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Abstract The S1 model has been a central geometric
model in the development of the field of network ge-
ometry. It has been mainly studied in its homogeneous
regime, in which angular coordinates are independently
and uniformly scattered on the circle. We now investigate
if the model can generate networks with targeted topo-
logical features and soft communities, that is, heteroge-
neous angular distributions. Under these circumstances,
hidden degrees must depend on angular coordinates and
we propose a method to estimate them. We conclude that
the model can be topologically invariant with respect to
the soft-community structure. Our results might have
important implications, both in expanding the scope of
the model beyond the independent hidden variables limit
and in the embedding of real-world networks.

1 Introduction

Complex networks have been widely studied in the last
twenty years in many different contexts, from biological
to social and technological [1,2]. There seems to be some
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universal features common to the topology of many net-
works. For instance, in most cases, they are scale-free,
meaning that their degrees are power-law distributed, a
phenomenon that was explained in early times of net-
work theory by the preferential attachment mechanism:
as the network grows, new nodes connect to highly con-
nected —or popular— nodes with higher probability [3].

However, preferential attachment alone cannot ex-
plain the high level of clustering coefficient —the frac-
tion of existing triangles— observed in real systems. To
explain clustering, the concept of similarity was intro-
duced [4]. The basic idea is that nodes connect not only
because they are popular, but also because they are sim-
ilar in some sense. Thus, if node A connects to nodes B
and C because they are similar to A, B and C should
also be similar and therefore have a high probability of
being connected. This transitivity of similarity suggests
encoding similarities between nodes as distances in met-
ric spaces, since the triangle inequality is one of their
defining properties: if the distance dBC in the underly-
ing metric space measures the dissimilarity between B
and C, it must be bounded by dBC ≤ dAB + dAC , there-
fore inducing the observed transitive connections.

The S1 model was proposed based on these ideas [4].
In this model, N nodes are randomly scattered into a
circle of radius R = N/2π. Every node i is also assigned
a hidden degree κi from any distribution (for instance, a
power-law P (κ) ∼ κ−γ), and every pair of nodes i and j
is connected with probability

pij =
1

1 +
(

dij
µκiκj

)β , (1)

where dij is the distance along the circle; µ and β are two
global parameters controlling the average degree and the
clustering coefficient, respectively. Notice that this con-
nection probability takes the form of a gravity law, as it
increases with the product of hidden degrees (populari-
ties) and decreases with the distance between them (dis-
similarity). Despite its apparent simplicity, this model
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generates networks that resemble very much real net-
works; they are scale-free, small-world and have high lev-
els of clustering. In fact, the degrees ki are proportional
to the hidden degrees κi, so the model is versatile enough
to generate networks with different degree distributions1.

The possibilities of the S1 model go beyond generat-
ing realistic networks. The similarity space coordinates
of the nodes of a real network can be inferred by find-
ing the coordinates that maximise the likelihood for the
real network to be generated by the model [6,7,8]. This
embedding process yields a map of the network strik-
ingly meaningful. For instance, it allows to navigate the
network efficiently by mapping the coordinates to hyper-
bolic space. Moreover, being able to access to the sim-
ilarity space coordinates of nodes opens the path to a
completely new way of analysing complex networks. For
example, in Refs. [6,7,8] it was shown that the angular
coordinates of nodes in real-world networks are not uni-
formly distributed. Instead, they are distributed in a het-
erogeneous manner, with angular regions more densely
populated than others. These dense regions reveal the
community structure of the network [9,10,11]. Indeed, by
partitioning the network using the largest gaps between
consecutive nodes along the circle as community bound-
aries, the partitions obtained have a modularity com-
parable to that of other community detection methods
currently available in the literature. Furthermore, this
geometric method seems to have higher resolution [8].

In Ref. [12], the authors introduced the Geometric
Preferential Attachment (GPA) model, a generalised ver-
sion of the growing geometric model Popularity vs. Sim-
ilarity Optimization [13] in which soft communities, as
they named these denser angular regions, emerge from
the growth dynamics of the network without altering
topological properties like the degree distribution or the
clustering spectrum of the resulting network. In this pa-
per, we address the question of whether the S1 model
can generate networks with given target topological fea-
tures and soft communities, that is, heterogeneous angu-
lar distributions. To that end, any angular distribution
could be considered in principle. For instance, one could
impose some non-uniform distribution function a priori.
However, the angular distribution from Ref. [12] is not
an imposition, but it rather emerges from a preferential
attachment process in similarity space that seems to be
a plausible explanation for the nature of communities in
real systems. We focus on that particular angular distri-
bution for our study.

1 The original model defined in [4] is in fact more general,
allowing for any connection probability pij as long as it de-

pends on the argument dij/(κiκj)
1/D, where now the space

is the D-dimensional sphere and dij the geodesic distance on
the sphere. The particular functional form in Eq. (1) allows us
to interpret the network as a set of non-interacting fermions
(the links) embedded in the hyperbolic plane, with the hy-
perbolic length of a link playing the role of its energy and β
playing the role of the inverse of the bath temperature [5].

2 Results

In the bare S1 model, hidden degrees and similarity coor-
dinates are typically assumed to be uncorrelated, so ev-
ery node’s hidden variables are withdrawn independently
from some joint distribution ρ(κ, θ) that factorises [4,14].
Nevertheless, the GPA is a growing model, so the angu-
lar coordinates and hidden degrees of different nodes are
correlated. We are therefore forced to drop such simpli-
fying assumptions.

In the GPA growth process, the degree of a node is
determined by its age —the older the node is, the higher
its degree. Moreover, when a new node t is added to
the system, the probability for it to be placed at polar
coordinate θt depends on the number of nodes s < t

at angular distance ∆θst < 2/(s
1

γ−1 t
γ−2
γ−1 ), where γ is

the exponent of the power-law degree distribution. This
implies a very particular dependence between similar-
ity coordinates and degrees: the angular coordinate of
a node must depend on the angular coordinates of all
nodes with higher degree. Hence, we must include the
implicit ordering in the sequence of nodes induced by
the degree sequence in our heterogeneous version of the
S1 model. That could be done by first assigning a hidden
degree κi from a power-law distribution P (κ) ∼ κ−γ to
every node, ordering the nodes according to their hidden
degrees and reproducing the angular preferential attach-
ment from the GPA model with that particular ordering.
At the end of the process, we would obtain a set of N
nodes with hidden degrees power-law distributed with
exponent γ and the same angular distribution as the
GPA model for that value of γ. However, if we then con-
nected every pair of nodes with the probabilities given
by Eq. (1), degrees and hidden degrees would not be pro-
portional; the reason for such deviation from the usual
behaviour of the model is that a homogeneous angular
distribution is required for the proportionality between
hidden and observed degrees [14], which is not fulfilled
here by construction; hidden degrees must depend on
the spatial distribution of nodes as well. In the following
subsection, we address this issue. We explore the het-
erogeneous regime of the S1 model and show that it is
capable of generating networks with power-law degree
distributions, high clustering and soft communities.

2.1 Geometric Preferential Attachment in the S1 model

From the previous discussion, we see that hidden degrees
and angles are considerably entangled in the modelling of
geometric networks with soft communities. In this con-
text, the S1 model requires the following steps:

1. Assigning angular coordinates: Angular coordi-
nates are assigned according to the Geometric Prefer-
ential Attachment, which requires an ordering. There-
fore, assign a label i = 1, . . . , N to every node. Then,
for every value of i from 1 to N :
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Fig. 1 Geometric layout of the networks generated by the S1 model with Geometric Preferential Attachment. In all cases,
N = 1000 and β = 2.5. Every column corresponds to a value of γ and every row to a value of Λ. As in Ref. [12], soft
communities emerge for low values of the initial attractiveness Λ. In order to clarify the figure, every node’s target degree is
represented as a radial coordinate ri = R−2 ln ktari /ktarN , where ktarN is the smallest target degree and R = 2 ln

(
N/(πµ(ktarN )2)

)
.

When using the hidden degrees instead of the target degrees, this mapping constitutes the isomorphism between the S1 model
and the H2 model in hyperbolic space [14,6,7,8].

a. Sample i candidate angular positions φj , j = 1, . . . , i
for node i from U(0, 2π).

b. For every candidate position, define the attrac-
tiveness A(φj) of candidate j as the number of
nodes s with an already defined angular position,
that is, with s < i, at angular distance ∆θis <

2/(s
1

γ−1 i
γ−2
γ−1 ), where γ is the exponent of the tar-

get power-law degree distribution.

c. Assign to node i the angular coordinate of candi-
date j, i. e. set θi = φj , with probability

Π(φj) =
A(φj) + Λ∑i

n=1 (A(φn) + Λ)
. (2)

The initial attractiveness Λ ≥ 0 is a parameter
that sets the strength of the geometric preferential
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Fig. 2 Topological properties of the networks generated by the S1 model with Geometric Preferential Attachment with
N = 1000 and β = 2.5. Every color corresponds to a different value of the initial attractiveness Λ. The top row shows the
complementary cumulative degree distribution Pc(k) =

∫∞
k
P (k)dk, which behaves as Pc(k) ∼ k1−γ for P (k) ∼ k−γ . Black

dashed lines indicate such scaling. In the bottom row, the mean local clustering spectra c̄(k) are drawn. To avoid fluctuations
in the target degrees, all networks with the same exponent γ have been generated with the same target degree sequence
{ktari }. Despite their angular distributions being completely different (Fig. 1), their topologies are extremely similar.

attachment. For very high values of Λ, all candi-
date angles become equally likely, so the resulting
angular distribution is homogeneous (see Fig. 1).

This process generates a distribution of nodes in the
circle analogous to the angular distribution of the
GPA model. However, notice that, in the GPA model,
connections are established at the same time as po-
sitions are decided, whereas in the former steps, no
connections have yet been made.

2. Assigning hidden degrees: Once every node has
a defined angular position, we need to determine its
hidden degree such that the resulting observed de-
grees, that is, after the connections have been actu-
ally established, are power-law distributed with expo-
nent γ. As mentioned earlier in this paper, we must
take into account that the spatial distribution is het-
erogeneous (especially for low values of Λ). We pro-
pose the following method:

a. Generate a set of N target degrees ktar from a
power-law distribution with exponent γ. Order
the target degrees such that ktar1 > ktar2 > · · · >
ktarN .

b. Assign to every node i a hidden degree κi, initially
set to κi = ktari .

c. Repeat N times:

i. Choose some node i randomly.

ii. Compute the expected degree k̄i of node i as

k̄i =
∑
j 6=i

1

1 +
(

dij
µκiκj

)β . (3)

iii. Correct the value of κi so that the expected
degree k̄i matches the target degree ktari . We
propose to reset |κi +

(
ktari − k̄i

)
δ| → κi,

where δ is a random variable withdrawn from
the uniform distribution U(0, 0.1). Other nu-
merical methods could be used with the same
end.

d. Compute all relative deviations

εi =
|ktari − k̄i|

ktari
. (4)

If max {εi}i < η, where η is a tolerance which we
set to η = 10−2, continue to step 3. Otherwise, go
back to step 2c.

3. Generating the network with the S1 model: In
this last step, we simply connect every pair of nodes
with the probabilities in Eq. (1). Since step 2 assigns
a hidden degree to every node such that its expected
degree matches its target degree, the resulting ob-
served degrees in the network must be similar to the
target degrees as well.
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Figure 1 shows the networks generated by the model for
different values of γ and Λ. As in Ref. [12], the angu-
lar distribution has an evident soft-community structure
for low values of Λ, whereas for high values of the ini-
tial attractiveness, the angular density resembles that of
the homogeneous S1 model. Despite the considerable dif-
ferences in the similarity space distances between nodes
for different values of Λ, the displayed networks are ex-
tremely similar from a topological perspective (see Fig. 2),
with almost undistinguishable degree distributions and
clustering spectra. Notice that step 2 is not specifically
designed for the GPA angular distribution2. In principle,
it should be valid for other distributions as well.

3 Discussion

There is abundant evidence of the geometric origin of
many properties of complex networks, not only regarding
their topology [6,7,15,8,16], but also their weighted or-
ganisation [17]. The field of network geometry has there-
fore attracted much attention recently, and the S1 model
is one of its cornerstones. On the one hand, it provides
an intuitive and plausible explanation for clustering in
real networks by introducing the concept of similarity
space. On the other hand, it allows to build geomet-
ric maps of real networks by embedding them. These
maps are remarkably meaningful, to the extent of pre-
dicting symmetries in real systems [16]. In addition, they
are very useful; they can be used to navigate the net-
work efficiently [6], to detect communities [6,8] or even
to construct smaller-scale replicas of real networks for
efficiently testing dynamics on real networks [16].

So far, the S1 model has only been studied under sev-
eral simplifying premises, like power-law degree distribu-
tions or independent hidden variables. Yet, it has been
able to explain many observed phenomena in complex
networks. However, it can be exploited beyond these as-
sumptions, since the correlation between hidden degrees
and angles might clarify many more topological features
of real-world networks. This work opens the path towards
such line of study by showing that the model does not
require those simplifying assumptions, as it is capable
of generating topologically similar networks with highly
correlated hidden variables.

Moreover, the results presented in this paper might
also have an impact on the embedding of real networks.
Typically, the likelihood maximisation procedure only
seeks the best angular coordinates, whereas hidden de-
grees are considered to be a function of degree only and
known from the start [6,7]. This hypothesis is a direct
consequence of the aforementioned simplifying assump-
tions usually contemplated in the S1 model. Neverthe-
less, as we have shown in this work, a heterogeneous

2 The ordering of the target degrees might not be neces-
sary in a more general situation where, for instance, hidden
degrees are not correlated with angles.

angular distribution requires correcting hidden degrees
in such a way that they depend on the hidden variables
of all other nodes. This is a very important result, since
it suggests that inferring hidden degrees via likelihood
maximisation as well might noticeably improve the qual-
ity of embeddings of real-world networks with commu-
nity structure.
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