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1. Introduction

Economic markets with indivisible goods have been considered using

worthy matching models. In this setting there are different but related

models. In a two-sided matching game or assignment game there are essen-

tial coalitions formed from two different types of agents and these essential

coalitions are the singletons and doubletons containing one agent of each

type. The bilateral assignment game comes initially from Shapley (1955),

but Shapley and Shubik (1971) is the paper most cited. In it the authors

introduce and analyze a housing market as a bilateral assignment market.

We refer now to another seminal paper, Becker (1973). In it, pursuing a

general theory of marriage, Becker introduces a special class of assignment

games, the two-sided assortative ones. In some assignment problems Becker

displays the well-known effect of mating of the likes. Finally, Crawford and

Knoer (1981) develops a model of labor market by using matching and as-

signment tools. This last model easily allows to motivate the relevance to

study m-sided matching games, with m ≥ 3. It is easy to think of situations

where m types of different skills’ workers are needed to achieve valuable

essential coalitions. Precisely the main purpose of this paper is to analyze

m-sided assortative games.

In all these previous models the most relevant set solution is the core.

Roughly speaking the core is formed by all those allocations in which no

coalition of agents can improve its reward on its own. Although the core

of two-sided assignment games has been extensively studied, and important

properties are known: non-emptiness, its lattice structure, the side-optimal

core allocations, etc., the core of m-sided assignment games, m ≥ 3, has

not got the same attention. There are only a few papers on it. Many
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difficulties arise when moving from two-sided to m-sided problems. Most

of the results fall in the negative which in our opinion does not mean the

subject is unimportant.

In this paper we develop positive results. Firstly we analyze a simple

mechanism to describe the whole core of any assortative m-sided assignment

game. Our method characterizes for the first time all the extreme core al-

locations of any assortative m-sided matching game. The procedure can be

applied for the two-sided case as well as the generic m-sided case. The mech-

anism depends only on the assignment array data, with no need to compute

the characteristic function of the game. We give also the maximum number

of extreme core allocations, m · (m!)n−1, where m is the number of sectors

and n is the number of agents in each sector. As a by-product we obtain the

number of extreme core allocations when we deal only with two sectors, 2n.

Finally our mechanism is an extension of the one recently published for the

two-sided assortative assignment games (Mart́ınez-de-Albéniz et al., 2019).

It is simplified in some features and proofs are completely different. The

two-sided assortative case was also analyzed in Eriksson et al. (2000) where

they show that the core is ordered in payoffs inside each sector. We prove

that this property remains true for the general m-sided case.

Multisided assignment games were analyzed for the first time in Quint

(1991). After showing a three-sided example with an empty core, Quint

presents a class of games with the property that the core is non-empty,

i.e. balanced. Stuart (1997) proposes another balanced class of multisided

assignment games, not related to Quint’s class (none of them includes the

other). A proof of the non-emptiness is provided, but no description or

characterization of the core is given in any of the two models.

Sherstyuk (1999) introduces another important class of m-sided match-
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ing games. She analyzes for the first time the assortative multisided assign-

ment games. The definition of this class relies on two conditions imposed on

the assignment array: supermodularity and monotonicity. Both conditions

assume that agents in each sector can be ranked by some trait or ability. Su-

permodularity is a complementary property of agents’ ability across types.

Monotonicity means that ability is aligned with the worth generated by the

essential coalitions.

Assortative multisided assignment games form a large class of m-sided

assignment games: a full-dimensional cone. In Sherstyuk’s paper it is proved

the non-emptiness of the core and she describes some extreme core alloca-

tions, m! of them, by using the associated characteristic function.

2. Preliminaries on the multisided assignment markets

A multisided assignment market (N1, N2, . . . , Nm;A) is formed by m

non-empty pairwise disjoint finite sets of agents, Nk =
{

1k, 2k, . . . , nkk
}

1

for k ∈ M = {1, . . . ,m} and a non-negative m-dimensional array A =

(aE)E∈Πm
k=1N

k . Each entry aE represents some measure of the joint produc-

tivity of agents in E = (i1, i2, . . . , im) ∈ Πm
k=1N

k, one of each set when they

are matched together. We assume that we need exactly one agent of each

type to realize the value of a transaction. Each set Nk is called a sector

and corresponds to a different type of agents, having different skills. Any

m-tuple of agents E = (i1, . . . , im) ∈ Πm
k=1N

k is called an essential coalition

and we use E either as the m-tuple or as the set of elements formed by its

components. In the case of two sectors, m = 2, matrix A is known as the

1To simplify notation, when no confusion arises, we will drop the superscript to describe

the agents in Nk, i.e. Nk = {1, 2, ..., nk} . Its cardinality is |Nk| = nk.
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assignment matrix (Shapley and Shubik, 1972). When the number of agents

is the same in each sector |N1| = |N2| = . . . = |Nm| the assignment market

is said to be square.

A matching µ among N1, . . . , Nm is a set of essential coalitions such that

any agent belongs at most to one coalition in µ, and |µ| = mink∈M |Nk|. An

agent who does not belong to any of the essential coalitions of µ is unmatched

by µ. The set of all matchings is denoted byM
(
N1, . . . , Nm

)
. A matching

µ is optimal if it maximizes
∑

E∈µ aE over the set M
(
N1, . . . , Nm

)
. The

set of all optimal matchings is denoted by M∗A
(
N1, . . . , Nm

)
.

Shapley and Shubik (1971) associates any bilateral assignment market

with a cooperative game2, the assignment game. In the multisided assign-

ment game (Quint, 1991), the set of players is N =
⋃m
k=1N

k and the char-

acteristic function wA is defined for any S ⊆ N such that S ∩ Nk 6= ∅ for

all k ∈M, by

wA (S) = max
µ∈M(S∩N1,...,S∩Nm)

∑
E∈µ

aE , and 0 otherwise.

Notice that any essential coalition evaluates its worth by exactly the cor-

responding entry, and any other coalition determines its worth by essential

coalition combinations its members can form.

The agents of a multisided assignment market may divide among them-

selves their worth, wA(N), in any way they like. Thus an allocation is a

non-negative vector x = (x1, x2, . . . , xm) ∈ Πm
k=1R

nk
+ . Vector xk ∈ Rnk

+ is

interpreted as the payoffs to agents in Nk, i.e. xki is the payoff associated to

2In a cooperative game (N, v), the set of players is given by N = {1, . . . , n} and v is a

function that assigns a real number v(S) for any coalition S ⊆ N with v(∅) = 0. Its core

is defined as C(v) := {x ∈ Rn |
∑

i∈N xi = v(N) and for all S ⊆ N,
∑

i∈S xi ≥ v(S)}. A

game is named balanced if its core is non-empty.
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player i of sector k. For any essential coalition E = (i1, . . . , im) ∈ Πm
k=1N

k

we write x(E) =
∑m

k=1 x
k
ik
.

The core of the multisided assignment game C (wA) is described for any

fixed optimal matching µ ∈ M∗A
(
N1, . . . , Nm

)
as those allocations x ∈

Πm
k=1R

nk
+ satisfying

x(E) = aE for all E ∈ µ,

x(E) ≥ aE for all E /∈ µ,

and unassigned agents by µ receive a zero payoff in any core allocation.

In the two-sided case, Shapley and Shubik (1971) proves that the core

of any assignment game is always non-empty, but in the multisided case,

m ≥ 3, it is known (Kaneko and Wooders, 1982, or Quint, 1991) that the

core may be empty.

Becker (1973) introduces two-sided assortative assignment markets. For

multisided assignment markets, we assume that the elements of each sector

are ordered by some trait and then Nk for k ∈M is an ordered set with the

natural order. Therefore Πm
k=1N

k is a lattice and for any pair of essential

coalitions E,E′ ∈ Πm
k=1N

k we can define E∨E′ as the maximum component-

wise and E ∧ E′ as the minimum component-wise.

A multisided assignment market (N1, N2, . . . , Nm;A) is an assortative

market if it satisfies:

a) supermodularity:3

aE + aE′ ≤ aE∨E′ + aE∧E′ for all E,E′ ∈ Πm
k=1N

k. (1)

3Notice that this condition implies that array entries form a supermodular function in

the lattice N1 ×N2 × . . .×Nm with the usual order (see Topkis, 1998).
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b) monotonicity (non-decreasing rows, columns, etc.):

aE ≤ aE′ for all E ≤ E′, E,E′ ∈ Πm
k=1N

k. (2)

Whenever these two conditions are met, array A is called assortative.

From the supermodularity condition, in a multisided assortative assign-

ment market at least one optimal matching µ ∈M∗A
(
N1, . . . , Nm

)
is mono-

tone,4 i.e.

for any E,E′ ∈ µ, either E ≤ E′ or E′ ≤ E.

When the assortative assignment market is square, |N1| = |N2| = . . . =

|Nm| = n there is only one monotone matching which is placed in the main

diagonal. If we denote the following essential coalitions: Ei = (i, i, . . . , i),

for i = 1, 2, . . . , n, this monotone matching is µ = {E1, E2, . . . , En} . This

is, by the previous observation, optimal in the square supermodular case,

maybe not unique.

From now on, we concentrate in the square case, since any non-square

assortative array could be analyzed by adding null rows of entries at the

beginning of the array, to make it square. In this way we preserve super-

modularity and the monotonicity conditions.

We give some new features of any square multisided assortative assign-

ment market. To this end, the central strip in a square multisided assignment

market are those essential coalitions

E = (i1, i2, . . . , im) such that max
k∈M

ik − min
k∈M

ik ≤ 1.

4Notice that if there are two essential coalitions E,E′ of µ that are not comparable ,

we can use supermodularity to obtain a new optimal matching with E ∨ E′ and E ∧ E′.

Sherstyuk (1999) calls such a matching consecutive.

8



or equivalently those essential coalitions such that

Ei−1 ≤ E ≤ Ei for i = 2, . . . , n. (3)

Theorem 2.1. For any square multisided assortative assignment market

(N1, N2, . . . , Nm;A) we have:

(a) The main diagonal of the assignment array A is an optimal matching

(maybe not unique).

(b) An allocation x ∈ Πm
k=1R

nk
+ belongs to the core C(wA) if and only if 5

(b1) x(E) = aE for all E = E1, E2, . . . , En, (4)

(b2) x(E) ≥ aE for all E ∈ Πm
k=1N

k such that

Ei−1 < E < Ei for i = 2, . . . , n. (5)

(c) At any core allocation x ∈ C(wA) we have for all k ∈M

0 ≤ xk1 ≤ xk2 ≤ . . . ≤ xkn.

Proof. Item (a) follows by our previous comments. To prove (b) assume that

x ∈ Πm
k=1R

nk
+ satisfies (4) and (5). We prove that x(E) ≥ aE for all essential

coalitions E = (i1, i2, . . . , im) by induction on r = maxk∈M ik −mink∈M ik.

Assume the induction hypothesis: If E is such that maxk∈M ik−mink∈M ik ≤

r then x(E) ≥ aE . Notice that for r = 1 the inequalities are just (4) and (5).

Let E = (i1, i2, . . . , im) such that maxk∈M ik −mink∈M ik = r ≥ 2. Denote

j = 1 + mink∈M ik. Then, by supermodularity, aE + aEj
≤ aE∧Ej

+ aE∨Ej
.

Clearly E ∧ Ej belongs to the central strip, E ∨ Ej satisfies the induction

hypothesis, and x(Ej) = aEj
. Therefore, aE ≤ x(E ∧ Ej) + x(E ∨ Ej) −

5We denote E < E′ for E ≤ E′ and E 6= E′.
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x(Ej) = x(E). To see (c), assume for instance x ∈ C(wA). Then for i =

1, . . . , n − 1 we have x(Ei) = aEi
, and take the essential coalition E′ given

by (i+1, i, . . . , i). Then we have
∑m

k=1 x
k
i = aEi

, and x1
i+1 +

∑m
k=2 x

k
i ≥ aE′ .

Thus, 0 ≤ aE′ − aEi
≤ x1

i+1 − x1
i .

Notice that item (b) means that only the central strip of array A is

necessary to determine the core conditions. Item (c) means that in any

square assortative market, payoffs in the core are such that for any sector,

agents are ranked in the same way.

Remark 2.1. Looking at the proof of Theorem 2.1, notice that the proof of

items (a) and (b) only uses the supermodularity condition (1) of the assign-

ment array.

Item (c) is implied by the monotonicity condition (2) and the fact that

we have an optimal matching in the main diagonal. It could be interesting to

know which conditions on the array A characterize the results of the above

theorem.

A different proof of item (b) in the supermodular two-sided case can be

found in Mart́ınez-de-Albéniz and Rafels (2014). The fact that payoffs to

agents in the core are ordered is known for two-sided assortative matrices

(see Eriksson et al., 2000).

3. Extreme core allocations

Now we give a simple procedure to obtain all the extreme core points. To

this end, for notational convenience we introduce, for any square assortative

multisided assignment market, an auxiliary agent 0 for any sector. We

denote E0 = (0, 0, . . . , 0) with aE0 = 0 and also for any E such that E0 <

E < E1 we denote aE = 0.
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A path p is a sequence of essential coalitions connecting the initial one E0

with the last one En passing through all essential coalitions E0, E1, . . . En

where Ei = (i, i, . . . , i) for i = 0, 1, . . . , n. Moreover, between Ei−1 and

Ei, i = 1, . . . , n, the essential coalitions are such that from one essential

coalition to the next one we change the agent of only one sector, moving

from agent i− 1 to agent i. Then path p is

p =
(
E0, . . . , E1, . . . , Ei−1, E

1
i , E

2
i , . . . , E

m−1
i , Ei, . . . , En

)
,

where Ei−1 < E1
i < E2

i < . . . < Em−1
i < Ei, for i = 1, 2, . . . , n. As a

consequence, these paths are included in the central strip, see (3). Given a

path p, notice that each block Ei−1 < E1
i < E2

i < . . . < Em−1
i < Ei, for

i = 1, 2, . . . , n can also be described by a particular permutation θi ∈ Θ(M)

indicating the order of the sectors that are sequentially increased. The set

of all paths is denoted by Pmn .

For each path p ∈ Pmn we associate an allocation vector, which we name

the p-vector, xp ∈ Πm
k=1R

nk
+ by solving the linear equations given by all the

places of the selected path

xp(E) = aE for E belonging to p, (6)

where we use (xp)k0 = 0, for k = 1, . . . ,m, that is any auxiliary agent 0 gets

a null payoff.

For each path p the above linear system has a unique non-negative solu-

tion. We prove uniqueness and non-negativeness by induction over n. Firstly

notice that if n = 1 there are m! different paths between E0 and E1, but

vector xp is aE1ek for some k ∈ M where ek is the canonical vector. As-

sume that the solution is unique and non-negative up to Ei−1, and without

loss of generality assume that the next essential coalition E1
i of path p is
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(i, i− 1, . . . , i− 1). Then by (6) we have

m∑
k=1

xki−1 = aEi−1
, and

x1
i +

m∑
k=2

xki−1 = aE1
i
,

where we have dropped the superscript p for the path. Then, using the

monotonicity (2) and the induction hypothesis we obtain

x1
i = x1

i−1 + (aE1
i
− aEi−1

) ≥ x1
i−1 ≥ 0.

Therefore for each path p ∈ Pmn we have a unique and non-negative p-vector.

Now let us write Ext(C(wA)) the set of all extreme core points.6 We

prove next that any extreme core point is linked to a path, that is, there

is a correspondence between paths and extreme core points. This is our

following theorem, but we need some lemmas and notation.

Lemma 3.1. Let (N1, N2, . . . , Nm;A) be a square multisided assortative

assignment market. For any extreme core point x ∈ C(wA) we have xk
∗

1 =

aE1 for some k∗ ∈M and xk1 = 0 for all k ∈M \ {k∗}.

Proof. Suppose, on the contrary, that there are two sectors, k′, k′′ ∈M such

that xk
′

1 > 0 and xk
′′

1 > 0 and define ε = min{xk′1 , xk
′′

1 } > 0. Now define

y, z ∈ Πm
k=1R

nk
+ as follows, for t = 1, . . . , n,

ykt =


xkt , for k ∈M \ {k′, k′′},

xk
′
t + ε, for k = k′,

xk
′′
t − ε, for k = k′′,

zkt =


xkt , for k ∈M \ {k′, k′′},

xk
′
t − ε, for k = k′,

xk
′′
t + ε, for k = k′′.

6If X ⊆ Rn is a convex set, an element of this convex set x ∈ X is an extreme point if

x = 1
2
y + 1

2
z for some y, z ∈ X, then x = y = z.
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Clearly by Theorem 2.1(c) and the definition of ε these are non-negative

vectors, and since y(E) = x(E) and z(E) = x(E) for all essential coalitions

E, we have y, z ∈ C(wA). As a consequence x = 1
2y + 1

2z with y 6= x

and z 6= x, getting a contradiction with the fact that x is an extreme core

point.

Now we introduce for any i ∈ {1, 2, . . . , n} the submarket given by all

the first i agents from any sector, and the corresponding restricted array.

Formally, that is (N1
i , N

2
i , . . . , N

m
i ;Ai) where Nk

i = {1, . . . , i} for all k ∈M

and Ai is given by Ai = (aE)E∈Πm
k=1N

k
i
. Each of these markets is assortative

and an optimal matching is given by the main diagonal when the original

market is assortative and square.

Next we relate the extreme core points of these markets with our original

square multisided assortative assignment market. To this end, for each x ∈

C(wA) we denote by x̄i the restriction of vector x to the coordinates of

Πm
k=1N

k
i , i.e.

x̄i = (x1
1, . . . , x

1
i , x

2
1, . . . , x

2
i , . . . , x

m
1 , . . . , x

m
i ) ∈ Πm

k=1R
Nk

i
+ . (7)

Clearly x̄i ∈ C(wAi) for all i ∈ {1, 2, . . . , n} if x ∈ C(wA).

In our next lemma we prove that whenever we take an extreme core point

we obtain an extreme core point, given by the restriction, for all submarkets

previously defined.

Lemma 3.2. Let (N1, N2, . . . , Nm;A) be a square multisided assortative

assignment market, and x ∈ C(wA) be an extreme core point. Then, x̄i ∈

C(wAi) is an extreme core point for i = 1, . . . , n− 1.

Proof. Suppose on the contrary that i∗ ∈ {1, . . . , n − 1} is the first index

such that x̄i
∗

is not an extreme point of C(wAi∗ ). By Lemma 3.1, i∗ > 1.
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Since we are assuming x̄i
∗ ∈ C(wAi∗ ) but not an extreme core point,

there are two points y∗, z∗ ∈ C(wAi∗ ) such that

x̄i
∗

=
1

2
y∗ +

1

2
z∗ with y∗ 6= x̄i

∗
and z∗ 6= x̄i

∗
. (8)

Notice that for all i < i∗ we have yki = zki = xki for all k ∈ M, because the

corresponding restriction x̄i
∗−1 gives an extreme core point.

Now define the following vectors y, z ∈ Πm
k=1Rnk as follows: for all k ∈M,

yki =

xki , for i = 1, . . . , i∗ − 1,

xki + εk, for i = i∗, . . . , n,
zki =

xki , for i = 1, . . . , i∗ − 1,

xki − εk, for i = i∗, . . . , n.

where εk = (y∗)ki∗ − xki∗ for all k ∈ M. Notice that because of (8), at least

one εk must be different from zero, and we have (z∗)ki∗ − xki∗ = −εk for all

k ∈M. Moreover∑
k∈M

εk =
∑
k∈M

(y∗)ki∗ − xki∗ = y∗(Ei∗)− x(Ei∗) = aEi∗ − aEi∗ = 0. (9)

We claim y, z ∈ C(wA) and x = 1
2y + 1

2z with y 6= x and z 6= x.

Firstly we show y ≥ 0 and z ≥ 0. Clearly yki ≥ 0 and zki ≥ 0 for

i = 1, . . . , i∗ − 1, and all k ∈ M. Moreover, for all k ∈ M we have ykn ≥

ykn−1 ≥ . . . ≥ yki∗ and zkn ≥ zkn−1 ≥ . . . ≥ zki∗ , and to conclude notice that

yki∗ = xki∗ + εk = (y∗)ki∗ ≥ 0 and also zki∗ ≥ 0.

Secondly, y(Ei) = aEi
, z(Ei) = aEi

for i = 1, . . . , n, by their definitions.

Finally, we show that y(E) ≥ aE and z(E) ≥ aE for all essential coali-

tions E in the central strip. For all essential coalitions in the central strip

such that Ei∗ ≤ E, by (9) y(E) = x(E) +
∑

k∈M εk = x(E) ≥ aE and

analogously z(E) ≥ aE . By its definition y(E) = z(E) = x(E) ≥ aE for all

essential coalitions E, in the central strip such that E ≤ Ei∗−1. For the case

Ei∗−1 < E < Ei∗ , we claim that y(E) = y∗(E) and z(E) = z∗(E), since we

have that yki∗ = (y∗)ki∗ and zki∗ = (z∗)ki∗ for all k ∈M.
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By Theorem 2.1(b) we have y, z ∈ C(wA) and x = 1
2y + 1

2z with y 6= x

and z 6= x, contradicting x is an extreme core point.

These two lemmas allow to establish our main theorem.

Theorem 3.1. Let (N1, N2, . . . , Nm;A) be a square multisided assortative

assignment market. In it, p-vectors coincide with extreme core points, i.e.

Ext(C(wA)) = {xp}p∈Pm
n
.

Proof. We prove first that for all path p ∈ Pmn we have xp ∈ C(wA). To this

end we prove xp(E) ≥ aE for all Ei−1 < E < Ei for all i = 1, . . . , n. By

Theorem 2.1(b) this is enough to justify xp ∈ C(wA).

Without loss of generality we assume that the essential coalitions of path

p between Ei−1 and Ei, i = 1, . . . n, are given by

Ei−1, (i, i− 1, . . . , i− 1), (i, i, i− 1, . . . , i− 1), . . . , Ei, (10)

that is, they follow the natural order of sectors, first moves the first sector,

second the second sector and so forth. We denote by Eti = (i, . . . , i,

t
^
i , i −

1, i− 1, . . . , i− 1), 1 ≤ t ≤ m− 1, the essential coalition in the previous path

such that t is the position of the last i agent, i = 1, . . . , n. As a matter of

notation, E0
i = Ei−1 and Emi = Ei.

Given any essential coalition E = (i1, i2, . . . , im) with Ei−1 < E <

Ei, i = 1, . . . , n, we define r(E) = #{k | ik = i}, the number of i agents in

the essential coalition E. Now, we prove xp(E) ≥ aE with Ei−1 < E < Ei

by induction on the number r(E). Clearly 1 ≤ r(E) ≤ m − 1. If r(E) = 1

let l be the position of the only i. If l = 1 there is nothing to prove, and

if l > 1 notice that E ∧ El−1
i = Ei−1 and E ∨ El−1

i = Eli. Therefore, by

supermodularity and the way essential coalitions of path p have been chosen,
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aE + aEl−1
i
≤ aEi−1

+ aEl
i
, and then aE + xp(El−1

i ) ≤ xp(Ei−1) + xp(Eli).

Now clearly xp(E) ≥ aE . Assume our induction hypothesis is true up to

r−1 and let E be such that r(E) = r. There are then r positions with agent

i and let l be the last of these positions. Then aE + aEl−1
i
≤ aE∧El−1

i
+ aEl

i
,

by supermodularity. We can apply the induction hypothesis to E ∧ El−1
i

since it has r(E ∧ El−1
i ) = r − 1 positions with an i. Now aE + x(El−1

i ) ≤

aE∧El−1
i

+ aEl
i
≤ x(E ∧ El−1

i ) + x(Eli), and therefore aE ≤ x(E) to finish

with this part of the proof.

Moreover, vector xp for p ∈ Pmn is an extreme core point. To see it,

just notice that if it were the midpoint of two other core points, these core

points must satisfy with equality all the entries of path p. By uniqueness

of the solution, they coincide with xp. We have established that each path

gives an extreme core point.

Now we prove that any extreme core point is associated to some path.

Let x ∈ C(wA) be an extreme core point. Then by Lemma 3.2, x̄i is also an

extreme core point of C(wAi) for all i ∈ {1, . . . , n}, see (7) for notations.

Suppose on the contrary that x is not a p-vector for any path p ∈ Pmn ,

and let i∗ ∈ {1, . . . , n} be the first index such that x̄i
∗

is not a p-vector for

any p ∈ Pmi∗ . Notice that |N1
i∗ | = |N2

i∗ | = . . . = |Nm
i∗ | = i∗.

Clearly, by Lemma 3.1, i∗ > 1 since any path between E0 and E1 gives

aE1 to some agent and zero to the others. Vector x̄i
∗−1 is a p-vector for

some path pi∗−1 ∈ Pmi∗−1 and consider the set of paths in Pmi∗ that coincide

with pi∗−1 for all essential coalitions in the central strip E ≤ Ei∗−1. Denote

this set by Bi∗ .

Consider now the set given by convex hull of the p-vectors corresponding

to paths in Bi∗ , that is Conv{xp}p∈Bi∗ . This is a non-empty, compact and

convex set and clearly vector x̄i
∗

cannot be a convex combination of these
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core points {xp}p∈Bi∗ . Then we can apply the separating hyperplane theorem

(see Boyd and Vandenberghe, 2004) to this point and set. Therefore there

exists vector

r = (r1
1, r

1
2, . . . , r

1
i∗ , r

2
1, r

2
2, . . . , r

2
i∗ , . . . , r

m
1 , r

m
2 , . . . , r

m
i∗ ) ∈ Πm

k=1Rn
k
i∗

such that

r · x̄i∗ < r · xp for all p ∈ Bi∗ . (11)

Let θ ∈ Θ(M) be an ordering of sectors M such that r
θ(1)
i∗ ≥ rθ(2)

i∗ ≥ . . . ≥

r
θ(m)
i∗ , and define the following sequence of sets: S0 = ∅, S1 = {θ(1)}, S2 =

{θ(1), θ(2)}, . . . , Sm = M.

For each S ⊆M we associate the corresponding essential coalition

ES = (i1, i2, . . . , im) with ik = i∗ if k ∈ S and ik = i∗ − 1 if k /∈ S.

Notice that ES0 = Ei∗−1 = (i∗ − 1, i∗ − 1, . . . , i∗ − 1) and ESm = Ei∗ =

(i∗, i∗, . . . , i∗) and take a path p̄ ∈ Bi∗ such that ES1 , ES2 , . . . , ESm−1 are the

essential coalitions of the path p̄ between Ei∗−1 and Ei∗ . Then the p-vector

associated to the above path p̄ ∈ Bi∗ satisfies

xp̄(ESk) = aESk for k = 0, 1, . . . ,m. (12)

The previous system (12) gives

(xp̄)
θ(k)
i∗ = (xp̄)

θ(k)
i∗−1 + aESk − aESk−1 for k = 1, 2, . . . ,m.

By construction of path p̄ we have that

(xp̄)ki = (x̄i
∗
)ki = xki for 1 ≤ i ≤ i∗ − 1 and all k ∈M. (13)
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Now,

r · xp̄ =
m∑
k=1

i∗−1∑
i=1

rki · (xp̄)ki +
m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗

=
m∑
k=1

i∗−1∑
i=1

rki · xki +
m∑
k=1

r
θ(k)
i∗ ·

(
(xp̄)

θ(k)
i∗−1 + aESk − aESk−1

)
=

m∑
k=1

i∗−1∑
i=1

rki · xki +

m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1

+
m−1∑
k=1

(
r
θ(k)
i∗ − rθ(k+1)

i∗

)
· aESk − r

θ(1)
i∗ · aES0 + r

θ(m)
i∗ · aESm

≤
m∑
k=1

i∗−1∑
i=1

rki · xki +

m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1

+
m−1∑
k=1

(
r
θ(k)
i∗ − rθ(k+1)

i∗

)
· x(ESk)− rθ(1)

i∗ · x(ES0) + r
θ(m)
i∗ · x(ESm)

=
m∑
k=1

i∗−1∑
i=1

rki · xki +
m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1 +
m∑
k=1

r
θ(k)
i∗ ·

(
x(ESk)− x(ESk−1)

)
=

m∑
k=1

i∗−1∑
i=1

rki · xki +

m∑
k=1

r
θ(k)
i∗ · (xp̄)θ(k)

i∗−1 +

m∑
k=1

r
θ(k)
i∗ · xθ(k)

i∗ −
m∑
k=1

r
θ(k)
i∗ · xθ(k)

i∗−1

= r · x̄i∗ +

m∑
k=1

r
θ(k)
i∗ ·

(
(xp̄)

θ(k)
i∗−1 − x

θ(k)
i∗−1

)
= r · x̄i∗ ,

where the inequality comes from x ∈ C(wA) and the fact that r
θ(k)
i∗ −

r
θ(k+1)
i∗ ≥ 0 for k = 1, . . . ,m− 1, and the last equality by (13).

We have reached a contradiction with (11). Consequently any extreme

core point is a p-vector.

Once we have established the main result of the paper, we move to some

related questions. We have just proved that paths from E0 to En char-

acterize the extreme core allocations of any square assortative multisided
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assignment market. We discuss now which is the maximum number of ex-

treme core allocations.

Take an arbitrary square assortative multisided game with m sectors and

n agents in each sector. We claim the maximum number of extreme core

allocations is

m · (m!)n−1. (14)

Indeed, as any path is composed of n subpaths, one for each subpart from

Ei−1 to Ei, for i = 1, . . . , n, we easily obtain that the total number of paths

from E0 to En is given by (m!)n. Since we are interested in counting how

many extreme core allocations, we have to take into account that at the

beginning of any path, that is, from E0 to E1, only m different allocations

are possible. At this part m! paths collapse at most into m different vectors,

precisely those vectors where the worth aE1 is allocated to a particular agent

and give a zero payoff to the rest of agents, see Lemma 3.1. By all these

arguments, formula (14) is justified.

For the special case where7 array A satisfies

aE + aE′ = aE∨E′ + aE∧E′ for any essential coalitions E,E′, (15)

the formula (14) reduces to m if aE1 > 0 or to 1 if aE1 = 0.

As a numerical illustration, take the following 2 × 2 × 2 array A, with

Nk =
{

1k, 2k
}

for k = 1, 2, 3, which is a valuation array,

A =

 10 11

12 13

  14 15

16 17

 .

In it the rows correspond to agents in the first sector, columns to agents

in the second sector and matrices to agents in the third sector. Then, for

7These are supermodular and submodular arrays, and they are called valuation arrays.

19



example, a(1,2,2) = 15. Its extreme core allocations are

x1 = (10, 12; 0, 1; 0, 4),

x2 = (0, 2; 10, 11; 0, 4),

x3 = (0, 2; 0, 1; 10, 14).

They can be computed by applying the p-vectors mechanism. Notice that

to apply this mechanism we have to check the monotonicity condition (2),

not implied by the fact that the array is a valuation.

Moreover any square valuation array A, monotonic or not, is fully-

optimal in the sense that all its matchings are optimal, i.e. M∗A
(
N1, . . . , Nm

)
=

M
(
N1, . . . , Nm

)
. Any pair of non-comparable essential coalitions E,E′ in

any matching can be changed by E∨E′ and E∧E′ without loosing efficiency.

The converse is not true,8 as the next example shows. The 2× 2× 2 array

A,

A =

 3 6

6 6

  6 6

6 9


is a fully-optimal multisided assignment matrix, but not a valuation, since

a(1,1,1) + a(2,1,2) = 3 + 6 = 9 < a(1,1,2) + a(2,1,1) = 12.

Moreover, it has an empty core, since being a fully-optimal matrix, any

core allocation must satisfy with equality all the array’ entries, but, as the

reader can check, they form a non-compatible linear system of equations.

Another important feature of a valuation array is that its entries can

always be arranged monotonically by a suitable permutation of the agents.

Therefore they can be seen as assortative markets. The way to see which

permutation is suitable is the following. Take any core element and from it

8For two-sided square assignment matrices, valuation and fully-optimal are equivalent.
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derive a permutation of agents in each sector such that arranges the compo-

nents in a non-decreasing way. Notice that this core element satisfies with

equality all entries in the array. In this way we obtain an assortative array,

that is, where the monotonicity property also holds. As a consequence we

can apply our results to any square valuation array. This fact simplifies the

assertions made in Sherstyuk (1999) since there is no need to distinguish

valuation markets from assortative ones.

It is easy to generate examples in which the maximum number of extreme

core points given in (14) is attained.

Consider the following 2× 2× 2 array A,

A =

 1 2

2 4

  3 7

5 10

 .

Notice that all inequalities of the supermodular property concerning non-

comparable essential coalitions are strict. There are 3 · (3!)1 = 18 different

extreme core allocations, that correspond to different paths.

x1 = (1, 2; 0, 2; 0, 6), x2 = (0, 1; 1, 3; 0, 6),

x3 = (0,1;0,2;1,7), x4 = (1, 2; 0, 5; 0, 3),

x5 = (0,1;1,6;0,3), x6 = (0, 1; 0, 5; 1, 4),

x7 = (1, 3; 0, 1; 0, 6), x8 = (0, 2; 1, 2; 0, 6),

x9 = (0,2;0,1;1,7), x10 = (1,4;0,1;0,5),

x11 = (0, 3; 1, 2; 0, 5), x12 = (0, 3; 0, 1; 1, 6),

x13 = (1, 3; 0, 5; 0, 2), x14 = (0,2;1,6;0,2),

x15 = (0, 2; 0, 5; 1, 3), x16 = (1,4;0,4;0,2),

x17 = (0, 3; 1, 5; 0, 2), x18 = (0, 3; 0, 4; 1, 3).

The six vectors in boldface correspond to the m! = 3! = 6 vectors given in

Sherstyuk (1999).
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