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We investigate the dynamics and rheological properties of a circular colloidal cluster that is continuously sheared by magnetic
and optical torques in a two-dimensional (2D) Taylor-Couette geometry. By varying the two driving fields, we obtain the sys-
tem flow diagram and report the velocity profiles along the colloidal structure. We then use the inner magnetic trimer as a
microrheometer, and observe continuous thinning of all particle layers followed by thickening of the third one above a thresh-
old field. Experimental data are supported by Brownian dynamics simulations. Our approach gives a unique microscopic view
on how the structure of strongly confined colloidal matter weakens or strengthens upon shear, envisioning the engineering of
rheological devices at the microscales.

1 Introduction

Understanding the dynamics of confined particulate systems
under external deformations is relevant for many industrial
and technological processes.1 A classical yet versatile ap-
proach is based on the use of the Taylor Couette (TC) geom-
etry, where complex fluids are confined and sheared between
two coaxial cylinders.2,3 The possibility to independently ro-
tate these cylinders has made this geometry a powerful tool to
investigate the emergence of centrifugal instabilities, and how
these flow perturbations lead to turbulence in a wide variety of
soft matter systems, including foams,4,5 granular materials,6–8

micellar9 or polymeric solutions.10–12

Equally appealing are the rheological properties of colloidal
suspensions, complex viscoelastic fluids where the individual
particles can be directly observed by optical means, and their
interactions tuned by external fields.13 As such, confocal mi-
croscopy of sheared bulk samples has revealed rich dynamics,
including the emergence of thinning,14 thickening15 or shear
banding instabilities16 in crystals17 and glasses.18 When con-
fined by gravity to a two-dimensional (2D) plane, an ensem-
ble of colloids is more difficult to shear, since particles tend
to escape to the bulk due to compression or thermal fluctua-

† Electronic Supplementary Information (ESI) available: Five .WMV videos
showing the dynamics of the colloidal clusters under combined magnetic and
optical torques. See DOI: 10.1039/b000000x/
a Departament de Fı́sica de la Matèria Condensada, Universitat de
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tions. Thus, the use of alternative driving methods, such as
magnetic fields19,20 or optical tweezers,21,22 may help creat-
ing compact clusters that can be confined and deformed by the
applied drive. Recent experiments with optically confined mi-
crospheres have addressed the pressure exerted to the bound-
ary23 and the transmission of torque from the boundary to the
center,24 while the rich and complex rheological properties
of these systems remain unexplored. In addition, the interplay
between shear and confinement gives rise to a host of new phe-
nomena including buckling instabilities, transport via density
waves, heterogeneities and defects that have been explored in
the past theoretically21,25–27 and experimentally on 2D28–30

and 3D colloidal systems.31–33

In this article we investigate the dynamics and deformations
of a circular colloidal cluster composed by interacting micro-
spheres that are assembled and sheared via two independent
driving fields. Even in the absence of shear, the particles ar-
range into four concentrical layers, a generic effect in strongly
confined systems.34 Here, we use optical tweezers to assem-
ble and rotate the outer particle layer. The other driving mech-
anism is a rotating magnetic field, which independently im-
poses a torque on a triplet of particles (trimer) located at the
center of the system. In this 2D TC geometry, we observe
velocity profiles where neighboring layers of particles slide
with respect to each other creating localized shear zones. By
fixing the outer layer, we use the inner paramagnetic trimer
as a microrheometer and thereby provide a realization of the
original Couette experiment35 on the colloidal length scale.
Further, we observe that for a large magnetic torque, the fast
spinning of the inner trimer generates a strong hydrodynamic
flow and exerts a radial pressure pushing the third layer against
the outer one. The corresponding change in the local densities
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of the layers manifests as a simultaneous shear thinning of the
second layer and thickening of the third one.

2 Experimental details

The experiments are performed using optical tweezers with
an Acousto Optic Device (AOD) and a rotating magnetic
field. An infrared laser beam (ManLight ML5-CW-P/TKS-
OTS, 5W maximum power, operated at 3W, λ = 1064nm)
is deflected by the AOD (AA Optoelectronics DTSXY-400-
1064, driven by a RF generator DDSPA2X-D431b-34) and
then focused from above by a microscope objective (Nikon
40x CFI APO) into a closed chamber of ∼ 100µm thickness
filled with the colloidal suspension. The bottom of the cham-
ber is observed from the other side by a second microscope ob-
jective (Nikon 40x Plan Fluor) which projects an image onto a
CMOS Camera (Ximea MQ003MG-CM). The deflection an-
gle of the AOD is thus mapped to the position of the optical
tweezers in the observation plane. The colloidal particles are
trapped in the transverse direction by the gradient force of the
beam and in the axial direction by the balance between the
scattering force and the electrostatic repulsion with the glass
substrate.

We generate a sequence of 21 optical traps equally spaced
on a circle with a radius of 14.1 µm. Since the AOD system
is capable of deflecting the laser beam every 20µs, each trap
is visited once every 420µs. The optical potential thus created
can be considered as quasi-static, since the beam scanning is
much faster than the typical self-diffusion time of the parti-
cles, τD ∼ 40s. We then use custom made software to simulta-
neously rotate all the traps at different rates ranging from 0.1
to 0.6 rads−1.

We use a bidisperse solution of paramagnetic microspheres
(Dynabeads M-450 Epoxy, 4.5µm diameter) and polystyrene
particles (Invitrogen, 4µm diameter). One milliliter of the
stock solution of the paramagnetic colloids is first dispersed
in 100ml of water with sodium dodecyl sulfate (SDS) solution
(∼ 0.9 of the CMC) and the resulting mixture is stirred for
two hours. We then mix 100µl of this solution with 1ml of
a mixture of sodium hydroxide and water (10mg per liter) to
neutralize the SDS, and 15µl of polystyrene particles. A drop
of the final solution is placed on a capillary chamber that was
previously made by sandwiching a layer of parafilm between
two coverglasses and pressing while it is heated. The chamber
is then sealed with a two component epoxy glue.

The density mismatch between water and the colloidal par-
ticles makes them sediment toward the chamber bottom. We
then use a single laser trap to get three magnetic colloids to-
gether. Afterwards, we use the tweezers to build the system
from inside out, until we finally have 3 magnetic colloids in
the center, 9 in the second layer, 15 in the third layer and 21 in
the last layer. The iron oxide doping of the paramagnetic parti-
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Fig. 1 (a) Scheme of the experimental system where a cluster of 48
microspheres is confined by 21 time-shared optical traps. The three
inner particles are paramagnetic colloids that are subjected to an
in-plane rotating magnetic field of amplitude B0. Red (blue) arrow
indicates the rotation direction induced by the optical (magnetic)
field. (b) Microscope image of one colloidal cluster. Scale bar is
5 µm, see also VideoS1 in the Supporting Information.

cles makes them slightly darker under brightfield microscopy,
which allows us to distinguish them from the other particles
when assembling the cluster. Finally, only the 21 particles in
the outer layer are trapped.

We apply a rotating magnetic field using two pairs of coils
whose axes are perpendicular to each other and to the vector
normal to the surface of the coverglass. The coils are pow-
ered by two amplifiers (KEPCO BOP 20-10M) connected to
a digital-to-analogue card (NI 9263). The applied in-plane ro-
tating field of amplitude B0 and driving frequency Ω . Dur-
ing all experiments, we keep fixed the angular frequency to
Ω = 125.7 rads−1, and vary B0 in order to control the rota-
tional speed of the inner triplet.

3 The colloidal Taylor-Couette Geometry

The system geometry is shown schematically in Fig.1(a) for
the counter-rotating case, see also VideoS1 in the Supporting
Infomation. We assemble a circular cluster composed of 48
microspheres and radius R = 14.1µm, by trapping the outer
21 particles with the infrared laser. since the AOD scanning is
much faster than the typical self-diffusion time of the particles,
τD = 40s, the optical traps can then be considered as 21 inde-
pendent harmonic potentials placed along the circle. The outer
colloidal layer is either rotated with a constant angular veloc-
ity ω4 ∈ ±[0.1,0.6]rads−1 or Péclet number Pe ∈ [1.7,10.1]
when used in the TC geometry, or kept fixed (ω4 = 0 rads−1)
when using the inner trimer as a microrheometer. Here we
define Pe = τD/τω where τω is the time required by a driven
particle to travel its diameter (here τω ∼ 1/ω for the trimer
and τω ∼ 0.28/ω for the outer shell). The internal trimer
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Fig. 2 Left and right columns: azimuthal velocity vϕ of the different layers (top) and first derivative v′ϕ (bottom) versus distance r from the
center of the cluster. Central column, top: microscope images of the colloidal cluster with the flow field superimposed as yellow arrows, see
videos in the Supporting Information. Scale bar is 10µm for all images. Bottom: flow diagram in the (ω4,B0) plane illustrating the dynamic
regimes observed, with smooth velocity profile (blue), a localized break at r = 6µm (II particle layer, red) or at r = 10µm (III particle layer
green). Here B0 denotes the amplitude of the rotating field that applies a torque to the inner trimer, and ω4 the angular velocity of the
optically-driven outer layer.

is rotated by subjecting the paramagnetic colloids to a ro-
tating magnetic field with amplitude B0 and angular veloc-
ity Ω, BBB(t) ≡ B0[cos(Ωt)x̂− sin(Ωt)ŷ]. The applied mod-
ulation induces the assembly of the paramagnetic particles
due to time-averaged attractive magnetic interactions,36 and
also induces a finite torque TTT m ∼ B2

0 that forces the trimer
to rotate at an angular velocity ω1. This torque results from
the internal relaxation of the particle magnetization37,38 and
can be calculated for the whole trimer as TTT m = VcMMM×BBB =
VcB2

0χ”
e f f (Ω)ẑ/µ0, where µ0 = 4π ·10−7H m−1, Vc is the vol-

ume of the trimer, and χ
′′
e f f = 0.18 is the effective dynamic

magnetic susceptibility. Thus, at a constant driving frequency
of Ω = 20πrads−1, TTT m ∼ B2

0, the amplitude of the rotating
magnetic field is used to vary the rotational motion of the in-
ner trimer. Using video-microscopy, we measure the polar
coordinates (ri,ϕi) of each particle i with respect to the cen-
ter of the cluster. We then obtain the average angular veloc-
ity per layer n as ωn =

〈
N−1

n ∑
Nn
i ω (ri)

〉
, where the summa-

tion counts only the Nn particles within the respective layer,
Fig.1(b). From these data, we calculate the azimuthal flow ve-
locity, vϕ(r) = 〈ω(r)〉 r and the first derivative, dvϕ/dr = v′ϕ
in order to visualize the flow discontinuities.

In the central panel of Fig. 2 we show the complete flow
diagram of our system obtained by varying the angular veloc-
ity ω4 of the outer shell and the amplitude B0 of the applied
magnetic field. We classify the different dynamical phases in
terms of the velocity profiles and corresponding first deriva-
tives, as these quantities vary along the radial direction. Due

to the strong confinement of our colloidal cluster, we never
observed particle exchange between the layers. Thus, our sys-
tem does not display swirls and large scale rearrangements as
observed in other sheared granular systems6,39–41. In contrast
to such works, our confined system allows investigating com-
mensurability effects between different layers. These layers
generate periodic corrugations that slide past each other dur-
ing their relative motion, and the strong confinement favors
the fitting of particles of one layer in the interstices generated
by the colloids of the neighboring layers. Further, size dif-
ference between the magnetic and non magnetic particles and
the circular confinement frustrates ordering. Thus, depend-
ing on the directions and amplitudes of the shearing torques,
the system may show layers that slip and others that tempo-
rary lock to each other. In order to characterize the different
dynamical regimes, we plot the time-averaged azimuthal ve-
locity per layer and the corresponding jump in the first deriva-
tive. Some examples are shown in the left and right panels of
Fig.2. In particular, we classify as ”smooth” (blue regions in
Fig.2) velocity profiles that lead to a jump in the derivative of
the azimuthal velocity smaller than a given threshold, in this
case |(v′ϕ (rn)− v′ϕ (rn+1))/(minv′ϕ −maxv′ϕ )| ≤ 0.15. On the
contrary, in the red and orange regions the system displays
velocity profiles with a strong discontinuity, leading to a pro-
nounced jump (> 0.15) in v′ϕ . This shear-induced breakage
is usually observed when there is no dominant driving mech-
anism, as opposed to when either the driving of the inner or
outer layer is much stronger than the other. The breakage
can be localized either between the first and the second layer
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Fig. 3 (a,b) Time averaged angular velocities ωn for different layers n versus squared amplitude of the applied field B2
0 obtained from

experiments (a) and Brownian dynamics (BD) simulations (b). Here the magnetic torque TTT m ∼ B2
0. In both cases, the inset illustrates

enlargements of the main graphs. (c) The three components of the system-averaged stress tensor, σ̃rϕ = σ̃ϕr (orange), σ̃rr and σ̃ϕϕ (purple)
versus B2

0 from BD simulations, the inset shows a zoom on σ̃ϕϕ . (d) Viscosity ηn of the different layers n [see Eq. (2)] versus B2
0 from BD

simulations. The dashed black line indicates the threshold fields B2
c .

(r = 6µm) or the second and third layer (r = 10µm). The first
case occurs in the counter-rotating situation, when the inner
trimer is able to drag the second layer of particles in opposite
direction than the outer layer, and the cluster inevitably breaks
in pairs of counter-propagating colloidal domains (VideoS1
in the Supporting Information). In the co-rotating case, the
breakage rather localizes close to the outer layer, as this col-
loidal shell has a stronger capability to drag nearest layers.
The third layer is mainly driven by the fourth one, while the
second has a reduced angular speed as it also tries to follow
the rotating magnetic triplet. When the first and fourth layer
have the same angular velocity (ω1 = ω4), the system displays
a Poiseuille-like flow profile. For ω4 = 0 we observe a re-
entrant behavior by increasing B0. For B0 < 0.75mT the trimer
cannot drag the second particle layer, and the velocity profile
is smooth. For 0.7mT<B0 < 1.3mT, the trimer drags only the
second layer and there is a jump in v′ϕ , while for B0 > 1.3mT
also the third layer is mobilized and the velocity profile be-
comes smooth again.

4 The colloidal micro-rheometer

We will now focus on the central region of the flow diagram
in Fig.2, where we keep the outer layer fixed (ω4 = 0) and
continuously rotate only the inner trimer within the range ω1 ∈
[0.05,36.4]rads−1 or Pe ∈ [0.4,2184]. In Fig.3(a) we show
experimental measurements of the average angular velocities
of the four colloidal layers versus the square of the magnetic
field up to B2

0 = 20mT2. Above a depinning threshold B0 =

0.6mT, below which all particles are at rest, the trimer starts
rotating and shows an angular velocity that increases linearly
with B2

0, up to a threshold field strength Bc = 3.3mT. At Bc
we can see a sharp jump in the angular velocity of the trimer,
where the mobility, i.e. slope of ω1, remains constant. Further,
we observe that the slope of ω3 reveals an abrupt decrease as
the magnetic torque applied to the trimer increases, inset in
Fig.3(a). As we will show later, this behavior is related to a
transition from ”thinning” to ”thickening” at Bc. Above Bc the
fast spinning of the trimer generates a strong hydrodynamic
flow that lubricates the region between the first and the second
layer, see also VideoS5 in the Supporting Information. Thus,
we find an overall thinning of the trimer viscosity for B0 > Bc.
This flow also pushes the third layer of particles towards the
outer one, increasing the local packing density and reducing
the effective mobility of this layer. This leads to an abrupt
transition to thickening as seen in the third layer at a critical
field strength Bc.

In order to access the viscosity of all the layers and the sys-
tem shear stresses, we perform 2D Brownian dynamics simu-
lations of a binary mixture of charged colloids partially con-
fined by harmonic potentials and paramagnetic colloids, see
Appendix A for more details. Taking into account hydrody-
namic effects on the Rotne-Prager level, the overdamped equa-
tion of motion for the position rrri of each colloid i is given by

drrri

dt
= ∑

j

(
µ

TT
i j

F j +µ
TR
i j

T j

)
+Γi (t) , (1)

where µT T
i j

and µT R
i j

are the mobility matrices due to
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translation-translation (TT) and translation-rotation (TR) cou-
plings. The total force on the particle j is given by F j =

∑k 6= j Fpp(rk j) + FT (r j, t), and is due to the particle-particle
interaction (Fpp) and the optical traps (FT ), see Appendix A
for more details. The torque acting on the paramagnetic par-
ticles is given by T j, Γi is a random force, stemming from
random displacements with zero mean and variance 2D0δ t,
and D0 ≈ 0.4µm2/s is the experimentally measured diffu-
sion constant. The simulation time scale is set to the self-
diffusion time τD = d2/D0 ≈ 40s, while the discrete time step
is δ t = 10−6τD.

The results of our theoretical model are shown in Fig.3(b),
and placed on the same axis as the experimental data in
Fig.3(a). We find that the model allows to qualitatively cap-
ture the dynamic features observed in the experiments. From
the simulation results, the threshold field strength is observed
earlier at Bc = 1.96 mT, which is of the same order of mag-
nitude as in the experiment. Moreover, the simulations allow
us to access all the rheological quantities of interest such as
the components of the system averaged stress tensor, σ̃rr, σ̃ϕϕ

and σ̃ϕr = σ̃rϕ , as well as the shear viscosity of each layer,
ηn. The former are calculated by using the virial expression
for the stress tensor in polar coordinates [see Eq. (15) in the
Appendix]. Given the system-averaged shear stress σ̃rϕ , we
can approximate the local shear stress by σrϕ (r) ∝ σ̃rϕ/r2.
This relation follows from the fact that the divergence of the
stress tensor in a steady state vanishes and accounts for the
spatial dependence of the volume elements in polar coordi-
nates. Note that this relation is exact for an incompressible
Newtonian fluid. We then approximate the local shear viscos-
ity by the ratio

ηn = σrϕ (rn)/∆ωn, (2)

where ∆ωn = ωn−ω4 is the angular velocity difference be-
tween the nth and the fourth layer, which is kept static, i.e.
ω4 = 0. For details see Appendix A.

The shear viscosities of each inner colloidal layer are plot-
ted as a function of B2

0 in Fig.3(d), and illustrate the continuous
thinning of the first three layers as well as the thickening of the
third one above Bc. We note that, being fixed by the optical
tweezers (ω4 = 0), the viscosity, as defined above, of the outer
layer diverges and thus it is not reported in Fig.3(d). The same
holds for the inner layers for B0→ 0, being pinned to the outer
one. The transition at Bc is also reflected in all components of
the stress tensors shown in Fig.3(c). In particular, the shear
stress (σ̃rϕ ) displays an increase in the slope at B2

c , and sub-
sequent decrease at high magnetic field strengths, correspond-
ing to the shear thinning and thickening respectively. The two
diagonal components of the stress tensor decrease as the field
increases, corresponding to an increase of the radial Pr =−σ̃rr
and azimuthal pressure Pϕ = −σ̃ϕϕ . The shear thickening at
Bc is accompanied by a steep increase of Pr, which is resolved
subsequently. Further, we have confirmed this general behav-

Fig. 4 Amplitude of the radial deformation up versus square of the
magnetic field B2

0 for a fixed outer layer of particles (ω4 = 0). Left
inset: power spectrum of the elastic deformations measured for
B2

0 = 1.1 mT2. Right inset: corresponding polar plot in the reference
frame of the trimer of the particle trajectories showing the threefold
tidal wave.

ior by performing simulations on a larger cluster with N = 76
particles. This system displays the same type of local thinning
and thickening in the layer closest to the fixed outer layer, even
though the associated field is larger.

5 Radial deformations

While the dynamic transition at Bc appears to be sharp in
terms of the different rheological quantities, we find in the
experiments that the cluster shows a continuous decrease in
the amplitude of the radial distortions induced by the ro-
tating trimer. Given the non-circular shape of the trimer,
the particles from the second layer are forced to periodi-
cally enter and exit its interstitial regions. The induced de-
formation thus appears in form of a threefold tidal wave
as shown in the small polar plot in Fig.4. To character-
ize these elastic deformations, we measure their amplitude
as a function of the magnetic field strength in the Fourier
space and in the reference frame of the trimer as, ur(Ω

′) =
N−1

2 ∑
N2
j=1 T−1 ∫ T

0 exp [3i(Ω′t−ϕ j)]r(ϕ j, t)dt, where r(ϕ j, t) is
the distance of the N2 particles composing the second layer
and located at an angle ϕ j in the reference frame of the
trimer. In Fig.4 we plot the measured peak of ur(Ω

′), namely
up =max[ur(Ω

′),Ω′ ∈ IR], as a function of B2
0 and in the upper

left inset the corresponding ur(Ω
′) for one exemplary B0. For

small field strengths (B2
0 < B2

c), the radial path of the particles
in the second layer is deformed by the rotating trimer. After
a transient regime, the amplitude of the deformation stabilizes

1–8 | 5



to a stationary value where the relative speed between the N2
composing particles approaches zero. We further note that,
being in the Stokes regime, the decoupling of the dynamics
along the radial and azimuthal directions is effectively pos-
sible, and this explains the emergence of two different types
of dynamic transitions (of sharp and continuous character, re-
spectively) along the two directions.

6 Conclusions

We have realized a colloidal microrheometer based on the
combined action of magnetic and optical torques. The present
approach may be used as an effective microrheological tool
to explore the viscoelastic properties of complex fluids. This
could potentially include biological media confined between
the magnetic trimer and the optically trapped colloidal ring.
Further, by replacing the internal trimer with a single ferro-
magnetic particle, one could simplify the system geometry,
decoupling the information measured along the shear and ra-
dial direction. In addition, the optical tweezers may be pro-
grammed to periodically shear the outer layer of particles and
thus to explore the frequency-dependent properties of complex
fluids, which represents an exciting future avenue.

Appendix

A Model and simulation details

Here, we describe the microscopic model underlying our
Brownian dynamics simulations. We consider a dense bi-
nary mixture of charged colloids and paramagnetic colloids
confined to a 2D disk-like area by an outer layer of particles
trapped by harmonic potentials. All colloids interact via a re-
pulsive Yukawa potential

Upp (ri j) =V0 exp [κ (di j−d)]
exp(−κri j)

κri j
, (3)

with V0 being the particle-particle interaction strength, κ the
inverse Debye screening length, di j = (di + d j)/2 the mean
particle diameter, and ri j =

∣∣ri− r j
∣∣ the distance between par-

ticle i and j. To model the repulsive particle interactions cor-
responding to the experimental system, we set κ = 70d−1 and
V0 = 1.69037 ·1033kBT .

The paramagnetic particles interact, in addition to the re-
pulsion, via the time-averaged dipole-dipole (DD) interac-
tion42,43

UDD (ri j) =−
(V χB0,DD)

2

8πµ0r3
i j

, (4)

with µ0 = 4π 10−7 Hm−1 being the magnetic permittivity, V =
(4π/3)d3

i the particle volume, χ = 1.4 the effective volume

susceptibility, and B0,DD the amplitude of the magnetic field
used for the DD interactions We note that in the experiments
B0,DD and B0 are expected to be equal. However, in our simu-
lations this leads to an unintentional compression of the inner
layer, due to the finite softness of the particle interactions. To
counteract this artifact, the amplitude of the rotating magnetic
field determining the strength of the DD interactions is fixed to
a constant value (specifically, here we set B0,DD = 700 Am−1).

The particles forming the outer colloidal layer are trapped
by harmonic potentials

UR (ri, t) =
k
2
|ri− ri,0 (t)|2 i ∈ outer layer, (5)

where i is from the N4 particles of the outer layer, k is the
strength of the harmonic potential, and ri,0 is the position of
the center of the trap corresponding to the particle i. The con-
stant angular velocity of the outer layer is applied by trans-
lating the center of the harmonic traps on a ring, where the
corresponding trajectories are given by

r j,0 (t) = R [cos(Φ j (t))ex + sin(Φ j (t))ey] (6)

Φ j (t) = 2π

(
j

N4
+ω4t

)
, (7)

with R being the radius of the outer layer, and ω4 its angular
velocity.

Following earlier simulation studies of driven colloids,44,45

we model the hydrodynamic interactions on the Rotne-Prager
level. Furthermore, to account for the hydrodynamic effect of
the planar substrate, i.e a liquid-solid interface, we apply the
Blake’s solutions.44–46 The resulting hydrodynamic couplings
are described by translation-translation (TT) and translation-
rotation (TR) mobility matrices entering the equations of mo-
tion [see Eq. (1) in the main text]. Specifically, the TT mobil-
ity matrix is given by:

µ
T T
i j

=
D0

kBT
I+GRP (ri j)−GRP (Ri j)+δG(Ri j) , (8)

where ri j = ri − r j is the vector between particle i and j,
Ri j = ri− r′j is the vector between particle i and the image
of particle j, r′j = (x j,y j,−z j)

T is the position of the image of
particle j for an interface which is located at z = 0 and is in-
finitely extended in x and y direction. The first term of Eq. (8)
corresponds to the self mobility of particle i. The second and
third term are the Rotne-Prager tensors for the TT coupling of
particle i to particle j and its image respectively, given by

GRP (ri j)=
1

3πηdi

[
3
8

d j

ri j

(
I+ ri j⊗ ri j

)
+

1
16

(
d j

ri j

)3 (
I−3ri j⊗ ri j

)]
,

where η = kBT/3πd jD0 is the effective viscosity of particle j
given by the Stokes-Einstein relation. The last term in Eq. (8)
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contains the correction terms according to the Blake solution
(on the Rotne-Prager level)

δGαα (Ri j) =
1

3πηdi

[
3
16

d jR2
z

(
1

R3
i j
−3

R2
α

R5
i j

)
−

d5
j

64
1

R9
i j

(
4R4

α −R4
β
+3R2

α R2
β

)]
(9)

δGαβ (Ri j) =
1

3πηdi

[
9
4

d jR2
z

R2
α

R5
i j
−

d5
j

64

(
R2

α +R2
β

) Rα Rβ

R9
i j

]
,

(10)

where α,β ∈ {x,y} and Rα , Rβ are the α and β components
of Ri j, respectively.
The paramagnetic particles, forming the inner layer n = 1, are
driven by the rotating magnetic field which exerts a constant
torque onto these particles,

T j =
V χB̃2

0trelωm

µ0(1+ t2
relω

2
m)

ẑ, (11)

where B̃0 is the magnetic field strength employed in the sim-
ulations ∗, trel = 10−4s is the relaxation time and ωm =
2π rads−1 is the angular velocity of the magnetic field. This
torque is transferred to the motion of particles via the TR mo-
bility matrix

µ
T R
i j

=
1

8πη

(
ri j

r3
i j
− Ri j

R3
i j

)
ε̂ , (12)

where ε̂ is the Levi-Civita symbol.
The inner particles of the colloidal cluster are then driven by
a flow field uT R

i = ∑ j µT R
i j

T j exerted from the individually ro-

tating paramagnetic colloids. In the absence of all other par-
ticles, the cluster of the three paramagnetic particles performs
a regular circular motion on a ring, with an angular velocity
proportional to B2

0.
Combining the hydrodynamic mobility matrices with the

equation of motion of conventional (overdamped) Brown-
ian dynamics simulations, we finally arrive at Eq.(1) in the
manuscript. Following previous studies,47 the interaction
potentials were truncated and shifted accordingly at rc,pp =
1.169d for the Yukawa interaction [see Eq. (3)] and at rc,DD =
10.775d for the DD interaction [see Eq. (4)], with d ≈ 4 µm
being the diameter of the non-paramagnetic particles. The di-
ameter of the paramagnetic particles is set to dinner = 1.125d.

From the particle positions, we calculate the mean angular
velocity per layer as

ωn =

〈
1

2πNn

Nn

∑
i=1

ϕi(t +dt)−ϕi(t)
dt

〉
, (13)

∗ The magnetic field strength in the simulations is set to B̃0 = βB0
√

τD, where
the factor of proportionality β ≈ 862 is determined by fitting the linear re-
sponse of the free trimer, data not shown here.

with Nn the number of particles in the layer n, dt the time inter-
val between the measurements, and ϕi the angular component
in polar coordinates of particle i, which is defined as

rrri = ri[cos(ϕi)x̂+ sin(ϕi)ŷ] . (14)

Further, we calculate the elements of the system-averaged
stress tensor in polar coordinates as

σ̃nm =

〈
− 1

V

N

∑
i=1

N

∑
i6= j

∂Upp(ri j)

∂ ri j

[rrri j · n̂(ϕi)][rrri j · m̂(ϕi)]

ri j

〉
,

(15)
where V = πR2 is the volume of the system, N is the number
of particles and n̂, m̂ are the orthogonal basis vectors in po-
lar coordinates. In the steady state of an incompressible fluid,
this system-averaged stress fully determines the local stresses.
This is due to the fact that the stress density needs to be con-
stant, i.e. the divergence of the stress tensor vanishes. In polar
coordinates the local shear stress is σrϕ (r) = α/r2, where α

is an integration constant. The latter can be determined by
integrating the local stress over the whole system

σ̃rϕ :=
1

π
(
r2

4− r2
1

) ∫ r4

r1

∫ 2π

0
σrϕ (r)r dϕdr =

2log
(

r4
r1

)
r2

4− r2
1

α ,

(16)
where r4 = R is the radius of the outer ring and r1 is the radius
of the paramagnetic ring. From Eq. (16) it follows that the
local shear stress is given by

σrϕ (r) =
R2− r2

1

2log
(

R
r1

) σ̃rϕ

r2 . (17)

Using this expression we approximate the shear viscosity per
layer as the ratio between the local shear stress and the angular
velocity difference

ηn =
σρϕ (rn)

∆ωn
, (18)

where ∆ωn =ωn−ω4 is the angular velocity of layer n relative
to the outer ring ω4. In writing Eq. (18) we have assumed
∆ωn to be proportional to the true local shear rate. In other
words, for a solid-body rotation (ωn = ω∀n) the shear rate
would vanish, as one would expect.
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