannot extend the above identity to linear forms. Consider
k = C, L = x1 + ix2 and P = y1 + iy2. Then L ◦

∫
L
⟨P ⟩ ( ⟨P ⟩.

Let us now consider an even more particular case: the integral of a cyclic module
M = ⟨F ⟩ with respect to the variable xi. Since the equality xi ◦

∫
xi
M = M holds,
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there exists G ∈ S such that xi ◦ G = F . This polynomial G is not unique because it
can have any constant term with respect to xi, that is G = yiF + p(y1, . . . , ŷi, . . . , yn).
However, if we restrict to the non-constant polynomial we can define the following:

DEFINITION 3.1.7 The i-primitive of a polynomial F ∈ S with respect to contraction
is the polynomial G ∈ S, denoted by

∫
i
F , such that

(i) xi ◦G = F ,
(ii) G|yi=0 = 0.

This notion of i-primitive of a polynomial F ∈ S with respect to the variable xi ∈ R
was provided in [23] using the derivation structure:

DEFINITION 3.1.8 The i-primitive of a polynomial F ∈ S with respect to derivation is
the polynomial G ∈ S, denoted by

∫
i
F , such that

(i) ∂yiG = F ,
(ii) G|yi=0 = 0.

Therefore, we can think of the integral of a module with respect to an ideal as a
generalization of the i-primitive proposed by Elkadi and Mourrain.

From now on, when we use the notation
∫

xi
F it refers to the contraction case. Since

we are considering the R-module structure given by contraction instead of derivation,
the i-primitive is precisely ∫

i

F = yiF.

Indeed, xi ◦ (yiF ) = F and (yiF ) |yi=0= 0, hence (i) and (ii) hold. Unique-
ness can be easily proved. Consider G1, G2 to be i-primitives of F . Then xi ◦ (G1 −
G2) = 0 and hence G1 − G2 = p(y1, . . . , ŷi, . . . , yn). Clearly (G1 − G2)|yi=0 =
p(y1, . . . , ŷi, . . . , yn). On the other hand, (G1 − G2)|yi=0 = G1|yi=0 − G2|yi=0 = 0.
Hence p = 0 and G1 = G2.

REMARK 3.1.9 Note that, by definition, xk ◦
∫

k
F = F . Any F can be decomposed in

F = F1 +F2, where the first term is a multiple of yk and the second has no appearances
of this variable. Then∫

k

xk ◦ F =
∫

k

xk ◦ F1 +
∫

k

xk ◦ F2 = F1 +
∫

k

0.
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Therefore, in general,

F1 =
∫

k

xk ◦ F ̸= xk ◦
∫

k

F = F.

However for all l ̸= k ∫
l

xk ◦ F = ylF1

yk
= xk ◦

∫
l

F.

Now consider an ideal I ofR generated by f1, . . . , fm. FromDefinition 1.4.5 we can
deduce that polynomialsΛ in S that belong to the inverse system I⊥ can be characterized
as follows by imposing conditions only on the generators of I:

fi ◦ Λ = 0, 1 ≤ i ≤ m. (3.1)

Observe that the resulting equations are not linear in general. If we want linear condi-
tions, we can use the equivalent characterization of I⊥ given by Definition 1.4.12:

(f ◦ Λ)(0) = 0, for any f ∈ I. (3.2)

From the proof of Proposition 1.4.14 we know that it is not enough to impose 3.2 only on
f1, . . . , fm. The following example shows that there are polynomials Λ ∈ S that satisfy
3.2 but not 3.1 on the generators of I .

EXAMPLE 3.1.10 Consider the ideal I = (x1x2, x
3
1 − x2

2) of R = k[[x1, x2]] and the
polynomial Λ = y2

1y2 of S = k[y1, y2]. Note that the condition (f ◦ Λ) (0) = 0 holds
for the generators of I:

(
x1x2 ◦ y2

1y2
)

(0) = 0,((
x3

1 − x2
2
)
◦ y2

1y2
)

(0) = 0.

But x1x2 ◦ y2
1y2 = x and

(
x3

1 − x2
2
)
◦ y2

1y2 = 0, hence Λ /∈ I .

To overcome this problem, Elkadi andMourrain add some extra conditions involving
integrals to 3.2. In [23, Theorem 7.36], they characterize the elements Λ of the inverse
system I⊥ up to a certain degree d.

We will rewrite both the theorem and the proof using the contraction structure for
the sake of completeness. But first, let us make a few comments on the notation we will
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use and give a technical lemma regarding some properties of the i-primitives that will be
needed for the proof. Given an Artin ring A = R/I with s = socdeg(A),

• Dd stands for the sub-R-module I⊥ ∩ S≤d of S, for any 1 ≤ d ≤ s;
• b|yj=a, where b ∈ S and a ∈ k, denotes b(y1, . . . , yj−1, a, yj+1, . . . , yn).

LEMMA 3.1.11 Consider a polynomial b ∈ S. Then

b |yk+1=···=yn=0 +
∫

k+1
xk+1 ◦ b |yk+2=···=yn=0 + · · ·+

∫
n

xn ◦ b = b.

Proof: Since any polynomial b ∈ S can be decomposed as b0,n+bn such that bn = yncn

and b0,n ∈ k[y1, . . . , yn−1], then∫
n

xn ◦ b =
∫

n

xn ◦ bn =
∫

n

cn = yncn = bn.

Now decompose b0,n = b0,n−1 +bn−1 with bn−1 = yn−1cn−1, where cn−1 is a polyno-
mial in k[y1, . . . , yn−1] and b0,n−1 ∈ k[y1, . . . , yn−2]. Since b = b0,n−1 + bn−1 + bn,
then ∫

n−1
xn−1 ◦ b |yn=0=

∫
n−1

xn−1 ◦
(
b0,n−1 + bn−1) =

∫
n−1

xn−1 ◦ bn−1 =

=
∫

n−1
cn−1 = yn−1cn−1 = bn−1.

By recurrence, we have that for any k < l ≤ n−1, we can decompose b0,l+1 = b0,l +bl,
where b0,l ∈ k[y1, . . . , yl−1] and bl = ylcl, with cl ∈ k[y1, . . . , yl]. Then

b = b0,l + bl + bl+1 + · · ·+ bn,

and all the terms in bl+1, . . . , bn contain at least one of the variables yl+1, . . . , yn. Hence

∫
l

xl ◦ b|yl+1=···=yn=0 =
∫

l

xl ◦
(
b0,l + bl

)
=
∫

l

xl ◦ bl =
∫

l

cl = ylcl = bl.

Finally, b0,k+1 = b0,k + bk, with b0,k ∈ k[y1, . . . , yk−1] and bk = ykck, with ck in
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k[y1, . . . , yk]. Then b = b0,k + bk + bk+1 + · · ·+ bn, hence

b |yk+1=···=yn=0= b0,k + bk

and we are done. �

We are now in the position to state [23, Theorem 7.36]. Note that, since Ds = I⊥,
this result leads to the algorithm proposed by Mourrain in [39] to effectively compute
a k-basis of the inverse system. For the sake of completeness, we rewrite the complete
proof using the contraction setting instead of derivation.

THEOREM 3.1.12 (Elkadi-Mourrain) Given an ideal I = (f1, . . . , fm) and d > 1. Let
b1, . . . , btd−1 be a k-basis of Dd−1. The polynomials of Dd with no constant term are of
the form

Λ =
td−1∑
j=1

λ1
j

∫
1
bj |y2=···=yn=0 +

td−1∑
j=1

λ2
j

∫
2
bj |y3=···=yn=0 + · · ·+

td−1∑
j=1

λn
j

∫
n

bj , (3.3)

where λk
j ∈ k, such that

td−1∑
j=1

λk
j (xl ◦ bj)−

td−1∑
j=1

λl
j(xk ◦ bj) = 0, 1 ≤ k < l ≤ n, (3.4)

and
(fi ◦ Λ) (0) = 0, for 1 ≤ i ≤ m. (3.5)

Proof: Wewill first prove that any element ofDd ⊂ k[y1, . . . , yn]with no constant term
can be written in the form of 3.3 and satisfies both 3.4 and 3.5. Consider a polynomial
Λ in Dd with no constant term. There is a unique decomposition

Λ = Λ1(y1, . . . , yn) + Λ2(y2, . . . , yn) + · · ·+ Λ(yn)

such that, for any 1 ≤ i ≤ n, all monomials in Λi are in k[yi, . . . , yn]\k[yi+1, . . . , yn],
that is, Λi is a multiple of yi. Hence Λi |yi=0= 0 and, by Definition 3.1.7,∫

i

xi ◦ Λi = Λi.
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On the other hand, m ◦ Dd ⊂ Dd−1. Indeed, Λ ∈ Dd = I⊥ ∩ S≤d is equivalent to
Λ ∈ I⊥ and deg Λ ≤ d. Because of the R-module structure of I⊥, any contraction of Λ
remains in the inverse system and clearly deg(xi ◦ Λ) ≤ d− 1.

In particular, x1 ◦ Λ = x1 ◦ Λ1 ∈ Dd−1 = ⟨b1, . . . , btd−1⟩k and hence there exist
unique scalars λ1

j ∈ k such that x1 ◦ Λ1 =
∑td−1

j=1 λ
1
jbj . Then

Λ1 =
∫

1
x1 ◦ Λ1 =

∫
1

td−1∑
j=1

λ1
jbj =

td−1∑
j=1

λ1
j

∫
1
bj .

Consider now x2◦Λ = x2◦Λ1 +x2◦Λ2 ∈ Dd−1. There exist unique scalars λ2
j ∈ k

such that x2 ◦ Λ2 =
∑td−1

j=1 λ
2
jbj . Then

Λ2 =
∫

2
x2 ◦ Λ2 =

∫
2
x2 ◦ Λ−

∫
2
x2 ◦ Λ1 =

∫
2

td−1∑
j=1

λ2
jbj −

∫
2
x2 ◦ Λ1 =

td−1∑
j=1

λ2
j

∫
2
bj −

∫
2
x2 ◦ Λ1.

Let us focus on
∫

2 x2 ◦Λ1. Note that it corresponds to the part of Λ1 that depends on y2.
We want to prove that

∫
2 x2 ◦ Λ1 = Λ1 − Λ1 |y2=0. Indeed,

(i) x2 ◦ (Λ1 − Λ1 |y2=0) = x2 ◦ Λ1 − x2 ◦ Λ1 |y2=0= x2 ◦ Λ1,
(ii) (Λ1 − Λ1 |y2=0) |y2=0= Λ1 |y2=0 − (Λ1 |y2=0) |y2=0= 0.

Therefore,

Λ2 =
td−1∑
j=1

λ2
j

∫
2
bj − (Λ1 − Λ1|y2=0)

and

Λ1 + Λ2 =
td−1∑
j=1

λ1
j

∫
1
bj +

td−1∑
j=1

λ2
j

∫
2
bj −

td−1∑
j=1

λ1
j

∫
1
bj −

 td−1∑
j=1

λ1
j

∫
1
bj

∣∣∣∣∣∣
y2=0

 =

=
td−1∑
j=1

λ1
j

∫
1
bj |y2=0 +

td−1∑
j=1

λ2
j

∫
2
bj .
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An analogous computation applied to x3 ◦ Λ provides

Λ3 =
td−1∑
j=1

λ3
j

∫
3
bj − (σ2 − σ2|y3=0) ,

hence

Λ1 + Λ2 + Λ3 =
td−1∑
j=1

λ1
j

∫
1
bj |y2=y3=0 +

td−1∑
j=1

λ2
j

∫
2
bj |y3=0 +

td−1∑
j=1

λ3
j

∫
3
bj .

By recurrence, we obtain 3.3:

Λ =
td−1∑
j=1

λ1
j

∫
1
bj |y2=···=yn=0 +

td−1∑
j=1

λ2
j

∫
2
bj |y3=···=yn=0 + · · ·+

td−1∑
j=1

λn
j

∫
n

bj .

For any 1 ≤ l ≤ n, we have

σl =
td−1∑
j=1

λ1
j

∫
1
bj |y2=···=yl=0 +

td−1∑
j=1

λ2
j

∫
2
bj |y3=···=yl=0 + · · ·+

td−1∑
j=1

λl
j

∫
l

bj , (3.6)

where σl := Λ1 + · · ·+ Λl, and

Λl =
td−1∑
j=1

λl
j

∫
l

bj − (σl−1 − σl−1 |yl=0) . (3.7)

In order to verify that 3.4 holds, let us first note that, since Λl ∈ k[yl, . . . , yn], then
xk ◦ Λl = 0 whenever 1 ≤ k < l ≤ n. Hence contracting 3.7 by xk, with k < l, we get

td−1∑
j=1

λl
j

∫
l

xk ◦ bj = xk ◦ (σl−1 − σl−1 |yl=0) .

Contracting the previous expression by xl gives

td−1∑
j=1

λl
j

(
xl ◦

∫
l

xk ◦ bj

)
= xl ◦ (xk ◦ (σl−1 − σl−1 |yl=0))
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and it can be rewritten as

td−1∑
j=1

λl
j(xk ◦ bj) = xl ◦ (xk ◦ σl−1) . (3.8)

On one hand,

xk ◦ σl−1 = xk ◦
k∑

i=1
Λi + xk ◦

l−1∑
i=k+1

Λi = xk ◦
k∑

i=1
Λi = xk ◦ σk,

for k < l. On the other hand, when contracting 3.6 with l = k by xk, we get

xk ◦ σk =
td−1∑
j=1

λ1
j

∫
1
xk ◦ bj |y2=···=yk=0 + · · ·+

td−1∑
j=1

λk
j

(
xk ◦

∫
k

bj

)
=

td−1∑
j=1

λk
j bj .

Therefore, we can rewrite 3.8 as

td−1∑
j=1

λl
j(xk ◦ bj) =

td−1∑
j=1

λk
j (xl ◦ bj),

hence 3.4 holds.
Condition 3.5 of the theorem is a direct consequence of Λ ∈ Dd ⊂ I⊥. Indeed,

f ◦ Λ = 0 for any f ∈ I and, in particular, (f ◦ Λ)(0) = 0.
Conversely, we want to know whether every element of the form 3.3 satisfying 3.4

and 3.5 is in Dd. First of all we will see that it is enough to prove that

xk ◦ Λ ∈ Dd−1, 1 ≤ k ≤ n. (3.9)

Indeed, if 3.9 holds, then xk ◦ Λ ∈ I⊥ and hence

(xkfi) ◦ Λ = fi ◦ (xk ◦ Λ) = 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m.

More generally, we have that

(mI) ◦ Λ = I ◦ (m ◦ Λ) = 0,
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that is, Λ ∈ (mI)⊥. Therefore, (f ◦ Λ) (0) = 0 for any f ∈ mI . Since

I = ⟨f1, . . . , fm⟩k + mI,

from 3.5 we deduce that (f ◦ Λ) (0) = 0 for any f ∈ I .
Now let us check that 3.9 is indeed true. Contracting 3.3 by xk, 1 ≤ k ≤ n, we get

xk ◦ Λ =
s∑

j=1
λk

j bj |yk+1=···=yn=0 +
s∑

j=1
λk+1

j

∫
k+1

xk ◦ bj |yk+2=···=yn=0 +

+ · · ·+
s∑

j=1
λn

j

∫
n

xk ◦ bj .

The l-primitive of 3.5, for any k < l ≤ n, gives

s∑
j=1

λk
j

∫
l

xl ◦ bj =
s∑

j=1
λl

j

∫
l

xk ◦ bj ,

hence

xk ◦ Λ =
s∑

j=1
λk

j

(
bj |yk+1=···=yn=0 +

∫
k+1

xk+1 ◦ bj |yk+2=···=yn=0 +

+ · · ·+
∫

n

xn ◦ bj

)
.

By Lemma 3.1.11, we have xk ◦ Λ =
∑s

j=1 λ
k
j bj ∈ Dd−1, hence 3.9 holds. �

REMARK 3.1.13 From the proof of Theorem 3.1.12, it follows that 3.4 can be replaced
by

xk ◦ Λ ∈ Dd−1, 1 ≤ k ≤ n.

In other words, what we actually require in 3.4 is Dd to be stable by contraction.
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3.2 Using integrals to obtain Gorenstein covers of
Arࢢn rings

Given an Artin k-algebra A = R/I , a priori we do not know which are the possible
choices for the colon ideal KF ⊂ R that provides the relationship between the inverse
system ⟨F ⟩ of a minimal Gorenstein cover G = R/AnnR F of A and I⊥. However,
once we fix a colength t, we do know a lot about the shape of the ideals KF associated
to a polynomial F such that ℓ(G)− ℓ(A) = t. Rephrasing Proposition 2.1.6, we get the
following result:

PROPOSITION 3.2.1 Let A = R/I be a local Artin algebra and G = R/J , with J =
AnnR F , a minimal Gorenstein cover of A. Then,

(i) I⊥ = KF ◦ F ,
(ii) gcl(A) = ℓ(R/KF ).

Moreover,

KF =


R, if gcl(A) = 0;

m, if gcl(A) = 1;

(L1, . . . , Ln−1, L
2
n), if gcl(A) = 2,

where L1, . . . , Ln are suitable independent linear forms in R.

REMARK 3.2.2 If gcl(A) = 1, then any minimal Gorenstein cover G = R/AnnR F

satisfies

F ∈
∫
m

I⊥.

However, even if gcl(A) = 2, the ideal KF depends on the particular choice of F .
Although it is certainly true that

F ∈
∫

(L1,...,Ln−1,L2
n)
I⊥,

this is not a useful condition to impose in order to findF because the ideal (L1, . . . ,Ln−1,
L2

n) already depends on F . For colength higher that 2, things get more complicated since
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the KF can even have different analytic type. See Section 2.3 for a detailed description
of the situation when gcl(A) = 3.

The dependency of the integral on F can be removed by considering only the condi-
tion

F ∈
∫
mt

I⊥,

for a suitable integer t, which gives an effective way to compute a (too big) set where
all minimal Gorenstein covers live. In Proposition 3.2.5 we provide all the details of this
construction. We first need to dig deeper into the structure of the integral of a module
with respect to a power of the maximal ideal. The following result permits an iterative
approach:

LEMMA 3.2.3 LetM be a finitely generated sub-R-module of S and d ≥ 1, then∫
m

(∫
md−1

M

)
=
∫
md

M.

Proof: Let us prove first the inclusion
∫
m

(∫
md−1 M

)
⊆
∫
md M . Take the polynomial

Λ in
∫
m

(∫
md−1 M

)
, thenm ◦Λ ⊆

∫
md−1 M and hencemd ◦Λ = md−1 ◦ (m ◦ Λ) ⊆M .

Therefore, Λ ∈
∫
md M . To prove the reverse inclusion, consider Λ ∈

∫
md M , that

is, md−1 ◦ (m ◦ Λ) = md ◦ Λ ⊆ M . In other words, m ◦ Λ ⊆
∫
md−1 M and Λ in∫

m

(∫
md−1 M

)
. �

Since
∫
mt M is a finitely dimensional k-vector space that can be obtained by inte-

grating t times M with respect to m, we can also consider a basis of
∫
mt M which is

constructed by extending the previous basis at each step.

DEFINITION 3.2.4 Let M be a finitely generated sub-R-module of S. Given an integer
t, we denote by hi the dimension of the k-vector space

∫
mi M/

∫
mi−1 M , i = 1, · · · , t.

An adapted k-basis of
∫
mt M/M is a k-basis F i

j , i = 1, · · · , t, j = 1, · · · , hi, of∫
mt M/M such that F i

1, · · · , F i
hi
∈
∫
mi M and their cosets in

∫
mi M/

∫
mi−1 M form a

k-basis, i = 1 · · · , t.
Let A = R/I be an Artin ring, we denote by LA,t the R-module

∫
mt I

⊥/I⊥.

The following proposition is meant to overcome the obstacle of non-uniqueness of
the idealsKF .

64



3.2. Using integrals to obtain Gorenstein covers of Artin rings

PROPOSITION 3.2.5 Given a ring A = R/I of Gorenstein colength t and a minimal
Gorenstein cover G = R/AnnR F of A,

(i) F ∈
∫
mt I

⊥;
(ii) for any H ∈

∫
mt I

⊥, the condition I⊥ ⊂ ⟨H⟩ does not depend on the representa-
tive of the class H in LA,t.

In particular, any F ′ ∈
∫
mt I

⊥ such that F ′ = F in LA,t defines the same minimal
Gorenstein cover G = R/AnnR F .

Proof: (i) By Proposition 2.1.6, we have gcl(A) = ℓ(R/KF ), where KF ◦ F = I⊥

for any polynomial F that generates a minimal Gorenstein cover G = R/AnnR F

of A. From the definition of integral we have F ∈
∫

KF
I⊥. Since ℓ(R/KF ) = t,

then socdeg(R/KF ) ≤ t − 1. Indeed, the extremal case corresponds to the most ex-
panded Hilbert function {1, 1, . . . , 1}, that is, a stretched algebra (see Appendix B). Then
HFR/KF

(i) = 0, for any i ≥ t, regardless of the particular form of KF , and hence
mt ⊂ KF . Therefore,

F ∈
∫

KF

I⊥ ⊂
∫
mt

I⊥.

(ii) Consider a polynomial H ∈
∫
mt I

⊥ such that I⊥ ⊂ ⟨H⟩. By Proposition 2.1.6,
KH ◦H = I⊥. Consider H ′ ∈

∫
mt I

⊥ such that H = H ′ in LA,t, so H = H ′ +G for
some G ∈ I⊥. We want to prove that

KH ◦H ′ + m ◦ I⊥ = KH ◦H + m ◦ I⊥ = I⊥. (3.10)

The second equality is direct fromKH ◦H = I⊥. Let us check the first. Take h ◦H ′ +
m ◦ I⊥ ∈ KH ◦H ′ + m ◦ I⊥, with h ∈ KH ⊂ m,

h ◦H ′ + m ◦ I⊥ = h ◦H − h ◦G+ m ◦ I⊥ = h ◦H + m ◦ I⊥ ⊂ KH ◦H + m ◦ I⊥.

The same argument holds for the reverse inclusion. Therefore, 3.10 holds and we can
apply Nakayama’s lemma to get KH ◦ H ′ = I⊥. Hence I⊥ ⊂ ⟨H ′⟩. In particular,
⟨H ′⟩ = ⟨H⟩. Indeed, since H ′ = H − G and ⟨G⟩ ⊂ ⟨I⊥⟩ ⊂ ⟨H⟩, then H ′ ∈ ⟨H⟩ +
⟨G⟩ = ⟨H⟩ and a similar argument givesH ∈ ⟨H ′⟩. �

Observe that the proposition says that, although not all F in
∫
mt I

⊥ correspond to
covers G = R/AnnR F of A = R/I , if F is actually a cover, then any F ′ in

∫
mt I

⊥
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Chapter 3. Variety of minimal Gorenstein covers

such that F ′ = F ∈ LA,t provides the exact same cover. That is, R/AnnR(F ) =
R/AnnR(F ′).

COROLLARY 3.2.6 Let A = R/I be an Artin ring of Gorenstein colength t and consider
an adapted k-basis {F i

j}1≤i≤t,1≤j≤hi of LA,t. Given a minimal Gorenstein cover G =
R/J there is a generator F of J⊥ such that F can be written as

F = a1
1F

1
1 + · · ·+ a1

h1
F 1

h1
+ · · ·+ at

1F
t
1 + · · ·+ at

ht
F t

ht
∈
∫
mt

I⊥, aj
i ∈ k.

Moreover, degF ≤ s+ t, where s = socdegA.

Proof: InLA,t we have F =
∑t

i=1
∑hj

j=1 a
i
jF

i
j and hence F =

∑t
i=1
∑hi

j=1 a
i
jF

i
j +G

with G ∈ I⊥. By Proposition 3.2.5, any representative of the class F provides the same
Gorenstein cover. In particular, we can take G = 0 and we are done.

Now consider F ∈
∫
m
I⊥. By definition, m ◦ F ∈ I⊥. Since any polynomial in

I⊥ has degree at most the socle degree of A, then deg (xi ◦ F ) ≤ s for any 1 ≤ i ≤ n.
Therefore, degF ≤ s+ 1 and at each integral with respect to m, the degree can only be
increased by 1. �

Our goal now is to compute the integral of the inverse system with respect to a power
of the maximal ideal. Assume we have a k-basis of I⊥ and we want to find a k-basis of∫
m
I⊥. Consider an element Λ in

∫
m
I⊥. By definition, it must satisfy

m ◦ Λ ⊂ I⊥ = Ds, (3.11)

where s = socdeg(A) and Dd = I⊥ ∩ S≤d, as defined in Section 3.1. Thanks to
Remark 3.1.13, we know that 3.11 is equivalent to condition 3.4 of Elkadi-Mourrain
result for inverse systems, Theorem 3.1.12. Condition 3.5 of Theorem 3.1.12 is no longer
needed because we do not require Λ to be in I⊥ anymore.

Therefore, the most natural approach to find all elements Λ of
∫
m
I⊥ is to apply

the procedure of Theorem 3.1.12 to a k-basis of Ds = I⊥ removing the condition of
orthogonality with respect to the generators of the ideal I .

The theorem below tells us what the elements of
∫
m
M look like, for any sub-R-

moduleM of S. It sets the theoretical ground for an algorithm that effectively computes
a k-basis of the integral of a module with respect to any power of the maximal ideal,
see Algorithm 1. Since the proof we present is very similar to the one given in Theo-
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3.2. Using integrals to obtain Gorenstein covers of Artin rings

rem 3.1.12, we only emphasize the parts that differ, consult it for complete details.

THEOREM 3.2.7 Consider a sub-R-moduleM of S and let b1, . . . , bs be a k-basis ofM .
Let Λ ∈ S be a polynomial with no constant terms. Then Λ ∈

∫
m
M if and only if

Λ =
s∑

j=1
λ1

j

∫
1
bj |y2=···=yn=0+

s∑
j=1

λ2
j

∫
2
bj |y3=···=yn=0+· · ·+

s∑
j=1

λn
j

∫
n

bj , λk
j ∈ k,

(3.12)
such that

s∑
j=1

λk
j (xl ◦ bj)−

s∑
j=1

λl
j(xk ◦ bj) = 0, 1 ≤ k < l ≤ n. (3.13)

Proof: To prove that any element Λ in
∫
m
M is of the form 3.12 and satisfies condition

3.4, we just have to note that, by definition, m ◦ Λ ⊂ M = ⟨b1, . . . , bs⟩k. Everything
else follows exactly as in Theorem 3.1.12.

Conversely, we want to know if every element of the form 3.12 satisfying 3.4 is in∫
m
M . By definition, Λ ∈

∫
m
M if and only if m ◦ Λ ⊂ M . Therefore, it is enough

to prove that xk ◦ Λ ∈ M for any 1 ≤ k ≤ n. As in Theorem 3.1.12, contracting and
integrating with respect to appropriate variables we obtain xk ◦ Λ =

∑s
j=1 λ

k
j bj ∈ M

and we are done. �

From the previous theorem and Lemma 3.2.3 the next corollary follows directly.

COROLLARY 3.2.8 Consider a sub-R-moduleM of S and d ≥ 1. Let b1, . . . , btd−1 be a
k-basis of

∫
md−1 M and let Λ be a polynomial with no constant terms. Then Λ ∈

∫
md M

if and only if it is of the form

Λ =
td−1∑
j=1

λ1
j

∫
1
bj |y2=···=yn=0+

td−1∑
j=1

λ2
j

∫
2
bj |y3=···=yn=0+· · ·+

td−1∑
j=1

λn
j

∫
n

bj , λk
j ∈ k,

(3.14)
such that

td−1∑
j=1

λk
j (xl ◦ bj)−

td−1∑
j=1

λl
j(xk ◦ bj) = 0, 1 ≤ k < l ≤ n. (3.15)
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REMARK 3.2.9 It can be proved that

Dd = I⊥ ∩
∫
m

Dd−1,

for any 1 < d ≤ s. Indeed, by Theorem 3.1.12, Dd is stable by contraction, hence Dd

is contained in I⊥ ∩
∫
m
Dd−1. Conversely, any element Λ in

(∫
m
Dd−1

)
∩ I⊥ satisfies

m ◦ Λ ⊆ Dd−1 = I⊥ ∩ S≤d−1. Then deg Λ ≤ d and hence Λ ∈ I⊥ ∩ S≤d = Dd.

We end this section by considering the low Gorenstein colength cases.

3.2.1 Teter rings
Let us remind that Teter rings are thoseA = R/I such thatA ∼= G/ soc(G) for some

Gorenstein ring G. According to [20, Proposition 2.1.3], Teter rings can be character-
ized as rings of Gorenstein colength 1, whenever their embedding dimension is equal or
greater than 2. Otherwise, if A is a Teter ring with embd(A) = 1, then A is Gorenstein.
Rings of Gorenstein colength 1 are a special case to deal with because theKF associated
to any generator F ∈ S of a minimal cover is always the maximal ideal. We provide
some additional criteria to characterize such rings:

PROPOSITION 3.2.10 Let A = R/I be a non-Gorenstein local Artin ring of socle degree
s ≥ 1 and let {F j}1≤j≤h be an adapted k-basis of LA,1. Then gcl(A) = 1 if and only if
there exist a polynomial F =

∑h
j=1 ajFj ∈

∫
m
I⊥, aj ∈ k, such that dimk(m ◦ F ) =

dimk I
⊥.

Proof: The first implication is straightforward from Corollary 3.2.6 and Teter rings
characterization in [20, Proposition 2.1.3]. Reciprocally, if F ∈

∫
m
I⊥, thenm◦F ⊂ I⊥

by definition, and from the equality of dimensions, it follows thatm◦F = I⊥. Therefore,
0 < gcl(A) ≤ ℓ(R/m) = 1 and we are done. �

EXAMPLE 3.2.11 Recall Example 3.1.4 with I⊥ = ⟨y1y2, y
3
3⟩ and∫

m

I⊥ = ⟨y2
1 , y1y2, y1y3, y

2
2 , y2y3, y

4
3⟩.

Then y2
1, y1y3, y

2
2, y2y3, y

4
3 is a k-basis ofLA,1. As a consequence of Proposition 3.2.10,
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A is Teter if and only if there exists a polynomial

F = a1y
2
1 + a2y1y3 + a3y

2
2 + a4y2y3 + a5y

4
3

such that m ◦ F = I⊥. But m ◦ F = ⟨a1y1 + a2y3, a3y2 + a4y3, a2y1 + a4y2 + a5y
3
3⟩

and clearly y1y2 does not belong here. Therefore, gcl(A) > 1.

3.2.2 Gorenstein colength 2
By Theorem 2.2.5, we know that A is of Gorenstein colength 2 if and only if there

exists a polynomial F of degree s + 1 or s + 2 such that KF ◦ F = I⊥, where KF =
(L1, . . . , Ln−1, L

2
n), where Li are suitable independent linear forms.

Observe that a completely analogous characterization to the onewe did for Teter rings
is not possible. If A = R/I has Gorenstein colength 2, by Corollary 3.2.6, there exists
F =

∑2
i=1
∑hi

j=1 a
i
jF

i
j ∈

∫
m2 I

⊥, where {F i

j}1≤i≤2,1≤j≤hi
is a k-basis of LA,2, that

generates a minimal Gorenstein cover of A and then trivially I⊥ ⊂ ⟨F ⟩. However, the
reverse implication is not true.

EXAMPLE 3.2.12 ConsiderA = R/m3, whereR is the ring of power series in 2 variables,
and consider F = y2

1y
2
2 . It is easy to see that F ∈

∫
m2 I

⊥ = S≤4 and I⊥ ⊂ ⟨F ⟩.
However, it can be proved that gcl(A) = 3 with [2, Corollary 3.3]. Note thatKF = m2

and hence ℓ(R/KF ) = 3.

Therefore, given F ∈
∫
m2 I

⊥, the condition I ⊂ ⟨F ⟩ is not sufficient to ensure that
gcl(A) = 2. We must require that ℓ(R/KF ) = 2 as well.

PROPOSITION 3.2.13 Given a non-Gorenstein non-Teter local Artin ring A = R/I ,
gcl(A) = 2 if and only if there exist a polynomialF =

∑2
i=1
∑hi

j=1 a
i
jF

i
j ∈

∫
m2 I

⊥ such

that {F i

j}1≤i≤2,1≤j≤hi is an adapted k-basis of LA,2 and (L1, . . . , Ln−1, L
2
n)◦F = I⊥

for suitable independent linear forms L1, . . . , Ln.

Proof: We will only prove that if F satisfies the required conditions, then gcl(A) = 2.
By definition of KF , if (L1, . . . , Ln−1, L

2
n) ◦ F = I⊥, then (L1, . . . , Ln−1, L

2
n) is

contained in KF . By Proposition 2.1.6, gcl(A) ≤ ℓ(R/KF ) and hence gcl(A) is equal
or less than ℓ

(
R/(L1, . . . , Ln−1, L

2
n)
)

= 2. Since gcl(A) ≥ 2 by hypothesis, then
gcl(A) = 2. �
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EXAMPLE 3.2.14 Recall the ring A = R/I in Example 3.2.11. Since∫
m2
I⊥ = ⟨y3

1 , y
2
1y2, y1y

2
2 , y

3
2 , y

2
1y3, y1y2y3, y

2
2y3, y1y

2
3 , y2y

3
3 , y

5
3⟩

and gcl(A) > 1, its Gorenstein colength is 2 if and only if there exist some F in

⟨y2
1 , y1y2, y1y3, y

2
2 , y2y3, y

4
3 , y

3
1 , y

2
1y2, y1y

2
2 , y

3
2 , y

2
1y3, y1y2y3, y

2
2y3, y1y

2
3 , y2y

3
3 , y

5
3⟩k

such that (L1, . . . , Ln−1, L
2
n) ◦ F = I⊥. Consider F = y4

3 + y2
1y2, then

(x1, x
2
2, x3) ◦ F = ⟨x1 ◦ F, x2

2 ◦ F, x3 ◦ F ⟩ = ⟨y1y2, y
3
3⟩

and hence gcl(A) = 2.

3.3 The variety of minimal Gorenstein covers
We are now interested in providing a geometric interpretation of the set of all minimal

Gorenstein covers G = R/J of a given local Artin k-algebra A = R/I . From now on,
we will assume that k is an algebraically closed field. The following result is well known
and it is an easy linear algebra exercise.

LEMMA 3.3.1 Let φi : ka −→ kb, i = 1 · · · , r, be a family of Zariski continuous maps.
Then the function φ∗ : ka −→ N defined by φ∗(z) = dimk⟨φ1(z), · · · , φr(z)⟩k is
lower semicontinous, i.e. for all z0 ∈ ka there is a Zariski open set z0 ∈ U ⊂ ka such
that for all z ∈ U it holds φ∗(z) ≥ φ∗(z0).

THEOREM 3.3.2 Let A = R/I be an Artin ring of Gorenstein colength t. There exists a
quasi-projective sub-varietyMGCn(A), n = dim(R), of Pk (LA,t) whose set of closed
points are the points [F ], F ∈ LA,t, such thatG = R/AnnR F is a minimal Gorenstein
cover of A.

Proof: Let E be a sub-k-vector space of
∫
mt I

⊥ such that∫
mt

I⊥ ∼= E ⊕ I⊥,
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3.3. The variety of minimal Gorenstein covers

we identify LA,t with E. From Proposition 3.2.5, for all minimal Gorenstein covers
G = R/AnnR F we may assume that F ∈ E. From Corollary 3.2.6, we also know that
degF ≤ s+ t. Given F ∈ E, the quotient G = R/AnnR F is a minimal cover of A if
and only if

(1) dimk⟨F ⟩ = dimk(A) + t, and
(2) dimk(I⊥ + ⟨F ⟩) = dimk⟨F ⟩.

Define the family of Zariski continuous maps {φα}|α|≤s+t, α ∈ Nn, where

φα : E −→ E

F 7−→ xα ◦ F

In particular, φ0 = IdR. We write

φ∗ : E −→ N

F 7−→ dimk⟨xα ◦ F : |α| ≤ s+ t⟩k

Note that φ∗(F ) = dimk⟨F ⟩ and, by Lemma 3.3.1, φ∗ is a lower semicontinuous map.
Hence U1 = {F ∈ E | dimk⟨F ⟩ ≥ dimk A+ t} is an open Zariski set in E. Using the
same argument, U2 = {F ∈ E | dimk⟨F ⟩ ≥ dimk A + t + 1} is also an open Zariski
set in E and hence Z1 = E\U2 is a Zariski closed set such that dimk⟨F ⟩ ≤ dimk A+ t

for any F ∈ Z1. Then Z1∩U1 = {F ∈ E | dimk⟨F ⟩ = dimk A+ t} is a locally closed
set.

Let G1, · · · , Gr be a k-basis of I⊥ and consider the constant map

ψi : E −→ E

F 7−→ Gi

for any i = 1, · · · , r. By Lemma 3.3.1,

ψ∗ : E −→ N

F 7−→ dimk
(
⟨F ⟩+ I⊥) = dimk⟨{xα ◦ F}|α|≤s+t, G1, . . . , Gr⟩k

is a lower semicontinuous map.
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Chapter 3. Variety of minimal Gorenstein covers

Using an analogous argument, we can prove that T = {F ∈ E | dimk(I⊥ + ⟨F ⟩) =
dimk A+ t} is a locally closed set. Therefore,

W = (Z1 ∩ U1) ∩ T = {F ∈ E | dimk A+ t = dimk(I⊥ + ⟨F ⟩) = dimk⟨F ⟩}

is a locally closed subset of E whose set of closed points can be identified with poly-
nomials F in E satisfying (1) and (2), that is, F ∈ S such that G = R/AnnR F is a
minimal Gorenstein cover of A.

Moreover, since ⟨F ⟩ = ⟨λF ⟩ for any λ ∈ k∗, conditions (1) and (2) are invariant
under the multiplicative action of k∗ on F and hence

MGCn(A) = Pk(W ) ⊂ Pk(E) = Pk (LA,t) .

�

Recall that we have the upper bound τ(A)+gcl(A)−1 for the embedding dimension
of any minimal Gorenstein cover given by Proposition 2.3.2.

DEFINITION 3.3.3 Given an Artin ring A = R/I , the varietyMGC(A) = MGCn(A),
with n = τ(A)+gcl(A)−1, is called theminimal Gorenstein cover variety associated
to A.

REMARK 3.3.4 In Theorem 2.1.7 we proved that for low Gorenstein colength of A, i.e.
gcl(A) ≤ 2, then embd(G) = embd(A) for any minimal Gorenstein cover G of A. In
this situation we can defineMGC(A) as the varietyMGCn(A) with n = embd(A).

Observe that this notion of minimal Gorenstein cover variety generalizes the defini-
tion of Teter variety introduced in [20], which applies only to rings of Gorenstein colength
1, to any arbitrary colength.

3.4 CompuࢢngMGC(A) for low Gorenstein
colength

In this section we provide algorithms and examples to compute the variety of minimal
Gorenstein covers of a given ring A whenever its Gorenstein colength is 1 or 2. These
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3.4. ComputingMGC(A) for low Gorenstein colength

algorithms can also be used to decide whether a ring has colength greater than 2, since it
will correspond to empty varieties.

To start with, we provide an auxiliary algorithm to compute the integral of I⊥ with
respect to the t-th power of the maximal ideal of R. If there exist polynomials defining
minimal Gorenstein covers of colength t, they must belong to this integral.

3.4.1 Compuࢢng integrals of modules
Let b a k-basis b1, . . . , bt of a finitely generated sub-R-moduleM of S and consider

xk ◦ bi =
∑t

j=1 a
i
jbj , for any 1 ≤ i ≤ t and 1 ≤ k ≤ n. Let us define matrices

Uk = (ai
j)1≤j,i≤t for any 1 ≤ k ≤ n. Note that

(xk ◦ b1 · · ·xk ◦ bt) = (b1 · · · bt)


a1

1 . . . at
1

...
...

a1
t . . . at

t

 .

Now consider any element h ∈M . Then

xk ◦ h = xk ◦
t∑

i=1
hibi =

t∑
i=1

(xk ◦ hibi) =
t∑

i=1
(xk ◦ bi)hi =

= (xk ◦ b1 · · ·xk ◦ bt)


h1
...

ht

 = (b1 · · · bt)Uk


h1
...

ht

 ,

where h1, . . . , ht ∈ k.

DEFINITION 3.4.1 Let Uk, 1 ≤ k ≤ n, be the square matrix of order t such that

xk ◦ h = bUk ht,

where h = (h1, . . . , ht) for any h ∈ M , with h =
∑t

i=1 hibi. We call Uk the contrac-
tion matrix ofM with respect to xk associated to a k-basis b ofM .
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Chapter 3. Variety of minimal Gorenstein covers

REMARK 3.4.2 Since xkxl ◦ h = xlxk ◦ h for any h ∈M , we have UkUl = UlUk, with
1 ≤ k < l ≤ n.

In [39], Mourrain provides an effective algorithm based on Theorem 3.1.12 that com-
putes, along with a k-basis of the inverse system I⊥ of an ideal I of R, the contraction
matrices U1, . . . , Un of I⊥ associated to that basis.

EXAMPLE 3.4.3 ConsiderA = R/I , withR = k[[x1, x2]] and I = m2. Then 1, y1, y2 is a
k-basis of I⊥ andU1, U2 are its contraction matrices with respect to x1, x2, respectively:

U1 =


0 1 0

0 0 0

0 0 0

 , U2 =


0 0 1

0 0 0

0 0 0

 .

We present Algorithm 1, based on Theorem 3.2.7, which computes the integral of a
finitely generated sub-R-module M with respect to the maximal ideal. The algorithm
can use the output of Mourrain’s integration method as initial data: a k-basis of I⊥ and
the contraction matrices associated to this basis.

REMARK 3.4.4 Observe that the classes in
∫
m
M/M of the output bt+1, . . . , bt+h of Al-

gorithm 1 form a k-basis of
∫
m
M/M . Moreover, since the algorithm returns the con-

traction matrices of
∫
m
M , we can iterate the procedure in order to obtain a k-basis of∫

mk M for any k ≥ 1. By construction, the elements of this k-basis that do not belong
toM form an adapted k-basis of

∫
mk M/M .

EXAMPLE 3.4.5 Consider A = R/I , with R = k[[x1, x2]] and I = m2. Then 1, y1, y2,
y2

2 , y1y2, y2
1 is a k-basis of

∫
m
I⊥ = S≤2 with the following contraction matrices:

U ′
1 =



0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, U ′

2 =



0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.
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Algorithm 1 Compute a k-basis of
∫
m
M and its contraction matrices

Input: D = b1, . . . , bt k-basis ofM ;
U1, . . . , Un contraction matrices ofM associated to the k-basis D.

Output: D = b1, . . . , bt, bt+1, . . . , bt+h k-basis of
∫
m
M ;

U ′
1, . . . , U

′
n contraction matrices of

∫
m
M associated to the k-basis D.

Steps:

(i) Set λi = (λi
1 · · · λi

t)t, for any 1 ≤ i ≤ n. Solve the system of equations

Uk λl − Ul λk = 0 for any 1 ≤ k < l ≤ n. (3.16)

(ii) Consider a system of generators H1, . . . ,Hm of the solutions of 3.16.
(iii) For any Hi = [λ1, . . . , λn], 1 ≤ i ≤ m, define the associated polynomial

ΛHi =
n∑

k=1

 t∑
j=1

λk
j

∫
k

bj |yk+1=···=yn=0

 .

(iv) If ΛH1 /∈ ⟨D⟩k, then bt+1 := ΛH1 and D = D, bt+1. Repeat the procedure for
ΛH2 , . . . ,ΛHm .

(v) Set h as the number of new elements in D.
(vi) Define square matrices U ′

k of order t+ h and set U ′
k[i] = Uk[i] for 1 ≤ i ≤ t.

(vii) Compute xk ◦ bi =
∑t

j=1 µ
i
jbj for t+ 1 ≤ i ≤ t+ h and set

U ′
k[i] =

(
µi

1 · · · µi
t 0 · · · 0

)t

.

3.4.2 CompuࢢngMGC(A) for Teter rings
Let us consider a non-Gorenstein local Artin ring A = R/I of socle degree s. Fix

a k-basis b1, . . . , bt of I⊥ and consider a polynomial F =
∑h

j=1 ajFj ∈
∫
m
I⊥, where

F 1, . . . , Fh is an adapted k-basis of LA,1. According to Proposition 3.2.10, F corre-
sponds to a minimal Gorenstein cover if and only if dimk(m ◦ F ) = t. Therefore, we
want to know for which values of a1, . . . , ah this equality holds.

Note that degF ≤ s + 1 and xkxl ◦ F = xlxk ◦ F . Then m ◦ F = ⟨xα ◦ F : 1 ≤
|α| ≤ s+ 1⟩k. Each xα ◦ F ∈ I⊥, hence xα ◦ F =

∑t
j=1 µ

j
αbj for some µj

α ∈ k.

75



Chapter 3. Variety of minimal Gorenstein covers

Consider the matrix A = (µj
α)1≤|α|≤s+1, 1≤j≤t, whose rows are the contractions

xα ◦F expressed in terms of the k-basis b1, . . . , bt of I⊥. The rows ofA are a system of
generators ofm◦F ask-vector space, hence dimk(m◦F ) < t if and only if all order tmi-
nors ofA vanish. Let a be the ideal generated by all order tminors p1, . . . , pr ofA. Note
that the entries of matrix A are homogeneous polynomials of degree 1 in k[a1, . . . , ah].
Hence a is generated by homogeneous polynomials of degree t in k[a1, . . . , ah]. There-
fore, we can view the projective algebraic set

V+(a) = {[a1 : · · · : ah] ∈ Ph−1
k | pi(a1, . . . , ah) = 0, 1 ≤ i ≤ r},

as the set of all points that do not correspond to Teter covers. We just proved the following
result:

THEOREM 3.4.6 Let A = R/I be an Artin ring with gcl(A) = 1, h = dimk LA,1 and a

be the ideal of minors previously defined. Then

MGC(A) = Ph−1
k \V+(a).

Moreover, for any non-Gorenstein Artin ring A, gcl(A) = 1 if and only if a ̸= 0.

Proof: The first part is already proved. On the other hand, if a = 0, then V+(a) is
the whole Ph−1

k andMGC(A) = ∅. In other words, there exist no Teter covers, hence
gcl(A) > 1. �

Algorithm 2 provides a method based on Theorem 3.4.6 to decide whether a non-
Gorenstein ring A = R/I has colength 1 and, if this is the case, it explicitly computes
itsMGC(A).

With the following example we show how to interpret the output of the algorithm:

EXAMPLE 3.4.7 ConsiderA = R/I , withR = k[[x1, x2]] and I = m2 [20, Example 4.3].
From Example 3.4.5 we gather all the information we need for the input of Algorithm 2:
Input: b1 = 1, b2 = y1, b3 = y2 k-basis of I⊥; F1 = y2, F2 = y1y2, F3 = y2

1 adapted
k-basis of LA,1; U ′

1,U ′
2 contraction matrices of

∫
m
I⊥.

Output: rad(a) = a2
2 − a1a3.

We consider points (a1 : a2 : a3) ∈ P2. Then MGC(A) = P2\{a2
2 − a1a3 = 0}

and any minimal Gorenstein cover G = R/AnnR F of A is given by a polynomial
F = a1y

4
2 + a2y1y2 + a3y

2
1 such that a2

2 − a1a3 ̸= 0.
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Algorithm 2 Compute the Teter variety of A = R/I with n ≥ 2
Input: s socle degree of A = R/I;
b1, . . . , bt k-basis of I⊥;
F1, . . . , Fh adapted k-basis of LA,1;
U1, . . . , Un contraction matrices of

∫
m
I⊥.

Output: ideal a such thatMGC(A) = Ph−1
k \V+(a).

Steps:
(i) Set F = a1F1 + · · · + ahFh and F = (a1, . . . , ah)t, where a1, . . . , ah are

variables in k.
(ii) Build matrix A =

(
µα

j

)
1≤|α|≤s+1,1≤j≤t

, where

UαF =
t∑

j=1
µα

j bj , Uα = Uα1
1 · · ·Uαn

n .

(iii) Compute the ideal a generated by all minors of order t of the matrix A.

3.4.3 CompuࢢngMGC(A) in colength 2
Consider a local Artin ring A = R/I with gcl(A) > 1, a k-basis b1, . . . , bt of I⊥

and an adapted k-basis F 1, . . . , Fh1 , G1, . . . , Gh2 of LA,2 (see Definition 3.2.4) such
that

• b1, . . . , bt, F1, . . . , Fh1 is a k-basis of
∫
m
I⊥,

• b1, . . . , bt, F1, . . . , Fh1 , G1, . . . , Gh2 is a k-basis of
∫
m2 I

⊥.

If a minimal Gorenstein cover G = R/AnnR H of A such that ℓ(G) − ℓ(A) = 2
exists, then, by Corollary 3.2.6, H is a polynomial of the form

H =
h1∑

i=1
αiFi +

h2∑
i=1

βiGi, αi, βi ∈ k.

We want to obtain conditions on the α’s and β’s under which H actually generates a
minimal Gorenstein cover of colength 2. By definition,H is in

∫
m2 I

⊥, hence xk ◦H is
in m ◦

∫
m

(∫
m
I⊥) ⊆ ∫

m
I⊥ and

xk ◦H =
t∑

j=1
µj

kbj +
h1∑

j=1
ρj

kFj , µj
k, ρ

j
k ∈ k.
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Set matrices AH = (µj
k) and BH = (ρj

k). Let us describe matrix BH explicitly. We
have

xk ◦H =
h1∑

i=1
αi(xk ◦ Fi) +

h2∑
i=1

βi(xk ◦Gi).

Note that each xk ◦Gi, for any 1 ≤ i ≤ h2, is in
∫
m
I⊥ and hence it can be decomposed

as

xk ◦Gi =
t∑

j=1
λk,i

j bj +
h1∑

j=1
ak,i

j Fj , λk,i
j , ak,i

j ∈ k.

Then

xk ◦H =
h1∑

i=1
αi(xk ◦ Fi) +

h2∑
i=1

βi

 t∑
j=1

λk,i
j bj +

h1∑
j=1

ak,i
j Fj

 =

= b+
h1∑

j=1

(
h2∑

i=1
βia

k,i
j

)
Fj ,

where b :=
∑h1

i=1 αi(xk ◦ Fi) +
∑h2

i=1 βi

(∑t
j=1 λ

k,i
j bj

)
∈ I⊥. Observe that

ρj
k =

h2∑
i=1

ak,i
j βi, (3.17)

hence the entries of matrix BH can be regarded as polynomials in variables β1, . . . , βh2

with coefficients in k.

LEMMA 3.4.8 Consider the matrix BH = (ρj
k) as previously defined and let B′

H = (ϱj
k)

be the matrix of the coefficients of Lk ◦H =
∑h1

j=1 ϱ
j
kF j ∈ LA,1 where L1, . . . , Ln

are independent linear forms. Then,

(i) rkBH = dimk

(
m ◦H + I⊥

I⊥

)
,

(ii) rkB′
H = rkBH .

Proof: Note that xk ◦H =
∑h1

j=1 ρ
j
kF j ∈ LA,1 and

⟨x1 ◦H, . . . , xn ◦H⟩k = (m ◦H + I⊥)/I⊥.

Since F 1, . . . , Fh1 is a k-basis of LA,1 and (m ◦H + I⊥)/I⊥ ⊆ LA,1, then (i) holds.
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For (ii) it will be enough to prove that

⟨x1 ◦H, . . . , xn ◦H⟩k = ⟨L1 ◦H, . . . , Ln ◦H⟩k.

Indeed, since Li =
∑n

j=1 λ
i
jxj for any 1 ≤ i ≤ n, then Li ◦H =

∑n
j=1 λ

i
j(xj ◦H) in

⟨x1 ◦H, . . . , xn ◦H⟩k. The reverse inclusion comes from the fact that (L1, . . . , Ln) is
the maximal ideal, hence xi can be expressed as a linear combination of L1, . . . , Ln. �

LEMMA 3.4.9 With the previous notation, consider a polynomial H ∈
∫
m2 I

⊥ with co-
efficients β1, . . . , βh2 of G1, . . . , Gh2 , respectively, and its corresponding matrix BH .
Then the following are equivalent:

(i) BH ̸= 0,
(ii) m ◦H * I⊥,
(iii) (β1, . . . , βh2) ̸= (0, . . . , 0).

Proof: (i) implies (ii). IfBH ̸= 0, by Lemma 3.4.8, (m ◦H + I⊥)/I⊥ ̸= 0 and hence
m ◦H * I⊥.
(ii) implies (iii). If m ◦ H * I⊥, by definition H /∈

∫
m
I⊥ and hence H belongs to∫

m2 I
⊥\
∫
m
I⊥. Therefore, some βi must be non-zero.

(iii) implies (i). Since Gi ∈
∫
m2 I

⊥\
∫
m
I⊥ for any 1 ≤ i ≤ h2 and, by hypothesis,

there is some non-zero βi, we have that H ∈
∫
m2 I

⊥\
∫
m
I⊥. We claim that xk ◦H is

in
∫
m
I⊥\I⊥ for some 1 ≤ k ≤ n. Suppose the claim is not true. Then xk ◦ H ∈ I⊥

for any 1 ≤ k ≤ n, or equivalently, m ◦ H ⊆ I⊥. But, by definition, this means that
H ∈

∫
m
I⊥, which is a contradiction. Since

xk ◦H = b+
h1∑

j=1

(
h2∑

i=1
βia

k,i
j

)
Fj ∈

∫
m

I⊥\I⊥, b ∈ I⊥,

for some 1 ≤ k ≤ n, then ρj
k ̸= 0, for some j ∈ {1, . . . , h1}. Therefore, BH ̸= 0. �

LEMMA 3.4.10 Consider the previous setting. If BH = 0, then either gcl(A) = 0 or
gcl(A) = 1 or R/AnnR H is not a cover of A.

Proof: If BH = 0, then m ◦H ⊆ I⊥ and hence ℓ(H)− 1 ≤ ℓ(I⊥). If I⊥ ⊆ ⟨H⟩, then
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G = R/AnnR H is a Gorenstein cover of A such that ℓ(G) − ℓ(A) ≤ 1. Therefore,
either gcl(A) ≤ 1 or G is not a cover. �

We already have techniques to check whether A has colength 0 or 1. Therefore, we
can assume gcl(A) ≥ 2. The previous two lemmas allow us to take into considera-
tion only those polynomials H such that (β1, . . . , βh2) ̸= 0 or, equivalently, BH ̸= 0.
According to Proposition 3.2.13, gcl(A) = 2 if and only if

(L1, . . . , Ln−1, L
2
n) ◦H = I⊥

for someH of the previously stated form and some independent linear formsL1, . . . , Ln.

PROPOSITION 3.4.11 Assume that BH ̸= 0. Then rkBH = 1 if and only if

(L1, . . . , Ln−1, L
2
n) ◦H ⊆ I⊥

for some independent linear forms L1, . . . , Ln.

Proof: Recall that, since we are under the assumption that BH ̸= 0, there exists k such
that xk ◦ H /∈ I⊥. Without loss of generality, we can assume that xn ◦ H /∈ I⊥. If
rkBH = 1, then any other row of BH must be a multiple of row n. Therefore, for any
1 ≤ i ≤ n− 1, there exists λi ∈ k such that (xi−λixn) ◦H ∈ I⊥. Take Ln := xk and
Li := xi−λixn. It is clear thatL1, . . . , Ln are linearly independent and thatLi◦H ∈ I⊥

for any 1 ≤ i ≤ n− 1. Moreover, L2
n ◦H = x2

k ◦H ∈ m2 ◦
∫

m2 I
⊥ ⊆ I⊥.

Reciprocally, let B′
H = (ϱj

k) be the matrix of the coefficients of

Lk ◦H =
h1∑

j=1
ϱj

kF j ∈ LA,1.

By Lemma 3.4.8, since BH ̸= 0, then B′
H ̸= 0. We are assuming that L1 ◦H = · · · =

Ln−1 ◦H = 0 but, since B′
H ̸= 0, then Ln ◦H ̸= 0. It is clear that rkB′

H = 1 and
hence, again by Lemma 3.4.8, rkBH = 1. �

Recall that ⟨H⟩ = ⟨λH⟩ for any λ ∈ k∗. Therefore, as pointed out in Theorem 3.3.2,
for anyH ̸= 0, a Gorenstein ringG = R/AnnR H can be identified with a point [H] in
Pk (LA,2) by taking coordinates (α1 : · · · : αh1 : β1 : · · · : βh2). Observe thatPk (LA,2)
is a projective space over k of dimension h1 + h2 − 1, we denote it by Ph1+h2−1

k .
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On the other hand, from the expression 3.17 we can deduce that any minor of the
matrix BH = (ρj

k) is a homogeneous polynomial in variables β1, . . . , βh2 . Therefore,
we can consider the homogeneous ideal b generated by all order-2-minors of BH in
the polynomial ring k[α1, . . . , αh1 , β1, . . . , βh2 ]. Hence V+(b) is the projective variety
consisting of all points [H] ∈ Ph1+h2−1

k such that rkBH ≤ 1.

REMARK 3.4.12 In this section we will use the notation MGC2(A) to denote the set
of points [H] ∈ Ph1+h2−1

k such that G = R/AnnR H is a Gorenstein cover of A with
ℓ(G)−ℓ(A) = 2. Since we are considering rings such that gcl(A) > 1, we can character-
ize rings of higher colength than 2 as those such thatMGC2(A) = ∅. On the other hand,
gcl(A) = 2 if and only ifMGC2(A) ̸= ∅, hence in this caseMGC2(A) = MGC(A),
see Definition 3.3.3 and Remark 3.3.4.

COROLLARY 3.4.13 Let A = R/I be an Artin ring such that gcl(A) = 2. Then

MGC2(A) ⊆ V+(b) ⊆ Ph1+h2−1
k .

Proof: By Proposition 2.1.6.(ii), points [H] ∈ MGC2(A) correspond to Gorenstein
covers G = R/AnnR H of A such that I⊥ = (L1, . . . , Ln−1, L

2
n) ◦ H for some

L1, . . . , Ln. Since BH ≠ 0 by Lemma 3.4.10, then we can apply Proposition 3.4.11
to deduce that rkBH = 1. �

Note that the conditions on the rank of BH do not provide any information about
which particular choices of independent linear forms L1, . . . , Ln satisfy the inclusion
(L1, . . . , Ln−1, L

2
n) ◦ H ⊆ I⊥. In fact, it will be enough to understand which are the

Ln that meet the requirements.
To that end, we fix Ln = v1x1 + · · · + vnxn, where v = (v1, . . . , vn) ̸= 0. We

can choose linear forms Li = λi
1x1 + · · · + λi

nxn, where λi = (λi
1, . . . , λ

i
n) ̸= 0, for

1 ≤ i ≤ n − 1, such that L1, . . . , Ln are linearly independent and λi · v = 0. It is a
linear algebra exercise to check that the k-vector space generated by L1, . . . , Ln−1 can
be expressed in terms of v1, . . . , vn. Indeed,

⟨L1, . . . , Ln−1⟩k = ⟨vlxk − vkxl : 1 ≤ k < l ≤ n⟩k.
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Let us now add the coefficients of Ln to matrixBH by defining the following matrix
depending both on H and v:

CH,v :=


ρ1

1 . . . ρh1
1 v1

...
...

...

ρ1
n . . . ρh1

n vn

 .

PROPOSITION 3.4.14 Assume BH ̸= 0 and consider L1, . . . , Ln linearly independent
linear forms such that Ln = v1x1 + · · · + vnxn, where v = (v1, . . . , vn) ̸= 0. Then
rkCH,v = 1 if and only if (L1, . . . , Ln−1, L

2
n) ◦H ⊆ I⊥.

Proof: If rkCH,v = 1, then all 2-minors of CH,v vanish and, in particular,

vlρ
j
k − vkρ

j
l = 0 for any 1 ≤ k < l ≤ n and 1 ≤ j ≤ h1. (3.18)

Recall from 3.17 that

(vlxk − vkxl) ◦H = b+
h1∑

j=1

(
vlρ

j
k − vkρ

j
l

)
Fj , where b ∈ I⊥, (3.19)

hence (vlxk − vkxl) ◦H ∈ I⊥. Therefore, Li ◦H ∈ I⊥ for 1 ≤ i ≤ n− 1. Moreover,
L2

n ◦H ∈ m2 ◦
∫
m2 I

⊥ ⊆ I⊥.
Conversely, if (L1, . . . , Ln−1, L

2
n)◦H ⊆ I⊥, then rkBH = 1 by Proposition 3.4.11.

Hence rkCH,v = 1 if and only if 3.18 holds. Since Li ◦H ∈ I⊥ for any 1 ≤ i ≤ n− 1,
then (vlxk − vkxl) ◦H ∈ I⊥ and we deduce from 3.19 that 3.18 is indeed satisfied. �

DEFINITION 3.4.15 We say that v = (v1, . . . , vn) is an admissible vector of H if v ̸= 0
and vlρ

j
k − vkρ

j
l = 0 for any 1 ≤ k < l ≤ n and 1 ≤ j ≤ h1.

LEMMA 3.4.16 Given a polynomialH of the previous form such that rkBH = 1:

(i) there always exists an admissible vector v ∈ kn of H;
(ii) if w ∈ kn such that w = λv, with λ ∈ k∗, then w is an admissible vector of H;
(iii) the admissible vector ofH is unique up to multiplication by elements of k∗.
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Proof: (i) Since rkH B = 1, Proposition 3.4.11 ensures the existence of linearly inde-
pendent linear forms L1, . . . , Ln such that (L1, . . . , Ln−1, L

2
n) ◦H ⊆ I⊥. By Proposi-

tion 3.4.14, the vector whose components are the coefficients of Ln is admissible.
(ii) Since v is admissible, w = λv ̸= 0 and wlρ

j
k − wkρ

j
l = λ(vlρ

j
k − vkρ

j
l ) = 0.

(iii) Since BH ̸= 0, there exists ρj
k ̸= 0 for some 1 ≤ j ≤ h1 and 1 ≤ k ≤ n. We will

first prove that vk ̸= 0. Suppose that vk = 0. By Definition 3.4.15, there exists vi ̸= 0,
i ̸= k, and viρ

j
k − vkρ

j
i = 0. Then viρ

j
k = 0 and we reach a contradiction.

Consider noww = (w1, . . . , wn) admissible with respect toH . From ρj
kvl−ρj

l vk =
0 and ρj

kwl − ρj
lwk = 0, we get vl =

(
ρj

l /ρ
j
k

)
vk and wl =

(
ρj

l /ρ
j
k

)
wk. Set λl :=

ρj
l /ρ

j
k. For any 1 ≤ l ≤ n, with l ̸= k, from vl = λlvk and wl = λlwk, we deduce that

wl = (wk/vk) vl. Hence w = λv, where λ = wk/vk, and any two admissible vectors
of H are linearly dependent. �

We now want to provide a geometric interpretation of pairs of polynomials and ad-
missible vectors and describe the variety where they lay. Let us first note that whenever
BH = 0, any v ̸= 0 is an admissible vector. With this observation and Lemma 3.4.16,
for any polynomial H such that rkBH ≤ 1, we can consider its admissible vectors v as
points [v] in the projective space Pn−1

k by taking homogeneous coordinates (v1 : · · · :
vn).

Let us consider the ideal generated ink[α1, . . . , αh1 , β1, . . . , βh2 , v1, . . . , vn] by poly-
nomials of the form

ρj
kρ

l
m − ρl

kρ
j
m, 1 ≤ k < m ≤ n, 1 ≤ j < l ≤ h1; (3.20)

vlρ
j
k − vkρ

j
l , 1 ≤ k < l ≤ n, 1 ≤ j ≤ h1. (3.21)

It can be checked that all these polynomials are bihomogeneous polynomials in the sets of
variablesα1, . . . , αh1 , β1, . . . , βh2 and v1, . . . , vn. Therefore, this ideal defines a variety
in Ph1+h2−1

k × Pn−1
k the points of which satisfy equations 3.20 and 3.21.

We denote by c the ideal in k[α1, . . . , αh1 , β1, . . . , βh2 , v1, . . . , vn] generated by all
order 2 minors of CH,v . We denote by V+(c) the variety defined by c in Ph1+h2−1

k ×
Pn−1

k .

LEMMA 3.4.17 With the previous definitions, the set of points of V+(c) is{
([H], [v]) ∈ Ph1+h2−1

k × Pn−1
k | [H] ∈ V+(b) and v admissible with respect toH

}
.
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Proof: It follows from 3.20 and 3.21. �

LEMMA 3.4.18 Let π1 be the projection map from Ph1+h2−1
k ×Pn−1

k to Ph1+h2−1
k . Then

π1(V+(c)) = V+(b). Moreover, π1 is a bijection when restricted to the subset of V+(c)
where rkBH = 1.

Proof: Any element of V+(c) is of the form ([H], [v]) described in Lemma 3.4.17.
Then π1([H], [v]) = [H] ∈ V+(b). Conversely, given an element [H] ∈ V+(b), we
have rkBH ≤ 1. If BH = 0, then any v ̸= 0 satisfies ([H], [v]) ∈ V+(c). If rkB = 1,
by Lemma 3.4.16, there exists a unique admissible v up to scalar multiplication, hence
([H], [v]) is the unique point in V+(c) such that π1([H], [v]) = [H]. �

From Corollary 3.4.13, we know that all covers G = R/AnnR H of A = R/I

colength 2 correspond to points [H] ∈ V+(b) but, in general, not all points of V+(b)
correspond to such covers. Therefore, we need to identify and remove those [H] such
that (L1, . . . , Ln−1, L

2
n) ◦H ( I⊥.

As k-vector space, (L1, . . . , Ln−1, L
2
n) ◦H is generated by

• (vlxk − vkxl) ◦H , 1 ≤ k < l ≤ n;
• xθ ◦H , 2 ≤ |θ| ≤ s+ 2.

Since (L1, . . . , Ln−1, L
2
n) ◦ H ⊆ I⊥, we can provide an explicit description of these

generators with respect to the k-basis b1, . . . , bt of I⊥ as follows:

(xkvl − xlvk) ◦H =

=
t∑

j=1

(
vl

h1∑
i=1

αiµ
k,i
j − vk

h1∑
i=1

αiµ
l,i
j + vl

h2∑
i=1

βiλ
k,i
j − vk

h2∑
i=1

βiλ
l,i
j

)
bj ,

for 1 ≤ l < k ≤ n, with xk ◦ Fi =
∑t

j=1 µ
k,i
j bj and xk ◦ Gi =

∑t
j=1 λ

k,i
j bj +∑h1

j=1 a
k,i
j Fj , where µk,i

j , λk,i
j , ak,i

j are in k;

xθ ◦H =
t∑

j=1

(
h1∑

i=1
µθ,i

j αi +
h2∑

i=1
λθ,i

j βi

)
bj ,
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where 2 ≤ |θ| ≤ s+ 2, xθ ◦ Fi =
∑t

j=1 µ
θ,i
j bj and

xθ ◦Gi =
t∑

j=1
λθ,i

j bj ,

with µθ,i
j and λθ,i

j in k.

We now define matrix UH,v such that its rows are the coefficients of each generator
of (L1, . . . , Ln−1, L

2
n) ◦H with respect to the k-basis b1, . . . , bt of I⊥:

Ţ b1 . . . bt

(x2v1 − x1v2) ◦H ϱ1
1,2 · · · ϱt

1,2
...

...
...

(xnvn−1 − xn−1vn) ◦H ϱ1
n−1,n · · · ϱt

n−1,n

x2
1 ◦H ς1

(2,0,...,0) · · · ςt
(2,0,...,0)

x1x2 ◦H ς1
(1,1,0,...,0) · · · ςt

(1,1,0,...,0)
...

...
...

x2
n ◦H ς1

(0,...,0,2) · · · ςt
(0,...,0,2)

...
...

...

xs+2
n ◦H ς1

(0,...,0,s+2) · · · ςt
(0,...,0,s+2)

where

ϱj
l,k := vl

h1∑
i=1

αiµ
k,i
j − vk

h1∑
i=1

αiµ
l,i
j + vl

h2∑
i=1

βiλ
k,i
j − vk

h2∑
i=1

βiλ
l,i
j

and

ςj
θ :=

h1∑
i=1

µθ,i
j αi +

h2∑
i=1

λθ,i
j βi.

It can be easily checked that the entries of this matrix are either bihomogeneous polyno-
mials ϱj

l,k in variables ((α, β), v) of bidegree (1, 1) or homogeneous polynomials ςj
θ in

variables (α, β) of degree 1. Let a be the ideal in k[α1, . . . , αh1 , β1, . . . , βh2 , v1, . . . , vn]
generated by all minors of UH,v of order t = dimk I

⊥.
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Chapter 3. Variety of minimal Gorenstein covers

It can be checked that a is a bihomogeneous ideal in variables ((α, β), v), hence we
can think of V+(a) as the following variety in Ph1+h2−1 × Pn−1:

V+(a) = {([H], [v]) ∈ Ph1+h2−1 × Pn−1 | rkUH,v < t}.

PROPOSITION 3.4.19 Assume gcl(A) > 1. Consider a point ([H], [v]) ∈ V+(c) in
Ph1+h2−1 × Pn−1. Then

[H] ∈MGC2(A)⇐⇒ ([H], [v]) /∈ V+(a),

Proof: From Corollary 3.4.13 we deduce that if [H] is a point in MGC2(A), then
rkBH ≤ 1. The same is true for any point ([H], [v]) ∈ V+(c). Let us consider these
two cases:

Case BH = 0. Since gcl(A) > 1, then R/AnnR H is not a Gorenstein cover of A
by Lemma 3.4.10, hence [H] /∈MGC2(A). On the other hand, as stated in the proof of
Lemma 3.4.18, ([H], [v]) ∈ V+(c) for any v ̸= 0. By Lemma 3.4.9 and gcl(A) ̸= 1, it
follows that

(L1, . . . , Ln−1, L
2
n) ◦H ⊆ m ◦H ( I⊥

for any L1, . . . , Ln linearly independent linear forms, where Ln = v1x1 + · · ·+ vnxn.
Therefore, the rank of matrix UH,v is always strictly smaller than dimk I

⊥. Hence
([H], [v]) ∈ V+(a) for any v ̸= 0.

Case rkBH = 1. If [H] ∈ MGC2(A), then there exist L1, . . . , Ln such that
(L1, . . . , Ln−1, L

2
n) ◦ H = I⊥. Take v as the vector of coefficients of Ln, it is an

admissible vector by definition. By Lemma 3.4.18, ([H], [v]) ∈ V+(c) is unique and
rkUH,v = dimk I

⊥. Therefore, ([H], [v]) /∈ V+(a).
Conversely, if ([H], [v]) ∈ V+(c) ∩ V+(a), then rkUH,v < dimk I

⊥ and hence
(L1, . . . , Ln−1, L

2
n) ◦ H ( I⊥, where Ln = v1x1 + · · · + vnxn. By unicity of v, no

other choice of L1, . . . , Ln satisfies the inclusion (L1, . . . , Ln−1, L
2
n) ◦H ⊂ I⊥, hence

[H] /∈MGC2(A). �

COROLLARY 3.4.20 Assume gcl(A) > 1. With previous definitions,

MGC2(A) = V+(b)\π1 (V+(c) ∩ V+(a)) .
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3.4. ComputingMGC(A) for low Gorenstein colength

Proof: It follows from Lemma 3.4.18 and Proposition 3.4.19. �

Finally, let us recall the following result for bihomogeneous ideals, see [10]:

LEMMA 3.4.21 Let ideals a, c be as previously defined, d = a + c be the sum ideal and
π1 : Ph1+h2−1

k × Pn−1
k −→ Ph1+h2−1

k be the projection map. Let d̂ be the projective
elimination of the ideal d with respect to variables v1, . . . , vn. Then,

π1(V+(a) ∩ V+(c)) = V+(d̂).

Algorithm 3 ComputeMGC2(A) of A = R/I with n ≥ 2 and gcl(A) > 1
Input: s socle degree of A = R/I; b1, . . . , bt k-basis of the inverse system I⊥;
F1, . . . , Fh1 , G1, . . . , Gh2 an adapted k-basis of LA,2; U1, . . . , Un contraction ma-
trices of

∫
m2 I

⊥.
Output: ideals b and d̂ such thatMGC2(A) = V+(b)\V+(d̂).
Steps:

(i) SetH = α1F1 + · · ·+αh1Fh1 +β1G1 + · · ·+βh2Gh2 , where α, β are variables
in k. Set column vectors H = (0, . . . , 0, α, β)t and v = (v1, . . . , vn)t in R =
k[α, β, v], where the first t components of H are zero.

(ii) Build matrix BH = (ρj
i )1≤i≤n, 1≤j≤h1 , where UiH is the column vector

(µ1
i , . . . , µ

t
i, ρ

1
i , . . . , ρ

h1
i , 0, . . . , 0)t.

(iii) Build matrix CH,v =
(
BH v

)
as an horizontal concatenation of BH and

the column vector v.
(iv) Compute the ideal c ⊆ R generated by all minors of order 2 of BH .
(v) Build matrix UH,v as a vertical concatenation of matrices

(ϱj
l,k)1≤j≤h1, 1≤l<k≤n and (ςj

θ )2≤|θ|≤s+2, 1≤j≤h1 , such that (vlUk − vkUl)H =
(ϱ1

l,k, · · · , ϱ
h1
l,k, 0, · · · , 0)t and UθH = (ς1

θ , · · · , ς
h1
θ , 0, · · · , 0)t, with

1 ≤ k < l ≤ n and 2 ≤ |θ| ≤ s+ 2.
(vi) Compute the ideal a ⊆ R generated by all minors of order t of UH,v and the

ideal d = a + c ⊆ R .
(vii) Compute d̂ ⊆ R′ = k[α, β], where ·̂ denotes the projective elimination of the

ideal in R with respect to variables v1, . . . , vn.
(viii) Compute the ideal b := ĉ ⊆ R′.
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Chapter 3. Variety of minimal Gorenstein covers

Algorithm 3 effectively computes MGC2(A) for any ring A = R/I with Goren-
stein colength strictly higher than 1. Its output can be interpreted as MGC2(A) =
V+(b)\V+(d̂). Moreover, any point [α1 : · · · : αh1 : β1 : · · · : βh2 ] in MGC2(A)
corresponds to a minimal Gorenstein cover G = R/AnnR H of colength 2 of A, where
H = α1F1 + · · ·+αh1Fh1 +β1G1 + · · ·+βh2Gh2 . IfMGC2(A) ̸= ∅, then gcl(A) = 2
and henceMGC(A) = MGC2(A). Otherwise, gcl(A) > 2.

EXAMPLE 3.4.22 Consider A = R/I , with R = k[[x1, x2]] and I = (x2
1, x1x

2
2, x

4
2).

Applying Algorithm 1 twice we get the necessary input for Algorithm 3:
Input: b1 = 1, b2 = y1, b3 = y2, b4 = y2

2 , b5 = y1y2, b6 = y3
2 k-basis of I⊥; F1 =

y4
2 , F2 = y1y

2
2 , F3 = y2

1 , G1 = y2
1y2, G2 = y1y

3
2 , G3 = y5

2 , G4 = y3
1 adapted k-basis of

LA,2; U1, U2 contraction matrices of
∫
m2 I

⊥.
Output: b = (b3b4, b2b4), d̂ = (b3b4, b2b4, b

2
2 − b1b3).

MGC2(A) = V+(b3b4, b2b4)\V+(b3b4, b2b4, b
2
2 − b1b3) = V+(b3b4, b2b4)\V+(b2

2 −
b1b3). Note that if b3b4 = b2b4 = 0 and b4 ̸= 0, then both b2 and b3 are zero and
condition b2

2 − b1b3 = 0 always holds. Therefore, gcl(A) = 2 and hence

MGC(A) = V+(b4)\V+(b2
2 − b1b3) ≃ P5\V+(b2

2 − b1b3),

where (a1 : a2 : a3 : b1 : b2 : b3) are the coordinates of the points in P5. Moreover, any
minimal Gorenstein cover is of the form G = R/AnnR H , where

H = a1y
4
2 + a2y1y

2
2 + a3y

2
1 + b1y

2
1y2 + b2y1y

3
2 + b3y

5
2

satisfies b2
2 − b1b3 ̸= 0. All such covers admit (x1, x

2
2) as the correspondingKH .

3.5 Computaࢢons
The first aim of this section is to provide a wide range of examples of the computation

of the minimal Gorenstein cover variety of a local ring A. In [40], Poonen provides a
complete classification of local algebras over an algebraically closed field of length equal
or less than 6. Note that, for higher lengths, the number of isomorphism classes is no
longer finite. We will go through all algebras of Poonen’s list and restrict, for the sake
of simplicity, to fields of characteristic zero.

On the other hand, we also intend to test the efficiency of the algorithms by collecting
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the computation times. We have implemented algorithms 1, 2 and 3 of Section 3.4 in the
commutative algebra software Singular [11]. The computer we use runs into the operat-
ing system Microsoft Windows 10 Pro and its technical specifications are the following:
Surface Pro 3; Processor: 1.90 GHz Intel Core i5-4300U 3 MB SmartCache; Memory:
4GB 1600MHz DDR3.

3.5.1 Teter varieࢢes
In this first part of the section we are interested in the computation of Teter varieties,

that is, the MGC(A) variety for local algebras A of Gorenstein colength 1. All the
results are obtained by running Algorithm 2 in Singular.

EXAMPLE 3.5.1 Consider A = R/I , with R = k[[x1, x2, x3]] and I = (x2
1, x1x2, x1x3,

x2x3, x3
2, x3

3). Note that HFA = {1, 3, 2} and τ(A) = 3. The output provided by our
implementation of the algorithm in Singular [11] is the following:

F;

a(4)*x(2)^3+a(1)*x(3)^3+a(6)*x(1)^2+a(5)*x(1)*x(2)

+a(3)*x(1)*x(3)+a(2)*x(2)*x(3)

radical(a);

a(1)*a(4)*a(6)

We consider points with coordinates (a1 : a2 : a3 : a4 : a5 : a6) ∈ P5. Therefore,
MGC(A) = P5\V+(a1a4a6) and any minimal Gorenstein cover is of the form G =
R/AnnR H , where H = a1y

3
3 + a2y2y3 + a3y1y3 + a4y

3
2 + a5y1y2 + a6y

2
1 with

a1a4a6 ̸= 0.

In Table 3.1 below we show the computation time (in seconds) of all isomorphism
classes of local k-algebras A of gcl(A) = 1 appearing in Poonen’s classification [40].
In this table, we list the Hilbert function of A = R/I , the expression of the ideal I
up to linear isomorphism, the dimension h − 1 of the projective space Ph−1 where the
variety MGC(A) lies and the computation time. Note that our implementation of Al-
gorithm 2 includes also the computation of the k-basis of

∫
m
I⊥, hence the computation

time corresponds to the total amount of time.
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Chapter 3. Variety of minimal Gorenstein covers

HFR/I I h− 1 t(s)

1, 2 (x1, x2)2 2 0,06

1, 2, 1 x1x2, x
2
2, x

3
1 2 0,06

1, 3 (x1, x2, x3)2 5 0,13

1, 2, 1, 1 x2
1, x1x2, x

4
2 2 0,23

1, 2, 2 x1x2, x
3
1, x

3
2 2 0,11

x1x
2
2, x

2
1, x

3
2 2 0,05

1, 3, 1 x1x2, x1x3, x2x3, x
2
2, x

2
3, x

3
1 5 0,16

1, 4 (x1, x2, x3, x4)2 9 2,30

1, 2, 1, 1, 1 x1x2, x
5
1, x

2
2 2 0,17

1, 2, 2, 1 x1x2, x
3
1, x

4
2 2 0,09

x2
1 + x3

2, x1x
2
2, x

4
2 2 0,1

1, 3, 1, 1 x1x2, x1x3, x2x3, x
2
2, x

2
3, x

4
1 5 3,05

1, 3, 2 x2
1, x1x2, x1x3, x

2
2, x2x

2
3, x

3
3 5 0,33

x2
1, x1x2, x1x3, x2x3, x

3
2, x

3
3 5 0,23

1, 4, 1 x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x
2
2, x

2
3, x

2
4, x

3
1 9 3,21

1, 5 (x1, x2, x3, x4, x5)2 14 1,25

TABLE 3.1 Computation times of MGC(A) for A = R/I with ℓ(A) ≤ 6 and gcl(A) = 1.

See Appendix C for an explicit description ofMGC(A) for all the ideals represented
in Table 3.1.

3.5.2 Minimal Gorenstein covers variety in colength 2
Now we want to computeMGC(A) for gcl(A) = 2. All the examples are obtained

by running Algorithm 3 in Singular.

EXAMPLE 3.5.2 Consider A = R/I , with R = k[[x1, x2, x3]] and I = (x2
1, x2

2, x2
3,

x1x2, x1x3). Note that HFA = {1, 3, 1} and τ(A) = 2. The output provided by our
implementation of the algorithm in Singular [11] is the following:
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H;

b(10)*x(1)^3+b(7)*x(1)^2*x(2)+

+b(8)*x(1)*x(2)^2+b(9)*x(2)^3+

+b(1)*x(1)^2*x(3)+b(2)*x(1)*x(2)*x(3)+

+b(3)*x(2)^2*x(3)+b(4)*x(1)*x(3)^2+

+b(6)*x(2)*x(3)^2+b(5)*x(3)^3+

+a(5)*x(1)^2+a(4)*x(1)*x(2)+

+a(3)*x(2)^2+a(2)*x(1)*x(3)+

+a(1)*x(3)^2

radical(b);

_[1]=b(8)^2-b(7)*b(9)

_[2]=b(7)*b(8)-b(9)*b(10)

_[3]=b(6)*b(8)-b(4)*b(9)

_[4]=b(3)*b(8)-b(2)*b(9)

_[5]=b(2)*b(8)-b(1)*b(9)

_[6]=b(1)*b(8)-b(3)*b(10)

_[7]=b(7)^2-b(8)*b(10)

_[8]=b(6)*b(7)-b(4)*b(8)

_[9]=b(4)*b(7)-b(6)*b(10)

_[10]=b(3)*b(7)-b(1)*b(9)

_[11]=b(2)*b(7)-b(3)*b(10)

_[12]=b(1)*b(7)-b(2)*b(10)

_[13]=b(3)*b(6)-b(5)*b(9)

_[14]=b(2)*b(6)-b(5)*b(8)

_[15]=b(1)*b(6)-b(5)*b(7)

_[16]=b(2)*b(5)-b(4)*b(6)

_[17]=b(4)^2-b(1)*b(5)

_[18]=b(3)*b(4)-b(5)*b(8)

_[19]=b(2)*b(4)-b(5)*b(7)

_[20]=b(1)*b(4)-b(5)*b(10)

_[21]=b(2)*b(3)-b(4)*b(9)

_[22]=b(1)*b(3)-b(4)*b(8)

_[23]=b(2)^2-b(4)*b(8)

_[24]=b(1)*b(2)-b(6)*b(10)

_[25]=b(1)^2-b(4)*b(10)

_[26]=b(3)*b(5)*b(10)-b(6)^2*b(10)

_[27]=b(3)^2*b(10)-b(6)*b(9)*b(10)

_[28]=b(4)*b(6)^2-b(5)^2*b(8)

_[29]=b(6)^3*b(10)-b(5)^2*b(9)*b(10)

radical(d);

_[1]=b(8)^2-b(7)*b(9)

_[2]=b(7)*b(8)-b(9)*b(10)

_[3]=b(6)*b(8)-b(4)*b(9)

_[4]=b(3)*b(8)-b(2)*b(9)

_[5]=b(2)*b(8)-b(1)*b(9)

_[6]=b(1)*b(8)-b(3)*b(10)

_[7]=b(7)^2-b(8)*b(10)

_[8]=b(6)*b(7)-b(4)*b(8)

_[9]=b(4)*b(7)-b(6)*b(10)

_[10]=b(3)*b(7)-b(1)*b(9)

_[11]=b(2)*b(7)-b(3)*b(10)

_[12]=b(1)*b(7)-b(2)*b(10)

_[13]=b(3)*b(6)-b(5)*b(9)

_[14]=b(2)*b(6)-b(5)*b(8)

_[15]=b(1)*b(6)-b(5)*b(7)

_[16]=b(2)*b(5)-b(4)*b(6)

_[17]=b(4)^2-b(1)*b(5)

_[18]=b(3)*b(4)-b(5)*b(8)

_[19]=b(2)*b(4)-b(5)*b(7)

_[20]=b(1)*b(4)-b(5)*b(10)

_[21]=b(2)*b(3)-b(4)*b(9)

_[22]=b(1)*b(3)-b(4)*b(8)

_[23]=b(2)^2-b(4)*b(8)

_[24]=b(1)*b(2)-b(6)*b(10)

_[25]=b(1)^2-b(4)*b(10)

_[26]=b(3)*b(5)*b(10)-b(6)^2*b(10)

_[27]=b(3)^2*b(10)-b(6)*b(9)*b(10)

_[28]=b(4)*b(6)^2-b(5)^2*b(8)

_[29]=a(5)*b(3)*b(5)-a(5)*b(6)^2

_[30]=a(5)*b(3)^2-a(5)*b(6)*b(9)

_[31]=b(6)^3*b(10)-b(5)^2*b(9)*b(10)

_[32]=a(5)*b(6)^3-a(5)*b(5)^2*b(9)

We can simplify the output by using the primary decomposition
∩k

i=1 bi of the ideal
b. Then,

MGC(A) =

(
k∪

i=1
V+(bi)

)
\V+(d̂) =

k∪
i=1

(
V+(bi)\V+(d̂)

)
.

Singular [11] provides a primary decomposition b = b1 ∩ b2 that satisfies

V+(b2)\V+(d̂) = ∅.

Therefore, we get

MGC(A) = V+(b1, b2, b4, b7, b8, b10, b3b6 − b5b9)\ (V+(a5) ∪ V+(d)) ⊂ P14,

where d = (−b3
6 + b2

5b9, b3b5 − b2
6, b

2
3 − b6b9). We can eliminate some of the variables
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Chapter 3. Variety of minimal Gorenstein covers

and considerMGC(A) to be the following variety:

MGC(A) = V+(b3b6−b5b9)\
(
V+(a5) ∪ V+(b2

5b9 − b3
6, b3b5 − b2

6, b
2
3 − b6b9)

)
⊂ P8.

Therefore, any minimal Gorenstein cover is of the form G = R/AnnR H , where

H = a1y
2
3 + a2y1y3 + a3y

2
2 + a4y1y2 + a5y

2
1 + b3y

2
2y3 + b5y

3
3 + b6y2y

2
3 + b9y

3
2

satisfies b3b6 − b5b9 = 0 and a5 ̸= 0 and at least one of the following conditions:
b2

5b9 − b3
6 ̸= 0, b3b5 − b2

6 ̸= 0 or b2
3 − b6b9 ̸= 0.

Moreover, note that V+(c)\V+(a) = V+(c1)\V+(a), where c = c1 ∩ c2 is the
primary decomposition of c and c1 = b1 + (v1, v2b5 − v3b6, v2b3 − v3b9). Hence, any
KH such thatKH ◦H = I⊥ will be of the formKH = (L1, L2, L

2
3), where L1, L2, L3

are independent linear forms in R such that L3 = v2x2 + v3x3, with v2b5 − v3b6 =
v2b3 − v3b9 = 0.

EXAMPLE 3.5.3 Consider A = R/I , with R = k[[x1, x2, x3]] and I = (x1x2, x1x3,
x2x3, x2

2, x2
3 − x3

1). Note that HFA = {1, 3, 1, 1} and τ(A) = 2. The output provided
by our implementation of the algorithm in Singular [11] is the following:

H;

-b(10)*x(1)^4+b(9)*x(1)^2*x(2)+

+b(7)*x(1)*x(2)^2+b(8)*x(2)^3+

+b(6)*x(1)^2*x(3)+b(1)*x(1)*x(2)*x(3)+

+b(2)*x(2)^2*x(3)+b(3)*x(1)*x(3)^2+

+b(4)*x(2)*x(3)^2+b(5)*x(3)^3+

+a(5)*x(1)*x(2)+a(4)*x(2)^2+

+a(3)*x(1)*x(3)+a(2)*x(2)*x(3)+

+a(1)*x(3)^2

radical(b);

_[1]=b(8)*b(10)

_[2]=b(7)*b(10)

_[3]=b(4)*b(10)

_[4]=b(2)*b(10)

_[5]=b(1)*b(10)

_[6]=b(6)*b(8)-b(2)*b(9)

_[7]=b(7)^2-b(8)*b(9)

_[8]=b(6)*b(7)-b(1)*b(9)

_[9]=b(4)*b(7)-b(3)*b(8)

_[10]=b(3)*b(7)-b(4)*b(9)

_[11]=b(2)*b(7)-b(1)*b(8)

_[12]=b(1)*b(7)-b(2)*b(9)

_[13]=b(4)*b(6)-b(5)*b(9)

_[14]=b(2)*b(6)-b(4)*b(9)

_[15]=b(1)*b(6)-b(3)*b(9)

_[16]=b(4)^2-b(2)*b(5)

_[17]=b(3)*b(4)-b(1)*b(5)

_[18]=b(2)*b(4)-b(5)*b(8)

_[19]=b(1)*b(4)-b(5)*b(7)

_[20]=b(3)^2-b(5)*b(6)+b(3)*b(10)

_[21]=b(2)*b(3)-b(5)*b(7)

_[22]=b(1)*b(3)-b(5)*b(9)

_[23]=b(2)^2-b(4)*b(8)

_[24]=b(1)*b(2)-b(3)*b(8)

_[25]=b(1)^2-b(4)*b(9)

_[26]=b(5)*b(9)*b(10)

_[27]=b(3)*b(9)*b(10)

radical(d);

_[1]=b(8)*b(10)

_[2]=b(7)*b(10)

_[3]=b(4)*b(10)

_[4]=b(2)*b(10)

_[5]=b(1)*b(10)

_[6]=b(6)*b(8)-b(2)*b(9)

_[7]=b(7)^2-b(8)*b(9)

_[8]=b(6)*b(7)-b(1)*b(9)

_[9]=b(4)*b(7)-b(3)*b(8)

_[10]=b(3)*b(7)-b(4)*b(9)

_[11]=b(2)*b(7)-b(1)*b(8)

_[12]=b(1)*b(7)-b(2)*b(9)

_[13]=b(4)*b(6)-b(5)*b(9)

_[14]=b(2)*b(6)-b(4)*b(9)

_[15]=b(1)*b(6)-b(3)*b(9)

_[16]=b(4)^2-b(2)*b(5)

_[17]=b(3)*b(4)-b(1)*b(5)

_[18]=b(2)*b(4)-b(5)*b(8)

_[19]=b(1)*b(4)-b(5)*b(7)

_[20]=b(3)^2-b(5)*b(6)+b(3)*b(10)

_[21]=b(2)*b(3)-b(5)*b(7)

_[22]=b(1)*b(3)-b(5)*b(9)

_[23]=b(2)^2-b(4)*b(8)

_[24]=b(1)*b(2)-b(3)*b(8)

_[25]=b(1)^2-b(4)*b(9)

_[26]=b(5)*b(9)*b(10)

_[27]=b(3)*b(9)*b(10)

_[28]=a(4)*b(5)*b(10)

_[29]=a(4)*b(3)*b(10)

Singular provides a primary decomposition b = b1∩b2∩b3 such thatV+(b)\V+(d̂) =
V+(b2)\V+(d̂). Therefore,MGC(A) corresponds to

V+(b1, b2, b4, b7, b8, b9, b
2
3 − b5b6 + b3b10)\ (V+(a4) ∪ V+(b10) ∪ V+(b3, b5)) ⊂ P14.
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3.5. Computations

We can eliminate some of the variables and considerMGC(A) to be the following va-
riety:

MGC(A) = V+(b2
3 − b5b6 + b3b10)\ (V+(a4) ∪ V+(b10) ∪ V+(b3, b5)) ⊂ P8.

Therefore, any minimal Gorenstein cover is of the form G = R/AnnR H , where

H = a1y
2
3 + a2y2y3 + a3y1y3 + a4y

2
2 + a5y1y2 + b3y1y

2
3 + b5y

3
3 + b6y

2
1y3 − b10y

4
1

satisfies b2
3 − b5b6 + b3b10 = 0, a4 ̸= 0, b10 ̸= 0 and either b3 ̸= 0 or b5 ̸= 0 (or both).

Moreover, note that V+(c)\V+(a) = V+(c2)\V+(a), where c = c1 ∩ c2 ∩ c3 is
the primary decomposition of c and c2 = b2 + (v2, v1b5 − v3b3 − v3b10, v1b3 − v3b6).
Hence, any KH such that KH ◦ H = I⊥ will be of the form KH = (L1, L2, L

2
3),

where L1, L2, L3 are independent linear forms in R such that L3 = v1x1 + v3x3, with
v1b5 − v3b3 − v3b10 = v1b3 − v3b6 = 0.

EXAMPLE 3.5.4 ConsiderA = R/I , withR = k[[x1, x2, x3]] and I = (x2
1, x

2
2, x

2
3, x1x2).

Note thatHFA = {1, 3, 2} and τ(A) = 2. Doing analogous computations to the previous
examples, Singular provides the following variety:

MGC(A) = P7\V+(b2
2 − b1b3).

The coordinates of points inMGC(A) are of the form (a1 : · · · : a4 : b1 : b2 : b3 :
b4) ∈ P7 and they correspond to a polynomial

H = b1y
2
1y3 + b2y1y2y3 + b3y

2
2y3 + b4y

3
3 + a1y

2
3 + a2y

2
2 + a3y1y2 + a4y

2
1

such that b2
2 − b1b3 ̸= 0. Any G = R/AnnR H is a minimal Gorenstein cover of

colength 2 of A and all such covers admit (x1, x2, x
2
3) as the correspondingKH .

EXAMPLE 3.5.5 Consider A = R/I , with R = k[[x1, x2, x3, x4]] and I = (x2
1, x2

2, x2
3,

x2
4, x1x2, x1x3, x1x4, x2x3, x2x4). Note that HFA = {1, 4, 1} and τ(A) = 3. Do-

ing analogous computations to the previous examples, Singular provides the following
variety:

MGC(A) = V+(b6b10 − b9b16)\ (V+(d1) ∪ V+(d2)) ⊂ P12,
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Chapter 3. Variety of minimal Gorenstein covers

where d1 = (a7a9−a2
8) and d2 = (b2

9b16−b3
10, b6b9−b2

10, b
2
6−b10b16). The coordinates

of points inMGC(A) are of the form [H] = (a1 : · · · : a9 : b6 : b9 : b10 : b16) ∈ P12,
where

H = b16y
3
3 + b6y

2
3y4 + b10y3y

2
4 + b9y

3
4 + a9y

2
1 + a8y1y2 + a7y

2
2+

+a6y1y3 + a5y2y3 + a4y
2
3 + a3y1y4 + a2y2y4 + a1y

2
4 .

Then G = R/AnnR H is a minimal Gorenstein cover of colength 2 of A if and only
if [H] ∈ MGC(A). Moreover, any KH such that KH ◦ H = I⊥ will be of the form
KH = (L1, L2, L3, L

2
4), where L1, L2, L3, L4 are independent linear forms in R such

that L4 = v3x3 + v4x4, with v3b9 − v4b10 = v3b6 − v4b16 = 0.

As in the case of colength 1, we now provide a table with the computation times of
MGC(A) for all analytic types of local k-algebras A of length equal or less than 6 such
that gcl(A) = 2.

HFR/I I t(s)
1, 3, 1 x1x2, x1x3, x

2
1, x

2
2, x

2
3 0,42

1, 2, 2, 1 x2
1, x1x

2
2, x

4
2 0,18

1, 3, 1, 1 x1x2, x1x3, x2x3, x
2
2, x

2
3 − x3

1 3,56
1, 3, 2 x1x2, x2x3, x

2
3, x

2
2 − x1x3, x

3
1 4,4

x1x2, x
2
3, x1x3 − x2x3, x

2
1 + x2

2 − x1x3 1254,34
x1x2, x1x3, x

2
2, x

2
3, x

3
1 3,33

x1x2, x1x3, x2x3, x
2
1 + x2

2 − x2
3 4,61

x2
1, x1x2, x2x3, x1x3 + x2

2 − x2
3 4,09

x2
1, x1x2, x

2
2, x

2
3 0,45

1, 4, 1 x2
1, x

2
2, x

2
3, x

2
4, x1x2, x1x3, x1x4, x2x3, x2x4 242,28

TABLE 3.2 Computation times of MGC(A) for A = R/I with ℓ(A) ≤ 6 and gcl(A) = 2.

See Appendix C for an explicit description ofMGC(A) for all the ideals represented
in Table 3.2.
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CHAPTER 4

Gorenstein colength in codimension
two

In this chapter we focus on codimension two local Artin rings A = R/I , hence we
can assume that R = k[[x, y]] and I ⊂ (x, y)2.

Our goal is again to find minimal Gorenstein covers G = R/J of A = R/I using
tools that are only available in codimension two. For instance, by Hilbert-Burch theorem,
see [12, Theorem 20.15], any minimal free resolution of R/K is of the form

0 // Rt−1 M // Rt // R // R/K // 0

andK = It(M), where It(M) stands for the ideal generated by the maximal minors of
the matrixM .

DEFINITION 4.0.1 A monomial ideal L ∈ R is called a lex-segment ideal with respect
to x if it is minimally generated by elements xt, xt−1ym1 , . . . , ymt for some t ≥ 1 and
a succession of integers 0 = m0 < m1 < · · · < mt.

By Macaulay’s theorem [35], given any homogeneous ideal H in P = k[x, y] with
Hilbert function h, there exists a unique lex-segment ideal L = Lex(h) with the same
Hilbert function. From Proposition 1.5.10, given an ideal K of R with Hilbert function
h, it follows that

HFR/K = HFP/K∗ = HFP/L .
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Chapter 4. Gorenstein colength in codimension two

Given a Hilbert function h = {1, 2, . . . , t, ht+1, . . . , hs}, the minimal free graded
resolution of P/Lex(h) is

0 //
⊕

j≥0 P
et+j (−t− j − 1) // P et+1(−t)

⊕
j≥1 P

et+j (−t− j) //

// P // P/L // 0,

where ej := |hj − hj−1| for every j > 0.

Rossi and Sharifan prove in [41] that for each sequence of zero or negative con-
secutive cancellations on the previous resolution, an ideal K of R with this resulting
resolution can be realized. This procedure allows us, whenever the Hilbert function h
admits it, to explicitly construct Gorenstein rings G = R/J such that HFG = h. See
Theorem 1.2.11 for a characterization of which Hilbert functions admit Gorenstein rings
in codimension 2.

However, to decide whether a Gorenstein cover of A with a given Hilbert function
h exists, we need not only some but all Gorenstein rings G with HFG = h. A natural
question arises:

Quesࢢon A: Can we build all Gorenstein ideals with a given Hilbert function h via de-
formations of Lex(h)? And, more generally, can we build any ideal with a given Hilbert
function in this way?

In [8], Conca and Valla parametrize all ideals K in P = k[x, y] that share the same
leading term ideal with respect to the lexicographical order in terms of a certain canonical
Hilbert Burchmatrix ofK. In [9], Constantinescu provides an analogous parametrization
for the degree lexicographical order whenever the leading term ideal is a lex-segment
ideal.

The first section of this chapter is devoted to the extension of this result to the local
setting for the local order τ induced by the lexicographical order. In Section 4.1.1 we
review the parametrizations given by Conca-Valla and Constantinescu. The main result
of the chapter is given in Section 4.1.2:

THEOREM 4.0.2 (See Theorem 4.1.24 for more details.) Given a lex-segment ideal L in
R with canonical Hilbert-Burch matrix H , the set V (L) = {K ⊂ R : Ltτ (K) = L} is
an affine space parametrized by the bijection
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Ψ : M(L) −→ V (L)

N 7−→ It(H +N),

whereM(L) is the set of matrices from Definition 4.1.21.

Note thatΨ associates to each ideal in V (L) a canonical Hilbert-BurchmatrixH+N .
In particular, the coordinates of the affine space AN correspond to the coefficients of the
polynomials in k[y] that can occur as entries of the matrix N inM(L).

More relevantly, observe that Ψ parametrizes any m-primary ideal K of R with a
given Hilbert function h up to a generic change of coordinates, since Gin(K) = Lex(h).
Observe that the realization given in [41, Remark 4.7] of an ideal with a resolution ob-
tained via zero and negative cancellation of the resolution of Lex(h) is a particular defor-
mation of Hilbert-Burch matrices of Lex(h), whereas Ψ gives all possible deformations.

Moreover, we can answer Question A: all Gorenstein ideals J such that HFR/J = h

can be obtained as a deformation of the canonical Hilbert-Burch matrixH of Lex(h) by
adding a suitable matrix N ∈M, again up to a generic change of coordinates.

However, when we look for a Gorenstein cover G = R/J of a given ring A = R/I

we also ask for J to be contained in I . In general, this inclusion property is not preserved
after a generic change of coordinates on the generators of J . Therefore, for the purpose
of seeking covers it is not enough to parametrize deformations of the lex-segment ideal
Lex(h). The question we need to ask then is the following:

Quesࢢon B: Can we build all Gorenstein covers G of A with a given Hilbert function h
via similar deformations of all monomial ideals E such that HFR/E = h?

For a generalm-primary monomial ideal E of R, we give the following result on the
set V (E):

PROPOSITION 4.0.3 (See Proposition 4.1.9 for more details.) Consider a monomial m-
primary idealE inRwith canonical Hilbert-BurchmatrixH , letV (E) be the set of ideals
{K ⊂ R : Ltτ (K) = E} and letN (E) be the set of matrices defined in Definition 4.1.8.
The map

φ : N (E) −→ V (E)

N 7−→ It(H +N),

is surjective.
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Chapter 4. Gorenstein colength in codimension two

In Section 4.2 we address the problem of obtaining Gorenstein covers of a given ring.
Despite the lack of injectivity in Proposition 4.1.9, the map φ provides Hilbert-Burch
matrices N + H for all ideals in V (E). This allows us to scan through all the ideals in
V (E) in search of Gorenstein ideals J with Ltτ (J) = E. Consider a ring A = R/I and
a monomial ideal E such that HFA(i) ≤ HFR/E(i) for any i ≥ 0, we are interested in
determining which matricesN ∈ N (E) define Gorenstein covers J = It(N +H) of A
such that Ltτ (J) = E.

First, we give to the subset VG(L) of Gorenstein ideals in V (L) a structure quasi-
affine variety.

COROLLARY 4.0.4 (See Corollary 4.2.9.) Let L be a lex-segment ideal. The set VG(L) of
Gorenstein ideals J such that Ltτ (J) = L is a quasi-affine variety.

Even more, we completely describe the subset VGC(A)(L) of ideals that correspond
to Gorenstein covers of A:

COROLLARY 4.0.5 (See Corollary 4.2.11.) Let A = R/I be an Artin ring. Consider a
Hilbert-function h such that HFA(i) ≤ h(i) for any i ≥ 0. If Lex(h) ⊂ Ltτ (I), then
the set of Gorenstein coversG = R/J ofA such that Ltτ (J) = Lex(h) is a quasi-affine
variety parametrized by points pJ in

V(p1, . . . , pr)\V(c0
3,1c

0
4,2 · · · c0

t+1,t−1),

where ck
i,j are the coefficients of the entries of matrices N inM(Lex(h)) and pi are

polynomials in variables ck
i,j that occur as coefficients of the reduction of J modulo I .

On the other hand, for any monomial ideal E, Algorithm 4 helps us to compute the
set VG(E) of Gorenstein ideals J such that Ltτ (J) = E. We get as output the quasi-
affine variety AN

k \V(a) whose points correspond to Gorenstein ideals J in V (E), even
though different points might correspond to the same ideal.

Using computational tools to determine inclusion of ideals, we can ensure that the
quasi-affine variety V(p1, . . . , pr)\V(a), where p1, . . . , pr is built as in Corollary 4.2.9,
consists of all points that correspond to Gorenstein covers G = R/J of A = R/I .
Again, this is not a parametrization but it allows us to all determine Gorenstein covers
with a given leading term ideal.

Note that given a Hilbert function h, as the length increases, the amount of monomial
ideals E such that HFR/E = h is extremely large. As a closure of the chapter, we
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4.1. Parametrization of ideals in k[[x, y]]

pose the problem of determining which particular monomial idealsE we must deform to
obtain Gorenstein covers of A with Hilbert function h. This question remains open but
we suggest an interesting direction to follow by showing several examples.

The first part of this chapter is a result of a collaboration with Anna-LenaWinz, from
Freie Universität Berlin, under the supervision of Maria Evelina Rossi.

4.1 Parametrizaࢢon of ideals in k[[x, y]]
In this section, our goal is to parametrize m-primary ideals J of R = k[[x, y]] with

a given leading term ideal E. Therefore, we need to fix a local ordering: consider the
local degree ordering τ induced by the lexicographic order τ = lex where x > y. Note
that τ coincides with local ordering induced by deglex. Moreover, in 2 variables, the
lexicographical order and reverse-lexicographical also coincide.

DEFINITION 4.1.1 Given an m-primary monomial E ideal in R, we denote by V (E) the
set of ideals J ⊂ R such that Ltτ (J) = E.

REMARK 4.1.2 Note that if Ltτ (J) is an m-primary ideal, then J is also an m-primary
ideal of R. The converse is also true.

Any m-primary monomial ideal E of R must contain pure powers xa, yb for some
a, b ≥ 1. Moreover, E is minimally generated by elements of the form xa, xa1yb1 , . . . ,
xarybr , yb with a > a1 > · · · > ar and b1 < · · · < br < b for some r ≥ 0.

It is always possible to extend this minimal system of generators to a lex-segment-
like system of generators xt, xt−1ym1 , . . . , xt−iymi , . . . , ymt with 0 = m0 ≤ m1 ≤
· · · ≤ mt. Indeed, we set t = a, mt = b and, whenever a power t − i of x is missing,
we add the monomial xt−iybj , where 1 ≤ j ≤ r such that aj−1 > t− i > aj .

REMARK 4.1.3 Note that E is a lex-segment ideal if and only if 0 < m1 < · · · < mt.

DEFINITION 4.1.4 We call canonical Hilbert-Burch matrix of the monomial ideal E =
(xt, . . . , xt−iymi , . . . , ymt) the Hilbert-Burch matrix of E of the form
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Chapter 4. Gorenstein colength in codimension two

H =



yd1 0 · · · 0

−x yd2 · · · 0

0 −x · · · 0
...

...
...

0 0 · · · ydt

0 0 · · · −x


,

where di = mi −mi−1 for any 1 ≤ i ≤ t.

DEFINITION 4.1.5 The degree matrixU ofE is the (t+1)×tmatrix with integer entries
ui,j = mj −mi−1 + i− j, for 1 ≤ i ≤ t+ 1 and 1 ≤ j ≤ t.

It follows from the definition that ui,i = di and ui+1,i = 1, for 1 ≤ i ≤ t.

4.1.1 Parametrizaࢢons of ideals in k[x, y]
Let us now recall the parametrization of ideals in the polynomial ring with the same

leading term ideal with respect to the lexicographical order, given by Conca and Valla
in [8]. Let P = k[x, y] be the polynomial ring in two variables and let m = (x, y)
the maximal ideal generated by the variables. Given a monomial ideal E = (xt, . . . ,
xt−iymi , . . . , ymt) in P , denote by V2(E) the set of m-primary ideals J ⊂ P such
that Ltlex(J) = E. Consider the canonical Hilbert-Burch matrix H of E defined as in
Definition 4.1.4. We denote by T2(E) the set of matrices N of size (t + 1) × t with
entries in k[y] such that

• ni,j = 0 for any i ≤ j,
• deg(ni,j) < dj for any i > j,
• ord(ni,j) ≥ 1 whenever dj > 0 and j + 1 ≤ i ≤ k + 1, where

k = min{v : j ≤ v ≤ t, mv = mj}.

THEOREM 4.1.6 [8, Theorem 3.3, Corollary 3.1] Given a monomial ideal E = (xt, . . . ,
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4.1. Parametrization of ideals in k[[x, y]]

xt−iymi , . . . , ymt) in P = k[x, y] with canonical Hilbert-Burch matrixH , the map

Φ : T2(E) −→ V2(E)

N 7−→ It(N +H)

is a bijection. In particular, V2(E) is an affine space of dimension dimk k[x, y]/E −
min{j : xj ∈ E}.

Observe that this theorem allows us to define the canonical Hilbert-Burch matrix of
any m-primary ideal J of P as H + Φ−1(J), where H is the canonical Hilbert-Burch
matrix of the monomial ideal Ltlex(J) as defined in Definition 4.1.4.

On the other hand, Constantinescu parametrizes in [9] the varietyVdeglex(E) = {J ⊂
P : Ltdeglex(J) = E}, where the leading term ideals are considered with respect to the
degree-lexicographical order, for E lex-segment. Let us denote by A(E) the set of f
(t+ 1)× t matrices A = (ai,j)1≤i≤t+1, 1≤j≤t with entries in k[y] such that all its non-
zero entries satisfy

deg(ai,j) ≥

 ui,j + 1, i ≤ j;

ui,j , i > j.

and ui,j are the entries of the degree matrix U of E.

THEOREM 4.1.7 [9, Theorem 3.1] Given a lex-segment ideal L in P = k[x, y] with
canonical Hilbert-Burch matrixH , the map

Φ : A(L) −→ Vdeglex(L)

A 7−→ It(A+H)

is a bijection.

The proof of well-definition and surjectivity of Φ holds for any monomial ideal E =
(xt, . . . , xt−iymi , . . . , ymt), non necessarily lex-segment. However, the lex-segment
hypothesis cannot be dropped because it is needed to prove injectivity.
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Chapter 4. Gorenstein colength in codimension two

4.1.2 Canonical Hilbert-Burch matrices ofm-primary ideals in
the local ring k[[x, y]]

We want to obtain canonical Hilbert-Burch matrices form-primary ideals in k[[x, y]]
in an analogous way to Section 4.1.1. Therefore, we look for a parametrization of the
ideals in V (E) as in Theorem 4.1.6 and Theorem 4.1.7. Let us start by defining a sets of
matrices whose maximal minors generate all the ideals with the same leading term ideal
with respect to the local order τ .

DEFINITION 4.1.8 We define the setN (E) of (t+1)×tmatricesN = (ni,j) with entries
in k[y] such that all its non-zero entries satisfy

max{dj , 1} ≥ degni,j ≥ ord(ni,j) ≥

 ui,j + 1, i ≤ j;

ui,j , i > j.

PROPOSITION 4.1.9 Given a monomial idealE = (xt, . . . , xt−iymi , . . . , ymt) inRwith
canonical Hilbert-Burch matrix H and degree matrix U , let V (E) be the set of ideals
{K ⊂ R : Ltτ (K) = E} and letN (E) be the set of matrices defined in Definition 4.1.8.
The map

φ : N (E) −→ V (E)

N 7−→ It(H +N)

is surjective.

We prove this proposition in two steps: well-definition in Lemma 4.1.10 and surjec-
tivity in Lemma 4.1.12.

LEMMA 4.1.10 The map φ is well-defined.

Proof: Given a monomial ideal E = (xt, xt−1ym1 , . . . , ymt) with canonical Hilbert-
Burch matrixH and associated degree matrix U , we want to prove that the leading term
ideal Ltτ (It(H +N)) is the mononomial ideal E for any matrix N ∈ N (E).
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4.1. Parametrization of ideals in k[[x, y]]

Let us consider the matrix

M = H +N =



yd1 + n1,1 n1,2 · · · n1,t

−x+ n2,1 yd2 + n2,2 · · · n2,t

...
...

...

nt,1 nt,2 · · · ydt + nt,t

nt+1,1 nt+1,2 · · · −x+ nt+1,t


.

From the order bounds on the polynomials ni,j , for 1 ≤ i ≤ t and 1 ≤ j ≤ t+ 1, we
have ord(mi,i) = ui,i, ord(mi+1,i) = ui+1,i and

ord(mi,j) ≥

 ui,j + 1, i < j;

ui,j , i > j − 1.

Set fi = det[M ]i+1, for any 0 ≤ i ≤ t, where [M ]i+1 is the square matrix that we
get after removing row i+ 1 ofM . It has the following shape:

yd1 + n1,1 n1,2 · · · n1,i n1,i+1 · · · n1,t

−x+ n2,1 yd2 + n2,2 · · · n2,i n2,i+1 · · · n2,t

...
...

. . .
...

...
...

ni,1 ni,2 · · · ydi + ni,i ni,i+1 · · · ni,t

ni+2,1 ni+2,2 · · · ni+2,i −x+ ni+2,i+1 · · · ni+2,t

...
...

...
...

. . .
...

nt+1,1 nt+1,2 · · · nt+1,i nt+1,i+1 · · · −x+ nt+1,t


.

Since fi =
∑

σ∈St
sgn(σ)

∏
1≤k≤t+1, k ̸=i+1 mk,σ(k), we focus on the study of the

leading terms of polynomials of the form h =
∏

1≤k≤t+1, k ̸=i+1 mk,σ(k).
If h is the product of elements of the main diagonal, thenLtτ (h) = yd1 · · · ydixt−i =

xt−iymi . We claim that any other h ̸= 0 satisfies Ltτ (h) <τ x
t−iymi . Indeed, since

Ltτ (h) =
∏

1≤k≤t+1, k ̸=i+1

Ltτ (mk,σ(k)),
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then
ord(h) =

∑
1≤k≤t+1, k ̸=i+1

ord(mk,σ(k)) ≥
∑

1≤k≤t+1, k ̸=i+1

uk,σ(k).

To reach the equality ord(h) =
∑

1≤k≤t+1, k ̸=i+1 uk,σ(k) it is necessary that each
mi,σ(i) is either in the lower triangle of M , its main diagonal or right above its main
diagonal from row i+ 1 onwards. However, this forces

h =
i∏

k=1

(ydk + nk,k)
t+1∏

k=i+1

mk,σ(k),

hence the maximal power of x is only reached at the main diagonal. Thus, any h ̸= 0
different from the main diagonal satisfies Ltτ (h) <τ x

t−iymi and, therefore, Ltτ (fi) =
xt−iymi .

Now we need to show that f0, . . . , ft form a τ -enhanced standard basis of It(M).
By [4, Theorem 1.11] it is enough to show that ht ((Ltτ (f0), . . . ,Ltτ (ft))) = 2, which is
clear because this ideal contains pure powers xt and ymt . Therefore, Ltτ (It(M)) = E.
�

The proof of surjectivity of the map φ follows the essential ideas of Conca, Valla
and Constantinescu. However, we must use other tools, such as Grauert’s division or
homogenization, to deal with the local order τ in an analogous way as the authors dealt
with the lexicographical or degree lexicographical orders in [8] and [9]. Let us pose
the following definiton that links the order and the degree of a polynomial and will be
essential in the homogenization process:

DEFINITION 4.1.11 We define the ecart of f ∈ P as the difference between the degree
and the order of the polynomial f , that is, ecart(f) := deg f − deg Ltτ (f).

LEMMA 4.1.12 φ is surjective.

Proof: Using the same notation as in the previous proof, we will show that any ideal
J ⊂ R such that Ltτ (J) = E is of the form J = It(M), whereM = H +N for some
N ∈ N (E).

Since Ltτ (J) = (xt, xt−1ym1 , . . . , ymt), there exist a τ -enhanced standard basis
f0, . . . , ft of J such that Ltτ (fi) = xt−iymi for any 0 ≤ i ≤ t. We can assume that
all these elements have leading coefficient 1 and, by Proposition 1.5.18, that they are
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polynomials of degree at most s, where s = socdegR/J + 1.
By Grauert’s division theorem (see Theorem 1.5.12), we can also assume that the

monomials in the support of the fi’s are not divisible by xt, except for Ltτ (f0).
For any 1 ≤ j ≤ t, consider the S-polynomials Sj := S(fj−1, fj) = ydjfj−1−xfj .

If 2 ≤ j ≤ t, monomials in the support ofSj are not divisible by xt. InS1 = yd1f0−xf1,
the term xt = Ltτ (f0) only appears multiplied by yd1 . Therefore, no monomial in
Supp(Sj) is divisible by xt+1 for any 1 ≤ j ≤ t.

We claim that under the previous conditions,

Sj =
t∑

i=0
qi,jfi,

for some qi,j ∈ k[y] such that Ltτ (qi,jfi) ≤ Ltτ (Sj). In fact, we will prove that this
holds for any f ∈ J such that xt+1 does not divide any monomial in Supp(f). Consider
such an f , then Ltτ (f) = xsyr for some 0 ≤ s ≤ t. On the other hand, from the fact
that Ltτ (f) belongs to Ltτ (J), it follows that xt−iymi must divide Ltτ (f) for some
0 ≤ i ≤ t. Then t− i ≤ s andmi ≤ r, hencemt−s ≤ mi ≤ r.

Now consider the homogenization fh of f with respect to a new variable z. On the
set of monomials in variables z, x, y, we can define the following global order:

zpxayb >h z
qxcyd

if either p+ a+ b > q + c+ d or p+ a+ b = q + c+ d and xayb >τ x
cyd.

See [27, Definition 1.2.4] for a definition of global ordering and [27, Algorithm
1.7.6] for more information on this construction. It can be proved that Lth(fh) =
tecart(f) Ltτ (f), see [27, Definition 1.7.5]. Hence Lth(fh) = zαxsyr, where α =
ecart(f). We define a new polynomial in the following way:

gh = fh − LCh(fh)zα−αt−syr−mt−sfh
t−s.

Note that Lth(fh
t−s) = zαt−sxsymt−s , where αi = ecart(fi), and hence

Lth(zα−αt−syr−mt−sfh
t−s) = zα−αt−syr−mt−szαt−sxsymt−s = zαxsyr.
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Therefore, the leading monomials of fh and LCh(fh)zα−αt−syr−mt−sfh
t−s with re-

spect to the ordering h cancel and hence Lth(gh) <h Lth(fh). By construction, the
monomials of g = gh |z=1 are not divisible by xt+1, so g satisfies the same properties
as f and we can apply the same procedure. Since h is a global ordering, after repeating
this process finitely many times, it will reduce to zero. This provides an expression

fh =
t∑

i=0
Pif

h
i ,

where Pi ∈ k[z, y]. By specializing to z = 1, we get

f =
t∑

i=0
qifi,

where qi ∈ k[y] and qh
i = Pi.

For any 0 ≤ i ≤ t, set βi = ord(qi), then we have Ltτ (qifi) = Ltτ (qi) Ltτ (fi) =
xt−iymi+βi . Therefore, the power of x is different at each Ltτ (qifi) and hence they
cannot cancel each other. This yields

Ltτ (f) = Ltτ

(
t∑

i=0
qifi

)
= max

τ
{Ltτ (qifi) : 0 ≤ i ≤ t},

hence Ltτ (f) ≥τ Ltτ (qifi).
Set ni,j = −qi+1,j , for any 1 ≤ i ≤ t+ 1, 1 ≤ j ≤ t. Then

ydjfj−1 − xfj +
t+1∑
i=1

ni,jfi−1 = 0, for 1 ≤ j ≤ t. (4.1)

Note that the expressions in 4.1 are liftings of ydj Ltτ (fj−1)−xLtτ (fj) = 0. Writ-
ing the later expressions in a matrix shape gives the canonical Hilbert-Burch matrix H
associated to the monomial ideal E. The columns σ1, . . . , σt of H are a homogeneous
system of generators of Syz(Ltτ (J)).

Since 4.1 can be translated into a matrixM = H +N with column j
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mj =



n1,j

n2,j

...

ydj + nj,j

−x+ nj+1,j

...

nt+1,j


,

by Theorem 1.5.19, m1, . . . ,mt generate the module of syzygies of J . Since we are
in codimension 2, by Hilbert-Burch theorem, J is generated by the maximal minors of
the matrix M that has as columns the generators of the module of syzygies of J , i.e.
It(M) = J .

The order bounds on the entries of N are obtained from Ltτ (ni,jfi−1) ≤τ Ltτ (Sj).
Indeed, from Ltτ (ni,jfi) ≤ Ltτ (ydjfj−1 − xfj) it follows that

xt−i+1ymi−1+βi,j <τ max
τ
{Ltτ (ydjfj−1),Ltτ (xfj)} = xt−j+1ymj ,

where Ltτ (ni,j) = yβi,j . By definition,

xt−i+1ymi−1+βi,j <τ x
t−j+1ymj

if and only if βi,j + t− i+ 1 +mi−1 > t− j + 1 +mj or

βi,j + t− i+ 1 +mi−1 = t− j + 1 +mj and t− i+ 1 < t− j + 1.

Note that the previous inequalities mean that either

βi,j > i− j +mj −mi−1 = ui,j

or
βi,j = i− j +mj −mi−1 = ui,j ,

which can only occur if t− i < t− j, that is, i > j.
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Now let us prove that we can slightly modify, if needed, polynomials f0, . . . , ft in
order to make sure that the matrixN generated by the previous construction satisfies the
degree bounds on the entries of N and hence N ∈ N (E). Define new polynomials

f ′
i = fi + xt−iybi , t− i+ bi = s+ 1.

Note that (f ′
0, . . . , f

′
t) = (f0, . . . , ft),Ltτ (f ′

i) = Ltτ (fi) and themonomials inSupp(f ′
i)

are still not divisible by xt. The only exceptions are xt and xtyb0 , but they only occur
in Supp(f ′

0). Therefore, all the previous steps of the proof apply and the matrixN ′ built
from f ′

0, . . . , f
′
t satisfies the order bounds on the entries and provides J = It(N ′ +H).

Let us now rename f ′
i as fi.

Consider the degree lexicographical order τ ′. By construction, Ltτ ’(fi) = xt−iybi

and the leading terms with respect to τ ′ do not cancel each other. Hence

ydjfj−1 − xfj +
t+1∑
i=1

ni,jfi−1 = 0

yields
Ltτ ’(Sj) = max

τ ′
{Ltτ ’(ni,jfi−1) : 1 ≤ i ≤ t+ 1}. (4.2)

On the other hand, since Ltτ ’(ydjfj−1) = xt−j+1ybj−1+dj and Ltτ ’(xfj) = xt−j+1ybj ,
then

deg Ltτ ’(Sj) ≤ max{deg Ltτ ’(ydjfj−1), deg Ltτ ’(xfj)} = max{s+ 1 + dj , s+ 2}.
(4.3)

Note thatdeg(Sj) = deg Ltτ ’(Sj), hence from 4.2 and 4.3we deduce thatdegni,jfi−1 ≤
max{s + 1 + dj , s + 2}. Since deg fi = s + 1 by construction, then degni,j ≤
max{dj , 1}. �

However, as we can see in the following example, φ is not injective even in the lex-
segment case:

EXAMPLE 4.1.13 Consider the lex-segment ideal L = (x3, x2y, xy3, y5). Let H be its
canonical Hilbert-Burch matrix and U its degree matrix:
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H =


y 0 0

−x y2 0

0 −x y2

0 0 −x

 , U =


1 2 3

1 2 3

0 1 2

−1 0 1

 .

Hence

N =


0 0 0

0 0 0

0 0 0

y 0 0

 ∈ N (L)

and I3(H +N) = L. Then φ(0) = φ(N), hence φ is not injective.

REMARK 4.1.14 Observe that if L is a lex-segment ideal, then the sets N (L) and T2(L)
are very similar.

On one hand, any matrixN ∈ N (L) is a lower triangular matrix with main diagonal
0. First of all, we deduce from 0 = m0 < mi < · · · < mt that dj ≥ 1 and {mi−i}0≤i≤t

is a monotonously increasing sequence. For any i ≤ j, it holds that

ui,j = mj −mi−1 + i− j = dj + (mj−1 − (j − 1))− (mi−1 − (i− 1)) ≥ dj ,

hence
dj < ui,j + 1 ≤ ord(ni,j) ≤ degni,j ≤ dj .

Therefore, ni,j = 0 for any i ≤ j.
On the other hand, any matrix in T2(L) is always a lower triangular matrix with

main diagonal 0. But if L is lex-segment, the condition on the order can be translated to
ord(ni+1,i) ≥ 1 for any 1 ≤ i ≤ t. This is always true for matrices in N (L).

Therefore, the two sets only differ in two things:

• degni,j < dj in T2(L) whereas degni,j ≤ dj in N (L),
• the entries inN (L) have lower bounds on ordni,j for i ≥ j+ 2 whereas in T2(L)
there are no such bounds.

It is reasonable to think that the degree of the entries of matrices in N (E) can by
dropped by one. However, we only have been able to prove it in the lex-segment case so

109



Chapter 4. Gorenstein colength in codimension two

far. The proof uses a very strong fact: for any ideal J whose leading term ideal is a lex-
segment ideal L, there exists a τ -enhanced standard basis of J that it is also a Gröbner
basis with respect to the lexicographical order. This implies that we can use Conca and
Valla’s parametrization of V2(L) in this scenario.

Let us start by determining under which conditions a τ -enhanced standard basis of a
lex-segment ideal L is also a lex-Gröbner basis.

LEMMA 4.1.15 Let J be an ideal in R such that Ltτ (J) = E, where E is the mono-
mial ideal (xt, xt−1ym1 , . . . , ymt). If f0, . . . , ft is a τ -enhanced standard basis of J
such that Ltτ (fi) = Ltlex(fi) = xt−iymi , then f0, . . . , ft is a Gröbner basis of J =
(f0, . . . , ft)k[x, y] with respect to the lexicographic term order and Ltlex(J) = E.

Proof: By Lemma 4.1.12, there exist polynomials ni,j ∈ k[y] such that

ydifi−1 − xfi +
t∑

j=0
ni,jfj = 0. (4.4)

For any ni,j ̸= 0, if we can prove that Ltlex(ni,jfj) ≤lex Ltlex(ydifi−1−xfi), then
it means that the S-polinomials Si = ydifi−1 − xfi reduce to zero. Hence f0, . . . , ft is
a Gröbner basis of (f0, . . . , ft)k[x, y] with respect to the lexicographical order. Indeed,
setting Ltlex(ni,j) = yβi,j , where βi,j = deg(ni,j), we have

Ltlex(ni,jfj) = Ltlex(ni,j)xt−jymj = xt−jymj+βi,j .

Note that, by hypothesis, each Ltlex(ni,jfj) has a different power of x, hence they
cannot cancel each other:

Ltlex(ydifi−1 − xfi) = Ltlex

(
−

t∑
i=0

ni,jfj

)
= max

0≤i≤t
{Ltlex(ni,jfj)},

hence Ltlex(ni,jfj) ≤lex Ltlex(ydifi−1 − xfi). �

Weprove now that all ideals with lex-segment leading term ideal satisfy this property:

LEMMA 4.1.16 Let J be an ideal inR such that Ltτ (J) = L, where L is the lex-segment
ideal (xt, xt−1ym1 , . . . , ymt) and f0, . . . , ft is the reduced τ -enhanced standard basis of
J . Then Ltlex(fi) = Ltτ (fi) = xt−iymi for any 0 ≤ i ≤ t.
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Proof: Since L is a lex-segment ideal, xt, xt−1ym1 , . . . , ymt is a minimal system of
generators of L. The unique reduced τ -enhanced standard basis f0, . . . , ft of J must
satisfy Ltτ (fi) = xt−iymi after reordering the elements appropriately. Let tail(fi) be
the tail of fi with respect to the local order, that is, tail(fi) = fi − xt−iymi . Let us
suppose that Ltlex(fi) = xkyl ̸= xt−iymi . Since xt−iymi ∈ Supp(fi), then

xkyl >lex x
t−iymi

and hence there are two possible situations:
Case I: k = t− i and l > mi. Ltlex(fi) = xt−iyl is in the support of tail(fi) but xt−iyl

is in (xt−iymi) = (Ltτ (fi)) ⊂ Ltτ (J) and this contradicts the reducedness hypothesis
on f0, . . . , ft.
Case II: k > t− i. Then we can set k = t− j for some j < i. Since Ltlex(fi) = xt−jxl

and Ltτ (fi) = xt−iymi , then

t− i+mi = deg(xt−iymi) ≤ deg(xt−jyl) = t− j + l.

If there is an equality, the local order is equal to the lex order and then Ltτ (fi) = xt−jyl,
which contradicts Ltτ (fi) = xt−iymi . Therefore, we have

t− i+mi < t− j + l. (4.5)

If l ≥ mj , the argument of Case I holds. Otherwise, if l < mj , then

t− j + l < t− j +mj = t+ (mj − j).

Since L is a lex-segment ideal,mi − i is monotonously increasing (see Remark 4.1.14)
and hence

t− j + l < t+mj − j ≤ t+mi − i < t− j + l,

where the last inequality comes from 4.5. �

REMARK 4.1.17 Note that a τ -enhanced standard basis f0, . . . , ft of J with leading terms
Ltτ (fi) = xt−iymi can only be reduced if J is a lex-segment ideal. Otherwise it is not
reduced because condition (ii) of Definition 1.5.13 always fails.

In general, we lose the property Ltlex(fi) = Ltτ (fi) if we remove the assumption
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of E lex-segment, but it is not an if and only if. It is easy to prove that equality on the
leading terms with respect to both local and global orders has other equivalences:

LEMMA 4.1.18 Let J ⊂ R be an ideal such that Ltτ (J) = E. The following are equiv-
alent:

(i) there exists a lower triangular matrix N ∈ N (E) such that J = It(N +H),
(ii) there exists a τ -enhanced standard basis f0, . . . , ft of J such that Ltτ (fi) =

Ltlex(fi),
(iii) there exists a τ -enhanced standard basis f0, . . . , ft of J such that xt−i does not

divide any monomials in the tail of fi.

Let us show an example of an ideal J with Ltτ (J) = E not lex-segment where we
can build a τ -enhanced standard basis f0, . . . , ft of J such that Ltlex(fi) = Ltτ (fi).

EXAMPLE 4.1.19 Consider J = (x6, xy2− y5, y8), then E = Ltτ (J) = x6, x5y2, x4y2,
x3y2, x2y2, xy2, y8) and d1 = 2, d2 = d3 = d4 = d5 = 0, d6 = 6, hence Ltτ (J) is not
lex-segment. The reduced τ -enhanced standard basis x6, xy2− y5, y8 of J satisfies that
its leading terms are the same with respect both local and global order. Then the most
natural way to build a τ -enhanced standard basis f0, . . . , f6 with the same property is
completing it with fj−1 = xfj whenever dj = 0. Indeed,

f0 = x6

f1 = x5y2 − x4y5

f2 = x4y2 − x3y5

f3 = x3y2 − x2y5

f4 = x2y2 − xy5

f5 = xy2 − y5

f6 = y8

is a τ -enhanced standard basis of J such that Ltlex(fi) = Ltτ (fi).

By Lemma 4.1.15, any ideal satisfying the equivalent conditions of Lemma 4.1.18
can be generated by a Gröbner basis with respect to the lexicographical order and, there-
fore, it can be obtained via Φ from a matrix in T2(E), see Theorem 4.1.6.
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PROPOSITION 4.1.20 If J is under any of the equivalent conditions of Lemma 4.1.18,
then there exists a unique matrix N ∈ N (E) ∩ T2(E) such that J = It(N +H).

Proof: The syzygies of the leading terms are exactly the same with respect to both τ
and τ :

yd
j Ltlex(fj−1)− xLtlex(fj) = yd

j Ltτ (fj−1)− xLtτ (fj) = 0.

They can be lifted to syzygies of the generators of J with respect to both orders.
Lifting with respect to τ provides a matrix N such that J = It(N + H) and, by
Lemma 4.1.12, N ∈ N (E). Lifting with respect to τ provides a matrix A such that
J = It(A+H) and, by [8], A ∈ T2(E). Denote by C1, . . . , Ct the columns of the ma-
trixN+H andC ′

1, . . . , C
′
t the columns of the matrixA+H . These columns provide two

systems of generators of the module of syzygies of J , hence Syz(J) = ⟨C1, . . . , Ct⟩ =
⟨C ′

1, . . . , C
′
t⟩. We know the explicit shape of the columns:

Ci =



n1,j

n2,j

...

ydj + nj,j

−x+ nj+1,j

...

nt+1,j


and C ′

i =



0

0
...

ydj

−x+ aj+1,j

...

at+1,j


.

Every Ci must be described by an R-linear combination ci
1C

′
1 + · · · + ci

tC
′
t with

ci
j ∈ R. Start with C1 = c1

1C
′
1 + · · ·+ c1

tC
′
t. Then

yd1 + n1,1 = c1
1y

d1 , hence c1
1 = 1, n1,1 = 0;

−x+ n2,1 = −x+ a2,1 + c1
2y

d2 , hence n2,1 = a2,1 + c1
2y

d2 ;

n3,1 = a3,1 + c1
2(−x+ a2,1) + c1

3y
d3 , hence c1

2 = 0, n3,1 = a3,1 + c1
3y

d3 ;

n4,1 = a4,1 + c1
3(−x+ a3,1) + c1

4y
d4 , hence c1

3 = 0, n4,1 = a4,1 + c1
4y

d4 ;
...

nt+1,t = at+1,1 + c1
t (−x+ at+1,t), hence c1

t = 0.
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To ensure that c1
i = 0 for 2 ≤ i ≤ t, we perform the following reasoning: assume

c1
i ̸= 0, then the only way of cancelling x is by having ai,i−1 ∈ R∗ and setting c1

i to
be the inverse element of −x+ a1,i−1. But we know that −x+ a1,i−1 is a polynomial,
hence c1

i must be a series and then ni,1 = ai,i−1 + c1
i y

di would also be a series, which
is a contradiction. Therefore, c1

i = 0. Repeating the same procedure we obtain that
ni,j = ai,j for all 1 ≤ i ≤ t+ 1, 1 ≤ j ≤ t. Hence N = A ∈ N (E) ∩ T2(E).

Uniqueness follows by the injectivity of Φ given by [8]. �

Therefore, we can extend the definition of canonical Hilbert-Burchmatrix frommono-
mial ideals E to any ideal J under the equivalent conditions in Lemma 4.1.18. Let us
define the smaller set of matrices that comes out from the proposition:

DEFINITION 4.1.21 We define the setM(E) = N (E) ∩ T2(E).

DEFINITION 4.1.22 Given an ideal J that admits a τ -enhanced standard basis f0, . . . , ft

such thatLtτ (fi) = Ltlex(fi) for any 1 ≤ i ≤ t, we define the canonical Hilbert-Burch
matrix of J as the unique matrix N in the setM(E) such that J = It(N +H), where
H is the canonical Hilbert-Burch matrix of E = Ltτ (J) as defined in Definition 4.1.4.

We show an example on how to use Proposition 4.1.20 and the construction of ma-
trices N in N (E) from Lemma 4.1.12 to obtain the canonical Hilbert-Burch matrix in
M(E).

EXAMPLE 4.1.23 Consider again the ideal J = (x6, xy2−y5, y8). From Example 4.1.19
we know that J is under the conditions of Lemma 4.1.18, hence Proposition 4.1.20 ap-
plies and there exists a canonical Hilbert-Burch matrix H + N of J with N ∈ M(E).
Let Sj = ydjfj−1−xfj be the S-polynomial S(fj−1, fj). Recall that, by Lemma 4.1.12,
the entries ni,j in N ∈ N (E) correspond to Sj = −

∑t+1
i=1 ni,jfi−1. Consider the τ -

enhanced standard basis from Example 4.1.19, then S2 = · · · = S5 = 0. Note that
S6 = yd6f5 − xf6 = −y11 = −y3f6. Since deg y3 < d6 = 6, n7,6 = y3 is under
the conditions of N = (ni,j) ∈ M(E). But S1 = yd1f0 − xf1 = x5y5, which is not
possible to describe as a combination of f0, . . . , f6 multiplied by polynomials in k[y] of
degree strictly less that d1 = 2. Then we can modify f0 by adding terms of higher degree
that are already in J :
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f0 = x6 − x5y3

f1 = x4f5 = x5y2 − x4y5

f2 = x3f5 = x4y2 − x3y5

f3 = x2f5 = x3y2 − x2y5

f4 = xf5 = x2y2 − xy5

f5 = xy2 − y5

f6 = y8

Note that now S1 = yd1f0 − xf1 = 0. Therefore,

N =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 y3


∈M(E)

and J = I6(N +H).

Despite the existence of canonical Hilbert-Burch matrices beyond the lex-segment
case, we still need the assumption ofE lex-segment to make sure that any J with leading
term ideal Ltτ (J) = E actually has a canonical Hilbert-Burch matrix. Therefore, we
finally state the parametrization of affine spaces V (L):

THEOREM4.1.24 LetL = (xt, . . . , xt−iymi , . . . , ymt) be a lex-segment ideal with canon-
ical Hilbert-Burch matrixH . Then

Ψ : M(L) −→ V (L)

N 7−→ It(H +N)

is a bijection.
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Proof: The map ψ is the restriction of φ to the setM(L) = N (L) ∩ T2(L), hence
Lemma 4.1.10 ensures that ψ is well-defined. Moreover, since L is lex-segment, then
Lemma 4.1.16 ensures that all J such that Ltτ (J) = L are under the conditions of
Lemma 4.1.18. Hence Proposition 4.1.20 ensures there exists a unique matrix N ∈ M
such that J = It(N +H). �

Note that when L is a lex-segment ideal, then the setM(L) has a simple description.
It is formed by matrices of size (t+ 1)× t with entries in k[y] such that

ni,j =

 0, i ≤ j;

c
ui,j

i,j yui,j + c
ui,j+1
i,j yui,j+1 + · · ·+ c

dj−1
i,j ydj−1, i > j.

(4.6)

COROLLARY 4.1.25 Let L be the lex-segment ideal (xt, xt−1ym1 , . . . , ymt) with degree
matrix U = (ui,j)1≤i≤t+1,1≤j≤t and dj = mj −mj−1 for any 1 ≤ j ≤ t. Then V (L)
is an affine space of dimension N, where

N =
∑

2≤j+1≤i≤t+1

(dj − ui,j) .

Proof: By Theorem 4.1.24, each ideal J in V (L) is uniquely associated to a matrix N
inM(L) with entries in k[y]. Then we can identify J with a point pJ in the affine space
AN

k , for a suitable N, by taking as coordinates the coefficients ck
i,j of the polynomials

ni,j in 4.6 for any i ≥ j + 1:

pJ = (cu2,1
2,1 , c

u2,1+1
2,1 , . . . , cd1−1

2,1 , c
u3,1
3,1 , . . . , c

d1−1
3,1 , . . . , c

ut+1,1
t+1,1 , . . . , c

d1−1
t+1,1,

c
u3,2
3,2 , . . . , c

d2−1
3,2 , . . . , c

ut+1,2
t+1,2 , . . . , c

d2−1
t+1,2, . . . , c

ut+1,t

t+1,t , . . . , c
dt−1
t+1,t)

In particular, the dimension of the affine space is the total number of coefficients ck
i,j for

2 ≤ j + 1 ≤ i ≤ t+ 1 and ui,j ≤ k ≤ dj − 1. �

Let us show the details of the parametrization of V (L) as an affine space AN
k with

an example:

EXAMPLE 4.1.26 Consider the lex-segment ideal L = (x3, x2y, xy3, y5) from Exam-
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ple 4.1.13. By Theorem 4.1.24, any Hilbert-Burch matrix M = H + N , with N in
M(L), associated to an ideal J in V (L) is of the form

M =


y 0 0

−x y2 0

c0
3,1 −x+ c1

3,2y y2

c0
4,1 c0

4,2 + c1
4,2y −x+ c1

4,3y

 .

We identify any ideal J = I3(M) with the point

pJ = (c0
3,1, c

0
4,1, c

1
3,2, c

0
4,2, c

1
4,2, c

1
4,3) ∈ A6

k.

In other words, V (L) can be identified with the affine space A6
k. Note that the point

at the origin in A6
k corresponds to the lex-segment ideal L.

4.2 Obtaining Gorenstein covers via Hilbert-Burch
matrices

The goal of this section is to obtain all Gorenstein covers G = R/J of A = R/I

with a given Hilbert function h such that HFA(i) ≤ h(i), for i ≥ 0. Theorem 1.2.11
determines when a Hilbert function h admits Gorenstein rings, that is, there exist any
Gorenstein ring G = R/J with HFG = h.

By Proposition 4.1.9, we know that any m-primary ideal J of R is generated by the
maximal minors of the matrix H + N , where H is the canonical Hilbert-Burch matrix
of E = Ltτ (J) and N is a matrix in the set N (E), see Definition 4.1.8. All ideals
J such that Ltτ (J) = E can be generated with this procedure, although the systems of
generators are not unique. Recall that whenLtτ (J) is the lex-segment idealL = Lex(h),
then any ideal J is uniquely generated by themaximal minors ofH+N withN inM(L),
see Theorem 4.1.24 and Definition 4.1.21.

We now focus on determining which matrices N in N (E) define Gorenstein covers
J = It(N +H) of A = R/I . This means we impose two unrelated conditions on J :

• G = R/J is Gorenstein.
• J ⊂ I .
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REMARK 4.2.1 A brief comment on notation: throughout the section we denote byE the
leading term ideal (xt, xt−1ym1 , . . . , ymt) of J in the general case and we denote it byL
whenever it corresponds to the lex-segment ideal. In any case, H denotes the canonical
Hilbert-Burch matrix of Ltτ (J) and U its degree matrix.

Let us recall the link between the minimal number of generators of the ideal J with
a system of generators of its syzygies, see [4, Lemma 2.1]:

PROPOSITION 4.2.2 Let J be an ideal of R and let M in Mat(t+1)×t(R) be a matrix
whose columns C1, . . . , Ct are a system of generators of Syz(J). Denote by M the
matrix having as entries the classes in R/m of the corresponding entries inM . Then

µ(J) = t+ 1− rk(M).

Therefore, we can characterize Gorenstein ideals J ⊂ R in terms of the rank of any
of its Hilbert-Burch matrices N +H , where N ∈ N (E), as follows:

COROLLARY 4.2.3 Let J be an ideal ofR and consider any matrixM = N +H such that
J = It(M), where N ∈ N (E). Then J is Gorenstein if and only if rk(M) = t− 1.

Proof: In codimension 2, J is Gorenstein if and only if it is minimally generated by 2
elements. SinceM is under the conditions of Proposition 4.2.2, then rk(M) = t− 1. �

According to Theorem 4.1.24, whenever J has a lex-segment leading term ideal
Ltτ (J) = L, we can choseM to be of the form

M =



yd1 0 0 · · · 0 0

−x+ n2,1 yd2 0 · · · 0 0

n3,1 −x+ n3,2 yd3 · · · 0 0
...

...
...

...
...

nt,1 nt,2 nt,3 · · · nt,t−1 ydt

nt+1,1 nt+1,2 nt+1,3 · · · nt+1,t−1 −x+ nt+1,t


,

where ui,j ≤ ord(ni,j) ≤ deg(ni,j) < dj and ui,j is the (i, j)-entry of the degree matrix
U of H .
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Since ui+1,i = 1, considering the entries of M in R/m and the notation from 4.6,
we get

M =



0 0 0 · · · 0 0

0 0 0 · · · 0 0

c0
3,1 0 0 · · · 0 0

c0
4,1 c0

4,2 0 · · · 0 0
...

...
...

...
...

c0
t,1 c0

t,2 c0
t,3 · · · 0 0

c0
t+1,1 c0

t+1,2 c0
t+1,3 · · · c0

t+1,t−1 0


.

Define

M
′ =



c0
3,1 0 0 · · · 0

c0
4,1 c0

4,2 0 · · · 0
...

...
...

...

c0
t,1 c0

t,2 c0
t,3 · · · 0

c0
t+1,1 c0

t+1,2 c0
t+1,3 · · · c0

t+1,t−1


.

Then rk(M) = t− 1 if and only if det(M ′) = c0
3,1c

0
4,2 · · · c0

t+1,t−1 ̸= 0. Therefore,
J is Gorenstein if and only if ni+2,i is a polynomial with non-zero constant term for any
1 ≤ i ≤ t−1. In particular, this holds for the lex-segment ideal case, see Lemma 4.1.16:

PROPOSITION 4.2.4 LetL be a lex-segment ideal with canonical Hilbert-Burch matrixH
and let J be an ideal withLtτ (J) = L. Then J is Gorenstein if and only ifn3,1, n4,2, . . . , nt+1,t−1

are polynomials in y with non-zero constant terms, where N = (ni,j) is the unique ma-
trix inM(L) such that J = It(H +N).

Even more, the entry ni+2,i of N admits a non-zero constant term only if the order
of ni+2,i is zero. But this is only possible if ui+2,i ≤ 0.

COROLLARY 4.2.5 Let L be a lex-segment ideal with associated degree matrix U =
(ui,j)1≤i≤t+1,1≤j≤t. A Gorenstein ideal J such that Ltτ (J) = L exists if and only
if ui+2,i ≤ 0 for any 1 ≤ i ≤ t− 1.
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REMARK 4.2.6 The characterization of Gorenstein-admissible Hilbert functions in The-
orem 1.2.11 can be reproved using Corollary 4.2.5. See [41, Corollary 4.6] for more
details. Note that a Hilbert function h is Gorenstein-admissible if and only if we can
obtain Gorenstein ideals from a deformation of Lex(h).

Consider a Hilbert function h that admits a Gorenstein ring. In [41, Remark 4.7],
Rossi and Sharifan give a procedure to explicitly construct a Gorenstein ring J whose
resolution is obtained by consecutive and zero cancellation of the resolution of L =
Lex(h), hence its Hilbert function is preserved. The method consists in taking the ideal
of maximal minors of the canonical Hilbert-Burch matrix H of L with 1’s added in all
entries in position (i+ 2, i).

Let us show how this procedure allows us to obtain a Gorenstein deformation of the
lex-segment ideal:

EXAMPLE 4.2.7 Consider the lex-segment ideal L = (x3, x2y, xy3, y5) associated to the
Hilbert function h = {1, 2, 3, 2, 1}. Its canonical Hilbert-Burch matrix H is computed
in Example 4.1.13. Set

N =


0 0 0

0 0 0

1 0 0

0 1 0

 .

Then J = I3(H + N) = (x3 − 2xy2, x2y − y3, xy3, y5) is a Gorenstein ideal with
Hilbert function (1, 2, 3, 2, 1). Note that N ∈M(L).

Observe that the matrix with 1’s in the secondmain diagonal always belongs to the set
of matricesM(L), see Definition 4.1.21. Using the parametrization in Theorem 4.1.24
and the rank criteria given by Proposition 4.2.4, we can provide the explicit description
of all Gorenstein ideals J such that Ltτ (J) = L.

Let us broaden Example 4.2.7 and give a parametrization of all the Gorenstein ideals
in V (L):

EXAMPLE 4.2.8 Consider again the lex-segment ideal L = (x3, x2y, xy3, y5). In Exam-
ple 4.1.26 we showed the general form of canonical Hilbert-Burch matricesM = H+N
associated to ideals J = I3(M) in V (L). Then the matrix whose entries are the class of
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entries inM modulo R/m is

M =


0 0 0

0 0 0

c0
3,1 0 0

c0
4,1 c0

4,2 0

 .

By Proposition 4.2.4, J = I3(M) is Gorenstein if an only if c0
3,1c

0
4,2 ̸= 0. Then the set

of Gorenstein ideals J with Ltτ (J) = L can be identified with A6
k\V(c0

3,1c
0
4,2).

COROLLARY 4.2.9 Let L be a lex-segment ideal. The set VG(L) of Gorenstein ideals J
such that Ltτ (J) = L is a quasi-affine variety.

Proof: By Corollary 4.1.25, V (L) can be identified withAN
k for a suitable N by taking

coordinates ck
i,j . By Proposition 4.2.4, J is a Gorenstein ideal if and only if coordinates

c0
3,1, . . . , c

0
t+1,t−1 of the point pJ in AN

k are all non-zero. Hence J is Gorenstein if and
only if

pJ ∈ AN
k\V(c0

3,1 · · · c0
t+1,t).

�

At this stage, we have only considered the Gorenstein condition. Now we want to
introduce the inclusion condition J = It(M) ⊂ I for a given A = R/I in order to
determine Gorenstein covers.

Let us show through an example how we can find such Gorenstein covers using the
canonical Hilbert-Burch matrices provided by Theorem 4.1.24:

EXAMPLE 4.2.10 Consider the ideal I = (x3 − 2xy2, x2y − 2y3, y3).

i 0 1 2 3 4

HFR/I 1 2 3 1

HFR/J 1 2 3 2 1

By Theorem 1.2.11, h = {1, 2, 3, 2, 1} is the smallest Hilbert function such that
HFA(i) ≤ h(i), for any i ≥ 0, and admits Gorenstein rings. We want to know whether
the lex-segment ideal L = Lex(h) can be deformed into a Gorenstein cover of A. Note
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that L = (x3, x2y, xy3, y5) is the ideal from Example 4.2.8, hence we know that

VG(L) ≃ A6
k\V(c0

3,1c
0
4,2).

For any ideal J = I3(M) in V (L), the τ -enhanced standard basis obtained from its
maximal minors is the following:

f0 = x3 − c1
4,2xy3 − c0

4,1y4 − (c1
3,2 + c1

4,3)x2y − (c0
3,1 − c1

3,2c1
4,3 + c0

4,2)xy2 + c0
3,1c1

4,3y3

f1 = x2y − c1
4,2y4 − (c1

3,2 + c1
4,3)xy2 − (c0

4,2 − c1
3,2c1

4,3)y3

f2 = xy3 − c1
4,3y4

f3 = y5

Consider a standard basis S of I , let us compute the normal forms of f0, f1, f2, f3 of
J = I3(M) with respect to S:

NF(f0 | S) = (−c0
3,1 + c1

3,2c
1
4,3 − c0

4,2 + 2)xy2

NF(f1 | S) = (c1
3,1 + c1

4,3)xy2

NF(f2 | S) = 0

NF(f3 | S) = 0

Note that the inclusion of J in I depends on the vanishing of the expressions in
variables ck

i,j that appear in the computation of the normal forms. Hence any point pJ

in the affine variety V(−c0
3,1 + c1

3,2c
1
4,3 − c0

4,2 + 2, c1
3,1 + c1

4,3) satisfies the inclusion
property J ⊂ I .

Therefore, J is a Gorenstein cover of A if and only if

pJ ∈ V(−c0
3,1 + c1

3,2c
1
4,3 − c0

4,2 + 2, c1
3,1 + c1

4,3)\V(c0
3,1c

0
4,2).

Note that it is not empty since pJ with c0
3,1 = c0

4,2 = 1 and c0
4,1 = c1

3,2 = c1
4,2 =

c1
4,3 = 0, belongs to the quasi-affine variety. The point (1, 0, 0, 1, 0, 0) inA6

k corresponds
to the Gorenstein cover G = R/J , where J = (x2y − y3, x3 − 2xy2). In particular, we
proved that gcl(A) = 2.
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COROLLARY 4.2.11 Let A = R/I be an Artin ring. Consider a Hilbert-function h such
that HFA(i) ≤ h(i) for any i ≥ 0. If Lex(h) ⊂ Ltτ (I), then the set of Gorenstein
coversG = R/J ofA such that Ltτ (J) = Lex(h) is a quasi-affine variety parametrized
by points pJ in

V(p1, . . . , pr)\V(c0
3,1c

0
4,2 · · · c0

t+1,t−1),

where ck
i,j are the coefficients of the entries of matrices N inM(Lex(h)) and pi are

polynomials in variables ck
i,j that occur as coefficients of the reduction of J modulo I .

REMARK 4.2.12 Observe that the condition Lex(h) ⊂ Ltτ (I) is a necessary but not
sufficient condition to ensure that J = It(M) ⊂ I .

If I is a monomial ideal, then I = Ltτ (I) and the condition Lex(h) ⊂ Ltτ (I) can
be translated to Lex(h) ⊂ I . In this situation, there always exists a choice of ck

i,j that
ensures the inclusion of some J = It(M) in I . Indeed, the trivial case of taking zeros
corresponds to the lex-segment ideal L = Lex(h) and Lex(h) ⊂ I holds by assumption.

However, if I is not monomial, then we are no longer sure that some choice of ck
i,j

ensures that I is contained in some J = It(M). In this situation, when we reduce J
modulo I , we might obtain coefficients on the polynomials that do not depend on the
variables ck

i,j . If this is the case, inclusion of I in It(M) will never occur. But then some
pi will be a constant polynomial, hence V(p1, . . . , pr) = ∅, which is consistent with the
idea that no Gorenstein covers exist.

REMARK 4.2.13 We can add to Corollary 4.2.11 the hypothesis that h corresponds to a
Hilbert function that admits Gorenstein ideals. However, if h does not admit Gorenstein
rings, then

V(c0
3,1c

0
4,2 · · · c0

t+1,t−1) = AN
k .

Now that we knowhow to obtain all Gorenstein coversG = R/J ofAwithLtτ (J) =
Lex(h), a natural question arises: if a ring A = R/I has Gorenstein covers with Hil-
bert function h, can we always find at least one such cover G = R/J such that J is a
deformation of L = Lex(h)?

The answer is no. In general, there is no reason why the inclusion condition J ⊂ I

should hold when we deform Lex(h). Let us illustrate it in the following example:

EXAMPLE 4.2.14 Consider the ideal I = (x3, xy2, y3).
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i 0 1 2 3 4

HFR/I 1 2 3 1

HFR/J 1 2 3 2 1

The numerical sequence h = {1, 2, 3, 2, 1} corresponds to the minimal Gorenstein-
admissible Hilbert function satisfying HFR/I(i) ≤ h(i), for any i ≥ 0. We want to see
if there exist Gorenstein covers R/J of R/I such that HFR/J = h.

Any ideal J ⊂ I satisfies Ltτ (J) ⊂ Ltτ (I) = I . Therefore, we must consider
Gorenstein deformations of all monomial ideals E contained in I with Hilbert function
of R/E equal to h. For each one, we have two conditions to check:

(1) rk(M) = t− 1 for some values of the entries ofM .
(2) It(M) ⊂ I .

There are three possibilities:
Case I. E = (x3, y3). E is itself a Gorenstein cover of I but we want to find all the
deformations of E that still give a cover.
(1) The Cohen-Macaulay type of a deformation of E cannot increase, therefore any
I3(M) is Gorenstein, forM = H +N , where N ∈ N (E).
(2) The Hilbert-Burch matrix of any ideal with leading term ideal E is of the form

M =


y3 0 0

−x+ c1
2,1y + c2

2,1y
2 + c3

2,1y
3 1 + c1

2,2y c0
2,3 + c1

2,3y

c2
3,1y

2 + c3
3,1y

3 −x+ c1
3,2y 1 + c1

3,3y

c3
4,1y

3 0 −x+ c1
4,3y

 .

It can be checked that I3(M) ⊂ I if and only if c1
2,1 + c1

3,2 + c1
4,3 = 0.

Case II. E = (x3, xy2, y5).
(1) The Hilbert-Burch matrix of any ideal with leading term ideal E is of the form

M =


y2 0 0

−x+ c1
2,1y + c2

2,1y
2 1 + c1

2,2y c3
2,3y

3

c2
3,1y

2 −x+ c1
3,2y y3

c0
4,1 + c1

4,1y + c2
4,1y

2 c0
4,2 + c1

4,2y −x+ c1
4,3y + c2

4,3y
2 + c3

4,3y
3

 .
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Since

M =


0 0 0

0 1 0

0 0 0

c0
4,1 c0

4,2 0

 ,

then J = I3(M) is Gorenstein if and only if c0
4,1 ̸= 0.

(2) J = I3(M) ⊂ I if and only if c1
2,1 + c1

3,2 + c1
4,3 = 0.

Case III. E = (x5, x3y, xy2, y3). Since

M =



0 0 0 c0
1,4 c0

1,5

0 1 0 c0
2,4 c0

2,5

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0


has rank either 2 or 3, J = I5(M) will never be Gorenstein.

Observe that the lex-segment ideal L = (x3, x2y, xy3, y5) is not contained in I and
hence none of its deformations will. Therefore, although there exist Gorenstein covers
of I with this Hilbert function, it is not possible to obtain them by deforming the lex-
segment ideal.

Since not all Gorenstein coversG = R/J ofA = R/I with Hilbert function h can be
obtained from a deformation of the lex-segment ideal L = Lex(h), we need to consider
Gorenstein deformations J of all monomial ideals E with Hilbert function h such that
Ltτ (J) = E ⊂ Ltτ (I).

However, if E is not a lex-segment ideal, we do not have an easy criteria such as
Proposition 4.2.4 to determine whether E admits Gorenstein deformations. Hence we
must use Corollary 4.2.3 directly. A simple algorithm can be implemented in order to
obtain the conditions, if possible, under which any monomial ideal E = (xt, xt−1ym1 ,
. . . , ymt) can be deformed into a Gorenstein ideal. With this purpose, we present here
Algorithm 4.
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Algorithm 4 Compute Gorenstein ideals J such that Ltτ (J) = E

Input: (m1, . . . ,mt) integer vector.
Output: matrixM such that Ltτ (It(M)) = E, ideal a.
Steps:

(i) Compute dj = mj −mj−1, where 1 ≤ j ≤ t andm0 = 0.
(ii) Build canonical Hilbert-Burch matrix

H =



yd1 0 · · · 0

−x yd2 · · · 0

0 −x · · · 0
...

...
...

0 0 · · · ydt

0 0 · · · −x


,

(iii) Compute degree matrix U of H .
(iv) Ifm1 < m2 < · · · < mt, then build matrix N = (ni,j) with

ni,j =

 0, i ≤ j;

c
ui,j

i,j yui,j + · · ·+ c
dj−1
i,j ydj−1, i > j.

Else

a) Build matrix of order boundsOB = (ai,j) and degree boundsDB = (bi,j)
as

ai,j =

 max{ui,j + 1, 0}, i ≤ j;

max{ui,j , 0}, i > j.

and bi,j = max{dj , 1}.
b) Built matrix N , where N = (ni,j) has entries in k[y] such that

ni,j = c
ai,j

i,j y
ai,j + · · ·+ c

bi,j

i,j y
bi,j ,

where ck
i,j are variables in k.

(v) DefineM = H +N .
(vi) Compute matrixM , whose entries are the class of the entries ofM in R/m.
(vii) Compute the ideal a of (t− 1)-minors ofM .

126



4.2. Obtaining Gorenstein covers via Hilbert-Burch matrices

Let us interpret the output of Algorithm 4: matrixM and ideal a. On one hand, matrix
M , whose entries have parameters ck

i,j , is the general form of a Hilbert-Burch matrix of
any ideal J such that Ltτ (J) = E. Hence J can always be expressed as It(M) for some
suchM . Note that the choice ofM is not necessarily unique whenE is not lex-segment.

On the other hand, a is an ideal in the ring of polynomials with variables ck
i,j . If a = 0,

then the rank ofM is always strictly smaller than t − 1. Therefore, E is deformable to
Gorenstein if and only if a ̸= 0.

REMARK 4.2.15 If the input of Algorithm 4 is a lex-segment ideal L, then the output
provides the quasi-affine variety defined in Corollary 4.2.9.

REMARK 4.2.16 Emulating Corollary 4.2.9, consider the quasi-affine variety AN
k \V(a),

where N is the total number of parameters ck
i,j . Any point pJ in this set corresponds to a

Gorenstein ideal J = It(M) with Ltτ (J) = E. However, AN
k \V(a) is not isomorphic

to VG(E) because different points might correspond to the same ideal.

Consider an Artin ring A = R/I admitting Gorenstein covers with Hilbert function
h. We are interested in studying from which monomial ideals E such that HFR/E = h

we obtain Gorenstein deformations J that satisfy the inclusion I ⊂ J .

Quesࢢon: Given an Artin ring A = R/I , can we find some criteria to know which
particular monomial ideals E with Hilbert function h are sufficient to check in order to
determine whether a Gorenstein cover G of A with HFG = h exists or not?

This question remains open. Our guess so far is that it is enough to check those
monomial ideals E with minimal number of generators µ(E) amongst all Gorenstein-
deformable ideals E such that E ⊂ Ltτ (I). In rest of the chapter we provide several
examples that support our claim.

We start with monomial ideals I , that is, Ltτ (I) = I . The first two examples show
different reasons why the minimal cover does not come from a deformation of a mono-
mial ideal E minimally generated by two elements. In Example 4.2.17, there exist no
such ideals E with µ(E) = 2. In Example 4.2.18, it exists, but the inclusion condition
E ⊂ I is not satisfied.

EXAMPLE 4.2.17 Consider the ideal I = (x5, xy, y2), HFR/I = {1, 2, 1, 1, 1}. We
know that gcl(A) = 1, hence the Hilbert function of any minimal Gorenstein cover
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Chapter 4. Gorenstein colength in codimension two

is h = {1, 2, 1, 1, 1, 1}. It can be checked that the minimal monomial Gorenstein cover
of I is J = (x5, y2), hence it is clearly not a minimal Gorenstein cover.

Let us consider all monomials E with Hilbert function h.

Case L = Lex(h) = (x2, xy, y6). Lex-segment ideal with respect to x. Since L * I , it
will not provide any cover.

Case E = (x6, xy, y2). Note that it is the lex-segment ideal with respect to y. Applying
Algorithm 4 withm = (1, 1, 1, 1, 1, 2), we obtain the matrixM defined by



y c1
1,2y c0

1,3 + c1
1,3y c0

1,4 + c1
1,4y c0

1,5 + c1
1,5y c0

1,6 + c1
1,6y

−x+ c1
2,1y 1 + c1

2,2y c0
2,3 + c1

2,3y c0
2,4 + c1

2,4y c0
2,5 + c1

2,5y c0
2,6 + c1

2,6y

0 −x+ c1
3,2y 1 + c1

3,3y c0
3,4 + c1

3,4y c0
3,5 + c1

3,5y c0
3,6 + c1

3,6y

0 0 −x+ c1
4,3y 1 + c1

4,4y c0
4,5 + c1

4,6y c0
4,6 + c1

4,6y

0 0 0 −x+ c1
5,4y 1 + c1

5,5y c1
5,6y

0 0 0 0 −x+ c1
6,5y y

0 0 0 0 c1
7,5y −x+ c1

7,6y


and K = (c0

1,3c
0
3,4c

0
4,6 − c0

1,3c
0
3,6 − c0

1,4c
0
4,6 + c0

1,6). Since it can be easily checked that
J = I6(M) ⊂ I if and only if c0

1,3 = c0
1,4 = 0, then J = I6M is a Gorenstein cover of

I if and only if c0
1,6 ̸= 0.

There is no other monomial ideal with Hilbert function E. In particular, there exists
no monomial ideals E with Hilbert function h such that µ(E) = 2.

EXAMPLE 4.2.18 Consider the ideal I = (x3, xy, y3), HFR/I = {1, 2, 2}. The Goren-
stein colength of A = R/I is 1, hence the Hilbert function of any of its minimal Goren-
stein covers is h = (1, 2, 2, 1). Let us consider all monomials E with Hilbert function
h. As opposed to the previous example, the generators of I have symmetric roles of the
variables involved, hence we consider only one ideal in each case:

Case L = Lex(h) = (x2, xy2, y4). Since L * I , it will not provide any cover.
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Case E = (x3, xy, y4). Algorithm 4 withm = (1, 1, 4) provides

M =


y c1

1,2y c1
1,3y

−x+ c1
2,1y 1 + c1

2,2y c1
2,3y

0 −x+ c1
3,2y y3

c0
4,1 + c1

4,1y c0
4,2 + c1

4,2y −x+ c1
4,3y + c2

4,3y
2 + c3

4,3y
3


and K = (c0

4,1). Since J = I3(M) ⊂ I holds if and only if c1
4,3 = 0, then J = I3(M)

is a Gorenstein cover if and only if c0
4,1 ̸= 0 and c1

4,3 = 0.

CaseE = (x2, y3). SinceE * I , we can ensure that no cover comes from a deformation
of the monomial ideal with less generators.

In the following example we want to show that having E ⊂ I and E deformable
to Gorenstein is not enough to ensure that a Gorenstein cover J such that Ltτ (J) = E

actually exists:

EXAMPLE 4.2.19 Now consider I = (x3, x2y, xy2, y4), HFR/I = {1, 2, 3, 1}. The Hil-
bert function h = {1, 2, 3, 2, 1} is the smallest Gorenstein-admissible Hilbert function
such that HFR/I(i) ≤ h(i) for any i ≥ 0. Recall that in Example 4.2.14 we where also
looking for Gorenstein ideals with this Hilbert function. It turns out that there are only 3
monomial ideals with this particular Hilbert function that can be deformed to Gorenstein:

• E1 = (x3, y3), with µ(E) = 2 andm = (3, 3, 3).
• E2 = (x3, xy2, y5), with µ(E) = 3 andm = (2, 2, 5).
• E3 = Lex(h) = (x3, x2y, xy3, y5), with µ(E) = 4 andm = (1, 3, 5).

To check whether R/I has a Gorenstein cover with Hilbert function h we only have
to check the last 2 ideals because E1 * I .

Case E2 = (x3, xy2, y5). Algorithm 4 withm = (2, 2, 5) provides the matrixM
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Chapter 4. Gorenstein colength in codimension two


y2 0 0

−x+ c1
2,1y + x2

2,1y
2 1 + c1

2,2y c3
2,3y

3

c2
3,1y

2 −x+ c1
3,2y y3

c0
4,1 + c1

4,1y + c2
4,1y

2 c0
4,2 + c1

4,2y −x+ c1
4,3y + c2

4,3y
2 + c3

4,3y
3


and K = (c0

4,1). J = I3(M) ⊂ I if and only if c0
4,3 = c0

4,1 = 0, hence J cannot be
Gorenstein and a cover of I simultaneously.

Case E3 = (x3, x2y, xy3, y5). Algorithm 4 withm = (1, 3, 5) provides

M =


y 0 0

−x y2 0

c0
3,1 −x+ c1

3,2y y2

c0
4,1 c0

4,2 + c1
4,2y −x+ c1

4,3y


andK = (c0

3,1c
0
4,2). J = I3(M) ⊂ I if and only if c0

4,2 − c1
3,2c

1
4,3 = c1

4,3c
0
3,1 = 0. But

V(c0
4,2 − c1

3,2c
1
4,3, c

1
4,3c

0
3,1)\V(c0

3,1c
0
4,2) = ∅,

hence J cannot satisfy simultaneously the inclusion and the Gorenstein property.

Therefore, gcl(R/I) > 2. If there exists G such that ℓ(G) = 10, then its Hilbert
function must be HFG = {1, 2, 3, 2, 1, 1}. Let us consider all the monomial ideals E
that can be deformed to Gorenstein ideals:

(i) E1 = (x3, xy2, y6), with µ(E) = 3 andm = (2, 2, 6).
(ii) E2 = (x6, x2y, y3), with µ(E) = 3 andm = (1, 1, 1, 1, 1, 3).
(iii) E3 = (x3, x2y, xy3, y6) = Lex(HFG), with µ(E) = 4 andm = (2, 2, 6).
(iv) E4 = (x6, x2y, xy2, y4), with µ(E) = 4 andm = (1, 1, 1, 1, 2, 4).

SinceE2 * I , we only have to check the other 3. InE4 the conditions I6(M)Gorenstein
and I6(M) ⊂ I are not compatible. However, both E1 and E3 provide Gorenstein
deformations that are covers. Again, a cover is obtained by deformation of a minimally
generated monomial ideal, which is E1.
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4.2. Obtaining Gorenstein covers via Hilbert-Burch matrices

Moreover, we just proved that gcl(A) = 3.

Finally, we provide an example of two non-monomial ideals I1 and I2 that also sup-
ports our claim. This example is particularly interesting because I1 and I2 have the same
leading term ideal but I1 has Gorenstein covers with a certain Hilbert function hwhereas
I2 has not. Let E be the monomial ideal with Hilbert function h with less minimal gen-
erators such that admits Gorenstein deformation. Although E ⊂ Ltτ (I2), none of the
Gorenstein deformations are included in I2. This turns out to be enough to determine
that there are no Gorenstein covers G of R/I2 such that HFG = h.

EXAMPLE 4.2.20 Let us consider the ideals I1 = (x4 − y4, x2y2, xy4 + y5) and I2 =
(xy4 − y5, x2y2 − 2xy3, x4 − 2x3y). Observe that both of them have 3 minimal gen-
erators and share the leading term ideal: Ltτ (I1) = Ltτ (I2) = (x4, x2y2, xy4, y6). In
particular, they both have Hilbert function {1, 2, 3, 4, 3, 1}.

Consider the symmetric numerical functionh = {1, 2, 3, 4, 3, 2, 1}. We list all mono-
mial ideals E with HFR/E = h that can be deformed to a Gorenstein ideal classified by
µ(E):

(i) µ(E) = 2: m = (4, 4, 4, 4).
(ii) µ(E) = 3: m = (3, 3, 3, 7),m = (2, 2, 6, 6) andm = (1, 5, 5, 5).
(iii) µ(E) = 4: m = (2, 2, 5, 7),m = (1, 4, 4, 7) andm = (1, 3, 6, 6).
(iv) µ(E) = 5: m = (1, 3, 5, 7).

Let us check the smallest minimally generated E such that E ⊂ Ltτ (I):
E = (x4, x2y2, y6), withm = (2, 2, 6, 6).
Then the matrixM is


y2 0 0 0

−x + c1
2,1y + c2

2,1 1 + c1
2,2y c4

2,3y4 0

c2
3,1y2 −x + c1

3,2y y4 0

c0
4,1 + c1

4,1y + c2
4,1y2 c0

4,2 + c1
4,2y −x + c1

4,3y + c2
4,3y2 + c3

4,3y3 + c4
4,3y4 1 + c1

4,4y

c0
5,1 + c1

5,1y + c2
5,1y2 c0

5,2 + c1
5,2y c2

5,3y2 + c3
5,3y3 + c4

5,3y4 −x + c1
5,5y

 ,

It can be checked that there exist Gorenstein covers J1 = I4(M) of I1 whereas
no Gorenstein ideal generated by maximal minors of M is included in I2, that is, the
inclusion condition J ⊂ I2 is not compatible with J = I4(M) being Gorenstein.
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Chapter 4. Gorenstein colength in codimension two

Using our method to compute the variety of covers of Gorenstein colength 2, we
can make sure that gcl(R/I1) = 2 and gcl(R/I2) > 2. Hence this is consistent with
the conjecture: if the cover does not appear in the monomial ideal generated by less
generators, then there is no Gorenstein cover with this Hilbert function.

Let us now focus on I2. We first list the possible Hilbert functions of Gorenstein
rings G such that ℓ(G)− ℓ(R/I2) ≤ 4:

length i 0 1 2 3 4 5 6 7 8 9

14 A 1 2 3 4 3 1

16 G 1 2 3 4 3 2 1

17 1 2 3 4 3 2 1 1

18 1 2 3 4 3 2 1 1 1

1 2 3 4 3 2 2 1

For h = (1, 2, 3, 4, 3, 2, 1, 1), we only need to check m = (2, 2, 5, 8) because it is
the only monomial ideal E satisfying E ⊆ Ltτ (I). It turns out that Gorenstein and
inclusion are not compatible. Again, for h = (1, 2, 3, 4, 3, 2, 1, 1, 1), we only need to
checkm = (2, 2, 5, 9) for the same reason and with the same outcome.

For h = (1, 2, 3, 4, 3, 2, 2, 1), there are two monomial ideals E such that E ⊂
Ltτ (I):

• E1 = (x4, x2y2, xy6, y8), with µ(E) = 4 andm = (2, 2, 6, 8).
• E2 = (x4, x2y2, y7), with µ(E) = 3 andm = (2, 2, 7, 7).

We check first the ideal minimally generated by 3 elements. We are able to make sure
the existence of Gorenstein covers and provide a particular solution. It can be checked
that the ideal J = (x2y2−2xy3−xy4+y5, x4−2x3y−x3y2+x2y3+2y5) satisfies both
Ltτ (J) = E2 and J ⊂ I , hence it is a Gorenstein cover. Again, this result is consistent
with the conjecture. Since we discarded the existence of any other cover with smaller
Hilbert function, we just proved that gcl(R/I2) = 4.

Moreover, E1 also provides Gorenstein covers. Take as an example J = (x2y2 −
2xy3, x4 − 2x3y − xy4 + y5).
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CHAPTER 5

Gorenstein colength of special
families

Along the previous chapters we become aware of the high difficulty to compute how
far a given Artin k-algebra A = R/I is from being Gorenstein. In Chapter 2 we give a
characterization of rings with gcl(A) ≤ 2 in terms of their inverse systems but we already
point out in Section 2.3 which are the obstacles to providing analogous characterizations
for higher Gorenstein colength. Two main questions arise there:

Quesࢢon A: Given any Artin ring A = R/I , is there a minimal Gorenstein cover G =
R/J of A such that embd(G) = embd(A)?

Quesࢢon B: Given any Artin ring A = R/I , is there a minimal Gorenstein cover G =
R/J of A such that I2 ⊂ J ⊂ I?

A stronger version of those two questions would be to ask whether this is true for all
minimal Gorenstein covers of A.

On the other hand, thanks to the results in Chapter 3, we have algorithms to decide
whether A is at distance 0, 1 or 2, and we can compute the explicit expressions of its
Gorenstein coversG. In Chapter 4, we obtain more insight in codimension two and even
give a constructive approach to study the Gorenstein colength but it gets more and more
inefficient as the colength increases because of the amount of Hilbert functions we have
to check. So, generally speaking, we do not have many tools available to compute the
Gorenstein colength of an arbitrary Artin ring A.

This chapter is devoted to the study of the Gorenstein colength of certain families of
rings such as stretched k-algebras or monomial rings. We address the questions posed at
the beginning by computing gcl(A) and studying its minimal Gorenstein covers.
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In Section 5.1 we study stretched k-algebras, see Appendix B, and quotients of pow-
ers of maximal ideals. In characteristic zero, we get explicit formulas for their Gorenstein
colength in terms of invariants of the ring:

PROPOSITION 5.0.1 (See Proposition 5.1.2.) Let A = R/I be a non-Gorenstein Artin
stretched ring. Then,

gcl(A) = embd(A)− τ(A) + 1.

PROPOSITION 5.0.2 (See [2, Theorem 3.1].) Let A = R/mt, then

gcl(A) =

 n+ t− 2

t− 2

 .

In Section 5.2 we do a deep study of all analytic types of k-algebras A with length
equal or less than 6, taking Poonen’s classification of such rings as a starting point, see
[40]. Regarding questions A and B, let us summarize the obtained results:

PROPOSITION 5.0.3 Let A = R/I be an Artin ring. In the following cases we have that
there exists a minimal Gorenstein coverG = R/J ofA such that embd(G) = embd(A)
and I2 ⊂ J ⊂ I:

(i) ℓ(A) ≤ 6,
(ii) A is stretched,
(iii) I = mt for some t ≥ 1.

Moreover, for stretched rings all minimal Gorenstein covers preserve the embedding
dimension of the base ring.

Finally, Section 5.3 is dedicated to monomial ideals. In particular, we study when
minimal Gorenstein covers are monomial rings.

The examples in this chapter illustrate the complexity of the problem and provide
ways to construct examples of any given Gorenstein colength. All the computations
have been done using the Singular libraries InverseSyst.lib and GorensteinCovers.lib.
See Appendix A for a review of the latter.
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5.1 Some general families
In this section, we will assume that k is a field of characteristic zero.

5.1.1 Stretched k-algebras
We now compute the Gorenstein colength of stretched k-algebras. Recall that an

Artin ring A = R/I is stretched if HFA(2) = 1. Stretched rings were defined and
classified by Sally, see [42], [21]. See Appendix B for definition and structure theorems
regarding stretched rings.

PROPOSITION 5.1.1 Let A = R/I be an Artin stretched k-algebra with I ⊆ m2. Let
τ = τ(A) be the Cohen Macaulay type of A and s ≥ 2 its socle degree. Then,

I⊥ = ⟨y2, . . . , yτ , y
s
1 + y2

τ+1 + · · ·+ y2
n⟩.

Proof: By [21, Theorem 3.1],

I =


(
{xixj}1≤i<j≤n, {x2

j}2≤j≤τ , {x2
i − xs

1}τ+1≤i≤n

)
, if τ(A) < n;(

{x1xj}2≤j≤n, {xixj}2≤i≤j≤n, x
s+1
1
)
, if τ(A) = n.

Since I ⊆ m2, then S≤1 ⊆ I⊥. To prove the inclusion

⟨y2, . . . , yτ , y
s
1 + y2

τ+1 + · · ·+ y2
n⟩ ⊆ I⊥,

it is enough to check that I ◦
(
ys

1 + y2
τ+1 + · · ·+ y2

n

)
= 0. Equality follows from the

fact that dimk I
⊥ = ℓ(A) = n+ s. �

PROPOSITION 5.1.2 Let A = R/I be a non-Gorenstein Artin stretched ring. Let τ(A)
be the Cohen Macaulay type of A and s its socle degree with I ⊂ m2. Then,

gcl(A) = embd(A)− τ(A) + 1.
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If n = embd(A), then G = R/AnnR F , where

F = ys+1
1 + y1y

2
τ+1 + · · ·+ y1y

2
n + y2

2 + · · ·+ y2
τ ,

is a minimal Gorenstein cover of A. Moreover,

KF =
(
I⊥ :R F

)
=
(
x1, . . . , xτ , x

2
τ+1, . . . , x

2
n, {xixj}τ+1≤i<j≤n

)
.

In particular, G is a minimal Gorenstein cover of A with Hilbert function HFG =
{1, n, n− τ(A) + 1, 1, . . . , 1} and socdeg(G) = s+ 1.

Proof: Set dim(R) = embd(A) = n and τ = τ(A). Consider the sub-R-module
J⊥ = ⟨F ⟩, where F is the polynomial of the statement, and the idealK = (x1, . . . , xτ ,
x2

τ+1, . . . , x2
n,{xixj}τ+1≤i<j≤n) of R. Then

K ◦ J⊥ = ⟨y2, . . . , yτ , y
s
1 + y2

τ+1 + · · ·+ y2
n⟩.

By Proposition 5.1.1, I⊥ = K ◦ J⊥, hence G = R/J is a Gorenstein cover of the Artin
stretched ring A = R/I . As k-vector space, the inverse system of J can be written as

J⊥ = ⟨1, y1, . . . , yn, y
2
1 , y1yτ+1, . . . , y1yn, y

3
1 , . . . , y

s
1, F ⟩k.

Therefore, ℓ(G) = 2n − τ + s + 1 = ℓ(A) + n − τ + 1 and gcl(A) ≤ n − τ + 1.
From Proposition 2.3.2 we know that gcl(A) ≥ embd(A) − τ(A) + 1, hence we get
the equality gcl(A) = n− τ + 1. Then G = R/AnnR F is a minimal Gorenstein with
Hilbert function {1, n, n− τ(A) + 1, 1, . . . , 1}.

Moreover, K ⊆ KF =
(
I⊥ :R J⊥) and equality holds if ℓ(R/K) = ℓ(R/KF ).

Indeed,

ℓ(R/K) = dimk
⟨1, x1, . . . , xn⟩k + m2

⟨x1, . . . , xτ ⟩k + m2 = dimk⟨1, xτ+1, . . . , xn⟩k = n− τ + 1

coincides with ℓ(R/KF ) = n− τ + 1 by 2.1.6. �

COROLLARY 5.1.3 If A is an Artin stretched ring, any minimal Gorenstein cover G of A
satisfies embd(G) = embd(A).
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Proof: By Proposition 2.3.2, n = embd(A) ≤ embd(G) ≤ gcl(A) + τ(A) − 1 = n.
�

REMARK 5.1.4 Observe that from Proposition 5.1.2 we can deduce that the embedding
dimension of any minimal cover G is the same as the embedding dimension of A. This
is not enough to claim that any G has Hilbert function {1, n, n − τ + 1, 1, . . . , 1}.
However, the examples we have studied suggest unicity. See the study of unicity of
I = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x

2
2, x

2
3 − x2

1, x
2
4), with HFR/I = {1, 4, 1}, in

Table 5.2, Case 22 of ℓ(A) = 6.

COROLLARY 5.1.5 If A = R/I is an Artin stretched ring, then there exists a minimal
Gorenstein cover G = R/J of A such that I2 ⊂ J ⊂ I .

Proof: By Proposition 5.1.2, KF =
(
x1, . . . , xτ , x

2
τ+1, . . . , x

2
n, {xixj}τ+1≤i<j≤n

)
.

It can be easily checked that I ⊂ KF . By Lemma 2.3.4, I2 ⊂ J ⊂ I . �

5.1.2 Powers of the maximal ideal

In [44, Corollary 2.2], Teter shows that A = R/m2 is a Teter ring. Later on, in [20,
Proposition 3.6], Elias and Silva prove that any quotient of a power of the maximal ideal
A = R/mt is Teter if and only if either t ≤ 2 or its embedding dimension is 1. Combining
this result with [20, Proposition 3.7], we get the following characterization:

PROPOSITION 5.1.6 Consider the ring A = R/mt, where t ≥ 2 and n is the embedding
dimension of A. Then

(i) gcl(A) = 0 if and only if n = 1.
(ii) gcl(A) = 1 if and only if n ≥ 2 and t = 2.

In [2, Theorem 3.1], Ananthnarayan provides an explicit formula to compute the
Gorenstein colength of such ringsA = R/mt for arbitrary values ofn and t. In particular,
he proves that gcl(A) = ℓ(R/mt−1). From this we deduce the following result:
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Chapter 5. Gorenstein colength of special families

PROPOSITION 5.1.7 Let A = R/mt, for some t ≥ 2. Then G = R/AnnR F where
F = (y1 + · · ·+ yn)2t−2, is a minimal Gorenstein cover of A and

gcl(A) =

 n+ t− 2

t− 2

 .

Proof: The Gorenstein colength follows from [2, Theorem 3.8]. Hence we only need
to prove that G = R/J has the right length and I⊥ ⊂ J⊥ = ⟨F ⟩, where I = mt and
F = (y1 + · · ·+ yn)2t−2.

G has a symmetric Hilbert function with respect to piece of degree t− 1:

HFG(i) =



 n+ i− 1

i

 , 0 ≤ i ≤ t− 1; n+ k − 1

k

 , t ≤ i = 2t− k − 2 ≤ 2t− 2, 0 ≤ k ≤ t− 1;

0, i ≥ 2t− 1.

Adding up the dimension of each piece, we check that ℓ(G) = ℓ(A) + gcl(A). For any
0 ≤ i ≤ t − 1, each piece J⊥

i has maximal dimension
(

n+i−1
i

)
, hence S≤t−1 ⊂ J⊥.

Since (mt)⊥ = S≤t−1, we just proved that G is a minimal Gorenstein cover of A. �

COROLLARY 5.1.8 Let A = R/mt, for some t ≥ 2. Then there exists a minimal Goren-
stein cover G = R/J such that I2 ⊂ J ⊂ I , where I = mt.

Proof: I⊥ = (mt)⊥ = S≤t−1 ⊂ J⊥ = ⟨F ⟩ ⊂ S≤2t−1 = (m2t)⊥ = (I2)⊥. �

REMARK 5.1.9 Note that we proved that there always exists at least one minimal Goren-
stein cover with the same embedding dimension as the base ring, but we could not prove
that all of them must preserve the embedding dimension. Observe that the upper bound
on the embedding dimension provided by Proposition 2.3.2 gives
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5.2. k-algebras of rank equal or less than 6

embd(G) ≤

 n+ t− 1

t− 1

− 1 (5.1)

on Gorenstein covers G of rings A = R/mt, which is bigger than embd(A) in general.
However, we did not find any example where embd(G) > embd(A). On the con-

trary, we do have examples where the previous bound on the embedding dimension ofG
is not reached. For A = k[[x1, x2]]/m3, the inequality 5.1 gives embd(G) ≤ 5, whereas
we prove in Section 5.2 that embd(G) = 2 for any minimal Gorenstein cover. See Case
9, ℓ(A) = 6 of Table 5.2 for more details.

5.2 k-algebras of rank equal or less than 6
In [40], Poonen provides a complete list of all the analytic types of Artin local alge-

bras over an algebraically closed field k of length less or equal than 6. His classification
holds for any characteristic of the ground field. However, for char(k) = 2 or 3, some
extra analytic types must be added.

The goal of this section is to compute the Gorenstein colength and describe minimal
Gorenstein covers of all finitely many analytic types of Artin local k-algebras A = R/I

with ℓ(A) ≤ 6. As Poonen already recalls in his paper, Suprunenko proved in [43] that
the number of isomorphism classes is infinite when ℓ(A) ≥ 7. Therefore, it is reasonable
to consider rings up to length 6. In Table 5.2 we present a complete list of all the analytic
types of such rings together with several invariants of both the base ring A = R/I and
its minimal covers G = R/AnnR F .

Let us start with posing some natural questions for ℓ(A) ≤ 6:

Quesࢢon 1: How can we effectively compute I⊥?

The first issue we need to address is the computation of the inverse system of the
ideal I ⊂ R for any characteristic of the field k. Using Singular we can compute I⊥ in
both zero and positive characteristic. See Appendix A for information on the different
methods available and how to use them. However, we are interested in an expression of
the inverse systemwhich is valid for any characteristic of the residue field. Therefore, we
will perform the computations in characteristic zero and generalize the results to arbitrary
characteristic afterwards.
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Chapter 5. Gorenstein colength of special families

Observe in [40] that given an ideal I = (f1, . . . , fm) from Poonen’s list, its inverse
system I⊥

0 in characteristic 0 is minimally generated by polynomials F1, . . . , Fr such
that all its coefficients are 1. On one hand, for any F ∈ I⊥

0 , since

fi ◦ F = 0, 1 ≤ i ≤ m,

is true in characteristic zero, then it holds in arbitrary characteristic. Hence ⟨F1, . . . , Fr⟩
is contained in I⊥

p . On the other hand, the sub-module ⟨F1, . . . , Fr⟩ of k[y1, . . . , yn],
where char(k) = p, is again minimally generated by F1, . . . , Fm. Therefore, since
ℓ(A) = ℓ(I⊥

0 ) = ℓ(I⊥
p ), then I⊥

p = ⟨F1, . . . , Fr⟩.

Quesࢢon 2: How can we effectively compute gcl(A)?

We will now use alternative arguments to avoid, at this stage, the computation of
the variety of minimal Gorenstein covers and stick to the study of the inverse system.
Only by looking at the minimal number of generators of I⊥ as R-module, we obtain a
lot of information on the Gorenstein colength. Let n be the embedding dimension of
A and recall that µ(I⊥) = τ(A), see Proposition 1.4.19. The relationship between the
embedding dimension and the Cohen-Macaulay type in rings of low Gorenstein colength
comes from the characterizations of such rings. In the Teter case, Theorem 2.0.4 by Elias
and Silva determines that τ(A) = n. We obtain the same Cohen-Macaulay type for rings
A = R/I of Gorenstein colength 2 in Theorem 2.2.5 whenever I ⊂ m5. But notice that
none of rings in Table 5.2 are under the conditions of the theorem. As it was already
noted in Remark 2.2.6, in this case τ(A) is either n− 1 or n. Summarizing:

• If µ(I⊥) = 1, then gcl(A) = 0.
• If µ(I⊥) ̸= 1, n, then gcl(A) > 1.
• If µ(I⊥) ̸= 1, n− 1, n, then gcl(A) > 2.

Therefore, if we find a Gorenstein cover G = R/AnnR F reaching the lowest pos-
sible colength according to the previous outline, we are done. This is also the case for
rings A such that gcl(A) > 2:

Case 9 of ℓ(A) = 6. A = R/I , with I⊥ = ⟨y2
1 , y1y2, y

2
2⟩ and n = 2, satisfies µ(I⊥) ̸=

1, 2. Then gcl(A) > 2. F = y2
1y

2
2 gives a Gorenstein cover G = R/AnnR F of A such

that ℓ(G)− ℓ(A) = 3, hence gcl(A) = 3.

Case 22 of ℓ(A) = 6. A = R/I , with I⊥ = ⟨y2, y
2
1 + y2

3 + y2
4⟩ and n = 2, satisfies
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5.2. k-algebras of rank equal or less than 6

µ(I⊥) ̸= 1, 3, 4. Then gcl(A) > 2. F = y3
1 + y1y

2
3 + y1y

2
4 + y2

2 gives a Gorenstein
cover G = R/AnnR F of A such that ℓ(G)− ℓ(A) = 3, hence gcl(A) = 3.

REMARK 5.2.1 Observe that Case 9 of ℓ(A) = 6 is a quotient by a power of the maximal
ideal, hence gcl(A) = ℓ

(
A/m2) = 3 by Proposition 5.1.7. On the other hand, Case 22

of ℓ(A) = 6 is stretched, hence gcl(A) = n− τ(A) + 1 = 3 by Proposition 5.1.2. The
advantage of the argument about the Cohen-Macaulay type is that it works regardless
of the characteristic of the field whereas the other one depends on the structure theorem
of stretched k-algebras and Ananthnarayan’s work on quotients by powers of maximal
ideals, see Section 5.1.

However, if we are not able to find F , it requires a deeper study in order to prove that
no such polynomial exists. Only one analytic type in Poonen’s classification deserves
this special treatment.

Case 7 of ℓ(A) = 6. Consider A = k[[x1, x2]]/I , I⊥ = ⟨y1y2, y
3
2⟩. By [20, Proposition

4.5], A is Teter if and only if exists a non-singular matrix C = (cij)1≤i,j≤2, with cij in
k[y1, y2] and deg cij ≤ 3 such that H1

H2

 =

 c11 c12

c21 c22

 ◦
 y1y2

y3
2


satisfies x2 ◦H1 = x1 ◦H2.

The Schwartz condition implies that c11◦y1+c12◦y2
2 = c21◦y2. For any 1 ≤ i, j ≤ 2,

consider cij = c0
ij + c1

ij + c2
ij + c3

ij . Let us pay attention to what occurs in each degree
of this equality:
Degree 2: c0

12 ◦ y2
2 = 0, hence c0

12 = 0.
Degree 1: c0

11 ◦ y1 + c1
12 ◦ y2

2 = c0
21 ◦ y2, hence c0

11 = 0.

Then

∣∣∣∣∣∣ c
0
11 c0

12

c0
21 c0

22

∣∣∣∣∣∣ = 0, henceC is singular and gcl(A) > 1. The polynomial F = y1y
3
2

gives a Gorenstein cover G = R/AnnR F of A such that ℓ(G) − ℓ(A) = 2, hence
gcl(A) = 2.

REMARK 5.2.2 Note that this procedure is a primitive version of Algorithm 2 to com-
pute Teter varieties, that is, the minimal Gorenstein cover variety for rings of Gorenstein
colength 1.
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Chapter 5. Gorenstein colength of special families

Quesࢢon 3: Which are the possible Hilbert functions of a minimal Gorenstein cover G
of A?

Hilbert functions of Teter covers are unique regardless of the characteristic of the
field k. From Theorem 2.0.4 we can deduce that, given a Teter ring A of socle degree s,
any minimal Gorenstein cover G of A satisfies

HFG(i) =


HFA(i), if i ≤ s;

1, if i = s+ 1;

0, otherwise.

See [20] for more details.

In Gorenstein colength 2, according to Theorem 2.2.5, the socle degree of a minimal
Gorenstein coverG ofA could be either s+1 or s+2. Hence, a priori, we cannot ensure
unicity of the Hilbert function. In fact, as shown in Example 2.1.9, in Case 7 of ℓ(A) = 6
there are minimal covers with two different associated Hilbert functions.

From now on, we will assume that char(k) = 0 in order to use structure theorems of
stretched and almost stretched k-algebras, see Appendix B.

In characteristic zero, it can be proved that Hilbert functions of minimal Gorenstein
covers of A such that gcl(A) = 2 and ℓ(A) ≤ 6 are unique except for the so called
Case 7 of ℓ(A) = 6. One approach to prove this uniqueness is to study the degree of the
polynomials associated to theMGC(A) variety, since it provides a bound on the socle
degree of G. See Section C.2 for more details. Another strategy is to study whether
Gorenstein rings with appropriate Hilbert functions are indeed covers of A, as done in
Example 2.1.10.

In Gorenstein colength 3, determining which are the possible Hilbert functions of
minimal covers becomes specially relevant since, in particular, it addresses the problem
of embedding dimension in higher colength posed in Section 2.3.

For ringsA in Table 5.2 such that gcl(A) = 3 (cases 9 and 22 of ℓ(A) = 6), we study
all the Gorenstein rings G such that ℓ(G) − ℓ(A) = 3 with HFG(i) ≥ HFA(i) for any
i ≥ 0.

Case 9 of ℓ(A) = 6. A = R/m3 is a quotient by a power of the maximal ideal. By
Remark 5.1.9 we have the upper bound

(
n+t−1

t−1
)
− 1 for the embedding dimension of

any minimal Gorenstein cover G of A. Since t = 3 and n = 2, embd(G) ≤ 5.
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5.2. k-algebras of rank equal or less than 6

i 0 1 2 3 4 5

A 1 2 3

G 1 2 3 1 1 1 (1)

2 1 (2)

3 3 1 1 (3)

4 1 (4)

4 3 1 (5)

In the table above we list all possible Hilbert functions of rings G = R/J with
multiplicity 9 ending in 1 such that HFG(i) ≥ HFA(i), i ≥ 0.

First we recall thatF = y2
1y

2
2 generates aminimalGorenstein coverG = R/AnnR F

with symmetric Hilbert function {1, 2, 3, 2, 1}.
Next we list those Hilbert functions that do not correspond to Gorenstein rings:

(1) {1, 2, 3, 1, 1, 1}, since in codimension 2 Gorenstein rings only correspond to Hil-
bert functions with jumps of at most 1, see Theorem 1.2.11.

(4) {1, 3, 4, 1}, since there is no Q-decomposition, see Example 1.2.10.

Finally, Hilbert functions (3) and (5) do admit Gorenstein rings but we want to prove
that they can never be covers ofA. To do so, we first give a lemma that will help dealing
with covers of higher embedding dimension:

LEMMA 5.2.3 Let A = R/I be a ring with embedding dimension n and a Gorenstein
coverG = R′/J ofA of embedding dimension n+k, whereR′ = k[[x1, . . . , xn, xn+1,
. . . , xn+k]]. Then I⊥ ⊂ J⊥ in S′ = k[y1, . . . , yn, yn+1, . . . , yn+k].

Proof: Consider a system of generators f1, . . . , fm of the ideal I in R and define I ′

as the ideal generated by f1, . . . , fm, xn+1, . . . , xn+k in R’. Since A = R/I ∼= R′/I ′,
then (I ′)⊥ ⊂ J⊥ by definition of Gorenstein cover.

Next we will prove that (I ′)⊥ = I⊥. Note that any F ∈ (I ′)⊥ ⊂ S′, satisfies
xn+i ◦F = 0 for any 1 ≤ i ≤ k. Then F must be a polynomial in variables x1, . . . , xn.
ButF also satisfies fi◦F = 0 for any 1 ≤ i ≤ m, henceF ∈ I⊥. Therefore (I ′)⊥ ⊆ I⊥

and equality follows from ℓ(R/I) = ℓ(R′/I ′) = ℓ(A). �
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Chapter 5. Gorenstein colength of special families

Let us see why Gorenstein ringsGwith Hilbert functions (3) and (5) cannot be covers
of A:

(3) Consider a Gorenstein cover G of A with HFG = {1, 3, 3, 1, 1}. Let F , with
degF = 4, be a generator of J⊥. Since gcl(A) = 3, then there are two possible
analytic types forKF , hence either

I⊥ = ⟨l1 ◦ F, l2 ◦ F, l33 ◦ F ⟩

or
I⊥ = ⟨l1 ◦ F, l22 ◦ F, l2l3 ◦ F, l23 ◦ F ⟩.

Elements in I⊥ have, at most, degree 2. To prove that suchG can never be a cover
of A it is enough to show that, if elements inKF ◦ F have degree at most 2, then
HFA(2) ≤ 2. Indeed, this contradicts HFA(2) = 3.

CaseKF = (l1, l2, l33): Since degF = 4, then l33 ◦F ≤ 1 and hence HFA(2) ≤ 2.

CaseKF = (l1) + (l2, l3)2: Since HFG(3) = 1, there is essentially only one
polynomial in degree 3. Then either l2 ◦ F = λ(l3 ◦ F ), for some λ ̸= 0, or
we can assume that deg l2 ◦ F ≤ 2.
In the first scenario, both l22◦F and l23◦F aremultiples of l2l3◦F , henceHFA(2) ≤
2. In the second case, we get that the degrees of both l22 ◦F and l2l3 ◦F are strictly
less than two, hence again HFA(2) ≤ 2.

(5) Consider a Gorenstein coverG ofAwithHFG = {1, 4, 3, 1}. Since dimk(I⊥)2 =
3, from Lemma 5.2.3 it follows that J⊥ must contain three algebraically indepen-
dent polynomials F1, F2, F3 of degree 2 in variables l1, l2, where l1, l2 are linear
forms in k[y1, y2, y3, y4]. Using same notation as in [6], we give in Table 5.1 a
representative of a generator of J⊥ for every analytic type of a Gorenstein ring G
such that HFG = {1, 4, 3, 1}.
Now consider the ring homomorphism

ϕ : k[a, b, c] −→ k[x, y, z]

a 7−→ F1

b 7−→ F2

c 7−→ F3
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Chapter 5. Gorenstein colength of special families

with imϕ = k[F1, F2, F3]. Hence

dim k[F1, F2, F3] = dim k[a, b, c]/ kerϕ.

If kerϕ = 0, there is no linear R-isomorphism such that k[F1, F2, F3] ∼= k[l1, l2],
that is, no suitable change of variables. We checked with Singular that this is
always the case for Fi = xi ◦ F , i = 1, 2, 3, for any analytic type from Table 5.1.
Therefore, I⊥ * J⊥ and hence G is not a cover of a ring with Hilbert function
{1, 2, 3}.

Summing up, anyminimalGorenstein coverG ofA hasHilbert function {1, 2, 3, 2, 1}.
In particular, embd(G) = embd(A) = 2 and the upper bound provided by Proposi-
tion 2.3.2 is clearly not reached.

l(A) = 6, case 22: SinceA is a stretchedk-algebra, by Proposition 5.1.2 embd(A) =
embd(G) and exists a cover G with Hilbert function {1, 4, 3, 1}. Let us list all possible
Hilbert functions of minimal Gorenstein covers of A:

i 0 1 2 3 4 5

A 1 4 1

G 1 4 1 1 1 1

2 1 1

3 1

• A Gorenstein ringG = R/J with HFG = {1, 4, 1, 1, 1, 1} is a stretched k-algebra
with s = 5, n = 4 and τ = 1. By Proposition 5.1.1, F = y5

1 + y2
2 + y2

3 + y2
4 is

a representative of the generator of J⊥ of the unique analytic type of such G. If
K⊥ is a subset of J⊥ such that HFR/K = {1, 4, 1}, then

K⊥ = ⟨1, y1, y2, y3, y4, y
2
1⟩ ⊂ ⟨1, y1, y2, y3, y4, y

2
1 , y

3
1 , y

4
1 , F ⟩ = J⊥.

Hence G can only be a cover of rings of Cohen-Macaulay type 4 but τ(A) = 2.
• A Gorenstein ring G = R/J with HFG = {1, 4, 2, 1, 1} is an almost stretched

k-algebra with s = 4, t = 2 and n = 4. By Theorem B.3.2, there are only two
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analytic types for J : either J ∼= I0,1 or J ∼= I∞, see Definition B.3.1. Consider
K⊥ ⊂ J⊥ such that HFR/K = {1, 4, 1},

(i) ifK⊥ ⊂ I⊥
0,1 = ⟨y2

3 + y2
4 + y1y

2
2 + y3

2 + y4
1⟩, then τ(R/K) = 3, 4;

(ii) ifK⊥ ⊂ I⊥
∞ = ⟨y2

3 + y2
4 + y1y

2
2 + y4

1⟩, again τ(R/K) = 3, 4.

Therefore, any minimal Gorenstein coverG of A has Hilbert function {1, 4, 3, 1}.

5.2.1 Poonen’s classificaࢢon
We will now provide a set of tables listing all the analytic types ofA = R/I together

with several details of both the base ring and its minimal covers G = R/AnnR F :

• Hilbert function HFA,
• Cohen-Macaulay type τ(A),
• the representative I of the analytic type provided by Poonen’s list,
• the inverse system I⊥,
• a polynomial F such that G = R/AnnR F is a minimal Gorenstein cover of A,
• all possible Hilbert functions HFG of a minimal Gorenstein cover of A when

char(k) = 0,
• the Gorenstein colength of A.

REMARK 5.2.4 In Table 5.2, cases 2.2 in ℓ(A) = 4, 7.2 in ℓ(A) and 5.2, 10.2, 14.2, 15.2,
18.2, 21.2, 23.2 in ℓ(A) = 6 have been computed in characteristic 2. Case 5.3 has been
computed in characteristic 3. The remaining cases have been computed in characteristic
zero but are still valid in arbitrary characteristic.

REMARK 5.2.5 For any A such that ℓ(A) ≤ 6, the property I2 ⊂ J ⊂ I holds for min-
imal Gorenstein covers G = R/J of A listed in Table 5.2. Hence Proposition 2.3.5.(i)
is proved. Moreover, in characteristic zero, we can check that it is true for all minimal
Gorenstein cover G as long as the Hilbert function of G corresponds to rings whose
analytic types have been widely studied. This is the case for stretched (see [21] or The-
orem B.2.1), almost stretched (see [15] or Theorem B.3.2), HFG = {1, 3, 3, 1} (see [18,
Proposition 3.7]) and HFG = {1, 4, 3, 1} (see [6]).

REMARK 5.2.6 Note that the Gorenstein colength never exceeds ℓ(A)/2.
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5.2. k-algebras of rank equal or less than 6
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5.3. Monomial ideals

5.3 Monomial ideals
Monomial ideals I of R have a lot of nice properties, see [29]. For instance, their

inverse system I⊥ is also generated by monomials as an R-module and its generators as
a k-vector space coincide with a k-basis of R/I , see Corollary A.1.6 for more details.
Also the Gorenstein property has a nice translation in the monomial situation:

PROPOSITION 5.3.1 [29, A.6.5] Let A = R/I be an Artin ring and I a monomial ideal.
Then A is Gorenstein if and only if A is a complete intersection. If any of the equivalent
conditions hold, then I is generated by pure powers of the variables.

It is natural to ask whether the computation of Gorenstein colength and minimal
Gorenstein covers is simpler for monomial rings. The first relevant observation is that,
in general, monomial rings do not have monomial minimal Gorenstein covers.

EXAMPLE 5.3.2 Consider the monomial ideal I = (x3
1, x

2
2, x1x2) inR = k[[x1, x2]], Case

3 of ℓ(A) = 4 in Table 5.2. In the chart below, we represent I⊥ = ⟨y2
1 , y2⟩ in dark green

and J⊥ = ⟨y2
1y2⟩ in light green.

y1

y2

y2

y2
1

y2
1y2

Note that y2
1y2 is the monomial of lowest degree that generates an inverse system con-

taining I⊥. But ℓ(R/J) − ℓ(R/I) = 2 and gcl(A) = 1, hence none of the minimal
Gorenstein covers of A are monomial rings.

However, we can always consider the minimal monomial Gorenstein cover:

DEFINITION 5.3.3 Given a monomial ring A = R/I , we say that G is aminimal mono-
mial Gorenstein cover if

(i) G = R/J is a Gorenstein cover,
(ii) J is monomial,
(iii) ℓ(G) is minimal amongst the G satisfying (i) and (ii).
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Chapter 5. Gorenstein colength of special families

PROPOSITION 5.3.4 Let A = R/I be a monomial ring. Then G = R/J , where J is
the monomial ideal (xa1

1 , . . . , xan
n ) such that I ∩ k[[xi]] = (xai), is a minimal monomial

Gorenstein cover of A.

Proof: Assume that I is a monomial ideal. Then there exist monomials xai with ai

in Nn and such that, i = 1, · · · , n, I ∩ k[[xi]] = (xai
i ). J = (xa1

1 , · · · , xan
n ) is clearly

contained in I and it is Gorenstein by Proposition 5.3.1. By constuction, G = R/J has
the minimal length amongst all monomial Gorenstein covers. �

COROLLARY 5.3.5 If A = R/I is a monomial ring with monomial minimal Gorenstein
cover, then

gcl(A) =
n∏

i=1
(ai − 1)− ℓ(A),

where ai is the smallest integer such that xai
i ∈ I .

Proof: Take J = (xa1
1 , . . . , xan

n ) as in Proposition 5.3.4. Then ai is the smallest integer
such that xai

i is in I andG = R/J is also a minimal Gorenstein cover. It is easy to check
that ℓ(G) =

∏n
i=1(ai − 1). �

In this section we will provide some examples and partial results for monomial rings
in codimension 2 and review which monomial rings of Poonen’s classification in Ta-
ble 5.2 have monomial minimal Gorenstein covers.

5.3.1 Monomial rings in codimension 2
In Chapter 4, monomial ideals take a leading role in the search for Gorenstein covers

of A = R/I . We deform monomial ideals E with an appropriate Hilbert function into
ideals J such that Ltτ (J) = E, preserving their Hilbert function. In this way, we provide
a constructive procedure where we eventually find Gorenstein ideals J such that J ⊂ I .
However, the effectivity of the method decreases dramatically as the colength increases
because of the combinatorics of both the admissible Hilbert functions and the associated
monomial ideals.

In this section we want to give expressions of the Gorenstein colength in terms of
the exponents of the generators of the ideal. Recall that τ(A) = n for Teter rings and
τ(A) = n−1, n in colength 2. Therefore, if n = 2, non-Gorenstein rings of low colength
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have Cohen-Macaulay type 2. By Proposition 1.4.19, I must be minimally generated by
3 elements inR. Hence we will restrict our study to monomial rings I = (xt

1, x
s
2, x

a
1x

b
2),

with 1 ≤ a ≤ t− 1 and 1 ≤ b ≤ s− 1.

5.3.1.1 Teter rings

Let us consider an ideal I = (xt, ys, xayb), with 1 ≤ a ≤ t− 1 and 1 ≤ b ≤ s− 1.
Note that its inverse system is I⊥ = ⟨xt−1yb−1, xa−1ys−1⟩.

By [20], A is Teter if and only if exist polynomials H1,H2 of degree at most the
maximum between t+ b− 2 and a+ s− 2 such that y ◦H1 = x ◦H2, where H1

H2

 =

 c11 c12

c21 c22

 ◦
 xa−1ys−1

xt−1yb−1


and C = {cij}1≤i,j≤2 is a matrix with polynomial entries such that detC0 ̸= 0. H1 = c11 ◦ xa−1ys−1 + c12 ◦ xt−1yb−1

H2 = c21 ◦ xa−1ys−1 + c22 ◦ xt−1yb−1

Since y ◦H1 = x ◦H2, then

c11 ◦ xa−1ys−2 + c12 ◦ xt−1yb−2 = c21 ◦ xa−2ys−1 + c22 ◦ xt−2yb−1.

If a = b = 1 we are considering an inverse system of the form I⊥ = ⟨xt−1, ys−1⟩.
In such case, F = xt + ys generates the inverse system of a minimal Gorenstein cover
ofA. Indeed, (x, y)◦F = ⟨xt−1, ys−1⟩ and a dimension computation of I⊥ as k-vector
space gives that ℓ(A) = t+ s− 1 and ℓ(R/AnnR(F )) = t+ s.

We can now assume that either a > 1 or b > 1.

• Case b+ t > a+ s.

In maximum degree b+ t− 3:

c0
12x

t−1yb−2 = c0
22x

t−2yb−1.

If b > 1, then c0
12 = c0

22 = 0 and detC0 =

∣∣∣∣∣∣ c
0
11 0

c0
21 0

∣∣∣∣∣∣ = 0. Hence gcl(A) > 1.
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If b = 1, then in maximum degree t − 2 we get c0
22x

t−2 = 0 and hence c0
22 = 0.

In degree a+ s− 3 we have

c0
11x

a−1ys−2 = c0
21x

a−2ys−1 + ck
22 ◦ xt−2,

with ck
22 = ak

22x
k, k = t− a− s+ 1 and ak

22 ∈ k. Therefore,

c0
11x

a−1ys−2 = c0
21x

a−2ys−1 + ak
22x

a+s−3.

Since a > 1, then c0
11 = c0

21 = ak
22 = 0 and gcl(A) > 1.

• Case b+ t = a+ s.
In maximum degree b+ t− 3 = a+ s− 3:

c0
11x

a−1ys−2 + c0
12x

t−1yb−2 = c0
21x

a−2ys−1 + c0
22x

t−2yb−1.

– a, b > 1.
If a − 1 < t − 2 or b − 1 < s − 2, then c0

11 = c0
12 = c0

21 = c0
22 = 0 and

hence gcl(A) > 1.

If a − 1 = t − 2 and b − 1 = s − 2, then c0
12 = c0

21 = 0 and c0
11 = c0

22. In
this case, I⊥ = ⟨xt−2ys−1, xt−1ys−2⟩ and, taking C = Id, we get H1 = x ◦ F = xt−2ys−1 ⇒ F = xt−1ys−1 + p(y)

H2 = y ◦ F = xt−1ys−2 ⇒ F = xt−1ys−1 + p(x)

Hence J⊥ = ⟨xt−1ys−1⟩ is a minimal Teter cover of A.
– a = 1 or b = 1. Since a and b have symmetric roles in the expression above,
we can assume that a = 1 and b > 1.

c0
11y

s−2 + c0
12x

t−1yb−2 = c0
22x

t−2yb−1.

If t = 2, then
c0

11y
s−2 + c0

12xy
b−2 = c0

22y
b−1.

Hence

* If b − 1 < s − 2, then c0
12 = c0

22 = 0. Hence if a = 1, t = 2 and
1 < b < s− 1, then gcl(A) > 1.

* If b = s − 1, then c0
11y

b−1 + c0
12xy

b−2 = c0
22y

b−1 only gives c0
12 = 0.
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It can be checked that J⊥ = ⟨xys−1⟩ provides a Teter cover of A.

If t > 2, then c0
12 = c0

22 = 0 and hence gcl(A) > 1.

Summing up, if I⊥ is of the form ⟨xt−1ys−2, xt−2ys−1⟩ for any s, t ≥ 2, then it
is Teter.

• Case b+ t < a+ s.
Since x and y are symmetric, this is the same situation as in case b+ t > a+ s.

Therefore, monomial Teter rings in codimension 2 are of the following forms:

(I) A = k[[x, y]]/(xt, ys, xt−1ys−1).
(II) A = k[[x, y]]/(xt, ys, xy).

Note that rings of type (I) and (II) coincide when s = t = 2. Also observe that
(I) always admits a monomial Teter cover G = k[[x, y]]/(xt, ys) . (II) admits the Teter
coverG = k[[x, y]]/(xy, ys−xt) but has nomonomial minimal covers unless t = s = 2,
as the following picture clearly illustrates:

x

y

ys−1

xt−1

xt−1ys−1

t− 1

s− 1

REMARK 5.3.6 In Gorenstein colength 2, an analogous argument can be performed but
the conditions we obtain on the exponents are not as elegant as in the Teter case.
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5.3.1.2 Ideals with 3 minimal generators

PROPOSITION 5.3.7 Let I = (xt
1, x

s
2, x

a
1x

b
2), with 1 ≤ a ≤ t − 1 and 1 ≤ b ≤ s − 1,

be a monomial ideal of R = k[[x1, x2]] with µ(I) = 3 such that R/I is an Artin ring of
codimension 2. If max{s, t} ≤ a+ b, then

gcl(R/I) = (t− a)(s− b)

and G = k[[x1, x2]]/(xt
1, x

s
2) is a minimal Gorenstein cover of R/I .

Proof: Recall that I⊥ = ⟨yt−1
1 yb−1

2 , ya−1
1 ys−1

2 ⟩. By symmetry of the roles of x and y,
we can assume without loss of generality that t ≥ s. Since t ≥ s and max{s, t} ≤ a+b,
then s− 1 ≤ t− 1 ≤ a+ b− 1.

Let us picture the extremal case s− 1 ≤ t− 1 = a+ b− 1:

x

y

xa−1ys−1

xt−1yb−1

xt−1ys−1

t− 1s− 1

Next we represent the general case s− 1 ≤ t− 1 ≤ a+ b− 2:
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x

y

xa−1ys−1

xt−1yb−1

xt−1ys−1

s− 1 t− 1

From the representations above we can deduce that, whenever s − 1 ≤ t − 1 ≤
a+ b− 1, the Hilbert function of A = R/I is

HFA(i) =



i+ 1, 0 ≤ i ≤ s− 2;

s, s− 1 ≤ i ≤ t− 1;

hi, t ≤ i ≤ t+ s− 3;

0, i ≥ t+ s− 2,

where hi ≤ s+ t− (i+ 1) for any t ≤ i ≤ t+ s− 3.
By Theorem 1.2.11, the Gorenstein-admissible Hilbert function with minimal length

starting by the sequence {1, 2, 3, . . . , s, . . . , s} is the symmetric numerical function {1,
2, 3, . . . , s, . . . , s, s− 1, s− 2, . . . , 2, 1}. The ringG = k[[x1, x2]]/(xs

1, x
t
2) happens to

have exactly this Hilbert function:

HFG(i) =



i+ 1, i ≤ s− 1;

s, s ≤ i ≤ t− 1;

s+ t− (i+ 1), t ≤ i ≤ t+ s− 2;

0, i ≥ t+ s− 1.

Since I⊥ ⊂ ⟨yt−1
1 ys−1

2 ⟩ and ℓ(G)− ℓ(A) is minimal, G is a minimal cover of R/I .
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Finally, it is easy to check that ℓ(G)− ℓ(A) = (s− b)(t− a) because it corresponds
to the upper right rectangle that belongs to J⊥ but not to I⊥. Hence gcl(A) = (s −
b)(t− a).�

Let us give an example which is under the conditions of Proposition 5.3.7 and show
how its Gorenstein colength can be alternatively deduced from its Hilbert function:

EXAMPLE 5.3.8 t = s = 6, a = 2, b = 4. By Proposition 5.3.7, gcl(A) = 8.

x

y

xy5

x5y3

x5y5

5

Observe that the numerical functionHFG from the chart below is the minimal Hilbert
function admitting Gorenstein rings such that HFG(i) ≥ HFA(i), for i ≥ 0. Then
R/(x6

1, x
6
2) is a Gorenstein cover of A with Hilbert function HFG, hence it is minimal.

length i 0 1 2 3 4 5 6 7 8 9 10

28 HFA 1 2 3 4 5 6 4 2 1 0 0

36 HFG 1 2 3 4 5 6 5 4 3 2 1

Finally we provide a monomial ideal which is not under the conditions of Proposi-
tion 5.3.7, where we can easily determine that it has no monomial minimal Gorenstein
covers even if we cannot compute the Gorenstein colength.
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EXAMPLE 5.3.9 t = 17, s = 7, a = 3, b = 4, ℓ(A) = 77. If a monomial minimal
Gorenstein cover exists, it must be G = k[[x1, x2]]/(x17, y7). It can be checked that
G′ = k[[x1, x2]]/AnnR(x2y10+x19y3) is also a Gorenstein cover ofA. But ℓ(G) = 119
and ℓ(G′) = 89, hence G is clearly not minimal. Observe that we cannot claim that G′

is minimal, we merely proved that gcl(A) ≤ ℓ(G′)− ℓ(A) = 12.

5.3.2 Monomial rings of length equal or less than 6
In this last part of the chapter, we review Poonen’s classification in Table 5.2 and pay

special attention to non-Gorenstein monomial rings. We study whether they admit or not
monomial minimal Gorenstein covers.

REMARK 5.3.10 Observe that Case 7 of ℓ(A) = 6 only admits monomial minimal covers
in one of the two different Hilbert functions of its minimal Gorenstein covers: HFG =
{1, 2, 2, 2, 1}.

159



Chapter 5. Gorenstein colength of special families

TABLE 5.3 Non-Gorenstein monomial rings ℓ(A) ≤ 6. In turquoise, rings admitting monomial
minimal Gorenstein covers.

Case HFA I⊥ J⊥ gcl(A)

ℓ(A) = 3, 2 1,2 y1, y2 y1y2 1

ℓ(A) = 4, 3 1,2,1 y2, y
2
1 y3

1 + y2
2 1

ℓ(A) = 4, 4 1,3 y1, y2, y3 y2
1 + y2

2 + y2
3 1

ℓ(A) = 5, 3 1,2,1,1 y1, y
3
2 y2

1 + y4
2 1

ℓ(A) = 5, 4 1,2,2 y2
1 , y

2
2 y3

1 + y3
2 1

ℓ(A) = 5, 5 y1y2, y
2
2 y1y

2
2 1

ℓ(A) = 5, 8 1,3,1 y2, y3, y
2
1 y3

1 + y2
2 + y2

3 1

ℓ(A) = 5, 9 1,4 y1, y2, y3, y4 y2
1 + y2

2 + y2
3 + y2

4 1

ℓ(A) = 6, 3 1,2,1,1,1 y2, y
4
1 y5

1 + y2
2 1

ℓ(A) = 6, 6 y2
1 , y

3
2 y3

1 + y4
2 1

ℓ(A) = 6, 7 y1y2, y
3
2 y2

1y2 + y5
2 2

y1y
3
2

ℓ(A) = 6, 9 1,2,3 y2
1 , y1y2, y

2
2 y2

1y
2
2 3

ℓ(A) = 6, 12 1,3,1,1 y2, y3, y
3
1 y4

1 + y2
2 + y2

3 1

ℓ(A) = 6, 15 1,3,2 y2
1 , y2y3 y3

1 + y2
2y3 2

ℓ(A) = 6, 18 y1y3, y2y3 y1y2y3 2

ℓ(A) = 6, 19 y1, y2y3, y
2
3 y2

1 + y2y
2
3 1

ℓ(A) = 6, 20 y1, y
2
2 , y

2
3 y2

1 + y3
2 + y3

3 1

ℓ(A) = 6, 24 1,4,1 y2, y3, y4, y
2
1 y3

1 + y2
2 + y2

3 + y2
4 1

ℓ(A) = 6, 25 1,5 y1, y2, y3, y4, y5 y2
1 + y2

2 + y2
3 + y2

4 + y2
5 1
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APPENDIX A

Singularmanual for compuࢢng
minimal Gorenstein covers

All the algorithms presented in this thesis have been implemented with the commu-
tative algebra software Singular, [11]. This appendix is a review of the Singular library
GorensteinCovers.lib, which has been specifically created to do most of the computa-
tions that appear in the previous chapters.

The purpose of this library is, as its name suggests, to help with the computation of
Gorenstein covers G = R/J of a given ring A = R/I , where I is an m-primary ring of
R = k[[x1, . . . , xn]].

The main procedures contained in it can be classified into three blocks:

(i) Computation of the inverse system I⊥ of I .
(ii) Computation of the integral of a moduleM with respect to an idealK, i.e.

∫
K
M .

(iii) Computation of the varietyMGC(A) for low-colength ringsA, i.e. gcl(A) = 1, 2.

The Singular library InverseSyst.lib by Elias will also be needed, see [13] for a
review of its contents.

Next we provide some important general remarks on how to use this library:

REMARK A.0.1 Since we are dealing with a local scenario, note that the ground ring
should be defined with a local ordering, that is

ring r=p,(x(1..n)),ord;

where p is the characteristic, n is an integer, and ord is a local ordering (ds, ls or Ds).
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REMARK A.0.2 The structure of S = k[y1, ..., yn] as R = k[[x1, . . . , xn]]-module is by
contraction. In InverseSyst.lib both derivation and contraction structures of S are taken
into account, hence we will only use the commands with ending NC (no coefficients) or
IHNC(injective hull with no coefficients).

REMARK A.0.3 A sub-R-module of S generated by F1, ..., Fr is handled in this LIB as
an ideal generated by F1, ..., Fr, keeping with Elias’s treatment in InverseSyst.lib. His
library provides very useful procedures to operate with these ideals as R-modules.

A.1 Methods to compute inverse systems
Inverse systems are a useful tool to deal with local Artin k-algebras and, in a more

general setting, to study isolated points in a variety. Some properties of ideals in R that
have a difficult computational approach have a particularly nice translation into inverse
systems: quotient ideals, elimination of variables or even differential equations. See [23,
Sections 7.1.5-7.1.8] for more details.

Here we describe 3 different methods to compute a k-basis of the inverse system of
an m-primary ideal I of R = k[[x1, . . . , xn]]. In all three situations, once we obtain a k-
basis, we can use Elias’ procedure minGensIHNC to obtain a minimal system of generators
of I⊥ as an R-module.

A.1.1 Method 1: system of equaࢢons
This method is implemented by Elias in the procedure invSystNC of the Singular

library InverseSyst.lib, see [13]. Given an ideal I = (f1, . . . , fm) ⊆ R, we can compute
its inverse system by solving the system of equations

fi ◦ F = 0, for any 1 ≤ i ≤ m (A.1)

for enough polynomials F ∈ S = k[y1, . . . , yn].

EXAMPLE A.1.1 Consider I = (x4
1, x

2
1 − x2) ⊂ k[[x1, x2]], set f1 = x4

1 and f2 =
x2

1 − x2. Consider the reverse-degree reverse lexicographical order (ds in Singular).
The Artin ring R/I has socle degree 3, hence all polynomials in I⊥ have degree at
most 3. We denote by S≤3 the sub-R-module of k[y1, y2] formed by polynomials of
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degree equal or less than 3 and denote by (yα)α the elements of the monomial k-basis
y3

2 , y1y
2
2 , y

2
2 , y

2
1y2, y1y2, y2, y

3
1 , y

2
1 , y1, 1 of S≤3. Consider the linear map

φ : S≤3 −→ S≤3 × S≤3

yα 7−→ (f1 ◦ yα, f2 ◦ yα)

The matrix associated to φ is the following:

φ(y3
2) φ(y1y2

2) φ(y2
2) φ(y2

1y2) φ(y1y2) φ(y2) φ(y3
1) φ(y2

1) φ(y1) φ(1)

y3
1 0 0 0 0 0 0 0 0 0 0

y1y2
2 0 0 0 0 0 0 0 0 0 0

y2
2 0 0 0 0 0 0 0 0 0 0

y2
1y2 0 0 0 0 0 0 0 0 0 0

y1y2 0 0 0 0 0 0 0 0 0 0

y2 0 0 0 0 0 0 0 0 0 0

y3
1 0 0 0 0 0 0 0 0 0 0

y2
1 0 0 0 0 0 0 0 0 0 0

y1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

y3
2 0 0 0 0 0 0 0 0 0 0

y1y2
2 0 0 0 0 0 0 0 0 0 0

y2
2 −1 0 0 0 0 0 0 0 0 0

y2
1y2 0 0 0 0 0 0 0 0 0 0

y1y2 0 −1 0 0 0 0 0 0 0 0

y2 0 0 −1 1 0 0 0 0 0 0

y3
1 0 0 0 0 0 0 0 0 0 0

y2
1 0 0 0 −1 0 0 0 0 0 0

y1 0 0 0 0 −1 0 1 0 0 0

1 0 0 0 0 0 −1 0 1 0 0

The k-basis of the kernel of φ is precisely a k-basis of those polynomials F ∈ S≤3 such
that f1 ◦ F = f2 ◦ F = 0. Singular provides the following k-basis of kerφ:

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

g2 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

g3 = (0, 0, 0, 0, 0, 1, 0, 1, 0, 0),

g4 = (0, 0, 0, 0, 1, 0, 1, 0, 0, 0).

Therefore, we can retrieve I⊥ = ⟨1, y1, y2 + y2
1 , y1y2 + y3

1⟩k.
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Algorithm 5 Computation of I⊥ via system of equations
Input: f1, . . . , fm generators of the ideal I .
Output: b1, . . . , bt k-basis of I⊥.
Steps:

(i) Define s = socdeg(R/I).
(ii) SetM = (yα)α≤s. Note thatM is a k-basis of S≤s.
(iii) Define the linear map

φ : S≤s −→ S≤s × S≤s × · · · × S≤s

yα 7−→ (f1 ◦ yα, f2 ◦ yα, . . . , fm ◦ yα)

(iv) Compute a k-basis of the kernel of φ.
(v) Define b1, . . . , bt as the elements of the k-basis of kerφ in polynomial notation.

REMARK A.1.2 The implementation of kinvSystNC inGorensteinCovers.lib follows the
idea of invSystNC in Inverse-Syst.lib but we remove the computation of the generators
of I⊥ as R-module. In this way, all three algorithms provide a k-basis and we are able
to compare them.

Next we show a sample session in Singular on how to use this procedure:

//load library

> LIB ”GorensteinCovers.lib”;

//define ring with local order

> ring r=0,(x,y),ds;

//define ideal

> ideal i=x4,x2-y;

//check m-primality

> dim(std(i));

0

//compute k-basis

> kinvSystNC(i);

_[1]=x3+xy

_[2]=x2+y

_[3]=x

_[4]=1
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A.1.2 Method 2: reducࢢon with respect to a normal form
modulo I .

In [23, Section 7.1.8] Elkadi and Mourrain provide a simple algorithm to construct a
k-basis of I⊥ via the reduction of polynomials with normal forms with respect to I . We
reproduce their fundamental results here translated into our setting.

Consider a k-basis (xα)α∈E of R/I , where E is a finite subset of Nn. Recall that
I⊥ can be identified with the dual of R/I as a k-vector space, denoted by (R/I)∗, see
Section 1.4.2. Therefore, we can consider a dual k-basis (Λα)α∈E of I⊥, in the sense
that, for any α, β ∈ E,

(
xβ ◦ Λα

)
(0) =

 1, if α = β;

0, otherwise.
(A.2)

Recall that (f ◦ Λ)(0) = (g ◦ Λ)(0) for any f, g ∈ R such that f − g ∈ I .

PROPOSITION A.1.3 [23, Proposition 7.23] Given the k-basis (xα)α∈E ofR/I , the fam-
ily

(yα +
∑

β∈Nn\E

λα,βy
β)α∈E ,

where xβ =
∑

α∈E λα,βx
α for any β /∈ E, forms a k-basis of I⊥.

Proof: Consider the dual k-basis (Λα)α∈E of I⊥ with respect to the k-basis (xα)α∈E

of R/I .
For any α ∈ E, we can describe Λα as

∑
β∈Nn µα,βy

β , for finitely many scalars
µα,β ̸= 0. Note that µα,β =

(
xβ ◦ Λα

)
(0). If β ∈ E, then µα,β = δα,β by A.2, where

δα,β is the Kronecker delta. Otherwise, if β /∈ E, there exist unique scalars (λα,β)α∈E

such that
xβ =

∑
α∈E

λα,βx
α ∈ R/I,

hence (
xβ ◦ Λα

)
(0) =

((∑
α′∈E

λα′,βx
α′

)
◦ Λα

)
(0).
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Again by A.2 we get ∑
α′∈E

λα′,β

(
xα′
◦ Λα

)
(0) = λα,β ,

hence µα,β = λα,β . Therefore, Λα = yα +
∑
β /∈E

λα,βy
β . �

REMARK A.1.4 Consider a k-basis (xα)α∈E of R/I and let s be its socle degree. Since
ms+1 ⊂ I , then for any β such that |β| ≥ s + 1, we have xβ ∈ I . Hence λα,β = 0 for
any α ∈ E and

Λα = yα +
∑

β /∈E, |β|≤s

λα,βy
β .

EXAMPLE A.1.5 Consider I = (x4
1, x

2
1 − x2) ⊂ k[[x1, x2]]. The set (xα)α∈E := {x3

1,
x2

1, x1, 1} is a k-basis of R/I and socdegR/I = 3. Consider the set of monomials
M =

(
xβ
)

β≤3. Given a standard basis S = {x2 − x2
1, x

4
1} of I (with respect to the

reverse-degree reverse lexicographical term ordering), we can compute the normal forms
NF(xβ | S). With local order ds, we get

NF(M | S) = {0, 0, 0, 0, x3
1, x

2
1, x

3
1, x

2
1, x1, 1}.

We can express these normal forms as a matrix whose entries are the coefficients
λα,β with α ∈ E and β ≤ 3 of Proposition A.1.3:

M x3
2 x1x

2
2 x2

2 x2
1x2 x1x2 x2 x3

1 x2
1 x1 1

NF(M | S) 0 0 0 0 x3
1 x2

1 x3
1 x2

1 x1 1

x3
1 0 0 0 0 1 0 1 0 0 0

x2
1 0 0 0 0 0 1 0 1 0 0

x1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1

Hence from the rows of this matrix, we can retrieve the k-basis of I⊥ by considering
the entries as coefficients ofM : I⊥ = ⟨y1y2 + y3

1 , y2 + y2
1 , y1, 1⟩k.
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Algorithm 6 Computation of I⊥ via reduction with respect to a normal form modulo I
Input: I ideal.
Output: b1, . . . , bt k-basis of I⊥.
Steps:
(i) Set s = socdeg(R/I).
(ii) SetM = (xβ)β≤s.
(iii) Compute a standard basis S of I .
(iv) Compute the normal forms NF(xβ | S), for any xβ ∈M .
(v) Compute a k-basis F = {f1, . . . , ft} of R/I .
(vi) Compute the matrixA of coefficients of NF(xβ | S) over the k-basis F ofR/I .
(vii) Compute the product of matrix A and column matrixM t.
(viii) For any 1 ≤ i ≤ t, set bi as the i-th entry of the column matrix AM t.

We now provide the implementation of Algorithm 6 in Singular, where its default
example is precisely Example A.1.5:

> LIB ”GorensteinCovers.lib”;

> example inverseSystem;

// proc inverseSystem from lib GorensteinCovers.lib

EXAMPLE:

ring r=0,(x,y),ds;

ideal i=x^4,x^2-y;

inverseSystem(i);

_[1]=xy+x3

_[2]=y+x2

_[3]=x

_[4]=1

Let us note that, if I ⊂ R is a monomial ideal, the expression of the k-basis of I⊥ in
Proposition A.1.3 can be simplified:

COROLLARY A.1.6 Let I ⊂ R be a monomial ideal. Given the k-basis (xα)α∈E of R/I ,
the family (yα)α∈E forms a k-basis of I⊥.

Proof: For each β /∈ E, there exists unique (λα,β)α∈E such that xβ −
∑

α∈E λα,βx
α

in I . Since I is monomial, then xβ ∈ I , hence all λα,β vanish. By Proposition A.1.3,
(yα)α∈E is a k-basis of I⊥. �
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> LIB ”GorensteinCovers.lib”;

> ring r=0,(x,y),ds;

//Define a monomial ideal

> ideal i=x3,xy2,y4;

//Computation of a k-basis of

the vector space R/I

> kbase(std(i));

_[1]=y3

_[2]=y2

_[3]=x2y

_[4]=xy

_[5]=y

_[6]=x2

_[7]=x

_[8]=1

//Computation of a k-basis

of the inverse system of I

> inverseSystem(i);

_[1]=y3

_[2]=y2

_[3]=x2y

_[4]=xy

_[5]=y

_[6]=x2

_[7]=x

_[8]=1

Algorithm 7 Computation of I⊥ for monomial ideals I
Input: I monomial ideal.
Output: b1, . . . , bt k-basis of I⊥.
Steps:
(i) Compute a k-basis b1, . . . , bt of R/I .

> example invSystMon;

// proc invSystMon from lib

//GorensteinCovers.lib

EXAMPLE:

ring r=0,(x,y),ds;

ideal i=x^7,x^6*y^3,

x^2*y^6,y^7;

invSystMon(i);

_[1]=xy6

_[2]=y6

_[3]=x5y5

_[4]=x4y5

_[5]=x3y5

_[6]=x2y5

_[7]=xy5

_[8]=y5

_[9]=x5y4

_[10]=x4y4

_[11]=x3y4

_[12]=x2y4

_[13]=xy4

_[14]=y4

_[15]=x5y3

_[16]=x4y3

_[17]=x3y3

_[18]=x2y3

_[19]=xy3

_[20]=y3

_[21]=x6y2

_[22]=x5y2

_[23]=x4y2

_[24]=x3y2

_[25]=x2y2

_[26]=xy2

_[27]=y2

_[28]=x6y

_[29]=x5y

_[30]=x4y

_[31]=x3y

_[32]=x2y

_[33]=xy

_[34]=y
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_[35]=x6

_[36]=x5

_[37]=x4

_[38]=x3

_[39]=x2

_[40]=x

_[41]=1

A.1.3 Method 3: integraࢢon.
In [23, Theorem 7.36], Mourrain and Elkadi set the background for an algorithm to

compute a k-basis of I⊥ where I ⊂ k[x1, . . . , xn]. We recall here Theorem 3.1.12,
where we adapted their results to the local case I ⊂ k[[x1, . . . , xn]]:

THEOREM A.1.7 (Theorem 3.1.12) Given an ideal I = (f1, . . . , fm) ⊂ R and d > 1. Let
{b1, . . . , btd−1} be a k-basis of Dd−1. The polynomials of Dd with no constant term are
of the form

Λ =
td−1∑
j=1

λ1
j

∫
1
bj |y2=···=yn=0 +

td−1∑
j=1

λ2
j

∫
2
bj |y3=···=yn=0 + · · ·+

td−1∑
j=1

λn
j

∫
n

bj , (A.3)

where λk
j ∈ k, such that

s∑
j=1

λk
j (xl ◦ bj)−

s∑
j=1

λl
j(xk ◦ bj) = 0, 1 ≤ k < l ≤ n, (A.4)

and
(fi ◦ Λ) (0) = 0, for 1 ≤ i ≤ m. (A.5)

Translating [39, Algorithm 4.3] into the our local setting, we obtain an algorithm to
compute the k-basis of I⊥ along with its contraction matrices, see Definition 3.4.1. Ob-
serve that the following algorithm consists on the iteration of Algorithm 1 until we reach
the socle degree with some extra constrictions derived from the orthogonality condition.

In the Singular implementation of the algorithm, given an ideal I ⊂ R, the output
is a list of two elements: an ideal whose elements are a k-basis of I⊥ and a list of its
contraction matrices U1, . . . , Un.

> LIB ”GorensteinCovers.lib”;

> ring r=0,(x,y),ds;

> ideal i=x4,x2-y;

> list L=integrate(i);

//First element of the list:

//k-basis of the inverse system of I
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Algorithm 8 Compute a k-basis of I⊥ and its contraction matrices
Input: f1, . . . , fm generators of the ideal I of R.
Output: Dd = b1, . . . , bsd

k-basis of I⊥;
U1, . . . , Un contraction matrices of I⊥ associated to the k-basis D.

(i) Set d := 0, Dd := 1, sd := 1, test := true.
(ii) For 1 ≤ k ≤ n, set an 1× 1 matrix Uk[1] := [0] and anm× 1 matrix Ak[1] :=

[(f1◦yk)(0), . . . , (fm◦yk)(0)], whereUk[1] andAk[1] stand for the first column
of matrix Uk and Ak, respectively.

(iii) While test = true, do
a) Set λi := (λi

1 · · · λi
sd

)t, for any 1 ≤ i ≤ n. Solve the system of equations

Uk λl − Ul λk = 0 for any 1 ≤ k < l ≤ n;
Ak λk = 0 for any 1 ≤ k ≤ n.

(A.6)

b) Consider a system of generators H1, . . . ,Hm of the solutions of Equa-
tion (A.6).

c) For any Hi = [λ1, . . . , λn], 1 ≤ i ≤ m, define the associated polynomial

ΛHi =
n∑

k=1

 t∑
j=1

λk
j

∫
k

bj |yk+1=···=yn=0

 .

d) If ΛH1 /∈ ⟨Dd⟩k, then bsd+1 := ΛH1 and D := D, bsd+1. Repeat the
procedure for ΛH2 , . . . ,ΛHm

. If no new polynomials appear in this step,
set test := false.

e) Set sd+1 as the number of elements in D.
f) For any 1 ≤ k ≤ n, define sd+1×sd+1 matrices U ′

k andm×sd+1 matrices
A′

k. Set U
′
k[i] := Uk[i] and A′

k[i] := Ak[i] for 1 ≤ i ≤ sd.

g) For sd + 1 ≤ i ≤ sd+1, compute µi
j ∈ k such that xk ◦ bi =

sd∑
j=1

µi
jbj and

set

U ′
k[i] := [µi

1, · · · , µi
sd

], A′
k[i] := [

(
f1 ◦

∫
k

bi |yk+1=···=yn=0

)
(0), . . . ,

(
fm ◦

∫
k

bi |yk+1=···=yn=0

)
(0)].

h) Set d := d+ 1, Uk := U ′
k and Ak := A′

k.
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> L[1];

_[1]=1

_[2]=x

_[3]=y+x2

_[4]=xy+x3

//Second element of the list:

//list of contraction matrices.

> print(L[2][1]);

0,1,0,0,

0,0,1,0,

0,0,0,1,

0,0,0,0

> print(L[2][2]);

0,0,1,0,

0,0,0,1,

0,0,0,0,

0,0,0,0

A.1.4 Comparison of methods
Let us now compare the computation times of the previous algorithms.

EXAMPLE A.1.8 Let us compute the inverse system of I = (x4, x2y3 − xy5, y5 − xy).

> LIB ”GorensteinCovers.lib”;

> ring r=0,(x,y),ds;

> ideal i=x4,x2y3-xy5,y5-xy;

> kinvSystNC(i);

_[1]=1

_[2]=x

_[3]=x2

_[4]=x3

_[5]=y

_[6]=xy+y5

_[7]=y2

_[8]=xy2+y6

_[9]=y3

_[10]=xy3+y7

_[11]=y4

_[12]=xy4+y8

> inverseSystem(i);

_[1]=xy4+y8

_[2]=xy3+y7

_[3]=xy2+y6

_[4]=xy+y5

_[5]=y4

_[6]=y3

_[7]=y2

_[8]=y

_[9]=x3

_[10]=x2

_[11]=x

_[12]=1

> list L=integrate(i);

> L[1];

_[1]=1

_[2]=x

_[3]=y

_[4]=y2

_[5]=x2

_[6]=y3

_[7]=x3

_[8]=y4

_[9]=xy+y5

_[10]=xy2+y6

_[11]=xy3+y7
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_[12]=xy4+y8

> print(L[2][1]);

0,1,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0

> print(L[2][2]);

0,0,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,

0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,1,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,0,0,0,0,0

TABLE A.1 Computation times of the inverse system of I = (x4, x2y3 − xy5, y5 − xy).

Procedure time (ms)

invSystNC 0

inverseSystem 0

integrate 290

EXAMPLE A.1.9 Let us check the computation times of the inverse system of the mono-
mial ideal I = (x7, x6y3, x2y6, y7).

TABLE A.2 Computation times of the inverse system of I = (x7, x6y3, x2y6, y7).

Procedure time (ms)

invSystNC 20

inverseSystem 0

invSystMon 0

integrate 3810
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EXAMPLE A.1.10 Compute the inverse system of

I = (x3y, xz3t− zt2, x2t2, y5, z6, t3, x4)

and compare its computation times using different methods.

LIB ”GorensteinCovers.lib”;

ring r=0,(x,y,z,t),ds;

ideal i=x3y,xz3t-zt2,x2t2,

y5,z6,t3,x4;

hilb(std(i));

// 1 t^0

// -2 t^3

// -2 t^4

// 2 t^5

// -2 t^7

// 6 t^8

// -2 t^10

// -1 t^11

// 1 t^12

// -4 t^14

// 3 t^15

// 1 t^0

// 4 t^1

// 10 t^2

// 18 t^3

// 25 t^4

// 30 t^5

// 32 t^6

// 28 t^7

// 21 t^8

// 14 t^9

// 8 t^10

// 3 t^11

// dimension (local) = 0

// multiplicity = 194

TABLE A.3 Computation times of the inverse system of I = (x3y, xz3t−zt2, x2t2, y5, z6, t3, x4).

Procedure time (ms)

invSystNC 7530

inverseSystem 30

integrate 3274940

Let us perform a rough analysis of the arithmetic complexity of these methods to
understand better the experimental results we obtain. On one hand, Algorithm 8 has
been deeply studied by Mourrain in [39, Proposition 4.1]:
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PROPOSITION A.1.11 The total number of arithmetic operations in Algorithm 8 for com-
puting the inverse system I⊥ of an m-primary ideal I of R is bounded by

O
(
(n2 +m)t3 + n2mLt2

)
,

where n = dimR,m = µ(I), t = ℓ(R/I) and L =
(

n+s
n

)
is the number of monomials

of degree at most s, where s = socdeg(R/I).

On the other hand, observe that both Algorithm 5 and Algorithm 6 share the first step:
the computation of the socle degree s of R/I . In order to do so, it is required, at least,
to compute a standard basis of the ideal I . Mayr and Meyer established in [38] that the
complexity of the computation of standard basis is doubly exponential in the number of
variables in the worst key scenario. However, in this zero-dimensional scenario and the
degree-reverse lexicographical ordering, complexity can be reduced, see [25]. Quoting
[25]: ”In practice the computations are generally much faster and much feasible that with
any other ordering.”

For a thorough analysis of the complexity of Algorithm 5 and Algorithm 6 we should
look into their steps in detail. This is out of the scope of this appendix, but let us point
out what should be taken into account in each algorithm.

As for Algorithm 5, besides the computation of the socle degree of R/I , there is
a kernel computation the arithmetic complexity of which is bounded by O

(
mL3/2

)
,

using the notation from Proposition A.1.11. See [7, Section 2.3.1] for more details on
the number of operations.

Regarding Algorithm 6, the complexity is virtually the same complexity as comput-
ing the standard basis of the input ideal.

Finally, although the algorithm that appears to be faster in practice is Algorithm 6,
for our purposes of finding Gorenstein covers Algorithm 8 is more suitable because it
provides an adapted k-basis as outcome.

A.2 Computaࢢon of the integral of a module with
respect to an ideal

The computation of the integral of the inverse system with respect to a power of the
maximal ideal is a key step towards the study of the MGC(A) variety. The available
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methods to compute inverse systems also provide two essentially different algorithms to
compute

∫
mt I

⊥: the 2-duals formula and the integration method.
The 2-duals formula is based in the following result:

PROPOSITION A.2.1 (Proposiࢢon 3.1.2) LetM be a finitely generated sub-R-module of
S and letK be an ideal of R. Then∫

K

M =
(
KM⊥)⊥

. (A.7)

Observe that Proposition 3.1.2 gives a much more general formula that applies not
only to inverse systems and powers of maximal ideals:

> LIB ”GorensteinCovers.lib”;

> ring r=0,(x(1..3)),ds;

> ideal M=x(1)*x(2),x(3)^3;

> ideal K=x(1),x(2),x(3)^2;

> integral(K,M);

_[1]=x(1)^2

_[2]=x(1)*x(2)

_[3]=x(2)^2

_[4]=x(1)*x(3)^2

_[5]=x(2)*x(3)^2

_[6]=x(3)^5

On the other hand, the integration method allows us to avoid the computation of two
duals by using Algorithm 1, a generalization of Algorithm 8.

EXAMPLE A.2.2 Consider the sub-R-moduleM = ⟨y1y2, y
3
3⟩. To compute the integral∫

m
M in Singular using Equation (A.7) we choose the procedure integral in Goren-

steinCovers.lib:

> LIB ”GorensteinCovers.lib”;

> ring r=0,(x(1..3)),ds;

> ideal M=x(1)*x(2),x(3)^3;

> ideal K=maxideal(1);

> integral(K,M);

_[1]=x(1)^2
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_[2]=x(1)*x(2)

_[3]=x(2)^2

_[4]=x(1)*x(3)

_[5]=x(2)*x(3)

_[6]=x(3)^4

The integration method to compute
∫
mt I

⊥ is naturally used in a setting where we are
given the ideal I . Algorithm 1 requires as input both a k-basis of I⊥ and its associated
contraction matrices. Therefore, to compute

∫
m
M with this algorithm we need some ex-

tra steps. First, we need to retrieve I = AnnR(M). This computation can be performed
using procedure idealAnnNC in InverseSyst.lib, see [13]. Second, given I , integrate
provides the desired k-basis and matrices of I⊥. Then the procedure integrationStep
in GorensteinCovers.lib gives a k-basis and contraction matrices of

∫
m
I⊥.

// Compute the annihilator of M

// in R

> ideal I=idealAnnNC(M);

// Compute a k-basis of the inverse

// system of I and its corresponding

// contraction matrices

> list R=integrate(I);

//Use the previous output to

> list L=integrationStep(R[1],R[2]);

//k-basis of the integral

>L[1];

_[1]=1

_[2]=x(1)

_[3]=x(2)

_[4]=x(3)

_[5]=x(3)^2

_[6]=x(1)*x(2)

_[7]=x(3)^3

_[8]=x(3)^4

_[9]=x(2)*x(3)

_[10]=x(1)*x(3)

_[11]=x(2)^2

_[12]=x(1)^2

//Contraction matrices

print(L[2][1]);

0,1,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,1,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0

print(L[2][2]);

0,0,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,1,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,1,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0

print(L[2][3]);

0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0

//Adapted k-basis of L_{A,1}

>L[3];

_[1]=x(3)^4

_[2]=x(2)*x(3)

_[3]=x(1)*x(3)

_[4]=x(2)^2

_[5]=x(1)^2

TABLE A.4 Computation times of
∫
m

M .

Procedure time (ms)

integral 40

integrationStep 180

Besides computational complexity, in our context of computing minimal Gorenstein
covers of A = R/I , a relevant advantage of Algorithm 1 is that the output provides an
adapted k-basis of LA,t, see Definition 3.2.4.

A.3 Computaࢢon of minimal covers

The most relevant procedures are teterVariety and MGC2 that implement algorithms
Algorithm 2 and Algorithm 3 to provide the variety of minimal Gorenstein covers of
rings A with gcl(A) = 1 and gcl(A) = 2, respectively.

Nextwewill provide some detailed examples on how to study theGorenstein colength
of a given ring A = R/I .
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EXAMPLE A.3.1 [Teter ring] Let us compute the minimal Gorenstein cover variety of
A = R/I , where I = (x1x2, x1x3, x

2
2, x2x3, x

2
3, x

5
1).

> ring r=0,(x(1..3)),ds;

> ideal i=x(1)*x(2),x(1)*x(3),

x(2)^2,x(2)*x(3),x(3)^2,x(1)^5;

> hilb(std(i));

// 1 t^0

// -5 t^2

// 6 t^3

// -2 t^4

// -1 t^5

// 2 t^6

// -1 t^7

// 1 t^0

// 3 t^1

// 1 t^2

// 1 t^3

// 1 t^4

// dimension (local) = 0

// multiplicity = 7

> cmType(i);

3

Observe that it is a stretched algebra (see Appendix B), hence gcl(A) = embd(A)−
τ(A) + 1 = 3− 3 + 1 = 1 by Proposition 5.1.2. We check anyway whether gcl(A) = 1
with procedure isTeter:

> isTeter(i);

1

Since gcl(A) = 1, we can compute the Teter variety of A:

ideal a=teterVariety(i);

Dimension of the projective space where the Teter variety lies:

5

Ideal of non-Teter covers:

a(2)^2*a(6)-a(1)*a(4)*a(6)

Polynomial H defining Teter covers:

a(6)*x(1)^5+a(5)*x(1)*x(2)+a(4)*x(2)^2+a(3)*x(1)*x(3)

+a(2)*x(2)*x(3)+a(1)*x(3)^2

Therefore,MGC(A) = P5
k\V+(a2

2a6−a1a4a6) and each point (a1 : a2 : a3 : a4 : a5 :
a6) ∈MGC(A) is identified with a polynomial

H = a1y
5
3 + a2y2y3 + a3y1y3 + a4y

2
2 + a5y1y2 + a6y

5
1 .
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Hence each minimal Gorenstein cover of A is of the form G = R/AnnR H , where H
satisfies a2

2a6 − a1a4a6 ̸= 0.

EXAMPLE A.3.2 [Ring of Gorenstein colength 2] Let us compute the minimal Gorenstein
cover variety of A = R/I , where I = (x2

1, x1x
3
2, x

5
2).

> LIB ”GorensteinCovers.lib”;

> ring r=0,(x,y),ds;

> ideal i=x2,xy3,y5;

> hilb(std(i));

// 1 t^0

// -1 t^2

// -1 t^4

// 1 t^6

// 1 t^0

// 2 t^1

// 2 t^2

// 2 t^3

// 1 t^4

// dimension (local) = 0

// multiplicity = 8

> isTeter(i);

2

Since gcl(R/I) > 1, now let us study the setMGC2:

> def a,c,D,b=MGC2(i);

A first test is whether V+(b)\V+(d̂) is empty or not.

> quotient(b,D);

_[1]=b(4)

Since V+(b)\V+(d̂) = V+(b4), it is possible that V+(b)\V+(d̂) ̸= ∅. Let us do an
extra step to understand whereMGC2(A) lies:

> ring s=basering; //To be able to retrieve ideals b,D afterwards

> setring r;

> def D,H=candidate(i);

> D*H;

_[1,1]=b(3)*x(2)^6+b(2)*x(1)*x(2)^4+a(1)*x(2)^5+a(2)*x(1)*x(2)^3

+b(4)*x(1)^3+b(1)*x(1)^2*x(2)+a(3)*x(1)^2

The points in MGC2(A) have coordinates (a1 : a2 : a3 : b1 : b2 : b3 : b4) and are
identified with polynomials of the form

H = a1y
5
2 + a2y1y

3
2 + a3y

2
1 + b1y

2
1y2 + b2y1y

4
2 + b3y

6
2 + b4y

3
1
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with some restrictions on the coefficients. HenceMGC2(A) ⊂ P6
k. Observe that, since

b4 = 0 inMGC2(A), we will be able to reduce by 1 the dimension whereMGC2(A) is
embedded.

Next we need to study V+(b)\V+(d̂):

> setring s;

> b;

b[1]=b(3)*b(4)

b[2]=b(2)*b(4)

> D;

D[1]=b(3)*b(4)

D[2]=b(2)*b(4)

D[3]=b(2)^6*b(3)^2

D[4]=b(2)^7*b(3)

D[5]=b(1)*b(2)^6*b(3)

D[6]=b(2)^8

D[7]=b(1)*b(2)^7

D[8]=a(1)*b(2)^7-a(2)*b(2)^6*b(3)

D[9]=b(1)^2*b(2)^6

D[10]=a(2)*b(1)*b(2)^6-a(3)*b(2)^7

D[11]=a(1)*b(1)*b(2)^6

-a(3)*b(2)^6*b(3)

//Primary decomposition of b

> primdecGTZ(b);

[1]:

[1]: //primary component

_[1]=b(4)

[2]: //radical ideal

_[1]=b(4)

[2]:

[1]: //primary component

_[1]=b(3)

_[2]=b(2)

[2]: //radical ideal

_[1]=b(3)

_[2]=b(2)

> radical(D);

_[1]=b(2)

_[2]=b(3)*b(4)

Since b = (b4) ∩ (b2, b3), then

V+(b) = V+(b4) ∪ V+(b2, b3),

hence the setMGC2(A) is

V+(b4) ∪ V+(b2, b3)\V+(b2, b3b4) = V+(b4)\V+(b2, b3b4) ≃ P5
k\V+(b2).

To sumup, gcl(A) = 2 and itsminimalGorenstein covers are ringsG = R/AnnR H ,
where

H = a1y
5
2 + a2y1y

3
2 + a3y

2
1 + b1y

2
1y2 + b2y1y

4
2 + b3y

6
2

with b2 ̸= 0. H is identified with the point (a1 : a2 : a3 : b1 : b2 : b3) in P5
k\V+(b2).
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Observe that if b3 = 0, the Hilbert function associated to G is {1, 2, 2, 2, 2, 1}. Oth-
erwise, if b3 ̸= 0, then HFG = {1, 2, 2, 2, 1, 1, 1}.

EXAMPLE A.3.3 [Ring of higher colength] Let us compute the minimal Gorenstein cover
variety of I = (x3

1, x
2
1x2, x1x

2
2, x

4
2).

> ring r=0,(x,y),ds;

> ideal i=x3,x2y,xy2,y4;

> hilb(std(i));

// 1 t^0

// -3 t^3

// 1 t^4

// 1 t^5

// 1 t^0

// 2 t^1

// 3 t^2

// 1 t^3

// dimension (local) = 0

// multiplicity = 7

> isTeter(i);

2

> def a,c,D,b=MGC2(i);

> quotient(b,D);

_[1]=1

Since V+(b)\V+(d̂) = V+(1) = ∅, then MGC2 = ∅. Therefore, gcl(A) > 2.
To compute both its Gorenstein colength and its minimal Gorenstein covers we need to
another approach. Since A = R/I is a codimension two ideal, we can apply tools from
Section 4.2.

A.4 Commands
We end this appendix by providing a list of the main procedures contained inGoren-

steinCovers.lib, together with a brief description of its usage.

INVERSE SYSTEMS

kinvSystNC(ideal I)

Computes inverse system of the ideal I. Returns:

[1] k-basis of the inverse system of I (ideal K).

inverseSystem(ideal I)

Computes inverse system of the ideal I. Returns:

[1] k-basis of the inverse system of I (ideal K).
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invSystMon(ideal I)

Computes inverse system of the ideal I. Returns:

[1] k-basis of the inverse system of I (ideal K).

OR -1 if the ring is not monomial.

integrate(ideal I)

Computes inverse system of the ideal I and its contraction matrices using

the integration method. Returns a list R with:

[1] R[1]=k-basis of the inverse system of I (ideal D),

[2] R[2]=list of contraction matrices of the inverse system (list LU, matrices U).

INTEGRAL OF A MODULE WITH RESPECT TO AN IDEAL

integral(ideal K,ideal M)

Computes the integral of the module M with respect to the ideal K. Returns:

[1] sub-R-module of S (treated as ideal).

integrationStep(ideal D,list LU)

Computes the integral of the sub-R-module M of S with respect to the maximal

ideal of R. The input is a k-basis of M (treated as ideal b) and the contraction

matrices (list of matrices LU) associated to this k-basis. Returns a list L with:

[1] L[1]=k-basis of the integral (sub-R-module of S, treated as ideal D),

[2] L[2]=list of contraction matrices of the integral (list LU of matrices U)

associated to k-basis L[1].

[3] L[3]=adapted k-basis of the quotient of the integral by the inverse system.

MINIMAL GORENSTEIN COVERS VARIETIES

isTeter(ideal I)

Checks wheter a ring A=R/I is Teter or not. Returns:

[1] integer

* 0, if gcl(A)=0;

* 1, if gcl(A)=1;

* 2, if gcl(A)>1.

teterVariety(ideal I)
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A.4. Commands

Given a Teter ring A=R/I, computes its Teter variety. Returns:

[1] an integer h-1

[2] an ideal a such that MGC(A)=P^(h-1)\V_+(a)

MGC2(ideal id)

Given a ring A=R/I with gcl(A)>1, computes MGC_2(A). Returns:

[1] ideal a,

[2] ideal c,

[3] ideal D,

[4] ideal b

such that MGC_2=V_+(b)\V_+(D), pi_1(V_+(c))=V_+(b),

pi_1(V_+(c)\cap V_+(a))=V_+(D).
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APPENDIX B

Stretched and almost stretched
algebras

This appendix intends to provide a summary on structure theorems for stretched and
almost stretched Artin k-algebras. Knowing the exact expressions of such rings has been
particularly useful in Chapter 5 to determine the Gorenstein colength of some rings, see
Section 5.1.1, or to study the unicity of the Hilbert functions of minimal Gorenstein
covers of A, see Section 5.2.

Sally already proved in [42] that the analytic type of a stretched algebra A = R/I

is determined by its Cohen-Macaulay type. Elias and Valla provide in [21] a complete
structure theorem for the generators of the defining ideal I of each analytic type with
HFA = {1, n, 1, . . . , 1}.

Regarding almost stretched algebras, Elias and I provide in [15] a complete analytic
classification of all Gorenstein such algebras, extending results from [21] and [22].

B.1 Basic noࢢons
Let us start by defining stretched and almost stretched rings.

DEFINITION B.1.1 Let A = R/I be a local Artin ring with maximal ideal n, embd(A) =
dimR = n and socle degree s ≥ 2. We say that A is stretched if n2 is a principal ideal.

Recall that µ
(
n2) = dimk n2/n3 = HFA(2), thus the Hilbert function of a stretched

ring A is completely determined by its embedding dimension n and its socle degree s:

187



Appendix B. Stretched and almost stretched algebras

HFA(i) =



1, if i = 0;

n, if i = 1;

1, if i = 2, . . . , s;

0, if i ≥ s+ 1.

DEFINITION B.1.2 Let A = R/I be a local Artin ring with maximal ideal n, embd(A) =
dimR = n and socle degree s ≥ 2. We say thatA is almost stretched if n2 is minimally
generated by two elements.

Therefore, ifA is almost stretched, thenHFA(2) = 2. In addition, ifA is Gorenstein,
then s ≥ 3 and HFA(s) = 1. In this case, the Hilbert function is

HFA(i) =



1, if i = 0;

n, if i = 1;

2, if i = 2, . . . , t;

1, if i = t+ 1, . . . , s;

0, if i ≥ s+ 1;

for some 2 ≤ t < s.

DEFINITION B.1.3 If an algebra has this Hilbert function we say that it is of type (s, t).
We say that a pair (s, t), 3 ≤ t + 1 ≤ s, is regular if there is not an integer r such
2(r + 1) = s− t+ 1.

Since both structure theorems in [21] and [15] classify rings in terms of their analytic
type, let us now provide a precise definition of what it means.

DEFINITION B.1.4 Consider two k-algebras Ai = k[[x1, . . . xn]]/Ii, for i = 1, 2. We say
that φ : A1 −→ A2 is an analytic k-algebra morphism if

(i) φ|k = Id, and
(ii) φ is a ring morphism.

Note that giving an analytic morphism of Artin k-algebras is equivalent to giving a
substitution of variables by polynomials.
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DEFINITION B.1.5 Consider a k-algebra morphism φ : A1 −→ A2. We say that φ is
an analytic k-algebra isomorphism if exists a morphism ψ : A2 −→ A1 such that
φ ◦ ψ = IdA2 and ψ ◦ φ = IdA1 . This will be denoted by A1 ∼=φ A2.

Observe that an analytic isomorphism is precisely a change of coordinates.

DEFINITION B.1.6 We say that two Artin k-algebras A1 and A2 have the same analytic
type if there exists an analytic k-algebra isomorphism between A1 and A2.

Therefore, A1 and A2 have the same analytic type if and only if they only differ by
a change of coordinates.

B.2 Structure theorem for Arࢢnian local stretched
rings

We reproduce here the structure theorem for generators of the defining ideal I of A
depending on their analytic type:

THEOREM B.2.1 [21, 3.1] Let A = R/I be a local Artin of socle degree s, embd(A) =
dimR = n and char(k) = 0. Let τ := τ(A) be the Cohen-Macaulay type of A.

(i) 1 ≤ τ ≤ n.
(ii) If τ < n, then we can find a basis {x1, . . . , xn} of m such that I is minimally

generated by the elements

{xixj}1≤i<j≤n, {x2
j}2≤j≤τ and {x2

i − uix
s
1}τ+1≤i≤n,

where ui ∈ R∗.
(iii) If τ = n, then we can find a basis {x1, . . . , xn} of m such that I is minimally

generated by the elements

{xixj}1≤i<j≤n, {x1xj}2≤j≤n and xs+1
1 .
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B.3 Analyࢢc classificaࢢon of GAAS algebras
In this section we reproduce the key result obtained in [15]. The aim of the paper is to

provide a complete analytic classification of Gorenstein Artin almost stretched algebras
over a zero characteristic field k, called GAAS for short.

In [22] Elias andValla give a complete characterization of the analytic types ofGoren-
stein Artin almost stretched algebras under the assumption s ≥ 2t. For a general pair
(t, s), s ≥ 2t, there are finitely many analytic types and for some special pairs (s, t)
there are finitely many analytic types plus finitely many of one-dimensional families of
analytic types.

To remove the restriction on the type of A, the techniques considered are Grauert’s
division theorem (see Theorem 1.5.12), the multivariate Hensel’s lemma and the resolu-
tion process of a zero-dimensional scheme.

DEFINITION B.3.1 [15, Definition 2.2] For all s ≥ t + 1 we denote by Js,t the ideal
generated by

xixj , 1 ≤ i < j ≤ n, (i, j) ̸= (1, 2); x2
j − xs

1, 3 ≤ j ≤ n; xt
1x2.

Given w ∈ R, for all integer 0 ≤ q ≤ t− 1 we denote by Iq,w the ideal of R generated
by Js,t and x2

2−x
q+1
1 x2−wxs−t+1

1 ; I∞ is the ideal generated by Js,t and x2
2−xs−t+1

1 .

THEOREMB.3.2 [15, Theorem 4.9] LetA = R/I be a Gorenstein Artin almost stretched
algebra of type (s, t) with 3 ≤ t+ 1 ≤ s.
If (s, t) is regular or s ≥ 3t−1, then I is isomorphic to one and only one of the following
ideals:

I0,1; I1,1; . . . ; Imin{t−1,s−t−1},1 = I∞.

Assume that (s, t) is non-regular and s ≤ 3t−2. Let r be the integer such that s−t+1 =
2(r + 1).
If r = 0, then I is isomorphic to one and only one of the following t ideals:

I0,1; I0,−1/4; I0,−1/4+xd
1
, d = 1, · · · , t− 2.
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If 1 ≤ r ≤ (t− 2)/2, then the different isomorphism classes of I are

I0,1; · · · ; Ir−1,1; Ir+1,1; . . . ; Imin{t−1,s−t},1 = I∞, and

(i) Ir,a; Ir,a+xd
1
, d = 1, · · · , r, if a ̸= 0, −1

4 ,
−(r+1)

2(t+r+1) ,
(ii) Ir, −1

4
; Ir, −1

4 +xd
1
, d = 1, · · · , t− r − 2,

(iii) I
r,

−(r+1)
2(t+r+1)

; I
r,

−(r+1)
2(t+r+1) +xd

1
, d = 1, · · · , r − 1.

If r ≥ (t− 1)/2, then I is isomorphic to one and only one of the following ideals:

I0,1; . . . ; Ir−1,1; {Ir,a}a∈k∗ ; {Ir,a+x1}a∈k∗ ; . . . ; {Ir,a+xt−r−2
1

}a∈k∗ ;

Ir+1,1; . . . ; Imin{t−1,s−t},1 = I∞.

REMARK B.3.3 The algebraically closed condition on k is used in [15, Proposition 2.3]
because to prove that certain ideals have the same analytic type we need to ensure the
existence of square roots.

Notice that the first case for which there is a continuous moduli is (s, t) = (7, 4), i.e.
a non-regular case with r = 1 and s ≤ 2t− 1:

EXAMPLE B.3.4 [15, Example 4.10] Let us consider the non-regular case (s, t) = (7, 4),
i.e. r = 1 and s ≤ 2t−1. Notice that this case is not covered by [22] because s ≤ 2t−1.
The analytic types are are defined by the ideals

I0,1; I2,1; I3,1; I1,a, a ̸= 0; I1,a+x1 , a ̸= 0, −1
6
.

Notice that the continuous moduli are parametrized by k− {0} and k− {0,−1/6}.

EXAMPLE B.3.5 Let us consider the regular case (s, t) = (5, 3). This case is not covered
by [22] because s ≤ 2t− 1. The analytic types are are defined by two ideals: I0,1, I1,1.

If n = 2, which corresponds to the Hilbert function {1, 2, 2, 2, 1, 1}, then there are
the following two possible ideals:

I0,1 = (x3y, y2 − xy − x3), I1,1 = (x3y, y2 − x2y − x3).
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APPENDIX C

Varieࢢes of minimal Gorenstein
covers

In this appendixwe list the varieties ofminimalGorenstein covers of all analytic types
of k-algebras of low Gorenstein colength that appear in Poonen’s classification, see [40].
This means that we provide an explicit description for anyMGC(A) for gcl(A) = 1, 2
and ℓ(A) ≤ 6. We assume char(k) = 0 for the sake of simplicity.

For every representative A = R/I of an analytic type, we give the general form
of a polynomial H in LA,t, with t = 1, 2, and the expression of MGC(A). By Theo-
rem 3.3.2, G = R/AnnR H is a minimal Gorenstein cover of A if and only if [H] in
MGC(A), by taking the coefficients ofH as coordinates inMGC(A).

All the computations are done using our implementation of Algorithm 2 and Algo-
rithm 3 in Singular, using library GorensteinCovers.lib, see Appendix A.

C.1 Teter varieࢢes
Let us describe the variety of minimal Gorenstein cover for any Teter ring A with

ℓ(A) ≤ 6.

Case 2 of ℓ(A) = 3: H = a3y
2
1 + a2y1y2 + a1y

2
2 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a2

2 − a1a3).

Case 3 of ℓ(A) = 4: H = a3y
3
1 + a2y1y2 + a1y

2
2 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a1a3).
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Case 4 of ℓ(A) = 4: H = a6y
2
1 + a5y1y2 + a4y

2
2 + a3y1y3 + a2y2y3 + a1y

2
3 ∈ LA,1,

(a1 : · · · : a6) ∈MGC(A) = P5
k\V+(a2

3a4 − 2a2a3a5 + a1a
2
5 + a2

2a6 − a1a4a6).

Case 3 of ℓ(A) = 5: H = a1y
4
2 + a3y

2
1 + a2y1y2 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a1a3).

Case 4 of ℓ(A) = 5: H = a3y
3
1 + a1y

3
2 + a2y1y2 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a1a3).

Case 5 of ℓ(A) = 5: H = a1y1y
2
2 + a2y

3
2 + a3y

2
1 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a1).

Case 8 of ℓ(A) = 5: H = a6y
3
1 + a5y1y2 + a4y

2
2 + a3y1y3 + a2y2y3 + a1y

2
3 ∈ LA,1,

(a1 : a2 : a3 : a4 : a5 : a6) ∈MGC(A) = P5
k\V+(a2

2a6 − a1a4a6).

Case 9 of ℓ(A) = 5: H = a10y
2
1 +a9y1y2 +a8y

2
2 +a7y1y3 +a6y2y3 +a5y

2
3 +a4y1y4 +

a3y2y4 + a2y3y4 + a1y
2
4 ∈ LA,1,

(a1 : · · · : a10) ∈MGC(A) = P9
k\V+(a),

where the ideal a is generated by

a(4)^2*a(6)^2-2*a(3)*a(4)*a(6)*a(7)+a(3)^2*a(7)^2-a(4)^2*a(5)*a(8)

+2*a(2)*a(4)*a(7)*a(8)-a(1)*a(7)^2*a(8)+2*a(3)*a(4)*a(5)*a(9)-2*a(2)*a(4)*a(6)*a(9)

-2*a(2)*a(3)*a(7)*a(9)+2*a(1)*a(6)*a(7)*a(9)+a(2)^2*a(9)^2-a(1)*a(5)*a(9)^2

-a(3)^2*a(5)*a(10)+2*a(2)*a(3)*a(6)*a(10)-a(1)*a(6)^2*a(10)

-a(2)^2*a(8)*a(10)+a(1)*a(5)*a(8)*a(10)

Case 3 of ℓ(A) = 6: H = a3y
5
1 + a2y1y2 + a1y

2
2 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a1a3).
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Case 6 of ℓ(A) = 6: H = a1y
4
2 + a3y

3
1 + a2y1y2 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a1a3).

Case 8 of ℓ(A) = 6: H = a1y
4
2 − a1y

2
1y2 + a2y1y

2
2 + a3y

3
2 ∈ LA,1,

(a1 : a2 : a3) ∈MGC(A) = P2
k\V+(a1).

Case 12 of ℓ(A) = 6: H = a6y
4
1 + a5y1y2 + a4y

2
2 + a3y1y3 + a2y2y3 + a1y

2
3 ∈ LA,1,

(a1 : a2 : a3 : a4 : a5 : a6) ∈MGC(A) = P5
k\V+(a2

2a6 − a1a4a6).

Case 19 of ℓ(A) = 6: H = a6y
2
1 + a5y1y2 + a4y

2
2 + a3y1y3 + a2y

3
3 + a1y2y

2
3 ∈ LA,1,

(a1 : a2 : a3 : a4 : a5 : a6) ∈MGC(A) = P5
k\V+(a1a6).

Case 20 of ℓ(A) = 6: H = a4y
3
2 + a1y

3
3 + a6y

2
1 + a5y1y2 + a3y1y3 + a2y2y3 ∈ LA,1,

(a1 : a2 : a3 : a4 : a5 : a6) ∈MGC(A) = P5
k\V+(a1a4a6).

See Example 3.5.1.

Case 24 of ℓ(A) = 6: H = a1y
2
4 + a2y3y4 + a3y2y4 + a4y1y4 + a5y

2
3 + a6y2y3 +

a7y1y3 + a8y
2
2 + a9y1y2 + a10y

3
1 ∈ LA,1,

(a1 : · · · : a10) ∈MGC(A) = P9
k\V+(a),

where a = (a2
3a5a10 − 2a2a3a6a10 + a1a

2
6a10 + a2

2a8a10 − a1a5a8a10).

Case 25 of ℓ(A) = 6: H = a1y
2
5+a2y4y5+a3y3y5+a4y2y5+a5y1y5+a6y

2
4+a7y3y4+

a8y2y4 + a9y1y4+ a10y
2
3 + a11y2y3 + a12y1y3 + a13y

2
2 + a14y1y2 + a15y

2
1 ∈ LA,1,

(a1 : · · · : a15) ∈MGC(A) = P14
k \V+(a),

where the ideal a is generated by:

a(5)^2*a(8)^2*a(10)-2*a(4)*a(5)*a(8)*a(9)*a(10)+a(4)^2*a(9)^2*a(10)

-2*a(5)^2*a(7)*a(8)*a(11)+2*a(4)*a(5)*a(7)*a(9)*a(11)+2*a(3)*a(5)*a(8)*a(9)*a(11)
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-2*a(3)*a(4)*a(9)^2*a(11+a(5)^2*a(6)*a(11)^2-2*a(2)*a(5)*a(9)*a(11)^2

+a(1)*a(9)^2*a(11)^2+2*a(4)*a(5)*a(7)*a(8)*a(12)-2*a(3)*a(5)*a(8)^2*a(12)

-2*a(4)^2*a(7)*a(9)*a(12)+2*a(3)*a(4)*a(8)*a(9)*a(12)-2*a(4)*a(5)*a(6)*a(11)*a(12)

+2*a(2)*a(5)*a(8)*a(11)*a(12)+2*a(2)*a(4)*a(9)*a(11)*a(12)-2*a(1)*a(8)*a(9)*a(11)*a(12

+a(4)^2*a(6)*a(12)^2-2*a(2)*a(4)*a(8)*a(12)^2+a(1)*a(8)^2*a(12)^2+a(5)^2*a(7)^2*a(13)

-2*a(3)*a(5)*a(7)*a(9)*a(13)+a(3)^2*a(9)^2*a(13)-a(5)^2*a(6)*a(10)*a(13)

+2*a(2)*a(5)*a(9)*a(10)*a(13)-a(1)*a(9)^2*a(10)*a(13)+2*a(3)*a(5)*a(6)*a(12)*a(13)

-2*a(2)*a(5)*a(7)*a(12)*a(13)-2*a(2)*a(3)*a(9)*a(12)*a(13)+2*a(1)*a(7)*a(9)*a(12)*a(13)

+a(2)^2*a(12)^2*a(13)-a(1)*a(6)*a(12)^2*a(13)-2*a(4)*a(5)*a(7)^2*a(14)

+2*a(3)*a(5)*a(7)*a(8)*a(14)+2*a(3)*a(4)*a(7)*a(9)*a(14)-2*a(3)^2*a(8)*a(9)*a(14)

+2*a(4)*a(5)*a(6)*a(10)*a(14)-2*a(2)*a(5)*a(8)*a(10)*a(14)-2*a(2)*a(4)*a(9)*a(10)*a(14)

+2*a(1)*a(8)*a(9)*a(10)*a(14)-2*a(3)*a(5)*a(6)*a(11)*a(14)+2*a(2)*a(5)*a(7)*a(11)*a(14)

+2*a(2)*a(3)*a(9)*a(11)*a(14)-2*a(1)*a(7)*a(9)*a(11)*a(14)-2*a(3)*a(4)*a(6)*a(12)*a(14)

+2*a(2)*a(4)*a(7)*a(12)*a(14)+2*a(2)*a(3)*a(8)*a(12)*a(14)-2*a(1)*a(7)*a(8)*a(12)*a(14)

-2*a(2)^2*a(11)*a(12)*a(14)+2*a(1)*a(6)*a(11)*a(12)*a(14)+a(3)^2*a(6)*a(14)^2

-2*a(2)*a(3)*a(7)*a(14)^2+a(1)*a(7)^2*a(14)^2+a(2)^2*a(10)*a(14)^2-a(1)*a(6)*a(10)*a(14)^2

+a(4)^2*a(7)^2*a(15)-2*a(3)*a(4)*a(7)*a(8)*a(15)+a(3)^2*a(8)^2*a(15)-a(4)^2*a(6)*a(10)*a(15)

+2*a(2)*a(4)*a(8)*a(10)*a(15)-a(1)*a(8)^2*a(10)*a(15)+2*a(3)*a(4)*a(6)*a(11)*a(15)

-2*a(2)*a(4)*a(7)*a(11)*a(15)-2*a(2)*a(3)*a(8)*a(11)*a(15)+2*a(1)*a(7)*a(8)*a(11)*a(15)

+a(2)^2*a(11)^2*a(15)-a(1)*a(6)*a(11)^2*a(15)-a(3)^2*a(6)*a(13)*a(15)

+2*a(2)*a(3)*a(7)*a(13)*a(15)-a(1)*a(7)^2*a(13)*a(15)-a(2)^2*a(10)*a(13)*a(15)

+a(1)*a(6)*a(10)*a(13)*a(15)

C.2 Gorenstein colength 2
In this section, we study the variety of minimal Gorenstein cover for any ring A of

Gorenstein colength 2 with ℓ(A) ≤ 6.
Recall that minimal Gorenstein covers of Teter rings have a unique Hilbert func-

tion, see Theorem 2.0.4, but in Gorenstein colength 2 we cannot deduce unicity from
Theorem 2.2.5. As a side effect of the computation of LA,2 and MGC(A), we obtain
information on the possible Hilbert functions of any minimal Gorenstein cover G =
R/AnnR H of A. The socle degree of any minimal Gorenstein cover G cannot be
higher than the degree of any polynomial in LA,2. In particular, for anyH ∈MGC(A),
socdegR/AnnR H = degH .

Along withMGC(A), we also provide all possible Hilbert functions of any minimal
Gorenstein cover. Note that in some cases, MGC(A) has a too long description to be
included here, hence we only give the generic form of a polynomialH in LA,2.

Case 7 of ℓ(A) = 5: H = a1y
2
3 + a2y1y3 + a3y

2
2 + a4y1y2 + a5y

2
1 + b3y

2
2y3 + b5y

3
3 +
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b6y2y
2
3 + b9y

3
2 , (a1 : a2 : a3 : a4 : a5 : b3 : b5 : b6 : b9) ∈MGC(A),

MGC(A) = V+(b3b6 − b5b9)\ (V+(a5) ∪ V+(d)) ⊂ P8,

where d = (b2
5b9 − b3

6, b3b5 − b2
6, b

2
3 − b6b9).

If [H] ∈ MGC(A), then b3, b5, b6, b9 do not vanish simultaneously, hence socdegG =
3. Unique Hilbert function for any minimal Gorenstein cover G: HFG = {1, 3, 2, 1}.
See Example 3.5.2.

Case 7 of ℓ(A) = 6: H = b3y
5
2 + b2y1y

3
2 + a1y

4
2 + b1y

2
1y2 + a2y1y

2
2 + a3y

2
1 ,

(a1 : a2 : a3 : b1 : b2 : b3) ∈MGA(A) = P5
k\V+(b2

2 − b1b3).

If b3 ̸= 0, then degH = 5. Otherwise, if b3 = 0, then b2 ̸= 0 and degH = 4. There-
fore, minimal Gorenstein coversG can have one of the following two Hilbert functions:
HFG = {1, 2, 2, 2, 1} and HFG = {1, 2, 2, 1, 1}. See Example 2.1.9.

Case 11 of ℓ(A) = 6: H = a1y
2
3 +a2y2y3 +a3y1y3 +a4y

2
2 +a5y1y2 +b3y1y

2
3 +b5y

3
3 +

b6y
2
1y3 − b10y

4
1 , (a1 : a2 : a3 : a4 : a5 : b3 : b5 : b6 : b10) ∈MGC(A),

MGC(A) = V+(b2
3 − b5b6 + b3b10)\ (V+(a4) ∪ V+(b10) ∪ V+(b3, b5)) ⊂ P8.

If [H] ∈MGC(A), then b10 ̸= 0, hence socdegR/AnnR H = 4. Unique Hilbert func-
tion for any minimal Gorenstein cover G: HFG = {1, 3, 2, 1, 1}. See Example 3.5.3.

Case 13 of ℓ(A) = 6: H = a5y
3
1 +b9y

2
1y2+b5y1y

2
2 +b7y1y

2
2−b8y

3
2 +b5y

2
1y3+a4y1y2+

a3y1y3 + a2y2y3 + a1y
2
3 , (a1 : a2 : a3 : a4 : a5 : b5 : b7 : b8 : b9) ∈MGC(A),

MGC(A) = V+(b5b7 + b2
7 + b8b9)\V+(d) ⊂ P8,

where d = (b5b8, b
4
7b8 + 3b2

7b
2
8b9 + 2b3

8b
2
9, b

6
5 − b6

7 + 7b2
7b

2
8b

2
9 + 6b3

8b
3
9).

If [H] ∈ MGC(A), then b5, b7, b8, b9 do not vanish simultaneously, hence socdegG =
3. Unique Hilbert function for any minimal Gorenstein cover G: HFG = {1, 3, 3, 1}.

Case 14 of ℓ(A) = 6: H = a1y
2
3 + a2y2y3 + a3y1y3 + a4y1y2 + b1y1y2y3− b2(y2

2y3 +
y3

2) + b3y2y
2
3 + b4y

3
3 + b5(y2

2y3− y1y
2
2 − y2

1y3 + y3
2) + b6(y2

2y3 + y2y
2
3 + y1y

2
3 + y3

2) +
b7(y1y

2
2 − y3

1) − b8y
3
2 + b9(y3

2 − y2
1y2) − b10y

3
1 ∈ LA,2. Since degH ≤ 3 for any

H ∈ LA,2, then socdegG ≤ 3 and there is a unique Hilbert function for any minimal
cover: HF = {1, 3, 3, 1}.
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Appendix C. Varieties of minimal Gorenstein covers

Case 15 of ℓ(A) = 6: H = a5y
3
1 + b8y

3
2 + b2y

2
2y3 + b6y2y

2
3 + b4y

3
3 + a4y1y2 + a3y

2
2 +

a2y1y3 + a1y
2
3 , (a1 : a2 : a3 : a4 : a5 : b2 : b4 : b6 : b8) ∈MGC(A),

MGC(A) = V+(b2b6 − b4b8)\ (V+(a5) ∪ V+(d)) ⊂ P8,

where d = (−b3
6 + b2

4b8, b2b6 − b4b8, b2b4 − b2
6, b

2
2 − b6b8).

If [H] ∈ MGC(A), then a5 ̸= 0 and hence socdegG = 3. Unique Hilbert function for
any minimal Gorenstein cover G: HFG = {1, 3, 3, 1}.

Case 16 of ℓ(A) = 6: H = a1y
2
3 + a2y2y3 + a3y1y3 + a4y1y2 + b1y1y2y3 + b2(y1y

2
2 +

y1y
2
3) + b3y2y

2
3 + b4y

3
3 − b5(y3

3 + y2
1y3) + b6(y2

2y3 + y3
3) + b7(y1y

2
2 − y3

1) − b8y
3
2 +

b9(y3
2−y2

1y2)− b10y
3
1 ∈ LA,2. Since degH ≤ 3 for anyH ∈ LA,2, then socdegG ≤ 3

and there is a unique Hilbert function for any minimal cover: HF = {1, 3, 3, 1}.

Case 17 of ℓ(A) = 6: H = a1y
2
3 + a2y2y3 + a3y1y2 + a4y

2
1 + b1(y2

1y3 + y1y2y3 −
y1y

2
2)− b2y

3
2 + b3y2y

2
3 + b4y

3
3 + b5(y3

3 + y1y
2
2 + y1y

2
3) + b6(y2

2y3 + y3
3) + +b7y

2
1y2 +

b8y1y
2
2 − b9y

3
2 + b10y

3
1 ∈ LA,2 Since degH ≤ 3 for anyH ∈ LA,2, then socdegG ≤ 3

and there is a unique Hilbert function for any minimal cover: HF = {1, 3, 3, 1}.

Case 18 of ℓ(A) = 6: H = b1y
2
1y3+b2y1y2y3+b3y

2
2y3+b4y

3
3 +a1y

2
3 +a2y

2
2 +a3y1y2+

a4y
2
1 ,

(a1 : a2 : a3 : a4 : b1 : b2 : b3 : b4) ∈MGC(A) = P7\V+(b2
2 − b1b3).

If [H] ∈ MGC(A), then b1, b2, b3 do not vanish simultaneously, hence socdegG = 3.
Unique Hilbert function for any minimal Gorenstein cover G: HFG = {1, 3, 3, 1}. See
Example 3.5.4.

Case 23 of ℓ(A) = 6: H = b16y
3
3 +b6y

2
3y4 +b10y3y

2
4 +b9y

3
4 +a9y

2
1 +a8y1y2 +a7y

2
2 +

a6y1y3 + a5y2y3 + a4y
2
3 + a3y1y4 + a2y2y4 + a1y

2
4 , (a1 : · · · : a9 : b6 : b9 : b10 :

b16) ∈MGC(A),

MGC(A) = V+(b6b10 − b9b16)\ (V+(d1) ∪ V+(d2)) ⊂ P12,

where d1 = (a7a9 − a2
8) and d2 = (b2

9b16 − b3
10, b6b9 − b2

10, b
2
6 − b10b16). If [H] is

in MGC(A), then b6, b9, b10, b16 do not vanish simultaneously, hence socdegG = 3.
Unique Hilbert function for any minimal Gorenstein cover G: HFG = {1, 4, 3, 1}. See
Example 3.5.5.
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i-primitive, 55

admissible vector, 82
almost stretched algebra, 188
analytic type, 46, 189
Artin ring, 1
associated graded ring, 4

basis
adapted k-basis, 66
enhanced standard, 18
Gröbner, 19
reduced, 20
standard, 17

Buchberger criterion, 20

canonical Hilbert-Burch matrix, 99,
114

canonical module, 2
Cohen-Macaulay type, 2
complete intersection, 3, 8
continuous dual space, 12
contraction

matrix, 73

structure, 10

degree matrix, 100

ecart, 104
embedding dimension, 5, 46

Gorenstein
Q-decomposition, 7
almost, 23
Artin, 4
colength, 9
cover, 9
low colength, 23
minimal cover, 9, 26
minimal monomial cover, 151

Grauert division theorem, 19

Hilbert function, 4
in codimension 2, 8
of an Artin Gorenstein ring, 6
of an Artin ring, 5

initial
form, 17
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Index

ideal, 17
injective

dimension, 3
hull, 3, 11

integral of a module, 53, 73
integration method, 58

Koszul resolution, 40

leading
coefficient, 18
term, 18
term ideal, 18

lex-segment ideal, 95

Macaulay
coefficients, 5
duality, 11, 15
inverse system, 11
representation, 5

Matlis
dual, 10
duality, 10

monomial ideals, 99, 151
multi-index, 10

normal form, 20

order
local degree ordering, 18
of a series, 17

orthogonal of an ideal, 14

S-polynomial, 20
Schreyer theorem, 22
self-dual ideal, xiv, 23, 38
shell formula, 7, 45
socle

degree, 1
ideal, 2

stretched algebra, 135, 187
support, 18
syzygies

lifting of, 22

tail, 18
Teter

condition, 23, 38
rings, xiv, 23
variety, xvi, 76

variety of minimal Gorenstein covers,
72
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