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ABSTRACT

In [4], Mezzetti and Miró-Roig proved that the minimal number of generators
µ(I)of aminimal (smooth)monomial Togliatti system I ⊂ k[x0, . . . , xn] satis�es

2n + 1 ≤ µ(I) ≤
(

n+d−1
n−1

)

and they classify all smooth minimal monomial
Togliatti systems I ⊂ k[x0, . . . , xn] with 2n + 1 ≤ µ(I) ≤ 2n + 2. In this paper,
we address the �rst open case. We classify all smooth monomial Togliatti
systems I ⊂ k[x0, . . . , xn] of forms of degree d ≥ 4 with µ(I) = 2n + 3 and
n ≥ 2 and all monomial Togliatti systems I ⊂ k[x0, x1, x2] of forms of degree
d ≥ 6 with µ(I) = 7.
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1. Introduction

The study and classi�cation of smooth projective varieties satisfying at least one Laplace equation is a
long standing problem in algebraic geometry. In [6], shedding new light on this subject, it was related
to another long standing problem in commutative algebra: the study and classi�cation of homogeneous
artinian ideals failing theweak Lefschetz property (WLP).We contribute to these two problems resolving
the �rst question that was le� open in [4].

To be more precise. Let k be an algebraically closed �eld of characteristic 0, R = k[x0, . . . , xn]
and I = (F1, . . . , Fs) ⊂ R a homogeneous artinian ideal generated by forms of the same degree d.
Set A = R/I. We say that A fails the WLP from degree d − 1 to degree d if the homomorphism
×ℓ : [A]d−1 → [A]d induced by a general linear form ℓ has not maximal rank. As shown in [6], if

s ≤
(n+d−1

d

)

then this assertion is equivalent to saying that the projection XI
n,d of the dth Veronese

variety V(n, d) ⊂ P
n from 〈F1, . . . , Fs〉 satis�es at least one Laplace equation of order d − 1. We call

Togliatti systems the ideals satisfying these two equivalent statements (see De�nition 2.3). The name is
in honour of Togliatti who gave a complete classi�cation of rational surfaces parameterized by cubics and
satisfying at least one Laplace equation of order 2 (see for instance [12, 13]). Narrowing the �eld of study
we deal only with monomial ideals I, so XI

n,d turns out to be a toric variety. In this sense, one can apply
pure combinatoric tools due to Perkinson in [10] to see whether I is a minimal monomial (smooth)
Togliatti system (see De�nition 2.3 and Propositions 3.4 and 3.6). In [6], using these tools, Mezzetti,
Miró-Roig and Ottaviani classi�ed all smooth minimal monomial Togliatti systems of cubics in four
variables and conjectured a further classi�cation for n ≥ 3. By means of graph theory, this conjecture
was proved by Miró-Roig and Michałek [7] where a classi�cation of smooth minimal Togliatti systems
I ⊂ k[x0, . . . , xn] of quadrics and cubics is achieved. When d ≥ 4 the picture becomes much more
involved and a complete classi�cation seems out of reach for now. Therefore, in [4] it was introduced
another strategy: First to establish lower and upper bounds, depending on n and d ≥ 2, for the minimal
number of generators of a monomial Togliatti system and then to study the monomial Togliatti systems
with �xed number of generators.
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In fact, in [4], Mezzetti and Miró-Roig bounded the number of generators of monomial Togliatti
systems and classi�ed all minimal monomial (smooth) Togliatti systems reaching the lower bound or
close to reach it; namely those generated by 2n + 1 and 2n + 2 forms of degree d ≥ 4. In this paper,
we use again combinatoric tools and we classify the �rst open case, i.e., all minimal monomial Togliatti
systems generated by 2n + 3 forms of degree d ≥ 4 and n ≥ 2.

Next we outline the structure of this note. In Section 2 we �x the notation and we collect the basic
results needed in the sequel. Then, in Section 3 we expose the main results of this note. First, we give a
complete classi�cation of all minimal monomial Togliatti systems generated by 7 forms of degree d ≥

10 in three variables (see Theorem 3.8). In order to achieve this classi�cation we have had to consider
all possible con�gurations of these 7 monomials regarded in the integer standard simplex d12 ⊂ Z

3

and then apply combinatorial criteria to each con�guration. Separating the problem in two basic cases
which we have also had to separate into a few more subcases has helped so as to reduce the number of
con�gurations to study.Once seen this classi�cationwe compute allminimalmonomial Togliatti systems
generated by 7 forms of degree 6 ≤ d ≤ 9 getting a complete scene of what occurs in three variables.
From this result we can look apart all minimal monomial smooth Togliatti systems in three variables
generated by 7 forms of degree d ≥ 6 and close the open question we were dealing with.

2. Preliminaries

We�x k an algebraically closed�eld of characteristic zero,R = k[x0, . . . , xn] andP
n = Proj(k[x0, . . . , xn]).

Given a homogeneous artinian ideal I ⊂ k[x0, . . . , xn], we denote by I−1 the ideal generated by the
Macaulay inverse system of I (see [6, Section 3] for details). In this section we �x the notations and the
main results that we use throughout this paper. In particular, we quickly recall the relationship between
the existence of homogeneous artinian ideals I ⊂ k[x0, . . . , xn] failing the WLP; and the existence of
(smooth) projective varieties X ⊂ P

N satisfying at least one Laplace equation of order s ≥ 2. For more
details, see [6] and [7].

De�nition 2.1. Let I ⊂ R be a homogeneous artinian ideal. We say that R/I has the WLP if there is a
linear form L ∈ (R/I)1 such that, for all integers j, the multiplication map

×L : (R/I)j → (R/I)j+1

has maximal rank, i.e., it is injective or surjective. We o�en abuse notation and say that the ideal I has
the WLP. If for the general form L ∈ (R/I)1 and for an integer number j the map ×L has not maximal
rank we say that the ideal I fails the WLP in degree j.

Though many algebras are expected to have the WLP, establishing this property is o�en rather
di�cult. For example, it was shownby Stanley [11] andWatanabe [14] that amonomial artinian complete
intersection ideal I ⊂ R has the WLP. By semicontinuity, it follows that a general artinian complete
intersection ideal I ⊂ R has the WLP but it is open whether every artinian complete intersection of
height≥ 4 over a �eld of characteristic zero has theWLP. It is worthwhile to point out that theWLP of an
artinian ideal I strongly depends on the characteristic of the ground �eld k and, in positive characteristic,
there are examples of artinian complete intersection ideals I ⊂ k[x0, x1, x2] failing the WLP (see, e.g.
[9, Remark 7.10]).

In [6], Mezzetti et al. showed that the failure of the WLP can be used to construct (smooth) varieties
satisfying at least one Laplace equation of order s ≥ 2 (see also [4, 5, 7]). We have:

Theorem 2.2. Let I ⊂ R be an artinian ideal generated by r forms F1, . . . , Fr of degree d with r ≤
(n+d−1

n−1

)

.
The following conditions are equivalent:
(1) the ideal I fails the WLP in degree d − 1;
(2) the homogeneous forms F1, . . . , Fr become k-linearly dependent on a general hyperplane H of Pn;
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(3) the closure X := Im(ϕ(I−1)d
) ⊂ P(n+d

d )−r−1 of the image of the rational map

ϕ(I−1)d
: Pn

99K P
(n+d

d )−r−1

associated to (I−1)d satis�es at least one Laplace equation of order d − 1.

Proof. See [6, Theorem 3.2].

The above result motivates the following de�nition:

De�nition 2.3. Let I ⊂ R be an artinian ideal generated by r forms F1, . . . , Fr of degree d, r ≤
(n+d−1

n−1

)

.
We say:
(i) I is a Togliatti system if it satis�es the three equivalent conditions in Theorem 2.2.
(ii) I is amonomial Togliatti system if, in addition, I (and hence I−1) can be generated by monomials.
(iii) I is a smooth Togliatti system if, in addition, the n-dimensional variety X is smooth.
(iv) A monomial Togliatti system I isminimal if I is generated by monomialsm1, . . . ,mr and there is

no proper subsetmi1 , . . . ,mir−1 de�ning a monomial Togliatti system.

The names are in honor of Eugenio Togliatti who proved that for n = 2 the only smooth Togliatti
system of cubics is I = (x30, x

3
1, x

3
2, x0x1x2) ⊂ k[x0, x1, x2] (see [12, 13]). This result has been reproved

recently by Brenner and Kaid [1] in the context of WLP. Indeed, Togliatti gave a classi�cation of rational
surfaces parameterized by cubics and satisfying at least one Laplace equation of order 2: There is only one
rational surface in P5 parameterized by cubics and satisfying a Laplace equation of order 2; it is obtained
from the 3rd Veronese embeddingV(2, 3) ofP2 by a suitable projection from four points on it. In [6], the
�rst author together with Mezzetti and Ottaviani classi�ed all smooth rational 3-folds parameterized by
cubics and satisfying a Laplace equation of order 2, and gave a conjecture to extend this result to varieties
of higher dimension. This conjecture has been recently proved in [7]. Indeed, the �rst author together
with Michałek classi�ed all smooth minimal Togliatti systems of quadrics and cubics. For d ≥ 4, the
picture becomes soon much more involved than in the case of quadrics and cubics, and for the moment
a complete classi�cation appears out of reach unless we introduce other invariants as, for example, the
number of generators of I.

3. The classi�cation of Togliatti systems with 2n + 3 generators

From now on, we restrict our attention to monomial artinian ideals I ⊂ k[x0, . . . , xn], n ≥ 2, generated
by forms of degree d ≥ 4. It is worthwhile to recall that for monomial artinian ideals to test the WLP
there is no need to consider a general linear form. In fact, we have

Proposition 3.1. Let I ⊂ R := k[x0, . . . , xn] be an artinian monomial ideal. Then R/I has the WLP if
and only if x0 + x1 + · · · + xn is a Lefschetz element for R/I.

Proof. See [9, Proposition 2.2].

Let I ⊂ k[x0, . . . , xn] be a minimal monomial Togliatti systems of forms of degree d and denote by
µ(I) the minimal number of generators of I. In [8], the �rst author and Mezzetti proved:

2n + 1 ≤ µ(I) ≤

(

n + d − 1

n − 1

)

.

In addition, the Togliatti systems with number of generators reaching the lower bound or close to the
lower bound were classi�ed. Indeed, we have
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Theorem 3.2. Let I ⊂ k[x0, . . . , xn] be a minimal monomial Togliatti system of forms of degree d ≥ 4.
Assume that µ(I) = 2n+ 1. Then, up to a permutation of the coordinates, one of the following cases holds:

(i) n ≥ 2 and I = (xd1 , . . . , x
d
n) + xd−1

0 (x0, . . . , xn), or

(ii) (n, d) = (2, 5) and I = (x50, x
5
1, x

5
2, x

3
0x1x2, x0x

2
1x

2
2), or

(iii) (n, d) = (2, 4) and I = (x40, x
4
1, x

4
2, x0x1x

2
2, x

2
0x

2
1).

Furthermore, (i) and (ii) are smooth while (iii) is not smooth.

Proof. See [4, Theorem 3.7].

Theorem 3.3. Let I ⊂ k[x0, . . . , xn] be a smooth minimal monomial Togliatti system of forms of degree
d ≥ 4. Assume thatµ(I) = 2n+2. Then, up to a permutation of the coordinates, one of the following cases
holds:
(i) n ≥ 2 and I = (xd0 , . . . , x

d
n) +m(x0, . . . , xn) with m = x

i0
0 x

i1
1 · · · x

in
n where i0 ≥ i1 ≥ · · · ≥ in ≥ 0,

i2 > 0 and i0 + i1 + · · · + in = d − 1.
(ii) (n, d) = (2, 5) and I = (x50, x

5
1, x

5
2, x

3
0x1x2, x

2
0x

2
1x2, x0x

3
1x2) or (x50, x

5
1, x

5
2, x

3
0x1x2, x0x

3
1x2, x0x1x

3
2) or

(x50, x
5
1, x

5
2, x

2
0x

2
1x2, x

2
0x1x

2
2, x0x

2
1x

2
2).

(iii) (n, d) = (2, 7) and d = 7 and I = (x70, x
7
1, x

7
2, x

3
0x

3
1x2, x

3
0x1x

3
2, x0x

3
1x

3
2) or (x70, x

7
1, x

7
2,

x50x1x2, x0x
5
1x2, x0x1x

5
2), (x

7
0, x

7
1, x

7
2, x0x1x

5
2, x

3
0x

3
1x2, x

2
0x

2
1x

3
2) or (x70, x

7
1, x

7
2, x

4
0x1x

2
2, x

2
0x

4
1x2, x0x

2
1x

4
2).

Proof. See [4, Theorem 3.17 and Proposition 3.19].

In this paper, we address the �rst open case and we classify all smooth minimal monomial Togliatti
systems I ⊂ k[x0, . . . , xn] of forms of degree d ≥ 4 with µ(I) = 2n + 3 (see Theorem 3.9) as well as
all minimal monomial Togliatti systems I ⊂ k[x0, x1, x2] of forms of degree d ≥ 6 with µ(I) = 7 (see
Theorem 3.8).

In order to achieve this classi�cation, we associate to any artinian monomial ideal a polytope and we
tackle our problem with tools coming from combinatorics. In fact, the failure of the WLP of an artinian
monomial ideal I ⊂ k[x0, . . . , xn] can be established by purely combinatoric properties of the associated
polytope PI . To state this result we need to �x some extra notation.

Given an artinian monomial ideal I ⊂ k[x0, . . . , xn] generated by monomials of degree d and its
inverse system I−1, we denote by1n the standard n-dimensional simplex in the latticeZn+1, we consider
d1n and we de�ne the polytope PI as the convex hull of the �nite subset AI ⊂ Z

n+1 corresponding to
monomials of degree d in I−1. As usual we de�ne:

A�Z(AI) :=







∑

x∈AI

nx · x | nx ∈ Z,
∑

x∈AI

nx = 1







the sublattice A�Z(AI) in Z
n+1 generated by AI . We have the following criterion which will play an

important role in the proof of our main result.

Proposition 3.4. Let I ⊂ k[x0, . . . , xn] be an artinian monomial ideal generated by monomials of degree

d. Assume r ≤
(n+d−1

n−1

)

. Then, I is a Togliatti system if and only if there exists a hypersurface of degree d−1

containing AI ⊂ Z
n+1. In addition, I is a minimal Togliatti system if and only if any such hypersurface F

does not contain any integral point of d1n\AI except possibly some of the vertices of d1n.

Proof. This follows from Theorem 2.2 and [10, Proposition 1.1].

Example 3.5. The artinian monomial ideal

I = (x0, x1)
3 + (x2, x3)

3 + (x34, x0x2x4, x0x3x4, x1x2x4, x1x3x4) ⊂ k[x0, x1, x2, x3, x4]
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de�nes a minimal monomial Togliatti system of cubics. In fact, the set AI ⊂ Z
5 is:

AI = {(2, 0, 1, 0, 0), (1, 0, 2, 0, 0), (2, 0, 0, 1, 0), (1, 0, 0, 2, 0), (2, 0, 0, 0, 1), (1, 0, 0, 0, 2), (0, 2, 1, 0, 0),

(0, 1, 2, 0, 0), (0, 2, 0, 1, 0), (0, 1, 0, 2, 0), (0, 2, 0, 0, 1), (0, 1, 0, 0, 2), (0, 0, 2, 0, 1), (0, 0, 1, 0, 2),

(0, 0, 0, 2, 1), (0, 0, 0, 1, 2), (1, 1, 1, 0, 0), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0),

(0, 0, 1, 1, 1)}.

There is a quadric, and only one, containing all points of AI and no integral point of 414\AI , namely,

Q(x0, x1, x2, x3, x4) = 2

4
∑

i=0

x2i + 9(x0x1 + x2x3) − 5
∑

0≤i<j≤4

xixj.

The following criterion allows us to check if a subset A of points in the lattice Zn+1 de�nes a smooth
toric variety XA or not.

Proposition 3.6. Let I ⊂ k[x0, . . . , xn] be an artinian monomial ideal generated by r monomials of degree
d. Let AI ⊂ Z

n+1 be the set of integral points corresponding to monomials in (I−1)d, SI the semigroup
generated by AI and 0, PI the convex hull of AI and XAI the projective toric variety associated to the polytope
PI . Then XAI is smooth if and only if for any non-empty face Ŵ of PI the following conditions hold:
(i) The semigroup SI/Ŵ is isomorphic to Zm

+ with m = dim(PI) − dimŴ + 1.
(ii) The lattices Zn+1 ∩ A�

R
(Ŵ) and A�

Z
(AI ∩ Ŵ) coincide.

Proof. See [2, Chapter 5, Corollary 3.2]. Note that in this case XAI = X where X is the closure of the

image of the rational map ϕ[I−1]d
: Pn −→ P(n+d

d )−r−1.

As a direct application of this criterion we get:

Example 3.7. Let

I = (x0, x1)
3 + (x2, x3)

3 + (x34, x0x2x4, x0x3x4, x1x2x4, x1x3x4) ⊂ k[x0, x1, x2, x3, x4]

be the minimal monomial Togliatti system of cubics described in Example 3.5. Applying the above
smoothness criterion we get that the toric variety XAI is smooth.

For any integer d ≥ 3, we de�ne M(d) := {xa0x
b
1x

c
2 | a + b + c = d and a, b, c ≤ d − 1} and we

consider the sets of ideals:

A = {(x20x2, x0x
2
1, x

3
1, x1x

2
2), (x

2
0x2, x0x1x2, x

3
1, x

2
1x2), (x

2
0x2, x0x1x2, x

3
1, x1x

2
2), (x

2
0x1, x0x

2
2, x

3
1, x

2
1x2),

(x20x1, x0x
2
2, x

3
1, x1x

2
2), (x

2
0x2, x0x

2
2, x

3
1, x1x

2
2), (x0x

2
1, x0x

2
2, x

3
1, x1x

2
2), (x

2
0x2, x

2
1x2, x

3
1, x

3
2),

(x0x
2
2, x

2
1x2, x

3
1, x

3
2), (x

2
0x2, x0x

2
1, x

2
1x2, x1x

2
2), (x0x

2
1, x0x

2
2, x

2
1x2, x1x

2
2), (x

2
0x1, x0x

2
1, x

3
1, x

3
2),

(x20x1, x
2
1x2, x

3
1, x

3
2), (x

2
1x2, x1x

2
2, x

3
1, x

3
2), (x0x

2
2, x

2
1x2, x1x

2
2, x

3
1),

(x0x1x2, x0x
2
2, x

3
1, x1x

2
2), (x

2
0x2, x0x

2
2, x

3
1, x

2
1x2), (x0x

2
1, x0x

2
2, x

3
1, x

3
2),

(x20x2, x0x
2
1, x

3
1, x

3
2), (x0x1x2, x0x

2
2, x

3
1, x

2
1x2), (x

2
0x2, x

2
1x2, x1x

2
2, x

3
1)},

B = {(x20x1x2, x0x
3
2, x

4
1, x

3
1x2), (x

3
0x2, x0x

2
1, x2, x

4
1, x1x

3
2), (x

2
0x

2
2, x0x

2
1x2, x

4
1, x

4
2), (x

2
0x1x2, x

2
1x

2
2, x

4
1, x

4
2)}
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and

C = {(x20x1x
2
2, x0x

3
1x2, x

5
1, x

5
2), (x

3
0x1x2, x0x

2
1x

2
2, x

5
1, x

5
2)}.

Theorem 3.8. Let I ⊂ k[x0, x1, x2] be a minimal monomial Togliatti system of forms of degree d ≥ 10.
Assume that µ(I) = 7. Then, up to a permutation of the coordinates, one of the following cases holds:
(1) I = (xd0 , x

d
1 , x

d
2) + m(x20, x

2
1, x0x2, x1x2) with m ∈ M(d − 2), or

(2) I = (xd0 , x
d
1 , x

d
2) + m(x20, x

2
1, x0x1, x

2
2) with m ∈ M(d − 2), or

(3) I = (xd0 , x
d
1 , x

d
2) + m(x30, x

3
1, x

3
2, x0x1x2) with m ∈ M(d − 3), or

(4) I = (xd0 , x
d
1 , x

d
2) + xd−3

0 J with J ∈ A, or

(5) I = (xd0 , x
d
1 , x

d
2) + xd−4

0 J with J ∈ B, or

(6) I = (xd0 , x
d
1 , x

d
2) + xd−5

0 J with J ∈ C.

Proof. It is easy to check that all of these ideals are minimal Togliatti systems. Vice versa, let us write

I = (xd0 , x
d
1 , x

d
2 ,m1,m2,m3,m4) where for 1 ≤ i ≤ 4, mi = x

ai
0 x

bi
1 x

ci
2 with ai + bi + ci = d. We consider

AI ⊂ d12 ∩ Z
3 and we slice AI with planes in three possible manners:

For 0 ≤ j ≤ 2 and 0 ≤ i ≤ d, we de�ne H
j
i := {(t0, t1, t2)|tj = i} and A

(i,j)
I := AI ∩ H

j
i .

We divide the proof in two cases:

Case 1: There exist 1 ≤ ia, ib, ic ≤ 4 such that aia , bib , cic ≤ 1.

Case 2: There exists one variable whose square divides all monomialsmi.

Case 1: None of the squares of the variables divide the four monomials m1, m2, m3 and m4. Up to
permutation of the variables, we have two possibilities:

Case 1A: I = (xd0 , x
d
1 , x

d
2 , x

e1
0 x

a
1x

d−a−e1
2 , xb0x

e2
1 x

d−b−e2
2 , xc0x

d−c−e3
1 x

e3
2 , x

α
0 x

β
1 x

d−α−β
2 ) with 0 ≤ e1, e2, e3 ≤

1, d − 2 − e1 ≥ a ≥ 2, d − 2 − e2 ≥ b ≥ 2, d − 2 − e3 ≥ c ≥ 2 and only one of the exponents
α,β , d − α − β is ≤ 1.

Case 1B: I = (xd0 , x
d
1 , x

d
2 , x

e1
0 x

e2
1 x

d−e1−e2
2 , xa0x

d−a−e3
1 x

e3
2 , x

α
0 x

β
1 x

d−α−β
2 , x

γ
0 x

δ
1x

d−γ−δ
2 ) with 0 ≤ e1, e2,

e3 ≤ 1.

In both cases, a straightforward computation using the hypothesis d ≥ 10 shows that whenwe restrict
to x0 + x1 + x2 the 7 monomials remain k−linearly independents. Therefore, I is not a Togliatti system.

Case 2:Without loss of generality we can suppose that x20 divides eachmonomialmi.We can also assume
that a1 ≥ a2 ≥ a3 ≥ a4 = s ≥ 2.

Let Fd−1 be a plane curve of degree d−1 containing all integral points of AI . Since s ≥ 2, it factorizes

as Fd−1 = L00L
0
1 · · · L0s−1Fd−s−1. Indeed, Fd−1 has degree d − 1 and contains the d points in A

(1,0)
I . So,

Fd−1 = L01Fd−2. Since Fd−2 contains all d−1 points ofA
(0,0)
I it factorizes as Fd−1 = L00L

0
1Fd−3. Repeating

the process we arrive to Fd−1 = L00L
0
1 · · · L0s−1Fd−s−1. We claim that a3 = a4 = s ≥ 2. If a3 > a4 = s

then A
(s,0)
I has d − s points and Fd−s−1 contains them. Hence, Fd−s−1 = L0s Fd−s−2 contradicting the

minimality of I (Proposition 3.4).
So far we have a3 = a4 = s ≥ 2 and Fd−1 = L00 · · · L0s−1Fd−s−1 where Fd−s−1 is a plane curve of

degree d − s − 1 which contains all integer points of ÃI := AI\
(

∪s−1
k=0 A

(k,0)
I

)

. Set Ã
(i,j)
I = ÃI ∩ H

j
i . We

distinguish four subcases:
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Case 2A: a1 = a2 = a3 = a4 =: s ≥ 2.

Case 2B: u := a1 > a2 = a3 = a4 =: s ≥ 2.

Case 2C: u := a1 = a2 > a3 = a4 =: s ≥ 2.

Case 2D: u := a1 > v := a2 > a3 = a4 =: s ≥ 2.

Case 2A: We assume a1 = a2 = a3 = a4 =: s ≥ 2. In this case, Fd−1 = L00 · · · L0s−1L
0
s+1 · · · L0d−1.

Therefore, s = d − 3 and I = (xd0 , x
d
1 , x

d
2) + xd−3

0 (x31, x
2
1x2, x1x

2
2, x

3
2), which is of type (4).

Case 2B:We assume u := a1 > a2 = a3 = a4 =: s ≥ 2. In this case, u ≤ s + 2. Indeed, if u > s + 2 we
have, Fd−s−1 = L0s+1 · · · L0u−1Fd−u with Fd−u a plane curve of degree d− u which contains in particular

A
(s,0)
I . By minimality, #(Fd−u ∩ A

(s,0)
I ) = d − s − 2 > d − u (Proposition 3.4) and we have Fd−u =

L0s Fd−u−1, which is a contradiction. Then, up to permutation of variables, I is as one of the following
cases:

Case b1: u = s + 1 and I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

a
1x

d−a−s−1
2 , xb1x

d−b−s
2 , xc1x

d−c−s
2 , xe1x

d−e−s
2 ).

Case b2: u = s + 2 and I = (xd0 , x
d
1 , x

d
2) + xs0(x

2
0x

a
1x

d−a−s−2
2 , xb1x

d−b−s
2 , xc1x

d−c−s
2 , xe1x

d−e−s
2 ).

Case b1: In this case we are removing three points from H0
s and one from H0

s+1. Up to permutation of

the variables y and z, we can assume d − s − 1 ≥ a ≥ ⌊ d−s−1
2 ⌋ and d − s ≥ b > c > e ≥ 0. Let us �rst

suppose that ⌊ d−s−1
2 ⌋ > e ≥ 0. In this case

#(Fd−s−1 ∩ Ã
(0,1)
I ) =

{

d − s e ≥ 1

d − s − 1 e = 0.

If e ≥ 1, then #Ã
(0,1)
I = d − s, Fd−s−1 = L10Fd−s−2 = L10 · · · L1e−1Fd−s−e−1 and Fd−s−e−1 contains

the integer points of Ã
(e,1)
I . Since a > e and b > c > e, we have #Ã

(e,1)
I = d − s − e and Fd−s−e−1 =

L1eFd−s−e−2 contradicting the minimality of I. Therefore, it must be e = 0, and m4 = xs0x
d−s
2 with

d − s − 1 ≥ c ≥ 1. Let us consider

#
(

Fd−s−1 ∩ Ã
(1,1)
I

)

=



























d − s a, c ≥ 2

d − s − 1 a = 1, c ≥ 2

d − s − 1 a ≥ 2, c = 1

d − s − 2 a = c = 1

and we study the four possibilities.
If a, c ≥ 2 then we have the factorization Fd−s−1 = L11Fd−s−2. In particular, Fd−s−2 is a plane curve

of degree d − s − 2 containing the d − s − 1 points of Ã
(0,1)
I . So, Fd−s−2 = L10Fd−s−3 which contradicts

the minimality of I. Therefore, if a ≥ 2, then c = 1.

If a = 1, we have d − 2 ≥ s ≥ d − 3. If s = d − 2, then c = 1 and I = (xd0 , x
d
1 , x

d
2 , x

d−1
0 x1,

xd−2
0 x21, x

d−2
0 x1x2, x

d−2
0 x22) which is not a Togliatti system. Otherwise, s = d − 3, then we have several

possibilities:

(i) c ≥ 2 and I = (xd0 , x
d
1 , x

d
2) + xd−3

0 (x31, x
3
2, x0x1x2) + (xd−3

0 x21x2) which is not minimal.

(ii) c = 1 and I = (xd0 , x
d
1 , x

d
2) + xd−3

0 (x0x1x2, x
3
1, x

3
2) + (xd−3

0 x1x
2
2) or I = (xd0 , x

d
1 , x

d
2) +

xd−3
0 x1x2(x0, x1, x2) + (xd−3

0 x32). Both of them are not minimal.
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If d − s − 1 ≥ a ≥ 2 and s ≤ d − 3. We have e = 0, c = 1 and (m1,m2,m3,m4) =

(xs+1
0 xa1x

d−a−s−1
2 , xs0x

b
1x

d−b−s
2 , xs0x1x

d−s−1
2 , xs0x

d−s
2 ) with d − s ≥ b ≥ 2. Let us consider

#
(

Fd−s−1 ∩ Ã
(0,2)
I

)

=



























d − s d − s − 1 ≥ b, d − s − 2 ≥ a

d − s − 1 a = d − s − 1, d − s − 1 ≥ b

d − s − 1 b = d − s, d − s − 2 ≥ a

d − s − 2 b = d − s, a = d − s − 1.

In the �rst case, we have the factorization Fd−s−1 = L20Fd−s−2 = L20L
0
1Fd−s−3 and it contradicts the

minimality of I.
If a = d − s − 1 and d − s − 1 ≥ b, then b = d − s − 1. Otherwise, we would have

Fd−s−1 = L21Fd−s−2 and it would contradict the minimality of I. Therefore we have I = (xd0 , x
d
1 , x

d
2) +

xs0(x0x
d−s−1
1 , xd−s−1

1 x2, x1x
d−s−1
2 , xd−s

2 )with s ≤ d−3. For s = d−3 it corresponds to a Togliatti system
of type (4), while for s ≤ d−4 is not Togliatti because whenwe restrict to x0+x1+x2 = 0 the generators,
they remain k−linearly independent.

If d − s − 2 ≥ a and b = d − s, then a = d − s − 2. Hence we have s ≤ d − 4 and I = (xd0 , x
d
1 , x

d
2) +

xs0(x0x
d−s−2
1 x2, x

d−s
1 , x1x

d−s−1
2 , xd−s

2 ) which is never a Togliatti system.

Finally, if b = d − s and a = d − s − 1, then s ≤ d − 3 and I = (xd0 , x
d
1 , x

d
2) +

xs0(x0x
d−s−1
1 , xd−s

1 , x1x
d−s−1
2 , xd−s

2 )which is a Togliatti system of type (4) for s = d−3 while for s ≤ d−4
it is not Togliatti.

To �nish with the case b1, we have to see what happens when d − s − 2 ≥ e ≥ ⌊ d−s−1
2 ⌋. In this case

s ≤ d − 3. Let us see that a = e. Otherwise, we can suppose a > e (the other case is symmetric) and we

have the factorization Fd−s−1 = L10 · · · L1e−1Fd−s−e−1. Since a > e and b > c > e, Ã
(e,1)
I has d − s − e

points and we have the factorization Fd−s−e−1 = L1eFd−s−e−2 which contradicts the minimality of I.
Hence a = e and in particular d − s − 1 > a and d − s ≥ b > c > a.

Let us consider ˜̃AI := ÃI\
(

∪a−1
k=0

)

in the same spirit as AI and ÃI . If b = d − s, then ˜̃A
(0,2)
I consists in

d− s− e di�erent points. Otherwise, d− s− 1 ≥ b and # ˜̃A
(0,2)
I = d− s+ 1− e. In both cases ˜̃A

(0,2)
I have

more points than the degree of the curve Fd−s−e−1 which passes through them. Therefore, Fd−s−e−1 =

L20Fd−s−e−2 and d − s − 1 ≥ b. Since m2 cannot be aligned vertically with any other monomial mi,
we can repeat this argument until we get that b = c + 1 and Fd−s−e−1 = L20 · · · L2b−1Fd−s−e−b−1. Now

Fd−s−e−b−1 is a plane curve of degree d − s − e − b − 1 containing all d − s − e − b points of ˜̃A
(b,2)
I .

Hence, we can factorize Fd−s−e−b−1 = L2bFd−s−e−b−2 contradicting the minimality assumption.

Case b2:We are removing from d12 to get ÃI : three points ofH
0
s and one fromH0

s+2. Up to permutation

of the variables y and z, we can suppose that d − s − 2 ≥ a ≥ ⌊ d−s−2
2 ⌋ and d − s ≥ b > c > e ≥ 0.

Let us suppose �rst that ⌊ d−s−2
2 ⌋ > e ≥ 0. We argue as in the case u = s + 1 to prove that e = 0.

Let us consider #(Fd−s−1 ∩ Ã
(1,1)
I ). Using the same argumentation we prove that if a, c ≥ 2 we get a

contradiction. If a = 1, then either s = d − 3 or s = d − 4 and we have the following cases:

(i) If s = d − 3, then (m1,m2,m3,m4) is xd−3
0 (x20x1, x

3
1, x

2
1x2, x

3
2), x

d−3
0 (x20x1, x

3
1, x1x

2
2, x

3
2) or

xd−3
0 (x20x1, x

2
1x2, x1x

2
2, x

3
2). All of them are Togliatti systems of type (4).

(ii) If s = d − 4, then (m1,m2,m3,m4) is xd−4
0 (x20x1x2, x

4
1, x

3
1x2, x

4
2), x

d−4
0 (x20x1x2, x

4
1, x

2
1x

2
2, x

4
2),

xd−4
0 (x20x1x2, x

4
1, x1x

3
2, x

4
2), xd−4

0 (x20x1x2, x
3
1x2, x

2
1x

2
2, x

4
2), xd−4

0 (x20x1x2, x
3
1x2, x1x

3
2, x

4
2) or

xd−4
0 (x20x1x2, x

2
1x

2
2, x1x

3
2, x

4
2). The only one which is a minimal Togliatti system is the second

one and it is of type (5).
Now, we assume e = 0, c = 1 and d − s − 2 ≥ a ≥ 2. In particular, s ≤ d − 4. We consider

#(Fd−s−1 ∩ Ã
(0,2)
I ), and see that if d − s − 1 ≥ b ≥ 2 and d − s − 3 ≥ a ≥ 2, there is a contradiction

with the minimality of I. If b = d − s and a ≤ d − s − 3 (resp. a = d − s − 2 and b ≤ d − s − 1)
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then a = d − s − 3 (resp. b = d − s − 1). Otherwise we would incur again to a contradiction with the
minimality of I. So, we have three possibilities.

(i) a = d−s−3 ≥ 2, b = d−s, s ≤ d−5 and I = (xd0 , x
d
1 , x

d
2)+xs0(x

2
0x

d−s−3
1 x2, x

d−s
1 , x1x

d−s−1
2 , xd−s

2 ).

(ii) a = d−s−2, b = d−s−1, s ≤ d−4 and I = (xd0 , x
d
1 , x

d
2)+xs0(x

2
0x

d−s−2
1 , xd−s−1

1 x2, x1x
d−s−1
2 , xd−s

2 ).

(iii) a = d − s − 2, b=d − s, s ≤ d − 4 and I = (xd0 , x
d
1 , x

d
2) + xs0(x

2
0x

d−s−2
1 , xd−s

1 , x1x
d−s−1
2 , xd−s

2 ).
A�er restricting to x0 + x1 + x2 = 0, we see that none of them corresponds to a Togliatti system.
To �nish with the case b2, we see what happens when d − s − 2 ≥ e ≥ ⌊ d−s−2

2 ⌋. With the same
argument that we use before, we can see that a = e. The di�erence with the case u = s + 1 is that in
this case we can have m1 and m2 aligned vertically. This condition can be translated as the case when
d− b− s = d− a− s− 2. If this does not happen (i.e. b > a+ 2), then it will contradict the minimality
of I. Indeed: let us suppose that 0 ≤ k := d−b− s < d−a− s−2. Inductively we have the factorization
Fd−s−e−1 = L20 · · · L2k−1Fd−s−e−k−1. Fd−s−e−k−1 is a plane curve of degree d− s− e−k−1 which passes

through all d − s − e − k points of ˜̃Ak
I . Hence, we have the factorization Fd−s−e−k−1 = L2kFd−s−e−k−2,

contradicting the minimality assumption.
Therefore it must be b = a + 2 and, since b > c > a we have c = a + 1. Finally we get: I =

(xd0 , x
d
1 , x

d
2) + xs0x

a
1x

d−a−s−2
2 (x20, x

2
1, x1x2, x

2
2) which is of type (1).

Case 2C: We assume that u := a1 = a2 > a3 = a4 =: s ≥ 2. Arguing as in case 2B we get u = s + 1

and I = (xd0 , x
d
1 , x

d
2)+ xs0(x0x

a
1x

d−a−s−1
2 , x0x

b
1x

d−b−s−1
2 , xc1x

d−c−s
2 , xe1x

d−e−s
2 ). We can assume d− s− 1 ≥

a ≥ ⌊ d−s−1
2 ⌋, a > b and d − s ≥ c > e ≥ 0.

Let us suppose �rst that ⌊ d−s−1
2 ⌋ > e ≥ 0. We consider

#
(

Fd−s−1 ∩ Ã
(0,1)
I

)

=































d − s e ≥ 1, b ≥ 1 c1

d − s − 1 e = 0, b ≥ 1 c2

d − s − 1 e ≥ 1, b = 0 c3

d − s − 2 e = b = 0 c4

Case c1: Since Fd−s−1 is a plane curve of degree d − s − 1 which contains all d − s points of Ã
(0,1)
I we

have the factorizationFd−s−1 = L10Fd−s−2. Now, intersectingFd−s−2with Ã
(1,1)
I andusing theminimality

assumption, we see that the only two possibilities are either e ≥ 2 and b ≥ 2 or e = b = 1. In the �rst
case Fd−s−2 factorizes as Fd−s−2 = L11Fd−s−3. Repeating the same argument we get that it must be e = b

in any case. Now, we consider ˜̃AI as before and we take

#
(

Fd−s−e−1 ∩
˜̃A
(0,2)
I

)

=































d − s − e + 1 d − s − 2 ≥ a, d − s − 1 ≥ c

d − s − e a = d − s − 1, d − s − 1 ≥ c

d − s − e d − s − 2 ≥ a, c = d − s

d − s − e − 1 a = d − s − 1, c = d − s

In the second and third cases we obtain directly a contradiction with the minimality of I. In the

fourth case, ˜̃A
(1,2)
I consists in d − s − e di�erent points and we have Fd−s−e−1 = L21Fd−s−e−2.

Since ˜̃A
(0,2)
I has d − s − e − 1 di�erent points, we get a contradiction with the minimality of

I. Finally, in the �rst case we obtain a factorization Fd−s−e−1 = L20Fd−s−e−2 and we repeat the
same argument until we get that m1 and m3 are always vertically aligned. Then, c = a + 1 and
we have the factorization Fd−s−e−1 = L20 · · · L2d−s−a−2Fa−e. If a ≥ e + 2 we have the factor-

ization Fa−e = L1e+1 · · · L1a−1F1, which contradicts the minimality of I. Therefore, a = e + 1
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and I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

e+1
1 xd−s−e−2

2 , x0x
e
1x

d−s−e−1
2 , xe+2

1 xd−s−e−2
2 , xe1x

d−s−e
2 ) = (xd0 , x

d
1 , x

d
2) +

xs0x
e
1x

d−s−e−2
2 (x0x1, x0x2, x

2
1, x

2
2) which is of type (1).

Case c2:We assume e = 0 and b ≥ 1. Let us consider

#
(

Fd−s−1 ∩ Ã
(1,1)
I

)

=































d − s b ≥ 2, c ≥ 2 (i)

d − s − 1 b = 1, c ≥ 2 (ii)

d − s − 1 b ≥ 2, c = 1 (iii)

d − s − 2 b = c = 1 (iv)

InCase (i) we factorizeFd−s−1 = L11Fd−s−2. SinceFd−s−2 is a plane curve of degree d−s−2 containing

all d− s−1 di�erent points of Ã
(0,1)
I it factorizes as Fd−s−2 = L10Fd−s−3. This contradicts the minimality

of I.

Case (ii): assume e = 0, b = 1 and c ≥ 2. We consider #(Fd−s−1 ∩ Ã
(0,2)
I ) and arguing as in the previous

cases we get three possibilities:

a = d − s − 1, c = d − s − 1 and I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

d−s−1
1 , x0x1x

d−s−2
2 , xd−s−1

1 x2, x
d−s
2 ).

a = d − s − 2, c = d − s and I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

d−s−2
1 x2, x0x1x

d−s−2
2 , xd−s

1 , xd−s
2 ).

a = d − s − 1, c = d − s and I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

d−s−1
1 , x0x1x

d−s−2
2 , xd−s

1 , xd−s
2 ).

Restricting the generators to the hyperplane x0+x1+x2, we see that each of them is a Togliatti system
if, and only if s = d − 3.

Case (iii): assume e = 0, c = 1 and b ≥ 2. In particular a ≥ 3 and s ≤ d − 4. Arguing as before, we
see that the only viable possibility is a = d − s − 1 and b = d − s − 2. Therefore I = (xd0 , x

d
1 , x

d
2) +

xs0(x0x
d−s−1
1 , x0x

d−s−3
1 x22, x1x

d−s−1
2 , xd−s

2 ), which is never a Togliatti system.

Case (iv): assume e = 0 and b = c = 1. Now it only remains to determinate a. If d − s − 2 ≥ a,

we have Fd−s−1 = L20 · · · L2d−s−a−2Fa. Since Ã
(d−s−a−1,2)
I consists in a + 1 di�erent points, we get a

contradiction with the minimality of I. Therefore, a = d − s− 1. Using the same argumentation we see

that a = b + 1 = 2. Thus s = d − 4 and I = (xd0 , x
d
1 , x

d
2) + xd−4

0 (x0x
3
1, x0x1x

2
2, x1x

3
2, x

4
2) which is not a

Togliatti system.

Case c3: Now, assume that b = 0 and e ≥ 1. Since a > e by hypothesis, considering #(Fd−s−1 ∩ Ã
(1,1)
I )

we see that e = 1 and s ≤ d−3. If we consider #(Fd−s−1 ∩ Ã
(0,2)
I )we get that the only viable possibilities

are:
a = d − s − 1, c = d − s − 1 and I = (xd0 , x

d
1 , x

d
2) + xs0(x0x

d−s−1
1 , x0x

d−s−1
2 , xd−s−1

1 x2, x1x
d−s−1
2 ).

a = d − s − 2, c = d − s and I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

d−s−2
1 x2, x0x

d−s−1
2 , xd−s

1 , x1x
d−s−1
2 ).

a = d − s − 1, c = d − s and I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

d−s−1
1 , x0x

d−s−1
2 , xd−s

1 , x1x
d−s−1
2 ).

Each of them are Togliatti systems if, and only if s = d − 3.

Case c4: in this case we assume that e = b = 0. If a, c ≥ 3, we have the factorization Fd−s−1 =

L11L
1
2Fd−s−3. Since Fd−s−3 is a plane curve containing all d − s − 2 points of Ã

(0,1)
I , we get Fd−s−3 =

L00Fd−s−4 which contradicts the minimality of I. Therefore we can consider three subcases:

Case (i). Assume that a = 1, then it has to be either s = d − 2 or s = d − 3. Hence I is one of the
following possibilities: (xd0 , x

d
1 , x

d
2)+xd−2

0 (x0x1, x0x2, x
2
1, x

2
2), (x

d
0 , x

d
1 , x

d
2)+xd−2

0 x2(x0, x1, x2)+(xd−1
0 x1),

(xd0 , x
d
1 , x

d
2) + xd−3

0 (x0x1x2, x0x
2
2, x

3
1, x

3
2), (xd0 , x

d
1 , x

d
2) + xd−3

0 x2(x0x1, x0x2, x
2
1, x

2
2) and (xd0 , x

d
1 , x

d
2) +
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xd−3
0 x22(x0, x1, x2) + (xd−2

0 x1x2). And only the �rst and the third possibilities give to minimal Togliatti
systems of type (1) and type (4) respectively.

Case (ii). Assume that a = 2, then it can be either s = d − 3, s = d − 4 or s = d −

5. Therefore, I is one of the next ideals: (xd0 , x
d
1 , x

d
2) + xd−3

0 (x0x
2
1, x0x

2
2, x

3
1, x

3
2), (xd0 , x

d
1 , x

d
2) +

xd−3
0 (x0x

2
1, x0x

2
2, x

2
1x2, x

3
2), (xd0 , x

d
1 , x

d
2) + xd−3

0 (x0, x1, x2) + (xd−2
0 x21), (xd0 , x

d
1 , x

d
2) + xd−4

0 (x0x
2
1x2,

x0x
3
2, x

4
1, x

4
2), (xd0 , x

d
1 , x

d
2) + xd−4

0 (x0x
2
1x2, x0x

3
2, x

3
1x2, x

4
2), (xd0 , x

d
1 , x

d
2) + xd−4

0 (x0x
2
1x2, x0x

3
2, x

2
1x

2
2, x

4
2),

(xd0 , x
d
1 , x

d
2) + xd−4

0 x32(x0, x1, x2) + (xd−3
0 x21x2), (xd0 , x

d
1 , x

d
2) + xd−5

0 (x0x
2
1x

2
2, x0x

4
2, x

5
1, x

5
2), (xd0 , x

d
1 , x

d
2) +

xd−5
0 (x0x

2
1x

2
2, x0x

4
2, x

4
1x2, x

5
2), (x

d
0 , x

d
1 , x

d
2)+ xd−5

0 (x0x
2
1x

2
2, x0x

4
2, x

3
1x

2
2, x

5
2), (x

d
0 , x

d
1 , x

d
2)+ xd−5

0 (x0x
2
1x

2
2, x0x

4
2,

x21x
3
2, x

5
2) and (xd0 , x

d
1 , x

d
2) + xd−5

0 x42(x0, x1, x2) + (xd−4
0 x21x

2
2).

Only the �rst and the second ones correspond to minimal Togliatii systems.

Case (iii). Assume that a ≥ 3 which implies that either c = 1 or c = 2 and we have s ≤ d − 4. In both
cases, since a ≥ 3 and c ≤ 2, m1 cannot be aligned vertically with any mi. Therefore, in both cases, we
get a contradiction with the minimality of I.

To �nish case 2C, let us assume e ≥ ⌊ d−s−1
2 ⌋ > 0. We will separate two cases: when b = 0 and when

b ≥ 1.

Case (i). We assume b = 0, then considering #(Fd−s−1 ∩ Ã
(1,1)
I ) and using the bound for e, we obtain

that a = 1 and therefore it is either s = d − 2 or d − 3. So, I is one of the following ideals:

(xd0 , x
d
1 , x

d
2) + xd−2

0 x1(x0, x1, x2) + (xd−1
0 x2), (xd0 , x

d
1 , x

d
2) + xd−3

0 (x0x1x2, x0x
2
2, x

3
1, x

2
1x2), (xd0 , x

d
1 , x

d
2) +

xd−3
0 (x0x1x2, x0x

2
2, x

3
1, x1x

2
2) and (xd0 , x

d
1 , x

d
2) + xd−3

0 x1 x2(x0, x1, x2) + (xd−2
0 x22). And any of them are

minimal Togliatti systems.

Case (ii).We assume b ≥ 1. In this case, we can assume e ≥ b (the other case is symmetric) andwe obtain
the factorization Fd−s−1 = L10 · · · L1b−1Fd−s−b−1. If e > b we get a contradiction with the minimality of

I. Hence, e = b. Now we consider as before ˜̃AI and we have

#
(

Fd−s−b−1 ∩
˜̃A
(0,2)
I

)

=



























d − s − b + 1 d − s − 2 ≥ a, d − s − 1 ≥ c

d − s − b a = d − s − 1, d − s − 1 ≥ c

d − s − b d − s − 2 ≥ a, c = d − s

d − s − b − 1 a = d − s − 1, c = d − s

In the second and third cases we get immediately a contradiction with the minimality. In the
�rst case, we can repeat the same argument and we get contradiction unless m1 and m3 are
aligned vertically. Hence, we always obtain that c = a + 1, and we have the factorization

Fd−s−b−1 = L20 · · · L2d−s−a−2Fa−b. If a ≥ b + 2, then ˜̃A
(d−s−a,2)
I consists in a − b + 1 di�erent

points, so we have the factorization Fa−b = L2d−s−aFa−b−1. Now Fa−b−1 is a plane curve of

degree a − b − 1 which contains all a − b points of ˜̃A
(d−s−a−1,2)
I and then it factorizes as

Fa−b−1 = L2d−s−a−1Fa−b−2 which contradicts the minimality of I. Therefore, a = b + 1 and

I = (xd0 , x
d
1 , x

d
2) + xs0(x0x

b+1
1 xd−s−b−2

2 , x0x
b
1x

d−s−b−1
2 , xb+2

1 xd−s−b−2
2 , xb1x

d−s−b
2 ) = (xd0 , x

d
1 , x

d
2) +

xs0x
b
1x

d−s−b−2
2 (x0x1, x0x2, x

2
1, x

2
2) which is of type (1).

Case 2D:We assume that u := a1 > v := a2 > a3 = a4 =: s ≥ 2. Recall that we have the factorization
Fd−1 = L00L

0
1 · · · L0s−1Fd−s−1 and we easily check that the minimality of I forces v = s + 1. So we

can write I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x

a
1x

d−a−s−r
2 , x0x

b
1x

d−b−s−1
2 , xc1x

d−c−s
2 , xe1x

d−e−s
2 ) with u = s + r and

d − s − 1 ≥ r ≥ 2. We can assume d − s − 1 ≥ b ≥ ⌊ d−s−1
2 ⌋ and d − s ≥ c > e ≥ 0, and we have
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d − s − r ≥ a ≥ 0 and s ≤ d − 3. Let us suppose �rst that ⌊ d−s−1
2 ⌋ > e ≥ 0. We consider

#
(

Fd−s−1 ∩ Ã
(0,1)
I

)

=































d − s e ≥ 1, a ≥ 1 (d1)

d − s − 1 e = 0, a ≥ 1 (d2)

d − s − 1 e ≥ 1, a = 0 (d3)

d − s − 2 e = a = 0 (d4).

Case d1: In this case a = e. Indeed, if a > e ≥ 1 (the other case is symmetric) we have the factorization
Fd−s−1 = L10 . . . L1e−1Fd−s−e−1 = L10 . . . L1e−1L

1
eFd−s−e−2 which contradicts the minimality of I. Let us

now consider

#
(

Fd−s−e−1 ∩ Ã
(e+1,1)
I

)

=































d − s − e b ≥ e + 2, c ≥ e + 2 (i)

d − s − e − 1 b = e + 1, c ≥ e + 2 (ii)

d − s − e − 1 b ≥ e + 2, c = e + 1 (iii)

d − s − e − 2 b = c = e + 1 (iv).

Case (i). We have Fd−s−e−1 = L1e+1Fd−s−e−2, and since Fd−s−e−2 passes through all d− s− e− 1 points

of Ã
(e,1)
I we contradicts the minimality of I.

Case (ii). We assume b = e + 1. Let us consider ˜̃AI as we did before and we examine

#
(

Fd−s−e−1 ∩
˜̃A
(0,2)
I

)

=































d − s − e + 1 d − s − 1 ≥ c, 1 ≤ d − s − e − r

d − s − e c = d − s, 1 ≤ d − s − e − r

d − s − e d − s − 1 ≥ c, d − s − e − r = 0

d − s − e − 1 c = d − s, d − s − e − r = 0

In the second and third possibilities we obtain directly a contradiction with theminimality of I. In the
last possibility we also obtain a contradiction. In fact, if c = d−s and s+r = d−e, we do not remove any

point ofH2
1 andwehave #(Fd−s−e−1∩

˜̃A
(1,2)
I ) = d−s−e. ThenFd−s−e−1 = L21Fd−s−e−2 = L21L

2
0Fd−s−e−3,

which contradicts the minimality of I.
Therefore if b = e+ 1, it must be d− s− 1 ≥ c ≥ e+ 2 and 1 ≤ d− s− e− r. Iterating this argument

we conclude that either c = e+ 2 and r = 2 or c = e+ 3 and r = 3. Therefore, either I = (xd0 , x
d
1 , x

d
2) +

xs0x
e
1x

d−s−e−2
2 (x20, x0x1, x

2
1, x

2
2)which is of type (2); or I = (xd0 , x

d
1 , x

d
2)+ xs0x

e
1x

d−s−e−3
2 (x30, x0x1x2, x

3
1, x

3
2)

which is of type (3).

Case (iii). Arguing as in case (ii) we get b = e + 2 and r = 2. Therefore, I = (xd0 , x
d
1 , x

d
2) +

xs0x
e
1x

d−s−e−2
2 (x20, x1x, x

2
1, x

2
2) which is of type (2).

Case (iv). Arguing as in case (ii) we get that r = 2 and I is of type (1).

Case d2: In this case we assume e = 0 and a ≥ 1. We will separate the case b = 1 from the case b ≥ 2.

If b = 1 ≥ ⌊ d−s−1
2 ⌋ then s = d − 3 and r = 2. Hence, I = (xd0 , x

d
1 , x

d
2) + xd−3

0 (x0x1x2, x
3
1, x

3
2) +

(xd−3
0 x20x1), (x

d
0 , x

d
1 , x

d
2) + xd−3

0 (x20x1, x0x1x2, x
2
1x2, x

3
2) or (xd0 , x

d
1 , x

d
2) + xd−3

0 (x20x1, x0x1x2, x1x
2
2, x

3
2). The

�rst one is not minimal and the remaining two are of type (4).
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Assume b ≥ 2. Let us �rst suppose d − s − r − 1 ≥ 0 (i.e.m1 /∈ H2
0) and we consider

#
(

Fd−s−1 ∩ Ã
(1,1)
I

)

=































d − s a ≥ 2, c ≥ 2 (i)

d − s − 1 a = 1, c ≥ 2 (ii)

d − s − 1 a ≥ 2, c = 1 (iii)

d − s − 2 a = c = 1 (iv).

Case (i). We get Fd−s−1 = L11Fd−s−2 = L10L
1
1Fd−s−3 which contradicts the minimality of I.

Case (ii). Assume that a = 1 and c ≥ 2. Suppose that d − s − r − 1 > 0 and let us consider

#
(

Fd−s−1 ∩ Ã
(0,2)
I

)

=































d − s d − s − 2 ≥ b, d − s − 1 ≥ c

d − s − 1 b = d − s − 1, d − s − 1 ≥ c

d − s − 1 d − s − 2 ≥ b, c = d − s

d − s − 2 b = d − s − 1, c = d − s.

The �rst possibility contradicts the minimality of I.
Now let us suppose that d − s− r − 1 > 1. In this case, the second (resp. third) possibility can occur

if, and only if b = c = d− s− 1 (resp. b = d− s− 2 and c = d− s). Therefore I is one of the next types:

I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x1x

d−s−r−1
2 , x0x

d−s−1
1 , xd−s−1

1 x2, x
d−s
2 ) which does not correspond to a

Togliatti system.

I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x1x

d−s−r−1
2 , x0x

d−s−2
1 x2, x

d−s
1 , xd−s

2 ) which is a Togliatti system if, and only if
r = 2 and s = d − 5 (of type (6)).

If d − s − r − 1 = 1, then there are no special restrictions for the second and third case. Therefore I
is one of the next types:

I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−2
0 x1x2, x0x

d−s−1
1 , xc1x

d−s−c
2 , xd−s

2 ) which is a Togliatti system if, and only if
s = d − 4 and c = 3 (of type (5)), or

I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−2
0 x1x2, x0x

b
1x

d−s−b−1
2 , xd−s

1 , xd−s
2 ) which is a Togliatti system if, and only if

s = d − 5 and b = 2 (of type (6)), or

I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x1x

d−s−r−1
2 , x0x

d−s−1
1 , xd−s

1 , xd−s
2 ) which is a Togliatti system if, and only if

r = 2 and s = d − 3 (of type (3)).
Now, let us suppose that d − s − r − 1 = 0. Arguing as usual, we see that it cannot be d − s − 2 ≥ c

and d − s − 3 ≥ b. Therefore d − s ≥ c ≥ d − s − 1 or d − s − 1 ≥ b ≥ d − s − 2, and we have the
following possibilities:

b = d − s − 2, d − s − 2 ≥ c and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x1, x0x

d−s−2
1 x2, x

c
1x

d−s−c
2 , xd−s

2 ) which
is a Togliatti system if, and only if s = d − 3 and c = d − s − 2 (of type (4)).

d− s−3 ≥ b, c = d− s−1 and I = (xd0 , x
d
1 , x

d
2)+xs0(x

d−s−1
0 x1, x0x

b
1x

d−s−b−1
2 , xd−s−1

1 x2, x
d−s
2 )which

is a Togliatti system if, and only if d − 3 ≥ s ≥ d − 4 and b = d − s − 3 (resp. of type (4) and (5)).

b = d − s − 2, c = d − s − 1 and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x1, x0x

d−s−2
1 x2, x

d−s−1
1 x2, x

d−s
2 ) which

is a Togliatti system if, and only if s = d − 3 (of type (4)).

b = d − s − 1, d − s − 1 ≥ c and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x1, x0x

d−s−1
1 , xc1x

d−s−c
2 , xd−s

2 ) which is
a Togliatti system if, and only if s = d − 3 and d − s − 1 ≥ c ≥ d − s − 2 (of type (4)).

d − s − 2 ≥ b, c = d − s and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x1, x0x

b
1x

d−s−b−1
2 , xd−s

1 , xd−s
2 ) which is a

Togliatti system if, and only if s = d − 3 and d − s − 2 ≥ b ≥ d − s − 3 (of type (4)).

b = d− s− 1, c = d− s and I = (xd0 , x
d
1 , x

d
2)+ xs0(x

d−s−1
0 x1, x0x

d−s−1
1 , xd−s

1 , xd−s
2 )which is a Togliatti

system if, and only if s = d − 3 (of type (4)).
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Case (iii). Assume c = 1 and a ≥ 2. We consider #(Fd−s−1 ∩ Ã
(0,2)
I ) and we obtain that I is one of the

next types:

I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x

d−s−r−1
1 x2, x0x

d−s−1
1 , x1x

d−s−1
2 , xd−s

2 ) which is a Togliatti system if, and only
if r = 2 and d − 3 ≥ s ≥ d − 4 (of type (4) and (5)).

I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x

d−s−r
1 , x0x

d−s−2
1 x2, x1x

d−s−1
2 , xd−s

2 ) which is a Togliatti system if, and only if
r = 2 and s = d − 3 (of type (4)).

I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x

d−s−r
1 , x0x

d−s−1
1 , x1x

d−s−1
2 , xd−s

2 ). In this case, let us consider #(Fd−s−1 ∩

Ã
(1,2)
I ) = d − s and inductively we obtain Fd−s−1 = L21 · · · L1d−s−2F1. Therefore it must be r = 2 and

s = d − 3, and I is of type (4).

Case (iv). Assume a = c = 1. Let us �rst suppose that d−s−r−1 > 0. If d−s−2 ≥ bwe factorize Fd−s−1

as Fd−s−1 = L20Fd−s−2 which contradicts the minimality of I. Therefore, b = d− s− 1 and we factorize

Fd−s−1 = L21 · · · Ld−s−r−2Fr+1. Since #(Fr∩Ã
(0,2)
I ) = d−s−1 we have r+1 ≥ d−s−1 and then d−s−

r− 1 ≤ 1. Therefore, d− s− r− 1 = 1 and I = (xd0 , x
d
1 , x

d
2)+ xs0(x

d−s−2
0 x1x2, x0x

d−s−1
1 , x1x

d−s−1
2 , xd−s

2 ).
It is a Togliatti system if, and only if s = d − 4 (of type (5)).

If d − s − r − 1 = 0, we use the same argumentation to prove that d − s − 1 ≥ b ≥ d − s − 2 and
then we have two possibilities:

b = d − s − 1 and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x1, x0x

d−s−1
1 , x1x

d−s−1
2 , xd−s

2 )

b = d − s − 2 and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x1, x0x

d−s−2
1 x2, x1x

d−s−1
2 , xd−s

2 )

They are Togliatti systems if, and only if s = d − 3 (of type (4)).

Case d3: Let us assume e ≥ 1 and a = 0. Actually, it must be e = 1. Otherwise, e > 1 and #(Fd−s−1 ∩

Ã
(1,1)
I ) = d − s, and we have seen that this cannot happen.
Now, let us suppose d − s − r > 1. Arguing as before we see that there are three possibilities:

b = d − s − 1, c = d − s − 1 and I = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x

d−s−r
2 , x0x

d−s−1
1 , xd−s−1

1 x2, x1x
d−s−1
2 ).

b = d − s − 2, c = d − s and aI = (xd0 , x
d
1 , x

d
2) + xs0(x

r
0x

d−s−r
2 , x0x

d−s−2
1 x2, x

d−s
1 , x1x

d−s−1
2 ).

They do not correspond to a Togliatti system.
b = d− s− 1, c = d− s. If d− 2 > s+ r, then we have the factorization Fd−s−1 = L21 · · · Ld−s−r−1Fr

and #(Fr ∩ Ã
(0,2)
I ) = d− s− 2 > r, which contradicts the minimality of I. Hence we have s+ r = d− 2

and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−2
0 x22, x0x

d−s−1
1 , xd−s

1 , x1x
d−s−1
2 ) which is never a Togliatti system since

s ≤ d − 4.
To �nish, assume d−s−r = 1. Arguing in the samemanner, we see that it cannot occur d−s−3 ≥ b

and d − s − 2 ≥ c ≥ 1. Therefore we have the following possibilities:

d − s − 3 ≥ b, c = d − s − 1 and I=(xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x2, x0x

b
1x

d−s−b−1
2 , xd−s−1

1 x2, x1x
d−s−1
2 ),

it is a Togliatti system if, and only if s = d − 3 and b = d − s − 3 (of type (4)).

b = d − s− 2, c = d − s− 1 and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x2, x0x

d−s−2
1 x2, x

d−s−1
1 x2, x1x

d−s−1
2 ), it

is a Togliatti system if, and only if s = d − 3 but it is not minimal.

b = d − s − 1, d − s − 1 ≥ c and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x2, x0x

d−s−1
1 , xc1x

d−s−c
2 , x1x

d−s−1
2 ), it is

a Togliatti system if, and only if s = d − 3 and c = d − s − 1 (of type (4)).

d − s − 2 ≥ b, c = d − s and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x2, x0x

b
1x

d−s−b−1
2 , xd−s

1 , x1x
d−s−1
2 ). It is a

Togliatti system if, and only if s = d − 3 and d − s − 2 ≥ b ≥ d − s − 3 (of type (4)), or s = d − 4 and
b = d − s − 2 (of type (5)).

b = d − s − 1, c = d − s and I = (xd0 , x
d
1 , x

d
2) + xs0(x

d−s−1
0 x2, x0x

d−s−2
1 x2, x

d−s
1 , x1x

d−s−1
2 ), it is a

Togliatti system if, and only if s = d − 3 (of type (4)).

Case d4: Let us assume e = a = 0. If b ≥ 3 and c ≥ 3, we have the factorization Fd−s−1 = L11L
1
2Fd−s−3

and #(Fd−s−3 ∩ Ã
(0,1)
I ) = d − s − 2 and we contradict the minimality of I. Hence we distinguish three

cases: b = 1, b = 2 and b ≥ 3.
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Case (i). We assume b = 1. Since b ≥ ⌊ d−s−1
2 ⌋ it must be s = d − 3. Therefore I =

xd0 , x
d
1 , x

d
2)+ xd−3

0 (x0x1x2, x
3
1, x

3
2)+ (xd−1

0 x2), (x
d
0 , x

d
1 , x

d
2)+ xd−3

0 (x20x2, x0x1x2, x
2
1x2, x

3
2) or (xd0 , x

d
1 , x

d
2)+

xd−3
0 (x20x2, x0x1x2, x1x

2
2, x

3
2). The �rst one is not minimal while the remaining two are of type (1).

Case (ii). We assume b = 2. Since b ≥ ⌊ d−s−1
2 ⌋ it must be d − 3 ≥ s ≥ d − 5.

If s = d − 3, I = (xd0 , x
d
1 , x

d
2) + xd−3

0 (x20x2, x0x
2
1, x

3
1, x

3
2), (x

d
0 , x

d
1 , x

d
2) + xd−3

0 (x20x2, x0x
2
1, x

2
1x2, x

3
2) or

(xd0 , x
d
1 , x

d
2) + xd−3

0 (x20x2, x0x
2
1, x1x

2
2, x

3
2). All of them are of type (4).

If s = d − 4, I = (xd0 , x
d
1 , x

d
2) + xd−4

0 (x30x2, x0x
2
1x2, x

4
1, x

4
2), (xd0 , x

d
1 , x

d
2) + xd−4

0 (x30x2, x0x
2
1x2,

x31x2, x
4
2), (xd0 , x

d
1 , x

d
2) + xd−4

0 (x30x2, x0x
2
1x2, x

2
1x

2
2, x

4
2), (xd0 , x

d
1 , x

d
2) + xd−4

0 (x30x2, x0x
2
1x2, x1x

3
2, x

4
2),

(xd0 , x
d
1 , x

d
2) + xd−4

0 (x20x
2
2, x0x

2
1x2, x

4
1, x

4
2), (xd0 , x

d
1 , x

d
2) + xd−4

0 (x20x
2
2, x0x

2
1x2, x

3
1x2, x

4
2), (xd0 , x

d
1 , xd2) +

xd−4
0 (x20x

2
2, x0x

2
1x2, x

2
1x

2
2, x

4
2), (x

d
0 , x

d
1 , x

d
2) + xd−4

0 (x20x
2
2, x0x

2
1x2, x1x

3
2, x

4
2). Only the ��h one is a minimal

Togliatti system, and it is of type (5).
Finally, if s = d − 5, I has 15 possibilities, but any of them is a minimal Togliatti system.

Case (iii). We assume b ≥ 3. Then, either c = 1 or c = 2.
Case c = 1.We will see that b = d− s−1. Suppose d− s−2 ≥ b ≥ 3, then #(Fd−s−1∩ Ã

(0,2)
I ) = d− s

and Fd−s−1 = L20Fd−s−2. First we will see that this implies that m1 and m2 are aligned vertically (i.e.
d − s − b − 1 = d − s − r). We suppose that d − s − b − 1 ≤ d − s − r, and then b ≥ r − 1
(the other case is symmetric). Inductively we obtain Fd−s−1 = L20L

2
1 · · · L2d−s−b−2Fb. If b > r − 1, then

#Ã
(d−s−b−1,2)
I = b+ 1 and it would mean to a contradiction with the minimality of I. Hence, b = r − 1

and we get the factorization Fd−s−1 = L20L
2
1 · · · L2d−s−b−2L

2
d−s−b · · · Ld−s−2F1. Since #Ã

(d−s−b−1,2)
I =

b ≥ 3 we have again a contradiction with the minimality.
Once we have seen that b = d − s − 1, using the usual argumentation we see that d − s − r = 1.

Therefore I = (xd0 , x
d
1 , x

d
2)+ xs0(x

d−s−1
0 x2, x0x

d−s−1
1 , x1x

d−s−1
2 , xd−s

2 ) with s ≤ d− 3, which is Togliatti if,
and only if s = d − 3 and it is of type (4).

Case c = 2. Since #Ã
(1,1)
I = d − s we have Fd−s−1 = L11Fd−s−2. If d − s − 2 ≥ b ≥ 3,

then # ˜̃A
(0,2)
I = d − s − 1 and Fd−s−1 would factorize as Fd−s−1 = L11L

2
0Fd−s−3. This contradicts

the minimality of I because # ˜̃A
(0,1)
I = d − s − 2 which would force the factorization Fd−s−1 =

L11L
2
0L

1
0Fd−s−4. Therefore b = d − s − 1 and again by minimality we see that d − s − r = 1. Hence,

I = (xd0 , x
d
1 , x

d
2)+ xs0(x

d−s−1
0 x2, x0x

d−s−1
1 , x21x

d−s−2
2 , xd−s

2 ), which is Togliatti if, and only if s = d− 3 and
in this case it is of type (4)

To �nish case 2D we see what happens when d − s ≥ c > e ≥ ⌊ d−s−1
2 ⌋. We see using the minimality

that either a ≥ b = e, b ≥ a = e or e ≥ a = b.
Arguing as before we see that in the �rst possibility m1 and m3 must be vertically aligned and in

particular c = e+ 2, a = e and r = 2. Therefore I = (xd0 , x
d
1 , x

d
2) + xs0x

e
1x

d−s−e−2
2 (x20, x0x1, x

2
1, x

2
2) which

is of type (1).
Now we assume b ≥ a = e. If b, c ≥ e + 1, then we have the factorization Fd−s−e−1 = L1e+1Fd−s−e−2

and, since # ˜̃A
(e,1)
I = d− s− e−1 we get Fd−s−e−1 = L1eL

1
e+1Fd−s−e−3 which contradicts the minimality.

Now, suppose b = e + 1 and c ≥ e + 2 (resp. b ≥ e + 2 and c = e + 1). As we have seen earlier,m1 and
m3 (resp. m2) must be aligned. Therefore, we can see using the minimality assumption that r = 2 and
c = e + 2 (resp. r = 2 and b = e + 2). In both cases I is of type (1).

Finally, let us assume e ≥ a = b. If e ≥ a+ 2, we get a contradiction with the minimality of I. Hence
either e = a or e = a+ 1. If e = a we see that c = a+ 2 and r = 2. Therefore I is of type (1). Otherwise
e = a + 1 and we get c = a + 2 and r = 2 and I is of type (1).

For any integer d ≥ 3, setM0(d) = {xa0x
b
1x

c
2 | a + b + c = d and a, b, c ≥ 1}.
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Theorem 3.9. Let I ⊂ k[x0, . . . , xn] be a smooth minimal monomial Togliatti system of forms of degree
d ≥ 10. Assume that µ(I) = 2n + 3. Then, n = 2 and, up to a permutation of the coordinates, one of the
following cases holds:
(i) I = (xd0 , x

d
1 , x

d
2) + m(x20, x

2
1, x0x2, x1x2) with m ∈ M0(d − 2), or

(ii) I = (xd0 , x
d
1 , x

d
2) + m(x20, x

2
1, x0x1, x

2
2) with m ∈ M0(d − 2), or

(iii) I = (xd0 , x
d
1 , x

d
2) + m(x30, x

3
1, x

3
2, x0x1x2) with m ∈ M0(d − 3).

Proof. By [4, Proposition 4.1], for n ≥ 3 and d ≥ 4 there are no smooth minimal monomial Togliatti
systems I ⊂ k[x0, . . . , xn] of forms of degree d with µ(I) = 2n + 3. So, n = 2. For n = 2, the result
follows from Theorem 3.8 together with the smoothness criterion Proposition 3.6.

The following remarks shows that in the above Theorem the hypothesis of being smooth cannot be
deleted.

Remark 3.10. Ifn = 3 andd ≥ 10 one can easily check that I = (xd0 , x
d
1 , x

d
2 , x

d
3)+xd−2

0 (x0x1, x2x3, x
2
1, x

2
2, x

2
3)

is a minimal monomial Togliatti systems of forms of degree d with µ(I) = 2n + 3 = 9 and it is non-
smooth.

Remark 3.11. For n = 2 and 6 ≤ d ≤ 9 one can check with the help of Macaulay2 [3] that there
exist other examples of minimal monomial Togliatti systems I = (xd0 , x

d
1 , x

d
2) + J ⊂ k[x0, x1, x2] with

µ(I) = 7. For seek of completeness we give the full list of possible J’s not included in Theorem 3.8:
d = 6: (x50x1, x

3
0x

3
2, x

2
0x

3
1x2, x

5
1x2), (x

5
0x2, x

3
0x

3
1, x

2
0x

2
1x

2
2, x

5
1x2), (x

3
0x

3
2, x

2
0x

4
1, x

2
0x

2
1x

2
2, x

5
1x2), (x

5
0x2, x

3
0x

3
1,

x0x1x
4
2, x

5
1x2), (x

4
0x

2
2, x

3
0x

3
1, x

2
0x

2
1x

2
2, x

4
1x

2
2), (x

3
0x

3
2, x

2
0x

4
1, x

2
0x

2
1x

2
2, x

4
1x

2
2), (x

4
0x

2
2, x

3
0x

3
1, x0x1x

4
2, x

4
1x

2
2), (x

3
0x

34
1 ,

x30x
3
2, x

2
0x

2
1x

2
2, x

3
1x

3
2), x0x1(x

4
0, x

2
0x

2
1, x0x1x

2
2, x

4
1), x0x1(x

3
0x2, x

2
0x

2
1, x0x1x

2
2, x

3
1x2), x0x1(x

2
0x

2
1, x

2
0x

2
2, x0x1x

2
2,

x21x
2
2), x0x1(x

2
0x

2
1, x

2
0x

2
2, x0x

3
2, x

2
1x

2
2), x0x1(x

4
0, x0x

3
2, x

4
1, x

2
1x

2
2), x0x1(x

4
0, x

2
0x

2
1, x

4
1, x

4
2), x0x1(x

4
0, x0x1x

2
2, x

4
1,

x42), x0x1(x
3
0x2, x

2
0x

2
1, x

3
1x2, x

4
2), x0x2(x

3
0x2, x

2
0x

2
2, x0x1x

2
2, x

4
1), x0x2(x

2
0x1x2, x

2
0x

2
2, x0x1x

2
2, x

4
1), x0x2(x

3
0x2,

x0x
2
1x2, x0x1x

2
2, x

4
1), x0x2(x

3
0x2, x

2
0x1x2, x0x

3
2, x

4
1), x0x2(x

3
0x2, x

2
0x

2
2, x0x

3
2, x

4
1), x0x2(x

3
0x2, x0x

2
1x2, x0x

3
2, x

4
1),

x0x2(x
2
0x

2
1, x

2
0x

2
2, x0x

3
1, x

3
1x2), x0x2(x

2
0x

2
1, x

2
0x

2
2, x0x

2
1x2, x

3
1x2), x0x2(x

2
0x

2
2, x0x

3
1, x0x

2
1x2, x

3
1x2), x0x2(x

2
0x

2
1,

x20x
2
2, x0x

3
1, x

4
1), x0x2(x

2
0x

2
1, x

2
0x

2
2, x

4
1, x

3
1x2), x0x2(x

2
0x

2
1, x

2
0x

2
2, x

4
1, x

2
1x

2
2), x0x2(x

3
0x2, x

2
0x1x2, x0x

2
1x2, x

4
1),

x0x2(x
3
0x2, x

2
0x1x2, x0x1x

2
2, x

4
1), x0(x0x

4
1, x0x1x

3
2, x0x

4
2, x

3
1x

2
2), x0(x

4
0x2, x

2
0x

3
1, x0x

2
1x

2
2, x

5
1), x0(x

4
0x2, x0x1x

3
2,

x51, x
3
1x

2
2), x0(x

2
0x

3
2, x0x

4
1, x0x

2
1x

2
2, x

5
1), x0(x

4
0x2, x

2
0x1x

2
2, x

5
1, x

2
1x

3
2), x0(x

2
0x

3
2, x0x

4
1, x0x1x

3
2, x

3
1x

2
2), x0(x

4
0x2,

x20x
3
2, x0x

3
1x2, x

5
1), x0(x

4
0x2, x

2
0x

3
1, x

5
1, x1x

4
2), x0(x

3
0x

2
2, x

2
0x

3
1, x0x

4
2, x

3
1x

2
2), x0(x

4
0x2, x0x

2
1x

2
2, x

5
1, x1x

4
2), x0(x

2
0x

3
2,

x0x
4
1, x0x

4
2, x

3
1x

2
2), x0(x

2
0x

3
1, x

2
0x

3
2, x

4
1x2, x1x

4
2), x0(x

4
0x1, x

2
0x

3
2, x0x

3
1x2, x

5
1), x0(x

2
0x1x

2
2, x0x

3
1x2, x

5
1, x

5
2)

d = 7: x0x1(x
2
0x

3
2, x0x

4
1, x0x

2
1x

2
2, x

5
1), x0x1(x

5
0, x

2
0x

2
1x2, x0x1x

3
2, x

5
1), x0x1(x

4
0x1, x

3
0x

2
1, x0x

4
2, x

3
1x

2
2), x0x1(x

3
0x

2
1,

x20x
3
1, x

2
0x

3
2, x

2
1x

3
2), x0x1(x

5
0, x

2
0x

2
1x2, x

5
1, x

5
2), x0x1(x

4
0x2, x0x

4
1, x

5
1, x

5
2), x0x1(x

5
0, x0x1x

3
2, x

5
1, x

5
2), x0x2(x

3
0x

2
2,

x20x
3
2, x0x

3
1x2, x

5
1), x0x2(x

4
0x2, x

2
0x1x

2
2, x0x

4
2, x

5
1), x0x2(x

4
0x2, x0x

3
1x2, x0x

4
2, x

5
1), x0(x

5
0x2, x

2
0x

3
1x2, x0x

2
1x

3
2, x

6
1),

x0(x0x
5
1, x0x

2
1x

3
2, x0x

5
2, x

4
1x

2
2), x0(x

5
0x2, x

4
0x

2
1, x

2
0x

2
1x

2
2, x

3
1x

3
2), x0(x

4
0x

2
1, x

4
0x

2
2, x

2
0x

2
1x

2
2, x

3
1x

3
2), x0(x

3
0x

3
1, x

3
0x

3
2,

x20x
2
1x

2
2, x

3
1x

3
2), x0(x

4
0x1x2, x

2
0x

4
1, x

2
0x

4
2, x

3
1x

3
2), x0(x

2
0x

4
1, x

2
0x

2
1x

2
2, x

2
0x

4
2, x

3
1x

3
2), x0(x

4
0x1x2, x0x

5
1, x0x

5
2, x

3
1x

3
2),

x0(x
2
0x

2
1x

2
2, x0x

5
1, x0x

5
2, x

3
1x

3
2), x0(x

5
0x2, x

2
0x

3
1x2, x

6
1, x1x

5
2), x0(x

5
0x2, x0x

2
1x

3
2, x

6
1, x1x

5
2), x0(x

5
0x2, x

4
0x

2
1, x

5
1x2,

x1x
5
2), x0(x

4
0x

2
1, x

4
0x

2
2, x

5
1x2, x1x

5
2), x0(x

3
0x

3
1, x

3
0x

3
2, x

5
1x2, x1x

5
2), x0(x

4
0x1x2, x

2
0x

2
1x

2
2, x

6
1, x

6
2), x0(x

4
0x1x2, x

6
1,

x31x
3
2, x

6
2), x0(x

2
0x

2
1x

2
2, x

6
1, x

3
1x

3
2, x

6
2), x0x1x2(x

2
0x

2
1, x

2
0x

2
2, x0x

3
1, x

4
1), x0x1x2(x

3
0x2, x

2
0x1x2, x0x

2
1x2, x

4
1), x0x1x2(x

4
0,

x20x
2
1, x0x1x

2
2, x

4
1), x0x1x2(x

3
0x2, x

2
0x1x2, x0x1x

2
2, x

4
1), x0x1x2(x

3
0x2, x

2
0x

2
2, x0x1x

2
2, x

4
1), x0x1x2(x

2
0x1x2, x

2
0x

2
2,

x0x1x
2
2, x

4
1), x0x1x2(x

3
0x2, x0x

2
1x2, x0x1x

2
2, x

4
1), x0x1x2(x

3
0x2, x

2
0x1x2, x0x

3
2, x

4
1), x0x1x2(x

3
0x2, x

2
0x

2
2, x0x

3
2, x

4
1),

x0x1x2(x
3
0x1, x0x

3
1, x0x

3
2, x

4
1), x0x1x2(x

3
0x2, x0x

2
1x2, x0x

3
2, x

4
1), x0x1x2(x

2
0x

2
1, x

2
0x

2
2, x0x

3
1, x

3
1x2), x0x1x2(x

2
0x

2
1,

x20x
2
2, x0x

2
1x2, x

3
1x2), x0x1x2(x

2
0x

2
2, x0x

3
1, x0x

2
1x2, x

3
1x2), x0x1x2(x

3
0x2, x

2
0x

2
1, x0x1x

2
2, x

3
1x2), x0x1x2(x

3
0x1, x

2
0x

2
2,

x0x1x
2
2, x

3
1x2), x0x1x2(x

2
0x

2
1, x

2
0x

2
2, x

4
1, x

3
1x2), x0x1x2(x

4
0, x0x

3
1, x0x

3
2, x

2
1x

2
2), x0x1x2(x

4
0, x0x

3
2, x

4
1, x1x

3
2).

d = 8: x0x1(x
4
0x

2
2, x

3
0x

3
1, x0x1x

4
2, x

4
1x

2
2), x0x2(x

3
0x

3
2, x

2
0x

2
1x

2
2, x0x

4
1x2, x

6
1)

d = 9: x0x1x2(x
3
0x

3
2, x

2
0x

2
1x

2
2, x0x

4
1x2, x

6
1), x0x1x2(x

3
0x

3
1, x

3
0x

3
2, x

2
0x

2
1x

2
2, x

3
1x

3
2), x0x1x2(x

6
0, x

2
0x

2
1x

2
2, x

6
1, x

6
2).
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