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ABSTRACT The intermittency of the instantaneous concentration of a turbulent chemical plume is a 
fundamental cue for estimating the chemical source distance using chemical sensors. Such estimate is useful 
in applications such as environmental monitoring or localization of fugitive gas emissions by mobile robots 
or sensor networks. However, the inherent low-pass filtering of metal oxide (MOX) gas sensors—typically 
used in odor-guided robots and dense sensor networks due to their low cost, weight and size—hinders the 
quantification of concentration intermittency. In this paper, we design a digital differentiator to invert the 
low-pass dynamics of the sensor response, thus obtaining a much faster signal from which the concentration 
intermittency can be effectively computed. Using a fast photo-ionization detector as a reference instrument, 
we demonstrate that the filtered signal is a good approximation of the instantaneous concentration in a real 
turbulent plume. We then extract transient features from the filtered signal—the so-called “bouts”—to predict 
the chemical source distance, focusing on the optimization of the filter parameters and the noise threshold to 
make the predictions robust against changing wind conditions. This represents an advantage over previous 
bout-based models which require wind measurements—typically taken with expensive and bulky 
anemometers—to produce accurate predictions. The proposed methodology is demonstrated in a wind tunnel 
scenario where a MOX sensor is placed at various distances downwind of an emitting chemical source and 
the wind speed varies in the range 10-34 cm/s. The results demonstrate that models optimized with our 
methodology can provide accurate source distance predictions at different wind speeds.  

INDEX TERMS Gas detectors, Chemical sensors, Signal processing, Machine learning, Time series 
analysis

I. INTRODUCTION 
The detection of intermittent gas patches is key for rapid gas 
source localization (GSL) in turbulent environments where 
the “chemical plume” is a collection of gas patches rather 
than a continuous trail [1], [2]. In turbulent conditions, the 
instantaneous concentration is highly fluctuating and 
chaotic, and smooth concentration gradients that could be 
exploited by a mobile agent to reach the gas source are only 
observed after long time-averaging (on the order of 5-10 
minutes [3]). It is known that some flying insects such as the 
male moth—which are excellent plume trackers—rely on the 
frequency of “odor hits” to efficiently navigate along 
turbulent plumes to find distant mates or food [4]. An odor 
hit is declared when the measured concentration (typically of 

pheromone) exceeds the limit of detection of the olfactory 
receptor [1]. Inspired by these animals, researchers have 
developed reactive plume tracking algorithms for mobile 
robots to autonomously localize explosives, drugs or gas 
leaks [5]. The limited success of these algorithms is often 
attributed to the slow response time of the metal oxide 
(MOX) gas sensors these robots are typically equipped with 
due to their commercial availability, low cost, high 
sensitivity to many gases and ease of use [6], [7].  

Detecting odor hits with a MOX sensor is very challenging 
due to the low bandwidth of this technology (< 0.1 Hz [1]) 
as compared to the bandwidth of chemical plumes (several 
KHz [8]). Fig. 1 illustrates this problem. As can be observed, 
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the sensor output (gray trace) cannot follow the fast 
concentration fluctuations produced by strong turbulent 
wind (blue trace). It is clear that comparing the raw sensor 
output to a fixed threshold to detect individual odor hits [2], 
[9]–[13] will not be effective. The response time of a MOX 
sensor can be improved by different techniques: using novel 
coatings, modulating the sensor temperature, combining the 
response of multiple sensors hosted in independent gas 
chambers or post-processing the sensor signals. Signal 
processing methods are convenient because they can be 
directly applied to commercial sensors without changing the 
recommended operating mode and without adding extra 
components that would increase the cost and weight of the 
system. For example, if we assume that the dynamics of the 
MOX sensor can be modelled as “leaky integration” of the 
instantaneous concentration [21], a simple way to recover the 
(fast) stimulus from the slow response is to compute the 
smoothed derivative of the signal. Smoothing is necessary 
because differentiation degrades the signal-to-noise ratio 
(SNR) [22]. According to Schmuker et al. [23], the rising 
edges of the smoothed derivative—the so-called “bouts”—are 
features that can be caused by individual odor filaments of the 
plume, so they could be potentially used to detect odor hits. 
 

FIGURE 1.  Illustration of the slow dynamics of a MOX gas sensor 
exposed to a turbulent plume. Data was captured in an open environment 
where a MOX sensor (gray trace) and a fast Photo-Ionization Detector 
with a bandwidth of 330 Hz (blue trace) were placed close to each other 
in the centerline of a turbulent plume (See more details in Section III-A). 
 

However, it is hard to validate that the detected bouts 
correspond to true odor hits because these are very difficult to 
observe or quantify. A proxy for such validation is the 
prediction error obtained when the detected bouts are used to 
predict the distance to the chemical source. If the detected 
bouts correspond to true odor hits, the source distance shall be 
estimated with high accuracy, according to previous 
experiments carried out with fast photo-ionization detectors 
[17]. Accordingly, Schmuker et al. [23] used this proxy to 
validate their algorithm in a wind tunnel scenario where a 
MOX sensor was placed in the centerline of a turbulent plume 
at different distances (range 25-145 cm) to a chemical source. 
Under a constant emission rate and wind speed, a linear 
regression model relating the bout count during three minutes 

and the source distance yielded a root mean squared error in 
cross-validation (RMSECV) of only 18 cm.  

Based on these results, they claim that the number of bouts 
detected in a certain time interval is an accurate indicator of 
the source distance. However, these values were not 
benchmarked against traditional source proximity estimators, 
such as the mean or variance of the response [24], which may 
also perform well considering the long measurement windows 
(3 minutes). Additionally, when experiments were repeated at 
a higher wind speed, the parameters of the bout-based models 
changed considerably. This sensitivity to the wind speed 
implies that models trained at a certain wind speed are only 
accurate when the wind speed during future operation of the 
system is the same as in training, an unrealistic assumption in 
most scenarios. Although incorporating wind measurements 
into the predictive models could partially solve this issue, it 
limits the practical applicability of the algorithm because 
anemometers are expensive and heavy instruments that cannot 
be installed in robots with limited payload and are useless in 
indoor environments due to weak airflow.  

 To obtain low prediction errors, low-amplitude bouts that 
may be produced by noise or by insufficient smoothing of the 
derivative must be filtered out. For that, Schmuker et al. used 
a noise threshold (𝑏𝑏thr) computed as the mean plus three 
standard deviations of the amplitude of bouts detected in the 
sensor baseline (i.e., in the absence of gas). This rule of thumb, 
known as the three-sigma rule [25], says that 99.73% of the 
data in a normal distribution lie within three standard 
deviations from the mean, so it is empirically used by 
Schmuker et al. to treat 99.73% as near certainty that all bouts 
detected in the absence of gas will be filtered out. In other 
words, it is a way to minimize the number of false positives. It 
should be noted that this way of estimating the noise threshold 
implicitly assumes that (i) the bout amplitudes in the sensor 
baseline are normally distributed, (ii) a false positive (FP) is 
more important than a false negative (FN), and (iii) the 
measurement noise is additive.  

The first assumption (normality) is questionable because 
the bout amplitude is strictly positive by definition [23]. 
Indeed, in a previous work [26] we empirically observed that 
the amplitudes of bouts detected in the sensor baseline are not 
normally distributed. The second assumption (FPs are more 
important than FNs) arises when the cut-off threshold of a 
binary classifier is estimated using exclusively data from the 
null hypothesis. If we were able to observe the distribution of 
bout amplitudes at different distances of the chemical source 
(Fig. 2), we would observe that the overlapping between the 
alternative hypothesis (presence of gas) and the null 
hypothesis (absence of gas) increases as the sensor moves 
away from the source. Far from the source, when gas 
concentration is very low, the amplitudes of the detected bouts 
are similar to the amplitudes of bouts detected in clean air. In 
this situation, it is very important to set the threshold of the 
detector as low as possible to increase the sensitivity of the 
system (i.e., to correctly identify low-amplitude bouts truly 
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produced by the plume). A threshold determined solely from 
the null hypothesis, such as the three-sigma threshold, can 
achieve very high specificity (low number of FPs) at the cost 
of reduced sensitivity (high number of FNs). Regarding the 
third assumption (additive noise), we shall be aware that 
electronic noise can be additive but other sources of noise that 
also affect the sensor signal (e.g., chemo-transduction noise) 
usually depend on the chemical concentration [27]. This 
means that the noise level in clean air may not be 
representative of the noise level during gas exposure. 

 

FIGURE 2.  Simulated distributions of the bout amplitude in clean air (null 
hypothesis, blue curve) and at different distances to an emitting gas 
source (alternative hypothesis, red and yellow curves). The figure shows 
that the number of false negatives increase with distance to the source 
whereas the number of false positives remain constant. The distributions 
were generated using a log-normal function 𝒍𝒍𝒍𝒍(𝑿𝑿) ~ 𝑵𝑵(𝝁𝝁,𝝈𝝈𝟐𝟐) with 𝝁𝝁=0 
(blue curve), 𝝁𝝁=4 (red curve), 𝝁𝝁=5 (yellow curve) and 𝝈𝝈𝟐𝟐 = 𝟏𝟏 (all cases). 
 

In this paper, we propose an optimization method for the 
parameters of the bout detection algorithm (smoothing factor 
and noise threshold) that instead of relying on unrealistic 
assumptions such as constant wind speed or normal 
distribution of the bout amplitudes, performs a multivariate 
grid search by varying all parameters simultaneously. The goal 
is to find the combination of parameters and predictive models 
(linear and non-linear) that provide the lowest prediction 
errors across different wind speeds. We then benchmark the 
results of the optimum bout-based models against the mean, 
maximum and variance of the response, and also against other 
bout-based features, such as the mean bout amplitude [29]. 
 
II. THE BOUT COMPUTATION ALGORITHM 
To compute the bouts of a signal, Schmuker et al. [23] propose 
the signal processing pipeline (Equations 1-5 in [23]) 
illustrated in Fig. 3.  
 

FIGURE 3.  Flow diagram of the bout detection algorithm proposed by 
Schmuker et al. [23]. The meaning of each symbol is given in the text. 
 
The sensor response 𝑥𝑥 is first smoothed using a Gaussian low-
pass filter [28] (with standard deviation 𝜎𝜎𝑠𝑠 s) to remove high-
frequency noise. The smoothed response (𝑥𝑥𝑠𝑠) goes through an 

𝐸𝐸𝐸𝐸𝐸𝐸𝛼𝛼 filter (with half-life time 𝜏𝜏ℎ s) that produces the 
smoothed derivative (𝑥𝑥𝑠𝑠′) where the bouts are computed.  

A.  THE 𝑬𝑬𝑬𝑬𝑬𝑬𝜶𝜶 DIGITAL FILTER 
The 𝐸𝐸𝐸𝐸𝐸𝐸𝛼𝛼 digital filter [21] is an approximation for a linear 
inverse filter of the dynamics of the MOX sensor response. At 
time 𝑡𝑡 = 𝑛𝑛𝑇𝑇s, (being 𝑇𝑇s the sampling interval) the output of 
the filter 𝑦𝑦[𝑛𝑛] is found by computing 

 
where 𝑥𝑥[𝑛𝑛] is the sensor response at time 𝑡𝑡 = 𝑛𝑛𝑇𝑇s, 𝑦𝑦[𝑛𝑛 − 1] 
is the previous output of the filter, and 𝛼𝛼 is the smoothing 
factor (0 < 𝛼𝛼 ≤ 1). The 𝐸𝐸𝐸𝐸𝐸𝐸𝛼𝛼 filter can be seen as the 
concatenation of two operations: first, taking the derivative of 
the input signal, i.e. (𝑥𝑥[𝑛𝑛] − 𝑥𝑥[𝑛𝑛 − 1]); second, smoothing the 
derivative using an exponentially weighted moving average 
(EWMA) filter [29]. The smoothing factor 𝛼𝛼 governs a trade-
off between response time and SNR. As 𝛼𝛼 increases, the closer 
is the filtered signal to the derivative and the faster is the 
response. However, being close to the derivative means also 
higher noise. A meaningful way to specify 𝛼𝛼 is by the half-life 
time (s), 𝜏𝜏ℎ, of the exponential decay, which is the time at 
which the exponential weight (1 − 𝛼𝛼)𝑘𝑘 decays by one half 

𝛼𝛼 = 1 − �
1
2�

1
𝜏𝜏h∙𝑓𝑓s

 

 
(2) 

 
where 𝜏𝜏ℎ is the half-life time (s) and 𝑓𝑓𝑠𝑠 is the sampling 
frequency of 𝑥𝑥 (Hz).  

B.  THE DETECTION OF BOUTS 
The bouts are the rising edges of the smoothed derivative, 𝑥𝑥𝑠𝑠′ , 
which are delimited by two consecutive zero-crossings of the 
positive derivative of 𝑥𝑥𝑠𝑠′ , i.e. 𝑥𝑥𝑠𝑠′′ > 0. A bout is characterized 
by two parameters: amplitude and duration. The amplitude of 
a bout is defined as 𝑥𝑥𝑠𝑠′  at the end of the respective bout segment 
minus 𝑥𝑥𝑠𝑠′  at the start of the same bout segment. The duration 
of a bout is defined as 𝑡𝑡 at the end of the respective bout 
segment minus 𝑡𝑡 at the start of the same bout segment. To 
remove low-amplitude bouts produced by noise, Schmuker et 
al. define the amplitude threshold 

 
where 𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation, 
respectively, of the amplitudes of bouts detected in the sensor 
baseline (i.e. in clean air) since these are surely produced by 
noise. All bouts with amplitude lower than 𝑏𝑏thr are thus 
removed. If the underlying distribution follows a Gaussian 
shape, this threshold guarantees a specificity 99.73%. 

C.  OPTIMIZATION OF THE ALGORITHM PARAMETERS  
The bout algorithm has three parameters to optimize (𝜎𝜎𝑠𝑠, 𝜏𝜏ℎ 
and 𝑏𝑏thr). The first two parameters (𝜎𝜎𝑠𝑠 and 𝜏𝜏ℎ) are coupled and 

𝑦𝑦[𝑛𝑛] = (1 − 𝛼𝛼) ∙ 𝑦𝑦[𝑛𝑛 − 1] + 𝛼𝛼 ∙ (𝑥𝑥[𝑛𝑛] − 𝑥𝑥[𝑛𝑛 − 1]) (1) 

𝑏𝑏thr = 𝜇𝜇 + 3𝜎𝜎  (3) 
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they control the smoothness of the filtered signal. Schmuker et 
al. studied the influence of these two parameters on the 
relationship between the bout count and the source distance 
assuming that 𝑏𝑏thr defined by (3) is an optimum threshold. 
They found that small values of 𝜎𝜎𝑠𝑠 and 𝜏𝜏ℎ (i.e., high bandwidth 
of the derivative filter) resolve better the short bouts 
encountered close to the source but fail to resolve the long 
bouts that occur further away, leading to a convex relationship 
between bout count and source distance. On the other hand, 
high smoothing (i.e. low-pass filtering) produces a concave 
behavior in which the sensitivity, i.e. the slope of the 
regression, is high far from the source and small near the 
source. They concluded that 𝜎𝜎𝑠𝑠 = 0.3 s and 𝜏𝜏ℎ = 0.4 s are 
optimum values in their experimental dataset but no specific 
methodology to compute these values was provided. After the 
values of these two parameters are fixed, the value of the third 
parameter (𝑏𝑏thr) is computed through (3), which is not optimal 
due to the reasons mentioned in the introductory section.  
 

 
 
 

 

 

 

 

 

 

 

FIGURE 4.  Sketch of the proposed optimization method. The bout 
frequency is computed at several downwind distances using different 
algorithm parameters (red and black crosses) leading to different 
functional relationships between the bout frequency and the source 
distance (red and black curves). The best model is the one that minimizes 
the prediction error in external validation samples (open circles). 
 

To overcome these problems, we propose a specific 
methodology to optimize the bout algorithm parameters, 
sketched in Fig. 4. First, the bout frequency is computed at 
different distances to the source using different combinations 
of 𝜎𝜎𝑠𝑠, 𝜏𝜏ℎ and 𝑏𝑏thr. The bout frequency (bouts/minute) is 
simply the number of bouts detected in a certain time interval 
divided by the length of such interval. For each parameter 
combination, the model (linear or non-linear) that bests fit the 
functional relationship between bout frequency (dependent 
variable) and source distance (independent variable) is 
selected via cross-validation (CV). In CV, a portion of the data 
is used to fit the models and the remaining data is used to 
evaluate the performance of the model in predicting samples 
not seen during model training. The goodness of the models is 
determined by the root mean squared error (RMSE) 

 

RMSE = �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 
(4) 

 
where 𝑦𝑦�𝑖𝑖 is the distance (m) predicted by the model, 𝑦𝑦𝑖𝑖  is 

the true distance (m) and 𝑛𝑛 is the number of validation 
samples. The performance of the model for different 
combinations of parameters can be assessed by computing the 
RMSE in external validation samples (RMSEP), which are 
samples reserved exclusively for validation purposes (i.e., 
excluded from model fitting and optimization). Thus, the 
classification problem is converted into a regression problem 
that only requires knowing the distance at which measurement 
were taken. 

 
III. EXPERIMENTAL 
We used two experimental datasets in this work: (i) the open 
environment dataset [30] and (ii) the wind tunnel dataset [31]. 
The first one contains a small set of measurements performed 
with a MOX sensor and a fast Photo-Ionization Detector (PID) 
in an open environment. We use it to verify that the smoothed 
derivative of the MOX sensor response can be a good 
approximation of ground truth (PID signal). The second 
dataset contains a large collection of measurements performed 
with multiple MOX sensors (no PID in this case) inside a small 
wind tunnel. This comprehensive dataset, which is the same 
used by Schmuker et al. in their experiments, is used to test the 
proposed optimization of the bout detection algorithm. Data 
analysis was performed using Python (version 3.6.2) and the 
scikit-learn package (version 0.19.1) [32]. Some graphics 
were generated using MATLAB R2019a (The Mathworks, 
Nattick, USA). 

A.  OPEN ENVIRONMENT DATASET 
A turbulent plume is generated in an open environment by 
passing an air flow stream over a beaker filled with ethanol 
(Fig. 5). A custom sensing board containing a naked (i.e., 
without cap) MOX sensor (TGS 2602, Figaro Engineering, 
Japan) and a fast PID (miniPID 201A, Aurora Scientific, 
Canada) with a bandwidth of 330 Hz were placed in the 
centerline of the plume at 105 cm distance to the gas source. 

FIGURE 5. Generator of turbulent plumes in an open environment. A 
pressurized air outlet (6.3 mm radius, 20 L/min) placed 50 cm behind a 
beaker (5 cm radius) filled with 200 mL of ethanol created the plume. A 
custom sensing board containing a naked MOX sensor and a fast Photo-
Ionization Detector was placed in the centerline of the plume, at 105 cm 
of distance to the gas source.  
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To ensure that both sensors are exposed to the same gas flow, 
the MOX sensor is hosted inside a miniaturized gas chamber 
(volume of 0.325 mL) and the inlet of the PID is connected to 
the exhaust port of the gas chamber (see more details in [30]). 
The PID is used both as reference device and to draw the 
sample inside the gas chamber (it has a pump with a flow rate 
of 1 L/min). The heater of the MOX sensor is powered at 5 V 
and the sensor output is acquired during 5 minutes at a 
sampling frequency of 1 kHz using a voltage divider (𝑅𝑅L = 10 
kΩ) and a USB-6002 datalogger (National Instruments, USA). 
The PID output was sampled also at 1 kHz.  

The smoothed derivative is computed through the 
convolution of the sensor response and a low-pass 
differentiator filter.  For simplicity, this filter is defined as the 
convolution of a derivative kernel of the form [1, -1] and a 
moving average filter with a window size of 20 ms. 

B.  WIND TUNNEL DATASET 
The wind tunnel dataset [31] contains recordings from nine 
gas sensor arrays exposed to turbulent gas mixtures inside a 
small wind tunnel. We used a portion of this dataset 
corresponding to the measurements acquired by the gas sensor 
array #5 (placed in the plume centerline). Figure 6 shows a 
simplified schematic of the wind tunnel. Turbulent gas plumes 
of different gases were created by injecting pressurized gas 
into one end of the tunnel and dragging it with an exhaust fan 
from the other end of the tunnel. Different wind speeds (range 
10-34 cm/s) were created by varying the rotational speed of 
the exhaust fan. The sensor array–which contains 8 MOX 
sensors–was sequentially placed at five downwind distances 
to the gas source (range 25 - 145 cm). Each sensor array 
integrates eight MOX sensors (Several TGS models: 2600 
(2x), 2602 (1x), 2610 (1x), 2611 (1x), 2612 (1x) and 2620 
(2x), from Figaro Engineering Inc.) operated at the same, 
constant heater voltage (range 4.0-6.0 V). The sensor response 
was measured with a voltage divider (10 kΩ load resistor) and 
sampled with a 12-bit ADC. 
 

FIGURE 6.  Schematic representation of the wind tunnel (2.5 m x 1.25 m). 
The five downwind measuring locations used in this work are indicated 
by black squares. A chemical plume has been outlined for illustration 
purposes (the actual plume might differ from that).  
 

A total of 900 distinct experiments were performed by 
varying the distance to source (6 possible), gas (10 possible), 
sensor temperature (5 possible) and wind speed (3 possible). 
Each experiment was repeated 20 times. In each experiment, 
the following procedure was performed: (i) Measure the 
baseline response of the sensors for 20 s in the absence of gas, 

(ii) Release the selected gas for 3 minutes, (iii) Circulate clean 
air for 1 minute to record the sensor recovery and (iv) Purge 
the wind tunnel by setting the fan at maximum speed. Even 
though the gas release started at time 𝑡𝑡 = 20 s, the recorded 
signals show a transient behavior between 𝑡𝑡 = 30 s and 𝑡𝑡 = 90 
s because the gas requires some time to travel through the 
tunnel. The time to reach a stable mean response depends on 
the distance to the source (sensors closer to the source stabilize 
faster) and the wind speed (signals stabilize faster in 
experiments performed at high wind speeds). A common time 
frame where all signals are stable is 𝑡𝑡 = [100, 200] s. We 
denote this period as the “stable gas release”. 

We use the following data from the wind tunnel dataset: 
board #5 (located in the plume centerline), sensor #4 (TGS 
2600), heater voltage of 6.0 V and Acetaldehyde gas. We 
selected the same board used by Schmuker et al. in their 
experiments to compare our results to their results. The choice 
of sensor, heater voltage and gas were arbitrary, and analyzing 
the influence of these parameters in the results is out of the 
scope of this study. For the selected configuration, sensor 
recordings are available at 6 distances, 3 wind speeds and 20 
trials per distance/wind combination (360 experiments). To 
find the optimum parameters of the algorithm, the bouts of the 
360 experiments are extracted using different values of 𝜎𝜎𝑠𝑠, 𝜏𝜏ℎ 
and 𝑏𝑏thr. We perform a grid search: 𝜎𝜎𝑠𝑠 = {0.05, 0.3, 1.6} s, 
𝜏𝜏ℎ = {0.05, 0.4, 1.6} s and 𝑏𝑏thr = {𝜇𝜇 + 𝜎𝜎, 𝜇𝜇 + 3𝜎𝜎, 𝜇𝜇 +
5𝜎𝜎} , where the center values of each parameter match those 
used by Schmuker et al.  

For each combination of these parameters (27 possible) and 
wind speeds (3 possible), we select the model that best fits the 
relationship between bout frequency and distance to the 
source, using a cross-validation scheme on the bouts extracted 
from the stable gas release period of the first 10 trials. Due to 
the limited number of values of the independent variable (6 
distances), we use simple models such as linear, polynomial 
(up to order 3) and single-term exponential. The optimum 
models are then used to predict the distance to the source from 
the bouts extracted in the last 10 trials (unseen during model 
fitting/optimization). 
 
IV. RESULTS AND DISCUSSION 
We first visualize the signals in the open environment dataset 
and then proceed to analyze in detail the wind tunnel dataset. 

A.  OPEN ENVIRONMENT DATASET 
Fig. 7 shows the frequency response of the low-pass 
differentiator filter described in Section III-A. As can be 
observed, the derivative is computed only at low frequencies 
(cut-off frequency of approximately 20 Hz) while high-
frequency noise is attenuated. The result of filtering the MOX 
signal with this filter is shown in Fig. 8. The smoothed 
derivative is a much better reconstruction of ground truth, 
effectively improving the response time of the sensor.  
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FIGURE 7. Frequency response of the low pass differentiator filter used 
to process the MOX sensor signal in the open environment dataset. The 
response of an ideal differentiator is displayed as a reference. 

 

 

FIGURE 8. Comparison between the dynamics of the MOX sensor, the 
PID and the smoothed derivative of the MOX signal in the open 
environment dataset. The sensor and the PID were placed at 105 cm 
distance of the gas source. The figure illustrates that the smoothed 
derivative can follow the fluctuations of the instantaneous concentration. 

B.  WIND TUNNEL DATASET 
The signals recorded in the plume centerline (Fig. 9) are 
characterized by a stable plateau concentration, due to gas 
accumulation within the wind tunnel, modulated by some 
fluctuations due to turbulence. The wind speed has a strong 
influence on the mean intensity and fluctuations of the signals, 
with lower wind speeds yielding signals with higher intensity 
and variability (remember that the wind speed is related to the 
ventilation efficiency of the tunnel).  
 

FIGURE 9.  Raw signals captured by sensor #4 (TGS 2600) of board #5 
(plume centerline) in trial #1 at different downwind distances (coded by 
line transparency) and wind speed (coded by line color). The figure 
shows how the m ean amplitude and variability of the signals decrease 
with increasing downwind distance and wind speed. 

The mean and standard deviation of the sensor signals are two 
straightforward features that can be used to predict the source 
distance. However, predictive models built using these 
features exhibit undesirable properties such as non-
monotonicity and low sensitivity far from the source (Fig. 10), 
leading to relatively high RMSEP values of 21-28 cm. In the 
case of the mean response, these errors are partly produced by 
the non-monotonic behavior observed in the mean response at 
𝒅𝒅 = 𝟓𝟓𝟓𝟓 cm. This anomalous behaviour could be related to the 
high variance of the wind speed at that location (see Fig. 3b in 
[31]) probably owing to the geometry of the wind tunnel and 
the location of the exhaust fan. In the case of the standard 
deviation, the high scattering among different trials seems to 
indicate that a 3-minute measurement window may be too 
short to obtain a reliable estimate of this feature in the type of 
plume generated in the wind tunnel.  
 

FIGURE 10.  Mean and standard deviation of the response of sensor #4 
(board #5) at different downwind distances and wind speeds (color-
coded). The solid lines represent the optimum model for the fitting 
samples (trials 1-10, solid circles), whereas the RMSEP (see legend) is 
computed on the external validation samples (trials 11-20, open circles). 

 

FIGURE 11. Frequency response of the low pass differentiator filters 
used to process the MOX sensor signal in the wind tunnel dataset. The 
filter with default parameters is highlighted. The response of an ideal 
differentiator is displayed as a reference. 

Based on this first analysis, it seems that the mean and the 
standard deviation of the response are not reliable features for 
predicting the distance to the source and this motivates 
studying whether bout-based features can improve the results. 
The frequency response of the low-pass differentiator filters 
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obtained with different combinations of 𝜎𝜎𝑠𝑠 and 𝜏𝜏ℎ are shown 
in Fig. 11. As can be seen, the shape of the filter is mostly 
governed by 𝜎𝜎𝑠𝑠 whereas the effect of 𝜏𝜏ℎ is to change the cut-
off frequency. For example, for a fixed value of 𝜏𝜏ℎ filters with 
higher 𝜎𝜎𝑠𝑠 attenuate faster the signal (narrower transition band). 
The impact of 𝜏𝜏ℎ in the frequency response increases with 
decreasing values of 𝜎𝜎𝑠𝑠. For instance, at 𝜎𝜎𝑠𝑠 = 1.6 s filters with 
different values of 𝜏𝜏ℎ are quite similar whereas the differences 
are much larger at 𝜎𝜎𝑠𝑠 = 0.05 s. The combination 𝜎𝜎𝑠𝑠 = 0.3 s 
and 𝜏𝜏ℎ = 0.4 s (optimum according to Schmuker et al.) 
produces a filter with a moderate transition band and a cut-off 
frequency of approximately 0.5 Hz.  

Examples of filtered signals at different distances to the 
source using this combination of parameters are shown in Fig. 
12. The first thing that can be observed is that differentiation 
removed the plateau previously observed in the raw signals of 
Fig. 9. The amplitude and frequency of the detected bouts 
decrease with increasing distance to the source or increasing 
wind speed. As the sensor moves away from the source, the 
signals become weaker and low-amplitude bouts comparable 
to those detected in the sensor baseline become more frequent. 
At a certain distance, it will be hard to distinguish bouts 
induced by the plume from those produced by noise. 

 
 

 

 

 

 

 

 

 

 

 

 
FIGURE 12.  𝑬𝑬𝑬𝑬𝑬𝑬𝜶𝜶-filtered signals (𝝈𝝈𝒔𝒔 = 𝟎𝟎.𝟑𝟑 s, 𝝉𝝉𝒉𝒉 = 𝟎𝟎.𝟒𝟒 s) during the 
stable gas exposure of the first trial of various distance/wind 
combinations (indicated above each subplot). All detected bouts (𝒃𝒃𝐭𝐭𝐭𝐭𝐭𝐭 =
𝟎𝟎) are marked in red.  

 
The bout frequency (BF) computed with 𝒃𝒃𝒕𝒕𝒕𝒕𝒕𝒕=μ+3σ 

produces a quasi-linear behaviour across the studied distance 
range and wind speeds (Fig. 13). The RMSEP decreases with 
increasing wind speed and is always lower than the one 
obtained for the mean and standard deviation of the response 
(Fig. 10). This is probably related to the fact that the variance 
of the wind speed in the wind tunnel decreases with increasing 

rotational speed of the exhaust fan (see Fig. 3 in [25]). 
Although the obtained RMSEP values may seem sufficiently 
small, it should be remained that they only represent the 
performance of the system when training and test wind speed 
is the same. From the graphic it is obvious that the prediction 
error will increase if, for example, the model is trained at 10 
cm/s (red line) and tested at 34 cm/s (blue samples).  

On the other hand, the mean bout amplitude (MBA) shows 
an exponentially increasing behavior at every wind speed (Fig. 
13). The RMSEP increases with increasing wind speed due to 
the very low sensitivity of the exponential models far from the 
source. Interestingly, at the lowest wind speed the MBA 
provides the lowest RMSEP across all studied features (10 
cm). We also found that the MBA is less sensitive to the value 
of 𝑏𝑏thr than the BF, which degrades its behaviour if 𝑏𝑏thr is 
either too low or too high. It should be noted that the BF counts 
bouts in a similar manner regardless of their amplitude, so that 
a high-amplitude bout produced by the plume is as important 
as a low-amplitude bout produced by noise and not properly 
filtered out. On the other hand, the MBA increases in 
proportion to the amplitude of each detected bout, so the 
negative effect of low-amplitude bouts is diluted. 
 

FIGURE 13.  Bout frequency and mean bout amplitude computed on 
sensor #4 (board #5) at different downwind distances and wind speeds 
(color-coded). The bout algorithm parameters were 𝝈𝝈𝒔𝒔 = 𝟎𝟎.𝟑𝟑 s, 𝝉𝝉𝒉𝒉 = 𝟎𝟎.𝟒𝟒 s 
and 𝒃𝒃𝐭𝐭𝐭𝐭𝐭𝐭 = 𝝁𝝁 + 𝟑𝟑𝝈𝝈. The solid lines represent the optimum model for the 
fitting samples (trials 1-10), whereas the RMSEP (see legend) is computed 
on external validation samples (trials 11-20).  

 

 

 

 
 
 
 
 
 
 

FIGURE 14.  Histogram of bout amplitudes (sensor #4, board #5, 𝝈𝝈𝒔𝒔 =
𝟎𝟎.𝟑𝟑 s, 𝝉𝝉𝒉𝒉 = 𝟎𝟎.𝟒𝟒 s) in clean air (red) and at various downwind distances 
(blue, green, yellow) of an active chemical source. Wind speed is 34 cm/s. 
The figure illustrates the high overlapping between the histograms 
obtained at different distances. The y-axis is in logarithmic units. The 
μ+3σ and 99.7% thresholds correspond to bout amplitudes of 0.06 and 
0.11 𝐌𝐌𝐌𝐌, respectively. 
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1) IS THREE-SIGMA AN OPTIMUM THRESHOLD?  
The μ+3σ threshold implicitly assumes that the amplitudes of 
the bouts detected in the sensor baseline follow a Gaussian 
distribution. This is obviously not correct because the bout 
amplitude is a random variable bounded from zero (Fig. 14). 
Resultingly, the μ+3σ threshold represents a 98.1% percentile 
in this dataset, instead of the 99.87% corresponding to a 
normal distribution. This is, approximately 1.9% (instead of 
0.13%) of the bouts detected in clean air will be incorrectly 
declared as “true” bouts. One could be tempted to increase the 
threshold to reach the 99.87 percentile and keep a low number 
of false alarms; however, this will reduce the sensitivity of the 
detector (increase the false negative rate) because the positive 
and negative classes are highly overlapped (especially at high 
wind speeds and distant downwind measuring locations).  
 
2) GRID-SEARCH OPTIMIZATION OF ALGORITHM 
PARAMETERS  
We performed a multivariate optimization of the three 
algorithm parameters (σs, τh and bthr) by varying all of them 
simultaneously. We found that if the threshold is set too low 
(e.g. bthr = 0) or too high (e.g. bthr = 1), there is no 
combination of smoothing factors that produces a 
monotonically increasing relationship between bout frequency 
and source distance with enough sensitivity across the studied 
distance range (Fig. 15). The desired behaviors are only found 
for intermediate thresholds (e.g. μ + 3σ) and a subset of 
smoothing parameters. For example, the combinations {σs =
0.05 s, τh = 0.4 s} (red dashed line) and {σs = 0.3 s, τh =
0.05 s} (green solid line) exhibit monotonic behaviors and 
high sensitivity.  
 

FIGURE 15.  Bout frequency vs. downwind distance for different 
algorithm parameters. Wind speed is 21 cm/s. Each subplot represents a 
different value of 𝐛𝐛𝐭𝐭𝐭𝐭𝐭𝐭 (indicated above each subplot). The line color 
indicates the value of 𝛔𝛔𝐬𝐬 (red: 0.05 s, green: 0.30 s, blue: 1.60 s) and the 
line style indicates the value of 𝛕𝛕𝐡𝐡: (-) 0.05 s, (--) 0.40 s, (:) 1.60 s.  

 
However, the optimum configuration should not only achieve 
monotonicity and high sensitivity, but also small scattering of 
the different trials around the regression line, i.e. it must 
minimize the RMSEP. Computing the RMSEP at different 
wind speeds (Table 1) confirmed that moderate smoothing of 
the raw signal (σs = 0.3 s) combined with low smoothing of 
the derivative (τh = 0.05 s) and low amplitude threshold 
(bthr= μ + σ) yields, in average, the best results. Higher 

thresholds, such as μ + 3σ or μ + 5σ, can produce lower 
prediction errors when the wind conditions in training and test 
are the same; however, the proposed combination (σs = 0.3 s,  
τh = 0.05 s, bthr= μ + σ) is the most robust when the wind 
conditions in training and test are different. For example, if the 
training and test wind speed are both 10 cm/s, Schmuker’s 
combination achieves 12% lower errors than the proposed 
combination (21 cm versus 24 cm). However, if the test wind 
speed increases to 0.34 m/s while keeping the training speed 
at 0.10 m/s (worst case scenario in this dataset) the error in 
Schmuker’s combination (71 cm) is 58% higher than in the 
proposed combination (45 cm). 
 

TABLE I 
 PREDICTION ERROR (CM) OF THE BOUT FREQUENCY MODELS UNDER 

SEVERAL COMBINATIONS OF SMOOTHING FACTORS (ROWS), AMPLITUDE 
THRESHOLDS (BLOCKS) AND TEST WIND SPEEDS (COLUMNS). THE 
TRAINING WIND SPEED IS (A) 10 CM/S; (B) 21 CM/S; (C) 34 CM/S. 

The green rectangle highlights the bout frequency with optimum 
parameters (σs = 0.3 s, τh = 0.05 s, bthr= μ + σ). The red rectangle 
highlights Schmuker’s combination (σs = 0.3 s, τh = 0.4 s, bthr= μ + 3σ). 

D.  OVERALL PERFORMANCE 
A comparison of the prediction error of different signal 
features is presented in Table 2. The general trend is that most 
estimators achieve low RMSEP when the wind speeds in 
training and test are the same but degrade otherwise. In the 
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case of matching wind speeds, the variance of the ema filtered 
signal and the BF with Schmuker’s parameters achieve the 
lowest fitting errors (13-21 cm). The low end of this range 
corresponds to training and testing at 34 cm/s, whereas the 
highest errors are obtained when training and testing are both 
performed at 10 cm/s. In the case of non-matching wind 
speeds, the proposed method (outlined with a green box) 
seems to greatly improve the other estimators. For example, in 
the worst-case scenario (training at 10 cm/s and testing at 34 
cm/s) it achieves a RMSEP of 45 cm whereas the BF with 
Schmuker’s parameters (second best estimator) achieves an 
RMSEP of 71 cm (58% difference). A similar thing happens 
when training at 34 cm/s and testing at 10 cm/s. In the case of 
training at medium wind speed (21 cm/s), the proposed 
method keeps the RMSEP in the range 25-30 cm regardless of 
the wind speed while the other estimators degrade the RMSEP 
by at least a factor of two.  
 

TABLE II 
 PREDICTION ERROR (CM) OF SEVERAL SIGNAL FEATURES, FOR VARIOUS 
TRAINING WIND SPEEDS (INDICATED ON THE TOP OF EACH BLOCK) AND 

TEST WIND SPEEDS (INDICATED ON THE BOTTOM OF EACH COLUMN).  

The green rectangle highlights the bout frequency with optimum 
parameters (σs = 0.3 s, τh = 0.05 s, bthr= μ + σ). 
 
 
V. CONCLUSIONS 
We have experimentally demonstrated that multivariate 
optimization of the parameters of the bout detection algorithm 
can improve the robustness of the algorithm output under 
changing wind conditions. The optimum configuration that we 
found applies moderate smoothing to the raw signal, low 
smoothing to the derivative and low noise threshold. The latter 
fact suggests that high sensitivity is more important than high 
specificity for accurately predicting the distance to a gas 
source in this dataset, although this shall be further validated 
using other sensors and gases available in the dataset.  Even if 
a certain application requires high specificity, applying the 
μ + 3σ threshold may produce unexpected results because the 
distribution of amplitudes of baseline bouts does not follow a 
Gaussian distribution. In this case, empirically estimating the 
threshold corresponding to the desired percentile of the 
negative class seems a more reliable approach.  

An additional advantage of lower thresholds is the lower 
detection delay and the higher number of bouts detected per 
minute, which theoretically allows for shorter measurement 
windows. Indeed, the 2-minute measurement windows that we 

used in this work may be considered too long for a real GSL 
application. Future work may explore the influence of the 
measurement window in the results, by analyzing chunks of 
measurements of different size. In this context, it makes sense 
that the robot reacts in real-time to each detected bout instead 
of performing static measurements at fixed locations. A 
straightforward approach could be to use the bouts as a 
replacement of odor hits in GSL algorithms such as Infotaxis 
[2] or Pang and Farrell’s algorithm [13]. The wind tunnel 
dataset already contains a 2D grid measurements in which the 
viability of this approach could be simulated prior to 
performing experiments with a robot in a real scenario. 

A second question addressed by this work is whether the 
bout frequency outperforms other estimators of source 
proximity such as the mean and variance of the response or the 
bout amplitude. Although most estimators worked reasonably 
well in the wind tunnel dataset if the training and test wind 
speed were equal, the bout frequency with optimized 
parameters was the best estimator when considering all wind 
conditions. Specifically, the optimized models achieved a 
maximum prediction error of 45 cm (over a distance range of 
1.45 m) in the worst-case scenario where the models are fit at 
wind speed of 10 cm/s and tested at 34 cm/s. In similar 
conditions, the optimum model reported by Schmuker et al. 
and the variance of the response (a typical measure of 
intermittency) yielded maximum errors of 71 cm (58% 
difference) and 92 cm (104% difference), respectively. The 
reason for the good performance of the bout frequency may be 
the linear relationship with the distance to the source, as 
compared to the polynomial and exponential behaviours 
observed in other signal features. The response variance, 
which some authors consider a reliable estimator of source 
proximity, did not work well in our experiments. In the likely 
case that the test wind conditions are unknown, our results 
suggest that lower prediction errors will be obtained if the 
models are trained at medium wind speed. 

In follow-up works we plan to exploit the relationship 
between bout amplitude and bout duration to improve the 
classification of bouts. One problem of fixed amplitude 
thresholds is that bouts with high amplitude and high duration 
that appear in the baseline are often classified as true bouts. 
Linear classifiers such as support vector machines (SVM) or 
non-linear ones such as random forests or k-nearest 
neighbours (KNN) could generate decision regions that 
overcome this issue. 
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