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2Departament de Fisı́ca Quàntica i Astrofı́sica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
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ABSTRACT
In this work, we use Bayesian inference to quantitatively reconstruct the solar properties
most relevant to the solar composition problem using as inputs the information provided
by helioseismic and solar neutrino data. In particular, we use a Gaussian process to model
the functional shape of the opacity uncertainty to gain flexibility and become as free as
possible from prejudice in this regard. With these tools we first readdress the statistical
significance of the solar composition problem. Furthermore, starting from a composition
unbiased set of standard solar models (SSMs) we are able to statistically select those with
solar chemical composition and other solar inputs which better describe the helioseismic and
neutrino observations. In particular, we are able to reconstruct the solar opacity profile in
a data-driven fashion, independently of any reference opacity tables, obtaining a 4 per cent
uncertainty at the base of the convective envelope and 0.8 per cent at the solar core. When
systematic uncertainties are included, results are 7.5 per cent and 2 per cent, respectively. In
addition, we find that the values of most of the other inputs of the SSMs required to better
describe the helioseismic and neutrino data are in good agreement with those adopted as the
standard priors, with the exception of the astrophysical factor S11 and the microscopic diffusion
rates, for which data suggests a 1 per cent and 30 per cent reduction, respectively. As an output
of the study we derive the corresponding data-driven predictions for the solar neutrino fluxes.
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1 IN T RO D U C T I O N

Standard solar models (SSMs; Bahcall & Ulrich 1988; Turck-
Chieze et al. 1988; Bahcall & Pinsonneault 1992, 1995; Bahcall,
Pinsonneault & Basu 2001; Bahcall, Serenelli & Basu 2005b; Peña-
Garay & Serenelli 2008; Serenelli, Haxton & Pena-Garay 2011;
Vinyoles et al. 2017) describe the Sun present-day properties as a
result of its evolution starting at the pre-main sequence. A set of
observational parameters are taken as constraints that SSMs cal-
culations have to satisfy by construction. They include the present
surface abundances of heavy elements and surface luminosity of
the Sun, as well as its age, radius, and mass. The modelling re-
lies on some simplifying assumptions such as hydrostatic equilib-
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rium, spherical symmetry, homogeneous initial composition, and
evolution at constant mass. SSMs have been constantly refined by
including updated experimental results and observations regarding
the values in physical input parameters. Examples include the val-
ues of the nuclear reaction rates and the surface abundances. There
have also been improvements on the accuracy of the calculation of
the constituent quantities like the equation of state and the radiative
opacity, as well as the inclusion of new physical effects like the
diffusion of elements.

The Sun burns, i.e. it generates power through nuclear fusion,
with the basic energy source being the burning of four protons into
an alpha particle, two positrons, and two neutrinos. Being only
weakly interacting, the neutrinos can exit the Sun relatively unaf-
fected. Thus, they give us the opportunity to learn about the solar
interior and test in an almost direct way our understanding of nu-
clear energy production in the solar core (Bahcall 1964). With this
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objective the original neutrino experiments were designed, their
goal being somewhat diverted by the appearance of the then called
‘solar neutrino problem’ (Bahcall, Bahcall & Shaviv 1968; Bahcall
& Davis 1976). Thanks to the increasing experimental accuracy of
the measured neutrino flux in radiochemical experiments Chlorine
(Cleveland et al. 1998), Gallex/GNO (Kaether et al. 2010), and
SAGE (Abdurashitov et al. 2009), together with the upcoming of
the real-time experiments, Super-Kamiokande (Hosaka et al. 2006;
Cravens et al. 2008; Abe et al. 2011; Koshio 2015), SNO (Aharmim
et al. 2013), and Borexino (Bellini et al. 2010, 2011, 2014a,b),
we have now reached the solution of the problem. It implied the
modification of the Standard Model (of particle physics) with the
addition of neutrino masses and leptonic mixing which imply both
flavour transition of the solar neutrinos from production to detec-
tion (Pontecorvo 1968; Gribov & Pontecorvo 1969), and non-trivial
effects in their flavour evolution when crossing dense regions of
matter, the so-called LMA-MSW flavour transitions (Wolfenstein
1978; Mikheev & Smirnov 1985).

Moreover the Sun beats. The discovery of solar oscillations
(Leighton, Noyes & Simon 1962; Noyes & Leighton 1963) of
global nature (Deubner 1975), and their interpretation as non-radial
standing acoustic waves, or p modes, (Ulrich 1970) opened up the
possibility to pierce the surface layers of the Sun and to probe its
interior structure. A range of helioseismic techniques makes use of
the observed frequency pattern to offer powerful insights as well
(for example, see Basu & Antia 2008). In particular, the sound
speed as a function of depth can be reconstructed to precision of
order 0.1 per cent. The transition from radiative to convective en-
ergy transport, or abrupt changes in the solar thermal structure from
ionization, induce acoustic glitches that can be precisely localized;
thus, with that level of precision it is possible to infer the depth
of the convective envelope with 0.2 per cent accuracy and the sur-
face helium abundance with 1.5 per cent accuracy. This is, the solar
structure is well constrained and the Sun can be used as a solid
benchmark for stellar evolution and as a laboratory for fundamental
physics (see e.g. Fiorentini, Ricci & Villante 2001; Bottino et al.
2002; Ricci & Villante 2002; Gondolo & Raffelt 2009; Vinyoles
et al. 2015; Vinyoles & Vogel 2016).

As usual in the history of physics, better experimental information
opens up new questions. So in parallel to the increased precision
on both solar neutrino detection and helioseismic solar results, a
new puzzle emerged in the consistency of SSMs (Bahcall et al.
2005a). SSMs built in the last decade of the last century had notable
successes in predicting the helioseismology-related measurements
(Bahcall & Pinsonneault 1992, 1995; Christensen-Dalsgaard et al.
1996; Bahcall et al. 2001, 2005b). A key element to this agree-
ment was the input value of the abundances of heavy elements on
the surface of the Sun used to compute SSMs (Grevesse & Sauval
1998, hereafter GS98). But in the second half of the first decade of
the 21st century new determinations of these abundances became
available. The new spectroscopic analysis from Asplund, Grevesse
& Sauval (2006); Asplund et al. (2009, hereafter AGSS09) pointed
towards lower values by up to 40 per cent. The SSMs built incor-
porating such lower metallicities failed at explaining the helioseis-
mic inferences on solar structure (Bahcall et al. 2005a). The more
moderate reductions found by Caffau et al. (2011) also led to a
degraded agreement between solar models and helioseismic obser-
vations, although not as dramatic as in the case of AGSS09 solar
abundances.

So far there has not been a successful solution of this puzzle as
no obvious changes in the Sun modelling have been found which
could be able to account for this discrepancy (Castro, Vauclair
& Richard 2007; Guzik & Mussack 2010; Serenelli, Haxton &

Pena-Garay 2011). This has led to the construction of two different
sets of SSMs, one based on the older solar abundances (Grevesse
& Sauval 1998) implying high metallicity, and one assuming lower
metallicity as inferred from the ‘newer’ determinations of the so-
lar abundances (Asplund et al. 2006, 2009). In a subsequent set of
works (Serenelli et al. 2009, 2011; Vinyoles et al. 2017), the neu-
trino fluxes and helioseismic predictions corresponding to such two
models were detailed, based on updated versions of the solar model
calculations.

Alternatively, attempts to use the information from helioseismic
and neutrino observations to better determine the solar chemical
composition and other solar properties started to be put forward
(Delahaye & Pinsonneault 2006; Villante et al. 2014). The technical
complication arises from the fact that both neutrino and helioseismic
results are outputs of the SSM simulations while chemical compo-
sition and the other properties to be inferred are inputs. We are
faced then with a common issue in multivariable analysis, the con-
sistent estimation of the values of input parameters (some even with
unknown functional dependence) which can provide a valid set of
outputs within a given statistical level of agreement with some data.
Before the advent of fast computing facilities this could only be at-
tempted by partially reducing the number of inputs to be allowed to
vary. For example, in Villante et al. (2014) the problem was analysed
in terms of three continuous multiplicative factors (the abundance
of volatiles, that of refractories and that of Ne) to parametrize the
allowed departures of the SSM inputs from the adopted priors of
the two model versions. Furthermore, for the opacity profile – an
input which is not a parameter but a function – assumptions about
its functional form and allowed range of functional variation had to
be assumed.

In this work, we take a step forward in this program by making
use of Bayesian inference methods applied with specific numerical
tools such as MULTINEST (Feroz & Hobson 2008; Feroz, Hobson &
Bridges 2009; Feroz et al. 2013) which have been developed pre-
cisely to make such inference in large parameter spaces which may
contain multiple modes and pronounced degeneracies. Furthermore
we introduce the use of Gaussian process (GP), a non-parametric
regression method, to reconstruct the opacity profile and its uncer-
tainty without assuming a specific functional form.

The outline of the paper is as follows. In Section 2, we present
a brief introduction to the Bayesian parameter inference methods
which we are using in this work. Section 3 discusses the issues
arising in the parametrization of the opacity profile function for
which we first describe the traditional linear form in Section 3.1.
Section 3.2 presents the alternative non-parametric GP method to
reconstruct the opacity profile (see also Appendix C where we intro-
duce the main concepts in GP method for non-parametric functional
reconstruction). In Section 4, we first apply this methodology to
readdress the solar composition problem by evaluating a test of sig-
nificance of the two B16 SSMs (Vinyoles et al. 2017) and using the
two prescriptions of the profiles of the opacity and its uncertainty
(linear and GP). We find, as expected, that allowing for the most
flexible GP form of the opacity uncertainty profile decreases the
evidence against the B16-AGSS09met model but it is still strongly
disfavoured. Section 5 contains our evaluation of the optimum solar
composition, opacity profile, and other solar parameters, to describe
the helioseismic and neutrino data by Bayesian inference starting
with a composition unbiased set of SSMs. As an output of the
study we derive the corresponding prediction for the solar neu-
trino fluxes. Finally, in section 6, we summarize our conclusions.
Details of the construction of the Likelihood function used in the
analysis of the helioseismic and neutrino data are summarized in
Appendix B.
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Table 1. Jeffrey’s scale for interpretation of the
Bayes factors.

∣∣ln(Bij )
∣∣ Strength of evidence

<1.0 Inclusive

1.0–2.5 Weak to moderate

2.5–5 Moderate to strong

>5.0 Strong to very strong/decisive

2 STAT I S T I C A L F R A M E WO R K

Bayesian inference methods provide a consistent approach to the
estimation of a set of parameters ��� in a model M for the data DDD.
Bayes’ theorem states that under the assumption that a model M is
true, complete inference of its parameters is given by the posterior
distribution,

Pr(���|DDD, M) = Pr(DDD|���, M) Pr(���|M)

Pr(DDD|M)
= L(�)π (�)

Z , (1)

where L(���) ≡ Pr(DDD|���, M) is the likelihood function. The prior
probability density of the parameters is given by π (���) ≡ Pr(���|M),
and should always be normalized, i.e. it should integrate to unity.
Conversely the evidence Zi = Pr(DDD|Mi) is the likelihood for the
model quantifying how well the model describes the data.

From the posterior distribution one can construct reparametriza-
tion invariant Bayesian credible intervals by defining the ‘credible
level’ of a value η = η0 of a subset of parameters simply as the
posterior volume within the likelihood of that value,

CL(η0) =
∫
L(η)>L(η0)

Pr(η|D)dη. (2)

This function can be converted to the ‘number of σ s’ in the usual
manner as

S =
√

2erfc−1(1 − CL). (3)

Bayesian statistics is mostly suited to make a relative statement
about the plausibility of a given model Mi versus another Mj by
comparing their respective posterior probabilities. This is quantified
by means of the Bayes factor

Bij = Zi

Zj

(4)

which is the ratio of evidences. Jeffrey’s scale is often used for the
interpretation of the Bayes factors (see Table 1). This gives what the
ratio of posterior probabilities for the models would be if the overall
prior probabilities for the two models were equal. Or in other words
it shows by how much the probability ratio of model Mi to model
Mj changes in the light of the data, and thus can be viewed as a
numerical measure of evidence supplied by the data in favour of
one hypothesis over the other.

It is also possible to make an absolute test of significance of a
given model M by using the prior predictive distribution, which is
to be understood as a distribution of the possible observable outputs
O,

Pr(O) =
∫

Pr(O|���)π (���)dN��� (5)

to determine the probability distribution function for some statistics
T (O) and compare it with what was actually observed. This would
be done as usual by calculating the p-value

p = Pr(T (O) ≥ T (Odat)). (6)

Table 2. Values of the 11 model independent input parameters and
their prior uncertainties. Astrophysical S-factors (nuclear rates), solar
age, and luminosity are shown in units of MeV b, year, and erg s−1,
respectively.

Quantity Central value σ ( per cent)

S11 4.03 × 10−25 1
S17 2.13 × 10−5 4.7
S114 1.59 × 10−3 7.5
S33 5.21 5.2
S34 5.6 × 10−4 5.2
Se7 Equation (40) in Adelberger et al. (2011) 2.0
S116 1.06 × 10−2 7.6
Shep 8.6 × 10−20 30.2
t� 4.57 × 109 0.44
Diffusion 1.0 15.0
L� 3.8418 × 1033 0.4

In this work we use MULTINEST (Feroz & Hobson 2008; Feroz et al.
2009; Feroz et al. 2013), a Bayesian inference tool which, given the
prior and the likelihood, calculates the evidence with an uncertainty
estimate, and generates posterior samples from distributions that
may contain multiple modes and pronounced (curving) degenera-
cies in high dimensions.

The general procedure which we will follow is to use MC gener-
ated sets of SSMs obtained for different choices of the model input
parameters. These are 20 quantities: the solar luminosity – L�, the
microscopic diffusion rate, the solar age – t�, eight nuclear rates
– S11, S33, S34, S17, Se7, S114, Shep, S116, and nine element abun-
dances – C, N, O, Ne, Mg, Si, S, Ar, Fe. We have not assumed any
correlation between the element abundances for two reasons. Spec-
troscopic studies do not provide an assessment of such correlations
(although systematic effects, for example stemming from the so-
lar model atmosphere, must be present). Secondly, by assuming no
prior correlation we guarantee that the posterior distributions will
be less correlated. Statistically this is the least restrictive condition
and gives the most flexibility for accomodating the helioseismic and
solar neutrino data. We note that, as customarily in solar models, we
adopt the meteoritic scale for abundances of refractory elements.
The matching between the meteoritic and the photospheric scale in-
troduces very small errors, as it is discussed in Appendix A. Finally,
one must also input some parametrization of the Opacity profile and
its uncertainty (more below).

The sets of models are generated according to priors for these
inputs which reflect our knowledge of those (knowledge which
is independent of the data used in our analysis). Generically the
priors are assumed to be Gaussian distributed. The numerical values
for the mean and standard distributions for the first 20 inputs are
given in Vinyoles et al. (2017) and for convenience we reproduce
them in Tables 2 and 5. The assumed priors for the first 11 inputs
(see Table 2) are common to all models generated, while for the
abundances there are two different sets of priors corresponding to
high-Z and low-Z compositions leading to the B16-GS98 and B16-
AGSS09met model subsets, respectively (see Table 5).

Following the procedure outlined above we confront these mod-
els with the data from helioseismology and neutrino oscillation
experiments described in Appendix B. They amount to an effective
number of 32 data points from helioseismic data plus a large num-
ber of points from the global analysis of neutrino oscillation data
used in Bergström et al. (2016) with which we build the likelihood
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function

−2 lnL(���)=
∑
i,j

(Omod
i (���)−Odat

i )

σ dat
i

(ρdat)−1
ij

(Omod
j (���)−Odat

j )

σ dat
j

, (7)

where Omod
i (���) are the model predicted values for all these observ-

ables obtained by MC generation for a given set of values of the
model inputs ���. The correlation matrix ρdat

ij = δij for i, j = 1, 32
but it is not diagonal for all the other entries which correspond
to the neutrino oscillation data. Effectively the neutrino oscillation
part of the likelihood can be approximated by eight data points cor-
responding to the extracted solar flux normalizations given in the
last column in Table B1 and with the correlation matrix in equation
(B1).

With these likelihood functions we can obtain the posterior dis-
tribution for some (or all) of the input parameters. These posterior
distributions will quantify how the inclusion of this additional data
affects our knowledge of those properties of the Sun.

Also, as described above, we can use the prior predictive distribu-
tion corresponding to the two variants of the SSMs to carry out a test
of significance and to obtain their corresponding p-values. For this,
we define the statistical test T (O) (where O is an n-dimensional
vector containing possible values for the n observables):

T (O) = (O − �〈Omod〉)T (Cdat + Cmod)−1(O − �〈Omod〉), (8)

where Cdat,ij = ρdat
ij σ dat

i σ dat
j is the covariance matrix associated with

the experimental uncertainties, and

Cmod,ij = 〈(Omod
i − Ōmod

i )(Omod
j − Ōmod

j )〉
≡ 〈(Omod

i − Ōmod
i )〉ρmod,ij 〈(Omod

i − Ōmod
i )〉 (9)

is the model covariance matrix obtained from the MC generated
model predictions by sampling over the model input priors about
their means Ōmod

i ≡ 〈Omod
i 〉.

The probability distribution of T (O) can be determined from the
MC model predictions by generating pseudo-experimental results
O normally distributed according to Cdat around each Omod in the
MC generated model samples, and computing for each pseudo-
experimental result the corresponding value of T . We find that, as
expected, the probability distribution of T (O) follows very closely
a χ2

n -distribution.
Unlike the first 20 inputs listed above, the opacity profile is not a

numerical parameter but a function. We describe next two different
procedures to parametrize the uncertainty in its prior.

3 TR E AT M E N T O F TH E R A D I ATI V E O PAC I T Y

A fundamentally important physical ingredient in solar models that
cannot be quantified by just one parameter is the radiative opacity,
which is a complicated function of temperature (T), density (ρ),
and chemical composition of the solar plasma expressed here in
terms of the helium (Y) and heavy elements mass fractions (Zi,
where i runs over all metals included in opacity calculations). In
our calculations, we take as a reference the atomic opacities from
OP (Badnell et al. 2005) complemented at low temperatures by
molecular opacities from Ferguson et al. (2005). The magnitude and
functional form of its uncertainty is currently not well constrained
in available opacity calculations. As a result, representation of the
uncertainty in radiative opacity by a single parameter (Serenelli,
Peña-Garay & Haxton 2013) or by taking the difference between
two alternative sets of opacity calculations (Bahcall, Serenelli &
Basu 2006; Villante et al. 2014) are strong simplifications, at best.
In this paper, instead, we choose to follow a general and flexible

approach based on opacity kernels originally developed by Tripathy
& Christensen-Dalsgaard (1998) and later on by Villante (2010),
which we describe next.

The reference opacity calculation κ̄(ρ, T , Y , Zi) can be modified
by a generic function of T, ρ, Y, and Zi. For simplicity, we assume
that opacity variations are parametrized as a function of T alone
such that

κ(ρ, T , Y , Zi) = [1 + δκI(T )] κ(ρ, T , Y , Zi) (10)

where δκ I(T) is an arbitrary function that we call intrinsic opacity
change. The Sun responds linearly even to relatively large opacity
variations δκ I(T) (Tripathy & Christensen-Dalsgaard 1998; Villante
2010). Thus, the fractional variation of a generic SSM prediction

δQ ≡ Q/Q̄ − 1, (11)

where Q (Q̄) corresponds to the modified (reference) value, can be
described as

δQ =
∫

dT

T
KQ(T )δκI(T ) (12)

by introducing a suitable kernel KQ(T) that describes the response
of Q to changes in the opacity at a given temperature. We determine
the kernels KQ(T) numerically by studying the response of solar
models to localized opacity changes as it was done in Tripathy &
Christensen-Dalsgaard (1998). Our results agree very well in all
cases except for variations in the chemical composition because our
models include gravitational settling.

The evaluation of δQ is subject to the choice we make for δκ I(T).
In Haxton & Serenelli (2008) and Serenelli et al. (2013) the opacity
error was modelled as a 2.5 per cent constant factor at 1σ level,
comparable to the maximum difference between the OP and OPAL
(Iglesias & Rogers 1996) opacities in the solar radiative region.
Villante (2010) showed that this prescription underestimates the
contribution of opacity uncertainty to the sound speed and con-
vective radius error budgets because the opacity kernels for these
quantities are not positive definite and integrate to zero for
δκ(T) = const. Later on, Villante et al. (2014) considered the
temperature-dependent difference between OP and OPAL opaci-
ties as 1σ opacity uncertainty. However, it is by no means clear that
this difference is a sensible measure of the actual level of uncertainty
in current opacity calculations.

Based on the previous reasons, here we follow a different ap-
proach inspired by the most recent experimental and theoretical
results and some simple assumptions. The contribution of metals to
the radiative opacity is larger at the bottom of the convective enve-
lope (∼70 per cent) than at the solar core (∼30 per cent). Moreover,
at the base of the convective envelope, relevant metals like iron
are predominantly in an L-shell configuration, for which atomic
models are more uncertain than for the K-shell configuration that
predominates at solar core conditions. Also, in a recent theoretical
analysis of line broadening modelling in opacity calculations, Krief,
Feigel & Gazit (2016) have found that uncertainties linked to it are
larger at the base of the convective envelope than in the core. These
arguments suggest that opacity calculations are more accurate at
the solar core than in the region around the base of the convective
envelope. It is thus natural to consider error parametrizations that
allow opacity to fluctuate by a larger amount in the external radiative
region than in the centre of the Sun.
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3.1 Linear parametrization of intrinsic opacity profile
uncertainty

Taking all this into account, we consider the following parametriza-
tion for the intrinsic opacity change (relative to some reference
value):

δκI(T ) = a + b
log10(TC/T )

τ
(13)

where τ = log10(TC/TCZ) = 0.9, TC and TCZ are the temperatures
at the solar centre and at the bottom of the convective zone, respec-
tively. This equation is applied only up to the lower regions of the
convective envelope, where convection is adiabatic and changes in
the opacity do not modify the solar structure. Opacity changes in
the uppermost part of the convective envelope and atmosphere are
absorbed in the solar calibration by changes in the mixing length
parameter and, in sound speed inversions, by the surface term. In
the context of SSMs, they will not produce changes in the solar
properties considered in the present work.

Technically, the opacity uncertainty is incorporated in our model
generation by extending the parameter space with two more inde-
pendent inputs, a and b, each with a Gaussian prior with zero mean
and variances σ a and σ b, respectively. This corresponds to assum-
ing that the opacity error at the solar centre is σ min = σ a, while it is

given by σout �
√

σ 2
a + σ 2

b at the base of the convective zone. We
fix σin = σa = 2 per cent which is the average difference of the OP
and OPAL opacity tables. This is also comparable to differences
found with respect to the new OPAS opacity tables (Mondet et al.
2015) for the AGSS09 solar composition, the only one available in
OPAS. The more recent OPLIB tables from Los Alamos (Colgan
et al. 2016) show much larger differences in the solar core, about 10–
12 per cent lower than OP and up to 15 per cent lower than OPAS.
However, OPLIB opacities lead to solar models that predict too low
YS and �(7Be) and �(8B) fluxes that cannot be reconciled with data.
For σ out we choose 7 per cent (i.e. σb = 6.7 per cent), motivated by
the recent experimental results of Bailey et al. (2015) that have
measured the iron opacity at conditions similar to those at the base
of the solar convective envelope and have found a 7 ± 4 per cent
increase with respect to the theoretical expectations. The resulting
prior for the intrinsic opacity profile uncertainty is shown in the
upper left panel in Fig. 1 for both B16 models. Given the generated
values for those two parameters we construct the function δκ I(T)
as in equation (13) and with that we compute the corresponding
change in the output quantities as in equation (12).

As we will see below and was also discussed by Vinyoles et al.
(2017), it turns out that our ad hoc linear parametrization of the
intrinsic opacity uncertainty is not flexible enough to accommo-
date the tension between B16-AGSS09met model and data (es-
pecially sound speed data). This parametrization was chosen for
its simplicity, whereas in fact the shape of the opacity uncertainty
function is unknown. Thus, in the next section we turn to a more
general modelling of the intrinsic opacity uncertainty based on a
GP approach. A brief introduction of the general method is given in
Appendix C.

3.2 Gaussian process reconstruction of the opacity profile

Our goal is to define the uncertainty of the opacity profile without
using parametrized functions and to reconstruct the intrinsic opacity
change δκ I(T) that can lead to a better agreement with the data. In
order to do this, following the discussion in Section 3.1, we assume
that δκ I(T) is a Gaussian variable with mean is μP(T) ≡ 0 with a

temperature-dependent variance σ (T) which allows for 2 per cent
uncertainty in the solar centre and 7 per cent at the base of the
convective zone, i.e.

σ (T ) = 0.02 + (0.07 − 0.02)
log10(TC/T )

τ
. (14)

As the values of the opacity at two different temperatures T and T′

may be not independent, we introduce a prior covariance function
CP(T, T′). A possible choice is

CP (T , T ′) = σ (T )σ (T ′)ρ(T , T ′), (15)

with

ρ(T , T ′) = exp

[
−1

2

(
log10 T − log10 T ′

τ L

)2
]

. (16)

Here, L determines the characteristic correlation length over which
δκ I(T) can vary significantly and it is the only hyperparameter in our
analysis. According to the above definition, L = 1 means maximum
correlation between the opacity at the edge of the convective zone
and at the centre. If L is too large the correlation is too strong
and the model is over constrained. If, on the other hand, L is too
small, we are allowing opacity errors to dominate the output of solar
models, and we can barely learn anything from the data. Moreover,
there is a physically motivated lower bound for L given by the
temperature range over which the opacity can vary substantially.
In the solar interior |∂ ln κ/∂ ln T | < 2 (Colgan et al. 2016). From
this, the smallest temperature range over which ln κ ≈ 1 is ln
T ≈ 0.5, i.e. Lmin ≈ 0.2.

To implement the GP intrinsic opacity uncertainty in our analysis
we start by choosing a set of N points in which we evaluate the
function δκ Ii = δκ I(Ti). We take N = 11 and choose the points to be
uniformly distributed in log10T between 6.3 and 7.2. The parameter
space for model generation is thus extended with 12 more input
parameters: the length L and the 11 δκ Ii values. For the correlation
length we assume a uniform prior in log10L between log100.2 and
log101. The values δκ Ii are generated according to prior distribution
defined by equations (14)–(16), together with μP(T) ≡ 0.1 Given a
set of values for the 11 δκ Iis we construct the full function δκ I(T) by
linear interpolation between these values and with that we compute
the corresponding change in the output predictions as in equation
(12). The resulting prior distribution of the intrinsic opacity change
is shown in the upper right panel of Fig. 1. As seen in the figure,
the ranges of uncertainty profiles for the linear parametrization and
the GP opacity are very similar. They do, however, lead to different
conclusions when testing the SSM’s models versus the data (in
particular versus helioseismic data) as described in Section 4.

3.3 The degeneracy between opacity and composition effects

The properties of the Sun depend on its opacity profile κSSM(T) that
we define as

κSSM(T ) = κ(ρ(T ), T , Y (T ), Zi(T )), (17)

where ρ(T), Y(T), and Zi(T) describe the density, helium, and heavy
element abundance stratifications as a function of the temperature
of the solar plasma in a given SSM. This is indeed the quantity that
determines the efficiency of radiative energy transport and, thus, the

1 We studied the number of points which maximized the smoothness of the
output profile versus computing time and found that increasing N beyond
11 did not yield any better results.
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1402 N. Song et al.

Figure 1. Priors for the intrinsic opacity change (upper panels), the composition opacity change, equation (20) (second row panels), and the total opacity
profile in absolute value (third row panels) and relative to the central value for the GS98 model (lower panels). Left correspond to the linear parametrization
of the intrinsic opacity uncertainty while right corresponds to the Gaussian process one. The lower panels also shows the curve (same in both panels) with the
opacity difference due to the different compositions at fixed physical properties (the fixed values of T and ρ are those of the GS98 model so the reference GS98
opacity profile is common to all curves in the lower panels).

temperature gradient at each point of the Sun and that is plotted in
the panels in the third row of Fig. 1 for both B16 models. To better
compare the range of prior uncertainty of the opacity profile with
the difference between the central values of the priors of the two
SSMs, we plot in the lower panels of Fig. 1 the same total opacity
variation relative to the central value of the B16-GS98 model. The
fractional opacity difference due to the change of composition only,
i.e. compared at fixed T and ρ, is also shown for reference.

When considering an intrinsic opacity change δκ I(T) and/or other
input parameters in the SSMs are varied, the SSM needs to be re-
calibrated, thus obtaining different density and chemical abundance
stratifications with respect to the reference SSM. As a consequence,
the total variation of the solar opacity profile is given by

δκSSM(T ) ≡ κSSM(T )/κSSM(T ) − 1

� δκI(T ) + ∂ ln κ

∂ ln ρ
δρ(T ) + ∂ ln κ

∂ ln Y
δY (T )

+
∑

i

∂ ln κ

∂ ln Zi

δZi(T ), (18)

where δρ(T), δY(T), and δZi(T) are the fractional variations of den-
sity and elemental abundances in the perturbed Sun with respect to
the reference SSM, evaluated at a fixed temperature T.

As discussed above, the metal abundances Zi(T) are derived
quantities that have to be obtained as a results of numerical so-
lar modelling. However, when we consider a modification of the
surface composition {zi}, expressed here in terms of the quantities
zi ≡ Zi,S/XS where Zi,S is the surface abundance of the i-element
and XS is that of hydrogen, we can approximately assume δZi(T) �
δzi where δzi is the fractional variation of zi with respect to some
reference value. As a consequence, equation (18) can be rewritten
as

δκSSM(T ) = δκI(T ) + δκZ(T ) + ∂ ln κ

∂ ln ρ
δρ(T ) + ∂ ln κ

∂ ln Y
δY (T ) (19)

where the composition opacity change δκZ(T) is defined as

δκZ(T ) ≡
∑

i

∂ ln κ

∂ ln Zi

δzi . (20)
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Data-driven reconstruction of solar properties 1403

Table 3. Comparison of B16 SSMs against different ensembles of solar observables.

LIN-OP GP-OP
GS98 AGSS09met GS98 AGSS09met

O n T (O) p-value (σ ) T (O) p-value (σ ) T (O) p-value (σ ) T (O) p-value (σ )
YS + RCZ 2 0.9 0.5 6.5 2.1 0.7 0.35 6.9 2.2
δc 30 58.0 3.2 76.1 4.5 35.6 1.2 40.2 1.6
All ν-fluxes 8 6.0 0.5 7.0 0.6 5.9 0.44 7.0 0.6

Global 40 65.0 2.7 94.2 4.7 45.1 1.1 57.1 2.1

We define the total opacity change δκ(r) as

δκ(T ) = δκI(T ) + δκZ(T ), (21)

which groups together the contributions to δκSSM(T) directly related
to the variations of the input parameters.

Note that metals have a negligible role in determining the equa-
tion of state of the solar plasma and in solar energy generation
(except for carbon, nitrogen, and oxygen that determine the effi-
ciency of the CNO cycle which is, however, largely subdominant
in the Sun). Thus, the only structural effect produced by a modi-
fication of the surface composition {zi} is through the changes in
the efficiency of radiative energy transport induced by the composi-
tion opacity change δκZ(T) defined above. In this respect, equation
(21) although being approximate, is quite useful because it makes
explicit the connection (and the degeneracy) between the effects
produced by an intrinsic modification of the radiative opacity and
those produced by a modification of the heavy element admixture.
The physical quantity that drives the modification of the solar prop-
erties and that can be constrained by observational data is the total
opacity change δκ(T), not the intrinsic δκ I(T) or the composition
opacity change δκZ(T) separately.

For completeness, we show in the middle panels of Fig. 1 the
prior distributions of the composition opacity changes for both
B16-SSMs, calculated by considering the relative variations of
the individual abundances δzj around their mean values for GS98
and AGSS09met surface compositions. The logarithmic derivatives
∂ ln κ/∂ ln Zi can be found in the left-hand panel of fig. 10 in
Villante et al. (2014). The prior distributions for δκZ(T) are iden-
tical in the left-hand and right-hand (middle) panels because the
adopted procedure for describing the intrinsic opacity uncertainty
does not alter the sampling in surface composition.

4 T E S T O F SI G N I F I C A N C E A N D M O D E L
C O M PA R I S O N

We start by performing a test of significance of the two B16 SSMs
using the linear and GP models of the opacity uncertainty described
in the previous section. Results are given in Table 3 where we
show the value of the test statistics T in equation (8) for different
combination of observables.

As seen from the table, global p-values are dominated by the
sound speed for both models, although YS and RCZ are also relevant
for B16-AGSS09met. We also read from the table that when using
the linear opacity uncertainty parametrization the global analysis
yields a not too good p-value of 2.7σ for B16-GS98 and consider-
ably worse (4.7σ ) for the B16-AGSS09met. The results are different
when the GP opacity uncertainty is used which yields p-value of
1.1σ and 2.1σ for B16-GS98 and B16-AGSS09met, respectively.

In Fig. 2, we plot the fractional sound speed difference δc(r) ≡
(cobs(r) − c(r))/c(r), where cobs(r) is the sound speed inferred from

helioseismic data, while c(r) represents the sound speed profile pre-
dicted by the B16-GS98 (left) and B16-AGSS09met (right) model,
respectively. The blue (lighter) hatched area and the red (darker)
shaded area correspond to the 1σ theoretical uncertainties in sound
speed predictions obtained for linear and GP opacity uncertainty
priors. As seen from the figure, and expected from the compari-
son of the top panels in Fig. 1, they are not very different in the
two considered cases. Moreover, we observe from the figure that
at almost all radii, independently of the adopted prescription, the
sound speed profile of B16-GS98 fits well within the 1σ data uncer-
tainties. It may be thus surprising that the B16-GS98 model is not
providing a good p-value in the case of linear opacity uncertainty
parametrization.

The reason for the bad p-value obtained for the B16-GS98 model
is that, as discussed in Vinyoles et al. (2017), changes in input
quantities do not lead to variations in SSM sound speeds on very
small radial scales, so values of the sound speed at different radii
in solar models are strongly correlated, i.e. the model correlation
matrix ρmod, ij in equation (9) is highly non-diagonal. This is shown
in the lower panels of Fig. 2 where we graphically display the values
for the entries of the correlation matrix between the predicted sound
speeds at the 30 locations (the correlation matrix is the same for both
B16 models). As seen in the figure, the characteristic correlation
length (i.e. the distance |ri − rj| over which correlations between
the predicted values of the sound speeds are strong, say |ρmod, ij|
� 0.5) is much larger for the linear opacity profile parametrization
than for the GP profile.

The more flexible implementation of the opacity profile uncer-
tainty provided by the GP procedure permits to obtain a better
description of the observational data for both B16-GS98 and B16-
AGSS09met models. To illustrate this point, Fig. 3 shows the poste-
rior distribution of L, the correlation length hyperparameter [equa-
tion (15)]. As seen from the figure, the best possible description of
the data is achieved with correlation lengths of average 〈L〉 ∼ 0.2,
i.e. close to the lowest value permitted by the adopted prior that
allows for short-scale modifications of the sound speed profiles.

We finish this section by giving in Table 4 the Bayes factors for
the two models as obtained with their posterior probability distribu-
tions after including the neutrino and helioseismic data for the two
assumed opacity profile uncertainties. From the table we conclude
that the B16-AGSS09met models are always somewhat disfavoured
with respect to the B16-GS98 model by all data sets but the most
statistical significant effect is driven by the sound speed profile data.
This is particularly the case for the linear opacity uncertainty profile
for which the Bayes factor of −14.7 is enough for rejection of the
model. Allowing for the most flexible GP form of the opacity uncer-
tainty decreases the evidence against the B16-AGSS09met model
to close to strong. In this respect, we notice that our assumption
that the experimental errors of the 30 sound speed data points are
uncorrelated is the most conservative hypothesis for the statistical
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1404 N. Song et al.

Figure 2. 1σ range of variation of the fractional sound speed profiles as predicted by the priors the B16 SSM models and for both opacity profile priors
discussed in the text (upper panels) compared with the 30 data points used in the analysis. The lower panels graphically display the values of the entries in the
30 × 30 model correlation matrix between the predicted sound speeds at the 30 points (which are the same for B16-GS98 and B16-AGSS09met models) for
the linear opacity uncertainty parametrization (left) and the GP opacity uncertainty(right).

tests presented. It leads to the most favourable conclusion of the
significant test for each model (ie to its lowest p-value) and to the
weakest discrimination power between the two models (ie to the
smallest module of the Bayes factor).

5 D E T E R M I NAT I O N O F T H E O P T I M U M
C O M P O S I T I O N A N D O PAC I T Y PRO F I L E

We now turn to the determination of the optimum solar composition
which best describes the helioseismic and neutrino data. In order to
do so we perform Bayesian parameter inference by using a top hat
prior for the logarithmic abundances εi ≡ log10(Ni/NH) + 12 that
accommodates both the AGSS09met and GS98 admixtures, i.e. with
value 1 between the 3σ lower value of the AGSS09met composition
and the 3σ upper value of the GS998 composition for all the nine
elements relevant for solar model construction given in Table 5, and
zero outside this range. As before we study the dependence of our
results on the two models for the opacity uncertainty.

We show in Fig. 4 the posterior probability distributions for the
nine abundance parameters centred for reference around the GS98
ones, i.e. εj = εj − εj,GS98, and for the two choices of priors
of the opacity uncertainties (linear or GP). The window for each
abundance corresponds to the allowed range, i.e. where prior =
1. Outside each window the value of the prior is zero. For the
sake of comparison we also show in the figure the corresponding
prior distributions for the B16-GS98 and B16-AGSS09met models.
Notice that the distributions are given in arbitrary units and have
been normalized in such a way that the maximum of all distributions
lays at the same height to help comparison.

We list in the last two columns of Table 5 the corresponding
±1σ ranges for the logarithmic abundances εj extracted from these
posterior distribution. These can be compared with the determina-
tion of the same quantities in GS98 and AGSS09met compilations
reported in the first two columns of the same table. From the figure
and table we see that the available data are not capable of setting
tight constraints on all the elements simultaneously. However, we
find that the posterior for the combinations of CNO (C+N+O) and
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Data-driven reconstruction of solar properties 1405

Figure 3. Posterior probability distribution for the correlation length hy-
perparameter L of the GP opacity uncertainty for runs with the models
B16-GS98 and B16-AGSS09met priors for the abundances.

Table 4. Bayes factor, ln(B), for the B16-
AGSS09met versus B16-GS98 model obtained with
the different data sets (see Table 1 for interpretation).

Data B16-AGSS09met/B16-GS98

LIN-OP GP-OP
ν −0.23 −0.27
+YS+RCZ −1.6 −2.2
+ Sound speeds −14.7 −4.1

Table 5. 1σ ranges for the logarithmic abundances εj. The first two columns
show the mean values and uncertainties of the GS98 and AGSS09met heavy
element admixtures. The last two columns give the ranges of the posterior
distributions from the analysis of neutrino and helioseismic data for the
two choices of the prior opacity uncertainties with uniform priors for the
abundances.

Element GS98 AGSS09met Linear GP

C 8.52 ± 0.06 8.43 ± 0.05 [8.32, 8.56] [8.31, 8.51]
N 7.92 ± 0.06 7.83 ± 0.05 [7.88, 8.10] [7.81, 8.05]
O 8.83 ± 0.06 8.69 ± 0.05 [8.82, 8.91] [8.80, 8.94]
Ne 8.08 ± 0.06 7.93 ± 0.10 [7.87, 8.06] [7.90, 8.16]
Mg 7.58 ± 0.01 7.53 ± 0.01 [7.54, 7.60] [7.52, 7.58]
Si 7.56 ± 0.01 7.51 ± 0.01 [7.57, 7.59] [7.54, 7.59]
S 7.20 ± 0.06 7.15 ± 0.02 [7.35, 7.38] [7.27, 7.37]
Ar 6.40 ± 0.06 6.40 ± 0.13 [6.14, 6.44] [6.20, 6.50]
Fe 7.50 ± 0.01 7.45 ± 0.01 [7.42, 7.44] [7.42, 7.48]

CNO 9.04 ± 0.04 8.92 ± 0.03 [9.03, 9.08] [9.00, 9.09]
Meteor. 8.09 ± 0.01 8.04 ± 0.01 [8.08, 8.10] [8.07, 8.10]

meteorite (Mg+Si+S+Fe) abundances (Delahaye & Pinsonneault
2006; Villante et al. 2014) have a comparable precision to GS98 and
AGSS09met observational determinations for either choice of the
opacity uncertainty parametrization. It is important to stress that, as
mentioned above, these posterior distributions are not obtained for
arbitrary prior values, but allowing only abundance values contained

in the range shown in each window. But within this hypothesis the
distributions for the abundances have been obtained without assum-
ing any prior correlation between the individual elements. This is in
contrast to previous work (Delahaye & Pinsonneault 2006; Villante
et al. 2014), where abundances of all elements within a group were
forced to have the same proportional change. Correlations among
the posterior distributions of the abundances appear exclusively as
output of the data analysis. For the sake of illustration we provide in
Fig. 5 a graphic representation of the correlation among the poste-
rior probability distributions of the different elemental abundances.
As expected, the correlations are smaller for the run with the more
flexible GP description of the opacity profile uncertainty. But in
general for both GP and linear opacity uncertainties, the correlation
among the posterior distributions of the abundances included either
the CNO or the meteorite groups are not very large. The exception
is provided by the large anticorrelation between the posterior distri-
butions of C and O for the analysis with linear opacity uncertainty.
We have verified that because the allowed ranges of C and O are
strongly anticorrelated in this case, the allowed range of CNO group
abundance results to be more precise than any of the model priors
as seen in the lower central panel in Fig. 4.

The posterior distributions for the other solar input parameters –
luminosity, diffusion, age, and the eight nuclear rates, are shown in
Fig. 6 together with their Gaussian priors. From the figure we see
that with the exception of S11 and diffusion coefficients, all others
parameters do not get significantly modified with respect to the
model priors by the inclusion of the neutrino and helioseismic data,
irrespective of the form of the opacity uncertainty. We have verified
that the helioseismic data – the surface helium abundance YS and
the location of the bottom of the convective envelope RCZ – are the
most relevant in driving the shift in S11. This has to be interpreted
as a variation in the effective rate of the proton–proton reaction, but
it is not possible to ascribe this change specifically to S11(0) or its
derivatives. We see from the figure that the posterior distributions
for S11 show a preferred value about 1 per cent lower than our prior
central value taken from Marcucci, Schiavilla & Viviani (2013) and
1.5 per cent lower than the newer determination of S11 by Acharya
et al. (2016). A reassessment of the p–p reaction cross-section might
be therefore important.

The sound speed data are instead responsible for the preference of
lower values of the diffusion coefficients. The reduction in diffusion
efficiency that we obtain is in line with previous work (Delahaye
& Pinsonneault 2006; Villante et al. 2014), and it might be related
to the occurrence of macroscopic mixing below the convective en-
velope (Chaboyer et al. 1995; Richard et al. 1996). Our analysis
points towards a 30 ± 10 per cent reduction, larger in compari-
son with 12 per cent found in Villante et al. (2014) and closer to
21 per cent found in Bahcall et al. (2001).

The posterior distributions for the opacity profiles are shown in
Fig. 7. In the upper left panel, we plot the 1σ range of the intrinsic
opacity change δκ I(T). This is obtained from the posteriors of the
parameters characterizing this function, i.e. the parameters a and b
for the linear opacity parametrization given by equation (13), and
the 11 values δκ Ii = δκ I(Ti) that sample the function δκ I(r) (after
marginalizing over the correlation length L) for GP. By construc-
tion, the intrinsic opacity change δκ I(T) is defined with respect to
a reference opacity calculation κ(ρ, T , Y , Zi) that in our analysis
include the atomic opacities from OP (Badnell et al. 2005) comple-
mented at low temperatures by molecular opacities from (Ferguson
et al. 2005). The fact that the posterior distribution of δκ I(T) is not
centred at zero (and, moreover, individuates a trend as a function of
T) indicates that there are features of the observational data, namely
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1406 N. Song et al.

Figure 4. Posterior probability distribution for the logarithmic abundances (εj − εj,GS98) from the analysis of neutrino and helioseismic data with uniform
priors for the abundances and for the two choices of the prior opacity uncertainties. The distributions are given in arbitrary units and they have been normalized
in such a way that the maximum of all distributions lays at the same height. See the text for details.

the wiggle in the sound speed profile for 0.3 < r/R� < 0.6, that
cannot be optimally fitted by using the reference opacities, even
with the freedom of varying the solar input parameters within their
uncertainty ranges and the solar composition in a large intervals
considered in this paper, that accommodate both AGSS09met and
GS98 observational results. The preference for a slight modification
of the OP opacity is consistent with what found in Villante et al.
(2014) where indeed it was emphasized that the sound speed is
better fitted by using the old OPAL opacity tables.

As explained in Section 3.3, the quantity that is directly con-
strained by observational data is the SSM opacity profile κSSM(T),
defined according to equation (17), that is affected by composi-
tion modifications (and solar model recalibration) in addition to the
effects of the intrinsic opacity change δκ I(T). In the lower panels
of Fig. 7, we show the posterior distributions for κSSM(T) for the
linear (left) and GP (right) description of opacity uncertainty. The
posterior distributions for κSSM(T) are compared with the opacity
profiles of B16-GS98 and B16-AGSS09met models. We see that
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Data-driven reconstruction of solar properties 1407

Figure 5. Graphical representation of correlations between the posterior
distributions of individual elemental abundances (elements in the same order
as in Table 5) for the linear (left) and GP (right) models of intrinsic opacity
uncertainty.

they are almost coincident with the opacity profile of B16-GS98
model, as it is expected by considering that the best-fitting CNO
and meteoritic elemental abundances, that drive the change in the
opacity, are close to GS98 determinations. The optimal opacity
profile is well defined by observational data, as it is seen in the
central left (right) panels of Fig. 7 where we show the 1σ rela-
tive dispersion of κSSM(r) with respect to its mean posterior value.
The uncertainty for κSSM(r) is somewhat larger for the GP opac-
ity uncertainty description, ranging from 0.8 per cent at the cen-
tre to 4 per cent at the base of the convective envelope, while for
the linear uncertainty parametrization it varies from 0.5 per cent to
2.5 per cent.

Finally, we note that the uncertainty in κSSM(r) is smaller than
that of the intrinsic opacity change. In fact, δκ I(r) is not directly
constrained by the observational properties of the Sun and its
determination suffers from the degeneracy with the composition

Figure 6. Posterior probability distribution for the Sun luminosity, Sun diffusion, the Sun age, and the eight nuclear rates from the analysis of neutrino and
helioseismic data with uniform priors for the abundances and for the two choices of the prior opacity uncertainties. For comparison we also show their prior
distribution. The distributions are given in arbitrary units and they have been normalized in such a way that the maximum of all distributions lay at the same
height.
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1408 N. Song et al.

Figure 7. Posterior distribution for the opacity profiles for the analysis with uniform priors for the abundances and the two choices of priors of the opacity
uncertainties. See the text for discussion.

opacity change δκZ(T) that is quantified by equation (21). For
completeness, we report in the upper (right) panel of Fig. 7, the
1σ range for the composition opacity change δκZ(r), obtained
from equation (20) with δzj being the variance of the poste-
rior distributions of the abundances in Fig. 4 defined relative to
the mean of those posteriors. Being defined with respect to the
mean of the posterior, the corresponding δκZ are centred around
zero.

The result obtained with the uniform composition and with GP
opacity uncertainty prior represents our best estimate of the ra-
diative opacity profile in the solar interior. On the other hand, the
profiles obtained with other choices of priors, such as the uni-
form composition with linear opacity uncertainty, or the four cases
with B16-GS98 and B16-AGSSmet composition priors with either
choice of the opacity uncertainty prior presented in Section 4, can
serve as a measure of the systematic uncertainty in this estimate
that reflects dependence on the choice of priors. We show in the top
panel in Fig. 8 the 1σ range of the posteriors for these six priors.
From those we construct a systematic uncertainty in the opacity,
at each temperature, defined as the standard deviation of the six
reconstructed opacity profiles. The final opacity profile with both

error sources added in quadrature is shown in the central panel in
Fig. 8 and it ranges from 2 per cent at the centre to 7.5 per cent at
the bottom of the convective zone.

Finally, for completeness, we show the resulting posterior dis-
tribution for the neutrino fluxes in Fig. 9. By construction they
constitute the predicted solar neutrino fluxes by models which bet-
ter describe both the helioseismic and neutrino data. We denote
them as helioseismic and neutrino data-driven fluxes, B17-HNDD.
We list in Table 6 their best values and 1σ uncertainties and in
equation (22) their correlations.

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.80 0.03 −0.41 −0.02 −0.27 −0.27 0.12
0.80 1.00 0.06 −0.33 −0.05 −0.28 −0.29 0.01
0.03 0.06 1.00 −0.01 −0.01 −0.02 −0.02 0.01

−0.41 −0.33 −0.01 1.00 0.13 −0.03 −0.02 −0.03
−0.02 −0.05 −0.01 0.13 1.00 0.04 0.06 0.06
−0.27 −0.28 −0.02 −0.03 0.04 1.00 0.99 −0.14
−0.27 −0.29 −0.02 −0.02 0.06 0.99 1.00 −0.12
0.12 0.01 0.01 −0.03 0.06 −0.14 −0.12 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)
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Data-driven reconstruction of solar properties 1409

Figure 8. Top: 1σ ranges for the posteriors of the opacity profiles cor-
responding to the six choice of priors for the composition and intrinsic
uncertainty variation used in this work. Central: Posterior distribution for
the opacity profiles for the analysis with uniform priors for the abundances
and the GP opacity uncertainty. The panel shows the mean and 1σ range
of this distribution combining both statistical and systematic uncertainties.
Lower: The panel shows its ‘statistical’ 1σ uncertainty defined as the cor-
responding variance of the posterior (shown also as ‘total’ in the central
right panel in Fig. 7) and its ‘systematic’ uncertainty defined as the standard
deviation of the six profiles shown on the top window.

As expected, we find that for those neutrino fluxes which are at
present most precisely determined in solar neutrino experiments,
8B and 7Be, the B17-HNDD flux is very close to their experimen-
tal value used to construct the neutrino data part of the Likelihood
function (see last column in Table B1) but with a smaller uncer-
tainty because of the additional indirect constraints imposed by the
helioseismic data. Interestingly, we find that with the inclusion of
the helioseismic data the precision of the predicted B17-HNDD
CNO fluxes is only at most a factor O(2) weaker than those of the
B16-GS98 or B16-AGSS09met composition models.

6 SU M M A RY

In this work, we have used Bayesian parameter inference and GP
for non-parametric functional reconstruction of the radial opac-
ity profile, with the goal of making an statistically consistent
use of the information from helioseismic and neutrino observa-
tions for solar modelling. In particular to better determine the

solar chemical composition and other solar properties (as well
as their uncertainties) which are relevant to the solar composition
problem.

In Sections 2 and 3, we have presented a brief summary of the
statistical methodology followed and the application of GP for func-
tional reconstruction, and in particular to the radial opacity profile
parametrization. Sections 4 and 5 contain our results which we can
be summarized as follows:

(i) B16-GS98 versus B16-AGSS09met comparison. This im-
proves over results in Vinyoles et al. (2017) because the linear
parametrization of opacities was not flexible enough. Now GP adds
more flexibility to the models so our results are now more gen-
eral and much less dependent on the choice of opacity tables. He-
lioseismic and neutrino data favours the B16-GS98 model over
B16-AGSS09met, but the more flexible modelling of the opacity
uncertainty allowed by the GP approach makes this preference less
marked.

(ii) Best composition. In our analysis all elements have uncor-
related prior distributions. Therefore, our results are more general
than those from previous works (Villante et al. 2014). When con-
sidering individual elements, constraints are not very stringent on
their abundances. This was expected. The best case is O, with a
well-defined Gaussian distribution with 1σ = 0.07 dex, close to the
spectroscopic value. When elements are grouped as CNO or me-
teoritic, the posterior distributions of these groups are well peaked
with uncertainties in the linear(GP) analysis of 0.025(0.045) and
0.01(0.015) dex, respectively, comparable to those obtained from
spectroscopic measurements. Due to our adoption of a flat prior
for elemental abundances and our introduction of the GP approach
for modelling opacity uncertainties, our results are quite general,
with as little dependence on modelling assumptions as possible (e.g.
the bounds in Villante et al. 2014 are obtained in the assumption
that the difference OP-OPAL is the measure of the intrinsic opacity
uncertainty).

(iii) Non-composition input parameters. The posterior distribu-
tions of these parameters have also been determined and are the
most general results available to date. S11 varies at the 1σ level
(1 per cent with respect to Marcucci et al. 2013 when compared to
Acharya et al. 2016). This is not a large difference, but further work
on this important rate might be worth. Our best estimate of the
rate of microscopic diffusion is also lower, by about 2σ , than the
standard rate used in solar models. This is qualitatively expected,
but the 30 per cent reduction is quantitatively larger than previous
estimates that suggested reductions in the range of 15–20 per cent
(Delahaye & Pinsonneault 2006; Villante et al. 2014)

(iv) Opacity reconstruction. This is the most important result
of our work. We have been able to reconstruct the solar opacity
profile in a data-driven way, i.e. without strong assumptions on
the solar composition or the underlying opacity tables. Considering
uncertainties due to the solar data alone, the opacity uncertainty is
about 4 per cent at the base of the convective zone and less than
1 per cent at the solar core. Different sets of priors help us quantify
a systematic uncertainty in this estimate. From a broad range of
assumptions, our more conservative estimate of the total opacity
uncertainty (data + priors) is 7.5 per cent at the base of the convective
envelope and 1.8 per cent at the solar core.

(v) Neutrino fluxes. We have obtained the posterior distributions
of solar ν-fluxes based on the uniform prior distribution of solar
abundances and GP treatment of opacity uncertainties. These fluxes
represent the best data-driven reconstruction of the expected solar
models ν-fluxes. For the well-measured 8B and 7Be fluxes, the final
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Figure 9. Posterior distributions for the neutrino fluxes for the analysis with uniform priors for the abundances and the two choices of priors of the opacity
uncertainties. For the sake of comparison we show the corresponding priors for the B16-GS98 and B16-AGSS09met models. The distributions are given in
arbitrary units and they have been normalized in such a way that the maximum of all distributions lay at the same height. The fluxes are shown normalized to
the B16-GS98 prediction fi = φi/φ

B16−GS98
i .

Table 6. Posterior solar neutrino fluxes for
uniform-GP models. Units are 1010 (pp), 109

(7Be), 108 (pep, 13N, 15O), 106 (8B, 17F), and
103(hep) cm−2 s−1.

B17-HNDD ν-fluxes

�(pp) 6.017 (1+0.0033
−0.0041)

�(pep) 1.470 (1 ± 0.0061)

�(hep) 9.04 (1+0.22
−0.21)

�(7Be) 4.79 (1+0.027
−0.019)

�(8B) 5.10 (1 ± 0.018)

�(13N) 1.89 (1+0.32
−0.14)

�(15O) 1.50 (1+0.23
−0.20)

�(17F) 4.90 (1+0.22
−0.18)

uncertainties reflect experimental uncertainties. For CN fluxes, the
predicted values are approximately only a factor of 2 larger than in
the B16 SSMs (∼ 20–25 per cent). This is remarkable because their
uncertainty is dominated in our analysis by the C+N abundance
that has a much larger prior range of variation.
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A P P E N D I X A : MAT C H I N G M E T E O R I T I C A N D
P H OTO S P H E R I C A BU N DA N C E S C A L E S

Abundances of refractory elements can be determined from the
solar spectrum and also from analysis of primitive meteorites. His-
torically, the latter have proved to be more robust and have been
the preferred choice in solar modelling. But element abundances
are determined relative to different elements in each case and a
matching needs to be applied to bring measurements to the same
scale. The process is a simple rigid translation of the meteoritic
scale, but the magnitude of this translation can be defined in dif-
ferent ways. Traditionally, two methods have been employed: (1) a
shift of the meteoritic scale to match the photospheric silicon abun-
dance and (2) a shift of the meteoritic scale such that the combined
(quadratic) difference between photospheric and meteoritic abun-
dances of well-measured refractories is minimized. The uncertainty
in this procedure has the potential to impact the true uncertainties
in refractory abundances used in solar models. However, we show
now here this is a very small uncertainty.

Our approach is to consider the nine more abundant refractory
elements that are relevant for radiative opacity calculations, i.e. Na,
Mg, Al, Si, S, Ca, Cr, Fe, and Ni. We use the latest photospheric
abundances and uncertainties for these elements as given in the most
recent revision (Scott et al. 2015a,b) and define the function:

χ2(x) =
∑
j=1,9

(
ε

ph
j − (εmet

j + x)
)2

σ 2
j

, (A1)

where σ j is the quadratic combination of the photospheric and
meteoritic uncertainties for element j and x is the shift applied to
the meteoritic scale and it is defined such that silicon abundances in
both scales are equal for x = 0. Fig. A1 shows χ2(x) = χ2(x) −
χ2

min(x) against x in black solid line for our results using the nine
refractories given above and also results when only silicon is used.
For the latter, xmin = 0 by definition. χ2

min corresponds to x = 0.001
dex, i.e. the shift in the meteoritic scale is almost the same in
this case as in the case of simply matching silicon abundances.
Now, considering χ2 = 1 we determine the uncertainty in x to
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Figure A1. Matching meteoritic and photospheric abundance scales. Black
solid line shows results using the nine most abundant refractories. Blue
dashed line shows results when using only silicon. Horizontal lines indicate
χ2 = 1 corresponding to a 1σ variation of x.

be 1σ = 0.012 dex. This is to be compared with the case when
only silicon is used, in which case the uncertainty in x is much
larger, ≈0.03 dex, corresponding to the spectroscopic uncertainty
in silicon determination.

From this analysis, we conclude that magnitude of the shift
necessary to match the meteoritic and photospheric scales is ro-
bustly determined, regardless of whether only silicon or a set of
well-measured refractories is used. Also, very importantly, we con-
clude that the precision with which it is determined is to 0.012 dex,
much better than that of individual spectroscopic abundance mea-
surements might naively suggest. This uncertainty is comparable
to individual meteoritic uncertainties of Mg, Si, and Fe. While
it is possible to include in results presented in Section 4, this
would complicate the analysis by introducing a correlation among
some element abundances while not having any significant impact
in the final results. We have tested that such a correlated uncer-
tainty in the abundances of refractory elements would introduce
changes in the predicted values of seismic and neutrino observables
much smaller than experimental and other model uncertainties. For
the 8B flux, the most sensitive to refractory abundances, this im-
plies a 2 per cent uncertainty that is negligible compared to the total
12 per cent model uncertainty. As a result, we choose to neglect x
as a source of uncertainty in our calculations.

A P P E N D I X B: DATA IN C L U D E D IN TH E
A NA LY S I S

We construct the likelihood function with data from helioseismol-
ogy and neutrino oscillation experiments. In particular, we include
the two helioseismic quantities widely used in assessing the quality
of SSMs: the surface helium abundance YS and the location of the
bottom of the convective envelope RCZ. In Table B1, we include
the experimentally determined value for those two quantities. For
illustration we also show the mean and variation of their expected
values in the B16 SSMs (which however are not directly use in
building the corresponding likelihood). In building the correspond-

Table B1. Main characteristics for the different SSMs with the correspon-
dent model errors and the values for the observational values and their error.
For the fluxes units are 1010 (pp), 109 (7Be), 108 (pep, 13N, 15O), 106 (8B,
17F), and 103(hep) cm2 s1. For the fluxes the last column ‘Solar’ corresponds
to the values obtained from direct fit to the solar neutrino data in Bergström
et al. (2016).

Qnt. B16-GS98 B16-AGSS09met Solar

YS 0.2426 ± 0.0059 0.2317 ± 0.0059 0.2485 ± 0.0035
RCZ/R� 0.7116 ± 0.0048 0.7223 ± 0.0053 0.713 ± 0.001

�(pp) 5.98(1 ± 0.006) 6.03(1 ± 0.005) 5.971(1+0.006)
(1−0.005)

�(pep) 1.44(1 ± 0.01) 1.46(1 ± 0.009) 1.448(1 ± 0.009)
�(hep) 7.98(1 ± 0.30) 8.25(1 ± 0.30) 19(1+0.63)

(1−0.47)

�(7Be) 4.93(1 ± 0.06) 4.50(1 ± 0.06) 4.80(1+0.050)
(1−0.046)

�(8B) 5.46(1 ± 0.12) 4.50(1 ± 0.12) 5.16(1+0.025)
(1−0.017)

�(13N) 2.78(1 ± 0.15) 2.04(1 ± 0.14) ≤13.7
�(15O) 2.05(1 ± 0.17) 1.44(1 ± 0.16) ≤2.8
�(17F) 5.29(1 ± 0.20) 3.26(1 ± 0.18) ≤85

ing likelihood function we assume the experimental errors to be
totally uncorrelated.

We also include the fractional sound speed differences along the
solar radius determined by performing sound speed inversions as
described in Basu et al. (2009). The radial resolution of sound speed
inversions is typically such that about 70 points are distributed over
the solar interior. However, at this resolution the kernels used in
the inversions partially overlap for adjacent points. This introduces
a correlation between sound speed determinations for which there
are no quantifications in the literature. In order to minimize or, at
best, avoid this problem we use a coarser resolution with 30 points
distributed over 0.06 ≤ R� ≤ 0.75. In addition, it is important
to note that no information is lost by this reduction in resolution.
The reason is that the typical correlation length in solar models
is longer than the resolution achieved by using 30 radial points,
as described in Section 3.2 for the typical scale over which opac-
ities vary. Therefore, it is the model correlations over the larger
scales that dominate the statistical behaviour of the solutions. It is
of course also possible to use less than 30 points, i.e. a coarser res-
olution, but then each radial point would represent a larger fraction
of the solar radius, and this would have to be accounted for in the
calculation of the χ2 function. This would partly compensate the
reduction in the number of degrees of freedom. Moreover, informa-
tion losses would happen by using e.g. as low as 10 radial points; we
would then be underutilizing the available data. In Vinyoles et al.
(2017) we give a detailed summary of the sources of uncertain-
ties for the sound speed profile. These ‘experimental’ uncertainties
are conservatively assumed to be uncorrelated. For completeness
we plot in Fig. B1 the fractional sound speed differences used
in our statistical analysis which, by definition, have zero central
values.

Finally, we include the results from oscillation experiments in the
form of the likelihood of the global analysis of neutrino oscillation
data used and described in Bergström et al. (2016) in terms of 3-ν
oscillations with arbitrary normalization of each of the components
of the solar flux. For the sake of illustration we list in the last
column in Table B1 the central values and errors of the solar flux
normalizations extracted in that analysis. Effectively the effect of the
inclusion of the neutrino oscillation data can be understood in terms
of a reduced Gaussian likelihood constructed with these extracted
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Figure B1. Fractional sound speed data δc/c = (c� − c̄mod)/c̄mod used in
our analysis.

eight solar fluxes and uncertainties and with the correlation matrix:

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.99 −0.05 0.08 −0.14 −0.20 −0.19 −0.11
0.99 1 −0.05 0.08 −0.14 −0.20 −0.19 −0.11

−0.05 −0.05 1 −0.08 0.10 −0.01 −0.00 −0.00
0.08 0.08 −0.08 1 −0.17 −0.31 0.09 0.10

−0.14 −0.14 0.10 −0.17 1 −0.02 −0.03 −0.01
−0.20 −0.20 −0.01 −0.31 −0.02 0 0.18 0.09
−0.19 −0.19 −0.00 0.09 −0.03 0.18 1 0.36
−0.11 −0.11 −0.00 0.10 −0.01 0.09 0.36 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B1)

APPENDIX C : G AU SSIAN PROCESS FOR
F U N C T I O N R E C O N S T RU C T I O N

GP is a non-parametric regression method widely used in statistics
and machine learning to reconstruct a function which best describes
some data without assuming a parametrization of the function (see
e.g. Mackay 2003; Rasmussen & Williams 2006; Murphy 2012 or
the GP webpage2 for details). It is used for example in data anal-
ysis in cosmology to reconstruct some of the evolution dependent
properties (like the dark energy equation of state; Holsclaw et al.
2010a,b; Seikel, Clarkson & Smith 2012). Seikel et al. (2012) con-
tains a pedagogical description of the process which we briefly
sketch here.

The starting assumption is that the value of the function f evalu-
ated at a point x is a Gaussian random variable of mean μ(x) and
variance Var(x). As the values of the function in two points x and x′

are not independent, in general one can define a covariant function

2 http://www.gaussianprocess.org/

cov(f(x), f(x′)) ≡ C(x, x′). The assumed ‘prior’ covariance function
is arbitrary although the obvious hypothesis is that it depends only
on the distance between the points. For example, a common choice
is a square exponential

CP (x, x ′) = σ 2
f exp

(
− (x − x ′)2

2λ2

)
, (C1)

which depends on the parameters σ f and λ, often referred to as
‘hyperparameters’ as they do not specify the form of the function
but give a measure of its characteristic variations. λ can be seen as the
characteristic length over which the function changes significantly
while σ f is its range of variation at each point.

The procedure aims at determining the posterior mean and vari-
ance value of the function at some predetermined points, fi = f(xi),
i = 1, N. This is, to determine μi = μ(xi) and Cij = C(xi, xj) starting
from some prior mean function μp(x) and the chosen prior for the
covariant function. It does so by finding the optimum values of σ f

and λ (or marginalizing over them) by confronting them with the
data.

In the simplest case, the data to be described corresponds to the
value of the function at specific points x̃a , ya = f (x̃a) with a = 1
to Ñ , known with some uncertainties σ a (or what is the same with
some experimental covariance C̃ab). In this case it can be shown
that the likelihood for the hyperparameters takes the form

−2 lnL(σf , L)

=
Ñ∑

ab=1

{
(ya − μa)(Ct )

−1
ab (yb − μb) + ln(Ct )ab

} + const,

where μa = μp(xa) and Ct = CP + C̃. The posterior mean and
covariance for the function at the specific points are

f̄i = μp(xi) +
Ñ∑

ab=1

CP ia(Ct )
−1
ab (yb − μb), (C2)

Cij = CP ij −
Ñ∑

ab=1

CP ia(Ct )
−1
ab Cbj . (C3)

For the problem at hand, the data – neutrino fluxes, helioseismic
data, and sound speeds – are functions of the opacity function that
we want to determine (not some values of it) so the procedure to
use GP has to be adapted as described in Section 3.2

This paper has been typeset from a TEX/LATEX file prepared by the author.
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