
Towards social pattern characterization in egocentric
photo-streams

Maedeh Aghaeia,∗, Mariella Dimiccolia,b, Cristian Canton Ferrerc, Petia
Radevaa,b

aUniversity of Barcelona, Department of Mathematics and Computer Science, Barcelona
08007, Spain

bComputer Vision Center, Bellaterra (Cerdanyola) Barcelona 08193, Spain
cMicrosoft Research, Redmond, Washington 98052, United States

Abstract

Following the increasingly popular trend of social interaction analysis in ego-

centric vision, this manuscript presents a comprehensive study for automatic

social pattern characterization of a wearable photo-camera user, by relying on

the visual analysis of egocentric photo-streams. The proposed framework con-

sists of three major steps. The first step is to detect social interactions of the

user where the impact of several social signals on the task is explored. The

detected social events are inspected in the second step for categorization into

different social meetings. These two steps act at event-level where each poten-

tial social event is modeled as a multi-dimensional time-series, whose dimensions

correspond to a set of relevant features for each task, and LSTM is employed

to classify the time-series. The last step of the framework is to characterize

social patterns, which is essentially to infer the diversity and frequency of the

social relations of the user through discovery of recurrences of the same people

across the whole set of social events of the user. Experimental evaluation over a

dataset acquired by 9 users demonstrates promising results on the task of social

pattern characterization from egocentric photo-streams.
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Figure 1: Examples of images representing social interactions in our dataset, EgoSocialStyle,

captured by the Narrative Clip wearable camera.

1. Introduction

The automatic analysis of data collected by wearable cameras has drawn

the attention of researchers in different topics in computer vision, ranging from

object detection and recognition to event summarization and analysis in first-

person vision ([11, 12]). Among all these topics, social interaction analysis in

particular has been an active topic of study ([41, 5, 1, 3, 22, 54]). The moti-

vation behind this interest is twofold. Firstly, wearable cameras in comparison

to the fixed surveillance cameras, allow to capture natural photos of the daily

interactions of the users, where the users naturally attempt to reach a clear

view of whom they are engaged in a social interaction (see Fig. 1). Hence, the

first-person paradigm offers the unique opportunity of revisiting the problem

of social interaction analysis from the unmediated first-person view. Secondly,

given the strong emotional impact of social interactions, their analysis have a

large potential for enabling novel applications in different fields, ranging from en-

tertainment to preventive medicine. For instance, in a particular scene recorded

by a wearable camera, the presence of social interactions is considered as an

important factor to determine whether the event is likely to be viewed as worth

keeping ([54]).

The crucial role of personalized characterization of social pattern of a user

has been recognized in the medical domain. Related works thoroughly investi-

gate the feasibility of using a wearable camera for personalized health monitoring

that leads to increase the number of positive clinical outcomes. In this line, [7]

and [16] pinpoint how mobile technologies through continuous monitoring, allow

precise assessments of human behavior and ultimately individual mental health.
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In the same path, [31] and [10] suggested to use wearable cameras for detecting

relapse in people affected by depression and [25] proposed it for ecological mo-

mentary assessment of social functioning in schizophrenia. Also, in the context

of memory training of people affected by mild cognitive impairment, pictures

of social interactions are specially treated to trigger autobiographical memory

([52]). Recently, [20] used wearable cameras for monitoring the lifestyle of stroke

survivors and [13] in a recent study discussed the advantages and disadvantages

of incorporating wearable cameras into social psychological research and report

data variation on different social situations. In all the aforementioned studies,

the key components is to track social interactions of the user in terms of dura-

tion and frequency and to monitor their possible variation over time. Indeed,

in the literature the importance of duration and frequency of social interactions

in the study of social patterns is well recognized ([14, 9]). Another important

factor in social pattern characterization is the study of diversity of social in-

teractions which highlights the density of participation of individuals in each

kind of formal or informal meetings ([39, 40, 50, 32]). Statistical analysis of the

social interactions diversity has been considered as a helpful tool to optimize

workspace ([50]), to minimize the cost of meetings ([45]), and, to maximize ef-

fectiveness of interactions among of group members and in the social structure

of a broader organization ([42]). However, these studies are carried on in non-

automatic manners by visual reviewing of the images and other involved signals

of interest such as sound. In this work, we introduced a pipeline for automatic

analysis of duration, type, frequency and diversity of social interactions in the

context of social pattern characterization from egocentric photo-streams.

In sociology, the introduction of the F-formation theory by [36] was a foot-

stone to formalizing social interaction settings. F-formation is defined as a

geometrical pattern that interacting people tend to follow by adjusting their

location and orientation towards each other in the space to avoid mutual oc-

clusion. The computer vision community later adopted the F-formation theory

to detect groups of interacting people from images and videos ([17, 23]). Early

works about social interaction analysis in conventional images were motivated
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mainly by video surveillance applications ([47, 18]). Surveillance cameras how-

ever, capture the environment from a fixed and external perspective and fail in

capturing real involvement in social interactions at personal level. Meanwhile,

wearable cameras offer the possibility of capturing social cues from a more inti-

mate perspective, known as ego-vision or first-person vision. Nonetheless, social

interaction analysis in ego-vision introduces new challenges in social signal pro-

cessing in comparison to conventional third-person vision. Unpredictable motion

of the camera leads to background clutter and abrupt lighting transitions. In

addition, when the frame rate of the camera is low (2 fpm in our case), drastic

visual changes in even temporally adjacent photos make people tracking and

their interaction analysis harder ([1, 3]).

Building upon our previous work ([3]), in this paper we go beyond social

interaction detection in egocentric photo-streams. The proposed pipeline sug-

gests firstly, to study a wider set of features for social interaction detection and

secondly, to categorize the detected social interactions into two broad categories

of meetings. We focus our attention on the meetings and its two broad formal

and informal subcategories, following the proposed idea by [53] on social inter-

action categorization. Eventually, social pattern characterization of the user is

achieved through discovery of recurring people in the dataset, and, quantifying

the frequency, the diversity and the type of the occurred social interactions with

different people. In this work, we prove that to characterize social interactions,

analysis of combination of environmental features and social signals transmit-

ted by the visible people in the scene, as well as their evolution over time is

required. A visual overview of the proposed pipeline is given in Fig. 2. Ideally,

employing the entire proposed pipeline in this work, we aim to be able to answer

questions such as How often does the user engage in social interactions? With

whom does the user interact most often? Are the interactions with this person

mostly formal or informal? With how many people does the user interact during

a month? How often does the user see a specific person?

Social pattern characterization of individuals requires long term observation

of their social interactions, and since wearable photo cameras allow long term
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Figure 2: Complete pipeline of the proposed method. Social signals as well as environmental

features are extracted for each frame and used to represent each sequence as a time-series. A

LSTM is employed to classify each time-series, accordingly to the task at hand: social interac-

tion detection or categorization. Face clustering on the other side enables determination of the

diversity and the frequency of social interactions. Eventually, social pattern characterization

requires the integration of all tasks.

recording of the life of a user, they are specifically suitable for this purpose.

To demonstrate the generalization ability of the proposed approach, we employ

our proposed model over a test set acquired by one user who wore the camera

under free-living conditions over one month period while did not participate in

acquiring the training set used for training the models. The contributions of

this paper can be summarized as follows:

• Social interaction detection through event-level analysis of different com-

bination of social signals to prove the impact of each signal in the process.

The role of facial expression is studied for the first time.

• Social interaction categorization into formal or informal meetings, consid-

ering a set of high-level image features considered as relevant according to

an extensive body of sociological literature.

• Social pattern characterization through the definition and formalization

of the frequency, the duration and the diversity of social interactions.
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• Public release of an extensively-annotated egocentric dataset captured in

a real-world setting consisting of 125,000 images acquired by 9 users.

The rest of the paper is organized as follows: In the next section we provide

an overview on the related works to this topic of research, Sec. 3 is devoted

to social interaction detection. Sec. 4 details the proposed approach for social

interaction categorization and Sec. 5 is dedicated to the social pattern charac-

terization. Details about the dataset and experimental results are discussed in

Sec. 6. Sec. 7 covers the experimental results over an external dataset, EGO-

GROUP, and, Sec. 8 highlights the main conclusions and discusses the future

work.

2. Related work

The importance of automatic analysis of visual data for the purposes of

detection and categorization of social interactions has been recognized by the

computer vision community within several studies. Most of the previous studies

in social interaction computing were focused on finding potential groups of in-

teracting people, also known as Free-standing Conversational Groups (FCG) in

conventional still images or videos. In this regard, [28] proposed to use the rela-

tive distance and shoulder orientations between each pair of people to measure

social interactions on small temporal and spatial scales. This has been done

through training a probabilistic classifier which can then be used for character-

izing the social context. [17] proposed to solve the task using a Hough-Voting

F-Formation (HVFF) strategy to find the common area of interaction by accu-

mulating the density of the overlapping votes of each interacting person. Built

upon a multi-scale Hough-Voting policy, [46] modeled small FCG as well as large

groups of people, relying on different voting sessions. The problem of finding

F-formations has also been formulated as finding dominant sets and using prox-

emics by employing the graph clustering algorithm ([34]), graph-cuts framework

for clustering individuals ([47]), heat-map based feature representation of inter-

acting people ([23]), and defining an intermediate representation of how people
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interact ([15]).

The boom of interest in ego-vision during the past few years ([12]), naturally

led to exploration of social interaction analysis in this setting as well. For social

interaction analysis in an egocentric scenario, the most exploited features are

the face location and the pattern of attention of the visible individuals, as well

as the head movements of the first-person when the camera is worn on the head.

[22], proposed a Markov Random Field model to infer the 3D location to which a

person is looking at during a social interaction, that relies on the camera intrinsic

parameters. They further used this information to classify social interactions

into three classes, namely discussion, dialogue and monologue, depending on

the active role played by the participants in the interaction. To the best of

our knowledge, this is the only previously introduced work about egocentric

social interaction categorization. Later, [5] proposed a method for identifying

multiple social groups from egocentric videos, that do not rely on the camera

intrinsic parameters for 3D projection; hence, the method is applicable to any

head-mounted wearable camera. [49] introduced the concept of social saliency

defined as the likelihood of joint attention from a spatial distribution of social

members. A social formation is modeled as an electric dipole moment allowing to

encode a spatial distribution of social members using a social formation feature.

Recently, [55] proposed to model the dynamics of micro-actions and reactions

between two camera-wearer engaged in a dyadic interaction to reach a deeper

understanding of the ongoing social interaction between them. In this work,

the authors demonstrate that the integration of the first-person perspective of

both parties in a dyadic interaction fosters micro-action recognition task in

this setting. In another recent attempt, [54] offered to analyze social interaction

sequences and detect them applying a Hidden Markov - Support Vector Machine

(HM-SVM). Their focus was on modeling what they called interaction features,

mainly physical information of head and body.

All the aforementioned works share three main common characteristics.

First, the high temporal resolution of videos (30-60 fps), which allows to rely

on the temporal coherence among video frames to robustly estimate head pose
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of appearing people and modeling the foreground. Second, the head-mounted

cameras, which permits the modeling of head movements and attention patterns

of the user. And third, the pursued goal by them, that is restricted to finding

potential social groups of people in the scene, with exception of [22], that goes

deeper into the categorization of social interactions, but strongly relies on head

motion for that. Although the high temporal resolution cameras are suitable

for capturing details of the action units over relatively short periods of time

(up to several hours), they become unfeasible when it comes to social pattern

characterization task where long term observation of individuals is required. In

this case, low temporal resolution cameras are preferred.

The problem of social interaction analysis from egocentric photo-streams

although enables to overcome the aforementioned limitation, due to its partic-

ular application has received much less attention ([1, 3, 4]). This problem also

introduces novel challenges to the task. Photo-cameras are typically used to

acquire photo-streams for long periods of time, thus, are commonly worn on

the chest to seek less public attention. Consequently, important information

about the head movement of the user is not available and attention estimation

becomes unfeasible. In addition, in this particular setting, adjacent frames can

present abrupt variations and introduce more difficulty along information pro-

cessing. In the first attempt towards social interaction detection in egocentric

photo-streams, [1] adapted the HVFF method to the egocentric setting, namely

ego-HVFF, to predict social interactions among individuals with the user at

frame-level. This method inherently analyzes the social interactions in every

frame of the photo-streams separately, and eventually measures the probability

of social interaction of the user with each individual based on the ratio of the

frames that the algorithm found them as interacting. Later in another attempt

to detect social interactions of the user, the authors [3] proposed to model the

temporal coherence of the social signals at sequence-level, by employing a special

type of Recurrent Neural Networks (RNN) known as Long-Short Term Memory

(LSTM). According to the F-formation notion, the studied social signals in both

of these works are distance and orientation of the individuals with regards to
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(a) Social interaction

(b) No social interaction

Figure 3: Examples of two sub-sampled sequences in EgoSocialStyle test set. In 3a the user

is involved in a social interaction while 3b demonstrates a sequence where although the user

is among the crowd, he is not specifically interacting.

the user. The authors reported that analysis of social signals at sequence-level

leads to a better social interaction prediction accuracy.

In this work, we propose a complete pipeline for social pattern character-

ization of a wearable photo-camera user, where for the first time the role of

facial expressions, in combination with other conventional social signals is stud-

ied in social interaction analysis. The proposed model relies on the long term

observation of social interactions of the user, where multiple social signals ag-

gregate together to achieve a robust social interaction analysis. To the best of

our knowledge, this work can be considered as the first comprehensive social

pattern characterization study from a first-person perspective.

3. Social interaction detection

We, as humans are naturally able to recognize if two or more people are

interacting even only by looking at a sequences of images (see Fig. 3). However,

this is not as trivial for a computer program. In this work, for social interaction

detection, we build upon our previous work by introducing additional features

and studying their effectiveness in improvement of the results. Specifically, given

a sequence, a potential social segment of a photo-stream extracted by applying

the video segmentation method of [21], social signals are first extracted at frame-
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level, and later their evolution is analyzed over time at sequence-level to detect

social interactions.

3.1. Social signal extraction at frame-level

Tracking the appearance of people along time is generally considered as the

first step prior to any social behavior analysis in machine vision. In this work,

for tracking we employed the extended-Bag-of-Tracklets (eBoT) [2] which is a

multi-person tracking algorithm in egocentric photo-stream setting. The set of

bounding boxes corresponding to the same face in a sequence, resulting from

eBoT, is called a prototype, where the number of prototypes in a sequence is

equal to the number of tracked people in it as more than one individual may

appear in a single sequence.

In this work, as well as our previous work, we rely on the F-formation for-

malization for social interaction detection in the domain of egocentric photo-

streams. As the F-formation model assumes a bird-view of the scene, we repre-

sent each bounding box in a prototype by a (x, d, o) triplet, so that x denotes

the position of the person in the horizontal axis of the image and with regards

to the user, d denotes its distance, and o its head orientation. The tracking

process, directly provides us with the x position of a face. However, in our

egocentric setting, x is not a reliable feature to be considered as it constantly

goes under large variations due to the unpredictable movements of the camera

and its low frame rate (see Fig. 3a). Moreover, when it comes to interaction

with the user, the x position of the visible people as far as they do not occlude

each other, does not play a crucial role. Therefore, we only consider the (d, o)

pair to analyze the F-formation. Both parameters, d and o should be calculated

for all the participants in the social interaction, being the user and the visible

people in a sequence.

Distance: In the egocentric setting, the user is obviously located at no dis-

tance from the camera O and the distance of the j-th tracked person, pj , in

the scene from the camera, d(O, pj), is estimated based on the camera-pinhole

model through learning its relation with the vertical face height of the person
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([5]). According to our observations, the relation between the face height of in-

dividuals and their distance from the camera is best modeled as a second degree

polynomial of the face height of the person ([1]).

For training the polynomial regression function, we used the height of the

face of 3 different individuals measured in all the following set of distances

{30, 50, 70, 100, 150, 200, 250} cm. The distance feature is represented by:

ϕd(pj) = d(O, pj) ∈ R.

Without loss of generality, in the feature vector we will omit the reference to

the person pj and the wearable camera O.

Orientation: The head orientation of each individual gives a rough estimation

of where the person is looking at. In this work, in addition to the commonly

studied yaw (ωz) head orientation for social interaction detection, pitch (ωy)

and roll (ωx) head orientations are also studied. Hence, the orientation feature

is given by:

ϕo(pj) = (ωx(pj), ωy(pj), ωz(pj)) ∈ R3,

where each of ωx, ωy, and ωz has a value between [-90◦,90◦]. As the camera is

basically worn on the chest of the user, we only assume the user can possibly

look at anywhere in the space, but with higher probability of looking at other

engaged people in the interaction.

Facial expression: During a social interaction, people exhibit a large number

of non-verbal communication cues including facial expressions. Facial expres-

sions as stated by [29], are often referred to as automatic demonstrations of af-

fective internal states used as communicative means in interaction with others.

The overlooked importance of facial expressions for social interaction detection

is mostly noticed within the scenes recorded in crowded places where people

often stand in close proximity to strangers with whom they do not necessar-

ily interact. In this situation, relying solely on distance and orientation of the

individuals for social interaction detection may lead to disputable predictions

(see Fig. 4). Our observation on real social situations led us to intuitively ex-
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(a) Social interaction (b) No social interaction

Figure 4: A same person is shown in two different social events where facial expression prob-

abilities of the person are also presented. When the person is not interacting with the user

(4b), her dominant facial expression is Neutral, while when interacting (4a) her dominant

facial expression varies to Happiness.

plore the role of facial expression in social interaction detection as an additional

feature beside the pure geometrical features imposed by the F-formation.

In this work, facial expressions and face orientation are extracted by making

use of Microsoft Cognitive Service1. Facial expression is presented as a predicted

vector of probabilities for each of 8 different facial expressions consistently asso-

ciated to emotions in the occidental culture, being neutral, happiness, surprise,

sadness, anger, disgust, fear, and contempt ([8]). For a given person pj , we pro-

posed to consider the index of the dominant facial expression that is a discrete

value between 1 (neutral) and 8 (contempt):

ϕe(pj) = arg max
k∈1,...,8

ek(pj).

3.2. Temporal representation of social signals

In this work, the problem of social interaction detection is formulated as a

binary time-series classification, where the time-series dimension corresponds to

the number of selected social signals for the analysis as explained in Sec. 3.1.

As the complete setting, a 5−dimensional time-series representing the time-

1https://azure.microsoft.com/en-us/services/cognitive-services/face/
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evolution of the k-th interaction feature, over time is extracted for each proto-

type. The task is to classify each time-series as interacting with the user or not.

All the aforementioned interaction features, are extracted in every frame of the

sequence at time step τ to build the time-series representation of a prototype:

ϕdetection(τ, pj) = (ϕd(τ, pj), ϕo(τ, pj), ϕe(τ, pj)) ∈ R5, τ = 1, 2, . . . .

3.3. Time-series classification by LSTM

Time-series classification is a predictive modeling problem and what makes

this problem difficult is that the original sequences can vary in length, be com-

prised of a very large vocabulary of input symbols and may require the model

to learn the long-term context or dependencies between symbols in the input

time-series. In this context, RNNs with LSTMs showed great promise to learn

the information hidden among steps of a sequence ([38], [35]). LSTM owes its

ability to its incorporated memory cells that use logistic and linear units with

multiplicative interactions with input and output gates. In this way, it over-

comes the exponential error decay problem of RNN and increasing complexity

of HMM for learning long term dependencies.

For egocentric sequence binary classification purpose, in this paper we pro-

pose to train a LSTM network by introducing to it the time-series from each

sequence as presented in previous subsection at each time step. All the afore-

mentioned features for each sequence are introduced to the network as input.

The system must learn to classify sequences of different lengths to interacting

or not by analyzing the feature vectors associated to each sequence. Hence,

the system needs to learn to protect memory cell contents against even minor

internal state drift.

4. Social interaction categorization

Social interaction categorization is the task of characterizing type of a social

interaction. In the literature, three major elements have been typically exploited

for social interaction categorization: the physical setting or place, the social
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(a) Formal meeting

(b) Informal meeting

Figure 5: Example of two sub-sampled sequences, demonstrating the engagement of the user

in different categories of social interactions; a formal meeting (5a), and an informal meeting

(5b). The variations in the environment as well as facial expressions of the person in different

events can be appreciated.

environment, and the activities surrounding the interaction ([43]). In this work,

following [53] we propose to categorize the detected social interactions in the

previous step into two broad categories of common social interactions as formal

meetings and informal meetings, also known as informal gatherings.

Meetings are defined as gatherings at which humans communicate, convince,

cajole, conspire, and collaborate ([53]). In general sociology, a formal meeting is

defined as a pre-planned event where two or more people come together at a pre-

planned place at a particular time to discuss specific matters for the purposes of

achieving a specific goal ([53]). Meanwhile, an informal meeting is more casual,

requires less planning, and, usually can take place at any casual space from a

park to a hall. Looking closely from the computer vision perspective at the

definition of each meeting, environmental features show sign of discriminative

power. Therefore, for social interaction categorization we base our approach

on the use of environmental features. In addition, we also attempt to study

the impact of the facial expressions of involved individuals in the interaction on

defining the category of a social interaction. Our approach takes into account

the temporal evolution of both environmental and facial expression features by

modeling them as multi-dimensional time-series, and relies on the classification
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power of LSTM for binary classification of each time-series into either a formal

or an informal meeting.

4.1. Feature extraction

Global features: As explained earlier in this section, the surrounding environ-

ment of an interaction is considered among the main indicators for categorizing

a meeting. Among different features for image representation, CNN features

showed exceptional results for global representation of the context in images

([24]). In this work, we represent each image with a feature vector extracted

by taking the output of the last fully connected layer of the VGGNet (VGG16)

([48]) pre-trained on the Imagenet dataset ([19]). However, since the image fea-

ture vector consists of thousands of variables, the computational cost becomes

significant when it comes to further processing. In addition, the Hughes phe-

nomenon ([33]) is inevitable when it comes to learn a high-dimensional feature

space with limited number of training samples in machine learning in general

and in RNNs, specifically ([44]).

In this work, to resolve the curse of dimensionality of CNN features we

propose first to apply quantization and then to apply PCA to keep the most

important components of the quantization result. To quantize the CNN features,

we propose to re-write them as discrete words as proposed by [6]. This method

takes advantage of the inverted-index approach to deal with the sparsity of the

CNN features to associate each component of the feature vector with a unique

alphanumeric keyword. This conversion leads to a sparser textual representation

of the CNN features in which the relative term is proportionally related to the

feature intensity. This method showed great promises in retrieval applications.

CNN feature to word conversion essentially represents each component of the

L2-normalized CNN feature vector, fk, k = 1, ..., 4096, as a word:

wk = bQfkc,

where bc denotes the floor function, and Q is an integer positive quantification

factor being Q > 1. For instance, if we fix Q = 2, for fk < 0.5, then wk = 0,

15



(a) Formal (b) Informal

Figure 6: Bar-plot of facial expression variations over 10 randomly selected sequences for

each of (a) formal and (b) informal meetings from the training set in EgoSocialStyle. Each

sub-figure shows the mean of the observed facial expressions for each detected face in all the

frames of 10 randomly selected sequences. Within informal meetings, people seem to express

more freely their emotions as more variation can be observed.

while for fk ≥ 0.5, wk = 1. The factor Q has a regulator effect on the features

for further processing. The smaller the Q the sparser is the new feature vector

and it represents less details about the original feature vector. In this work,

Q = 15 is used which results in highly sparse feature vector representation of

integer values: (w1, w2, . . . , w4096).

Given the high sparsity of the obtained word representation, a PCA is ap-

plied over the so obtained feature vectors extracted from all the images of the

dataset and from the emerging representation, 95% of the most important in-

formation are kept. This process results in a 35-dimensional feature vector,

ϕCNN ∈ R35, while keeping the most important environmental features of the

image. Note that applying PCA on the raw CNN features without conversion

to word representation, does not result to a feature vector dimension smaller

than hundreds. We are interested in keeping the dimensionality of features in

the order of tens.

Facial expression: Following our hypothesis that formal and informal meet-

ings can be characterized by the environmental characteristic as well as the

facial expression of participants, integration of both features is required. A

proof for this hypothesis is illustrated on Fig. 6 that shows the bar-plot of eight
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facial expressions for both formal and informal meetings. These bar-plots, ob-

tained using ground truth information, suggest that people express more freely

their emotions in informal meetings. Facial expression features in this task are

extracted as the mean of facial expressions of the total number of J people

detected in each frame of a sequence:

ϕe,k =
1

J

J∑
j=1

ek(pj), k = 1, . . . , 8.

4.2. Temporal analysis of representative features

To achieve joint effect of global image features representing the environment

and facial expression features of individuals on social interaction categorization,

the 8-dimensional vector of facial expression probabilities (ϕe(τ)) is directly

concatenated to the environmental features represented by global image charac-

teristics of the event (ϕCNN (τ)). Given a sequence, the time-series of interaction

sequences are constructed as follows for the social interaction categorization:

ϕcategorization(τ) = (ϕCNN (τ), ϕe(τ)) ∈ R43, τ = 1, 2, . . .

Further, time-series classification task into either a formal or an informal

meeting is reached relying on the LSTM power for time-series classification.

5. Social pattern characterization

5.1. Generic social interaction characterization

Characterizing the social pattern of an individual, implies the ability of

defining the nature of social interactions of the user from various temporal (fre-

quency, duration, etc.) and social (type, identity, and, number of interaction

people with the user, etc.) aspects. Providing a definition within the aforemen-

tioned contexts, demands social interaction analysis of the user across several

events during a long period of time. For this purpose, we define four concepts

to characterize social interactions, namely frequency, social trend, diversity, and

duration.
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Figure 7: A few examples of faces belonging to one cluster obtained by applying [4] on the

EgoSocialStyle test set. The visual variation among face examples can be appreciated.

Frequency (F): Defines the normalized rate of formal (or informal) interactions

of a person by the total number of observation days:

Fformal(informal) = #formal(informal) interactions/#days

Social trend (A): Indicates whether the majority of social interactions of a

person are formal (or informal):

Aformal(informal) = #formal(informal) interactions/#all interactions

Diversity (D): Demonstrates how diverse are social interactions of a person.

The term is defined as the exponential of the Shannon entropy calculated with

natural logarithms, namely:

D = 1/2 exp

− ∑
i∈{formal,informal}

Ai ln(Ai)


Note that when the person has the same number of formal and informal inter-

actions (i.e. Aformal = Ainformal = 0.5), D = 1.

Duration (L): Defines the longitude of each social interaction of the user.

The duration is the longitude of the sequence corresponding to the i-th social

interaction, say L(i) = T (i)r, where T (i) is the number of frames of the i-th

interaction and r is the frame rate of the camera. Different statistics can be

applied on the duration of interactions like mean, median or standard deviation

in order to characterize social interactions and extract the social pattern.

5.2. Person-specific social interaction characterization

In this subsection, we consider the concepts for social interaction character-

ization of the user within the context of interaction with a specific person. This
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firstly requires that all the interactions of the user with a certain person to be

localized. To this goal, a face clustering method to find various appearances of

the same person among all the social events of the user ([4]) is employed. The

face clustering method is applied on the results of the social interaction detec-

tion step. To cope with the extreme intra-class variability of faces, it builds

upon the multi-face tracking outcome. In a single event, tracking gathers a set

of different appearances of the same face in that event, called a face-set in this

context, which allows to reshape the face clustering task in different events to

face-set clustering.

The deterministic factor in deciding whether two different face-sets belong

to the same cluster, i.e. represent the same person, is defined through a dissim-

ilarity measure. Let R and T be a reference and a target face-sets, respectively.

Let SR be the similarity matrix between all possible pairs of face-examples in R,

and ST be the similarity matrix between face-examples in R and face-examples

in T . The dissimilarity between T and R, δ(R, T ), is calculated as the absolute

difference between the median value µ of SR and ST , respectively:

δ(R, T ) =
∣∣µR − µT

∣∣ .
A hierarchical clustering technique is applied to group the face-sets according

to their pair-wise dissimilarity value. The cut-off threshold for the agglomerative

clustering is chosen empirically over a separate learning dataset and corresponds

to the median value of all dissimilarities between the face-sets corresponding to

the same person. Fig. 7 shows a few images in one resulting cluster obtained

together with an index to which sequence each element of the cluster belongs.

One can appreciate the visual variance of the faces in a cluster.

5.3. Face-cluster analysis

Let C = {cj}, j = 1, . . . , J be the set of clusters obtained by applying the

face-set clustering method on the detected interacting prototypes, where J ide-

ally corresponds to the total number of people who appeared in all social events

of the user along the whole period of observation (e.g. a month). Each cluster,
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cj , ideally contains all the different appearances of the person pj across different

social events, and |cj | is the cardinality of cj which demonstrates the number of

social interactions events of the user with the person pj during the observation

period.

As both the clustering method and the proposed method for social interac-

tion detection and categorization act at sequence-level, inferring the interaction

state of each sequence inside a cluster is straightforward. The frequency, the

social trend, the diversity and the duration of the interactions with a specific

person, can be computed in the same manner as explained in 5.1, by restricting

the interactions considered to the ones with the person of interest.

6. Experiments and discussion

In this section, we introduce our dataset for social pattern characterization

in egocentric photo-streams, namely EgoSocialStyle and describe the proposed

experimental setup to validate our proposed approach. A comprehensive dis-

cussion to provide broader insight over the obtained results is also given in this

section.

6.1. Experimental setting

6.1.1. Data

To the best of our knowledge, this work is the first attempt to characterize

automatically the social pattern of a person relying exclusively on visual data.

Lack of previous studies goes with the lack of the public dataset on this consid-

ered purpose, which led us to build a new dataset to validate jointly all the tasks

of our proposed method. Our dataset has been acquired by 9 users wearing a

Narrative clip camera during the participation in gathering the dataset while

they were living their daily life without any constrains. The camera was set to

automatically capture a photo every 30 seconds once being worn. The partic-

ipants who gathered the dataset had different ages and profiles and wore the

camera in different and random days and times of the week. Sequences in our
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Table 1: EgoSocialStyle dataset consists of train set and test set captured by 9 different users.

The details about each set is provided in this table.

# Use
rs

Day
s

Im
ag

es
Soc

ial

Im
ag

es
Peo

ple

Seq
uen

ce
s

Pro
to

ty
pes

In
te

ra
ct

in
g

For
m

al

Train 8 100 100,000 3,000 62 106 132 102 42

Test 1 30 25,200 2,639 40 113 172 130 25

dataset have different lengths, varying from 20 to 60 frames (10 to 30 minutes

of interactions).

The training set of EgoSocialStyle is an extended version of the dataset

previously introduced in [3]. It has been acquired by 8 users; each user wore the

camera for a number of non-consecutive days over a total of 100 days period,

collecting over 100,000 images in total, where in 3,000 images among them a

total number of 62 different persons appear.

The test set is acquired by a single user, who did not participate in acquiring

the training set as we aimed to study the generalization ability of our model for

social pattern characterization of a person. The user wore the camera for 30

consecutive days collecting 25,200 images, where 2,639 of which correspond to

social events. There are 35 sequences with more than one person appearing in

them over 113, in total. 40 different trackable persons appear in the test set.

Face annotations in the whole dataset are attained using the Microsoft face

annotation tool ([8]). Participants were asked to provide a label (interacting/not

interacting, formal/informal) for their own sequences. Table 1 provides further

details of the proposed dataset.

6.1.2. Data augmentation

Large amount of data for better training of deep models is a well recognized

necessity. However, the required time to acquire and label real data for this

purpose is not negligible and is where artificial data augmentation could have

an impact. A proper data augmentation is one which provides a reasonable
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set of data in addition and similar to the already existing data in the training

set, but also slightly different from them to reduce overfitting of the model in

learning a task ([51]). Besides the impact of data augmentation in the produc-

tion of additional data, it is also considered a helpful tool to provide balance

to unbalanced data. This specially is of interest in our case where to acquire

sequences without any social interaction is more difficult than sequences with

social interaction.

To augment the data at hand, we employed the proposed idea by [37]. The

principle idea consists of augmenting signals by adding slight variations to them,

which can be done by adding eigen-features on top of each different feature in

a sequence. This has been achieved through applying PCA and then adding

multiples of the found principal components to each sequence, with magnitudes

proportional to the corresponding eigenvalues times a random variable drawn

from a Gaussian with mean zero and small standard deviation (0.01, in this

work). This scheme generates more data in addition to the original training

data by applying label-preserving transformations to them.

Let Φ = (ϕ1,n(τ), ϕ2,n(τ), . . . , ϕK,n(τ)), n = 1, . . . , N is the set of all the N

time series in our training set where τ = 1, . . . , T , is the length of the sequences

and consequently the time-series and, k = 1, . . . ,K, is the dimension of the

time-series. Note that in the social interaction detection task, N is equal to

the total number of prototypes in the training set, and in the social interaction

categorization task, N is equal to the number of sequences in the training set.

The augmentation of Φ from N to N̂ , with N̂ = ∆N , is achieved through

adding the vector Φ̂n(τ) = (φ1,n(τ), φ2,n,(τ), . . . , φK,n(τ)) to the frame τ of the

n-th time-series in ∆ number of attempts. Φ̂n(τ) is obtained as:

Φ̂n(τ) = [P1, P2, . . . , PK ][θ1,n(τ)λ1, θ2,n(τ)λ2, . . . , θK,n(τ)λK ]T ,

where Pk and λk are the k-th eigenvector and eigenvalue of the K × K covari-

ance matrix of feature values, respectively, and θk,n(τ) is the aforementioned

random variable. It is worth to mention that in the social interaction detection

task, K = 4 and in the social interaction categorization task, K = 32. In the
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social interaction detection, since the facial expression is a variable with discrete

values, we did not consider to alter it in the data augmentation. Instead, when

we generated new samples of time-series from an original time-series, we only

repeated the facial expression signal of the original time-series in the augmented

time-series. We did not consider to alter the facial expression signal neither in

the social interaction categorization task, since the facial expression feature vec-

tor originally contains values of probabilities which must sum to 1 and altering

them leads to a change in their essence. Instead, similar to the other tasks,

we only repeated the facial expression signal of the original time-series in the

augmented time-series.

6.1.3. Network structure and hyper-parameter optimization

In this work, we used the most commonly used version of LSTM in literature,

known as vanilla LSTM ([26]) for time-series classification. This architecture

is a three layer network consisting of the input layer, the LSTM hidden layer

and a sigmoid output layer, where the input layer has forward connections to

all units in the hidden layer and each LSTM is composed of various numbers

of memory cells. We added a dropout layer between the hidden layer and the

output layer to mitigate the overfitting problem. Vanilla LSTM in contrary to

the first introduced version of LSTM ([30]), features forget gate in addition to

input gate and output gate. It also incorporates peephole connections and uses

full Backpropagation Through Time (full-BPTT) instead of truncated gradient

training.

In vanilla LSTM, the output of the LSTM block is recurrently connected

back to the block input and all of the gates, but it does not use full gate re-

currence as in the initial version of LSTM. Full gate recurrence means that

all the gates receive recurrent inputs from all gates at the previous time-step

which greatly increases the number of parameters that has been discouraged

in the literature ([27]). Stochastic Gradient Decent method (SGD) is used for

optimization in full-BPTT training. As both of the social interaction detection

and categorization tasks are binary classification problems, we used an output
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Table 2: Best performing hyperparameters for each setting per each task. Social interaction

detection settings are separated by a horizontal line from social interaction categorization

settings.

Learning rate Momentum Dropout rate Batch size Epoch #Cells

SID1 0.001 0.7 0.0 20 50 30

SID2 0.01 0.8 0.0 30 50 35

SID3 0.001 0.7 0.5 50 100 30

SID4 0.001 0.5 0.0 20 100 100

SIC1 0.001 0.8 0.0 50 50 200

SIC2 0.001 0.9 0.0 50 20 150

SIC3 0.01 0.8 0.5 100 50 200

layer with a single neuron and a sigmoid function to make 0 or 1 predictions

and a log loss as the loss function. Due to the higher computational complexity

of the gate specific dropout techniques in the hidden layer, we did not use any

of them.

Different settings of features require different settings of hyperparameters to

give good performance, and we are interested in the best performance that can

be achieved with each setting. For this reason we chose to tune the hyperpa-

rameters for each setting, separately. Grid search with 3-fold cross validation

on the training set has been used in order to obtain best performing hyperpa-

rameters. The studied parameters for the grid-search are learning rate, momen-

tum, dropout rate, batch size, number of epochs, and, number of LSTM blocks

per hidden layer. We made log-uniform sampling over the following interval

of hyper-parameters: [0.0001,0.1] learning rate, [0.1,0.9] momentum, [0.0,0.9]

dropout rate, [100,1000] batch size, [10,100] epochs, and, [10,200] number of

LSTM blocks. The best performing hyperparameters per each setting for each

task are given in Table 2.
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Table 3: Social interaction detection results. The best results in terms of precision, recall and,

accuracy are achieved through training and testing the model on the SID4 setting.

ego-HVFF SID1 SID2 SID3 SID4

Precision 82.75% 80.76% 88.49% 88.59% 91.66%

Recall 55.81% 64.61% 76.92% 77.69% 84.61%

Accuracy 58.38% 61.62% 75.00% 75.58% 82.55%

6.2. Experimental results and discussion

As mentioned earlier, each dimension of a time-series is variation of a unique

feature along the sequence. In this section, to prove the importance of each fea-

ture and to discover the optimal combination of features, we train and test

individual networks by introducing time-series composed of different combina-

tion of features.

6.2.1. Social interaction detection

In this task, four set of settings are explored as:

• SID1: Distance + Yaw

• SID2: Distance + Yaw + Pitch + Roll

• SID3: Distance + Yaw + Facial expression

• SID4: Distance + Yaw + Pitch + Roll + Facial expressions

SID1 is the baseline setting in which only presented features in our previ-

ous work ([3]) are studied. In SID2, pitch and roll in addition to yaw as the

main indicator of face orientation in previous works are studied. SID3 follows

the same pattern as SID1, but includes facial expression features to observe the

effect of facial expressions in addition to commonly studied features for social

interaction detection. Finally, SID4 includes all the discussed features for social

interaction detection analysis. It is important to note that the data augmenta-

tion is only performed once for the complete 4-dimensional setting (SID4) and
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data in other settings is formed by selecting the required dimensions from the

complete setting.

In Table 3, we report the obtained precision, recall and accuracy values for

each of the above settings. Besides, we also compared our obtained results with

the ego-HVFF model as the unique method amongst state-of-the-art methods

suitable for social interaction detection in egocentric photo-streams as discussed

in Sec. 2. The best obtained results, in all terms of precision, recall and accu-

racy belong to the SID4 setting containing all the proposed features (distance,

yaw, pitch, roll, facial expressions) for social interaction detection. Comparing

SID1 with each of SID2 and SID3 shows that the incorporation of each of the

other head orientation information and facial expression in the analysis leads to

more robust social interaction detection, while facial expression shows to have a

slightly stronger impact (SID3) than additional head orientations (SID2). Ego-

HVFF only considers distance and yaw orientation (SID1) for social interactions

detection. However as expected, temporal analysis of SID1 in sequence-level

leads to more accurate social interaction detection than frame-level analysis of

the sequences as it has been achieved through applying ego-HVFF. Our rea-

soning is that since in this task all the social signals originate from the face

appearance of the third-person, face occlusions due to movements of the cam-

era or the user itself, lead to social signals discontinuity. Therefore, analysis of

the sequences in frame-level results in direct exclusion of occluded frames from

the analysis while sequence-level analysis in format of time-series mitigates the

social signals fragmentation impact by considering the relation among the rest

of the frames of a sequence.

Fig. 8 and Fig. 9 are visual demonstrations of how facial expressions and

additional head orientations aid in more robust social interaction detection. In

Fig. 8a and Fig. 8b, although the subjects are oriented towards the user and

they are in relatively close proximity to the camera, we assume their invariant

neutral facial expressions were a determinant factor in helping the model to

correctly classify them as not interacting with the user. Another scenario can

be observed in Fig. 9a and Fig. 9b. In Fig. 9b, despite the close proximity of
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(a) Correctly detected as no-social interaction employing SID3 and SID4, incorrectly detected

as social interaction employing SID1

(b) Correctly detected as no-social interaction employing SID3 and SID4, incorrectly detected

as social interaction employing SID1

Figure 8: Two examples to highlight the role of facial expression. We assume the invariant

Neutral facial expression of the individual led to classification success employing both SID3

and SID4 settings, and classification failure employing SID1 setting which does not include

facial expression information. For better observability in the cluttered scene, face examples

of the individuals are shown by a green bounding boxed around them.

(a) Correctly detected as social interaction employing SID2 and SID4

(b) Correctly detected as no-social interaction employing SID2 and SID4

Figure 9: Two examples to emphasize the role of pitch and roll head orientation in social in-

teraction detection. Sequences are correctly classified employing both SID2 and SID4 settings,

and incorrectly classified employing SID1 setting which lacks pitch and roll head orientation

information.

the subject to the user and although her yaw orientation in inclined towards the

user, we assume the uncommon pitch orientation of her head aided the model

to correctly classify the sequence as not interacting with the user. Two failure

cases of the detection model can be observed in Fig. 10. This could happen
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(a) Incorrectly detected as no-social interaction employing any of the settings

(b) Incorrectly detected as no-social interaction employing any of the settings

Figure 10: Examples of two sub-sampled sequences in our dataset, where sequences could not

be correctly detected as interacting employing any of the settings. The uncommon head pose

of the individuals in both sequences led to the model failure.

Table 4: Social interaction categorization results. The best results in terms of precision, recall

and, accuracy are achieved through training and testing the model on the SIC3 setting.

HM-SVM VGG-FT SIC1 SIC2 SIC3

Precision 76.82% 86.81% 87.91% 89.01% 91.48%

Recall 63.65% 89.77% 90.90% 92.04% 97.72%

Accuracy 64.87% 82.30% 83.18% 84.95% 91.15%

due to the uncommon head pose of the interacting people and their dominant

neutral facial expression. Indeed in none of the examples, the interacting people

are looking towards the user.

6.2.2. Social interaction categorization

In this task, the following settings are considered for the temporal analysis:

• SIC1: Environmental (VGG)

• SIC2: Environmental (VGG-finetuned)

• SIC3: Environmental (VGG-finetuned) + Facial expressions

We assume that global features of an event, namely environmental features,
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have the greatest impact in the categorization of it. Therefore in this section,

the first setting (SIC1) studies only environmental features which are extracted

from the last fully connected layer of the VGGNet trained over the Imagenet

and preprocessed as explained in Sec. 4.1. VGGNet trained on the Imagenet

is highly capable of grasping the general semantics in an image. However, fine-

tuning the network for a specific task over relevant data for that task, adapts

the pre-trained network to that specific purpose. Therefore, we assume the

extracted features from the fine-tuned network ideally lead to better represen-

tation of the desired classification task. In SIC2, the environmental features are

extracted in the same manner as SIC1, but from the fine-tuned VGGNet over

the training set of the EgoSocialStyle. The features are preprocessed in the same

manner as explained in Sec. 4.1. Fine-tuning the network is achieved through

instantiation of the convolutional part of the model up to the fully-connected

layers and then training fully-connected layers on the photos of the training

set. The last setting to be studied is SIC3, which explores jointly the effect

of facial expressions as well as the environmental features in social interaction

categorization.

In this task, we have employed VGGNet pre-trained over Imagenet for fea-

ture extraction, while any other CNN architecture suitable for image feature

extraction could be employed and finding the optimal CNN architecture is out

of scope of this work. Additionally, the Imagenet dataset was preferred to a

seemingly more relevant dataset such as Places ([56]) for environmental feature

extraction of images. This is due to the narrow field of view of the Narrative

camera where in the images captured by it, a scene is better observed by the

set of visible objects in it rather than the wide view of the scene.

In Table 4, we report the precision, recall and accuracy values obtained

for each setting of the aforementioned settings. Additionally, we compared

our obtained results with HM-SVM ([54]) which is an applicable state-of-the-

art method to our setting as this model similarly to ours extracts features in

the egocentric setting and analyzes them in sequence-level but different to our

proposed model, employs a HMM to model interaction sequences according to
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features to categorize them. To apply HM-SVM, the HMM is trained using

our training set where features follow the SIC3 setting. The HM-SVM is later

employed to label the interaction state. We also report achieved results by

a baseline method, VGG-FT, in which the fine-tuned VGG network on the

photos of the training set in EgoSocialStyle is tested over the pool of photos

in EgoSocialStyle test set. Thus, it is considered a frame-level modeling of the

problem.

The obtained results suggest that, temporal analysis of environmental fea-

tures extracted from fine-tuned VGGNet in SIC2 setting outperforms temporal

analysis of environmental features extracted from VGGNet before fine-tuning

in the SIC1 setting. Temporal analysis of fine-tuned features also outperforms

frame-level analysis of fine-tuned features in VGG-FT which is also an indication

of the importance of temporal analysis of features in this task. The combination

of environmental features extracted through fine-tuned VGG network and fea-

ture vector of facial expressions probabilities leads to the highest performance

of the model. HM-SVM is trained and tested with features in the SIC3 setting.

However, the obtained results suggest that the LSTM demonstrates more power

in modeling the problem at hand than the HMM.

It is worth to note that, due to the extensive amount of data that end-to-end

models need for training (few million data) and to our limited number of image

sequences in the dataset, we did not consider to design our proposed model in an

end-to-end fashion. Indeed, making use of pre-trained networks, like emotion,

makes a more effective use of the resources when the available data is small

compared with the amount of data needed to train the individual sub-networks.

In Fig. 11, two sequences are shown in which the aggregation of facial

expressions with the general environmental features employing SIC3 leads to

the correct categorization of them. In Fig. 11a, although the environment is

the indicator of a formal meeting, we assume the variant facial expressions of

the subject aids the model to correctly classify it as an informal meeting. On

the contrary, in Fig. 11b despite the scene not implying a formal meeting,

we assume the dominant neutral facial expression of the subject leads to the
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(a) Correctly detected as informal meeting employing SIC3

(b) Correctly detected as formal meeting employing SIC3

Figure 11: Two successful examples employing SIC3 setting, emphasizing on the role of facial

expressions in social interaction categorizations. The method trained over mere general fea-

tures employing SIC2 setting did not lead to the right categorization of each of the sequences.

(a) Incorrectly detected as formal meeting employing SIC3

(b) Incorrectly detected as formal meeting employing SIC3

Figure 12: Two failure examples of the model trained on any of the social interaction catego-

rizations settings. We assume misleading environmental features in 12a and invariant neutral

facial expressions of the subject in 12b led to these failure cases.

correct categorization of the sequence as a formal meeting. Fig. 12 shows two

cases where the model fails to correctly categorize social interactions due to

misleading features transmitted from the scene. Both Fig. 12a and Fig. 12b

are informal gatherings which are classified incorrectly as formal meetings. Our

assumption is that in Fig. 12a the model confuses the menu with a piece of

paper which is an important characteristic of a formal meeting. We also assume

in Fig. 12b the invariant neutral facial expression of the person leads the model

to fail.
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Figure 13: Temporal map of social interactions of the user during one week. The boundaries

of an interaction are shown by circles for informal and squares for formal interactions. Differ-

ent line colors are index of the interaction with different people and multiple lines within a

boundary are indicative of interaction with multiple people.

6.2.3. Social pattern characterization

To illustrate the ability of the proposed framework for social pattern char-

acterization of an individual, face clustering is applied on the test set. A total

number of 83 clusters is obtained, which is almost double the size of the total

number of prototypes in the test set. The largest cluster contains 77 number of

faces from 5 number of sequences belonging to the same person in various social

events.

The different statistics of the social interactions of the user, as well as those

related to the most frequently interacted person are provided in Table 5. From

our observation, it can be concluded that during the observation interval the

user interacted with the most frequently interacting person 5 times, in 4 differ-

ent days, 4 times of which occurred during informal meetings. An interesting

observation is that in a cluster containing different sequences, a sequence may

belong to a formal or informal meeting which implies the user may have different

types of interaction with the same person in various social events. According to

the statistics reported in Table 5, generic diversity of social interaction of the

user is relatively high (87%). Specifically, the user is three times more inclined

towards having informal meetings than formal meetings (Generic A-Formal vs.

A-Informal, 0.75 vs. 0.25) and thus, more frequently gets engaged in informal

meetings as supported by the statistics. Interestingly, the generic social trend of

the user is correlated to the person-specific one (0.05 difference in both formal
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Table 5: Social pattern characterization results, demonstrating the generic and person-specific

frequency (F), social trend (A), diversity (D) and, Duration (L) of the social interactions of

the user.

F-Formal F-Informal A-Formal A-Informal D L

Generic 0.83 2.50 0.25 0.75 0.87 25.19±1.32

Person-specific 0.25 1.00 0.20 0.80 0.59 18.80 ± 0.96

and informal social trends). The above interpretation is expected when assum-

ing an informal social interaction can occur at any time without any planning,

while for formal social interactions normally planning is involved ([53]).

The social pattern of the user over one week according to the obtained

results from clustering and inference to their types is visualized in Fig. 13.

Social interactions are shown by horizontal colored lines, where the interaction

boundaries are shown by circles for informal meetings and squares for formal

meetings. Different colors correspond to different persons. Re-occurring people

in one social event are shown with parallel lines within the same interval. As it

can be observed in Fig. 13, informal social interactions of the user are happening

at almost any time of the day and the formal social interactions are normally

happening during the middle of the day.

7. Social pattern characterization on EGO-GROUP

Despite the lack of available datasets for the purpose of social pattern charac-

terization in egocentric vision, to demonstrate the effectiveness of our proposed

model, we applied the entire pipeline on EGO-GROUP ([5]), a most adapt-

able public dataset to our considered purpose in this work. Despite the fact

that EGO-GROUP is not designed dataset for computing the statistics of social

style of a user (social pattern characterization), it offers a benchmark that is

directly suitable for social interaction detection and adaptable for social inter-

action categorization in the domain of egocentric vision.
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Figure 14: A few examples of faces belonging to the biggest cluster obtained by applying [4] on

the EGO-GROUP dataset. Face-examples in this clusters belong to three different scenarios

of EGO-GROUP.

EGO-GROUP is a social group detection dataset for egocentric vision, which

consists of 18 videos collected in five different scenarios: laboratory, coffee break,

conference room, outdoor, and party. The ground truth data available with the

dataset in addition to the type of each scenario, provides interaction labels for

each individual. To adapt the dataset to the definition of social interaction cat-

egory in this work, we labeled the laboratory and the conference room videos as

formal meeting, and, party, coffee break, and, outdoor as informal meeting sce-

narios. However, as mentioned before, social pattern characterization purpose

requires long term monitoring of daily life of a person. Whereas, EGO-GROUP

consists of single detached by scenario sequences that are captured under con-

trolled, and not free living conditions. For this reason, in this section we report

the obtained results for social interaction detection and categorization as well

as face clustering.

For the sake of a fair comparison, we down-sample the videos captured in

15 fps to 1 fps photo-streams. Within the terminology used in this paper, we

obtained 21 social events (sequences) and 76 prototypes. For social interaction

detection, we followed the same proposal in the Sec. 3, with the only difference

that the distance feature is calculated as it is proposed in the original paper

([5]). For social pattern categorization, we used one event of each scenario for

fine-tuning the network and used the new fine-tuned network to extract the

word representation of training set for training the LSTM. Later, the appropri-

ately trained LSTM is used for testing the model. For both of social interaction

detection and categorization tasks, we only evaluate the models on the best per-

forming settings of features on EgoSocialStyle, being SID4 in the case of social
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Table 6: The obtained results in terms of precision, recall, and, accuracy on the best perform-

ing settings for both tasks of social interaction detection (SID4) and categorization (SIC3) on

EGO-GROUP.

Detection Categorization

Precision 86.11% 90.00%

Recall 77.50% 75.00%

Accuracy 81.57% 76.47%

interaction detection and SIC3 in the case of social interaction categorization.

We report the obtained results on EGO-GROUP in terms of precision, recall,

and, accuracy in Table 6.

EGO-GROUP does not provide any clustering ground truth to validate this

task. However, as part of the entire framework we also applied the clustering

on this dataset. Examples of the face-examples in the biggest obtained cluster

are shown in Fig. 14. This cluster contains 86 face-examples of the same person

from several events across three different scenarios in EGO-GROUP.

8. Conclusions

In this work, we proposed a complete pipeline for social pattern character-

ization of a user wearing a wearable camera for a long period of time (e.g. a

month), relying on the visual features transmitted from the captured photo-

streams. Social pattern characterization is achieved through first, the detection

of social interactions of the user and second, their categorization. In the end, dif-

ferent appearances of interacting individuals with the user are localized across

different social events through face clustering to directly drive the frequency

and the diversity of social interactions of the user with each individual. In the

proposed method, social signals for each task are presented in the format of

multi-dimensional time-series and LSTM is employed for the social interaction

detection and categorization tasks. A quantitative study over different combi-

nation of features for each task is provided, unveiling the impact of each feature
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on that task. Evaluation results suggest that in comparison to the frame-level

analysis of the social events, sequence-level analysis employing LSTM leads to

a higher performance of the model in both tasks.

To the best of our knowledge, this is the first attempt at a comprehensive

and unified analysis of social pattern of an individual in either ego-vision or

third-person vision. This comprehensive study can have important applications

in the field of preventive medicine, for example in studying social patterns of

patients affected by depression, of elderly people and of trauma survivors.
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