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Understanding the main relationships between the current macroclimate and broad

spatial patterns of plant diversity is a priority in biogeography, and although there

is an important body of studies on the topic worldwide, tropical mountains remain

underrepresented. Because understanding primary drivers of diversity patterns in the

Andean páramo is still in its infancy, we focused on evaluating the role of the current

macroclimate in form of three complementary hypotheses, energy, seasonality and

harshness, in explaining local variation of plant species richness. We relied on 1,559

vegetation plots that offered a fine-scale outlook on real species assemblages due

to community rules and species’ interactions with their surrounding environment,

including climate. Generalized Least Squares (GLS) regression models provided insight

on the significance of the different hypotheses in explaining local plant richness,

but only the energy and seasonality hypotheses received partial support. The best

model was then combined with spatial interpolation Kriging modeling techniques to

project species richness for a standardized 25 m2 plot throughout the entire páramo

biogeographical province. We highlighted a North-South increase in richness with several

species-rich areas, potential local biodiversity hotspots, independent of the general

gradient: the Amotape-Huancabamba zone, Sangay and Cotacachi areas, and eastern

Venezuelan Andes. Our endeavor to finely map local richness is the first effort predicting

macroecological patterns in the emblematic Andean páramo and contributes novel

biogeographical knowledge useful to further support in-depth research and conservation

focus in the northern Andes.

Keywords: contemporary macroclimate, High Andes, Kriging model, plant diversity, regression model, richness

patterns

INTRODUCTION

Understanding spatial patterns of biodiversity across dimensions, scales, and areas of the world
remains one of the greatest challenges in biogeography (Lomolino and Heaney, 2004; Kennedy
and Norman, 2005). With 15% of the world’s total plant richness, the Tropical Andes is a
main biodiversity hotspot on earth (Myers et al., 2000; Barthlott et al., 2007), and home
to the Andean páramo, a high mountain biogeographical province (Morrone, 2014) known
as the most phytodiverse tropical high mountain system worldwide (Sklenár et al., 2014).
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The páramo includes all natural and semi-natural ecosystems
located above the montane treeline (∼3,000–5,000m) in the
northern tropical Andes of Venezuela, Colombia, Ecuador,
and northern Peru (Luteyn, 1999) and presents an astonishing
phytodiversity of almost 500 genera and 5,000 plant species,
60–80% of which are endemic (Londoño et al., 2014; Rangel-
Churio, 2015). It is mostly thanks to the recent orogeny
of the northern tropical Andes, geographic proximity to the
Amazonian and Chocó-Pacific biomes, and relatively stable
climatic conditions though time that the páramo evolved to
become the world’s coldest and fastest evolving biodiversity
hotspot (Madriñan et al., 2013; Anthelme et al., 2014). The
páramo, with a spatial distribution over 20 degrees latitude and
2,000m elevation, constitutes an excellent biogeographical model
system to represent tropical mountains worldwide (Anthelme
and Peyre, 2019).

Macroecological research on broad-scale spatial patterns
of species richness in tropical mountain regions and in
the páramo is critically lacking to date. Previous studies
have either focused on limited taxonomic groups (e.g., for
plants: Izco et al., 2007; Nürk et al., 2013; for animals:
Jacobsen, 2003; Sites et al., 2003; Moret, 2009) or reduced
geographic areas (Sklenár and Jørgensen, 1999; Sklenář and
Ramsay, 2001; but see Cuesta et al., 2017 for a regional
approach, although with sparsely distributed data). When
focusing on plant species richness, a decreasing tendency has
been highlighted along the elevational gradient of certain
páramos (Sklenár and Jørgensen, 1999; Sklenář and Ramsay,
2001) and latitudinal gradients remain generally understudied.
Several authors have also discussed potential drivers of local
species richness and found that human disturbance and
several environmental factors, such as annual precipitation and
scree, condition plant richness in the high tropical Andes
(Sklenář and Ramsay, 2001; Vásquez et al., 2015; Cuesta et al.,
2017).

Many hypotheses have been proposed to explain variation
in species richness, and the environment, especially the
contemporary climate, has held a prevailing place as potential
driver (Hawkins et al., 2003; Willig et al., 2003; Field et al., 2009).
Other simultaneously-acting hypotheses have also been advanced
to play a significant role, among which, other environmental
factors such as edaphic conditions, historical climate (Francis and
Currie, 2003; Araújo et al., 2008), biome age and area (Rahbek,
1995; Fine, 2015), species diversification rates and historical
processes (Ricklefs, 2006; Jetz and Fine, 2012), functional
diversity and biotic interactions (Cavieres et al., 2014; Mod
et al., 2015). Because of the broad extent of the páramo
biogeographical province and the general paucity of fine data
to represent potential causal factors associated with richness
variation, our exploratory study focused on understanding the
role of the contemporary macroclimate, with available data for
the entire study area (Karger et al., 2017), as richness driver
at the local scale. To do so, three complementary climatic
hypotheses were set to represent the overall macroclimate:
energy, seasonality, and climatic harshness (Willig et al.,
2003; Kreft and Jetz, 2007; Tello and Stevens, 2010; but see
Mittelbach et al., 2007).

(1) Energy: Plant species richness is generally found to be
conditioned by two forms of environmental energy: kinetic—
related to temperature—and potential (or chemical)—the result
of photosynthesis constrained by climatic conditions, in form of
temperature and water availability (Hawkins et al., 2003; Currie
et al., 2004; Allen et al., 2007). Multiple mechanisms have linked
both forms of energy to species richness (Currie et al., 2004;
Evans et al., 2005). For example, kinetic energy has been proposed
to increase biological rates, e.g., mutation, metabolism and
generation times, resulting in accelerated speciation processes
(Gillooly et al., 2001, 2005). Similarly, high potential energy,
hence substantial productivity, can sustain larger population
sizes, which can in turn reduce extinction risk and increase
speciation probability (Srivastava and Lawton, 1998). In addition,
high potential energy has often been correlated to carrying
capacity for species, whereby more species can co-exist in highly
productive environments under warm and humid climates (Fine,
2015). According to the energy hypothesis, areas with high energy
concentration would support more plant diversity.

(2) Seasonality: the variation in environmental conditions at
multi-temporal scales has been proposed to drive species richness
patterns by influencing the co-existence and accumulation of
species (Jablonski et al., 2006; Fine, 2015; Pfeifer et al., 2018).
For instance, climatic stability over centuries and millennia
can decrease the likelihood of extinctions and promote the
saturation of niche spaces, resulting in important species
richness (Ordonez and Svenning, 2017; Fordham et al., 2018).
In contrast, short-term seasonality, i.e., seasonality at the
intra-annual and inter-annual scale, has been suggested as a
source of climatic instability that can lead to wide population
fluctuations and even increase extinction risk during time of
low population size (Inchausti and Halley, 2003; Somveille et al.,
2015; Rajakaruna and Lewis, 2018). Alternatively, species may
adapt to high seasonality by developing broad niches, hence
broad geographic distributions with few dispersal and ecological
barriers and little population subdivision. This in turn would
reduce the likelihood of speciation events and lead to species-
poor communities with little fine partitioning of their niche
space (Pianka, 1966; MacArthur et al., 1972). Therefore, the
seasonality hypothesis would state that short-term climatically
unstable areas would possess lower species richness than
stable ones.

(3) Harshness: the climate extremes might physiologically
limit species in their growth and reproduction, hence in
their spatial distribution (Francis and Currie, 2003; Currie
et al., 2004; Evans et al., 2005; Smith, 2011). While most
hypotheses about environmental conditions typically use average
conditions, the harshness hypothesis is correlated to the energy
hypothesis but suggests that it is the most unsuitable conditions
that occur at a site that limit species distributions, hence
community composition and diversity (e.g., Knapp et al., 2002;
Miriti et al., 2007; Thibault and Brown, 2008). If measures
of climatic tolerance are similar for most species, then harsh
environments would be tolerated by fewer species and diversity
would be lower, as illustrated by the relatively limited species
richness at high latitudes due to freezing tolerance (Hawkins
et al., 2003). Indeed, although the average annual temperature
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can be included in the physiological tolerance range of a
species in cold regions, the minimum yearly temperature
might limit the species’ distribution range and contribute
to a diversity decrease at the ecosystem level. A similar
mechanism might occur in regions where water availability
is limiting during at least part of the year and excludes
species that cannot tolerate droughts (Miriti et al., 2007).
Although resistance to extreme climatic events is evolution
and species-dependent, the combination of cold and dry
conditions is generally believed to be harsh for most taxa,
as a result, we expected under the harshness hypothesis for
lower species richness to be found in páramo with harsh
climatic conditions.

Mapping fine-scale richness across broad areas has proved
very useful guiding conservation and management planning,
for example through the identification of local biodiversity
hotspots (Myers et al., 2000), however these efforts remain rare
to date (Beck et al., 2012; Divíšek and Chytrý, 2018; Večera
et al., 2019). Most macroecological studies rely on coarse
grain biological data, i.e., grid cell, with correlation analyses
and predictions made based on checklist occurrence data or
predicted occurrences stacked together (e.g., D’Amen et al.,
2015; Ulloa Ulloa et al., 2017). In these cases, local species
lists are usually not obtained from real biotic communities
responding to ecological assembly rules, but by co-occurrences
driven by individualistic observation or probability of presence
in a given cell. On the contrary, vegetation data accounts
for this issue as it provides fine resolution information on
actual species assemblages in direct interaction with the
surrounding environment, and as a result, a new body of
biogeographical studies is starting to explore predicting spatial
richness patterns from this type of data (Divíšek and Chytrý,
2018; Večera et al., 2019). As vegetation databases encompassing
tropical mountain areas our flourishing worldwide, including
in the páramo (Peyre et al., 2015; Bruelheide et al., 2019),
new approaches to macroecological research are becoming
accessible for these regions. By correlating local richness with
the macroclimate in the páramo, we expected the resulting
fine-scale map to highlight a general decrease richness pattern
with increasing latitude (Hawkins et al., 2003; Willig et al.,
2003), even though it has not yet been confirmed for tropical
mountain areas (Bjorholm et al., 2005), as well as decreasing
richness with elevation as previously found in Ecuadorian
páramos (Sklenář and Ramsay, 2001; McCain and Grytnes,
2010). Finally and related to our climatic hypotheses, we
believed local hotspots would be highlighted in climatically
clement areas, for example in the western Colombian
cordillera and the central eastern Ecuadorian cordillera
(Herzog et al., 2011; Rangel-Churio, 2015).

The overarching objective of this study was to understand
how the contemporary macroclimate influences local plant
richness in the páramo and map fine-scale richness predictions
using climatic drivers throughout the biogeographical province.
Specifically, the respective roles of energy, seasonality, and
harshness were studied as three complementary hypotheses, and
local plant richness was mapped to reveal general spatial patterns
and biodiversity hotspots in the high northern Andes.

FIGURE 1 | Distribution of the Andean páramo biogeographical province

(elevation above 3,000m) and the vegetation plots used in this study (1 Km

UTM coordinates).

METHODS

All statistical analyses were conducted in R 3.3.1
(R Core Team, 2013).

Study Area and Vegetation Data
The study area encompassed the Andean páramo
biogeographical province, including the high-elevation
northern Andes and the Sierra Nevada de Santa Marta, but
excluding other extra-Andean areas with similar altitudinal
and/or environmental conditions, such as Amazonian volcanoes
or Central American mountains (Figure 1). It was therefore
delimited in the north by the Sierra Nevada of Santa Marta
(11◦N, Colombia) and in the south by the Huancabamba
depression (6◦S, Peru), which is usually considered a main
biogeographical barrier for high-elevation plant taxa (Weigend,
2002). The easternmost páramos were located in the Cordillera
de Merida (72◦W, Venezuela), whereas the westernmost ones
were the Piura páramos (80◦W, Peru).
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For floristic data, all vegetation plots contained inVegPáramo,
the database for páramo flora and vegetation that compiles
data from almost 40 different sources, were downloaded (Peyre
et al., 2015). These plots were sampled with the phytosociological
method, which involves estimating species cover in a categorical
scale (from + to 5) within defined plots of a varying area
set for different vegetation physiognomies (Braun-Blanquet,
1951; Figure 1 and Figure S1A). In order to estimate plant
richness within each plot, the species relative cover values
were transformed into presence-absence data. To standardize
the taxonomy across the heterogeneous dataset, synonymy
was checked, and updated using the VegPáramo taxon list,
which contains updated information for about 15,000 northern
Andean plant species. For dubious taxa such as orchids, the
Plant List (www.plantlist.org) and Tropicos (www.tropicos.org)
databases were also consulted. Non-vascular plants were then
removed from the dataset, as well as unidentified species.
Finally, infra-specific taxa, i.e., subspecies, varieties and forms,
were elevated, and combined to the species level. Regarding
the plot data, outliers to the study area and plots with a
coarse georeferencing precision (>1 km) were removed from the
dataset. Because this study focused on spatial patterns of fine-
scale species richness over a broad area, plots whose descriptive
structure and composition explicitly referred to azonal or ecotone
vegetation were eliminated, according to the plot’s original
authors. Finally, the few plots with unusual areas (< 1 m2

and > 100 m2) were removed, for a final dataset containing
1,559 vegetation plots and 1,169 species, spread over the páramo
biogeographical province and presenting considerable local-plot
richness variation (Figure S1B and Table S1).

Climatic Data
Disentangling the effects of the three climatic hypotheses is
challenging due to the necessary correlation between climatic
predictors and consequent overlapping of the hypotheses.
For energy, we included mean annual temperature (bio1),
annual precipitation (bio12), actual evapotranspiration (AET),
and mean monthly soil water stress coefficient defined as
the fraction (percentage) of soil water content available for
evapotranspiration(swcfr). For seasonality, we considered mean
diurnal temperature range (bio2) for daily variation, temperature
seasonality (bio 4) and precipitation seasonality (bio15) for
monthly variation, as well as inter-annual temperature variation
(bio20) and inter-annual precipitation variation (bio21) for
yearly variation. The latter two variables were calculated as
the yearly standard deviation of bio1 and bio12, respectively,
during the period 1979–2013. Finally to represent harshness,
we used minimum temperature of the coldest month (bio6),
precipitation of the driest month (bio14), and precipitation of
the warmest quarter (bio18) that we supposed woud condition
richness. The bioclimatic variables (bio), except for bio20 and
21, were downloaded as means for the period 1979–2013,
from the (CHELSA Project 1.1, 2017), Climatologies at High
resolution for the Earth’s Land Surface Areas (http://chelsa-
climate.org), which is known for enhancing bioclimatic data
quality in tropical areas (Karger et al., 2017). Additionally,

the AET and swcfr variables were obtained from the CGIAR-
CSI, Consultative Group on International Agricultural Research
Consortium for Spatial Information databases (www.cgiar-csi.org;
Zomer et al., 2008; Trabucco and Zomer, 2010) and all variables
were obtained as raster data at a resolution of 30 arc-s (∼1 km).
All variables presented a certain amount of multicollinearity,
some of them very high as illustrated by high Pearson correlation
values (Figure S2). Nonetheless, because these variables were
used in different models, or altogether but with a robust
variable selection process, we considered this approach valid
and took the multicollinearity information into account in
our discussion.

Drivers of Richness
For these analyses, Generalized Least Squares (GLS) models
were used because they efficiently account for the correlation
structure in residuals (fitted with the gls function of the
nlme R package; Beale et al., 2010). Through testing several
correlation structures, the quadratic spatial correlation with a
nugget effect was finally selected and used in all following
models, based on its performance given by the AIC and
spatial autocorrelation in residuals (function corRatio in the
nlme R package). For each model carried out, all variables
were subjected to the forward selection process proposed by
Blanchet et al. (2008) to reduce collinearity and identify the
most significant predictors. The procedure included successively
adding a variable (from 1 to n) to the model and validate
it based on variables’ p-values (significance level set at 0.05)
and model performance (function ordiR2step in the R package
vegan, Oksanen et al., 2012). To compare the performance
of the obtained models, a pseudo-R2 was calculated, based
on the squared correlation coefficient between observed and
predicted richness. Moreover, models were evaluated according
to their AIC and 1AIC (difference between the selected and
the best performing model), considering that any 1AIC < 2
between models would imply a similar support from the data
(Burnham and Anderson, 2002).

Due to the large variation of plot areas in the dataset,
characteristic of phytosociological sampling (Braun-Blanquet,
1951; Figure S1A), a preliminary analysis was conducted to
determine a potential correlation between plot area and local
plant richness (Lomolino, 2000). To do so, a regression between
plot area in its logarithmic form and richness was conducted,
model PlotArea, and showed a significant correlation between
the two factors (pseudoR2 = 0.128, p-value< 0.001, Table 1 and
Figure 2B). Therefore, plot area was considered a significant
predictor of local plant richness and included in its logarithmic
form in all the following regression analyses.

Eight regression models using different sets of climatic
variables and log(area) were built. Three models included all
the predictors associated with only one hypothesis: energy
(Energy), seasonality (Seasonality), and harshness (Harshness).
Three additional models incorporated all possible combinations
of predictors from two hypotheses (models E+S, E+H, or
S+H). Finally, a complete climatic model considered all variables
representing the three hypotheses (E+S+H).
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TABLE 1 | Results for all climatic GLS models.

Model Component Predictor Estimate P AIC PseudoR
2 Pmodel

PlotArea Intercept 17.307 < 0.001 10,004 0.128 <0.001

A Area (log.) 1.961 < 0.001

Energy Intercept 16.873 < 0.001 9,973 0.189 <0.001

A Area (log.) 1.967 < 0.001

E swcfr −1.761 < 0.001

Seasonality Intercept 17.343 < 0.001 9,987 0.185 <0.001

A Area (log.) 1.938 < 0.001

S bio4 1.198 0.001

S bio2 0.778 0.042

Harshness Intercept 17.313 < 0.001 10,006 0.131 <0.001

A Area (log.) 1.958 < 0.001

E + S Intercept 16.956 < 0.001 9,943 0.246 <0.001

A Area (log.) 1.897 < 0.001

E swcfr −1.984 < 0.001

E bio12 −1.837 < 0.001

E bio1 1.000 0.015

S bio15 −2.487 < 0.001

E + H Intercept 16.836 < 0.001 9,948 0.225 <0.001

A Area (log.) 1.905 < 0.001

E bio12 −3.781 < 0.001

E swcfr −1.506 < 0.001

H bio14 3.794 < 0.001

S + H Intercept 17.317 < 0.001 9,986 0.190 <0.001

A Area (log.) 1.933 < 0.001

S bio4 1.123 0.004

S bio15 −1.382 0.010

H bio14 −1.420 0.029

E + S + H Intercept 16.936 < 0.001 9,943 0.246 <0.001

A Area (log.) 1.894 < 0.001

E swcfr −1.759 < 0.001

E bio12 −2.925 0.001

E bio1 1.121 0.007

S bio15 −1.403 0.020

H bio14 2.058 0.045

Considered variables: Energy predictors –bio1, annual mean temperature; bio12, annual precipitation; swcfr, mean monthly soil water stress coefficient; AET, actual evapo-transpiration.

Seasonality predictors –bio2, Mean diurnal temperature range; bio4, temperature seasonality; bio15, precipitation seasonality; bio20, inter-annual temperature variation (σ; 1979–2013);

bio21, inter-annual precipitation variation (σ; 1979–2013). Harshness predictors –bio6, minimum temperature of coldest month; bio14, precipitation of driest month; bio18, precipitation

of warmest quarter.

Regional Fine-Scale Richness Patterns
To explore spatial patterns of fine-scale plant richness in the
páramo province, three predictive maps were built based on local
richness for a standardized by logarithm size plot of 25 m2 to
make predictions comparable despite the varying plot size. The
following techniques aimed at optimizing the predictions for
under-sampled areas by relying not only on climatic data but
also on spatial complexity. The first interpolation technique used
was a spatial Ordinary Kriging (OK) model, which estimated
local species richness in non-sampled areas based solely on
the distance between said area and its nearest sampled points
(Banerjee et al., 2003). Second, the best performing GLS model
previously obtained was used alone to predict local richness. Last,
both the OK and GLS models were combined into a Universal

Kriging (UK) model, which is a commonly used approach to
enhance interpolation estimates and account for both climatic
gradients and underlying spatial trends (Kreft and Jetz, 2007).

RESULTS

Climatic models varied in their explaining power (Table 1). The
energy (Energy) and seasonality (Seasonality) models presented a
pseudo-R2 of almost 0.19, corresponding to an explaining power
of almost 19 percent of the variation in local richness, while
plot area alone showed a pseudo-R2 around 0.13 only (model
PlotArea). On the contrary, the harshness model (Harshness),
which only retained the plot area variable of all factors, behaved
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FIGURE 2 | Richness-climate relationships captured by the energy, seasonality, and harshness model combinations: (A) Performance of all models according to the

pseudo-R2 value (squared correlation coefficient between observed and predicted richness); (B) Relationship between observed and predicted richness by the model

PlotArea; (C) Performance of all models according to the AIC and 1AIC values; and (D) Relationship between observed and predicted richness by the environmental

model GLS:E+S+H.

unsurprisingly similarly to model PlotArea. Among all models,
the best performing and statistically comparable models with
a 1AIC < 2 were models E+S and E+S+H. These two
models presented a pseudo-R2 close to 0.25, explaining almost
25 percent of local richness variation and showed the lowest
AIC value at 9943 (Figure 2). Both models included the same
significant predictors, except for one variable present only in
model E+S+H, which is precipitation of the driest month
(bio14), a harshness variable strongly correlated with annual
precipitation (bio12) (Figure S2). They also showed similar
tendencies regarding the correlation of predictors with local
richness, as detailed below.

First considering the energy variables included in models
E+S and E+S+H, species richness was correlated positively
to annual temperature (bio1) and negatively with soil water
stress coefficient (swcfr). Moreover, richness was negatively
correlated to annual precipitation (bio12). Other models showed
similar results for the correlation between richness and the
predictors: swcfr (in models Energy and E+H) and bio12
(in model E+H), whereas bio1 was not included in any
other model. Second regarding seasonality predictors, models
E+S, S+H, and E+S+H retained precipitation seasonality
(bio15) and found it negatively correlated to richness. Models
Seasonality and S+H both contained temperature seasonality

(bio4), a variable positively correlated to richness, and in the
former case, mean diurnal temperature range (bio2) was also
retained and positively correlated to richness. Last for harshness,
precipitation of the driest month (bio14) was the only predictor
included in models E+S+H, E+H, and S+H and showed a
positive correlation with richness in the first two models and
a negative one in the latter. Nonetheless, this variable was not
even found significant in the model Harshness. In general,
models included more precipitation-related variables, except for
model Seasonality, which included a majority of temperature-
related predictors.

All models used to create interpolated maps of local plant
richness across the páramo province predicted similar spatial
patterns (Figure 3 and Figure S3). The best performing GLS
model selected to predict richness was model E+S+H because
of its good pseudo-R2 and AIC values and consideration of a
harshness variable. Both the OK and E+S+H models predicted
a variation of 7–35 species per 25 m2 plot (Figures 3A,B and
Figure S3) and by contrast, the UKmodel predicted 4–42 species,
a fitter value-range to the observed 1–52 species present in the
plot data (Figure 3C and Figure S1B). According to the UK
model predictions, a general decrease of species richness was
projected from south to north, dividing the locally more diverse
páramos south of the equator and the less diverse páramos

Frontiers in Ecology and Evolution | www.frontiersin.org 6 October 2019 | Volume 7 | Article 377

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Peyre et al. Páramo Plant Richness

FIGURE 3 | Fine-scale richness predictions for a standardized 25 m2 plot across the páramo biogeographical province. Histograms of frequencies of predicted local

richness values by: the model OK (A), the best performing environmental model GLS: E+S+H (B), and the model UK (C); and (D) local richness map as expected by

the model UK throughout the páramo biogeographical province, shown at a 30 arc-s (∼1 km) resolution.

in the north (Figure 3D). Overall, Colombian páramos were
found generally poorer than páramos in other countries. No
clear elevational gradient was observed at this scale, assuming
high elevations are located in the central part of mountain
ranges, while low elevations are located at the borders. Several
punctual areas with high local species richness (> 35 species
per 25 m2 plot) could be observed, for example surrounding
the Amotape-Huancabamba zone (∼Lat. 5◦S; Long. 79.5◦W),
the Sangay (∼Lat. 2◦S; Long. 78.5◦W), and Cotacachi (∼Lat. 0◦;
Long. 78◦W) massifs in Ecuador, as well as the Lara páramos in
Venezuela (∼Lat. 9◦N; Long. 71◦W).

DISCUSSION

Our study is pioneer in studying macroclimatic drivers of
plant richness and conducting macroecological analyses over the
entire páramo biogeographical province and based on substantial
vegetation data. It also represents one of the first few efforts
worldwide to propose fine-resolution richness mapping based
on vegetation data, hence correlating real species assemblages in

their complexity of interactions and community constraints with
macroclimate features. The results obtained shed light on the role
of macroclimate in explaining local variation in local richness and
provided a richness fine-scale map with potential future uses in
research and biodiversity management, for example through the
identification of local biodiversity hotspots.

Climatic Drivers of Richness
The macroclimate was found to play a significant but rather

small part in explaining variation of local plant richness, 25

percent at best (models E+S and E+S+H) and 13 percent

more than plot area alone (PlotArea). Several but not all of the
significant correlations found between environmental variables
and plant richness agreed with the originally set expectations.
Therefore, our findings should be interpreted carefully as
potential influences between variables and not as direct cause-
consequence relationships.

Regarding energy, we observed that local richness increased
with annual temperature (bio1), which supports the hypothesis
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that high kinetic energy can increase biological rates, hence

promoting population differentiation, speciation and therefore
greater diversity, although said effects are hardly visible at the

plot scale (Gillooly et al., 2001; Hawkins et al., 2003; Evans

et al., 2005). Agreeing with this finding was the negative
relation found between soil water stress (swcfr) and local

richness. This is a commonly encountered correlation in ecology,

and unlike temperature that usually enhances net primary
productivity, soil water stress tends to reduce it, and therefore
influence plant diversity through the ecosystem’s productivity
(Srivastava and Lawton, 1998; Currie et al., 2004). Nonetheless,
our results showed that local richness decreased with annual
precipitation (bio12), which in turn contradicts the hypothesis
that high potential energy in form of water availability would
increase the accumulation of species and saturation of habitats,
resulting in higher species richness (Hawkins et al., 2003;
McCain and Grytnes, 2010; Fine, 2015). The precipitation-
richness relationship is often difficult to isolate from other factors’
influence because mixed effects usually occur, for instance winds
are important in conditioning local precipitation trends (McCain
and Grytnes, 2010). We propose several potential explanations
for this unexpected result and recommend further study to
evaluate them. First, because most páramos are already humid
ecosystems, i.e., receiving between 2,000 and 4,000mm rain/year
(Luteyn, 1999; Rangel-Churio, 2006), we could advance the
intermediate-stress hypothesis, which forecasts highest richness
at moderate intensities of environmental stress (Grime, 1979).
Traditionally, this hypothesis has been more documented along
aridity gradients with drought stresses (e.g., Armas et al.,
2011; Butterfield et al., 2016), however, humidity gradients
with wet stresses are being increasingly studied (e.g., Kramer
and Boyer, 1995; Knapp et al., 2008). Most páramos receive
sufficient water to function adequately, and only a few endure
temporal droughts, for example the rain-shadow deserts of
Mount Chimborazo (∼Lat. 1.5◦S; Long. 78.8◦W) and Piedras
blancas (∼Lat. 8.8◦N; Long. 70.8◦W) (Sklen and Lægaard, 2003;
Stansell et al., 2005). Nonetheless, many páramos face a very
important up to extreme water intake, which could result in a
temporal or permanent wet stress, for example in the pluvial
páramos of the Western Colombian Cordillera that receive
more than 6,000 mm/year (Rangel-Churio, 2006). This situation
could result in less species able to tolerate the very humid
environmental conditions and anoxic soils, and limit the overall
species saturation of páramo ecosystems (Kammer and Möhl,
2002). Second, important precipitation could indirectly imply
denser fog and cloud cover, known as horizontal precipitation,
which constitutes the main water intake in most páramos
(Buytaert et al., 2006; Sklenár et al., 2008) but which is very
difficult to account for in models. Fog and cloud cover benefit
ecosystems by providing substantial amounts of humidity for
plants, protecting organisms from the damaging solar radiation
and buffering extreme temperatures (Luteyn, 1999; Sklenár et al.,
2008). Nonetheless, too much intercepted water around the
leaves could also limit evapotranspiration and photosynthetic
processes (Smith and McClean, 1989; Asbjornsen et al., 2011),
resulting in less productivity and as a result lower richness.

Last, precipitation might be correlated to the abundance of
growth forms in a plot, which by occupying different fractions
of the available space might allow more or less functional hence
taxonomic diversity to co-occur locally (Wilson et al., 2012).
An extreme example would be how in very humid páramos
are usually associated with vegetation dominated by bamboos
of the genus Chusquea, which tend to prevail and leave little
space for other plant species to grow, resulting in turn in
relatively low richness (Luteyn, 1999; Cleef et al., 2005; Cuello and
Cleef, 2009). Downscaling our results to the páramo vegetation
type or phytogeographical unit (e.g., Peyre et al., 2018) might
provide clearer insight on the validity of these hypotheses
(Divíšek and Chytrý, 2018).

For the seasonality hypothesis, our main results highlighted
the negative correlation between richness and precipitation
seasonality (bio15). This finding agrees with our original
hypothesis stating that in climatically stable páramos, where
seasonality is limited, species would tend to accumulate and
narrow-niche species would be favored. Previous studies have
agreed with this hypothesis for animals (Somveille et al.,
2015; Pfeifer et al., 2018) and also plants (Morueta-Holme
et al., 2013), because short-term climatic stability means
less migrations and important adaptations, i.e., broad-niche
species, resulting in relatively species-poor ecosystems (Pianka,
1966; MacArthur et al., 1972). However, in lesser means,
our results contradict the seasonality hypothesis. The positive
correlation between richness and temperature seasonality (bio4)
and mean diurnal temperature range (bio2), observed in all
models except the best performing E+S and E+S+H, suggest
that short-term temperature variability at the day and season

levels increase richness. In light of these unexpected results,
we recommend further studies to focus on the effect of

temperature seasonality on richness in more local conditions, for

example looking at how temperature variability affects specific
phenological plant responses (e.g., Pfitsch, 1988; Fagua and
Gonzalez, 2007), which in turn could condition communities’

composition and diversity. Finally, our study gave little

support to the harshness hypothesis, with precipitation of the

driest month (bio14) the only harshness variable retained in
our models, moreover strongly correlated with bio12. This
predictor showed a mostly positive relationship with richness,
which was expected given that precipitation under extreme
stress could be an important conditioner of plant survival
and growth, hence of community diversity (Sklenár and
Jørgensen, 1999; Sklenár and Balslev, 2005). However, this
correlation was inconclusive because it was found negative in
model S+H.

To conclude, our results did not support completely any
of our original hypotheses on the roles of the contemporary
macroclimate in form of energy, seasonality and harshness in
conditioning local plant richness in the páramo. We found that
the highest plant richness could exist under relatively warm
conditions, with little soil water stress, where humidity was
not too important, i.e., in our opinion in semi-dry climates,
and under stable humidity conditions but varying temperatures.
Therefore, our energy and climatic seasonality hypotheses were
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partly sustained, whereas harshness was not, at least at this study
scale, this perhaps due to the strong overlap between the energy
and harshness predictors. As a result, we suppose that including
more specific bioclimatic factors representative of harshness and
less correlated to energy factors, e.g., number of freezing days,
could have better disentangled the harshness effects on local plant
richness, however this information remains unavailable for the
extent of our study.

Regional Fine-Scale Richness Patterns
Our predicted map of fine-scale richness for a standardized
25 m2 páramo plot showed important variation throughout
the biogeographical province. The results forecasted a general
south-north richness decrease with a marked contrast between
northern and southern latitudes, which was unexpected in
our original hypothesis expecting a double-ended decreasing
richness gradient with latitude (Hawkins et al., 2003; Willig
et al., 2003). Another unexpected finding was the overall low
richness predicted for Colombia at the plot level, whereas
the country is usually considered the most diverse páramo
country in terms of national richness (Rangel-Churio, 2006,
2015). One potential explanation for these results might be
the heterogeneity in phytosociological sampling approaches
between vegetations schools in the different countries, a problem
commonly encountered when using multi-sources vegetation
databases (Michalcová et al., 2011). Because it is difficult to
correctly evaluate, we recommend considering this potential
bias carefully. Our results also predicted no-clear patterns of
richness with elevation at this scale, and highlighted particularly
rich páramo areas, i.e., > 35 species (per 25 m2 plot),
and poor ones, i.e., < 10 species, independent of latitude
and elevation.

Among the species rich areas identified were the Amotape-
Huancabamba zone (∼Lat. 5◦S; Long. 79.5◦W), the Sangay
(∼Lat. 2◦S; Long. 78.5◦W) and Cotacachi (∼Lat. 0◦; Long. 78◦W)
massifs in Ecuador, as well as the Lara páramos (∼Lat. 9◦N;
Long. 71◦W). This can be due to the geographic location of
these mountain ranges, either (i) near lowland renown hotspots
such as Amazonian and Chocó-Pacific biomes, in the case of
Sangay and Cotacachi, respectively (Barthlott et al., 2007), or
(ii) at geographic extremities of the páramo province, which
promotes interchanging species with the immediate adjacent
regions, such as the Llanos Occidentales in Lara and the
Puna in the Amotape-Huancabamba zone (Weigend, 2002).
Following that pattern, we expected the Colombian western
cordillera to show high local biodiversity, but found the
opposite. Thismight be explained by our previous interpretations
on the extreme precipitation-richness relationship or by a
sampling bias affecting the richness-precipitation relationship
found. Previous studies had already mentioned the ecological
importance of the Amotape-Huancabamba zone or easternmost
Venezuelan páramos and emphasized their species richness,
ecosystem diversity, endemism, and good conservation state
(Lozano et al., 2009; Cuello et al., 2010). These areas remain
relatively pristine thanks to direct conservation measures, for
example representation in the Podocarpus and Guaramacal
National Parks, as well as indirect ones, such as difficult

access. Even though management efforts are in place, we
believe there is a need for further research on the páramo’s
biogeography and global threats to reinforce preservation
strategies, for example anticipating climate change (Mace
et al., 2000). Although our study is exploratory and focused
on the local scale, we encourage further studies to focus
on these predicted species-rich areas with potential for
revealing biodiversity hotspots at a broader-scale within the
páramo biogeographical province. When doing so, it would
be important to focus on species richness at a larger scale
but also quantify ecological value in complementary ways, for
example correlating richness patterns with patterns of endemism
(Sklenár and Jørgensen, 1999).

Study Limitations and Future
Recommendations
Our study has certain drawbacks that should be considered when
interpreting the obtained results. First, the 1 km resolution of
our climatic data might be considered coarse and it is possible
that we did not detect valuable information due to the fine
Andean topographic heterogeneity. Although we acknowledge
that the fine micro- and meso-climate might play a crucial
part in driving local species richness, perhaps more than the
macroclimate (Anthelme and Lavergne, 2018; Graae et al.,
2018), obtaining the corresponding data for the extent of our
study remains considerably challenging. Second, some areas
were rather under-sampled, such as the Colombian western
cordillera, and it is possible that because of the resulting under-
representation, their specific trends might have been overlooked
in our results, making spatial interpolations from the closest
sampled areas, even though useful, potentially dubious (Divíšek
and Chytrý, 2018; Večera et al., 2019).We recommend additional
sampling in these areas that are now more easily accessible
thanks to the ended armed conflict in Colombia and in urgent
need of further data exploration and associated environmental
legislation (Negret et al., 2017). Last, our best performing
regression models, E+S and E+S+H, only accounted for 25
percent of local species richness variation. As a result, while our
results are bringing novel insight on the significant predictors of
páramo plant richness, their explaining power remains relatively
low and therefore, our interpretations should be handled
accordingly. We believe important to focus future endeavors
on additional potential richness drivers in the páramo such as
the broad contemporary environment, past climate variations,
disturbance variables, biome area, and biotic interactions for
example (Sklenář and Ramsay, 2001; Cavieres et al., 2014;
Vásquez et al., 2015). Finally, we consider that our results,
despite the previously established drawbacks, advance important
theories on páramo biogeography and the relevant but weak
relationship between local plant richness and the macroclimate.
They are also meaningful and able to guide further research and
management focus on specific páramo areas identified as local
biodiversity hotspots, and we believe it would be useful as a future
perspective to downscale the results and focus on the specific
vegetation type of phytogeographical units to identify not only
geographic hotspots but habitat hotspots (Divíšek and Chytrý,
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2018) with direct implications in ecosystem and biodiversity
management planning.
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Figure S2 | Correlation matrix showing the univariate relationships among each

environmental predictor for variable selection in the GLS environmental models.

The color scale reflects Pearson’s correlation coefficients and the “X” marks

correlations that were not statistically significant. Variables for hypotheses: Energy

–bio1, annual mean temperature; bio 12, annual precipitation; swcfr, mean

monthly soil water stress coefficient; AET, actual evapo-transpiration;

Seasonality–bio2, Mean diurnal temperature range; bio4, temperature seasonality;

bio15, precipitation seasonality; bio20, inter-annual temperature variation (σ;

1979–2013); bio21, inter-annual precipitation variation (σ; 1979–2013);

Harshness–bio6, minimum temperature of coldest month; bio14, precipitation of

driest month; bio18, precipitation of warmest quarter.

Figure S3 | Geographic patterns of local species richness values (for a 25 m2

plot) throughout the páramo biogeographical province as predicted by the models

OK (A) and E+S+H (B).
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