

Authors:

Manuel Carmona

José María Gómez

José Bosch

Manel López

Óscar Ruiz

 2

November/2019

Barcelona, Spain.

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License

http://creativecommons.org/licenses/by-nc-nd/3.0

http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.ca

 3

Table of contents
I. Introduction to GMSH .. 4

II. Introduction to GMSH Commands... 5

III. Commands for geometry generation .. 7

III.1. GMSH commands (with Built-in kernel) .. 7

III.2. OpenCASCADE commands ... 10

IV. Commands for meshing the geometry .. 13

IV.1. Fields in detail ... 15

IV.1.1. Attractor .. 17

IV.1.2. Threshold .. 17

IV.1.3. MathEval... 17

IV.1.4. Min (or Max) .. 18

IV.1.5. Restrict .. 18

IV.1.6. Structured .. 18

IV.1.7. Box (cylinder, etc.) ... 19

IV.1.8. BoundaryLayer ... 19

V. Examples .. 21

V.1. Example 1: Membrane .. 21

V.2. Example 2: Red Blood Cell ... 23

V.3. Example 3: Straight artery with boundary layer .. 25

VI. List of commands ... 28

VII. GMSH graphics interface (GUI) .. 29

VIII. Useful macros ... 35

VIII.1. Point at a position .. 35

VIII.2. Lines at a position .. 36

VIII.3. Lines between two positions ... 38

VIII.4. Surfaces at a position ... 40

VIII.5. Surfaces between two positions... 41

 4

I. Introduction to GMSH

GMSH [1] is a freeware software distributed under the terms of the GNU General Public License

(GPL). It is mainly a mesh generator, provided with a CAD (Computer-Aided Design) engine and a

post-processor tool. Although having a graphical interface, one of its strong points is that it accepts

a parametric input script for the mesh generation. As an inconvenient, it is not good when trying to

define complicated geometries (for example, nowadays it is still not able to perform geometric

boolean operations, which are generally quite useful). Indeed, for complex geometries, the preferred

method is to use an external CAD software for generating the geometry and afterwards importing it

into GMSH. Another inconvenient shows up when creating a large model because, by default, when

a new entity is generated, GMSH checks the overlapping of all entities. When there is a large

number of entities, these checking results in an extremely slow model generation.

As a general procedure for mesh generators (and also for GMSH), first we have to generate

geometrical entities (points, lines, areas and volumes; in this order). In GMSH there are also

physical groups, that are simply and basically a group of geometrical entities (points, lines, surfaces

or volumes). Once the geometry is defined, we have to specify (as far as possible) how the FEM

elements have to be generated. And finally, we order to mesh them (i.e., generation of the FE nodes

and elements). With GMSH we can generate some simple geometries. They are currently improving

this aspect, but at the time of this publication, only some limited geometry operations are possible.

FEM models can be generated graphically (through the GUI of GMSH), or by use of scripts (a file

containing the instructions for the mesh generation).

GMSH scripts have the extension '.geo'. In these scripts, we can define all the instructions than can

also be input graphically. The use of these scripts has many advantages:

 We can re-use it for other models.

 We can parameterize the model, in order to be able to change dimensions or properties

without the need to start from zero.

 Portability is better. The script file occupies some kbytes, while a model can be quite large

to back it up. The only disadvantage is that it has to be re-run to get the model.

In this guide, it will be explained the language and options for creating scripts for GMSH. This

guide does not intend to substitute the GMSH guide provided with the software. It just intends to

explain the basics of GMSH scripts generation, illustrating them with examples for a better

understanding. The use of the GUI should be quite straightforward, once we know what every

option means. Moreover, the GUI interface will be better developed at lab sessions.

 5

II. Introduction to GMSH Commands

First of all, we have to take into account that some of the syntax is similar to the C language (and

therefore, also to Java). This also means that, generally, commands are ended with a semicolon (';')

and that expressions are case sensitive. Also, indexes (for vectors, for example) will start from 0.

Comments follow the same format than in the C language:

 // for a line comment.

 /* ... */ for a multiple-lines comment.

Regarding the types of variables, we can only find two different types: real and string. Their syntax

is also similar to the C language. We can highlight some keypoints:

 #vector[] provides the number of elements in the vector (or list).

 To ask the user for a real value (and having also a default value), we can use the function

GetValue. Example:

 lc = GetValue("Enter the characteristic length for the mesh: ", default_value);

 Similarly, to ask the user for a string, we can use the function GetString.

 For a parameter to be changed in the GUI of GMSH, we can use the section DefineNumber.

Example:

 hm = DefineNumber[1e-4, Name "Parameters/hm", Min 9e-5, Max 1.1e-4, Step 5];

We can also highlight:

 The instruction Point {Point_id} provides the coordinates of a given point.

 Point "*" provides the id's of all the point entities. The same for Line, Surface and Volume.

 Boundary {entities} returns the entities that are the boundaries of entities. For a volume, it

would return the list of surfaces that constitute its boundaries.

 For obtaining the last number+1 associated to an entity, we can use the commands: newp

(point), newl (line), newc (curve), news (surface), newv (volume), newll (line loop), newsl

(surface loop), newreg (any entities different than point).

 We can get the entities contained in a given volume region (defined by the coordinates of

two points). Example for surfaces: Surface In BoundingBox {xmin, ymin, zmin, xmax, ymax,

zmax}.

We can also get the bounding box delimited by a geometrical entity. Example for a volume:

BoundingBox Volume {v1}.

Different expressions can be given separated by commas, and grouped by '{ }'.

There are some functions for strings: StrCat (concatenate two strings), Sprintf (creates a string like

'printf' would print in the C function), GetString (ask for a string to the user). ~{expression}

appended to a string will add expression to the string by an underscore.

 6

It is only possible to generate 1D vectors. Nevertheless, with the last previous command

(~{expression}) we can add dimensions to a vector. This command can be added at the end of a

string (variable in our case) more than once. Example for a matrix: vector~{row}[column]=1;

For printing in the text windows, we can use the command Printf, which have a similar format to C.

Example: Printf("Length: %g, Width: %g, Thickness: %g)", L,W,t);

Operators are like in C, with '^' for exponentiation. It allows the ternary operator ': ?' (reduced if).

Built-in functions are: Acos (returns a value between 0 and Pi), Asin, Atan ,Atan2, Ceil, Cos, Cosh,

Exp, Fabs, Fmod, Floor, Hypot, Log, Log10, Modulo, Rand, Sqrt, Sin, Sinh, Tan, Tanh.

We can define functions, but they are like macros, with no arguments. At the place where it is

called, it is literally substituted by the function definition. They are defined with:

 Function name

 Body of the function;

 Return

These functions are called with the command Call: Call name;

Macros can be generated in another file and included in the current file using Include filename;.

':' is used to obtain a range of values with a specific increment (default to 1).

We can also build for-loops. There are two possible implementations:

 For (expression : expression : expression): The last expression means the increment, and it

is optional (the default value is 1).

 For variable In {expression : expression : expression}: In this case, variable gets the values

of the list after In.

Both for-loops finish with EndFor.

And finally, we can also build the conditional 'if': If (expression) ... ElseIf (expression) … Else ...

EndIf

To start a void list: string[] = {};

 7

III. Commands for geometry generation

In the last GMSH versions, it includes two different kernels for generating geometries. These two

kernels are: Built-in and OpenCASCADE. The Built-in kernel is the original kernel implemented in

GMSH for this purpose. The OpenCASCADE kernel was incorporated in the last years, with the

advantage of supporting geometrical ‘boolean’ operations. Although we could use both kernels for

the generation of geometries, it seems that there is not yet a good compatibility between them (not

all operations in one kernel can be applied to geometries generated with the other kernel). Indeed,

GMSH states that there is no translation of geometry representations from one kernel to the other.

In order to select a specific kernel, we have to use the function SetFactory(kernel). The kernel

parameter is a string with “Built-in” or “OpenCASCADE”.

III.1. GMSH commands (with Built-in kernel)

Geometries are generated by creating first points, then lines, afterwards surfaces and, finally

volumes. These are called elementary geometries. Each one has assigned an identifier (a number) at

the moment they are created.

Groups of elementary geometries can be formed. They are called physical entities. They have also

an identifier. Nevertheless, they cannot be modified by geometry commands. For later use in Elmer,

it is important to define physical entities. They will be numbered accordingly.

For generating surfaces, first we have to generate what is called 'line loops' in GMSH. They are

simply a number of lines that form a closed path (and therefore, they delimitate an area).

Let's see examples of how these entities are generated.

Points:

Example: Point(1)={x,y,z,lc};

Point with id 1 is created at position x,y,z. lc is an optional parameter, indicating the size of the

elements near this point when these elements are generated.

Example for a group of points: Physical Point(5)={1,2,3,4};

Lines:

There are some different types of lines. The most basic is the straight line (Line).

Example: Line(1)={1,2};

A straight line with id 1 is created between points 1 and 2. A direction is also defined from

point 1 to point 2 in this case. This is considered the positive direction of the line.

For creating surfaces, we need to create previously a line loop.

 8

Example: Line Loop(5)={1,2,-3,-4};

In this case a line loop with id 1 is created, and it is defined by lines with ids 1, 2, 3 and 4.

The line loop follows a direction that has to coincide with the indicated line directions. If

one line has opposite direction, a negative value for the line has to be indicated. This also

defines an orientation of the surface.

Other commands for lines are: Circle, Ellipse, Spline, BSpline, Compound Line, Physical Line.

Areas (or Surfaces):

Example: Plane Surface(1)={2,3};

A plane surface with id 1 is created by using the line loops 2 and 3. The first line loop

defines the external boundaries of the surface. The rest of line loops define holes in this

area.

For creating volumes, we have to create surface loops. They have to define a closed volume

and with an appropriate orientation of the surfaces. Example: Surface Loop(1)={1,-2,3,-4,5,-6};

Other commands related with areas are: Ruled Surface, Compound Surface, Physical Surface.

Volumes:

Example: Volume(1)={1,2};

A volume with id 1 is created, based on surface loops 1 and 2. As in surfaces, the first

surface loop defines the external boundaries of the volume, and the rest of surface loops

define holes.

Other commands are: Compound Volume, Physical Volume.

Geometrical entities can also be generated from already existing entities. There are two of these

processes implemented in GMSH: extrusion and transformations:

Extrusion: This is a very useful method to create geometries and, at the same time, keep a "nice"

mesh.

By dragging an entity of lower level, we can generate an entity. For example, dragging a point

a certain distance in a certain direction defines a line, a line defines a surface and surface

defines a volume. This is valid not only for translations, but also for rotations. Moreover, we

can also generate at the same time the mesh of this new generated geometry.

Example: sout[]=Extrude{{tx,ty,tz},{rx,ry,rz},{px,py,pz},angle} {Line {1,2};};

The last expression provides the entities that are going to be extruded; in this case, lines 1

and 2 (therefore, we are going to generate surfaces). {tx,ty,tz} indicates the translation

vector (direction and magnitude of translation), {rx,ry,rz} indicates the axis of rotation,

{px,py,pz} is a point in this axis of rotation and angle is the magnitude of rotation (in

radians). If we only want a translation, we only have to take the rest of parameters out of

the expression. The same reasoning is valid for only rotation.

 9

This extrusion command returns a list (vector) of id's. The first element is the entity of the

same level than the original entity generated at the end of the extrusion. The second

element is the higher level entity that has been obtained by the extrusion. The other

elements are the rest of entities (as a general rule, they follow the order of the elements

from the original entity used to extrude it). If more than one entity is extruded at a time, the

items are repeated in the same way.

Transformations: There are some operations, like scaling, that can be also applied to existing

entities (or a copy of them ''Duplicata" command) for generating new ones. The operations that

we have in GMSH are:

Translate: We just need to provide the translation vector (which defines the direction and the

magnitude of translation) and the entities to be translated.

Example: Translate {-0.01, 0, 0} { Point{1}; }

Rotation: Like for extrusions, we have to provide a vector defining the rotation axis, a point on

the rotation axis and a rotation angle (in radians).

Example: Rotate { { 1,0,0 }, {0,0,0}, Pi/2 } {Surface {1,2,3};}

Symmetry: We just have to provide the coefficients of the equation defining the symmetry

plane () and the entities to be used.

Example: Symmetry {1,0,0,0}{Duplicata{Surface{1};}};

This command generates symmetry copy of the surface 1 with respect to the YZ plane,

which passes through the point (0,0,0).

As a reminder, the coefficients A, B and C coincide with the components of a normal

vector to the plane. D can be obtained with the coordinates of a point in the plane.

Dilatation: Dilatation (or compression) by homothetic transformation (like an image projection

from a light source). It requires the position of the transformation point (equivalent to the

position of the light source) and a factor (meaning how relatively far the projection is with

respect to the distance from object to the light source).

Example: Dilate { {0 ,0 ,0} , 5 }{ Duplicata { Surface {1,2}; } }

Creates a bigger version of surfaces 1 and 2, by using the point at (0,0,0) and dilatation

factor 5.

For copying also the mesh when making a duplicate of a geometry entity, we should set the option

Geometry.CopyMeshingMethod. Nevertheless, currently this option only works for transfinite

entities.

 10

III.2. OpenCASCADE commands

The OpenCASCADE kernel allows to generate higher level entities (like lines, surfaces and

volumes) directly, without previously creating points, lines or surfaces (what is called constructive

solid geometry operations). Boolean operations can then be used to modify them.

Lines:

Wire creates a path made out of a collection of lines.

Example: Wire(1) = {1,2,3};

Surfaces:

Disk: Creates a circle (with center coordinates and radius) or an ellipse (adding an additional

parameter for the y-radius).

Example for a circle: Disk(1) = {xc,yc,zc, rad};

Rectangle: Parameters are the coordinates for the lower-left corner, length (x) and width (y).

An optional additional parameter indicates the rounding radius at corners.

Example for a rectangle with rounded corners: Rectangle(1) = {xl,yl,zl,w,h,rround};

Volumes:

Sphere: Parameters are the coordinates of its center and its radius. Three optional additional

parameters indicates three limit angles (minimum and maximum longitude angles (from –π/2 to

π /2) and latitude (from 0 to 2·π).

Example for a whole sphere: Sphere(1) = {xc,yc,zc,R};

Box: Parameters are the coordinates of the lower left corner and the box dimensions (length,

width and height).

Example: Box(1) = {x0,y0,z0,l,w,h};

Cylinder: Parameters are the coordinates of the center of the circle at one face, vector

components defining the axis direction and the radius.

Example: Cylinder(1) = {xc,yc,zc,vx,vy,vz,R};

 11

Torus: Parameters are the coordinates of the center of the torus and both radius (defining the

major and minor radius respectively). An optional additional parameters indicates the angle

extension (from 0 to 2·π).

Example: Torus(1) = {xc,yc,zc,r1,r2,ang};

Cone: Parameters are the coordinates of the circle center of one face, the components of the

vector defining its axis (it defines also the length of the cone) and the two radius of both faces.

An optional additional parameter indicates the angular extension (from 0 to 2·π).

Example: Cone(1) = { xc,yc,zc,vx,vy,vz,r1,r2,ang};

Wedge: Parameters are the coordinates of the right-angle point and the three dimensions

(length, width and thickness). An optional additional parameter defines the extension in x-

direction.

Example for a simple wedge: Wedge(1) = {xc,yc,zc,dxc,dyc,dzc};

ThruSections: It defines a volume through a set of curve loops.

Example: ThruSections(1) = {lineloops[]};

Ruled ThruSections.

Fillet: It rounds volumes at the indicated surfaces, with defined radius values.

Example: Fillet{vs[]}{ss[]}{rad[]}

Chamfer: It cuts borders of volumes at the indicated lines, and by give sizes.

Example: Chamfer{vs[]}{ls[]}{dist[]}

Extrusions can be performed using a Wire defining the extrusion path.

Boolean operations:

BooleanIntersection:

Example: v[] = BooleanIntersection {Volume{1};Delete;}{Volume{2};Delete;}

BooleanUnion:

Example: v[] = BooleanUnion {Volume{1};Delete;}{Volume{2};Delete;}

 12

BooleanDifference:

Example: v[] = BooleanDifference {Volume{1};Delete;}{Volume{2};Delete;}

BooleanFragments:

Example: surfs[] = BooleanFragments{Volume{1}; Delete;}{Surface{1};Delete;};

 13

IV. Commands for meshing the geometry

After having defined a geometry, we should specify how the mesh has to be generated. We have

different tools for this purpose in GMSH.

First of all, GMSH has three meshing algorithms: MeshAdapt, Delaunay and Frontal. In principle

we do not have to worry on this, as GMSH uses a default algorithm depending on the geometry.

Nevertheless, we can force GMSH to use a specific algorithm. As a general rule, MeshAdapt is

good for complex surfaces, Frontal for obtaining good quality meshes and Delaunay is a fast

algorithm (also appropriate for large meshes).

As it is general for meshes, it is distinguished between structured meshes and unstructured meshes.

There is also the possibility of having the combination of both, called hybrid. Structured meshes are

"ordered" (or "regular") meshes, while unstructured meshes are the opposite of the structured

meshes. A simple example is illustrated in Figure 1.

Figure 1. Structured (left) and unstructured (right) meshes.

For generating structured meshes, we have basically two different methods: by extrusion of the

geometry (together with the mesh) and the transfinite method (together with 'recombine').

Additionally, all meshes can be subdivided for generating all-quadrangular or all-hexahedra meshes

by using the Mesh.SubdivisionAlgorithm option (0=none, 1=all quadrangles, 2=all hexahedra).

Therefore, mesh commands are issued for two purposes: defining the size of the elements and

defining parameters for the structured mesh.

The size of the elements can be specified in three different ways:

 When creating points (as already seen before). This is the default option. In this case, the

option Mesh.CharacteristicLengthFromPoints is set. It uses interpolation for the different

points for creating the initial mesh. The characteristic element length for points can also be

given with the command: Characteristic Length {list of points} = lc;

 If Mesh.CharacteristicLengthFromCurvature is set, the mesh is generated depending on the

curvature of the lines.

 Specifying mesh size fields. Fields are values depending at least on position for indicating

distributions of mesh densities. These fields are created with: Field[id number]=type; (type

is the string defining the field and id is a number that we associate to this field). To modify

 14

the different options for this field, it is used: Field[id number].option=value;. To specify

which field will be used, there is the command: Background Field=id number;.

Some of these fields are:

 Attractor: Used to calculate at each location the minimum distance to the given

points and/or lines and/or surfaces. Other fields can use this field as input.

Options: NodesList, EdgesList, FacesList, NNodesByEdge, FieldX, FieldY, FieldZ.

 Box: Provides a value (VIn) inside a region (box) and another value (VOut) outside

this region.

Options: VIn, VOut, XMax, XMin, YMax, YMin, ZMax, ZMin.

 Threshold: Based on the distances calculated from other fields (IField) (like

Attractor), determines a size of elements (LcMin) for distances under a given value

(DistMin), another size (LcMax) for distance over another value (DistMax), and

interpolated sizes in-between these distances.

Options: IField, DistMax, DistMin, LcMax, LcMin, Sigmoid, StopAtDistMax.

 MathEval: Sizes depends on a mathematical function (F) that can depend on position

variables (x, y, z), fields values (F1, F2, ...) and mathematical functions.

Options: F.

 BoundaryLayer: In fluidics, meshes are usually generated quite fine near walls, and

less fine far from walls and in a very regular way. This field provides values that are

increasing as we are far from specified geometric entities. It follows the relation:

 .

Options: hwall_n, hwall_t, ratio, thickness, EdgesList, FacesList, NodesList, Quads,

hfar, FanNodesList, FansList, AnisoMax, IntersectMetrics.

 Min: Provides the minimum value of a list of fields.

Options: FieldsList.

 PostView: Element sizes at a location will be determined by the 'solution' values

given on nodes (of a certain 'background mesh') near this location.

Options: CropNegativeValues, IView.

 Others: Restrict, Max, Min, Mean, CenterLine, Gradient, Structured, Param,

Curvature, Sphere, Cylinder, Frustum, AttractorAnisoCurve, MathEvalAniso,

MinAniso, IntersectAniso, Laplacian, MaxEigenHessian, LonLat, etc.

All three methods can be used at the same time. In this case, the minimum value (the most

restrictive) of them is used.

We can highlight some of the GMSH mesh options that can be defined (some of them already

mentioned and most of them are self-explicative):

 Mesh.Algorithm.

 Mesh.CharacteristicLengthFromPoints.

 Mesh.CharacteristicLengthFromCurvature.

 Mesh.CharacteristicLengthExtendFromBoundary: By default, the element sizes indicated in

boundaries are then "extrapolated" to entities they define.

 Mesh.CharacteristicLengthFactor: Apply a factor to the characteristic lengths of the mesh.

 15

 Mesh.CharacteristicLengthMin: Forces a minimum.

 Mesh.CharacteristicLengthMax: Forces a maximum.

 Mesh.Optimize.

 Mesh.ElementOrder.

 Mesh.RecombineAll: If set to 1, it forces always recombination on surfaces.

 Mesh.ToleranceEdgeLength.

 Mesh.LcIntegrationPrecision.

 Mesh.ColorCarousel: Specifies to what is related the color of elements. 0 for element types,

1 for elementary entities, 2 for physical entities and 3 for partitions.

 Mesh.Color.Zero.

For defining structured meshes, we have the following possibilities:

Extrude: It works like for geometries, but additionally we have to specify, after the entities list

the command Layers or Recombine. Layers specify the number of elements to be generated

during the translation. More than one extrusion can be specified at the same time, but in this

case also a list of relative heights (total thickness 1) for each layer has to be provided. The

Recombine command allows to generate quadrangles for 2D and prisms (or hexahedra or

pyramids) in 3D.

Example: Extrude {0,0,1} {Surface{1}; Layers{ {4,1}, {0.8,1.0} }; }

Transfinite interpolation: This is used when a non-uniform distribution of element sizes are

wanted at the boundary entities. This interpolation adjusts the element sizes depending on an

function depending on the coordinates.

Example for a line: Transfinite Line{1,-3}=10 Using Progression 2;

In this case, lines 1 and 3 will be meshed with 10 nodes and the nodes are distributed

spatially in a geometrical progression of 2 (following the direction of the line). We can also

use "Using Bump 2" in order to refine the mesh at both end points of the line.

It is similar for surfaces and volumes, but without the right expression for progression.

Additionally, we can also perform the following operations related to meshing:

 In Surface: Embed points and lines in surfaces, so that the mesh of the surface will conform

to the mesh of the points and/or lines.

 Periodical: Force the mesh of one line or surface to match the mesh on other line or surface.

 Reverse Line: Change the direction of a line.

IV.1. Fields in detail

Fields define a "field" providing values (in general, related to element sizes) depending on the

position. The criteria for calculating these values at every position is what distinguishes one Field

from another.

 16

Many of these Fields accept as input another Field, providing a great flexibility combining them.

For testing these Fields we are going to use a simple 2D example:

// Avoid mesh size definition by characteristic lengths

Mesh.CharacteristicLengthFromPoints=0;

Mesh.CharacteristicLengthFromCurvature=0;

Mesh.CharacteristicLengthExtendFromBoundary=0;

L=1;

W=0.5;

r=0.5;

Point(1)={0,0,0};

Point(2)={L,0,0};

Point(3)={L,W,0};

Point(4)={0,W,0};

Point(5)={L/2,W+r,0};

Point(6)={L/2,W,0};

Line(1)={1,2};

Line(2)={2,3};

Circle(3)={3,6,5};

Circle(4)={5,6,4};

Line(5)={4,1};

Line Loop(1)={1,2,3,4,5};

Plane Surface(1)={1};

Figure 2. 2D geometry for testing fields.

 17

IV.1.1. Attractor

The calculated value is the nearest distance of the element position to the stated points, lines and/or

surfaces. In the case of lines, they are subdivided in N points in order to calculate the distances.

Options:

 NodesList: Points.

 EdgesList: Lines.

 FacesList: Surfaces.

 NNodesByEdge: Number of points for the subdivision of lines.

 FieldX, FieldY, FieldZ: Instead of the real coordinates X, Y and Z, we can use other Fields

to substitute these coordinates. These three values are the Ids of the Fields to substitute

these coordinates.

If we use this Field alone, we can get into trouble if the nodes or lines are inside the geometry to be

meshed (as some values will be extremely low (zero at the lines and points)). Indeed, many times

this Field is used together with others for this reason.

IV.1.2. Threshold

The Threshold Field uses another Field (IField) (for example, Attractor) for distinguishing two

regions. One of them is meshed with a characteristic length LcMin (when the input Field is below

DistMin) and with another characteristic length LcMax (when the input Field is over DistMax). The

region in-between DistMin and DistMax will have a progressive mesh from LcMin to LcMax.

Options: IField, DistMax, DistMin, LcMax, LcMin, Sigmoid, StopAtDistMax.

IV.1.3. MathEval

The element size is calculated from a mathematical expression (given as a string). In this

mathematical expression we can include: element current position coordinates (x,y,z), other fields

values (F0, F1, F2…) and mathematical functions. For using parameters, we can make use of the

function Sprintf in order to generate this string.

Options:

 F: The function between quotation marks. Example: “0.1*y+F2*Sin(x)”.

If we know the equation of a curve, we can easily increase the mesh density around this curve. Try

the following example that implements the equation x^2+(y-Sqrt(Abs(x)))^2-3 (it has also been

applied displacement and scaling to x and y):

Field[5]=MathEval;

fct=4;

Field[5].F=Sprintf("0.01+0.01*Abs((%g*(x-1))^2+(%g*(y-1)-Sqrt(Abs(%g*(x-1))))^2-3) ",fct,fct,fct);

 18

The mesh result is shown in Figure 3.

Figure 3. Example using MathEval field for increasing mesh density around a known curve.

IV.1.4. Min (or Max)

The calculated value is the minimum value of the list of indicated fields (FieldsList).

IV.1.5. Restrict

Restricts the application of a field (IField) to the stated entities (VerticesList, EdgesList, FacesList,

RegionsList).

IV.1.6. Structured

The calculated value is a linear interpolation between the values provided in a file in regularly

distributed positions (grid; as if it were a structured volume mesh). The format of the file is given

by:

Originx Originy Originz (Position of the grid origin)

Deltax Deltay Deltaz (distance between grid positions)

numberx numbery numberz (number of positions in each direction)

value(0,0,0) value(0,0,1) value(0,0,2) value(0,0,3) ... (values at the corresponding locations)

value(0,1,0) value(0,1,1) value(0,1,2) value(0,1,3) ...

value(0,2,0) value(0,2,1) value(0,2,2) value(0,2,3) ...

..

v(1,0,0) v(1,0,1) ...

……………………………………………………….

Options:

 FileName.

 TextFormat: True for an ascii file, False for a binary file.

 OutsideValue: Value for the region outside of the grid.

 19

 SetOutsideValue: True for using the OutsideValue. If False, the last value of the field will

be used.

As an example, I have used the following file (fstr.txt):

0.0 0.0 0.0

2.0 2.0 2.0

2 2 1

0.05

0.3

0.02

1.0

The field options are:

Field[6]=Structured;

Field[6].FileName="fstr.txt";

Field[6].TextFormat=1;

Field[6].OutsideValue=0.1;

Field[6].SetOutsideValue=1;

And the result is shown in Figure 4.

Figure 4. Example using the Structured field.

IV.1.7. Box (cylinder, etc.)

Inside a region (box) the value is VIn and outside this region is VOut. The region is delimited by the

options Xmin, XMax, YMin, YMax, ZMin and ZMax.

IV.1.8. BoundaryLayer

In fluidics, meshes are usually generated quite fine near walls, and less fine far from walls and in a

very regular way. This field provides size values that are increasing as we are far from specified

geometric entities. It follows the relation:

 .

 20

Options:

 EdgesList.

 FacesList.

 NodesList.

 hwall_n: Parameter of the formula.

 hwall_t: The size of element in direction parallel to the wall.

 ratio: Parameter of the formula.

 thickness: Maximum thickness of the boundary layer.

 hfar: Size far from the wall.

 Quads: Generate recombined elements.

 FanNodesList.

 FansList.

 AnisoMax.

 IntersectMetrics.

Although not stated in the GMSH manual, we have to set the variable BoundaryLayer Field to the

number of the field.

An example is shown in the section Example 3: Straight artery with boundary layer (page 25).

 21

V. Examples

Here, we are going to apply what we have learned up to now to specific examples. The way in that

they are developed is more directed to apply this knowledge than to develop a short script or an

optimized model or mesh.

V.1. Example 1: Membrane

The first example shows one problem with many of the features that can be used in GMSH. This

example is a membrane, with different regular rectangular regions. The geo file has been generated

so that we can change the dimensions and the number of divisions without having to make again the

file. We only have to change the vectors xs and ys:

//****************

//** Parameters **

//****************

Lm=GetValue("Length of the membrane: ", 1e-3); //Membrane Length

Wm=GetValue("Width of the membrane: ", 0.5e-3); //Membrane Width

lc=Wm/15; //Default characteristic length

//Lists for the different rectangular positions on the membrane for direction x and y

xs[]={0,Lm/8,Lm/4,Lm/2,Lm};

ys[]={0,Wm/8,Wm/4,Wm/2,Wm};

nxs=#xs[]; //Number of elements in xs

nys=#ys[]; //Number of elements in ys

//**************

//** Geometry **

//**************

//Points for the membrane

p0=newp; //1

p=p0;

For indys In {0:nys-1}

 For indxs In {0:nxs-1}

 Point(p)={xs[indxs],ys[indys],0,lc};

 p=newp; //p=p+1

 EndFor

EndFor

//Horizontal lines

l0=newl; //1

 22

l=l0;

For indys In {0:nys-1}

 For indxs In {0:nxs-2}

 Line(l)={p0+indys*nxs+indxs,p0+indys*nxs+indxs+1};

 l=newl; //l=l+1

 EndFor

EndFor

//Vertical lines

For indys In {0:nys-2}

 For indxs In {0:nxs-1}

 Line(l)={p0+indys*nxs+indxs,p0+(indys+1)*nxs+indxs};

 l=newl;

 EndFor

EndFor

//Line Loops

ll=newll; //1

For indys In {0:nys-2}

 For indxs In {0:nxs-2}

 Line Loop(ll)={l0+indxs+indys*(nxs-1),l0+(nxs-1)*nys+indys*nxs+indxs+1,-

(l0+indxs+(indys+1)*(nxs-1)),-(l0+(nxs-1)*nys+indys*nxs+indxs)};

 Plane Surface(ll)={ll};

 //Recombine Surface {ll};

 ll=newll; //ll=ll+1

 EndFor

EndFor

//**********

//** Mesh **

//**********

ss[] = Surface "*"; //All surfaces that have been generated

//Producing square elements mesh

Transfinite Surface {ss[]};

Recombine Surface {ss[]};

//Generate the volume of the membrane

Extrude {0,0,10e-6} {Surface {ss[]}; Layers {3}; Recombine;}

The resulting mesh for this case is shown in Figure 5 and Figure 6.

 23

Figure 5. Mesh of the membrane.

Figure 6. Detailed view of the membrane thickness.

V.2. Example 2: Red Blood Cell

This example illustrates one possible option for generating a model of a 3D red blood cell (RBC). It

is also generated as a parametric model.

//****************

//** Parameters **

//****************

R=10e-6; // Radius of border of the RBC

Lcent=100e-6; // Length of the central part of the RBC

depr=R/4; //magnitude of the depression of central part of the RBC

th=R/5; //Thickness of the cell

lcm=R/8; //Characteristic length of the mesh

//**************

 24

//** Geometry **

//**************

//First iteration for outer lines, second for inner lines

For inout In {0:1}

 np=newp;

 //Left circle

 Point(np)={0,-R+inout*th,0,lcm};

 Point(np+1)={0,0,0,lcm};

 Point(np+2)={0,R-inout*th,0,lcm};

 Point(np+3)={-(R-inout*th),0,0,lcm};

 nl=newl;

 Circle(nl)={3+(np-1),2+(np-1),4+(np-1)};

 Circle(nl+1)={4+(np-1),2+(np-1),1+(np-1)};

 //Top central line (with Spline)

 Point(np+4)={Lcent/4,R-inout*th*0.7-depr,0,lcm};

 Point(np+5)={Lcent/2,R-inout*th-depr,0,lcm};

 Spline(nl+2)={3+(np-1),5+(np-1),6+(np-1)};

 //Bottom central line

 Point(np+6)={Lcent/4,-(R-inout*th*0.7-depr),0,lcm};

 Point(np+7)={Lcent/2,-(R-inout*th-depr),0,lcm};

 Spline(nl+3)={1+(np-1),7+(np-1),8+(np-1)};

EndFor

Line(nl+5)={6,np+5};

Line(nl+6)={np+7,8};

Line Loop(1)={-2,-1,3,nl+5,-(nl+2),nl,nl+1,nl+3,nl+6,-4};

Plane Surface(1)={1};

//**********

//** Mesh **

//**********

//Number of divisions on the circular lines

Transfinite Line {1,2}=Pi*R/(2*lcm);

Transfinite Line {nl,nl+1}=Pi*R/(2*lcm);

Recombine Surface {1};

//Extrussions by 90º each

ss[]=Extrude {{0,1,0},{Lcent/2,0,0},Pi/2} {Surface {1}; Layers{10}; Recombine;};

Printf("Generated first top area = %g", ss[0]);

ss1[]=Extrude {{0,1,0},{Lcent/2,0,0},Pi/2} {Surface {ss[0]}; Layers{10}; Recombine;};

Printf("Generated second top area = %g", ss1[0]);

ss2[]=Extrude {{0,1,0},{Lcent/2,0,0},Pi/2} {Surface {ss1[0]}; Layers{10}; Recombine;};

Printf("Generated third top area = %g", ss2[0]);

 25

ss3[]=Extrude {{0,1,0},{Lcent/2,0,0},Pi/2} {Surface {ss2[0]}; Layers{10}; Recombine;};

Printf("Generated fourth top area = %g", ss3[0]);

The model generated by this script is shown in Figure 7 and Figure 8.

Figure 7. Mesh for the whole red blood cell.

Figure 8. Cross section view of the red blood cell.

V.3. Example 3: Straight artery with boundary layer

This example illustrates the use of Fields to control the mesh generation. We will use the

BoundaryLayer Field in a straight artery model, supposedly to be used in a fluidic simulation. In

this case, the simplest way to do it would be to use ‘Using Progression’ when generating lines.

Nevertheless, we will do it by using Fields to illustrate its use. Nevertheless, this Field is especially

"tricky" and some trial-and-error cycles have to be done. Additionally, the effects of some of its

parameters are not very clear. As an example, the command 'BoundaryLayer Field' cannot be found

in the GMSH user's guide.

 26

//****************

//*** Parameters ***

//****************

rcyli=1e-3; //Inner radius of the cylinder

hm=0.4e-3; //Thickness of membrane

Lcyl=10e-3; //Length of the artery

//**************

//*** Geometry ***

//**************

//Points defining the cylinders ; To avoid 'interactions' with Fields, we do not define lc at points

For val In {1:4}

 Point(2*val-1)={rcyli*Cos((val-1)*Pi/2),rcyli*Sin((val-1)*Pi/2),0};

 Point(2*val)={(rcyli+hm)*Cos((val-1)*Pi/2),(rcyli+hm)*Sin((val-1)*Pi/2),0};

EndFor

//Center Point

np=newp;

Point(np)={0,0,0};

//Lines of the cylinders

lsci={};

lsce={};

For val In {1:3}

 Circle(2*val-1)={2*val-1, np, 2*val+1}; lsci[] +={2*val-1};

 Circle(2*val)={2*val, np, 2*val+2}; lsce[] +={2*val};

EndFor

//val is increased at the end of the loop

 Circle(2*val-1)={2*val-1, np, 1}; lsci[] +={2*val-1};

 Circle(2*val)={2*val, np, 2}; lsce[] +={2*val};

//Surfaces

Line Loop(1)={lsci[]}; Plane Surface(1)={1};

Line Loop(2)={lsce[]}; Plane Surface(2)={2,1};

//*******************

//*** Mesh definition ***

//*******************

//For speeding up the mesh calculations

Mesh.LcIntegrationPrecision=1e-3;

//To avoid a too high mesh density inside the cylinder

Mesh.CharacteristicLengthExtendFromBoundary = 0;

Mesh.CharacteristicLengthFromPoints=1;

 27

Mesh.CharacteristicLengthFromCurvature=1;

//BoundaryLayer Field definition

Field[1]=BoundaryLayer;

Field[1].ratio=1.2;

Field[1].hwall_n=hm/20;

Field[1].hwall_t=hm/5;

Field[1].FacesList = {2}; //Avoids this field in Surface 2?

Field[1].EdgesList = {lsci[]};

Field[1].Quads=1;

Field[1].thickness=hm/2.5;

Field[1].hfar=hm/5;

//We define both settings as they do not work properly individually?

Background Field = 1;

BoundaryLayer Field = 1;

//Create square elements from triangular

Recombine Surface "*";

//Generate the body of the artery

surfs[]=Surface "*";

Extrude {0,0,Lcyl} {Surface{surfs[]}; Layers{15}; Recombine;}

Mesh.SurfaceEdges=1;

Mesh.SurfaceFaces=1;

The model generated by this script is shown in Figure 9.

Figure 9. Mesh for the whole artery.

 28

VI. List of commands

Geometry: Mesh: Flux Control: Others:
Point(id)={x,y,z,lc};

Line(id)={points ids};

Line Loop(id)={lines ids};

Plane Surface(id)={line loops ids};

Surface Loop(id)={surfaces ids};

Volume(id)={surface loops ids};

sout[]=Extrude{{tx,ty,tz},{rx,ry,rz},{px,py,pz},angle}

{entities; layers;};

Translate {vector} { entities}

Rotate{{vector},{point},angle}{entities};

Symmetry{A,B,C,D}{entities};

Dilate { {point coords} , factor }{ entities }

Duplicata{entities};

newp, newl, newc, news, newv, newll, newsl, newreg

Point "*"

Transfinite Line{lines ids}=#nodes;

Field[id number]=type;

Field[id number].option=value;

Function name

 Body;

Return

Call name;

For (expression:expression:expression)

For var In (expression:expression:expression)

EndFor

If (expression)

ElseIf

Else

EndIf

var=GetValue(string_to_show, default_value);

var=GetString(string_to_show, default_value);

Printf

Sprintf

#vec[]

//

/* */

~{expr}

 29

VII. GMSH graphics interface (GUI)

In this chapter, we will show how the GMSH GUI works. We will use the last version of GMSH at

the moment where this publication was elaborated, i.e. version 2.8.3.

The first recommended action to perform is to indicate the name for the model that we will created.

This will define the name of the file where the commands will be saved as we are working in the

GUI creating the model. For doing this, just execute File New.

The main window of GMSH is shown in Figure 10.

Figure 10. Main window of GMSH.

The menu bar is used for opening/saving files, changing some GMSH options and setting some

graphics actions. The different submenus in this bar are shown in Figure 11.

Figure 11. Submenus in the menu bar.

We can highlight some of these options:

Graphics window

Menu window

Menu bar

Axis

Fast graphic commands

GMSH options

 30

 File New: We can use this option to delete all and start from 0 the model (by overwriting

the geo file).

 File Open: For opening/executing geo or msh files.

 Tools Options: For setting all options of GMSH.

 Tools Visibility: For viewing/hiding entities in the graphics window.

 Tools Clipping: For viewing a cross-section of the geometry or the mesh. By holding

down left button in options A, B, C or D of the planes section and dragging the mouse, we

can change continuously the plane position or the orientation.

 Tools Manipulator: For controlling precisely the orientation view in the graphics window

and the scales (zoom) in each direction independently.

At the bottom-left position there is a drop-down menu for changing some general options of

GMSH. At nearly the same position, located at the bottom bar, there is some graphics commands

for setting some view directions, rotate the view, or activating the mouse selection. The O option

allows us to set also more graphics settings (also reachable by double-left-clicking in the graphics

window). Finally, by left-clicking at the free space on this bottom bar we can view/hide the message

console.

The graphics window is where the model and results are shown. With the mouse, we can change

continuously the orientation view: left button: rotate, right button: pan (translate), middle button:

zoom with respect to the mouse position, Ctrl+left button: region zoom, Ctrl+right button: return to

the default view. All mouse and keyboard options can be obtained at the menu bar Help

KeyBoard and Mouse Usage.

The menu window allows us to access all option for the model (geometry and mesh) generation.

The different submenus are shown in Figure 12.

Figure 12. Submenus in the menu window.

 31

The geometry submenu is for generation of geometric entities (points, lines, surfaces and volumes)

as well as physical groups. The basic option is Add (also for defining parameters), but we can also

observe the different geometric operations that are available in GMSH (translation, rotation, etc.).

Here we can also delete already created entities. After executing these commands, in general, we

have the options of q for ending/aborting the addition of entities and 'e' for adding the defined

entity, but more options can appear, depending on the specific entity and operation.

The different options in this geometry menu are shown in Figure 13.

Figure 13. Options of the geometry submenu.

The mesh submenu allows to control how the mesh will be generated. The different options of this

submenu are shown in Figure 14.

Figure 14. Options of the mesh submenu.

Let's illustrate the GUI usage with one simple example. We will generate a 3D membrane, with

length lm (lm=1), width wm (wm=1) and a thickness th (th=0.2). We will define the element size

near points as lc (lc=0.1). First of all, we will define the parameters that we will use. We define

them in Geometry Elementary entities Add Parameter. We just have to click the add

 32

button once we have defined the different fields of the parameter. The appearing windows is shown

in Figure 15, where it is illustrated the definition of the lc parameter.

Figure 15. Window for creating a parameter.

For creating the needed points (in our case, we only need to create four for creating also the four

boundary lines of the membrane) we can just click on the Point sheet on the same window, or just

click on Geometry Elementary entities Add Point. Points can be generated by clicking on

the graphics window where we want to place the point, or by writing the coordinates in the Point

window, that it is shown in Figure 16. Be careful not to place the mouse on the graphics windows

after you have filled the fields and before clicking the Add button because the coordinates of the

mouse will overwrite the values in the coordinate fields. If you want to do it by clicking on the

graphics window, use the Shift button to fix the coordinates in the windows even if we move the

mouse.

Figure 16. Window for creating a point.

After creating all four points (click q to end the point creation), as illustrated in Figure 17 (left), we

have to generate the lines. We have to click on Geometry Elementary entities Add Straight

line, and click on the two end points that will define the line. The line is created with a direction,

from the first point selected to the second one. We will end up with the four lines after this process,

as shown in Figure 17 (right). Click also q for finishing the creation of lines.

 33

Figure 17. The four points (left) and the four lines (right) created for the membrane.

Now we will create the surface. In this case, we will create a ruled surface (i.e., a surface that can be

meshed using the transfinite interpolation). Therefore, we have to click on Geometry Elementary

entities Add Ruled Surface. In this case, we just have to click on one line, and GMSH will

find the rest (there is no other possibilities for creating a surface in our case). We have to press e to

finish the selection of lines for the surface (or q for aborting the line selection if we would have not

selected a right set of lines), and afterwards press q for definitely creating the surface. The surface

appears as shown in Figure 18. The dashed lines indicate that the surface has been created.

Figure 18. Created ruled surface of the membrane.

Before creating the volume, we will mesh the surface. In this way, when we create the volume (by

translation of this already created surface), we will also create simultaneously the volume mesh. For

this, we have to indicate two things:

 We want to use transfinite interpolation for creating a regular mesh. This is done by clicking

on Mesh Define Transfinite Surface and selecting the surface (clicking on the

dashed lines). (we can select all related entities in an area by keeping pressed the Ctrl key,

while defining an area with the mouse).

 We want to generate square elements and not triangular. This is done by clicking on Mesh

 Define Recombine and selecting the same surface.

 34

In order to check how the surface elements will be, we can generate the mesh by clicking on Mesh

 2D. The results should be like shown in Figure 19 with a mesh of 10x10 square elements. Clear

them with the bar menu option File Clear.

Figure 19. Meshed surface.

Now, let's create the volume. We will use the extrude option Geometry Elementary entities

Translate Extrude surface. We have to enter the value th value in the Z Component field.

Unfortunately, not all options are available in the GUI. For specifying the number of elements in the

extruded Z direction and indicating that we want cube-shaped elements, we will have to edit the geo

file and include Layers{3}; Recombine; inside the last field of the extrude command. The

instruction would be something like: Extrude {0, 0, th} {Surface{5}; Layers{3}; Recombine;}. Save

the file and run this file making File Open.

By generating the 3D mesh, clicking on Mesh 3D, we should obtain something similar to what is

shown in Figure 20.

Figure 20. Meshed volume.

 35

VIII. Useful macros

The aim of this section is to provide useful macros for the generation of models in GMSH. We will

use some simple rules: the use of ‘_’ in order to define the new created variables in the macro (all or

most of them will be deleted at the end of the function), the needed inputs and the provided outputs

will be indicated in the macro header.

It has to be said, that currently these macros seem not to be useful because it has been added a

command for obtaining geometric entities within a bounding box. Example:

_surfspos[] = Surface In BoundingBox {-1e-5,-1,-1,1e-5,1,1};

The index order seems to be: xmin,ymin,zmin,xma,ymax,zmax. The current manual (4.0.7),

nevertheless, seems to indicate that the order should be xmin,xmax,ymin,ymax,zmin,zmax.

VIII.1. Point at a position

//Macro for finding a point (_pfin) at given coordinates (xpc,ypc,zpc) within a deviation (dev)

//Optional: Restricted to a list of points (plist). If it exists, it is deleted at the end of the function.

//If _pfin is -1, it means that no point was found at this position.

Function Pointcoord

 //needed inputs: xpc, ypc, zpc, dev(deviation)

 _valdel1=Exists(plist);

 _ps[]=Point "*";

 _nps=#_ps[];

 _pfin=-1; //_pfin will contain the last point found with these coordinates

 For i In {0:_nps-1}

 _coords[]=Point{_ps[i]};

 If (_coords[0]<xpc+dev && _coords[0]>xpc-dev)

 If (_coords[1]<ypc+dev && _coords[1]>ypc-dev)

 If (_valdel1)

 If (Find(_ps[i],plist[]))

 _pfin=_ps[i];

 Printf("Point found: %g",_pfin);

 i=_nps-1;

 EndIf

 Else

 _pfin=_ps[i];

 Printf("Point found: %g",_pfin);

 i=_nps-1;

 EndIf

 EndIf

 EndIf

 36

 EndFor

 If (_pfin==-1)

 Printf("No point found");

 EndIf

 Delete _ps; Delete _nps; Delete _coords;

 If (_valdel1)

 Delete plist;

 EndIf

 Delete _valdel1;

Return

VIII.2. Lines at a position

//Macro for finding the lines completely within one positions (vpos) in a direction (dir; "x", "y" or "z" values) within a deviation (dev)

//Optional: restricting orientation of the lines (orient[]; If it does not exists, no orientation is considered; orient[] is deleted if exists)

//Optional: Search restricted to a list of lines (llist)

//The vector _linespos[] contains all these lines.

//Possible extensions: limiting the lines also to a given list

Function Linesatpos

 //needed inputs: vpos, dir (direction), dev (deviation), orient (orientation; optional), llist

(restrict list; optional)

 If (!StrCmp(dir,"x"))

 _indd=0;

 ElseIf (!StrCmp(dir,"y"))

 _indd=1;

 Else

 _indd=2;

 EndIf

 _valdel=Exists(orient);

 _valdel1=Exists(llist);

 _linelist[]=Line "*";

 _nlines=#_linelist[];

 _linespos[]={};

 _pospold[]={};

 _conf=0;

 For _lact In {0:_nlines-1}

 _ps[]=Boundary {Line{_linelist[_lact]};};

 _nps=#_ps[];

 For _pact In {0:_nps-1}

 _posp[]=Point{_ps[_pact]};

 _valp=_posp[_indd];

 37

 If ((_valp<(vpos-dev)) || (_valp>(vpos+dev)))

 _conf=1;

 _pact=_nps-1; //Equivalent to break

 EndIf

 If (_pact==0)

 _pospold[]={_posp[]};

 EndIf

 EndFor

 If (_conf==0)

 If (!_valdel)

 If (_valdel1)

 If (Find(_linelist[_lact],llist[]))

 _linespos[] += {_linelist[_lact]};

 EndIf

 Else

 _linespos[] += {_linelist[_lact]};

 EndIf

 Else

 _vagrdir=0; _modprod=0; _modprod1=0;

 For io In {0:2}

 _vagrdir += (_posp[io]-_pospold[io])*orient[io];

 _modprod += (_posp[io]-_pospold[io])^2;

 _modprod1 += orient[io]^2;

 EndFor

 _modprod=Sqrt(_modprod);_modprod1=Sqrt(_modprod1);

 _vagrdir=_vagrdir/(_modprod*_modprod1);

 If (Fabs(_vagrdir)>0.95)

 If (_valdel1)

 If (Find(_linelist[_lact],llist[]))

 _linespos[] += {_linelist[_lact]};

 EndIf

 Else

 _linespos[] += {_linelist[_lact]};

 EndIf

 EndIf

 EndIf

 EndIf

 _conf=0;

 EndFor

 Printf("number of lines: %g",#_linespos[]);

 For _vis In {0:(#_linespos[]-1)}

 Printf("s_%g: %g",_vis,_linespos[_vis]);

 EndFor

 Delete _indd; Delete _linelist; Delete _nlines; Delete _lact; Delete _pact;

 Delete _ps; Delete _nps; Delete _posp; Delete _pospold;

 38

 Delete _valp; Delete _conf; Delete _vis;

 If (_valdel)

 Delete orient; Delete _vagrdir; Delete _modprod; Delete _modprod1;

 EndIf

 If (_valdel1)

 Delete llist;

 EndIf

 Delete _valdel; Delete _valdel1;

Return

VIII.3. Lines between two positions

With just a few modifications with respect to the previous code, we can also obtain the surfaces

between two positions in one direction.

//Macro for finding the lines completely within two positions (vpos1 and vpos2; vpos1<vpos2) in a direction (dir; "x", "y" or "z" values) within a

deviation (dev)

//Optional: restricting orientation of the lines (orient[]; If it does not exists, no orientation is considered; orient[] is deleted if exists)

//Optional: Search restricted to a list of lines (llist)

//The vector _linespos[] contains all these lines.

Function Linesat2pos

 //needed inputs: vpos1 (position1), vpos2 (position2 (>position1)), dir (direction), dev (deviation), orient (orientation)

 If (!StrCmp(dir,"x"))

 _indd=0;

 ElseIf (!StrCmp(dir,"y"))

 _indd=1;

 Else

 _indd=2;

 EndIf

 _valdel=Exists(orient);

 _valdel1=Exists(llist);

 _linelist[]=Line "*";

 _nlines=#_linelist[];

 _linespos[]={};

 _pospold[]={};

 _conf=0;

 For _lact In {0:_nlines-1}

 _ps[]=Boundary {Line{_linelist[_lact]};};

 _nps=#_ps[];

 For _pact In {0:_nps-1}

 _posp[]=Point{_ps[_pact]};

 _valp=_posp[_indd];

 39

 If ((_valp<(vpos1-dev)) || (_valp>(vpos2+dev)))

 _conf=1;

 _pact=_nps-1; //Equivalent to break

 EndIf

 If (_pact==0)

 _pospold[]={_posp[]};

 EndIf

 EndFor

 If (_conf==0)

 If (!_valdel)

 If (_valdel1)

 If (Find(_linelist[_lact],llist[]))

 _linespos[] += {_linelist[_lact]};

 EndIf

 Else

 _linespos[] += {_linelist[_lact]};

 EndIf

 Else

 _vagrdir=0; _modprod=0; _modprod1=0;

 For io In {0:2}

 _vagrdir += (_posp[io]-_pospold[io])*orient[io];

 _modprod += (_posp[io]-_pospold[io])^2;

 _modprod1 += orient[io]^2;

 EndFor

 _modprod=Sqrt(_modprod);_modprod1=Sqrt(_modprod1);

 _vagrdir=_vagrdir/(_modprod*_modprod1);

 If (Fabs(_vagrdir)>0.95)

 If (_valdel1)

 If (Find(_linelist[_lact],llist[]))

 _linespos[] += {_linelist[_lact]};

 EndIf

 Else

 _linespos[] += {_linelist[_lact]};

 EndIf

 EndIf

 EndIf

 EndIf

 _conf=0;

 EndFor

 Printf("number of lines: %g",#_linespos[]);

 For _vis In {0:(#_linespos[]-1)}

 Printf("s_%g: %g",_vis,_linespos[_vis]);

 EndFor

 Delete _indd; Delete _linelist; Delete _nlines; Delete _lact; Delete _pact;

 Delete _ps; Delete _nps; Delete _posp; Delete _pospold;

 40

 Delete _valp; Delete _conf; Delete _vis;

 If (_valdel)

 Delete orient; Delete _vagrdir; Delete _modprod; Delete _modprod1;

 EndIf

 If (_valdel1)

 Delete llist;

 EndIf

 Delete _valdel; Delete _valdel1;

Return

VIII.4. Surfaces at a position

//Macro for finding the surfaces completely within one positions (vpos) in a direction (dir; "x", "y" or "z" values) within a deviation (dev)

//Optional: Search restricted to a list of surfaces (slist)

//The vector _surfspos[] contains all these surfaces.

//Possible extensions: limiting the lines also to a given list

Function Surfsatpos

 //needed inputs: vpos, dir (direction), dev (deviation), slist (restricted list; optional)

 If (!StrCmp(dir,"x"))

 _indd=0;

 ElseIf (!StrCmp(dir,"y"))

 _indd=1;

 Else

 _indd=2;

 EndIf

 _valdel1=Exists(slist);

 _surflist[]=Surface "*";

 _nsurfs=#_surflist[];

 _surfspos[]={};

 For _sact In {0:_nsurfs-1}

 _conf=0;

 _linelist[]=Boundary {Surface{_surflist[_sact]};};

 _nlines=#_linelist[];

 For _lact In {0:_nlines-1}

 _ps[]=Boundary {Line{_linelist[_lact]};};

 _nps=#_ps[];

 For _pact In {0:_nps-1}

 _posp[]=Point{_ps[_pact]};

 _valp=_posp[_indd];

 If ((_valp<(vpos-dev)) || (_valp>(vpos+dev)))

 _conf=1;

 41

 _pact=_nps-1; //Equivalent to break

 EndIf

 EndFor

 EndFor

 If (_conf==0)

 If (_valdel1)

 If (Find(_surflist[_sact],slist[]))

 _surfspos[] += {_surflist[_sact]};

 EndIf

 Else

 _surfspos[] += {_surflist[_sact]};

 EndIf

 EndIf

 EndFor

 Printf("Number of surfaces: %g",#_surfspos[]);

 For _vis In {0:(#_surfspos[]-1)}

 Printf("s_%g: %g",_vis,_surfspos[_vis]);

 EndFor

 Delete _indd; Delete _surflist; Delete _nsurfs;

 Delete _linelist; Delete _nlines; Delete _sact; Delete _lact; Delete _pact;

 Delete _ps; Delete _nps; Delete _posp;

 Delete _valp; Delete _conf; Delete _vis;

 Delete _valdel1;

Return

VIII.5. Surfaces between two positions

With just a few modifications with respect to the previous code, we can also obtain the surfaces

between two positions in one direction.

//Macro for finding the surfaces completely within two positions (vpos1 and vpos2; vpos1<vpos2) in a direction (dir; "x", "y" or "z" values) within a

deviation (dev)

//Optional: Search restricted to a list of surfaces (slist)

//The vector _surfspos[] contains all these lines.

Function Surfsat2pos

 //needed inputs: vpos1 (position1), vpos2 (position2 (>position1)), dir (direction), dev (deviation), slist (restricted list; optional)

 If (!StrCmp(dir,"x"))

 _indd=0;

 ElseIf (!StrCmp(dir,"y"))

 _indd=1;

 Else

 _indd=2;

 42

 EndIf

 _valdel1=Exists(slist);

 _surflist[]=Surface "*";

 _nsurfs=#_surflist[];

 _surfspos[]={};

 For _sact In {0:_nsurfs-1}

 _conf=0;

 _linelist[]=Boundary {Surface{_surflist[_sact]};};

 _nlines=#_linelist[];

 For _lact In {0:_nlines-1}

 _ps[]=Boundary {Line{_linelist[_lact]};};

 _nps=#_ps[];

 For _pact In {0:_nps-1}

 _posp[]=Point{_ps[_pact]};

 _valp=_posp[_indd];

 If ((_valp<(vpos1-dev)) || (_valp>(vpos2+dev)))

 _conf=1;

 _pact=_nps-1; //Equivalent to break

 EndIf

 EndFor

 EndFor

 If (_conf==0)

 If (_valdel1)

 If (Find(_surflist[_sact],slist[]))

 _surfspos[] += {_surflist[_sact]};

 EndIf

 Else

 _surfspos[] += {_surflist[_sact]};

 EndIf

 EndIf

 EndFor

 Printf("Number of surfaces: %g",#_surfspos[]);

 For _vis In {0:(#_surfspos[]-1)}

 Printf("s_%g: %g",_vis,_surfspos[_vis]);

 EndFor

 Delete _indd; Delete _surflist; Delete _nsurfs;

 Delete _linelist; Delete _nlines; Delete _sact; Delete _lact; Delete _pact;

 Delete _ps; Delete _nps; Delete _posp;

 Delete _valp; Delete _conf; Delete _vis;

 Delete _valdel1;

Return

 43

Acronyms:

2D: Two-dimensional

3D: Three-dimensional

CAD: Computer Aided Design

FEM: Finite Element Method

GPL: General Public License.

RBC: Red Blood Cell

[1] http://geuz.org/gmsh/

