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We show that Belinfante construction of an improved energy-momentum tensor

can be carried over to curved backgrounds, in analogy to the case of flat space-

time. The results hold irrespective of the background being dynamical or a fixed,

non-backreacting one. It turns out that the analogous would-be canonical energy-

momentum tensor is not covariantly conserved in general, but its Belinfante “im-

provement” is. We relate this last tensor with the Hilbert tensor obtained by func-

tionally derivating the Lagrangian with respect to the metric. When the background

in non-dynamical, we discuss some issues concerning the Noether conserved currents

associated with its Killing symmetries and the role played by the Belinfante ten-

sor. Next we study extended objects (p-branes) either in a dynamic or in a fixed

background, and obtain the Noether identities associated both with target space-

time and world volume diffeomorphisms. We show that in field theory as well as

with extended objects, the Killing symmetries of the background become ordinary

rigid Noether symmetries of the theory in this fixed background. With the example

of Maxwell theory in Minkowski spacetime we show in an appendix the role of the

Belinfante tensor in the construction of these symmetries.

∗Electronic address: pons@fqa.ub.edu

http://arxiv.org/abs/1708.09620v1
mailto:pons@fqa.ub.edu


2

I. INTRODUCTION

This paper is devoted to the formulation of classical fields and branes in curved spacetime.

In particular we explore as to whether some results holding for flat spacetime can be extended

to curved backgrounds. In this sense this paper generalizes [1], where some aspects of field

theories with the Poincaré group of symmetries in flat spacetime are studied. In such theories

it is well known that there are essentially two equivalent procedures to define a symmetric

energy-momentum tensor. In one procedure, due to Belinfante [2], one starts with the

canonical energy-momentum tensor obtainable form the Noether theorem [3] and applies

to it an improvement in the form of a divergence. In the second method, due to Hilbert

[4], one covariantizes the Lagrangian and defines the tensor as its Euler-Lagrange derivative

with respect to the metric, setting at the end the metric to its original, Minkowski form.

Rosenfeld [5] showed that both methods coincide on shell (in fact Belinfante tensor is only

symmetric in general on shell).

One may wonder whether there exists some analogous construction for curved spacetime.

In this paper we show that this construction is possible for matter Lagrangians with mini-

mal couplings to gravity. An important difference is that the Riemann tensor appears as a

possible obstruction to the conservation of the would-be canonical energy-momentum ten-

sor, whereas its “improvement” à la Belinfante overcomes this obstruction and it is always

conserved on shell. In fact Belinfante’s tensor can be defined directly form the Hilbert tensor

with no restriction to minimal coupling cases.

We will next apply the previous results to theories formulated in fixed backgrouds with

Killing vectors. The generally covariant matter Lagrangian can be truncated to a fixed

background and define a new Lagrangian, which is no longer generally covariant, for the

matter fields. We show that the Killing symmetries of the fixed background become rigid

Noether symmetries of the truncated Lagrangian. The associated conserved density current

is just the contraction of the Belinfante energy-momentum tensor with such Killing vector. A

sublte point concerning the realization in phase space of these symmetries is that to construct

their generator one must use Belinfante’s, not Hilbert’s, energy-momentumm tensor.

The second half of the paper is devoted to the classical dynamics of extended objects in

a curved background, which can be either dynamical or fixed. Our focus will be the Nambu

Goto brane. We will show the contents of the Noether identities associated both with the

target spacetime diffeomorphisms and world volume diffeomorphism. Interestingly enough,

we are able to obtain, just from the Noether analysis, the equations of motion (EOM) for

the NG Lagrangian, that is, the vanishing of the trace of the extrinsic curvature, without

doing any explicit computation of the Euler-Lagrange derivatives of the NG Lagrangian.

In the case of a fixed background, we show that, in a way similar to the result for field

theories, the Killing symmetries of the background become rigid symmetries of the truncated

theory. A simple geometric interpretation of the associated conserved currents is also given.
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The paper is organized as follows. Afer some basic preliminaries, section III is devoted

to the Noether identities in a general background and the connection between Hilbert,

Belinfante energy-momentum tensors and what we call the canonical tensor. In section IV we

discuss the fate of the Killing symmetries in theories truncated to a fixed metric background.

Next in section V we turn to branes in the different settings of fixed or dynamic backgrounds

and we identify for the brane Lagrangian the symmetries associated with the Killing vectors.

In section VI the Noether identities associated with target spacetime and/or world volume

diffeomorphisms are obtained. Conclusions are drawn in section VII. We finish with two

appendices, the first to underline the relevance of Belinfante tensor in the construction of

the generator of the Noether symmetries originated from Killing vectors, and the second, in

order to make the paper more selfcontained, with a review of basic results on the extrinsic

curvature, useful for the sections on extended objects.

II. PRELIMINARIES

Here we introduce some notation and basic observations.

A. Infinitesimal diffeomorphisms. Praise for the active view

Let us examine the transformation of the fields under reparametrizations of a manifold

P , xµ → x′µ = xµ − ǫµ(x), with ǫµ(x) an arbitrary infinitesimal function (though the

infinitesimal parameter can always be factored out from ǫµ(x)).

Reparametrizations -that is, changes of coordinates- are the passive interpretation of

diffeomorphisms. To discus the active versus passive views of diffeomorphisms, consider

for simplicity the case of a scalar field ϕ(x). According to the passive view, under an

infinitesimal diffeomorphism, the coordinates undergo a change, xµ → x′µ(x), and the fields

remain the same, the only change being in their mathematical description because we must

write them -or their components- in the new coordinatization. For the scalar field this is

given by ϕ′(x′) = ϕ(x). Instead, in the active view, the coordinates do not change but

the fields undergo the change ϕ(x) → ϕ′(x), so that the functional variation of ϕ(x) is

δϕ = ϕ′(x)− ϕ(x) = Lǫϕ, where the differential operator Lǫ is the Lie derivative under the

vector field ǫµ(x). In general, any vector, tensor, form, will experience an active variation

given by its Lie derivative under ǫµ(x).

Some praise is deserved for the active view of spacetime symmetries, in which we only

consider the functional variation of the fields. First, it puts the spacetime symmetries on

an equal footing with respect to the other, internal symmetries, that may eventually exist;

second, the functional variation δ commutes with the partial derivative with respect to the

coordinates, [δ, ∂µ] = 0; third, the functional variation of an action does not modify the

boundaries -because the coordinates are unchanged-, thus simplifying intermediate compu-
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tations; fourth, if the variations are obtained in a canonical -phase space- formalism with a

generator acting through the Poisson bracket, they are automatically functional variations,

that is, of the active type. This is the case of conserved quantities acting as generators of

symmetries according to Noether’s theorem.

When the dynamics of extended objects embedded in the manifold P is considered, the

same ideas apply. We must distiguish in this case target spacetime diffeomorphisms and

world volume diffeomorphisms, but in both of them we will apply the active view.

It is this active view of diffeomorphisms that we will adopt throughout the paper: move

the structures -fields, branes-, not the coordinates.

B. Truncation to a fixed background

We consider theories formulated in manifolds endowed with a Lorentzian metric. With g

representing the metric field and φ the matter fields, we will consider a matter Lagrangian

L[g, φ] fully covariant, that is, behaving as a scalar density under diffeomorphisms. At any

moment L can be truncated to L(0)
[φ] := L[g, φ]|g→g0, where g0 is a fixed background1. This

type of truncation is not a gauge fixing nor it is a consistent truncation. It is not a gauge

fixing because evidently there is no diffeomorphism connecting a generic metric configuration

to g0. As a truncation, it is not consistent because gravity universally couples with matter

and therefore the backreaction must not be neglected. But it may be a useful approximation,

as it is the case of field theory in flat spacetime.

Once the background is fixed (for instance to Minkowski spcetime) the gauge symmetry

of diffeomorphisms is no longer there. In the Minkowski case the “residual” (not exaclty so,

because fixing the background is not a gauge fixing) symmetry is rigid: Poincaré. It is the

symmetry generated by the Killing vectors of the background. In the active interpretation

one can still say that the spacetime configurations, before and after the action of a Poincaré

symmetry, are physically indistinguishable (the language remains of gauge equivalent con-

figurations) and in fact in the passive view we see that we are describing a unique physical

configuration with different coordinates. But now the indeterminism with respect to the

initial conditions, which is a characterisitic feature of the gauge freedom, has disappeared.

1 By fixed background we mean a non-dynamical metric field with no equations of motion for it.
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III. ENERGY-MOMENTUM TENSORS AND NOETHER IDENTITIES IN

FIELD THEORY

A. Noether identities

Consider a first order Lagrangian L[ψ] with gauge freedom described by

δψA = RA
a ǫ

a +QAµ
a ∂µǫ

a ⇒ δL = divergence. (III.1)

where ǫa are the infinitesimal arbitrary functions of the gauge symmetries (in a certain

number given by the running of the index a). The associated Noether identities are2

[L]
A
RA

a − ∂µ([L]AQAµ
a ) = 0 , (III.2)

(with the usual notation [L]
A

=
δL
δψA

for the Euler-Lagrange functional derivatives with

respect to the fields -or field components- ψA) or equivalently, after saturating with the

arbitrary functions ǫa,

[L]
A
δψA − ∂µ([L]AQAµ

a ǫa) = 0 . (III.3)

We are interested in a special type of gauge symmetries: spacetime diffeomorphisms. In

view of that it is convenient to express these identities in covariant language3. For notational

convenience, let us distinguish, among the generic fields ψA, the metric field gµν and the

matter fields φA, which we consider bosonic (fermionic matter has to be formulated within

the tetrad formalism). We assume that L[g, φ] depends at most on the first spacetime

derivatives of the fields φA.

As usual in the framework of generally covariant theories, we consider that the matter

Lagrangian L[g, φ] behaves as a scalar density under diffeomporphisms. Thus diffeompor-

phisms are Noether gauge symmetries for the theory described by this Lagrangian. In the

active view, diffeomorphism covariance is expressed infinitesimally with the transformations

(Lie derivative)

δgµν = ∇µ ǫν +∇ν ǫµ , δφA = ǫρ∇ρφ
A +QAρ

σ∇ρǫ
σ (III.4)

(Indices A for fields or field components may generically include spacetime indices as well as

internal indices), which are just the Lie derivatives of the metric and the matter fields under

an infinitesimal spacetime vector field ǫµ. The covariant derivative is defined with the Levi

Civita connection. These transformations (III.4) will induce δL = ∂µ(ǫ
µL). The Noether

identities (III.3), now associated with diffeomorphism covariance, read (with [L]µν =
δL
δgµν

)

[L]µνδgµν + [L]
A
δφA − 2∇λ([L]λµǫµ)−∇λ([L]AQAλ

µ ǫ
µ) = 0 , (III.5)

2 This subject is quite standard, all details are given for instance in [1].
3 The only connection we consider throughout the paper is the Levi Civita connection.
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identically4.

B. Hilbert and Belinfante’s energy-momentum tensors

The Hilbert energy-momentum tensor density is defined as T µν := −2
δL
δgµν

, and so we

can write

− T µν∇µ ǫν + [L]
A
δφA +∇λ

(

(T λ
µ − [L]

A
QAλ

µ)ǫ
µ
)

= 0 , (III.6)

for arbitrary ǫµ. Comparing with the standard results in the Minkowski case (see details in

[1]), it is reasonable to define the combination

T λ
b µ := T λ

µ − [L]
A
QAλ

µ (III.7)

as the Belinfante energy-momentum tensor density5, which will connected later -see next

subsection- be with the canonical tensor.

Defining QA
µ = RA

µ − QAν
ρΓ

ρ
µν , with Γρ

µν the Christoffel symbols, we may write (III.1)

in a covariant form, δφA = QA
µ ǫ

µ + QAµ
ν∇µǫ

ν . Then, integrating (III.6) with the arbitrary

ǫµ taken with compact support we can eliminate these arbitrary functions and obtain the

covariant Noether identities

∇µT
µ
ν + [L]

A
QA

ν −∇λ([L]AQAλ
ν) = 0 . (III.8)

Notice that Eq.(III.8) can be understood as an identity satisfied by the matter Lagrangian

in a fixed background. Clearly, since to compute its Hilbert tensor one has to functionally

derivate with respect to the components of the metric field, one must know the Lagrangian

for metrics around the fixed configuration, but this is our case because our starting point

was a fully covariant scalar density Lagrangian. We observe that the Hilbert tensor -and

Belinfante’s, according to (III.7)- is covariantly conserved as long as the EOM for the matter

fields are satisfied, irrespective of being either in a fixed or a dynamical metric background.

More on dynamics on a fixed background in section IV.

C. Contact with the canonical tensor

To continue we will asume that the matter Lagrangian depends only up to the first

spacetime derivatives of the metric. This means that we are excluding some non-minimal

4 We have replaced the covariant derivative for the partial derivative because they coincide when defining

the divergence of a vector density of weight one. This is also true for the divergence of an antisymmetric

tensor density. This replacement will be made at convenience in the following sections with no further

warning.
5 We underline, b, to distinguish the notation for the Belinfante tensor Tb from a tensorial index. We will

do the same for the canonical tensor below.
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couplings that may use the Riemann tensor6.

In addition to Hilbert’s and Belinfante’s tensors, in Minkowski spacetime one defines the

canonical energy-momentum tensor,
∂L

∂ ∂σφA
∂ρφ

A − δσρL. In this spirit we now define the

canonical tensor7 in curved spacetime

T σ
c ρ :=

∂L
∂∇σφA

∇ρφ
A − δσρL . (III.9)

In the following we will connect this tensor with Belinfante’s. To do so, we revisit the

result δǫL = ∂µ(ǫ
µL) for the Lie derivative of the Lagrangian under an arbitrary spacetime

vector ǫµ. It may be written8 as

δǫL =
δL
δgµν

δgµν + ∂σ(
∂L
∂gµν,σ

δgµν) + [L]
A
δφA +∇µ(

∂L
∂∇µφA

δφA) = ∇µ(ǫ
µL) . (III.10)

As consequence of our assumption, the dependence of L on the derivatives of the metric will

be concealed within the covariant derivatives of the fields φA, so that

∂L
∂gµν,σ

=
∂L

∂(∇ρφA)

∂(∇ρφ
A)

∂Γα
βγ

∂Γα
βγ

∂gµν,σ
=:

1

2
Mσµν ,

with9 Mσµν =Mσ(µν) being a tensor density because the first factor
∂L

∂(∇ρφA)
in the expres-

sion above is a tensor density whereas the other two are tensors. Thus we can write (III.10)

as

− T µν∇µ ǫν +∇σ(M
σµν∇µ ǫν) + [L]

A
δφA +∇µ(

∂L
∂∇µφA

δφA − ǫµL) = 0 . (III.11)

Subtraction of (III.11) from (III.6) and the use of (III.4) together with definiton (III.9) yields

the -identical- conservation law

∇σ

(

(T σ
µ − [L]

A
QAσ

µ)ǫ
µ −Mσνµ∇ν ǫµ −

∂L
∂∇σφA

(ǫρ∇ρφ
A +Q

Aρ
λ∇ρǫ

λ) + ǫσL
)

= ∇σ

(

(T σµ
b − T σµ

c ) ǫµ − (Mσνµ +
∂L

∂∇σφA
QAν

λ g
λµ )∇ν ǫµ

)

= 0 . (III.12)

6 This restriction does not apply to the case of Killing symmetries, analyzed in the next section.
7 Denominating this tensor the canonical energy-momentum tensor would be misleading because, as we will

see below, it is not covariantly conserved in general.

8 Notice that we take the Euler-Lagrange derivative [L]
A
for L(φA,∇µφ

A) as [L]
A
=

∂L
∂ φA

−∇µ

∂L
∂∇µφA

, so

that both terms,
∂L
∂ φA

and ∇µ

∂L
∂∇µφA

, are geometric objects.

9 We use the standard notation for symmetrization N (ab) =
1

2
(Nab +N ba) and antisymmetrization N [ab] =

1

2
(Nab −N ba) and so on.
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We will get interesting information from the fact that this conservation law, consequence of

general covariance, holds for any spacetime vector ǫµ. Relation (III.12) has the form

Aµǫµ +Bνµ∇νǫµ + Cσνµ∇σ∇νǫµ = 0 , (III.13)

identically. Being ǫµ arbitary, the coefficient of ∂σ∂νǫ
µ must vanish, which implies that Cσνµ

is antisymmetric in its first two upper indices: Cσνµ = C [σν]µ , which in turn means that the

last term in (III.13) is10 C [σν]µ∇[σ∇ν ]ǫµ =
1

2
C [σν]µR ρ

σνµ ǫρ. So finally we obtain

Cσνµ = C [σν]µ , Bνµ = 0 , Aρ +
1

2
C [σν]µR ρ

σνµ ǫρ = 0 ,

which, translated to (III.12), becomes

C [σν]µ=−Mσ(νµ) − ∂L
∂∇σφA

QAν
λ g

λµ ,

0= T
σµ
b − T σµ

c +∇λC
[λσ]µ ,

0=∇σ(T
σρ
b − T σρ

c ) +
1

2
C [σν]µR ρ

σνµ . (III.14)

The third equation in (III.14) is just a consistency check for the second. The second equation

gives the relation

T
σµ
b = T σµ

c −∇λC
[λσ]µ . (III.15)

The first equation is a statement on the decomposition of
∂L

∂∇σφA
QAν

λ g
λµ into partially

symmetric and partially antisymmetric parts, that is

− ∂L
∂∇σφA

QAν
λ g

λµ = C [σν]µ +Mσ(νµ) .

As a matter of fact it is well known that given an object with three indices, Oσνµ, it has

a unique decomposition of the form Oσνµ = O[σν]µ
a + Oσ(νµ)

s . In particular, defining the

antisymmetric combination

S
A[µν]
B φB := QAν

λ g
λµ −Q

Aµ
λg

λν ,

(QAν
λ is linear in the fields for the Lie derivative (III.4)) it turns out that

C [σν]µ =
1

2

( ∂L
∂∇µφA

S
A[νσ]
B +

∂L
∂∇νφA

S
A[µσ]
B +

∂L
∂∇σφA

S
A[νµ]
B

)

φB . (III.16)

Expressions (III.15) and (III.16) generalize to curved spacetime the classical formulas for

obtaining Belinfante’s tensor as an improvement of the canonical tensor (see section 4.1 of

[1]). With a caveat: in curved spacetime, since (III.8) and (III.7) imply that Belinfante’s

10 We use the conventions in [6].
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tensor is covariantly conserved on shell, we infer that the canonical tensor is not conserved

in general. Indeed, from the third equation in (III.14) we obtain

∇σT
σρ
c =

(on shell)

1

2
C [σν]µR ρ

σνµ , (III.17)

with R ρ
σνµ the Riemann tensor. Thus the construction of the Belinfante tensor out of the

canonical tensor is not exactly an improvement but a procedure to obtain a conserved tensor

which coincides on shell with Hilbert tensor (see (III.7)) and thus is symmetric on shell.

Only for Minkowski spacetime -with vanishing Riemann tensor- or for theories with only

scalar fields -for which QAρ
σ in (III.4) vanishes-, the covariant conservation of the canonical

tensor can be generally asserted.

IV. FIXED BACKGROUNDS WITH KILLING VECTORS

Complementing what has been already said, we notice that the basic equations of the

previous section, (III.6), (III.8), (III.11), (III.12), can be understood as identities satisfied

by the matter Lagrangian L(0)
truncated to a fixed background g0. In this section we will

interpret these equations in this sense. As identities, they are a gift from the former diffeo-

morphism covariance enjoyed by the theory before truncation.

An immediate consequence of identity (III.6) and definition (III.7) is that if ǫµ is a Killing

(K.) vector of the fixed background, that is,

δgµν = ∇µ ǫν +∇ν ǫµ = 0 , (⇔ ǫµ ∈ K.) , (IV.1)

then

[L(0)

]
A
δφA +∇λ(T

λ
b µǫ

µ) = 0 , (ǫµ ∈ K.) , (IV.2)

identically. Eq.(IV.2) neatly displays the result that the Killing symmetries of the back-

ground g0 have morphed into rigid Noether symmetries for the truncated Lagrangian L(0)
.

Also this equation identifies the vector density

Jλ := T λ
b µǫ

µ , (ǫµ ∈ K.) , (IV.3)

as the Noether current for this rigid symmetry, [L(0)
]
A
δφA + ∂λJ

λ = 0. We may say:

In field theory, the conserved density current of a Noether symmetry generated

by a Killing vector of the fixed background, is the contraction of the Belinfante

energy-momentum tensor with such Killing vector.

One finds in the literature a trivial proof of the existence of an the shell conserved current

T λ
µǫ

µ based on the Killing condition (IV.1) and the fact that Hilbert tensor is -on shell-
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covariantly conserved, but the status of a Noether symmetry is more than that, and this

conservation does not make the current to be a Noether current -although both currents

coincide on shell. The true Noether current associated with the Killing symmetries of a

fixed background is (IV.3), which uses the Belinfante -not Hilbert’s- tensor. Switching to

canonical variables, one would find as generator -under the Poisson bracket- of the symmetry

the quantity G :=
∫

d3xJ0, which, under suitable conditions at the spatial boundary, is a

conserved charge.

If the matter theory is a gauge theory there may be obstructions [7] for this quantity G

the generate the symmetry transformations in phase space. As an illustration we work out

in Apendix A some details of the application of this analysis to vacuum Maxwell theory in

flat spacetime, and we will show the crucial role played by Belinfante tensor in constructing

the internal gauge symmetry generators.

Notice that in the case of a fixed background with Killing vectors, as far as the rigid

Noether symmetries generated by the Killing vectors are concerned, we do not need to

restrict ourselves to the minimal coupling case leading to (III.10), because δgµν vanishes.

Thus we can write (III.10), with no restrictions on the coupling to gravity, as

δL(0)

= [L(0)

]
A
δφA +∇µ(

∂L(0)

∂∇µφA
δφA) = ∇µ(ǫ

µL(0)

) , (ǫµ ∈ K.) . (IV.4)

for the Lagrangian L(0)
in the fixed background g0 and with ǫµ being a Killing vector of g0.

Comparison of (IV.4) with (IV.2) shows the existence of an identically conserved density

current

∇σ

(

T σ
b µǫ

µ − ∂L(0)

∂∇σφA
δφA + ǫσL(0)

)

= 0 , (ǫµ ∈ K.) , (IV.5)

which, again, is a gift from the general covariance properties held by the theory before being

truncated to a fixed background.

Some comments are in order. Eq.(IV.5) and Eq. Eq.(IV.2) show that there are two

equivalent presentations of the Noether conserved density current associated with the Killing

symmetry. The “classical” one would have been, by typical use of Noetherian methods, from

(IV.4),

J
µ
class. =

∂L(0)

∂∇σφA
δφA − ǫσL(0)

, (ǫµ ∈ K.) ,

whereas the alternative presentation is (IV.3).

As far as we know, little attention is paid in the literature to the relationship existing

between these two currents. Both currrents differ by an identically conserved density current

which must have locally the form Jµ − J
µ
class. = ∂νN

µν , with Nµν an antisymmetric tensor

density11. Thus, both G =
∫

d3xJ0 or Gclass. =
∫

d3xJ0
class. generate the same transformations

because they differ by a boundary term.

11 With a torsionless connection ∂νN
µν = ∇νN

µν . Notice that ∇µ∂νN
µν = ∇µ∇νN

µν = 1
2 [∇µ, ∇ν ]N

µν =
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An example

Just as an example, let us consider the Lagrangian

L(0)

=
1

2

√−gR φ2

which describes a non-minimal coupling of a scalar field with the metric through the cur-

vature scalar, here for a fixed background, and suppose that ǫµ is a Killing vector for this

background. One can write (IV.5) for this case as (here Hilbert and Belinfante tensors

coincide)

∇σ

(

T σ
µǫ

µ+ ǫσL(0)
)

= ∇σ(
√−g

(

(∇µ∇νφ2)ǫν −Rµνǫν − (△φ2)ǫµ
)

) = 0 , (ǫµ ∈ K.) , (IV.6)

and using for the Killing vector ǫµ the relation Rµνǫν = −△ǫµ (ǫµ ∈ K.) , one easily finds,

for the relevant term in (IV.6),

√
−g

(

(∇µ∇νφ2)ǫν − Rµνǫν − (△φ2)ǫµ
)

= ∇νN
µν = ∂νN

µν , (ǫµ ∈ K.) ,

with Nµν the antisymmetric tensor density

Nµν =
√
−g

(

∇µ(φ2ǫν)−∇ν(φ2ǫµ)− φ2∇µǫν
)

, (ǫµ ∈ K.) ,

thus explicitating in this example the identical conservation of (IV.5).

A. Conformal Killing vectors

Going back to (III.6)

− T µν∇µ ǫν + [L]
A
δφA +∇σ

(

T σ
b µǫ

µ
)

= 0 , (IV.7)

for arbitrary ǫµ, we realize that conformal Killing vectors,

∇µ ǫν +∇ν ǫµ = λgµν ,

are Noether symmetries of the truncated Lagrangian as long as the product Tλ is a diver-

gence, with T the trace of the Hilbert tensor. Thus the requirement is Tλ = ∇µD
µ = ∂µD

µ

for a vector density Dµ. Then (IV.7) will be written as

[L]
A
δφA +∇σ

(

T σ
b µǫ

µ − 1

2
Dσ

)

= 0 , (IV.8)

− 1
2R

µ
µνα Nαν− 1

2R
ν

µνα Nµα = 1
2RναN

αν − 1
2RµαN

µα = −RµαN
µα = 0, with Rµα the Ricci tensor, which

is symmetric.
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Condition Tλ = ∂µD
µ amounts12 to require that the Euler-Lagrange derivatives of Tλ

vanish,
δ(Tλ)

δφA
=

δT

δφA
λ− ∂T

∂∇µφA
∂µλ = 0 . (IV.9)

This is a check that must be done in a case by case basis. In the particular case of homothetic

Killing vectors (λ = constant), the condition to implement a Noether symmetry is that T

must be a divergence, that is δT
δφA = 0.

Obviously T = 0 is a particular case of fulfillment of (IV.9). In such case, all conformal

Killing vectors yield Noether symmetries of the truncated theory. A well know example is

Maxwell theory in a curved background -including the flat case-, where the Hilbert tensor

satisfies this condition in d = 4 dimensions. Indeed for the Lagrangian L = −1

4

√−gF ρσFρσ

the Hilbert tensor is

T µν = −gµνL+
√
−gF µ

σF
σν . (IV.10)

whose trace is T = (4− d)L.

V. EXTENDED OBJECTS: THE NAMBU-GOTO BRANE

Consider a Lorentzian manifold P -the background- and a submanifold M -the p-brane,

or brane. The Levi Civita covariant derivative is defined on P . As notation, xµ will be

the coordinates on P and σa the coordinates on M . The embedding of the brane is locally

defined by the functions xµ(σ). Thus, on the tangent bundle TM ,

∂

∂σa
=
∂xµ

∂σa

∂

∂xµ
=: Uµ

a

∂

∂xµ
.

As a matter of language, we can also say that the world volumeM is embedded in the target

spacetime P .

Notice that Uµ
a , defined with support onM , is a contravariant vector under reparametriza-

tions of the background and a covariant vector under reparametrizations of the brane.

Let gµν be the background metric. The induced metric on the brane is locally given by

γab = gµνU
µ
a U

ν
b .

We consider massive branes. The p-brane is a p-dimensional spacelike object evolving along

the time coordinate of the Lorentzian manifold P , thus the induced metric γab is again

Lorentzian. Considering the index a as a label, Uµ
a span a basis for TM . We can rise and

lower indices with γab, gµν , and their inverses, so for instance Ua
µ := γabgµνU

ν
b . Note that

tµν = Uµ
aU

a
ν (V.1)

12 All our statements are local.
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is the projector from TP |
M
to TM . Note also that given a vector vµ in TP |

M
, its orthogonal

projection to TM is va := Ua
µv

µ (Proof: tµνv
ν∂µ = Uµ

aU
a
ν v

ν∂µ = Ua
ν v

ν∂a =: va∂a)
13. More

geometric results are given in appendix B.

The Nambu-Goto (NG) Lagrangian of the p-brane is

L = −κ
√
−γ , (V.2)

where γ is the determinant of γab and κ the tension of the brane. In the following we will

take κ = 1 for simplicity.

Regarding the analysis of the covariance of (V.2) with respect to spacetime diffeomor-

phisms, there is the crucial difference as to whether we consider a dynamical or a fixed

background. Of course if the background is dynamical the variational principle with La-

grangian (V.2) is incomplete because the kinetic terms -for instance the Einstein-Hilbert

Lagrangian- for the metric are missing. But the behaviour of (V.2) under target spacetime

diffeomorphisms can be studied nevertheless.

A. Dynamical background

In the case of a brane we can think of it as a limit of a regular scalar field ϕ when its

support shrinks to M . If the field is peaked at a point with coordinates x0, the actively

transformed field ϕ′ will be peaked at coordinates x′0 = x0 − ǫ(x0) so that ϕ′(x′) = ϕ(x).

In the case of the brane this means that the embedding has changed from x(σ) to x′(σ) =

x(σ) − ǫ(x(σ)). Alongside with it, the metric field will have changed under the active

diffeomorphisms as well, with gµν(x) → g′µν(x) = gµν(x) + Lǫgµν . All in all the Lagrangian

(V.2) will have changed to L′ = −√−γ′, where

γ′ab = g′µν(x
′(σ))

∂x′µ

∂σa

∂x′ν

∂σb
.

Notice in this expression above the subtle point that the active interpretation of diffeomor-

phisms imposes that the new spacetime metric g′µν is computed at the points x′(σ) of the

new embedding. Since the new embedding is x′µ(σ) = xµ(σ)− ǫµ(x(σ)), we obtain (to first

order in the infinitesimal parameter)

γ′ab = g′µν(x(σ)− ǫ(x(σ)))
∂(xµ(σ)− ǫµ(x(σ))

∂σa

∂(xν(σ)− ǫν(x(σ))

∂σb

=(g′µν(x)− Lǫgµν)U
µ
aU

ν
b = gµν(x)U

µ
aU

ν
b = γab , (V.3)

which in turn implies that, since the induced metric is invariant, γ′ab = γab, so it is indeed the

Lagrangian: δL = 0. Note that the proof of invariance would be the same for a Lagrangian

13 This result implies that for vectors already in TM but expressed in the target spacetime coordinates, Ua
µ

converts target spacetime indices into world volume indices.
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describing the minimal coupling of a p-brane with a p + 1 form, which is a generalization

of the coupling of the particle to the electromagnetic gauge field: again, the change of the

world volume description of the brane will be matched by the active change of the p + 1

form.

Thus the requisite of general covariance is satisfied. Of course under world volume dif-

feomorphisms the Lagrangian is not invariant but behaves as a scalar density, see details in

section VIB. Summing up,

The Lagrangians of the NG brane and its generalizations are scalar densities

under world volume diffeomorphisms and are invariant under target space diffeo-

morphisms.

B. Fixed background

In the case of a fixed background, an active diffeomorphism will move the brane and all

the other existing structures and fields according to their geometric character, except for

the metric, which will remain unchanged. The reason is that in the active view we do not

change the coordinates and hence a fixed background remains the same.

Now the Lagrangian will have changed to L′ = −√−γ′, where

γ′ab = gµν(x
′(σ))

∂x′µ

∂σa

∂x′ν

∂σb
,

(notice the crucial difference with the previous case: now we have written g instead of g′)

and we obtain

γ′ab = (gµν(x)− Lǫgµν)U
µ
aU

ν
b ,

where Lǫ is the Lie derivative under the vector field ǫµ. As for the determinant,

γ′ = γ(1− tµνLǫgµν) .

with tµν = γabUµ
aU

ν
b the projector defined above, (V.1). Finally, for the variation of the

Lagrangian we obtain

δL = L′ − L =
1

2

√−γ tµνLǫgµν . (V.4)

Note that if ǫ is a Killing vector of the background, then Lǫgµν = 0, that is, the Lagrangian

is invariant, but now under a rigid, not gauge, symmetry. Summing up, starting with a

theory (V.2) with invariance under the target spacetime diffeomorphisms, we have ended

up, after freezing the background, with a theory in which the Killing symmetries of such

fixed background have morphed into rigid Noether symmetries of the new theory. This is

the same phenomenon already seen in field theory, Eq.(IV.2), (IV.3).
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We can look for the conserved current under this symmetry. Since ([L]
µ
:= δL

δxµ is the

Euler-Lagrange derivative)

δL = [L]µδxµ + ∂a(
∂L
∂U

µ
a

δxµ) , (V.5)

now for δxµ = −ǫµ being a Killing vector, we infer from (V.4) that δL = 0 and the -on

shell- conserved current is the -world volume- density vector (we factor out the infinitesimal

parameter in ǫµ so now ǫµ will be finite)

Ja =
∂L
∂U

µ
a

δxµ = − ∂L
∂U

µ
a

ǫµ =
√−γ Ua

µǫ
µ =

√−γ ǫa , (ǫµ ∈ K.) . (V.6)

This is a nice result: according to the intepretation of Ua
µ made after Eq.(V.1), we have

found that

For the NG brane, the conserved density current of a Noether symmetry generated

by a Killing vector of the fixed background, is the densitized projection to TM of

such Killing vector.

Eventually there can be a conserved charge G(τ) =

∫

τ

dpσ J0, where the integration is at

σ0 ≡ τ constant, but this conservation in τ will crucially depend on the spatial boundary

of the brane. In the particular case of the massive particle in a fixed background, with

Lagrangian L = −m
√

−gµν ẋµẋν , this conserved charge is G =
1

√

−gµν ẋµẋν
ǫµgµν ẋ

ν .

But regardless of being conserved or not, G(τ) is nevertheless the gauge generator in

the canonical formalism. Since from (V.6) J0 =
∂L
∂U

µ
0

δxµ = −pµǫµ, with pµ the momenta

canonically conjugate to the target spacetime coordinates, we obtain the trivial result in the

canonical formalism, for the variation of the embedding,

δxµ = {xµ, G}
equal τ

= −{xµ,
∫

τ

dpσ pρ ǫ
ρ}

equal τ
= −ǫµ

The algebra of the Noether symmetries associated with Killing symmetries of the fixed

background reproduces that of the Killing symmetries. If ~ǫ and ~η are two Killing vectors,

then G
~ǫ
and G

~η
satisfy {G

~ǫ
, G

~η
} = G[~η,~ǫ] .

Again with the massive particle, consider a stationary background (with x0 the back-

ground time coordinate), so that ∂x0 is a Killing vector ( ǫµ = δ
µ
0 ). If τ is the world line

parameter, the induced metric has a single component γττ = ẋ2 = γ, where ẋ2 = gµν ẋ
µẋν .

The embedding is Uµ
τ = ẋµ and U τ

µ = γ−1gµνU
ν
τ = gµν

ẋν

ẋ2 , so
√−γ U τ

µ = −gµν ẋν
√
−ẋ2 =: −pµ.

Applying (V.6), the conserved quantity Jτ ≡ G is G = −δµ0 pµ = −p0, which is the ex-

pected result for a mechanical system with a cyclic coordinate x0, namely that its conjugate

momentum p0 is a constant of motion.
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VI. NOETHER IDENTITIES FOR THE BRANE

It is instructive, regardless of the Killing condition, to compute directly the divergence

of ǫa := Ua
µǫ

µ for an arbitrary, infintesimal, ǫµ. We have

1√−γ ∂a(
√−γ ǫa)=∇aǫ

a = ∇a(U
a
µǫ

µ) = ∇̃a(U
a
µ)ǫ

µ + Ua
µ∇a(ǫ

µ)

= γabgµν∇̃a(U
ν
b )ǫ

µ + Ua
µU

ρ
ag

µν∇̄ρǫν = γabgµνK
ν
abǫ

µ +
1

2
tρνL

ǫ
gρν ,(VI.1)

(where we have used that ∇̃aU
ν
b = Kν

ab is the extrinsic curvature of the brane. See the

Appendix B for details and also for a discussion on the covariant derivatives ∇a, ∇̃a, ∇̄ρ).

Note that (VI.1) can be rearranged as (Kν is the trace of the extrinsic curvature)

1

2

√
−γ tρνLǫgρν = −

√
−γ gµνKνǫµ + ∂a(

√
−γ ǫa) , (VI.2)

which is exactly (V.5) applied to our case with δxµ = −ǫµ and ǫa := Ua
µǫ

µ. Eq.(VI.2) is

an identity -actually, it is a Noether identity, see next subsection- with ǫµ arbitrary. As a

byproduct we obtain, comparing (V.5) and (VI.2),

[L]
µ
:=

δL
δxµ

=
√−γ gµνKν , (VI.3)

that is, we have obtained the well known result (see for instance [12]) that the EOM for

the NG Lagrangian is the vanishing of the trace of the extrinsic curvature, with no need to

make the explicit computation of the EOM.

A. Target spacetime Noether identities

As anticipated above, Eq.(VI.2) has yet another interpretation: it is the Noether identity

for the target spacetime diffeomorphism invariance of the NG Lagrangian (V.2) when the

background is dynamical. Indeed, given some fields -or field components- ψA and expressing

the active infinitesimal gauge transformation as (III.1) (with δxµ(σ) = −ǫµ(x(σ))) but now
for the world volume action,

δψA = RA
ρ ǫ

ρ +QAa
ρ ∂aǫ

ρ , (VI.4)

where ψA is a generic field or field component and ∂aǫ
ρ = Uµ

a ∂µǫ
ρ. The Noether identity -in

the version with the arbitrary functions in it- takes the form (III.3), but with derivatives

with respect to the σa coordinates of the brane,

[L]AδψA − ∂a([L]AQAa
ρ ǫρ) = 0 , (VI.5)

In our case the fields ψA are the target coordinates xµ(σ) and the metric gµν(x(σ)). For the

metric δgµν = Lǫgµν , which implies (with A = (µν)), for the world volume description,

δgµν = R(µν)ρǫ
ρ +Qa

(µν)ρ∂aǫ
ρ , with R(µν)ρ = ∂ρgµν , Qa

(µν)ρ = gρνU
a
µ + gµρU

a
ν , (VI.6)
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then, taking this into account, together with δxµ = −ǫµ, we obtain the Noether iden-

tity associated with target spacetime diffeomorphism invariance of the NG brane, ([L]µν =
∂L
∂gµν

, [L]ρ =
∂L
∂xρ

)

[L]µν∂ρgµν − [L]ρ − ∂a

(

[L]µν(gρνUa
µ + gµρU

a
ν )
)

= 0 , (VI.7)

identically. Using the fact that
δL
δgµν

= −1

2

√−γ tµν and Eq.(VI.3), one can check that

Eq.(VI.7), saturated with ǫρ, becomes (VI.2).

The advantage of the Noether identity formulation, Eq.(VI.5)-(VI.7), is that it shows how

the mecanism works beyond the NG Lagrangian, that is, when we consider corrections to

it. In the first term of Eq.(VI.5) there will always be the term δL
δgµν

δgµν . If the background

is fixed the factor δL
δgµν

will not vanish in general but δgµν will vanish -by definition- for

the variations engendered by the Killing vectors of the metric, thus defining the on shell

conserved current, see Eq.(VI.5), (VI.6), Ja = − δL
δgµν

Qa
(µν)ρǫ

ρ.

B. World volume Noether identities

Clearly, the NG Lagrangian (V.2) is generally covariant with respect to world volume

diffeomorphisms, so that in the active intepretation, with δσa = −ηa(σ), we will have δxµ =

ηa∂ax
µ(σ) and, due to the variation δxµ, there will be a vicarious variation of gµν(x(σ)),

but the metric won’t have any variation by its own, unlike the case of the target spacetime

diffeomorphisms (both the target coordinates and the metric components are scalars under

world volume diffeomorphisms). All in all we find the world volume scalar density behaviour

δL = ∂a(η
aL). The Noether identity becomes

[L]
ν
Uν
a = 0 ,

identically. Its contents for the NG case is just KµgµνU
ν
a = 0, which is an identity proved

directly in Appendix B, see Eq.(B.9).

VII. CONCLUSIONS

In this paper we have extended the results in [1] to curved spacetime and in addition

we have made a parallel analysis for the case of extended objects embedded in the back-

ground. We have shown in particular the relationship between the canonical tensor, Belin-

fante energy-momentum tensor, and Hilbert energy-momentum tensor. When these results

are applied lo matter Lagrangians truncated to a fixed background, we have shown that the

Killing symmetries of the background become ordinary, non-gauge, Noether symmetries of
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the truncated theory. We stress the role of the Belinfante tensor in the construction both of

the Noether conserved current and of the canonical generator of the symmetries.

We have followed similar lines to analyze the case of NG branes embedded in the back-

ground, distinguishing the two types of gauge symmetries available, namely target space

diffeomorphisms and world volume diffeomorphisms. We use the Noether identities of the

former type to give an alternative derivation of the EOM of the theory truncated to a fixed

background. Again, the Killing symmetries of the fixed background give rise to Noether sym-

metries of the world volume theory, with a simple geometric intepretation of the conserved

currents.

Appendix A: Poincaré symmetries as the Killing symmetries for Maxwell theory in

flat spacetime.

In this appendix we do not intend to give a complete analysis on how the Poincaré

transformations for the Maxwell gauge field in flat spacetime can be reproduced within the

canonical formalism. Our much more modest goal here is to underline the crucial relevance

of the Belinfante tensor in such an endeavour.

In flat spacetime (with mostly plus metric ηµν = (−,+,+,+)) the Maxwell Lagrangian is

L = −1
4
F µνFµν . The momentum canonically conjugate to Aµ is πµ =

∂L
∂Ȧµ

= −F 0µ, which

identifies the primary constraint π0 ≃ 0 (“≃” means equality on shell). Hilbert energy

momentum tensor T µν , (IV.10), is obtained by the standard methods. Belinfante energy

momentum tensor is, from (III.7),

T
µν
b = T µν − [L]

A
QAµ

ση
σν = −ηµνL+ F µ

σF
σν − ∂ρ(F

ρµ)Aση
σν .

Notice that the last term, which vanishes on shell, distinguishes this tensor from Hilbert

tensor T µν .

Acording to (IV.2), the conserved current is

Jµ = T
µ
b ν ǫ

ν = −L ǫµ + F µ
σF

σ
νǫ

ν − ∂ρ(F
ρµ)Aνǫ

ν

with the Killing vector ǫν = aν+ων
ρ x

ρ describing the infinitesimal Poincaré transformations.

The candidate to be the generator of these transformations is G =
∫

d3x J0, which

expressed with the canonical variables is (µ = 0, i), with Bi = 1
2
ǫijkFjk,

G(ǫµ) =

∫

d3x
(1

2
(~π2 + ~B2) ǫ0 + (~π × ~B) · ~ǫ− (∂iπ

i)Aµǫ
µ
)

(A.1)

There is an ambiguity in G because a term linear in the primary constraint π0 can be added

without consequences in tangent space -the pullback of this term from phase space to tengent

space vanishes identically-. This ambiguity can be solved in the light of the analysis in [7]

but we will not dwell further on this issue.
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Although it is not our goal here, let us mention that, following the results in [7], one can

immediately identify a problem with this expression (A.1), in what concerns its eventual

role as generator of Noether symmetries. As a matter of fact,

{G, π0} = −(∂iπ
i)ǫ0 ,

where one can identify in the right hand side the secondary constraint of Maxwell theory

-the Gauss law- ∂iπ
i ≃ 0. The presence of a -necessarily first class- secondary constraint in

the rhs of the computation of the Poisson bracket of G with a -first class- primary constraint

signals an obstruction for the projectability -from tangent space to phase space- of some

of the transformations generated by G.In our case we infer, from the results of [7] section

III B, that this quantity G won’t generate the time translation for A0. We say that this

transformation, which can be written straightforwardly in tangent space, δA0 = δtȦ0, is not

projectable to phase space. It can not be retrieved by canonical methods alone14 because,

owing to the fact that π0 is a constraint, the velocity Ȧ0 can not be expressed in terms of

the canonical variables. More details can be found in [7].

But let us compute some projectable transformations. All transformations for the space

components Ai of the gauge field are projectable and are not affected by the ambiguity in

G mentioned above. So we have

δǫAi = {Ai, G(ǫ
µ)} = πiǫ0 + ( ~B ×~ǫ)i + ∂i(Aνǫ

ν).

It is immediate to verify that the pullback of this transformation to tangent space is exactly

what is expected. Indeed, after implementing the pullback πi → F0i,

δǫAi = F0iǫ
0 − Fijǫ

j + (∂iAν)ǫ
ν + Aν∂iǫ

ν = ǫν∂νAi + Aν∂iǫ
ν = LǫAi , (A.2)

with Lǫ the Lie derivative under the -Poincaré- Killing vector ǫν = aν +ων
ρ x

ρ. In fact, rem-

iniscent of the original diffeomorphism covariance -before truncation to a fixed background-

of our matter Lagrangian, Eq.(A.2) gives indeed the right transformation under general dif-

feomorphisms (arbitrary ǫµ) but only for Poincaré transformations we do have a Noether

symmetry in flat spacetime.

Let us stress the crucial role played in this computation by the term (∂iπ
i)Aµǫ

µ in (A.1),

which would have been missing should we had used the Hibert tensor instead of Belinfante’s.

The projectability problem mentioned above is solved by adding to the generator (A.1) the

generator of a particular U(1) gauge transformation. Details in the more general framework

of Einstein-Yang-Mills theories are given in [10].

14 A parallel situation takes place in the canonical formalism of Einstein-Hilbert Lagrangian for general

relativity, where some diffeomorphisms are not projectable to phase space, see [8, 9] for an analysis and

a way out of that situation.
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Appendix B: Basic notions on the extrinsic curvature

Consider a Riemannian or Lorentzian manifold P -the background- and a submanifold

M -the brane. The Levi Civita covariant derivative is defined on P . As notation, xµ will be

the coordinates on P and σa the coordinates on M . The embedding of the brane is locally

defined by the functions xµ(σ). Thus, on TM (tangent space)

∂

∂σa
=
∂xµ

∂σa

∂

∂xµ
=: Uµ

a

∂

∂xµ
.

Notice that Uµ
a , defined with support on M , is a contravariant vector under reparametriza-

tions of the background and a covariant vector under reparametrizations of the brane.

Let gµν be the background metric. The induced metric on the brane is locally given by

γab = gµνU
µ
a U

ν
b . (B.1)

Considering the index a as a label, Uµ
a span a basis for TM . We can enlarge this basis

to form a basis for TP |
M

(TP |
M

= TM ⊕ T⊥M) with some new vectors Uµ
a′ , with labels a′,

which we will take orthonormal and orthogonal to TM , that is, with the notation a = (a, a′),

gµνU
µ
aU

ν
a′ = ηaa′ . (B.2)

We can define the matrix Ua
µ as the inverse matrix to Uµ

a . Notice that these inverses still

go through the rule of raising and lowering indices with the corresponding metric or inverse

metric: Ua
µ = γabgµνU

ν
b , U

a′

µ = ηa
′b′gµνU

ν
b′ .

Consider vector fields X,Y in TM . One can compute ∇̄XY under the background Levi

Civita covariant derivative ∇̄ and decompose it in its tangent part in TM and an orthogonal

part in T⊥M . In fact we have

δµν = Uµ
aU

a
ν + U

µ
a′U

a′

ν =: tµν + hµν , (B.3)

where tµν projects onto TM and hµν onto T⊥M . The projection to TM will define the

induced covariant derivative on TM and the projection to T⊥M will define the extrinsic

curvature.

1. Induced covariant derivative

With X = Xa∂a = Xµ∂µ (that is, Xµ = XaUµ
a ) and same for Y, we obtain, for the

tangent part,

(Xµ∇̄µY
ν)tλν∂λ = Xa

(

∂aY
c + (∂aU

ρ
b + Uµ

aU
ν
b Γ̄

ρ
µν)U

c
ρY

b
)

∂c ,
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which defines the induced covariant derivative (Xa∇aY
c)∂c with connection

Γc
ab := (∂abx

ρ + Uµ
a U

ν
b Γ̄

ρ
µν)U

c
ρ . (B.4)

This induced connection is obviously torsionless. One can easily check that it is metric

compatible by taking for instance adapted coordinates. Thus we infer that Γc
ab is the Levi

Civita connection for M .

2. Extrinsic curvature

The T⊥M component of ∇̄XY will define the second fundamental form or extrinsic cur-

vature, Kµ(X,Y) = (∇̄XY
ν)hµν . Its components in the basis Uµ

a′ of T
⊥M turn out to be

Kc′

ab = (∂abx
ρ + Uµ

aU
ν
b Γ̄

ρ
µν)U

c′

ρ , (B.5)

which is obviously symmetric. Note that from (B.4) and (B.5) we can write

∂abx
ρ + Uµ

aU
ν
b Γ̄

ρ
µν = Γc

abU
ρ
c +Kc′

abU
ρ
c′ . (B.6)

Now let us remember what we said on the double vector character of Uµ
a under background

and brane reparametrizations. To take into account both behaviours, the complete covariant

derivative ∇̃a is defined so that

∇̃aU
ρ
b = ∂aU

ρ
b + Uµ

a Γ̄
ρ
µνU

ν
b − Γc

abU
ρ
c , (B.7)

which, in view of (B.6), can be writen as

∇̃aU
ρ
b = Kc′

abU
ρ
c′ =: Kρ

ab . (B.8)

Now we can directly prove that Kρ
ab is orthogonal to TM . Let us compute, using (B.8),

Aabc =K
µ
abgµνU

ν
c = (∇̃aU

µ
b )gµνU

ν
c = ∇̃a(U

µ
b gµνU

ν
c )− U

µ
b gµν(∇̃aU

ν
c )

=∇a(γbc)− (∇̃aU
ν
c )gµνU

µ
b = −Aacb , (B.9)

but it is well known that a three index quantity Aabc symmetric in two indices (a, b) and

antisymmetric in two indices [b, c] must vanish.

3. Expressions for the extrinsic curvature

Since Uµ
b′ are taken orthonormal, we have

Kc′

ab = ηc
′d′K

µ
abgµνU

ν
d′ = ηc

′d′(∇̃aU
µ
b )gµνU

ν
d′ = −ηc′d′Uµ

b gµν∇̄aU
ν
d′ = −ηc′d′Uµ

b gµνU
ρ
a ∇̄ρU

ν
d′

=U
µ
b gµν∇̄aU

νc′ , (B.10)
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or

(∇̄aU
νc′)tρν = Kc′

abγ
bcUρ

c . (B.11)

In the particular case of a spacelike codimension one brane on a Lorentzian background,

then c′ = 0, η00 = −1 (mostly plus), Uµ
c′ =: nµ (notice from (B.2) that nµn

µ = −1), Kc′

ab =:

Kab, which is of interest for the ADM formalism of general relativity [11], we will have, from

(B.11) and using nµ∇̄an
µ = 0, ∇̄an

µ = Ka
bU

µ
b .

If we take an adapted coordinatization, so that σa = xi (a subset of the background coor-

dinates) and M is locally defined by the remaining background coordinates xi
′

as functions

of xi, we will have Uµ
a = δ

µ
i etc., so, from (B.10),

Kc′

ij = −ηc′d′gjν∇̄iU
ν
d′ = −ηc′d′∇̄iUjd′ = −ηc′d′Γ̄ρ

ijUρd′ = −ηc′d′Γ̄j′

ijUj′d′ ,

where Ujd′ = 0 has been used in the last two equalities . In the ADM case M will be an

equal time surface and we will have Kij = ∇̄inj = Γ̄0
ijn0.

Continuing with adapted coordinates, the i, j components of the Lie derivative of the

background metric read

L
U
c′
gij = U

µ
c′∇̄µgij − gµj∇̄iU

µ
c′ − gµi∇̄jU

µ
c′ = −2∇̄iUjc′ = 2 ηc′d′K

d′

ij ,

so

Kc′

ij =
1

2
ηc

′d′L
U
d′
gij ,

which in the ADM case yields Kij = −1
2
Lngij.

4. Dynamical intepretation of the extrinsic curvature

Here we show that the vanishing of the trace of the extrinsic curvature is just the contents

of the EOM of the NG brane.

First let us write the trace of the extrinsic curvature, from (B.8)

Kρ = γabK
ρ
ab = γab∇̃aU

ρ
b = ✷xρ + tµν Γ̄ρ

µν ,

where ✷ is the Dalembertian of the world volume (the brane) with xρ taken, as it is, as a

scalar under world volume diffeomorphisms, and tµν = γabUµ
aU

ν
b is the projector onto TM

defined in (B.3).

Now consider the NG dynamics, defined by the Lagrangian L = −κ√−γ, with γ the

determinant of γab. The E-L functional derivatives turn out to be

δL
δxµ

= κ gµν
√
−γKν .
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Thus the contents of the EOM is the vanishing of the trace of the extrinsic curvature -the

curvature vector [12]. For the 0-brane (particle), Kµ = 0 is the geodesic equation with

arbitrary time parameter. In fact

K
ρ
particle = P ρ

σ (ẍσ + ẋµẋνΓσ
µν) , with P ρ

σ = (δ ρ
σ − gσλ

ẋλẋρ

γ
) ,

where P ρ
σ is the projector orthogonal to the velocity ẋµ. So Kµ = 0 means that ẍσ +

ẋµẋνΓσ
µν = α ẋσ for some function α. This function α vanishes when τ is taken to be the

proper time, or a parameter proportional to it.
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