+\
=7

=

UNIVERSITATo:
BARCELONA

Revealing DNA dynamics from atomistic
to genomic level by multiscale
computational approaches

Jurgen Walther

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a 'acceptacié de les segiients condicions d'Us: La difusié
d’aquesta tesi per mitja del servei TDX (www.tdx.cat) i a través del Diposit Digital de la UB (diposit.ub.edu) ha estat
autoritzada pels titulars dels drets de propietat intel-lectual unicament per a usos privats emmarcats en activitats
d’investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats de lucre ni la seva difusié i posada a disposicié
des d’un lloc alié al servei TDX ni al Diposit Digital de la UB. No s’autoritza la presentacié del seu contingut en una finestra
o marc alie a TDX o al Diposit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentacié de
la tesi com als seus continguts. En la utilitzacié o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes condiciones de uso: La
difusion de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu)
ha sido autorizada por los titulares de los derechos de propiedad intelectual Unicamente para usos privados enmarcados en
actividades de investigacion y docencia. No se autoriza su reproduccion con finalidades de lucro ni su difusién y puesta a
disposicion desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentacién de su
contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta
tanto al resumen de presentacion de la tesis como a sus contenidos. En la utilizacién o cita de partes de la tesis es obligado
indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX
(www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual
property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing
its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those
rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis
it's obliged to indicate the name of the author.










Revealing DNA dynamics from atomistic
to genomic level by multiscale
computational approaches

Jurgen Walther

Doctoral programme: Fisica

Facultat de Fisica
Departament de Fisica de la Matéria Condensada

Universitat de Barcelona

;.Qt%%‘ rrl;l
N, v ,_%’_
IRT)) il
BARCELONA -

— UNIVERSITAToe
I\ BIOMEDICINE BARCELONA






Revealing DNA dynamics from atomistic to
genomic level by multiscale computational
approaches

Programa de doctorat en Fisica

Autor/a: Jirgen Walther
Director/a: Dr. Modesto Orozco Lopez

Tutor/a: Dr. Giancarlo Franzese

ey e
e %
s 14 =1
==

INSTITUTE g UNIVERSITATDE

s BARCELONA






Acknowledgements

Many people accompanied me during my PhD years and it is difficult to keep track of all the people | met
and who influenced me during my path of becoming a doctor. Of course there is my supervisor, Modesto
Orozco, who always led me the right way in my research and from whom | could learn a lot of things.
Many thanks to Pablo Dans, my tutor and guide through my PhD from time consuming supervision in the
beginning to fruitful discussions of the results the last years. His influence was such that towards the end
of my PhD | even started to produce acceptable figures. The multidisciplinary environment in the lab
enabled me to learn a lot from the informatics side as well. There was Jose who inspired me a lot about
state of the art coding and he was always there when | accidentally deleted some of my files. A special
thanks to Adam, a great person from whom | learned so much on how to deal with Virtual Machines, to
Genis, a very nice guy with whom | learned to integrate data in a web environment. It was a pleasure to
set up many webservers with you. Many thanks to Isabelle, who always had an open ear and gave us lots
of biological input from an experimentalist’s point of view. Also many thanks to Alexandra and Diana with
whom | could share many interesting discussions and fun trips to conferences. Even though the lab
changed a lot during those years, the people who influenced me most were the ones who were there
from (almost) the beginning...Ricard, my beer brewing “R guru” who patiently solved my for him trivial
problems, Francesco, with whom | shared lab and waves, Hansel, who introduced me to the world of data
science, Federica, who is still convinced as | am writing this that | will never finish my PhD, Ivan, the movie
director whose wedding was as spectacular as his group meeting presentations, Juan, my ‘hippie pijo’, the
shared passion about football made us teammates in our IRB football team all those years, Sanja, with
whom | did many outreach projects together, Pedro, who gave me lots of advice in project and career
choices even before | started my PhD. To Pablo Romero, Manuel Sarmiento, Felipe Cano, Osama Essarab
and Eric Matamoros who | had the pleasure to tutor during their projects and | am sure all of you have a
bright future ahead. | would like to thank the entire lab, but it changed so much that it is impossible for
me to remember all the names. A special thanks goes to Richard Lavery and Marco Pasi with whom | had
the pleasure to stay for one week in Lyon in their research group.

To the IRB football team (Salva, Alex, Juan, Ernest, Craig and Jordi to mention the core of the team) with
who | had always lots of fun and success on and off the pitch as we managed to win title and cup one year,
thanks to all my surfing and climbing buddies (Francesco, Ricardo, Joel, Sergi, Craig) and Fabian for fun
tennis matches, sharing those moments together in all those years fills my heart with joy. A special thanks
goes to Carla who was always there for me even in my darkest moments and without her | would still try
to figure out how to format a large word document.

My last thanks goes to my parents who were always keen on knowing what | was working on and for the
support along my way. lhr wisst gar nicht wie gliicklich ich bin, dass ihr immer fir mich da seid. Die
regelmalRgen Gesprache haben mich immer wieder auf den Boden der Tatsachen zurlickgebracht und
mich die Dinge klarer und entspannter sehen lassen.






Table of contents

OVERVIEW

Thesis Organization

CHAPTER | - INTRODUCTION

1. Basic principles of History and Structure of DNA
1.1 History of DNA

1.2 Structure of DNA

1.2.1 Helical parameters

1.2.2 Backbone geometry

1.2.3 Helices

1.2.4 Structural families

1.2.5 Constrained DNA

2. Chromatin structure — a multi-scale problem

2.1 Nucleosome

2.2 Chromatin secondary structure

2.3 Chromatin tertiary structures

3. Theoretical multi-scale modeling of DNA
3.1 Ab initio approaches

3.2 Classical approaches

3.3 Coarse grain approaches

3.4 Mesoscopic approaches

4. Programs for multiscale DNA modeling and analysis
4.1 Webservers for DNA structure generation and analysis

4.2 Online research environments

5. Parmbscl

Bibliography for Chapter |

OBJECTIVES

CHAPTER Il - METHODS

1. Molecular Dynamics

1.1 Classical mechanics and force fields

1.2 Molecular Dynamics algorithm

1.3 DNA Force-field

. Parametrization of helical coarse grain model

. Parametrization of nucleosome fiber model

. Monte Carlo algorithm

vi A W N

. Analysis

5.1 RMSd — Root Mean Square Deviation




5.2 Radius of gyration -62 -

5.3 Principal component analysis -63-

5.4 Distance matrix -64 -

5.5 Solvent accessible surface area -65 -

5.6 Hydrogen bonds -65 -

5.7 Helical analysis - 66 -

5.8 Bending -67 -

5.9 Persistence length -67 -
Bibliography for Chapter Il -69 -
CHAPTER Il - RESULTS -82-
1. Sequence-dependent properties of B-DNA and structural polymorphisms -82-
1.1 Nearest-neighbor effects of DNA dynamics (Publication 1) -84 -

1.2 Higher than tetranucleotide effects of d(CpTpApG) (Publication 2) -143 -

2. A helical coarse grain model of B-DNA dynamics and its web implementation -181-
2.1 Extended nearest neighbor helical coarse grain model (Publication 3) -182 -

2.2 Web Implementation of the helical coarse grain model (Publication 4) -238 -

3. Development of a nucleosome fiber model (Publication 5) - 266 -
Bibliography for Chapter lli - 308 -
CHAPTER IV - DISCUSSION -312-
1. Sequence-dependent properties of B-DNA and structural polymorphisms -312-
2. A helical coarse grain model of B-DNA dynamics and its web implementation -313-
3. Development of a nucleosome fiber model -315-
4. VRE implementation -316 -
CONCLUSIONS -319-

Resumen en espariol -321-




Figures

Figure 1.

Figure 3.
Figure 4.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

Figure 19
Figure 20

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Discovery of DNA structure -3-

Figure 2. Structure of DNA double-helix -5-
Base-pair geometry -7-
Definition of DNA backbone torsions -10-

Figure 5. Groove geometry -11-
Figure 6. Three major forms of DNA double-helix -12-
Figure 7. Constrained DNA -14 -
Multi-scale nature of chromatin structure -17 -
Nucleosome structure -17 -
Secondary chromatin structure -19-
Chromatin tertiary structure -21-
Multi-scale simulations of DNA -23-

Coarse grain DNA models -25-
Mesoscopic models -26-
Webservers and online research environments -29-

Analysis of DDD -31-
Multi-scale nature of DNA modeling -47 -
Schematic illustration of the terms in a classical fixed-charge force field -48 -
Parametrization of nucleosome fiber model -58 -

. Distance matrices -64 -

Solvent Accessible Surface Area (SASA) - 65 -
Correlation coefficients between shift, slide, or twist -84 -
Normalized frequencies for shift, slide and twist -143 -
Normalized frequencies of shift, slide and twist at the central TpA step -144 -
Workflow of the MC-eNN helical CG model -182 -
Bi-dimensional inter base pair parameter maps -184 -
Comparison of MC-eNN and MD simulations -185 -

General workflow of the MCDNA webserver -238-

Details on the placement of the proteins along the fiber -239-
Procedure of deconvolution of the MNase data - 267 -

Figure 30.




Figure 31. Snapshots of VRE output of MCDNA and ChromatinDynamics -317 -

Tables

Table 1. Geometrical characteristics of the three major DNA double helices -13-




OVERVIEW

OVERVIEW

The study of DNA from atomistic to mesoscopic level and connecting different resolution levels
constitutes a major challenge since the new millennium. In the early 2000s, experiments could
resolve for the first time the structure of the nucleosome in high detail or capture physical
contacts in the genome of segments far apart in sequence. At around the same time, the force
field development for atomistic nucleic acid simulations reached a peak with parmbsc0 in 2007
and coarse grain nucleosome fiber models emerged. The first decade ended with, to my opinion,
the most remarkable experimental advance in visualizing the whole genome, Hi-C. In the current
decade, almost ten years after Hi-C was invented, the structure of the cell nucleus is still a very
hot topic. We can now harvest the fruits of the pioneers in the first decade of multi-scale
investigation of DNA and connect the different resolution levels to obtain a complete picture of

DNA from electron orbitals to genome folding.

In this work, we use computational approaches to dissect the different resolution levels, from
atomistic MD simulations to mesoscopic secondary chromatin structure modeling. We developed
a force-field for the accurate description of atomistic DNA dynamics based on quantum
mechanical simulations. With the accuracy of parmbscl, sequence-dependent effects of B-DNA
beyond the base pair level were described and used as a starting point to parametrize a novel
helical coarse grain model which shows similar accuracy to the DNA dynamics obtained by
atomistic MD, but at much lower computational cost. In the nucleosome fiber model the coarse
grain DNA algorithm is used for the linker DNA description and alongside with a simple mesoscopic
characterization of the nucleosome chromatin dynamics can be probed at kilobase scale with a

DNA model whose roots lie in the quantum mechanical regime.

On top of that, to meet current standards of accessibility and usability of tools, the developed
coarse grain DNA and nucleosome fiber model are freely available as stand-alone versions or

integrated in a single webserver or large-scale online research environment platform.



OVERVIEW

Thesis Organization

Because of the broad nature of topics covered in this dissertation | will first give a general
overview of the topics shared among the studies presented here (Chapter 1), from the structure
of DNA to the organization of chromatin in the cell nucleus both from the experimental and
theoretical point of view. In Chapter Il those general concepts are expanded in more detail for
better understanding of the results if required. The results section (Chapter Ill) is compiled of five
publications (or in the process of publication). The first part focuses on discoveries on sequence-
dependent properties of B-DNA and concomitant structural polymorphisms using molecular
dynamics simulations with the state-of-the-art parmbscl force field. The second part of the
results chapter takes advantage of all the information gathered about B-DNA and describes a new
helical coarse grain model of B-DNA alongside with its implementation in a webserver. The last
section of the results chapter deals with the development of a nucleosome fiber model, an
extension of the helical coarse grain model, and the prediction of realistic chromatin
conformations as they could possibly appear in the cell nucleus. A summary and a discussion of

each result section is presented in Chapter IV, with the main conclusions at the end of this work.
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CHAPTER | - INTRODUCTION

1. Basic principles of History and Structure of DNA

1.1 History of DNA

Far before the discovery of the DNA, Charles Darwin who already could describe the evolution of
life after it started wondered What is the essence of life?. The famous physicist Erwin Schrodinger
got one step closer to the solution by asking How can the events in space and time which take
place within the spatial boundary of a living organism be accounted for by physics and chemistry?.
He assumed that essence of life had to be the information stored in a molecule, an “aperiodic
crystal”, where different molecular entities are connected by covalent chemical bonds. The
discovery of the structure of DNA by Watson and Crick (1) was a scientific breakthrough for which

they jointly received the Nobel Prize in 1962.

Figure 1. Discovery of DNA structure. X-ray diffraction image of DNA used for constructing
the model (left) and Watson and Crick next to their model (right).

Based on the ideas ruled out by Schrodinger, they managed to construct the correct model of the
DNA double-helix from X-ray diffraction images collected by Rosalind Franklin and Maurice
Wilkins (see Figure 1). Their experimental findings satisfied previous experimental work by Erwin

Chargaff who found 1:1 molar ratios of adenine:thymine and cytosine:guanine in DNA. Chargaff

-3-
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also discovered different proportions of base composition among different species, which
confirmed Schrodinger’s hypothesis of the non-repetitive nature of DNA. Both Chargaff’s
experiments and the Watson-Crick structural model combined could explain basic principles of
base-pairing and the genetic code alongside its replication and transcription. Later on, many more
biological functions of DNA were unveiled (2): the process of DNA replication, the process of
transcription into messenger RNA and subsequent translation into protein sequences, the
compaction of DNA into chromatin and more recently the influence of sequence-dependent DNA

properties and epigenetic marks on the dynamics of chromatin architecture (3, 4).

1.2 Structure of DNA

DNA is a long polymer which is comprised of repeating units called nucleotides coiled around each
other to form two complementary strands. Each nucleotide consists of one of the four
nitrogenous bases (adenine (A), guanine (G), cytosine (C) or thymine (T)) and a phosphate-
deoxyribose segment comprising the backbone. The bases are planar aromatic heterocyclic
molecules which are divided into two groups: purines (A,G) and pyrimidines (C,T). In the natural
Watson-Crick base-pairing, a purine and a pyrimidine from each strand are held together by
specific hydrogen bonds: adenine pairs with thymine and guanine pairs with cytosine (see Figure
2). The A-T base-pair is kept together by two hydrogen bonds while the G-C base-pair has three
hydrogen bonds. The additional hydrogen bond makes the G-C base-pair more stable (around 1.5
kcal/mol, (5)). The nucleotides within one strand are connected via the backbone by
phosphodiester bonds. Base-stacking interactions among aromatic nucleobases and hydrogen
bonding between them are the main drivers of the stability of the DNA where stacking
preferences and the physical properties of the sugar-phosphate backbone give each base pair step
a slight twist of 35-36°, with bases nearly parallel to each other and an inter-base distance of 3.3-

3.4 A resulting in a double-helical staircase where ten base pairs form a helical turn.
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Nitrogenous bases
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Figure 2. Structure of DNA double-helix. DNA double-helix with highlighted nucleotide units
(left), the structure of the four nucleobases (top right) and the Watson-Crick base pairing
between the bases (bottom right).

1.2.1 Helical parameters

From a structural point of view the canonical model for DNA allows an elegant description of local
DNA dynamics by two types of movements at the base-pair level (intra base pair dynamics):
translations and rotations with respect to the previous base pair in the helix. This simplicity of
DNA dynamics gives rise to a set of geometrical descriptors of base morphology to describe DNA
conformation. This set of rotational and translational parameters between bases and base-pairs
was developed at the EMBO meeting in Cambridge in 1988 (“Cambridge Accord”) and
standardized at the Tsukuba Workshop in Nucleic Acid Structure and Interactions (6) by choosing

a single reference frame to calculate base morphology parameters. Parameters are defined either
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locally with respect to a local coordinate system attached to each individual base pair, or with

respect to a global curvilinear helical axis (Figure 3).

Thus, to fully describe the orientation and position of the two rigid body bases of a base-pair, 3

translational and 3 rotational parameters are defined, referred to as intra base pair parameters:

o Shear, stretch and stagger are called the relative displacements of the bases along their

x-, y- and helical axis (z-axis)

o Buckle, propeller twist and opening accordingly are the relative torsions of the base

planes around their x-, y- and helical axis (z-axis)

The degrees of freedom of a base-pair modeled as a rigid body is characterized with 10
coordinates, 6 of which are defined relative to the previous base-pair in a dimer reference frame

(inter base pair parameters):

e Rise s the relative displacement of one base pair to another in the direction of the helical
axis (z-axis) while slide is the displacement of one base pair compared to another in the
direction of the long axis (y-axis), measured between the midpoints of each C6-C8 vector.
Similarly, shift describes the relative position of two neighboring base pairs along their

short axis (x-axis).

o Twist is the angle between successive base pairs about the helical axis (z-axis). More
practically, it is measured as the change in orientation of the C1’-C1’ vectors going from
one base pair to the next. Corresponding to slide in the translational parameters, roll is
the dihedral angle for torsion of one base pair with its neighbor about the y-axis. A
positive roll value opens the base pair towards the minor groove while negative roll
indicates opening towards the major groove (groove definitions see section 1.2.3). Tilt (as
shift for the translational inter base pair parameters) is the corresponding dihedral angle

for rotation of one base pair with respect to its neighbor about the short axis (x-axis).

The remaining 4 parameters describe the geometry of a rigid base pair with respect to the helical

axis:
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X-displacement and Y-displacement define the distance, along the x- or y-axis
respectively, of the midpoint of the base pair mean plane with the helical axis. For

example, a base pair with positive X displacement is translated towards the major groove.

Inclination is the angle between the long axis (y-axis) of the rigid base pair and a plane
perpendicular to the helical axis. Tip is the angle between the short axis (x-axis) of the

base pair and a plane perpendicular to the helical axis.

z
z ? ; x
X x e
—eh Qe =
--;’?“* e g
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Figure 3. Base-pair geometry. Intra base pair parameters (top left), reference coordinate
frame (bottom left), inter base pair parameters (right top) and global base pair parameters
(right bottom).
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In summary, the helical parameters are a complete and intuitive toolset for the description of the
helix at base resolution level. Assuming rigid planar base pairs, the six inter base pair parameters
fully characterize the structure of DNA. The assumption of rigid planar bases is a good
approximation when global DNA dynamics at base pair level are studied since the displacement
of individual bases is usually small compared to the rigid base-pair movement. However, if the
relative orientation of bases within a base pair is wished to be considered, the six intra base pair
degrees of freedom must be additionally introduced. Even though the helical parameters are
mathematically independent, some of the parameters exhibit coupled behavior, for example
slide, roll and twist change simultaneously with overall bending. Similarly, inter base pair
parameters such as shift and twist are tightly connected to some of the dihedral angles (€ and )

defining backbone geometry.

1.2.2 Backbone geometry

The backbone configuration of DNA is best described by its torsional degrees of freedom. The

torsion angles of a nucleotide consist of 6 main chain, 5 sugar and one glycosidic torsion angle.

The rotation of the base relative to the sugar is described by the glycosidic torsional angle x (04’-
C1’-N9-C4 in purines and 04’-C1’-N1-C2 in pyrimidines). The base can adopt two major
orientations about the C1’-N9 bond: syn and anti, and a minor one: high-anti. The angle ranges
for the three conformations are 30°-90° for syn, 180°-300° for anti and around 270° for high-anti.
In syn conformation the Watson-Crick hydrogen bonding groups are oriented towards the sugar
while in the anti conformation these groups are directed away from the sugar ring. Purine bases
can both be oriented in syn and anti with a slight preference for the anti configuration while
pyrimidine nucleotides are found mostly in anti due to unfavorable electrostatic contacts in the
syn configuration (02 and phosphate group along the 5’ direction). In canonical double-helical
DNA, syn orientation of the nucleotides is almost never observed since Watson-Crick base pairing
requires, in general, nucleotides to adopt anti conformation; only in some exotic DNA
conformations such as Z-DNA, quadruplexes or triplex DNAs the syn orientation can play a

significant role.

The sugar ring is the flexible link between the nucleobase and phosphate backbone, with different

puckering modes influencing their relative orientation. The conformation of the five-membered
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furanose ring of the backbone can be described by 5 endocyclic torsional angles
(vo,V1,V3,v3 and vy, for definitions see Figure 4). The ring is usually not planar and atoms
deviating from the ring coplanarity lead to pucker conformations. Sugar pucker states are called
after cardinal directions, where C3’-endo-C2’-exo is called North, O4’-endo is called East, C3’-exo-
C2’-endo is called South and O4’-exo is called West. These states can be summarized into a more
elegant representation of the degree of the pucker by using a pseudorotation concept where T,
is the degree of the pucker and P the pseudorotation phase angle (7, 8). The parameters are

calculated as:

tan P = (V4 +v1) — (V3 +v)
2 v, - (sin36° 4 sin 72°) (1)

where P=0 corresponds to a maximally positive v, torsional angle which is the standard
conformation for nucleic acids. The puckering amplitude t,,, describes the maximum out-of-plane
pucker and is given by:

fm = CosP (2)

In practice, while the North conformation is predominant in RNA, DNA favors the South

conformation with a P angle of 140° to 185° (9).

The main chain torsions of a nucleotide are comprised of six dihedral angles a, B, y, §, €, {and are
described in Figure 4. The torsion is defined by four consecutive atoms about the bond between
the two central atoms (for example a is the rotation about the P-O5’ bond). Acommon convention
for describing these backbone angles is to define three major ranges as gauche+ (g+) around 60°,
gauche- (g-) around 300° and trans (t) around 180°. Even though the six torsional angles represent
six degrees of freedom, some main chain motions are correlated, forming torsional couples.
Coupling of a and y angle is responsible for the orientation of the phosphate group to the furanose
since the B torsion adopts values mostly in the trans region. In the canonical form of B-DNA the
o/y couple adopts g-/g+. Another torsional couple is £/Caround the O3’. Their concerted rotations
influence the motion of the 03’ atoms and the phosphate group of the following nucleotide (on

the 3’ side). Two major regions in the &/T conformational landscape, namely the Bl and BII
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backbone states, are characterized by the torsion difference (¢ — ). The Bl state is defined by €

and C adopting values of 120°-210° (t) and 235°-295° (g-) respectively.

A 3 end B
. | idi ion
_Chal_n purines
direction % 0.-C,.-N-C,
pyrimidines .
x> 0p-Ci=-N-C, 90°
rd
o
o
3
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5 end
D C
BI Bl
o P Phase = . mum
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Figure 4. Definition of DNA backbone torsions. A: Main chain torsions. B: Glycosidic
torsions. C: BI/BII transitions in the main chain. D: Puckering types.

In the transition from Bl to Bll state the phosphate of the following nucleotide is pushed towards
the minor groove, narrowing it, and € and C lie in the ranges of 210°-300° (g-) and 150°-210° (t)
(10, 11). Backbone angles not only are coupled among each other, their motion correlates well
with helical parameters. Bl and Bl states are associated with the inter base pair parameters, low
twist/low shift corresponds to a BIl conformation while high twist/high shift corresponds to the
more common Bl state. Moreover, as the helical parameters, the relative population of BI/BII

states in DNA dynamics is sequence-dependent.

1.2.3 Helices

Several characteristics arise from the double helical structure of DNA. A dominant feature are the

grooves which are spaces between the two strands. Due to the asymmetry in the base pairs two

-10 -
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parallel types of grooves exist: the major groove and the minor groove (Figure 5). Their dimensions
are related to the distances and orientation of base pairs from and to the helical axis, respectively,
and are characterized by two parameters. The groove width is defined as the perpendicular
distance between phosphate groups on opposite strands with respect to the helical axis, the
groove depth is calculated as the difference in polar radii between the phosphorous and N6
adenine or N2 guanine atoms, for major and minor groove respectively. The grooves can serve as
binding pocket for different molecules, bigger molecules such as proteins preferably bind to the

major groove while smaller ligands tend to bind to the minor groove.

B Major-groove side Major-groove side

TGy
Glycosidic

\
H C6lycosidic

bond bond
Minor-groove side Minor-groove side
Adenine-Thymine Guanine-Cytosine

Major
groove

Minor
groove

Figure 5. Groove geometry. A: Definition of major and minor groove. B: Orientations of
base pairs towards the grooves (taken from Biochemistry: A Short Course (Second Edition),
2013). C: DNA protein complex with Leucine zipper bound major groove (left; PDB:1YSA)
and DNA-ligand complex (ligand in magenta) bound to minor groove (right; PDB:264D).

1.2.4 Structural families

The most common structural type of DNA is its right-handed B-form (also called B-DNA). The B-
DNA helix is characterized by a right-handed spiral formed by two anti-parallel polynucleotide
chains with approximately 10 base pairs per complete helical turn, the sugar pucker in C2’-endo,
an anti conformation of the glycosidic torsion and well defined major and minor grooves. The

wide major groove is richer in H-bonding capabilities (06, N6, N7 of purines and N4, 04 of

-11-
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pyrimidines) than the minor groove (N3, N2 of purines and 02 of pyrimidines). For certain
stretches of purines (e.g. GAGGGA) and under non-physiological conditions (low humidity) DNA
can adopt the right-handed A-form. Compared to B-DNA, A-DNA has a wider spiral and a more

compact form with over 11 base pairs per helical turn with smaller distance between them.

Figure 6. Three major forms of DNA double-helix. From left to right: B-DNA, A-DNA, Z-DNA.
A: Top view. B: Side view.

The C3’-endo sugar pucker lowers the distance between consecutive phosphate groups which
forces the displacement of the base pairs with respect to the helical axis by nearly 5A. The last
major family of DNA helices is Z-DNA. Z-DNA is a left-handed helix favored by alternating
pyrimidine-purine steps (e.g. CGCGCG) at high ionic strength (above 4M NaCl). The purines of the
left-handed double helix are in syn conformation which results in a “zig zag” arrangement of the

phosphate groups. Even though the structure can exist only at high ionic strength it maybe is
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involved in regulation of transcription (12). For completeness, the characteristics of the major

helix forms of DNA are shown in Table 1.

Geometry
attribute A-DNA B-DNA Z-DNA
Helix sense right-handed right-handed left-handed
Repeat unit 1bp 1bp 2bp
Helical twist 32.7° 36.0° C/G: -49.3°/-10.3°
Roll 0° 0° C/G:5.6°/-5.6°
bp/turn 11 10 6
Inclination 22.6° 2.8° 0.1°
Rise 2.54 A 3.38A 7.25A
Pitch 28.2 A 33.2A 45.6 A
Propeller twist -10.5° -15.1° 8.3°
Glycosyl angle anti anti C/G: anti/syn
Sugar pucker C3’-endo C2’-endo C/G: C2’-endo/C2’-
exo
Diameter 23A 20 A 18 A
Major groove
Width 22A 11.6 A A
Depth 13.0A 8.5A 3.7A
Minor groove
Width 11.1A 6.0A 20A
Depth 2.6 A 8.2 A 13.8A

Table 1. Geometrical characteristics of the three major DNA double helices (data taken
from (13)).

The studies presented in this work consider DNA in its B-form, other double helical conformers

were only used for parametrizing and testing the newly developed parmbscl force field.
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1.2.5 Constrained DNA

Even though the study of free DNA is essential to understand basic principles of DNA flexibility,
DNA in nature is not always present in its naked B-form. In a cellular environment several factors
can influence the structure of B-DNA, some of those reduce the DNA’s freedom significantly. In
this section | want to briefly discuss two types of B-DNA in a restrained environment, namely
supercoiled DNA and protein-bound DNA (Figure 7). Simulations of those two types of constrained
DNA are available via the MCDNA webserver | developed in my thesis to simulate DNA dynamics

via a coarse grain model.

A B ALk = 0 ALk = -1 ALk =2
@3 360°
{
O A
Twist = -1, Writhe = 0. ¥
'
8 Twist = 0, Writhe = -1. c
AR5
©_3 720° ;
'

© Twist = -2, Writhe = 0.
i

(,é), Twist = 0, Writhe = -2.

Figure 7. Constrained DNA. A: Schematic view of Twist and Writhe of a supercoiled circle.
B: Representative structures of a DNA minicircle of 260bp in length with different changes
in linking number (structure is shown from the front and rotated by 90°). C: Structure of
protein-coated DNA.
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DNA supercoiling

DNA supercoiling is a cellular strategy for packing the genetic material efficiently into a small
nuclear space, but it is also implicated in genetic control. The over- or underwinding of DNA
emerges from several cellular processes that induce torsional stress. In prokaryotes and
eukaryotes the DNA is slightly negatively supercoiled (14). In such a constrained environment, for
example, DNA supercoiling can enhance contact of DNA fragments which lie far apart in the linear
genomic sequence. From a mathematical point of view, supercoiled DNA can be described as if
the extremes of a DNA fragment were fused together and form a circle. An important variable for
constrained circular structures is the linking number. The relaxed structure of an unconstrained
DNA helix is characterized by the number of helical turns (the sum of the twist values of every
base pair step divided by 360° (Tw)) and is called the default linking number Lk, of the relaxed
circle (Lky=Tw). When DNA is over- or underwound and topologically constrained, the resultant
torsional stress is relieved either by the introduction of writhe (Wr) which is the number of times
the double helix crosses over on itself (supercoils) or by a change in the number of helical turns
(Tw). The total linking number Lk then changes from its relaxed state Lk, (ALk = Lk — Lk;) and

is distributed among Tw and Wr by satisfying the topological condition Lk = Tw + Wr.

Protein-coated DNA

The interaction of regulatory proteins with DNA is crucial for several cellular processes ranging
from gene expression regulation to DNA replication, repair and compaction.

Proteins can bind the DNA in two ways. In the non-specific binding the overall electrostatic
attraction between protein and DNA and the overall DNA geometry are the main factors. In
specific binding proteins recognize specific DNA sequences by either direct or indirect readout. In
a direct readout the DNA sequence is read through specific contacts between amino acid side-
chains and base functional groups exposed at the protein—DNA interface. In an indirect readout,
proteins recognize DNA sequences through sequence-dependent variations in flexibility and
structural parameters such as the groove width, the twist between base pairs, or the backbone

conformation. In most cases both direct and indirect readouts work in a complementary way for
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specific protein binding (15). Once the protein is bound to the DNA it alters the geometry of the
nucleic acid at the binding region forcing it to deviate from its equilibrium conformation. However,
this altered geometry is relatively stable (an example is the nucleosome (see next section)), as a
result, DNA in protein-DNA complexes behaves like a rigid object compared to naked DNA. For
example, for a DNA structure of 1000 base pairs in length without any proteins bound to it long-
range contacts between distal DNA sites which can be essential for gene regulation are very rare.
In contrast, when regulatory proteins bind to DNA, alter its path and constrain its flexibility more
long-range contacts can emerge. This mechanism is the basis of gene regulation where DNA is

compacted into chromatin inside the cell nucleus.

2. Chromatin structure —a multi-scale problem

In eukaryotes, the higher order structure of DNA inside the cell nucleus is called chromatin - the
nucleoprotein complex that stores the genetic material. Chromatin is present in a highly compact
form with its 3D arrangement resembling a tightly packed “ball of wool”. In humans, for example,
DNA of 2m in length is compressed into a nucleus of around 6um in diameter, which corresponds
to a compression ratio of up to 10000. Due to such a high folding ratio, different levels of
compaction have to be considered to thoroughly understand the multi-scale nature of the
chromatin fiber. The first level of compaction is achieved by wrapping 147 base pairs (bp) of B-
DNA ~1.7 times around an octamer of histone proteins forming the fundamental repeat unit of
eukaryotic DNA: the nucleosome. Nucleosomes are connected via DNA linkers of 20-80 bp in
length (depending on the organism) forming a “beads-on-a-string” form of chromatin. In the next
level of compaction, the nucleosome string condenses into a polymer-like form. Early in-vitro (16,
17) and in-silico (18) experiments suggested a regular compaction into a fiber of 30nm in
diameter, however in-vivo the situation is more complex due to many parameters such as DNA
linker length, the linker histone concentration, the cellular ionic environment and the effect of
chromatin remodelers (19, 20). In the last level of compaction, the dense chromatin chain is super-
coiled forming chromosomes (see Figure 8). With the emergence of new experimental techniques
in the last decades such as STORM (21), cryo-EM (22), FISH (23, 24) and 3C-based techniques (25,

26), the dynamic three-dimensional structure of chromatin among different resolution scales
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from base pair to sub-chromosomal megabase level with its implications for gene regulation and

diseases is now broadly studied (27-32).

DNA Nucleosome Beads on a string More compaction Chromosome
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Figure 8. Multi-scale nature of chromatin structure.

2.1 Nucleosome

The nucleosome core particle consists of two copies of histones H2A, H2B, H3 and H4. In higher
eukaryotes the accommodation of an additional linker histone is possible (H1 or H5 depending on
the organism). It binds to the nucleosome core in the region close to the DNA edges of the DNA
binding regions modulating the entry-exit angles of linker DNA which in turn influences the higher

order structure of chromatin (33).

Methyl Group

Histone
Octamer

Figure 9. Nucleosome structure. A: Schematic view of the nucleosome structure with DNA,
histone octamer, histone tails and a selection of possible epigenetic modifications. B: High-
resolution X-ray structure (PDB:1KX5).
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The sequence and molecular structure of histones is highly conserved among different species,
with alpha helices allowing the polymerization and N-terminal tails unstructured and exposed to
the environment serving as a target for many posttranslational covalent modification processes
in the nucleus such as acetylation, methylation and phosphorylation. These modifications in turn
are connected to the transcription state of the nearby genes (34) making them a strong indicator
for the determination of active and inactive chromatin domains. The high-resolution X-ray crystal
structure of the nucleosome ((35), PDB ID 1KX5, 1.9A resolution, see Figure 9) reveals 147 base
pairs of DNA wrapped 1.65 times around the cylindrical nucleosome core particle with the histone
tails protruding out of the core. The shape of the nucleosomal DNA is far from equilibrium: the
high DNA curvature is reflected by large absolute inter base pair step values of slide and roll and
it kinks the minor groove in favor of the major groove. Due to this unusual shape the underlying
sequence plays a significant role in wrapping around the histone complex, favoring or disfavoring
nucleosome formation which has implications on nucleosome positioning along the genomic

sequence (36, 37).

2.2 Chromatin secondary structure

In the next step, nucleosomes are connected via DNA linkers and chromatin secondary structure
is then defined as the arrangement of the ‘beads-on-a-string’ fiber. Several regular topologies of
chromatin secondary structure have been proposed to exist based on in-vitro data (38), the most
popular among them are ‘solenoid’ and ‘zigzag’ arrangement of nucleosomes (Figure 10A). The
one-start ‘solenoid’ model is an interdigitated one-start helix where consecutive nucleosomes
interact with each other and follow a helical trajectory with bending of linker DNA. In the two-
start ‘zigzag’ model straight linker DNA connects two opposing nucleosome cores which gives rise
to a two-start helix. Due to advances in experiments and computational modeling in the last few
years, it is now assumed that chromatin in-vivo adopts more dynamic and heterogeneous
conformations (39) which depend on DNA linker length, linker histone concentration, epigenetic
modifications and the effect of chromatin remodelers which altogether influence the local
geometry and transcriptional state of chromatin. Recent experiments using super resolution
STORM microcopy (21) (Figure 10B) suggest that chromatin in human and mouse is organized in

nucleosomes assembled in heterogeneous groups of varying sizes called “clutches” interspersed
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with nucleosome depleted regions where the clutch size and compaction correlates well with

active and inactive chromatin.
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Figure 10. Secondary chromatin structure. A: Theoretical secondary structure motifs based
on in-vitro experiments (taken from (32)). B: STORM microscopy of nucleosome occupancy
in cells (taken from (21)). C: Micro-C contact matrix (taken from (40)).

In yeast, Micro-C (40) experiments revealed that nucleosomes form self-associating domains of
1-5 genes in size (ca. 2-10kb) where domain boundaries are enriched in nucleosome depleted
regions (Figure 10C). The length of the DNA linker connecting two adjacent nucleosomes might
play a decisive role in chromatin compaction (41), and the distribution of linker sizes can vary
between different cells, even when they are perfectly synchronized. Unfortunately, most of
experimental data are determined by population-based approaches, where thousands to millions
of cells are needed to determine the 1D nucleosome positioning along the genomic sequence
((42); now also single cell MNase-seq exists (43), but the noise/signal ratio in these experiments

is still too large). The conversion of nucleosome positions of a population of cells into a possible
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3D conformation of chromatin inside a single cell is a promising approach to be able to represent
the population-based dynamics in nucleosome positioning by a set of 3D structures derived by

computational models.

2.3 Chromatin tertiary structures

The tertiary structure of chromatin in the interphase nucleus needs to be explained over a wide
range of length and resolution scales (44, 45). It can be best understood ‘top-down’ — beginning
with its biggest unit, the chromosomes (in the Mb scale), and ending with specific geometrical
arrangements with biological relevance of the chromatin fiber in the kb regime (Figure 11). In the
cell nucleus, chromosomes (in the Mb scale) are isolated and occupy distinct territories where
inter-chromosomal interactions are rare compared to intra-chromosomal contacts. Large, gene-
poor chromosomes are commonly located on the periphery near the nuclear membrane while
gene-rich chromosomes are generally found inside the nuclear core. In the multi-Mb scale (in
humans), chromosomes are organized into two spatial compartments labeled A and B, with A
having a more open structure and being expression-active while B is more closed and expression-
inactive (26). Beyond compartmentalization, chromatin is found to form self-associating domains
called TADs. These self-interacting regions can range in the low Mb scale in humans down to
around 5kb in smaller organisms such as yeast (40). Proteins attached to the boundary of TADs
such as CTCF or cohesin are key factors of the dynamic remodeling of chromatin such as chromatin
looping (low to high kb scale depending on the organism) where DNA regions which are far apart
in the linear genome are brought into close contact. Looping events can regulate gene expression
by influencing physical enhancer-promoter contacts. Approximately 50% of human genes are

believed to be involved in long range chromatin interactions through DNA looping (46).

Most of the findings of 3D genome organization were achieved by a new experimental method.
Since the emergence of Chromosome Conformation Capture techniques (3C) in 2002 (25) the
study of global genome structure inside the cell nucleus has flourished in the last decade. Several
3C-based techniques exist, the most popular amongst them being called Hi-C (26). By cross-linking
genomic segments of few hundred to a few thousand base pairs in length, Hi-C experiments can
estimate genome-wide the frequency of interaction between genome loci in the nucleus. The

measured contacts are statistical averages over a population of cells. A variety of polymer models
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of the tertiary structure of chromatin have been developed to accommodate the large set of

restraints which arise due to the contacts into a physically realistic geometrical structure (see

section 3.4).
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Figure 11. Chromatin tertiary structure. a) Schematic view of different levels of compaction
(45). b) Single compaction states illustrated by means of contact matrices (44).

Using the Hi-C technique combined with FISH microscopy the structural genome variability and

its biological implications are currently studied in different environments and conditions related
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to cellular development and disease (for a more detailed description, see (29, 30)). Again, worries
exist on the value of the 3D models obtained by imposing Hi-C restraints as they correspond to
average contacts obtained in a pool of cells, and deconvolution of the cell-pool signal or
alternatively single cell data obtained by ultra-resolution microscopy of high sensitivity or single
cell Hi-C are required to provide a real representation of chromatin structure.

Until recently, the different levels of chromatin compaction were treated separately where in
distinct resolution scales (chromatin secondary structure in the low kb scale and chromatin
tertiary structure in the Mb scale) different tools for experimental and theoretical approaches are
used. With the improvement in Hi-C resolution and cost-efficiency (1kb (47)) and the emergence
of STORM microscopy, recent efforts are being made (48) where Hi-C and STORM microscopy
attempt to connect both resolution levels by combining different experimental techniques and
novel computational modeling which in my opinion will be the future of this field of research in

the next decade.

3. Theoretical multi-scale modeling of DNA

In anideal scenario, a single theoretical framework could describe the dynamic properties of DNA.
However, the study of DNA covers a broad range of different scales. The nuclear DNA in a human
cell measures more than 2m while the distance between two base pairs lies in the A-scale. Some
dynamic structural changes like chromatin reorganization along the cell cycle happen in the day
time-scale while electronic rearrangements occur in the sub-femtosecond scale. It is then
impossible for one single theoretical model to cover such a broad time and size range and
therefore multiscale approaches relying on different levels of simplifications are necessary (Figure
12). The theoretical models applied to the study of DNA include (from small to large sizes or short
to long time-scale) quantum mechanical (QM) ab initio approaches, classical atomistic molecular

dynamics (MD), coarse grain (CG) and mesoscale modeling (49, 50).
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Figure 12. Multi-scale simulations of DNA.

3.1 Ab initio approaches

The highest level of detail of DNA simulations is achieved by QM approaches. These ‘first principle’
(ab initio) methods are used to study changes in electronic structure, including catalytic,
photophysical or spectroscopic properties. QM models most commonly use the Born-
Oppenheimer approximation where nuclei (treated as classical particles) and electron movements
are disconnected. Average and more accurate representations are used to depict the correlation
between electron densities. QM methods, even for the highest level of simplification, require an
immense computational power which limits them for the study of small model systems (one or a
few nucleotide units) at short time scales (sub femtosecond). Combining quantum mechanical
and efficient molecular mechanical methods (QM/MM) makes it possible to study a larger system
where only the region of interest is modeled in QM description while the surroundings are treated
classically. QM/MM methods constitute a perfect theoretical framework for systems where the
region requiring QM level can be precisely localized. For more information on QM and QM/MM

methods see (51, 52).
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3.2 Classical approaches

Instead of explicitly treating electronic densities as in the QM approaches, classical models
represent atoms as deformable and charged balls of a given radius joined by springs. The energy
terms modulating local (bonded) and remote (non-bonded) interactions are simplified as classical
terms defining the force field, a classical Hamiltonian which can be used to derive forces which in
turn is the fundament to derive trajectories by simple integration of Newton’s equations (the
molecular dynamics; MD approach). The force field is then the heart of Molecular Dynamics (MD)
simulations and its parametrization is tightly connected to the accuracy of MD. Classical atomistic
studies of DNA are usually done on duplexes of dozens (linear DNA) to a few hundreds of base
pairs (circular DNA) and time scales of up to a few ps can be reached. A more detailed explanation

of MD simulations is given in the following chapter (for a comprehensive review see (49)).

3.3 Coarse grain approaches

In coarse grain (CG) models the complexity of the system is reduced to achieve longer time and
length scales (thousands of base pairs) than those accessible to MD simulations. In CG models,
chemical groups or even entire residues are represented as single interacting centers, which
decreases the number of pairwise interactions in the calculations of potential energies and forces
(Figure 13). Two types of coarse graining exist to accurately describe the DNA dynamic properties
(49, 50, 53, 54). Firstly, in Cartesian particle-based CG methods 3 to 8 beads represent one
nucleotide and the beads are chosen to reproduce the connectivity between backbone, sugar
puckering and base, as well as hydrogen bonds between bases (55-57). The energy functional of
particle-based CG methods can be derived in a ‘top-down’ manner where the set of interactions
is empirically parametrized by a trial-and-error procedure to fit experimentally determined
thermodynamic properties or structural and dynamic features of double- and single-stranded
DNA. In the ‘bottom-up’ approach, reference MD simulations are mapped into a CG system via
the many-body potential of mean force (PMF). Most particle CG models use implicit Langevin

dynamics with the solvent treated as continuum.
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Figure 13. Coarse grain DNA models. Left: Cartesian particle-based coarse grain model by
De Pablo group (Knotts et al. 2007). Right: Internal coarse grain model by Maddocks group
(cgDNA Daiva et al. 2014 NAR).

The second coarse graining method is called ‘internal CG model’ and uses rigid bases or rigid base
pairs, the relative movements between them being described by helical parameters. In the case
of rigid bases an oligomer of n base pairs is represented by 12n-6 internal coordinates (58) while
for rigid base pairs 6n-6 inter base pair parameters have to be considered (59, 60). The internal
energy of the system is the sum of the local nearest-neighbor interactions and is typically
represented in a quadratic form (harmonic approach) (49, 50, 53, 59-61). DNA conformations are
sampled in the internal space usually via a Monte Carlo algorithm and are then subject to back
mapping into Cartesian space. The internal CG ‘force field’ contains ground state and stiffness
matrices that depend on the underlying DNA sequence and are parametrized from MD
simulations. Most commonly, internal CG models use the rigid base pair approach with the base
pair step (bps)-dependent parametrization. Nearest-neighbor representations of DNA have been
traditionally used, which means that dynamics of DNA can be derived from the parameters of the
10 unique bps (59). However, recent studies (62, 63) revealed that the flanking base pairs of a bps
influence the dynamics of the central bps so that this approach is not sufficient to describe DNA

dynamics, and the tetranucleotide environment has to be considered (nearest neighbor). A
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compendium of different particle-based and internal coordinate-based CG methods can be found

in (49, 50, 64—68).

3.4 Mesoscopic approaches

For the description of secondary and tertiary chromatin structures (see description above) CG
models become computationally too expensive forcing the use of even more simplified methods.
Two types of models exist covering chromatin properties of either secondary or tertiary structure
(Figure 14): (i) nucleosome fiber resolution working in the kb range and (ii) chromosome level

resolution working in the Mb-Gb range.

The ‘bottom-up’ approach of nucleosome fibers (27, 49, 50) takes the accurate atomistic
description of the constituents of chromatin and transfers it into a coarse grain model. Known
physical properties of the nucleosome core particle and linker DNA (both from experiment and
simulations) are used to derive DNA flexibility and CG potentials. The representation of the
nucleosome core is usually based on its experimentally determined X-ray structure while it is
common to summarize several base pairs (6 in (69), 10 in (18)) into one bead and to use average
bending and stretching properties derived from worm-like chain models for the linker DNA
representation. Model parameters such as the ionic environment, the DNA linker length, the
presence and absence of linker histones, or the existence of posttranslational histone

modifications can be included to resemble the in vivo situation as close as possible (70, 71).

Figure 14. Mesoscopic models. Left: Nucleosome fiber model by Schlick group (39). Right:
Block co-polymer model by Jost group (72).
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Chromosome simulations usually make use of polymer models (one monomer can comprise from
less than one kb up to several kb’s (49)) and introduce additional interactions to fulfill
experimental restraints such as the contact probabilities between genomic fragments derived by
Hi-C or ultra-resolution microscopy experiments. By tuning specific inter-chain interactions these
simple physical models can be very valuable to describe dynamic chromatin rearrangements in
the Mb to Gb scale by simple mechanisms, for example specific attractive inter-chain interactions
between monomers in certain regions with the same epigenetic mark could capture the nature
of the epigenomic domains (72). A review of mesoscopic approaches of chromatin tertiary

structure prediction can be found in (49, 50, 73, 74).

4. Programs for multiscale DNA modeling and analysis

Several programs were developed to simulate DNA from atomistic to chromosomal level, most of
them are freely available for the user to download and compile to use the program on a local
machine or cluster. The Amber suite of programs (75) is a prominent example of a complex toolkit
to set up and perform MD simulations of biomolecules. Amber provides a set of in-house analysis
programs via Ambertools and there also exist external programs such as Curves+ (76) or 3DNA
(77) which provide information on the helical parameters, groove geometry and backbone
conformation of the simulated DNA trajectory. DNA simulations via CG models can be performed
for example with oxDNA (78) (Cartesian CG model) or cgDNAmc (79) (internal CG model). To
predict the tertiary chromatin structure programs are provided which integrate experimental Hi-
C data to convert into spatial restraints to build a polymer-like model of the three dimensional
chromatin structure in an interactive way (80) (TADbit). Results of the 3D structure can be
visualized alongside the experimental data via TADkit locally or in a web-based service

(http://sgt.cnag.cat/3dg/tadkit/).

In recent years, the community for web-based services to facilitate simulation and analysis of
nucleic acids has been growing steadily. Web services are used to make computational tools
developed in-house freely available to experts as well as to non-experts without the sometimes
laborious compilation of the source code on the local machine. Web services have the advantage

that they can make use of a graphical interface for simple data input by the user and to show
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directly the output of the program in a well understandable interactive way. They can comprise a
single program or even a pipeline of several already existing tools so that the user can perform a
multi-step process in a single interface. In the next section | will focus on web services for DNA

structure generation and structure analysis.

4.1 Webservers for DNA structure generation and analysis

A plethora of web services exist to build, analyze and visualize DNA structures in atomistic or
coarse grain representation. To build a DNA structure from scratch the user usually just has to
provide a sequence as input and the webserver creates a DNA structure in a geometrical
configuration specified by the user. There is the possibility to create straight or bent DNA (81, 82)
conformations based on user specified input of helical parameters (77, 82) or based on
precalculated equilibrium helical parameter values (83) (cgdna web). Those web services offer in-
house analysis in the internal helical space and other geometrical parameters of the generated
structure (82, 83). The user can also upload his own DNA structure in PDB format (76, 77, 81, 82)
to use the analysis tools of the web services which usually comprise Cartesian and internal
descriptors of the DNA geometry. Some web services not only allow structure generation and
analysis, they can also setup and analyze atomistic MD simulations. NAFlex (81) (Figure 15) for
example offers a variety of methods to explore nucleic acids flexibility, from base pair resolution
elastic model of flexibility to MD simulations. Within the MD-framework NAFlex uses the MDWeb
platform (84) to set-up the simulation by a multi-step procedure. Following preparation
simulations can be launched using common molecular modeling programs such as Amber (75).
Trajectories, obtained either in situ or provided by the user, can be visualized and analyzed by a
variety of tools in helical and Cartesian space which makes NAFlex a tool for DNA simulation and
analysis across multiple length scales. The trend nowadays is to follow the example of NAFlex, but
at a much bigger scale offering the user more possibilities for biomolecular simulations and to

analyze experimental data in the same online environment.

4.2 Online research environments

Another type of web environment emerged, the Virtual Research Environment (VRE;

http://vre.multiscalegenomics.eu/home/; see Figure 15). It was developed by the Multiscale
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Complex Genomics (MuG) consortium with participation of several known research groups in

Europe.
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Figure 15. Webservers and online research environments. Left: NAFlex webserver
(https://mmb.irbbarcelona.org/NAFlex). Right: Virtual Research environment of the MuG
consortium (https://vre.multiscalegenomics.eu) with a selection of integrated tools (top)
and a snapshot of the virtual workspace (bottom).

In the VRE many individual programs to simulate DNA at different resolution and length scales
and tools to analyze experimental data from 1D to 3D chromatin organization are integrated into
a single online research environment. At the current state (as of February 2019) it comprises a set
of tools for studying DNA and chromatin flexibility, determining in-vivo nucleosome positions
along the genomic sequence (Mnase-seq) and analysis of Hi-C, ChIP- and DNase-seq data. The VRE
is open for every tool developer to integrate their tools in a straight forward manner. Input files
can be created directly in the VRE or uploaded by the user. All input and generated output of the
integrated tools are visible in a single user workspace which makes it feasible for the user to
execute different tools in the same environment. The existence of a single workspace per user
allows interconnectivity between tools, which means the output of one tool can serve as input of
another tool without any problems creating a pipeline of tool executions. A possible way to
interconnect tools in the VRE is to first determine in-vivo nucleosome positions from MNase-seq
data using nucleR (85) and use the predicted nucleosome positions of a genomic segment to

construct a three-dimensional structure with the integrated nucleosome fiber model.
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5. Parmbscl

The balancing between the strong electrostatic repulsion between the phosphates and attractive
forces such as stacking and hydrogen bonding between the nucleobases dictate DNA’s overall
stability. On top of that, the solvent environment influences this balance by screening phosphate
repulsion and indirectly affects the fine shape of the DNA double helix. Accounting for a correct
balance between strong and opposite interactions is a great challenge for simple molecular

mechanics force fields.

The MMB group developed along many years strong knowledge in examining physical properties
of nucleic acids by molecular dynamics simulations, part of the efforts can be contemplated in the
parmbscO force field that, after its publication in 2007, has been the gold standard for force-fields
until recently. However, as simulation time extended, several shortcomings of parmbscO
simulations arose (86—92), among them excessive terminal base fraying (87), a too stiff x torsion
which led to difficulties in representing exotic DNA structures and significant deviations of helical
parameter averages (twist and roll) related to the underestimation of the BI/BIl equilibrium

coming from wrong sampling of £/T coupled distributions (87, 91).

Once identified those problems efforts in the group were undertaken to reparametrize the
parmbscO force field with regard to the torsional backbone angles, most notably sugar puckering,
£/T and x torsions using high-level QM calculations. In the meantime, several efforts by other
groups were undertaken in parallel to improve known inconsistencies of parmbscO. Specific
corrections to parmbscO involved modifying the x distribution (xOL4) for the simulation of DNA
guadruplexes and the g/T distribution (g/T0L1) (90, 93). Recently, the Czech group published the
latest force field (OL15) which incorporated all previous OL corrections for DNA and included

additional improvement on the B torsion angle estimation (94).

In our case, after more than four years of extensive testing, the new parameter set named
parmbscl was released in 2014 and it was shown to outperform previous molecular mechanics
force fields at that time (see Section 1.3 in Chapter Il for an overview of the force field

development).
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By correcting the coupled £/T profile, parmbscl (95) improved backbone sub-state populations
BI/BIl as € and T in trans/gauche- (gauche-/trans) represent the canonical Bl (BIl) state (95).
Additionally, by correcting the backbone dihedrals, known deviations from normality of helical
parameters (twist and roll) of certain base pair steps which are tightly correlated to the backbone
state and experimental values of helical parameters were well reproduced. The correction of the
glycosidic angle accounted for the syn/anti equilibrium of the base orientation which reduced
terminal base fraying and allowed for accurate simulation of non-canonical DNA structures. The
resulting trajectories showed better conserved terminal hydrogen bonding and low RMSd of
terminal bases compared to experimental data. Small imperfections with the puckering profiles
appeared in a pilot simulation of the small duplex d(CpGpApTpCpG). The puckering profile was
corrected by reparametrization of puckering torsions which correct an excessive bias of parmbsc0

towards East conformations.
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Figure 16. Analysis of DDD. (a) Comparison of the MD average structure (light brown) with
the NMR structure (light blue) (PDB ID 1NAJ) and the X-ray structure (green) (PDB ID 1BNA).
(b) Comparison of average values of helical rotational parameters (twist, roll and shift) per
base-pair step coming from NMR (cyan), X-ray (green), 1-us parmbscO trajectory (black) and
1.2-ps parmbscl trajectory (magenta) data. Error bars denote +s.d. (adapted from (95))
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Incorporating these three corrections into one force field (95), we proceeded to assess its
performance by validating it on more than a hundred DNA structures with a large variety of DNA
motifs. The simulations with an overall accumulated time of ~140 ps all showed good agreement
with known structural properties both from experiment and theory, the motifs ranging from
unrestrained canonical B-DNA, canonical B-DNA restrained to a circle, various non-canonical
forms, other unusual DNA conformations such as triplexes and quadruplexes, to complexes where

DNA is bound to a protein or a ligand.

One of the validation studies was a simulation of the most known B-DNA duplex, the Drew-
Dickerson dodecamer (DDD). Parmbscl simulations lead to significant improvements compared
to parmbscO simulations preserving hydrogen bonds and helical parameters at the terminal
residues (see Figure 16) sampling now correctly twist and roll profiles with the average much

closer to experimental values as well as an increased BIl population (by 7%).

Other tests involved simulations of DNA minicircles of 106 bp in length at different superhelical
stress. While without supercoiling no denatured regions were observed (only one kink out of all
replicas) negatively supercoiled minicircles formed distortions as a result of superhelical stress, a
phenomenon known experimentally (96, 97). Looking at the DNA flexibility parmbscl predicted
persistence lengths obtained from simulations of long (up to 56 bp) canonical B-DNA duplexes in
the range of 40-57 nm, close to the generally accepted value of 50 nm. Besides the universal
experimental validation by structural comparison also direct experimental observables could be
computed for the structures where data was available. In the case of DDD, RDCs and NOEs are
similar to those obtained in the NMR-refined structures. Additionally, simulations using parmbscl
provide violations statistics equivalent to those determined from “de novo” NMR-derived

ensembles.

In summary, parmbscl undoubtedly constitutes a major improvement to previous force fields in
the study of dynamic properties of DNA. Two hundred citations at present time (more than 100

predicted in 2019) indicates the impact that this force-field is having in the field.
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The global objective of this thesis is to advance in the development of methods for the multiscale
modeling of DNA from atomistic to sub-chromosomal level. The works presented here represent
each a rung in description of DNA dynamics along the resolution ladder underlining the
connectivity of each of the simulation methods with its neighbors in terms of model resolution
which simplifies defining specific objectives that run like a golden thread through the different

topics covered in this thesis.

e Elucidation of sequence-dependent effects of B-DNA beyond the base pair level. Using
MD simulations with the parmbscl force-field, we aimed to develop a complete set of
rules at the tetranucleotide level to describe complex polymorphisms in helical space and
the correlations between helical conformations and the backbone sub-state at the base,
base pair and base pair step level. To examine higher-than-tetranucleotide effects on DNA
dynamics we studied the d(CpTpApG) tetranucleotide in different hexa- and octamer
environments to uncover the potential influence of specific sequence patterns on long-

range conformational changes.

o Development of a mesoscopic B-DNA model based on the set of rules derived for DNA
dynamics at the tetranucleotide level. Our purpose was to decipher complex structural
polymorphisms with the help of machine learning tools to parametrize an extended
nearest neighbor helical coarse grain model. We compared the similarity of atomistic
reconstituted coarse grain ensembles with MD trajectories and experimentally resolved
structures in Cartesian and helical space to test whether the developed model can

potentially replace atomistic MD in the study of certain systems at atomistic detail.

o Development of a webserver using the mesoscopic B-DNA model to provide simulations
of B-DNA - in linear form or in a constrained environment such as supercoiled and protein-
coated DNA - in a web environment easily manageable for non-expert users. For

additional user friendliness we aimed to provide direct online analysis so that the
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generated set of structures can be subject to a large variety of analysis tools within the

webserver.

o Development of a nucleosome fiber model with base pair resolution which is used to
probe chromatin dynamics of fibers with different linker sequence distribution. The
flexibility in the choice of the model parameters is targeted to be such that realistic fiber
conformations can be deduced directly from experimentally determined in-vivo

nucleosome positioning data and that additional restraints can be directly applied.

¢ Implementation of the mesoscopic B-DNA model and the nucleosome fiber model in
the Virtual Research Environment (VRE) for easy user access and for simplifying
communication among the integrated tools which comprise computational modeling and
analysis of experiments related to genome architecture from base pair to chromosome

level.

Additional to our research objectives we decided to compile current knowledge on computational
approaches in multi-scale DNA modeling from quantum mechanics to chromosome simulations.
Two works were done on this topic, one focusing on providing a compendium of recent advances
in computational modeling of DNA while the other one, in form of a book chapter, centralized

more in the basic methodological description of the different simulation methods.
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CHAPTER II - METHODS

The focus of this thesis is the theoretical description of DNA in the multi-scale regime — from
atomistic simulations up to kb long mesoscale modeling (see Figure 17). In this chapter the
computational methods used in this thesis are explained in more detail, namely the molecular
dynamics (MD) algorithm for atomistic simulations and the Monte Carlos sampling method for
the coarse grain helical DNA model and the mesoscopic chromatin model. The nature and the
parametrization scheme of the helical coarse grain model developed here is also briefly explained
in this chapter. Different strategies to build mesoscale chromatin models are already discussed in
Section 3.4 in Chapter |, however | will give a more detailed overview of what has to be taken into
account to transfer from a coarse grain to a mesoscale model. The chapter is complemented by
the analysis methods | used to bridge the resolution gap between atomistic and mesoscopic

modeling.

Resolution
reduction

Atomistic Helical Coarse Mesoscale
Molecular Dynamics Grain model Chromatin modeling

Figure 17. Multi-scale nature of DNA modeling. The pathway from atomistic MD
simulations to mesoscopic nucleosome fiber modeling.
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1. Molecular Dynamics

1.1 Classical mechanics and force fields

Among the different existing techniques to obtain macromolecular dynamic information, the
most popular one is atomistic Molecular Dynamics (MD). Classical mechanics is used to represent
atoms as spheres of a given radius, hardness, charge and mass (1). The energy functional used by

force-fields is usually composed of two terms: bonded and non-bonded components (Figure 18).

Epond / 0 0
L 4
Edihedral 0 / ’0 o O
v 4 K )

Eangle

L A ~A
Of ¥olox

9 Enon-bonded = Eelec + Evaw

Figure 18. Schematic illustration of the terms in a classical fixed-charge force field, i.e. bond
stretching (Eponq), bond-angle bending (E;,ge) and dihedral-angle torsion (Egipedral), as
well as van der Waals (E,qw) and electrostatic (E.j.) interactions

Bonded terms are associated with chemical bond lengths, bond angles and bond dihedrals and
non-bonded terms describe electrostatic and van der Waals interactions. The potential energy

can be thus written as

Epot = Eponded * Enon-bonded (3)
where
Eponded = Epond + Eangle + Eginedral (4)
and
Enon-bonded = Eelec + Evaw (5)
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Dissecting the different bonded terms:

e Chemical bonds:

Energy related to the bond length between two atoms. Harmonic potentials are used to

approximate the small vibration of covalent bonds around its equilibrium bond length

Epond = Z kp(r— rO)Z (6)
bonds

where Kk, is the bond force constant, r is the observed bond length and ry is the

reference equilibrium bond length of the atom pair.

e Bond angles:

Energy associated to the angle between two adjacent bonds in a molecule. A harmonic

oscillator is used to estimate the energy

Eangle = Z kg (6 — 90)2 (7)

angle

where kg is the angular force constant, 6 is the observed angle, 6, is the

reference equilibrium bond angle.

e Torsions:
Energy describing the rotation energetic barriers of an atom pair bond (four adjacent

atoms define dihedral angle w). Due to their periodicity dihedral angle potentials cannot

be described by harmonic terms, a truncated cosine Fourier expansion is used instead.
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Vi
Edihedral = Z Z > (1 + cos(nw —)) (8)

dihedral n

where V,, is the height of the barrier (for every term), n the periodicity (usually
truncated to 3), w is the observed dihedral angle and y the phase angle. Closely related
to the torsional interaction are out-of-plane distortions, i.e. the capacity of an atom to be
out of the plane formed by the other three atoms involved in the dihedral. These

improper dihedral angles can also be accounted for in force fields.

Within the non-bonded terms:

e Electrostatic term:

Energy term associated with the point charges of atoms in a molecule. The electrostatic

interaction between two atoms i and j are modeled by a Coulomb potential:

1 qjq;

— 4TIEE)  Tjj ()
ij

Eclec =

where € is the dielectric constant of the medium, €, the vacuum permittivity and

1j; the distance between the two point charges q; and ;.

e Van der Waals energy term:

The van der Waals interactions describe the behavior of two atoms when they are
approaching each other without forming a covalent bond leading to Pauli repulsion and
when they are close to an ideal inter-nuclear distance leading to attraction. Both
attraction and repulsion are summarized in one potential, usually described through the

Lennard-Jones potential:
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e\ 12 \6
E = 2] —2( 22
vdw € <rij> <rij> ] (10)

where € is the depth of the potential well, r,, is the distance at which the
potential reaches its minimum for the given atom pair i,j and rj; is the distance between

atomiandj.

The bonded interactions are computationally inexpensive since they all occur among neighboring
atoms. The most expensive part of energy evaluation are the non-bonded terms represented by
the Lennard-Jones and Coulomb potential since they theoretically involve all particles in the
system. The van der Waals term decays rapidly with distance justifying the use of “cut-offs”,
however the Coulomb potential falls off slowly, with r %, and would suffer from major truncation
artifacts if a cut-off was imposed (2). To overcome this problem, methods for long-range
corrections of the electrostatic potential have been developed, the most common approach is the
particle-mesh Ewald (PME) method (3) which shows a good balance between accuracy and
computational efficiency. Therefore, the electrostatic energy is divided in two terms, a short-
range potential, calculated in the real space, and a long-range potential, which becomes short-
ranged when calculated in the Fourier space. Consequently, both terms of PME converge rapidly
and an inclusion of a cut-off distance does not impair accuracy. The PME scales with the number
of particles N in the order of O(N - log N) compared to O(N?) for direct calculations which

facilitates the simulation of larger systems using the PME method.

The PME assumes periodic symmetry of the system in order to perform Fourier transformation.
In MD simulations this is achieved by using periodic boundaries to mimic an infinite system where
an infinite array of identical copies of the simulation region (unit cell; its shape can be a cube,
dodecahedron or truncated octahedron) extends around the unit cell in every direction. The size
of the unit cell is chosen to be big enough to avoid that the biomolecule gets too close to the
edge. The periodic boundary conditions keep the total particle number constant since any particle

that passes through one side of the unit cell reappears on the opposite side.

The fine tuning of the different constants appearing in the above mentioned energy terms is a
complex process that requires detailed evaluation of each functional to yield an accurate

representation of the DNA’s conformational space and thermodynamics.
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1.2 Molecular Dynamics algorithm

The time evolution of the system can be generated by using the laws of classical mechanics
(Newton’s second law of motion). Forces acting on a particle with coordinates X are proportional

to the negative gradient of its potential energy U

F(X) = -VU(X) (11)

which leads to that mass m and acceleration a of a particle are proportional to the negative
gradient of its potential energy:
dv d?x

FX) = maX) = ma = mF =-VUX) (12)

Theoretically, system particle coordinates during time could be obtained analytically solving equ.
(12). However due to complex particle couplings, the equation needs to be solved numerically.
The verlet algorithm and its variants leap-frog and velocity verlet are the most common in MD
simulation programs. Verlet algorithm (4) calculates the atomic positions r at time t + At from the

actual positions r(t), the positions from the previous step r(t — At) and the accelerations a(t):

r(t + At) = 2r(t) — r(t — At) + At?a(t) (13)
The Verlet algorithm does not calculate explicitly velocities, but they can be extracted using
different simple approaches.

Leap-frog, a variation of the Verlet algorithm, calculates the velocities alongside with the new

positions (5):

r(t+At) =r(t) + At-v (t + %At) (14)
1 1
V(t+§ At)=v(t—§At)+At~a(t) (15)
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Velocities and positions are not synchronized, as they are calculated at time t + 1/2 Atand t+

At, respectively. The velocity verlet algorithm allows calculating velocities and positions at the

same time:
1
r(t + At) = r(t) + At- v(t) + EAtZa(t) (16)
1
v(t+ At) = v(t) + EAt [a(t) + a(t+ At)] (17)

In all the algorithms the integration time step At is crucial since the acceleration is assumed to be
constant during that time. Choosing a too large time step might cause instabilities of the
macromolecular system while too small integration time steps increase the computational time
of sampling the movement. In atomistic MD simulations the integration time step is chosen not
to be bigger than the smallest motion in the system which for biological systems is the bond
stretching involving hydrogen atoms occurring on the 1 fs timescale. Seen from the biological
level, these vibrations are irrelevant for the final results of the simulation and special algorithms
such as SHAKE (6), LINCS (7) or RATTLE (8) exist to constrain the smallest vibrational movements

to allow longer integration time steps (from 1 fs to 2 fs) which in turn speeds up the simulation.

As mentioned above, MD simulations rely on Newton’s equation of motion where the energy of
the system E, the volume V and the number of particles N is conserved, known as microcanonical
ensemble (NVE ensemble). However, to capture conditions closer to experiments, pressure and
temperature need to be kept constant and ensembles such as canonical or isothermal-isobaric
give a more appropriate description. In the canonical ensemble (NVT ensemble) the total energy
is allowed to vary, but the system is maintained at constant temperature by means of a
thermostat. Popular techniques to control temperature include weakly coupled algorithms like
velocity rescaling, Berendsen thermostat, Nose-Hoover thermostat and Langevin dynamics (9—
12). Additionally to the condition of constant temperature, most experiments are performed in
an environment where pressure is invariable with varying volume, so experimental conditions can
be best reproduced with an isothermal-isobaric ensemble (NPT). Similarly to the thermostat the

pressure can be controlled by the Berendsen, Nose-Hoover or Parrinello-Rahman barostat.
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Generally, while stochastic models lack reproducibility of the trajectory, deterministic algorithms

tend to lose ergodicity and can equilibrate very slowly.

The environment of most biomolecular MD simulations is made of water and ions with their
representations being as important as the representation of the studied biomolecule. On the one
hand, the solvent can be represented implicitly as a continuous medium by approximating the
mean force exerted by the media on the solute while on the other hand water and ions can be
explicitly included in the system. Implicit water models have substantial advantages in computing
time, however they neglect specific important features such as hydrogen bond fluctuations at the
solute surface, water dipole reorientation in response to conformational changes and bridging
water molecules. Therefore it is common to use explicit water models for simulations of
biomolecules up to a certain size, among the most popular ones are TIP3P (13) and SPC/E (14).
Together with different models of monovalent ions (15, 16) the impact of using distinct water and
ion representations in MD simulations on local and global fiber properties is a current field of

study (see section 5 in Chapter ).

1.3 DNA Force-field

To correctly evaluate the generic force-field formula

Etotal = Ebond + Eangle + Edihedral + Eelec + EvdW (18)

parameters for each energy term have to be carefully evaluated for each atom type to reproduce
realistic DNA dynamics. Atom type assignment depends on the functional group the atom is part

of and/or hybridization state.

The first simulation of a DNA molecule took place in the 80’ and since then MD simulations have
been improving rapidly with the first microsecond simulation of a Drew-Dickerson dodecamer
(17). This fast development goes along with the increase in computational power where faster
processors, bigger supercomputers and advances in GPU technologies allow the study of larger
biomolecular systems at a longer time scale. This in turn can create new issues in force-field
parametrization never observed before on shorter time scales (18-21) which are ought to be

improved.
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The basic parametrization scheme relies on the transferability approximation where the force-
field is parametrized on a small set of molecules and then applied to a wider group of molecules
with similar chemical groups. This assumes that parameters are not dependent on the local
environment and that, in case of DNA, the parametrization of the four nucleotide units should be
enough to simulate any DNA molecule. Current parametrization efforts respond to errors
detected in previous force-fields, most commonly a QM study on a small system is directly
compared with the same system simulated with MD to refit the parameters. This approach is used
in the AMBER or CHARMM families of force-fields (20, 22-27). While the advantage of this
strategy is its accuracy due to the QM study, potential neighboring effects could be neglected due
to system size. In other approaches experimental data is used as additional restraints to fit the
force-field for different macromolecules (28-30) which by definition results in good
reproducibility of the experimental data at the expense of universality of the description of

different forms of the macromolecule.

Although being a stable biomolecule, DNA’s flexibility and charged nature makes it difficult to
simulate. In the physics point of view, two forces balance the DNA structure: strong electrostatic
repulsion between the phosphates in the backbone and attractive stacking and hydrogen bonding
between nucleobases. Changes in solvent environment can additionally affect these two forces

and thus influence the shape of DNA.

Different force-fields emerged since the first MD simulation of a DNA molecule by Levitt, with
parm99 (24) being in our opinion the first reliable force-field for DNA which could correctly
simulate DNA dynamics of timescales up to 50 ns. However, with the increase in computational
power problems at longer simulation timescales arose. Distortions in the structure were related
to disproportionate a/y populations from the canonical gauche-/gauche+ state towards
gauche+/trans. Those problems were corrected by the parmbscO force-field (25) which allowed
stable DNA simulations in the multi-nanosecond regime. For a decade, parmbscO became the
‘gold-standard’ for DNA simulations with over 1500 citations (up to 02/2019). Nevertheless, some
issues still remained and with the steady increase in computational power, challenges in multi-
microsecond simulations came up. Experimental values of helical parameters, especially those of
roll and twist, were misestimated (parmbscO undertwists the structure by, in average, 3° (17)).

The BI/BlI-equilibrium, which has been shown to correlate with the bimodality of the twist
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distribution, especially for RpY steps such as d(CpG), is biased towards the canonical Bl state (17,
21, 31). The fraying of terminal bases was very large, generating unrealistic configurations at the

ends of the DNA (32).

Corrections to the parmbscO force-field involved reparametrization for exotic DNA forms or the
attempt to create a new standard for DNA simulations. For example, the OL1 parameter set (26)
tackled the g/C representation for more accurate Bl/BIl populations, OL4 (20) aimed to correct the
x distribution, followed by OL15 which included all previous OL corrections for DNA and
incorporated additional adjustments of the B torsion (33). Efforts from MacKerell's group
incorporate a Drude’s oscillator term accounting for polarisation effects (the energy contribution
arising from the mutual relaxation of electron distribution of interacting particles (34)). The
resulting force field (CHARMM36pol) is the first polarizable force field able to reproduce some
nucleic acids structures (like the B-DNA duplex) in the 100 ns regime. However, when simulations
are extended to the microsecond regime even canonical DNA structures are corrupted (35), so

more work is still needed to recalibrate all the terms to the incorporation of polarization.

Even though the modifications for parmbsc0O could correct some issues, not all the problems of
DNA simulations were addressed yet, which motivated the development of a universal force-field
for DNA simulations. The efforts resulted in a new force-field, parmbscl, which constitutes a
major improvement to previous force-fields in the study of dynamic properties of DNA (see

section 5 in Chapter I).

2. Parametrization of helical coarse grain model

Coarse grain (CG) models which reduce the complexity of the system are used to achieve longer
time and length scales in DNA simulation than those accessible to MD. The ‘internal CG model’
(see Section 3.3 in Chapter | for a summary of different approaches to construct a CG model) uses
internal degrees of freedom to describe DNA dynamics, usually rigid base pairs being the smallest
unit of the model (36, 37) (some models assume rigid bases (38—40) which implies a slightly
different parametrization procedure). The motion between two rigid base pairs consists of the six

inter base pair parameters (three translational (shift, slide, rise) and three rotational (tilt, roll,
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twist) parameters are considered in this model for each base pair step (bps)). The DNA
deformations can be approximated as a sum of harmonic distortions (36) from equilibrium bps

geometries and the Hamiltonian can be described as:
N-1
E=) ¥ (19)
j=1

where E is the total energy of DNA deformations, N the number of base pairs in the DNA
oligomer (the sum expands over all bps) and E/ is the individual deformation energy of bps |

calculated as

ke ki kg Ky K Ky

. . . i\ 2
B =g (XJ - XJO) with E = kgTC™! = (20)

kfr klr ksr ktr kr kwr/

where kj is the Boltzmann constant, T is the absolute temperature, XJ is the vector of
inter base pair parameters of bps j, X is the equilibrium inter base pair geometry, EJ isthe energy

of base pair step j associated with the deformation X —X];) and kyy stands for the different
stiffness constants defined by the 36 elements of the stiffness matrix (Z) (shift (), slide (1), rise (s),
tilt (t), roll (r), twist (w)). The stiffness matrix can be calculated (see equ (20)) by inversion of the
helical covariance matrix C obtained from either the analysis of MD simulations at dinucleotide or
tetranucleotide level (18, 41) or from the analysis of dinucleotide step variability in crystal
structures of DNAs and DNA-protein complexes (31, 36). Early elastic models rely on the use of a
nearest neighbor representation of DNA (36, 37, 41) (10 stiffness matrices and equilibrium
conformations based on the unique bps). However, recent works revealed that the flanking base
pairs of a bps influence the dynamics of the central bps so that a bps approach is not sufficient to
describe DNA dynamics and the bps in its tetranucleotide environment has to be considered
(nearest neighbor) (41-47). Recent studies have also raised concerns on the use of the purely
harmonic approach (21, 31, 48, 49), as DNA samples different conformational sub-states which
motivates the development of an extension of the nearest neighbor model that uses multi-state

harmonicity in each tetranucleotide.
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3. Parametrization of nucleosome fiber model

The transition from a CG DNA model to a mesoscopic nucleosome fiber model brings several
challenges (Figure 19). CG DNA models in most cases do not consider long-range interactions since
it is highly unlikely that distant DNA segments in sequence get close in three dimensional space
for the DNA length scales accessible to a CG model. In nucleosome fiber models there are two
crucial differences compared to CG models of naked DNA: first, the size of the model is much
bigger (low to high kb-scale) which makes it necessary to represent fiber parts in a more coarse
fashion, and secondly, with the nucleosome a complicated DNA-protein complex is involved, so

long-range potentials become important to avoid physical overlap of fiber constituents (50, 51).

Ey;(DNA — DNA)
Epy (DNA — DNA)

Figure 19 Parametrization of nucleosome fiber model A: Different representation of the
nucleosome. Top: Detailed DISCO model from Schlick group (52). Bottom: Spherical
nucleosome core (55) B: Energy terms to consider in the nucleosome fiber model of DNA
and nucleosome core (NC).

To tackle the first issue - as pointed out in Section 3.4 of Chapter | - nucleosome fiber models are
built based on the ‘bottom-up’ approach which means that known physical properties of DNA and

nucleosome core particle are mapped onto a more coarse level to derive appropriate geometry
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and potentials of the constituents. Two choices have to be taken when building a nucleosome
fiber model: (1) the level of detail of representing the nucleosome and (2) the representation of
the linker DNA. In most models the coarse grain nucleosome representation is based on its
experimentally derived structure (more details on the nucleosome see Section 2.1 of Chapter I).
Pioneering work such as Schlick’s model uses an irregular surface with a set of Debye-Hiickel
charges of the nucleosome core defined by a discrete surface charge optimization algorithm (52),
together with flexible histone tails and different linker histones (53) while in other models the
whole nucleosome core is represented by simple objects such as a cylinder (six angle model; (54))
or as a sphere ((55) and the model presented here). Appropriate inter-nucleosomal potentials
have to be developed depending on the present nucleosome geometry. Most nucleosome fiber

models choose to model the linker DNA as a worm-like chain (WLC) (55, 56).

In this treatment, a DNA segment is represented as an elastic chain of N beads, each bead
comprising M base pairs, connected by N-1 inter-bead segments of average length I. The WLC
model for linker DNA usually comprises stretching, bending and torsional energy between two
consecutive beads, the associated stretching, bending and torsional constants for those quadratic
energy terms are derived based on average DNA fiber properties. This means that with a WLC
model sequence-dependent description of linker DNA flexibility is typically not considered. Other
approaches choose a ‘helical CG’ model with base pair resolution to represent the linker DNA to

be able to accurately describe its sequence-dependent dynamic behavior (57).

To prevent physical overlap between the constituents of a nucleosome fiber (assuming they are

spherical) a CG potential is applied usually in the form of a Lennard-Jones potential:

r 12 r 6
By =€ [(‘) () ] -

ij

where €* is the depth of the potential well, r;,, is the distance at which the potential
reaches its minimum for the given constituent pair i,j and r;; is the distance between the

geometric center of constituent i and j.

In normal environmental conditions DNA and the nucleosome cores are charged (the DNA has a

total negative charge due to the phosphate and the nucleosome core is positively charged). To
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account for electrostatic interactions within the nucleosome fiber a Debye-Hiickel potential (58)

is usually applied:

e—KI‘i]'

1
E :_E s ——
DH Arteey L qigj ry (22)
i

where € is the electric permeability of vacuum, € is the dielectric constant (set to 80), r;;
is the distance between the geometric centers of fiber constituents i and j, g; and q; are the
associated charges and k is the inverse Debye length (the decay length of electrostatic interactions
in a solution with physiological concentration of monovalent salt). In the case of interaction
between nucleosomes more complex potentials combining prevention of physical overlap and
electrostatics can be used depending on the geometric representation of the nucleosome in the

model (52, 54, 56). The total energy of a general nucleosome fiber model is then

E = EDNA + EL] + EDH (23)

where Epy 4 represents the internal energy associated to linker DNA (see equ. (19)), Ey;
the total excluded volume energy and Ep the total electrostatic contribution by DNA-DNA, DNA-

nucleosome and nucleosome-nucleosome interactions.

Nucleosome fiber models are usually parameterized to match compaction levels found in
experiments for example by in-vitro experimental data such as compaction of medium-sized

chromatin fibers by sedimentation coefficient measurements (59), EMANIC (60) or X-ray (61).

4. Monte Carlo algorithm

The sampling of internal CG models and many nucleosome fiber models is done via Markov Chain
Monte Carlo algorithm (only a few use Langevin MD (50)). This type of algorithm predicts a new
configuration based solely in its present state (Markov process). In a Markov Chain Monte Carlo
move a set of parameters of the current fiber configuration is changed in a random way and the

suggested configuration is accepted or not based on its energy (see below). The set of coordinates
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subject to change can be of different nature (Cartesian, internal, helical). The magnitude of the
change attempted is also random, but constrained within reasonable limits to avoid extremely
high rejection rates. Determination of these limits is non-trivial when local helical coordinates are
used (see Section 2.1 and 3 in Chapter lll). In models using non Cartesian coordinates, like those
presented in Section 2.1 and 3 in Chapter Il (based on local helical coordinates), the internal move
can be mapped back to Cartesian coordinates for the possibility to simultaneously evaluate energy

potentials in internal and Cartesian space after the Monte Carlo move.

Irrespectively of the coordinate system and the energy functional used, current Monte Carlo
approaches follow the Metropolis approach (62) and the attempted new configuration is
accepted or rejected based on the energy difference AE = Epew — Eprevious between the new
and the previous configuration. In case of AE < 0, the new configuration is accepted and used to
generate a new potential Monte Carlo move. If the potential energy of the new configuration is
higher than the one of the previous configuration two possibilities exist: either the new
configuration gets rejected and another Monte Carlo move on the original configuration is carried

out or the new configuration can still get accepted based on the Metropolis criterion

_AE
u <e keT (24)

where u is a random number between 0 and 1, kg the Boltzmann constant and T the
temperature. The Metropolis criterion is usually applied in Markov Chain Monte Carlo models
since it allows to escape local potential energy minima in the sampling space to reach an

extensively sampling of the whole conformational space.

5. Analysis

In the previous section the methodology and the algorithm to generate a series of structures
(trajectory) of MD and CG/mesoscopic simulations were ruled out. In this section | will introduce
the main analysis tools | used to analyze time ensembles from MD simulations or probabilistic
ensembles from CG/mesoscopic models. When coarse grain DNA structures can be mapped back

to an ‘atomistic’ representation equivalent analysis at the atomistic level can be performed for
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MD and coarse grain trajectories. Due to the ergodic theorems, time and probabilistic ensembles

behave the same way in terms of ensemble average properties.

5.1 RMSd — Root Mean Square Deviation

RMSd is the value that quantifies the minimum deviation of atomic positions of a given structure

X from those of a reference structure Y.

RMSd = min (25)

where X; and y; are the coordinates of each of the N selected equivalent atoms in
structure X and reference structure Y. The RMSd between two structures is minimized by a simple
least squares fitting algorithm and the reference structure is usually an experimental structure or
the first structure of the trajectory. Consequently, RMSd can serve as an indicator of structural

stability along simulation time and as a similarity measure with experimental data.

5.2 Radius of gyration

The radius of gyration measures the compactness of a system. It is defined as the mass-weighted

distance of each particle from the center-of-mass of the structure:

(26)

where m; is the mass of particle i and d; is the Euclidian distance of particle i to the center-
of-mass. The radius of gyration has many different fields of application, for example it can be used

to compare the compactness of chromatin of fibers with different linker length distributions.
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5.3 Principal component analysis

To describe the major movements of DNA in a simulation the principal component analysis (PCA)
method is able to separate major motions from thermal fluctuations. The natural motions of a
structure, the principal components, explain most of the variance of the trajectory. Since PCA
helps extracting essential motions of DNA it is often called ’Essential Dynamics’. The principal

components are derived from the covariance matrix C of the atomic positional fluctuations:

C = cov(X) = (AXAXT) (27)
with

AX = X — Xyef (28)

where X is the set of atomic coordinates in matrix form of a given structure, X,..r is a

reference value (usually the average structure of the trajectory), AXT is the transpose of AX and

the angle brackets (- ) represent averaging over the distribution.
The principal components can be obtained by diagonalization of the covariance matrix C

A=ATCA (29)

where A is the diagonalized covariance matrix with eigenvalues A, the n-th column of the
transformation matrix A corresponds to the eigenvector with eigenvalue 4,,. The eigenvectors are
the principal components and the corresponding eigenvalues represent the percentage of

variance explained by each eigenvector.

Essential dynamics can be used to determine similarity between trajectories (63). For example,
Hess’ metrics accumulate the dot products between a reduced set of eigenvectors of two

trajectories A and B and the absolute similarity index y45 can be defined as

Yap = %z”: zn:(VfVJB)Z (30)

j=1i=1

where n is the number of eigenvectors used and viX stands for the i-th unitary eigenvector

of trajectory X. A more sophisticated similarity measure is Perez’s metrics which account for the
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different energy contributions of the essential movements by weighting the accumulated inner
products between two eigenvectors (63). Essential dynamics can also be used to reduce the
complexity of the system by only considering a certain number of the most significant
eigenvectors. PCA analysis can also be used in internal space, for example PCA on the inter base
pair parameter space (6-dimensional) of a given base pair step helps to uncover complex

correlations among the parameters.

5.4 Distance matrix

A distance matrix shows the Cartesian distance of the chosen constituents of a macromolecular
system. The diagonal entries in the distance matrix comprise self-interaction and have zero
distance by definition while the off-diagonal entries can show complex three dimensional
structural arrangements in two dimensional matrix form. This dimension reduction method is
used for example for long-range contacts in DNA fibers or regions with higher nucleosome content
in chromatin fibers. If an ensemble of structures is subject to analysis, different parameters such
as the mean, minimum or maximum distance in matrix form can shed light on structural

arrangements of the ensemble.

st

30 4%

20

|

Figure 20. Distance matrices. Top: DNA structure (left) and its corresponding distance
matrix (right) counting from the center of each nucleobase. Bottom: Nucleosome fiber
structure (left) and distance matrix of the center of each nucleosome core (right).
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5.5 Solvent accessible surface area

Solvent accessible surface area (SASA) is designated as the region of the surface of a molecule
exposed enough to be able to interact with solvent molecules. It is usually defined as a surface
built by the delineation drawn by the center of a sphere (rough presentation of a solvent
molecule, usually radius of 1.4 A, approximating the size of a water molecule) rolling over the
molecular surface (see Figure 21). SASA values are obtained in this thesis using the well-known
software called NACCESS (64). SASA can be used for nucleic acid fiber to allow an easy
identification of the fragments of DNA affected by the attached proteins, not only in the regions
where they are docked, but also in protein-free regions that see their accessibility hindered by

these proteins.

Aecessible
surface

Figure 21. Solvent Accessible Surface Area (SASA). Atoms of the molecule are represented
as van der Waals spheres, and the solvent accessible surface area is defined by the center
of arolling ball (S) representing the solvent molecule while going over the molecule surface.

5.6 Hydrogen bonds

The electrostatic attractive interaction between a proton in one molecule (acceptor) and an
electronegative atom (donor) in another atom is a hydrogen bond (HB). The strength of
interaction of HBs is higher than for van der Waals interaction, but weaker than covalent bonds.
HBs are crucial for the 3D arrangement adopted by a macromolecular system since its intra-
molecular HBs define and maintain the structure. As the strength of HBs is sensitive to orientation

and distance between donor and acceptor, HBs are determined by a defined cut-off distance
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between donor and acceptor, 3.5 A in our case, and a cut-off angle, 120° in our case. Studies of
HB dynamics (breaking/formation) give quantitative information about conformational reshaping

of the secondary structure.

5.7 Helical analysis

DNA trajectories can also be analyzed by means of its internal coordinates in the helical space. A
helical axis is fitted as a curvilinear line in the direction of the propagation of the helix and the
position and orientation of the bases within a base pair can be defined by ten internal coordinates
(see Section 1.2.1 in Chapter | for details). The motion between two base pairs is assumed by only
three translations and three rotations. This set of parameters can be obtained from a MD or
‘atomistic’ reconstituted coarse grain trajectory using Curves+ software (65) which provides
information on the helical parameters, groove geometry and backbone conformation (in terms of
dihedral torsion angles). Curves+ can be used to assess the quality of trajectories in atomistic
resolution and compare important parameters among different trajectories either in the internal
inter base pair space or by evaluating backbone properties such as torsional angles, BI/BIl state
population or groove widths and groove depths. From the set of helical parameters obtained by
trajectory analysis via Curves+ flexibility constants of a base pair step depending on their
sequence environment can be derived and used in lower resolution coarse grain models (for more
details see Section 2 in Chapter IlI). Similar analysis programs such as 3DNA exist (66), nevertheless

we use Curves+ as standard analysis program due to its versatility.

Additionally, CANION (67), a new module of Curves+, can be used to calculate the positions of any
atom in curvilinear helicoidal coordinates with respect to the helical axis. Using the CANION
extension, several studies can be performed, for example to examine the impact of different ion
concentrations in the grooves on DNA flexibility or to determine the position of the phosphate in
the backbone relative to the helical axis, which turned out to be crucial for mapping helical models

to the Cartesian atomistic level.
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5.8 Bending

The bending of a segment of DNA quantifies the curvature of the fiber. The total bending angle of

a segment of k base pairs starting from base pair n is obtained by (68)

BIO (k) = \/b’é(k)z ()2 a1)

where bX(k) and b (k) are the bending contributions in the xz- and yz-plane (the
directions of x-,y- and z-axis are determined by the triad of the first base pair in the segment; for
definitions of the axes see Section 1.2.1 in Chapter I). The individual bending contributions can be

calculated based on the rotational inter base pair parameters tilt, roll and twist as

k+n-1 k+n-1
by (k) = Z pj cos d; + Z T; sin @; (32)
i=n i=n
k+n-1 k+n-1
bY (k) = Z pj sin @; + 2 T cos ®; (33)
i=n i=n

where p;, T; and ®; are the values of tilt and roll of base pair step i and cumulative twist
summed from base pair step n to i. Parameter k is usually chosen to be 5 base pairs (half turn) or
10 base pairs (full turn) while to calculate the total bending of a DNA fiber of N base pairs in length
the parameters n and k have to be set to n=1 and k=N. Bending calculations can be used to
compare DNA distortions along the sequence in a free or constrained environment such as

supercoiled or protein-bound.

5.9 Persistence length

The persistence length is the decay length through which the memory of the initial orientation of
a polymer chain persists. DNA and chromatin fibers are assumed to behave similar to theoretical
polymeric chains, so their persistence length can be calculated by different polymer physics

formulas. In general the persistence length of a polymer chain is calculated as
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1

(u(s) -u@s))y=e ", Vs,s' (34)

where ( - ) stands for averaging over thermal realizations, u(s) and u(s") are the tangent
unit vectors to the chain separated by a curvilinear distance 1 = |s" — s|, and [,, denoting the
persistence length (69). The persistence length can also be calculated by the mean-square end-

to-end distance (R?) of a polymer (70)
1 _L
(RZ) = leL [1 —fp<1—e lp>] (35)

where L is the length of the polymer and lp the apparent persistence length. Formulas
(34) and (35) are usually used to calculate the apparent persistence length of structures without

taking into account their potentially bent intrinsic shape.

For DNA due to its non-linear intrinsic shape the persistence length can be split in two parts, the
dynamic and the static persistence length 14 and 15 (71). The static persistence length represents
the intrinsic distorted shape of DNA, the dynamic persistence length the DNA’s thermal
fluctuations. I is calculated by using formula (34) for the relaxed ground state of the DNA fiber,
so no averaging over thermal realizations is needed. Knowing l; and the apparent persistence

length lp, the dynamic persistence length can be obtained via

(36)

Further expansions of formula (36) lead to a sequence-averaged description of persistence length
(69). The apparent persistence length of DNA is roughly 50 nm or 150 bp. To calculate the
persistence length the length of the underlying chain is usually in the order or several multiples
of the order of the persistence length, however some persistence length calculations were done

on DNA fibers of 30-50 base pairs in length (72).

-68 -



CHAPTER Il - METHODS

Bibliography for Chapter |l

1. Lifson,S. and Warshel,A. (1968) Consistent Force Field for Calculations of Conformations,
Vibrational Spectra, and Enthalpies of Cycloalkane and n -Alkane Molecules. J. Chem. Phys.,
49, 5116-5129.

https://doi.org/10.1063/1.1670007

2. Saito,M. (1994) Molecular dynamics simulations of proteins in solution: Artifacts caused
by the cutoff approximation. J. Chem. Phys., 101, 4055-4061.
https://doi.org/10.1063/1.468411

3. Darden,T., York,D. and Pedersen,L. (1993) Particle mesh Ewald: An N -log( N ) method for
Ewald sums in large systems. J. Chem. Phys., 98, 10089-10092.
https://doi.org/10.1063/1.464397

4. Verlet,L. (1967) Computer &quot;Experiments&quot; on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev., 159, 98—103.

https://doi.org/10.1103/PhysRev.159.98

5. Hockney and W.,R. (1970) The potential calculation and some applications.

6. Ryckaert,J.-P., Ciccotti,G. and Berendsen,H.J.. (1977) Numerical integration of the
cartesian equations of motion of a system with constraints: molecular dynamics of n-
alkanes. J. Comput. Phys., 23, 327-341.
https://doi.org/10.1016/0021-9991(77)90098-5

7. Hess,B., Bekker,H., Berendsen,H.J.C. and Fraaije,J.G.E.M. (1997) LINCS: A linear

constraint solver for molecular simulations. J. Comput. Chem., 18, 1463-1472.

-69 -



CHAPTER Il - METHODS

https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

8. Andersen,H.C. (1983) Rattle: A “velocity” version of the shake algorithm for molecular
dynamics calculations. J. Comput. Phys., 52, 24-34.
https://doi.org/10.1016/0021-9991(83)90014-1

9. Berendsen,H.J.C., Postma,J.P.M., van Gunsteren,W.F., DiNola,A. and Haak,J.R. (1984)
Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81, 3684—-3690.
https://doi.org/10.1063/1.448118

10. Nosé,S. and Shuichi (1984) A unified formulation of the constant temperature
molecular dynamics methods. J. Chem. Phys., 81, 511-519.
https://doi.org/10.1063/1.447334

11. Hoover (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A,
Gen. Phys., 31, 1695-1697.
http://www.ncbi.nlm.nih.gov/pubmed/9895674

12. Brooks,C.L., Briinger,A. and Karplus,M. (1985) Active site dynamics in protein
molecules: A stochastic boundary molecular-dynamics approach. Biopolymers, 24, 843—
865.

https://doi.org/10.1002/bip.360240509
http://www.ncbi.nlm.nih.gov/pubmed/2410050

13. Jorgensen,W.L., Chandrasekhar,J., Madura,).D., Impey,R.W. and Klein,M.L. (1983)
Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79,
926-935.

https://doi.org/10.1063/1.445869

-70 -



CHAPTER Il - METHODS

14. Berendsen,H.J.C., Grigera,J.R. and Straatsma,T.P. (1987) The missing term in effective
pair potentials. J. Phys. Chem., 91, 6269-6271.
https://doi.org/10.1021/j100308a038

15. Smith,D.E. and Dang,L.X. (1994) Computer simulations of NaCl association in
polarizable water. J. Chem. Phys., 100, 3757-3766.
https://doi.org/10.1063/1.466363

16. Joung,l.S. and Cheatham,T.E. (2008) Determination of Alkali and Halide Monovalent lon
Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B, 112,
9020-9041.

https://doi.org/10.1021/jp8001614

17. Pérez,A., Luque,F.J. and Orozco,M. (2007) Dynamics of B-DNA on the Microsecond
Time Scale. J. Am. Chem. Soc., 129, 14739-14745.

https://doi.org/10.1021/ja0753546

http://www.ncbi.nlm.nih.gov/pubmed/17985896

18. Pérez,A., Lankas,F., Luque,F.J. and Orozco,M. (2008) Towards a molecular dynamics
consensus view of B-DNA flexibility. Nucleic Acids Res., 36, 2379-94.
https://doi.org/10.1093/nar/gkn082

http://www.ncbi.nlm.nih.gov/pubmed/18299282

19. Fadrn4,E., Spackova,N., Sarzyfiska,J., Koca,J., Orozco,M., Cheatham,T.E., Kulinski,T. and
Sponer,J. (2009) Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing
Nucleic Acids Force Fields. J. Chem. Theory Comput., 5, 2514—-2530.
https://doi.org/10.1021/ct900200k

20. Krepl,M., Zgarbova,M., Stadlbauer,P., Otyepka,M., Banas,P., Koca,l., Cheatham,T.E.,

-71-



CHAPTER Il - METHODS

Jureéka,P. and Sponer,J. (2012) Reference Simulations of Noncanonical Nucleic Acids with
Different x Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-
DNA. J. Chem. Theory Comput., 8, 2506—-2520.

https://doi.org/10.1021/ct300275s

http://www.ncbi.nlm.nih.gov/pubmed/23197943

21. Drdata,T., Pérez,A., Orozco,M., Morozov,A. V., Sponer,J. and Lankas,F. (2013) Structure,
Stiffness and Substates of the Dickerson-Drew Dodecamer. J. Chem. Theory Comput., 9,
707-721.

https://doi.org/10.1021/ct300671y

22. MacKerell,A.D., Bashford,D., Bellott,M., Dunbrack,R.L., Evanseck,).D., Field,M.J.,
Fischer,S., Gao,J., Guo,H., Ha,S., et al. (1998) All-Atom Empirical Potential for Molecular
Modeling and Dynamics Studies of Proteins '. J. Phys. Chem. B, 102, 3586—3616.
https://doi.org/10.1021/jp973084f

23. Huang,J). and MacKerell,A.D. (2013) CHARMM36 all-atom additive protein force field:
Validation based on comparison to NMR data. J. Comput. Chem., 34, 2135-2145.
https://doi.org/10.1002/jcc.23354

24. Cheatham,T.E., Cieplak,P. and Kollman,P.A. (1999) A Modified Version of the Cornell et
al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. J. Biomol. Struct.
Dyn., 16, 845-862.

https://doi.org/10.1080/07391102.1999.10508297

25. Pérez,A., Marchan,l., Svozil,D., Sponer,J., Cheatham,T.E., Laughton,C.A. and Orozco,M.
(2007) Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description
of a/y Conformers. Biophys. J., 92, 3817-3829.
https://doi.org/10.1529/biophysj.106.097782

-72 -



CHAPTER Il - METHODS

http://www.ncbi.nlm.nih.gov/pubmed/17351000

26. Zgarbova,M., Luque,F.J., Sponer,J., Cheatham,T.E., Otyepka,M. and Jure¢ka,P. (2013)
Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force
Field Parameters. J. Chem. Theory Comput., 9, 2339-2354.
https://doi.org/10.1021/ct400154;j

27. Zgarbova,M., Otyepka,M., Sponer,J., Mladek,A., Bands,P., Cheatham,T.E. and Jurecka,P.
(2011) Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference
Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput., 7,
2886—-2902.

https://doi.org/10.1021/ct200162x

28. Mackerell,A.D. (2004) Empirical force fields for biological macromolecules: Overview
and issues. J. Comput. Chem., 25, 1584-1604.
https://doi.org/10.1002/jcc.20082

29.Yildirim,l., Stern,H.A., Kennedy,S.D., Tubbs,).D. and Turner,D.H. (2010)
Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and
Comparison to NMR Spectra for Cytidine and Uridine. J. Chem. Theory Comput., 6, 1520—
1531.

https://doi.org/10.1021/ct900604a

http://www.ncbi.nlm.nih.gov/pubmed/20463845

30. Gil-Ley,A., Bottaro,S. and Bussi,G. (2016) RNA Conformational Ensembles: Narrowing
the GAP between Experiments and Simulations with Metadynamics. Biophys. J., 110, 522a-
523a.

https://doi.org/10.1016/j.bpj.2015.11.2796

-73 -



CHAPTER Il - METHODS

31. Dans,P.D., Pérez,A., Faustino,l., Lavery,R. and Orozco,M. (2012) Exploring
polymorphisms in B-DNA helical conformations. Nucleic Acids Res., 40, 10668-10678.
https://doi.org/10.1093/nar/gks884
http://www.ncbi.nlm.nih.gov/pubmed/23012264

32. Zgarbova,M., Otyepka,M., Sponer,J., Lankas,F. and Jurecka,P. (2014) Base Pair Fraying
in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput., 10, 3177—
3189.

https://doi.org/10.1021/ct500120v

33. Zgarbova,M., Sponer,J., Otyepka,M., Cheatham,T.E., Galindo-Murillo,R. and Jure¢ka,P.
(2015) Refinement of the Sugar—Phosphate Backbone Torsion Beta for AMBER Force Fields
Improves the Description of Z- and B-DNA. J. Chem. Theory Comput., 11, 5723-5736.
https://doi.org/10.1021/acs.jctc.5b00716

34. Savelyev,A. and MacKerell,A.D. (2014) All-atom polarizable force field for DNA based
on the classical drude oscillator model. J. Comput. Chem., 35, 1219-1239.
https://doi.org/10.1002/jcc.23611

35. Dans,P.D,, Ivani,l., Hospital,A., Portella,G., Gonzalez,C. and Orozco,M. (2017) How
accurate are accurate force-fields for B-DNA? Nucleic Acids Res., 45, gkw1355.
https://doi.org/10.1093/nar/gkw1355
http://www.ncbi.nlm.nih.gov/pubmed/28088759

36. Olson,W.K., Gorin,A.A., Lu,X.J., Hock,L.M. and Zhurkin,V.B. (1998) DNA sequence-
dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad.
Sci. U. S. A., 95,11163-8.

https://doi.org/10.1073/pnas.95.19.11163
http://www.ncbi.nlm.nih.gov/pubmed/9736707

-74 -



CHAPTER Il - METHODS

37. Lankas,F., Sponer,J., Langowski,J. and Cheatham,T.E. (2003) DNA Basepair Step
Deformability Inferred from Molecular Dynamics Simulations. Biophys. J., 85, 2872-2883.
https://doi.org/10.1016/S0006-3495(03)74710-9
http://www.ncbi.nlm.nih.gov/pubmed/14581192

38. Lankas,F., Gonzalez,0., Heffler,L.M., Stoll,G., Moakher,M. and Maddocks,J.H. (2009) On
the parameterization of rigid base and basepair models of DNA from molecular dynamics
simulations. Phys. Chem. Chem. Phys., 11, 10565.

https://doi.org/10.1039/b919565n

http://www.ncbi.nlm.nih.gov/pubmed/20145802

39. Petkeviciate,D., Pasi,M., Gonzalez,0. and Maddocks,J.H. (2014) cgDNA: a software
package for the prediction of sequence-dependent coarse-grain free energies of B-form
DNA. Nucleic Acids Res., 42, e153.

https://doi.org/10.1093/nar/gku825

http://www.ncbi.nlm.nih.gov/pubmed/25228467

40. Driata,T., Zgarbova,M., Spackova,N., Jurecka,P., Sponer,J. and Lankas,F. (2014)
Mechanical Model of DNA Allostery. J. Phys. Chem. Lett., 5, 3831-3835.
https://doi.org/10.1021/jz501826q

41. Lavery,R., Zakrzewska,K., Beveridge,D., Bishop,T.C., Case,D.A., Cheatham,T., Dixit,S.,
Jayaram,B., Lankas,F., Laughton,C., et al. (2010) A systematic molecular dynamics study of
nearest-neighbor effects on base pair and base pair step conformations and fluctuations in
B-DNA. Nucleic Acids Res., 38, 299-313.

https://doi.org/10.1093/nar/gkp834

http://www.ncbi.nlm.nih.gov/pubmed/19850719

-75-



CHAPTER Il - METHODS

42. Dixit,S.B., Beveridge,D.L., Case,D.A., Cheatham,T.E., Giudice,E., Lankas,F., Lavery,R.,
Maddocks,J.H., Osman,R., Sklenar,H., et al. (2005) Molecular Dynamics Simulations of the
136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. Il: Sequence Context
Effects on the Dynamical Structures of the 10 Unique Dinucleotide Steps. Biophys. J., 89,
3721-3740.

https://doi.org/10.1529/biophysj.105.067397
http://www.ncbi.nlm.nih.gov/pubmed/16169978

43. Pasi,M., Maddocks,J.H., Beveridge,D., Bishop,T.C., Case,D.A., Cheatham,T., Dans,P.D.,
Jayaram,B., Lankas,F., Laughton,C., et al. (2014) uABC: a systematic microsecond molecular
dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res., 42,
12272-12283.

https://doi.org/10.1093/nar/gku855

http://www.ncbi.nlm.nih.gov/pubmed/25260586

44. Imeddourene,A. Ben, Xu,X., Zargarian,L., Oguey,C., Foloppe,N., Mauffret,0. and
Hartmann,B. (2016) The intrinsic mechanics of B-DNA in solution characterized by NMR.
Nucleic Acids Res., 44, 3432-47.

https://doi.org/10.1093/nar/gkw084

http://www.ncbi.nlm.nih.gov/pubmed/26883628

45. Ben Imeddourene,A., Elbahnsi,A., Guéroult,M., Oguey,C., Foloppe,N. and Hartmann,B.
(2015) Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics.
PLOS Comput. Biol., 11, e1004631.

https://doi.org/10.1371/journal.pcbi.1004631

46. Tian,Y., Kayatta,M., Shultis,K., Gonzalez,A., Mueller,L.J. and Hatcher,M.E. (2009) 3! P
NMR Investigation of Backbone Dynamics in DNA Binding Sites *. J. Phys. Chem. B, 113,
2596-2603.

https://doi.org/10.1021/jp711203m

-76 -



CHAPTER Il - METHODS

47. Zgarbova,M., Jure¢ka,P., Lankas,F., Cheatham,T.E., Sponer,J. and Otyepka,M. (2017)
Influence of Bll Backbone Substates on DNA Twist: A Unified View and Comparison of
Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences. J. Chem. Inf.
Model., 57, 275-287.

https://doi.org/10.1021/acs.jcim.6b00621

48. Maehigashi,T., Hsiao,C., Woods,K.K., Moulaei,T., Hud,N. V and Williams,L.D. (2012) B-
DNA structure is intrinsically polymorphic: even at the level of base pair positions. Nucleic
Acids Res., 40, 3714-22.

https://doi.org/10.1093/nar/gkr1168

http://www.ncbi.nlm.nih.gov/pubmed/22180536

49. Dans,P.D., Faustino, ., Battistini,F., Zakrzewska,K., Lavery,R. and Orozco,M. (2014)
Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA.
Nucleic Acids Res., 42, 11304-11320.

https://doi.org/10.1093/nar/gku809
http://www.ncbi.nlm.nih.gov/pubmed/25223784

50. Dans,P.D., Walther,J. and Gémez,H. (2016) Multiscale simulation of DNA. Curr. Opin.
Struct. Biol., 37, 29-45.
https://doi.org/10.1016/).5B1.2015.11.011

51. Goémez,H., Walther,J., Darré,L., lvani,l., Dans,P.D. and Orozco,M. (2017) Chapter 7.
Molecular Modelling of Nucleic Acids. In.pp. 165-197.
https://doi.org/10.1039/9781788010139-00165

52. Zhang,Q., Beard,D.A. and Schlick,T. (2003) Constructing irregular surfaces to enclose

macromolecular complexes for mesoscale modeling using the discrete surface charge

-77 -



CHAPTER Il - METHODS

optimization (DISCO) algorithm. J. Comput. Chem., 24, 2063-2074.
https://doi.org/10.1002/jcc.10337
http://www.ncbi.nlm.nih.gov/pubmed/14531059

53. Bascom,G.D., Myers,C.G. and Schlick,T. (2019) Mesoscale modeling reveals formation
of an epigenetically driven HOXC gene hub. Proc. Natl. Acad. Sci. U. S. A., 116, 4955-4962.
https://doi.org/10.1073/pnas.1816424116
http://www.ncbi.nlm.nih.gov/pubmed/30718394

54. Stehr,R., Schopflin,R., Ettig,R., Kepper,N., Rippe,K. and Wedemann,G. (2010) Exploring
the Conformational Space of Chromatin Fibers and Their Stability by Numerical Dynamic
Phase Diagrams. Biophys. J., 98, 1028-1037.

https://doi.org/10.1016/J.BPJ.2009.11.040

55. Kimura,H., Shimooka,Y., Nishikawa,J., Miura,0., Sugiyama,S., Yamada,S. and Ohyama,T.
(2013) The genome folding mechanism in yeast. J. Biochem., 154, 137-147.
https://doi.org/10.1093/jb/mvt033

56. Schlick,T. and Perisi¢,0. (2009) Mesoscale simulations of two nucleosome-repeat
length oligonucleosomes. Phys. Chem. Chem. Phys., 11, 10729-37.
https://doi.org/10.1039/b918629h
http://www.ncbi.nlm.nih.gov/pubmed/20145817

57. Kulaeva,0.l., Zheng,G., Polikanov,Y.S., Colasanti,A. V., Clauvelin,N., Mukhopadhyay,S.,
Sengupta,A.M., Studitsky,V.M. and Olson,W.K. (2012) Internucleosomal Interactions
Mediated by Histone Tails Allow Distant Communication in Chromatin. J. Biol. Chem., 287,
20248-20257.

https://doi.org/10.1074/jbc.M111.333104

-78 -



CHAPTER Il - METHODS

58. Debye P,H.E. (1923) The theory of electrolytes. I. Lowering of freezing point and related
phenomena. Phys. Zeitschrift, 24, 185-206.

59. Hansen,J.C., Ausio,J., Stanik,V.H. and van Holde,K.E. (1989) Homogeneous
reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of
histone H1. Biochemistry, 28, 9129-36.
http://www.ncbi.nlm.nih.gov/pubmed/2605246

60. Grigoryev,S.A., Arya,G., Correll,S., Woodcock,C.L. and Schlick,T. (2009) Evidence for
heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc. Natl.
Acad. Sci., 106, 13317-13322.

https://doi.org/10.1073/pnas.0903280106

61. Schalch,T., Duda,S., Sargent,D.F. and Richmond,T.J. (2005) X-ray structure of a
tetranucleosome and its implications for the chromatin fibre. Nature, 436, 138-141.
https://doi.org/10.1038/nature03686
http://www.ncbi.nlm.nih.gov/pubmed/16001076

62. Metropolis,N., Rosenbluth,A.W., Rosenbluth,M.N., Teller,A.H. and Teller,E. (1953)
Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21, 1087-1092.
https://doi.org/10.1063/1.1699114

63. Alberto Pérez,1,%, José Ramédn Blas,t, Manuel Rueda,t,§, Jose Maria Lopez-Bes, T,
Xavier de la Cruz,1,|| and and Modesto Orozco*,t,§,1 (2005) Exploring the Essential
Dynamics of B-DNA. 10.1021/CT050051S.

https://doi.org/10.1021/CT050051S

64. Hubbard SJ,T.J. (1993) NACCESS.

-79 -



CHAPTER Il - METHODS

65. Blanchet,C., Pasi,M., Zakrzewska,K. and Lavery,R. (2011) CURVES+ web server for
analyzing and visualizing the helical, backbone and groove parameters of nucleic acid
structures. Nucleic Acids Res., 39, W68-73.

https://doi.org/10.1093/nar/gkr316
http://www.ncbi.nlm.nih.gov/pubmed/21558323

66. Lu,X.-J. and Olson,W.K. (2003) 3DNA: a software package for the analysis, rebuilding
and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res., 31, 5108—
5121.

https://doi.org/10.1093/nar/gkg680

http://www.ncbi.nlm.nih.gov/pubmed/12930962

67. Lavery,R., Maddocks,J.H., Pasi,M. and Zakrzewska,K. (2014) Analyzing ion distributions
around DNA. Nucleic Acids Res., 42, 8138—49.

https://doi.org/10.1093/nar/gku504

http://www.ncbi.nlm.nih.gov/pubmed/24906882

68. Battistini,F., Hunter,C.A., Gardiner,E.J. and Packer,M.J. (2010) Structural Mechanics of
DNA Wrapping in the Nucleosome. J. Mol. Biol., 396, 264—279.
https://doi.org/10.1016/j.jmb.2009.11.040

69. Mitchell,J.S., Glowacki,J., Grandchamp,A.E., Manning,R.S. and Maddocks,J.H. (2017)
Sequence-Dependent Persistence Lengths of DNA. J. Chem. Theory Comput., 13, 1539—
1555.

https://doi.org/10.1021/acs.jctc.6b00904

70. Moukhtar,J., Vaillant,C., Audit,B. and Arneodo,A. (2011) Revisiting polymer statistical
physics to account for the presence of long-range-correlated structural disorder in 2D DNA

chains. Eur. Phys. J. E, 34, 119.

-80 -



CHAPTER Il - METHODS

https://doi.org/10.1140/epje/i2011-11119-3

71. Trifonov,E.N., Tan,R.K.Z. and Harvey,S.C. (1988) Static persistence length of DNA.
Struct. Expr. Proc. Fifth Conversat. Discip. Biomol. Stereodyn. held State Univ. New York
Albany, June 2-6, 1987 / Ed. by M.H. Sarma R.H. Sarma.

72. Noy,A. and Golestanian,R. (2012) Length Scale Dependence of DNA Mechanical
Properties. Phys. Rev. Lett., 109, 228101.
https://doi.org/10.1103/PhysRevLett.109.228101

-81-



CHAPTER IIl - RESULTS

CHAPTER Il - RESULTS

1. Sequence-dependent properties of B-DNA and structural
polymorphisms

Previous studies showed that DNA properties depend on the underlying sequence, elucidating
polymorphism that deviate from canonical Arnott’s B-DNA description. A typical example is the
d(CpG) step, which shows a clear bimodality in the rotational inter base pair parameter twist. Such
a polymorphism is strongly coupled to changes in the backbone conformational states (BI/BIl), a
phenomenon occurring at sub-us time scale (1, 2), which seems to be coupled to the presence of

ions in the grooves.

Several groups, including our own reported deviations from normality of many internal degrees
of freedom (1-4) which recently started to get confirmed by experimental evidence (3, 5-7),
giving rise to the assumption that different internal degrees of freedom lead to different

sequence-dependent conformational sub-states.

However, even though some general observations can be made from experimental data such as
crystal or NMR DNA structures, the experimentally resolved set of structures is fragmented and
inappropriate for exploring sequence-dependent properties of DNA at a large scale. With increase
in computational power, the number and length of MD simulations could be increased so that
DNA in many different sequence environments can be extensively studied. In a former study of
all the 136 distinct tetranucleotide base sequences, carried out by the ABC (Ascona B-DNA
Consortium), nearest neighbor effects of the central base pair step were derived from parmbsc0
simulations, finding non-Gaussian and multi-peaked helical parameter distributions for certain
base pair steps and correlations were established between the inter base pair parameters of the
central junction of a tetranucleotide and the { backbone torsion (8). As the results were obtained
using the parmbscO force field there are still open questions concerning the sequence-dependent
equilibrium distribution of helical parameters and backbone sub-state populations. For this

reason, we performed a new set of simulations with the state-of-the-art parmbscl force field,
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covering the same tetranucleotide space (called miniABC sequence set). In this first work
presented in this chapter, we used this set of multi-us MD simulations to decipher the sequence-
dependent polymorphic space at unprecedented detail. We characterized the choreography of
backbone and base movements modulating the non-Gaussian or anharmonic effects and the
polymorphisms in helical geometries which are particularly present in certain tetranucleotide
sequence contexts. These findings allow us to reformulate Calladine-Dickerson rules at the

tetranucleotide level.

In a second study, we analyzed in more details the results of the sequence effects of all unique
tetranucleotides to pinpoint several cases of tetramers with unusual polymorphic behavior, such
as low stability/high flexibility, multimodality in the helical parameter space and high sensitivity
to sequence context. Those tetramers comprise only 3-5% of all unique tetranucleotides,
indicating that multimodality might have a moderate impact in overall duplex properties, but can
be very important to explain local flexibility of certain DNA motifs. We decided to investigate
higher-than-nearest-neighbor effects of the d(CpTpApG) tetranucleotide (from now on CTAG), a
sequence showing unusual flexibility behavior in the trajectories deposited in our BigNAsim
database (8, 9). A potential issue of studying hexa- and octameric effects of the CTAG
tetranucleotide could have been the limited sampling, however systematic analysis shows that
higher order effects were not an artifact of non-convergence of the simulation. After eliminating
this uncertainty, we found non-negligible next-to-nearest neighbor effects of different sequence
contexts. Based on the concerted and correlated movements of bases and backbone torsions for
the described multi-modal degrees of freedom, and driven by the mechanical limitations imposed
by DNA’s crankshaft motions, we were able to found a possible explanation on how structural
information can travel almost half a helical turn away from the central d(TpA) step. This remote
structural ‘connection’ allows the d(TpA) step to ‘feel’ its sequence environment beyond the next-
to-nearest neighbors, and eventually adopts a different substate if needed which could be
important in the cell nucleus where CTAG has been preserved with a low rate of mutation

suggesting a possible mechanical role for CTAG at the genomic level.
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1.1 Nearest-neighbor effects of DNA dynamics (Publication 1)

We took advantage of the quality of parmbscl to analyze the complete tetranucleotide space of
B-DNA via MD simulations. The sequence library was designed to minimize the number of short
oligomers needed to cover all 136 unique 4-mers. The in-depth analysis shows different
equilibrium distributions of intra base pair parameters that are close to harmonic while inter base
pair parameter distributions can experience multimodality, most commonly slide for d(GpG),
twist for d(CpG) and d(ApG) and shift for YR. In general, shift bimodality is coupled to the
appearance of high shift values of above 1A. Twist bimodality experiences a more complex
behavior, as in some cases the second peak of the distribution occurs at higher than canonical

values (> 40°), while in other cases it is at low twist values (< 30°).
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Figure 22. Correlation coefficients between shift, slide, or twist at the positions i-1 (5’-side),
i, and i-1 (3’-side), and the backbone sub-state at the junction of base-pair step i in the
Watson strand. Results obtained from miniABCBSC1-K dataset. The numbers inside each
cell represent the % of specific tetranucleotides within a given family that give rise to the
correlation.
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In an analysis of the backbone conformations we find that Bl -> BIl transitions are strongly
dependent on the underlying sequence (see Figure 4 in the following publication). For example,
RR backbones exhibit quite high Bll percentages, especially in the presence of Y at the 5’ end of

the corresponding tetranucleotide while YY backbones are typically biased towards the Bl state.

Connecting the backbone polymorphism with the base pair conformations, with /T (BI/BIl) and
inter base pair parameters being the major players, we find that tetranucleotides showing
simultaneous sampling of Bl and Bll conformations are those with bimodality in some inter base
pair parameter at the same step (see Supplementary Table S4 and S5 in the following publication).
The BI/BII state also correlates with inter base pair helical coordinates in the same and
neighboring junctions. For example, the increase in the percentage of Bll at the central junction
of a given tetranucleotide correlates with larger shift values for all sequences (Supplementary
Figures S17 in the following publication) and is also coupled to lower twist and slide values. The
BI/BII ratio at a junction i also correlates with shift, twist and slide values at step i+1 and i-1 (see
Figure 22), highlighting the subtle mechanical coupling between backbone and base pair step

conformations within DNA.

In summary, with this complete study we can formulate some general rules concerning the
equilibrium conformation distribution of B-DNA, which represent a significant step beyond

Calladine-Dickerson earlier propositions:

e The first and second moments (average and covariance) of the equilibrium distributions
of helical coordinates for DNA can only be understood in terms of nonlocal sequence-

dependence contexts

e A harmonic model of DNA dynamics will not be able to accurately predict third and higher
moments of the equilibrium distribution because significant anharmonic movements

arise frequently

e Backbone torsional changes are coordinated in pairs (a/y, P/x and £/C). Coordinated
changes in the £/T pair lead to the BI/BII polymorphism with coupled impacts on helical

parameters. Both £/C and P/x couplings exhibit sequence dependence.
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e The BI/BIl conformational change is coupled to the cationic atmosphere surrounding

DNA, and to the formation of non-canonical CH---O hydrogen bonds.

e Helical parameters at a given step are not independent, but show a complex backbone-

mediated pattern of dependencies.

e (Calladine’s principles, and Dickerson’s algorithms for twist/roll/&/propeller, can now be
transformed into quantitative predictions for all the structural features (helical
conformations and backbone substates) of canonical DNA sequences. These extended
rules have been implemented on a web server that predicts the average conformation of
any B-DNA sequence, in terms of the average helical parameters, base and backbone

polymorphisms, and P/x conformations (see https://mmb.irbbarcelona.org/miniABC/).
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ABSTRACT

We present a multi-laboratory effort to describe the physical properties of duplex B-DNA
under physiological conditions. By processing a large amount of data from atomistic
molecular dynamics simulations, we determine the sequence-dependent structural
properties of DNA as expressed in the equilibrium distribution of its stochastic dynamics.
Our analysis includes a study of first and second moments [or mean and covariance) of the
equilibrium distribution, which can be accurately captured by a Gaussian, or harmonic,
model, but with nonlocal sequence-dependence. We then further characterize the
sequence-dependent choreography of backbone and base movements modulating the non-
Gaussian or anharmonic effects manifested in the higher moments of the dynamics of the
duplex when sampling the equilibrium distribution. Contrary to prior assumptions, such
anharmonic deformations are not rare in DNA and can play a significant role in
determining DNA conformation within complexes. Polymorphisms in helical geometries
are particularly prevalent for certain tetranucleotide sequence contexts, and are always
coupled to a complex network of coordinated changes in the backbone, with BI/BII
equilibria being a major determinant. The analysis of our simulations, which contain
instances of all 136 distinct tetranucleotide sequences, allow us to reformulate Calladine-
Dickerson rules, used for decades to interpret the average geometry of DNA according to
presumed local sequence-dependence and harmonic fluctuations, in a more precise
manner, leading to an extended set of rules with quantitative predictive power that
encompass nonlocal sequence-dependence and anharmonic fluctuations.
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SIGNIFICANCE STATEMENT

The article represents the latest effort of the ABC consortium
(https://bisi.ibep.fr/ABC) on the characterization of the sequence-dependent
physical properties of B-DNA under physiological conditions. Taking advantage of
our recently developed force field (PARMBSC1), and the coordinated effort of the
ABC laboratories, we were able to derive general rules concerning the equilibrium
conformation of B-DNA, which represent a significant step beyond Calladine-
Dickerson earlier propositions. We are now able to predict the appearance of
subtle sequence-dependent sub-states at the base and backbone level that arise as
a function of tetranucleotide sequence context. The extended Calladine-Dickerson
rules presented herein can be transformed into quantitative predictions of the
structural features of any canonical B-DNA sequence.

INTRODUCTION

DNA is a flexible and structurally polymorphic polymer whose overall equilibrium
geometry strongly depends on its sequence, the solvent environment, and the
presence of ligands(1, 2). Conformational changes in DNA are mediated by a
complex choreography of backbone rearrangements such as the BI/BII
transition(3, 4), the low-twist/high-twist equilibrium(5, 6), or concerted
oy rotations(7-9). Such backbone rearrangements lead to local and global
changes in the helix geometry(9, 10) impacting on the ability of the DNA to
recognize ligands(11), and consequently on its functionality.

Binding-induced conformational changes in DNA are required for function, and are
expected to follow the sequence-dependent intrinsic deformation modes of DNA,
ie. are implicitly coded in the spontaneous deformability of isolated DNA. This
suggests that evolution has refined DNA sequence not only to maximize ligand-
DNA interactions, but also to reduce the energetic cost of moving from a canonical
to a bioactive conformation(11, I2). This leads the notion of “indirect readout”,
which suggests that the ability of the DNA to adopt the “bioactive” conformation
plays a major role in determining the target sequences of a given DNA ligand.
Understanding the sequence-dependent physical properties of DNA then becomes
crucial to rationalizing how ligands and, most notably, proteins, recognize and
modulate DNA activity, i.e. the structural basis of gene regulation.

Understanding the sequence-dependent physical properties of DNA has been
traditionally hampered by the lack of experimental data. Using simple steric
considerations and geometric constraints Calladine developed in 1982 a set of
principles to describe the mechanics of DNA(13), which have been used for
decades to gain some qualitative insight into the sequence-dependence of
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expected, or average, local helical geometry. In their original version, those
principles suggested that clashes between bases are avoided by a combination of
concerted change in twist, roll, and slide, as the base pair propeller increases to
improve stacking(13). One year later, Dickerson formulated a simple numerical
algorithm allowing for a quantification of Calladine’s principles, coining the
procedure as the “Calladine’s Rules”(714, 15). The algorithm could be used to
predict correctly the local variation (at the base pair level) in twist, roll, propeller
twist and the torsion angle & for a few B-DNA sequences which were previously
determined experimentally(14). Unfortunately, the extension and predictive
power of these rules, even in the most recent versions, is limited(1, 16). Attempts
to gain more quantitative information were based on the analysis of the variability
in local helical parameters in structural databases(77, 18), but to date’, isolated B-
DNA structures in the Nucleic Acid Databank (NDB) allowed us to obtain flexibility
data for only 5 of the 136 distinct tetranucleotides (only AATT, CGCG, CGAA, GCGA
and ATTC are represented more than 500 times). Even when the database is
extended by including protein-DNA complexes, the sampling is not dense enough
to describe sequence-dependent DNA flexibility at the tetranucleotide level (24 out
of the 136 tetranucleotides are still represented less than 500 times). In this
context, atomistic molecular dynamics (MD) simulations are the only alternative to
obtain robust and transferable parameters(10, 19, 20).

The first requirement for deriving physical descriptors of DNA from MD
simulations is the availability of extended simulations for a library of sequence
fragments containing all distinct tetranucleotides. This requires a significant
computational effort which has encouraged joint projects such as the Ascona B-
DNA Consortium (ABC, https://bisi.ibep.fr/ABC), which have been instrumental,
not only in describing physical properties of DNA, but also in refining simulation
protocols(18, 21-23). The second major requirement is the availability of accurate
force fields, such as the recently developed PARMBSC1(24), which has been shown
to represent DNA with a quality indistinguishable from experimental
measurements(25). Thanks to the coordinated effort of several ABC groups, a
series of microsecond-scale simulations on a library of DNA duplexes covering all
of the 136 distinct tetranucleotides have been performed, and with a number of
different simulation conditions e.g. using PARMBSCO0(26) or PARMBSC1, different
counter ions, etc. Consequently there is a minimum of six total simulations of each
independent tetranucleotide. The analysis of this large ensemble of data allows us
to not only decipher the rules defining the sequence-dependent equilibrium

“Data from the NDB {http://ndbserver.rutgers.edu/) on the 19th March 2018. We found 727 PDBs

with the search string: “"Polymer Type: DNA Only + Structural Features: B DNA + Experimental
Method: All"; and 3434 PDBs searching for: “Polymer Type: Protein DNA Complexes + Protein
Function: All + Structural Features: B DNA + Experimental Method: All". After removing non-
canonical and terminal bases, 10,134 tetranucleotides remained in the B-DNA ensemble, and
155,316 tetranucleotides in the Prot-DNA set. Watson and Crick strands were both taken into
account, and no filters were applied to reduce the known high redundancy of the database.
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geometry of B-DNA, but also those determining coordinated backbone
conformational changes, and the correlations between various helical
deformations. A new, and comprehensive extension of Calladine-Dickerson rules
emerges from the analysis of these simulations, including the first predictions of
anharmonicity based on sequence context.

METHODS

The choice of sequences. The new ABC sequence library was designed to
optimize the number of relatively short oligomers needed to include one copy of
each of the distinct 136 tetranucleotides. Applying an adapted version of the
Orenstein and Shamir algorithm(27-29), we generated 13 oligomers, each
containing 18 base pairs (including GC terminals in each end), covering the
complete tetranucleotide space (see Table S1 for a list of the designed sequences),
and 117 (of the 2080 possible) distinct hexanucleotide sequences. The smaller
number of oligomers with respect to previous training libraries(6, 10) made it
more practical to obtain multi-microsecond trajectories under several simulation
conditions (for example, using both the PARMBSC1(24) and PARMBSCO(30) force
fields, labeled miniABCssc1 and miniABCrsco respectively), and by changing the
ionic environment (from KCl to NaCl, labeled miniABCpsci-K and miniABCasci-Na
respectively). Comparison of results obtained with this library of sequences
(miniABC) with respect to the standard ABC-set (HABC(10)) allowed us to check
for the robustness of our conclusions as a function of the duplexes from which the
tetranucleotide parameters were derived.

System preparation and MD simulations. All oligonucleotides were constructed
with the feap program of AMBERTOOLS 15(31) and simulated using the
pmemd.cuda code(32) from AMBER14(31), following the standard ABC
protocol(10). Additional details are provided in Suppl. Material. Trajectories are
accessible at the BIGNASIim server:

hitps://mmb.irbbarcelona.org/BIGNASim/.(33)

Analysis. Trajectories were processed with the cppiraj(34) module of the
AMBERTOOLS 15 package(31), and the NAFlex server(35) for standard analysis.
DNA helical parameters and backbone torsion angles were measured and analyzed
with the CURVES+ and CANAL programs(36), following the standard ABC
conventions(10). Duplexes were named following the Watson strand. The letters R,
Y and X stand for a purine, a pyrimidine, or any base respectively; base pairs
flanking a dinucleotide step were denoted using two dots to represent the central
step (e.g. R.Y), and one dot when trinucleotides are considered (e.g. R.Y), while X:X
and XX represent an intra-basepair and inter-basepair (step) respectively.
Bayesian Information Criterion (or BIC)(37, 38) was used to quantify the normal or
binormal (i.e. a mixture of two normals) nature of the distributions of the helical
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parameters (see Suppl. Methods). An extension of Helguerro’s theorem(39, 40) was
used to distinguish those binormal distributions where the two Gaussians are very
close (unimodal distributions) from those where they are significantly separated
(bimodal distributions). Correlation between backbone and helical parameters
was analyzed by clustering the backbone conformations into discrete states using
standard rules as described in Suppl. Methods. The similarity between first and
second moments (ie. average and covariance) of the helical parameter
distributions for different simulation libraries was evaluated using the Kullback-
Leibler (KL) divergence, as detailed in the Suppl. Material. More specifically
sequence-dependent Gaussian coarse grain cgDNA(41-43) model parameters were
computed from each of the four MD training libraries used in this work (ie.
nABCesco-K, miniABCasco-K, miniABCgesci-K, miniABCesci-Na) in order to be able to
generate associated predictions of first and second moments of the helical
parameters for fragments of arbitrary sequence. In particular this allowed us to
compare PARMBSCO simulations of the pABC library with the PARMBSCO
simulations of the miniABC library, even though the two libraries have different
sequence fragments. See the Supporting Methods for more details.

RESULTS AND DISCUSSION

Sources of uncertainty: the sequence library and the type of salt. Before going
into detail with a conformational analysis, we first considered the robustness of
our results to changes in the choice of sequence library, because large differences
would challenge the general validity of our conclusions. Fortunately, only one of
the 1,632 distributions analyzed (namely of 6 intra- plus 6 inter-basepair helical
parameters for each of the 136 distinct tetranucleotides), showed significant
differences (according to BIC-Helguerro analysis) depending on the choice of
library (the previous pABC library, or the current miniABC library; see Suppl.
Figure §1). Furthermore, no differences were found depending on the salt (see
Table 582 and raw data in hups://mmb.irtbbarcelona.org/miniABC/), which
suggests that our results are robust to the choice between K and Na for the
counter-ion. To gain additional confidence in the robustness of our results, we
used the explicit form of Kullback-Leibler divergence available for Gaussian (ie.
multi-variate normal) distributions to quantify three pairwise differences in
cgDNA model predictions (see Methods, and Suppl. Methods) of the mean and
covariance for each of the 13 miniABC library sequences for the four different
parameter sets extracted from the pABCgsco-K, miniABCesco-K, miniABCssci-K, and
miniABCesci-Na simulations. As can be seen in Figure 1, no significant difference
arises from the change in sequence library, nor from the difference between K and
Na counter ions. However, the results are quite sensitive to the change in force
field from PARMBSCO to PARMBSC1. This is to be expected since the latest
PARMBSC1 force field leads to a considerably more realistic representation of
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twist/roll and BI/BII distributions (see the analysis and discussion published
elsewhere(9, 25)), and to straighter average configurations of duplexes than those
obtained from prior force fields. This can be confirmed by considering the
differences between static and dynamic persistence lengths (as introduced
elsewhere(44)) over a large ensemble of sequences (see Suppl. Figure $2).

Strong anharmonic distortions do arise. One of the most important extreme
deformations of DNA is the disruption of base pairing, which can be analyzed in
detail by aggregating data over all instances of G:C and A:T base pairs . This
allowed us to accumulate ensembles on the millisecond time scale. Terminal base
pairs (G:C pairs in all the cases) showed open states (water molecules in between
H-bonding Watson-Crick groups) in 1-2% of the total simulation time, with short
average open life times (around 3 ns, see Table §3) in agreement with time-
resolved Stokes shifts spectroscopy(45), but most probably too short to lead to
isotope exchange signals in NMR experiments(46). The opening of central base
pairs is less likely to occur (between 0.01% in G:C and 0.05% in A:T of the
simulation time), but when it happens, the open state can survive considerably
longer (up to 50 ns). Whether or not this time is sufficient to allow proton
interchange with the solvent is unclear. Another example of a strong anharmonic
deformation arising in our simulations is the temporary formation of a sharp kink
{(Suppl. Figure S3) associated with anomalous rise and roll(47) at an AA inter-
basepair within a TAAA tetranucleotide belonging to a relatively long tract of A:T
base pairs (seq. 9, see Table S1). Very interestingly, this deformation has been
characterized before as one of the origins of bubbling and kinking in natural
DNA(48, 49), but to our knowledge, has not been previously observed in atomistic
simulations.

Equilibrium distributions of intra-basepair deformations are close to
harmonic. A BIC analysis was carried out for the distributions of all six of the
intra-basepair helical parameters at the central base pair in all 64 possible
trinucleotide contexts. These distributions were all observed to be rather close to
Gaussian, ¢f. Figure 5S4, with the exception of exceptional rare events, as discussed
in the last paragraph. Certainly no multi-peaked distribution was ever observed.
Nevertheless the average value, or first moment, of each of the six intra-basepair
parameters is strongly sequence-dependent to at least the trinucleotide sequence
context, see Figure 2. Some qualitative rules on the sequence-dependent variation
in the means can be observed. Shear values in G:C intra-basepairs, when G is
followed by Y are below average, while the opposite happens for A:T base pairs.
Buckle in G:C shows large variations depending on the nature of the 3'-base of G,
with an R leading to large positive buckles, and a Y leading to large negative
buckles. Propeller also shows clear sequence rules, with A:T intra-basepairs having
a sizeable negative value when there is an R 5' to the A, while propeller is close to
zero for G:C base pairs within YGR trinucleotides.
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Equilibrium distributions of inter-basepair deformations are frequently
strongly anharmonic. Bi-normality (ie. deviation from Gaussianity) in the
equilibrium distributions of the inter-basepair helical coordinates is common, but
clear bimodality (i.e the appearance of distinct multiple peaks) is observed in only
3% (miniABCpsci-K+) to 5% (miniABCgsci-Na+) of the inter-basepair helical
distributions (Figure 3 and Suppl. Figure $5). Bimodality appears systematically
only for slide (several tetranucleotides containing a central GG step), shift
(typically in a few tetranucleotides containing a YR central step) and twist (mainly
in tetranucleotides containing central CG or AG steps). These conclusions are
completely compatible with our prior analysis of PARMBSCO simulations (see the
pABC work(10), particularly Figure 8). There are few cases where bimodality
affects simultaneously two or more helical parameters, for example, AGGA and
GGGA are bimodal in shift and slide (in agreement with experimental data(50))
and ACGG, GCGA and GCGG are bimodal in shift and twist in agreement with results
derived from the data mining of PDB structures(5). The central step of the GTAA
tetranucleotide is the only case displaying bimodality in three helical parameters
(shift, slide and twist) simultaneously. In general, shift bimodality is coupled to the
appearance of high-shift values (above 1 A). The reverse situation was found for
slide, where bimodality displaces the distribution to lower values. Finally twist
bimodality displays more complex behavior, as in some cases the second peak of
the distribution occurs at lower than canonical values (< 30°), while in others it is
at high twist values (> 40°). See Figure 3 and Suppl. Figures $6-58 for a detailed
analysis.

While inter-basepair, or junction, helical coordinates are frequently far from
having a normal distribution, the first and second moments of their equilibrium
distributions are still well defined, and can be approximated by evaluating the
appropriate averages along our MD simulation time series, and over all instances
of dinucleotide {or NN, nearest neighbour) or tetranucleotide (NNN, next nearest
neighbour) contexts. Only a few general NN rules can be observed for the first
moments (or averages): i) As part of Calladine’s principles, we also observed that
roll (YR) = roll (RY), while the inverse situation is true for twist: twist (RY) > twist
(YR); ii) YR inter-basepair steps typically have higher than normal slide and roll;
iii) RY steps typically have lower than normal slide and roll; and iv) YY and RR
steps have lower than normal tilt values. Any further rules concerning the average
values of helical inter-basepair coordinates need to be formulated as the averages
for the central junction or step in a specific tetranucleotide sequence context due
to strong nonlocal sequence dependence, at least in part due to tetranucleotide
dependent anharmonic effects (Figure 3 and discussion below).

Backbone polymorphism. Flexibility of DNA backbones is linked to rotations
around seven torsion angles (o, B,y, &, &  and y, with 8 in the present analysis
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being replaced by the sugar phase angle P), which in some cases move in a
concerted way (for example oy and £/8), leading to conformational sub-states.
The best studied of the coupled transitions is the so-called BI/BII transition, which
occurs due to the concerted rotation of the £/ torsions. BI=BII transitions are
believed to be functionally relevant. They occur in some high-resolution crystal
structures(51, 52) and are also detected in 3P NMR spectra(53, 54). Results in
Suppl. Figure S9 show that the BII state is much more frequent than expected from
simulations performed using previous force fields, matching NMR estimates for
equivalent sequences(55). Very interestingly (see Figure 4, and Suppl. Tables S4
and S5), the BI/BII equilibrium is strongly dependent on the surrounding base
sequence. For example, RR backbones exhibit quite high BII percentages, especially
in the presence of Y at the 5’ end of the corresponding tetranucleotide, while the
YY backbones are typically biased towards the BI state, generating a strong
asymmetry at RR:YY steps. While the general trends of BI/BII equilibria are robust
with respect to changes in salt, a detailed analysis indicates the existence of subtle
differences(5), which are especially visible for RR and YR inter-basepairs: in
general, Na* increases the total percentage of the BII state (Figure 4), but reduces
its sequence-dependence, in perfect agreement with experimental data(56). As
previously reported(4, 5), we found a very strong correlation between BI—-BII
transitions and the formation of unconventional hydrogen bonds of the type CH---
0, which are instrumental in mechanically coupling the movements detected in the
backbone with those seen in the bases (see Figure 4, Suppl. Table $6).

In contrast to BI/BII dynamics, the o/y conformational landscape is dominated by
the canonical conformation, which, on average, represents around 90% of the
collected ensembles. Non-canonical conformers are more likely to appear in Na*
simulations than with K+ (Suppl. Tables S7 and S8). Transitions to non-canonical
a/y conformations are frequent, but the alternative states tend to have a short life
time (on average we measured ~500 transitions per ps per nucleotide, with an
average residence time ~5 ps). These brief transitions have little impact on the
global conformational ensemble(9). No clear sequence-related rules can be
determined for oy transitions, but, as expected, C and G nucleotides show longer-
lived and more frequent a/y transitions than A or T(8, 9, 57). Phase (P) angle
analysis (Suppl. Figure 510) show South (C2’-endo, ~150°) conformations are
dominant as expected, but East conformers are common, and sampling North
states is not rare, especially for pyrimidines(9). As also expected, glycosidic
torsions (y) are always in the anti region (-180 to -90°), with purines sampling
more frequently than pyrimidines the high-anti conformations (-90 to -30° see
Suppl. Figure S11). Finally, all nucleotides exhibit the same wide distribution for
the B angle, spanning from 120° to 240° with a strongly marked peak at the
canonical value (180°) and a marginal population at ~70° (gauche+, see Suppl. Fig.
$12), in good agreement with results from the data mining of X-ray structures(58).
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The choreography of correlated motions in the DNA. The movements of the
DNA duplex often involves concerted changes in conformational degrees of
freedom, generating a complex choreography. As an example, puckering
(measured by the phase angle P) and glycosidic torsions (measured by the y angle)
are tightly coupled, and the population of East and North puckering leads to a
marked displacement of y to lower values (Suppl. Figure 513). Furthermore, 3 and
P torsions are coupled to the £/ changes in a sequence-dependent manner (Figure
$14). Thus, in purines the population of the BII state is coupled to a displacement
of puckering to the East (P) and () high-anti regions, while in pyrimidines the
population of BII conformers leads only to a slight displacement to the high-anti
region, without significant puckering changes.

When the conformational analysis is carried out at the intra-basepair level, a
pattern of sequence-dependent correlated movements emerges. All distinct
trinucleotides show moderate-to-high correlations in shear-opening, shear-stretch,
and stagger-buckle. The pattern of correlation is less clear for the remaining intra-
basepair parameters, although several trinucleotides show stretch-opening
correlations (Suppl. Fig. S15). A more complex sequence-dependent picture of
correlated movements can be obtained by analyzing the inter-basepair step helical
parameters (Suppl. Fig. S$16). For example, mild to strong correlations are found in
shift-tilt, slide-twist, rise-tilt, shift-slide, and shift-twist movements for RR steps.
For RY, weaker correlations can be found (depending on the tetranucleotide
sequence-environment) in shift-tilt, slide-rise and roll-twist. Finally, YR inter-
basepairs may exhibit moderate to strong correlations for shift-tilt, slide-twist,
rise-twist and roll-twist (Suppl. Fig. S16). Interestingly, for all the tetranucleotides,
shift-slide and roll-twist always show negative correlations, while shift-tilt and
slide-twist always show positive correlations. As expected, correlations also
emerge when combining inter and intra helical parameters in the same analysis.
Thus, a significant number of tetranucleotides show moderate to strong
correlations of opening with shift, buckle with rise, and stagger with tilt (data not
shown). It is also worth noting that the network of correlations extends to
neighbouring steps. As an example, twist in the central YR step of XYRR
tetranucleotides is highly correlated with slide in the adjacent RR step(5, 10),
which again stresses the limitations of simple nearest neighbours interpretations
of DNA conformational mechanics, and points the way to coarse grain models such
as cgDNA cites, that encompass longer range coupling, with associated longer
range sequence-dependence of the observed means and many non-vanishing
covariances.

Lastly, backbone and base pair conformations are connected in a complex way,
with £/C (BI/BII) being the major determinant in the polymorphism. Very often,
tetranucleotides showing simultaneous sampling of BI and BII conformations are
those with bimodality in some helical parameter at the same step (70% of the
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bimodal inter-basepair helical parameters occur in steps with bimodal BI/BII
distributions, see Figure 3 and Suppl. Table S4 and S5). The BI/BII state also
correlates with inter-basepair helical coordinates in neighbouring junctions,
explaining part of the geometrical constraints postulated by Calladine. For
example, the increase in the percentage of BII at the central junction of a given
tetranucleotide correlates with larger shift values for all sequences (Suppl. Figures
S17), and is also coupled to lower twist and slide values. The BI/BII ratio at a
junction 1 also correlates with shift, twist and slide values at step i+1 and i-7 (Suppl.
Figures S18 and S19), highlighting the subtle mechanical coupling between
backbone and base pair step conformations within DNA(58).

All the observations made above can be unified in a global flexibility scheme for B-
DNA (Figure 5), showing that all base pair junctions contain potentially
polymorphic elements (BI/BII, shift, slide, or twist) that can lead to bimodal
behavior depending on the specific tetranucleotide environment. The analysis we
have carried out leads to a scheme with strong predictive power at the
tetranucleotide level. As a single example, we can now say with confidence that
when the choice of X and Y within an XYRY tetranucleotide leads to bimodality, this
will be expressed in shift and twist, coupled with a low-to-moderate percentage of
BII in the Watson strand. In contrast, when XRRX tetranucleotides are considered,
bimodality will show up in either shift, slide or twist, coupled with a moderate-to-
high percentage of BII in the Watson strand of the central junction.

The experimental validation of this new and extended set of rules to predict B-DNA
conformation based on the sequence is however very difficult to achieve. To date,
only the sequence known as DDD (Drew-Dickerson Dodecamer) was determined
experimentally enough times, using significantly different techniques, protocols,
and laboratory conditions, to have a view, yet limited, of the structural fluctuations
of a given isolated B-DNA(59). Moreover, it's the only sequence for which two
independent #1P-NMR experiments were performed, and from which accurate Bl%
were obtained(54, 60). Consequently, we took 93 structures from the PDB(59),
plus the two ¥1P-NMR experiments to compare the results of our predictive rules
on the DDD sequence based on the two PARMBSC1 MD dataset computed in this
work (Suppl. Fig. S20). Helical conformations predicted in terms of the inter-
basepair parameters were in excellent agreement with the experimental ensemble
reproducing sequence-dependent features of this prototypical B-DNA sequence.
Moreover, we correctly predicted base polymorphisms in shift and twist(5, 10, 18),
and most importantly the backbone substates, in particular BI/BII (Suppl. Fig.
S20).

CONCLUSIONS
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The analysis of numerous molecular dynamics trajectories obtained with an
accurate, last generation, force field has allowed us to derive some general rules
concerning the equilibrium conformation distribution of B-DNA, which represent a
significant step beyond Calladine-Dickerson earlier propositions. Specifically, we
are now able to predict when significantly anharmonic distributions will arise as a
function of tetranucleotide sequence context:

=  The first and second moments (average and covariance) of the equilibrium
distributions of helical coordinates for DNA can only be understood in
terms of nonlocal sequence-dependence contexts, to at least the
trinucleotide level for intra-basepair coordinates, and the tetranucleotide
level for inter-basepair coordinates.

= A harmonic model of DNA dynamics will not be able to accurately predict
third and higher moments of the equilibrium distribution because
significant anharmonic movements arise frequently. In fact, the distribution
of many inter-basepair coordinates is significantly binormal and, in a non-
negligible number of cases, actually bimodal (ie. multi-peaked). Such
bimodality, and the relative population of corresponding local minima of
the free energy, is dependent on the tetranucleotide context. Slide for GG,
twist for CG and AG, and shift for YR are the most common steps and helical
coordinates exhibiting bimodality, with the tetranucleotides most
commonly enhancing bimodality being AGGA, GGGA, ACGG, GCGA, GCGG,
and GTAA.

= Backbone torsional changes are coordinated in pairs (a/y, P/y and g/0).
Movements in o/y lead to the generation of short-lived non-canonical states,
which can however be populated in the presence of ligands, as it was
previously observed for protein-DNA complexes(7). Changes in sugar
puckering to the East region leads to lower y values, while coordinated
changes in the g/ pair lead to the BI/BII polymorphism with coupled
impacts on helical parameters. Both £/ and P/y couplings exhibit sequence
dependence.

= The BI/BII conformational change is coupled to the cationic atmosphere
surtounding DNA, and to the formation of non-canonical CH---O hydrogen
bonds. BI/BII transitions are especially prevalent for YRRX sequences and
often are associated to bimodality in helical coordinate distributions at the
inter-basepair level. They are a major source of polymorphism in B-DNA. In
general, the population of the BII state is coupled to large shift, and low
slide and twist at the same junction, but distant and more complex
correlations exist between BI/BIl conformational states and the helical
conformation of neighbouring steps.

= Helical parameters at a given step are not independent, but show a complex
backbone-mediated pattern of dependencies. For example, shift-tilt and
roll-twist always show negative correlations, and the opposite applies to
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shift-tilt and slide-twist coupling. On the contrary, correlations between
slide-twist, shift-slide and shift-twist vary as a function of base sequence.
Moreover, helical coordinate correlations may extend to neighbouring base
pairs as a function of the local sequence.

= (alladine’s principles, and Dickerson’s algorithms for
twist/roll/8/propeller, can now bhe transformed into quantitative
predictions for all the structural features (helical conformations and
backbone substates) of canonical DNA sequences. These extended rules
have been implemented on a web server that predicts the average
conformation of any B-DNA sequence, in terms of the average helical
parameters, base and backbone polymorphisms, and P/y conformations
(see htips://mmb.irbbarcelona.org/miniABC/).

= Furthermore, using the predictive cgDNA coarse-grained model (and its
dinucleotide dependent parameter sets fit to MD simulations), the nonlocal

sequence-dependent first (average) and second (covariance) helical
coordinate moments can be computed interactively for an arbitrary
sequence on the cgDNAweb(61) server http://cgdnaweb.epfl.ch/, including
interactive visualisation of the expected or ground state conformation.

= Additionally, the local and global flexibility of arbitrary canonical B-DNA
sequences can be obtained by using the rigid inter-basepair MCDNA coarse
grain model, to provide the user a limited number of alternative
equilibrium B-DNA conformations according to the tetranucleotide states of
the underlying sequence. (hitps://mmb.irbbarcelona.org/MCDNAlite/).
Using the extended Calladine-Dickerson rules derived herein, the backbone,
sugar, and base conformational substates are predicted and rebuilt at
atomic resolution, based on the spontaneous values of inter-basepair helical
parameters.
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Figure 1. Symmetric Kullback-Leibler divergence per degree of freedom between
Gaussian distributions, which is a combined measure of differences in values of
first and second moments, for each of the thirteen oligomers in the miniABC
training library, but for cgDNA model parameter sets fit to different MD simulation
protocols (see Methods and Suppl. Methods).
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2

occurrence of multi-moedality and the formation of a noncanonical hydrogen bond
in either the same or a neighbouring junction, along with its associated BI/BII
backbone transition {see text).
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SUPPLEMENTARY METHODS

Simulation details. Canonical duplexes were generated using Arnott B-DNA fiber
parameters(7), and solvated by a truncated octahedral box of SPC/E(2) water
molecules with a minimum distance of 10 A between DNA and the closest face of the
box. Systems were neutralized with K' or Na'ions adding additional 150 mM of K'Cl-
(or Na*Cl). PARMBSCO(3) and PARMBSC1(4) force fields were used to describe DNA,
while Dang’s parameters were used for ions(5). Systems were optimized and
equilibrated as described elsewhere(6), and simulated for 1 ps in the NPT ensemble,
using Particle-Mesh Ewald corrections(7) and periodic boundary conditions. SHAKE
was used to constrain bonds involving hydrogen(&), allowing 2 fs integration step.

1
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Typically, analyses presented here correspond to the second part of the trajectory (last
500 ns).

Bayesian Information Criterion (BIC), Baves Factors, and the Helguerro’s theorem. We

used the BIC methodology to determine the optimal number of Gaussian functions
needed to fit a given distribution. This is done by finding the set of parameters that
minimizes the BIC values (the model with the lower BIC is chosen) according to(9):

—2Inp(x|k) = BIC = =21n(L) + kin(n)

Where x are the observed data, k is the number of free parameters to be estimated, and
p{x[k) is the probability of the observed data given the number of parameters, or, in
other words, the likelihood of the parameters given the dataset. L is the maximized
value of the likelihood function for the estimated model, and n is the number of data
points in x (the number of observations). In this work we limit the BIC to considering a
maximum of two Gaussians, leading to the classification of each distribution as
uninormal (fitted with one Gaussian) or binormal (fitted with a combination of two
Gaussians).

The Bayes Factors that can be extracted from the BIC analysis were used to determine
the strength of the evidence in favour of the model chosen by BIC(70, 11). This leaded
to a third classification labelled as “insufficient evidence”, when either of the two
models determined with BIC (uninormal or binormal) couldn’t be statistically
supported.

Finally, when there was sufficient evidence to favour a binormal fitting, we used an
extension of the Helguerro's theorem(12, 13) to define the modality of the distribution
and distinguish the cases where the two peaks of the fitted Gaussians are close together
from those where they are significantly separated. This is the most important
distinction in terms of understanding DNA dynamics. In the first case, for practical
purposes, the use of a single Gaussian distribution may often be justified to represent
the data (the overall distribution may be interpreted as binormal-unimodal), while it
cannot be used to estimate higher moments in the second multi-peaked case (binormal-
bimodal distributions). For a given parameter, we defined an inter-basepair, or intra-
basepair as polymorphic from the structural point of view, when a given distribution
was classified using these three approaches as binormal-bimodal.

Correlations between substates. For each tetranucleotide we calculated the correlation
between the backbone state at the central step (inter-basepair i) and the helical

parameters shift, slide and twist at two consecutive levels around the central

2
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dinucleotide (i-1, i, and i+1). The substates of the torsion angles of the backbone were
categorized following the standard definition: gauche positive (g+) = 60 = 40
degrees; trans (t) = 180 + 40 degrees; and gauche negative (g-) = 300 + 40 degrees. For
the correlations with BI/BII, we assigned to the backbone one of two possible discrete
values, either BI or BII, according to the sub-state of the { torsion (g- or t respectively)
at the central bps junction. All frames where the ¢ torsion didn't fall inside the ranges
defined by g- and t were not considered in the analysis. This leads to a strong reduction
of the noise that comes from specific tetranucleotides, when trying to find patterns by
grouping them (e.g. the “noise” arising from the individual behavior of the GAGA, GGGG,
and AAGA tetranucleotides when considering the RRRR family). The point-biserial(14)
correlation coefficient, mathematically equivalent to the Pearson correlation(15), was
used as a measure of the correlation between these discrete substates of the backbone
and the continuous values of the inter-basepair helical parameters. The obtained
correlation values were divided in five categories: i) = -0.6, strong negative correlation;
ii) = -0.6 and = -0.4, mild negative correlation; iii) >-0.4 and< 0.4, no correlation; iv) =
0.4 and < 0.6, mild positive correlation; and finally v) = 0.6, strong positive correlation.
We then group each of these categorized correlation matrices according to the 10 non-
redundant tetranucleotide combinations of Y/R bases, and for each entry selected the
dominant mode to describe the subset (i.e. the most common situation shared by the
individual tetranucleotides within a family). In the same way, correlations between sum
and differences of helical parameters have been computed, as previously done in
Calladine’s works(16, 17).

s, For each MD
simulation we fit a Gaussian or multi-variate normal distribution on the helical
coordinates by estimating a mean shape vector W and a stiffness, or inverse covariance
matrix K, from the MD time series. (This Gaussian is in dimension 12N-6 for a fragment
with N base pairs, so dimension 210 for the case N=18 considered here.) The KL
divergence(18) is a convenient way to quantify the difference between two probability
distributions. When both distributions are Gaussian with mean vectors w1, W2 and
inverse covariance matrices Kiand Kz, then the divergence can be explicitly evaluated
as:

1 _ detk. 1. . - " "
D, = E[K11:K2 —In ((lel[{j) - I J'J - ;(w1 — W) KOy — W),

Where a colon denotes the standard Euclidean inner product for square matrices and /
denotes the identity matrix of the same dimension as Ki and Kz. The second term of this
expression is interesting to look at separately: it quantifies the difference in expected
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shapes, weighted by one of the inverse covariance, and is equal to the square of the
Mahalanobis distance:

1. . . .
My, = ;(W1 — W2) Koy — ),

Both KL divergence and Mahalanobis distance are non-symmetric, but here we chose
toreport the symmetrized values: D = %(Du + D,;) and M = %(Mu + M,,). To givea

meaning to values of the KL divergence, the KL values were scaled by 12N-6 (being N
the number of base-pairs in each oligomer), obtaining in this way a divergence per
degree of freedom.

cgDNA calculation of DNA Persistence Length. The cgDNAmc code(19) allows efficient
generation of ensembles of configurations over ensembles of sequences, so that the
possible range of values of various expectations can be examined as the sequence of the
DNA duplex varies. One standard set of expectations to compute is tangent-tangent
correlations along the duplex in order to determine the associated decay rate or
persistence length £, along a given fragment. The persistence length £p is often taken
as an overall proxy for the stiffness of the duplex, with longer persistence length
indicating greater stiffness, However it is known (seec eg. the discussion in ref 19) that
the value of £, depends on both the stiffness of the duplex and on its intrinsic curvature,
with bent sequences having lower persistence lengths. For this reason £p is sometimes
called apparent persistence length. A sequence-dependent dynamic persistence length
€4 was introduced(19), which largely eliminates dependence on intrinsic curvature,
Thus #4 is a better proxy for an overall stiffness, while the difference (4 - £p) is an
overall measure of how intrinsically bent the duplex is. Fig S2A provides spectra (or
histograms) of possible values of both £p and fa for 10K sequencesaccording toa cgDNA
model parameter set fit to MD simulations of the miniABC library using the PARMBSCO
MD potentials. The range of variation in €4 is small compared to that of #p, and it can be
verified that all exceptionally low values of £, correspond to highly bent sequences. The
same data for the same 10K sequences, but for a cgDNA model parameter set fit to MD
simulations of the miniABC library using the PARMBSC1 MD potentials is shown in Fig
S2B. The fact that the spectra of dynamic persistence lengths 4 shifts to the right
indicates that the PARMBSC1 potentials lead to duplexes that are slightly stiffer than
for PARMBSCO, while the fact that the spectra of apparent persistence lengths has a
smaller tail on the left indicates that PARMBSC1 leads to duplexes that have smaller
intrinsic bends than for PARMBSCO. Figure S2 also provide the values of apparent and
dynamic persistence lengths for the six independent dinucleotide tandem repeats
poly(XZ). As such sequences are very straight, their apparent and dynamic persistence
lengths are all very close. And for both the PARMBSCO and PARMBSC1 parameter sets

4
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the sequence poly(AA) is the high outlier among all sequences, with poly(AT) being by
far the low outlier for £4 among all sequences.

Statistics, graphics and molecular plots. The statistical analysis, including the Bayesian
Information Criterion (BIC), Bayes Factor analysis, Helguerro’s theorem, Kullback-

Lieber divergence, and correlations, as well as associated graphics, were obtained with
R 3.0.1 statistical package(20), the MatLab R2016b package, numpy(21) and
matplotlib(22). The molecular plots were generated using VMD 1.9(23).
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Table S1. DNA sequences in the miniABC library.

CHAPTER IIl - RESULTS

Seq. number

Watson strand (5’-3” direction)

1

O 0 N Oy U W

O e
W N RO

GCAACGTGCTATGGAAGC
GCAATAAGTACCAGGAGC
GCAGAAACAGCTCTGCGC
GCAGGCGCAAGACTGAGC
GCATTGGGGACACTACGC
GCGAACTCAAAGGTTGGC
GCGACCGAATGTAATTGC
GCGGAGGGCCGGGTGGGC
GCGTTAGATTAAAATTGC
GCTACGCGGATCGAGAGC
GCTGATATACGATGCAGC
GCTGGCATGAAGCGACGC
GCTTGTGACGGCTAGGGC
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Table S2. Sequence-averaged conformational parameters obtained from the different
miniABC simulations.

miniABCgsco-K miniABCpgsc1-K miniABCgsci-Na

Parameter Average SD Average SD Average SD

Shear (A) 0.02 0.30 0.02 0.30 0.02 0.30
Stretch (A) 0.03 0.12 0.03 0.12 0.03 0.11
Stagger (A) 0.06 0.40 0.10 0.38 0.10 0.38
Buckle (°) 0.8 10.8 1.5 9.9 1.6 9.7
Propeller (°) -12.0 8.2 -9.0 8.1 -9.3 8.2
Opening (°) 2.2 4.5 1.8 4.3 1.8 4.2
Xdisp (A) -1.77 1.52 -0.88 1.36 -0.64 1.43
Ydisp (A) 0.03 1.27 0.00 1.13 -0.01 1.17
Inclination (°) 8.2 7.1 4.0 6.6 2.8 7.0
Tip (°) 0.2 6.7 0.3 6.3 0.3 6.4
Shift (A) -0.03 0.69 -0.03 0.80 -0.04 0.83
Slide (A) -0.51 0.62 -0.29 0.55 -0.22 0.55
Rise (A) 3.32 0.32 3.32 0.30 3.32 0.29
Tilt (%) -0.3 4.3 -0.3 4.4 -0.3 4.5
Roll (°) 4.5 5.8 2.4 5.7 1.7 5.8
Twist (%) 321 5.6 34.4 5.5 34.7 5.3
a(®) -71.1 13.9 -721 15.4 -72.3 15.4
B 170.3 13.8 167.8 21.0 166.9 21.2
vy (°) 56.3 12.3 55.0 18.9 55.0 19.1
5(°) 119.4 21.3 135.3 155 136.2 14.7
£(°) -167.4 25.4 -160.4 25.8 -158.6 27.1
() -94.1 335 -111.4 41.6 -113.8 43.8
x (°) -120.5 20.2 -112.1 17.0 -111.2 16.9
Phase (°) 128.3 37.6 151.4 26.5 152.3 25.0
Amplitude (°) 38.4 7.0 41.6 6.6 41.8 6.6

a Capping base pairs were removed from the analysis. For the dihedral angles only the Watson strand
was considered.
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Table S3. DNA breathing and fraying. Base opening statistics based on the analysis of

the WC hydrogen bonds.
Loss of one Loss of two Loss of three Solvent
Hbond 2 Hbonds Hbonds exchangeb
Occ.c <ti>d Occ. <ti> Occ. <ty> Occ. <ty>
(%) (ns) (%) (ns) (%) (ns) (%) (ns)
K+Cl-
CG b.p 3.73 0.099 2.55 0.754 1.73 1.332 2.14 3.436
terminal
C:Gbp
. 0.33 0.327 0.01 15,53 <0.01 <0.01
terminal(-1)e
C:Gb
P 0.45 0.251 0.03 10.47 0.01 315.2 0.01 149.5
central
A:T bp
1.67 0.089 0.06 7.700 0.03 41.54
central
Na+Cl-
C:Gb.p 2.81 0.095 157 0.761 0.87 2.209 1.20 3.552
terminal
¢G b.p 0.38 0.288 0.01 14.39 <0.01 <0.01
terminal(-1)
C:Gbp 0.52 0.222 0.03 8.651 <0.01 <0.01
central
AT bp 1.59 0.094 0.04 8.963 0.01 62.49
central

a We consider a hydrogen bond broken when the distance between the heavy atoms involved in the
Watson-Crick interactions was greater than 3.5 A. P Solvent exchange refers to base openings where at
least one donor-acceptor distance of WC hbonds is larger than 6 A. These large separations allow water
molecules to interact directly with the base, and eventually exchange protons with imino groups of the
bases. ¢ Occ. stands for occurrence in %. 4 Average open base lifetime. © Refers to the C:G base-pair prior
to last (residue numbers 2:35 and 17:20), see Table S1.
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Table S4. Bll percentages for all the 256 tetranucleotides obtained from miniABCgsci-
K.

T.T |52 74 64 74|65 44 11 57|49 49 19 47|24 9 14 1
T..C |66 86 40 81]145/39 6 40158 41 22 3937 11 15 2
C.T |56 62 56 70|45 6 2 13]|42 30 24 45|23 2 10 3
C.C |72 86 37 53|64 23 5 40|36 41 22 24| 9 5 24 1
C..G |62 71 36 64|23 19 4 13]24 26 27 18] 8 2 11 1
T.G |65 75 47 50|53 33 11 24|30 49 15 26|14 8 7 2
T.A |45 66 31 43|35 35 6 13|32 14 14 28|15 6 7 1
C..A |40 59 25 50149 26 5 11|18 9 12 20|14 5 5 O
A.C |19 51 24 29116 5 1 15|53 30 13 46|13 1 11 1
A.T |12 46 8 23]15 5 1 17|61 28 9 2418 1 10 1
G.T|13 3813 2318 2 0 53136121513 1 9 1
G..C |34 56 11 19|13 4 1 33928 142119 1 6 1
A.LA|23 46 8 2319 2 1 6|36 12 18 22110 1 8 O
A.G |33 5921 2609 2 1 5|30413027]8 1 7 1
G.A |14 37 8 13 6 2 O 4110 9 4 7|14 0 3 O
G.G |22 3815186 4 1 1|27 11 7 316 1 3 1

3523865823 FLB8LRE
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Table S5. BlI percentages for all the 256 tetranucleotides obtained from miniABCgsci-

Na.

T.T |67 78 67 92|55 33 7 41|58 53 22 51|36 18 15 2
T.C |72 88 52 90|46 42 9 42|67 80 34 59|43 14 17 3
C.T |62 64 59 69|29 7 1 10|52 43 28 51|34 7 14 3
C..C |65 86 54 54|49 21 6 30149 57 27 41|14 8 25 2
C..G |45 51 34 59|21 37 5 7)38 18 19 19|20 5 16 2
T.G |54 65 34 63|47 47 8 17|29 76 21 22|21 11 12 3
T.A |50 70 15 45|34 75 12 3|37 17 21 27|20 43 7 2
C..A |50 49 35 47]44 32 6 920 5 14 3625 10 7 1
A..C |31 54 39 39|10 4 1 19]55 40 14 52|19 0 12 1
A.T |23 72 14 30|14 4 1 21|83 23 5 24|10 1 6 1
G.T |25 36 23 36 6 3 0 514130153015 1 7 1
G..C |44 57 26 23|14 4 1 4)50 31 12 3219 1 4 1
A.A |26 49 18 26|11 4 1 7]50 13 16 29111 1 8 O
A.G |32 46 21 28] 8 2 1 62229 252119 1 8 O
G.A |21 3417 16 5 4 1 5)]20 2 4 8|5 0 2 O
G.G |29 30 21 1506 7 1 2|27 9 8 27|18 2 4 1

35293865k 83F 28806 RE

10
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Table S6. Pearson correlation coefficients between Bll% and the formation of the C-
H:--O H-bond.

BII% vs C8-H8::-03’ BII% vs C6-H6:--03’
Set RR YR RY YY Total
miniABCasc1-K 1.000 0.999 0.994 0.996 0.998
miniABCgsci-Na 1.000 0.999 0.995 0.997 0.998

11
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Table §7. Percentages of a/y torsiens in the canenical sub-state (characterized by ain
g- and vy in g+) for all the 256 tetranuclectides obtained frem miniABCesci-K.

T.T-|97 97 90 98|98 99 99 96|90 93 98 97]96 98 94 96
T.C-|97 95 98 95|91 87 97 97197 98 99 96194 98 99 98
C..T-|97 98 98 97|99 89 93 98|94 97 99 94199 96 97 99
C..C-|95 94 97 97196 98 98 99190 97 97 89|95 96 90 92
C..G-|98 93 97 97|94 97 98 98|96 96 97 97199 98 95 96

T..G-]97 90 95 97|97 98 97 98189 95 99 87198 95 95100
T.A-|97 97 96 98|98 97 98 97|98 99 99 0999 96 97 94
97 92 98 91|98 97 98 98|96 99 95 95|91 99 99 96

o
o

Flanks

oo > >0 60 >» >
b

C-|97 86 98 96199 97 97 97|97 99 92 90|89 96 99 97
T-]96 92 95 94196 95 98 99198 99 99 99|97 89 97 94
T-]97 93 97 95|99 99 90 89197 99 83 94199 96 94 97
.C-]92 96 93 91|97 83 99 83|95 97 97 91)89 99 98 98
97 97 64 93|96 97 98 98|95 10099 97|99 98 98 100
G-|95 97 97 96|97 98 98 98|98 98 96 96|97 92 99 100
JA-]91 96 94 98110099 99 91|99 99100 99|96 99 87 96

G-|69 92 89 9899 93 96 99|91 90 90 75|99 94 95 95

GG GAAG AA GC GT AT AC CA TA TGCGCC CT TC TT
Step

12
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Table §8. Percentages of o/y torsions in the canonical sub-state {characterized by a in
g- and v in g+) for all the 256 tetranucleotides obtained from miniABCgsci-Na.

T.T-197 97 98 99|97 95 95 71|92 84 98 96|99 99 99 98
T.C-|86 97 00 98|97 70 97 9895 96 99 95|99 87 93 99
C.T-|96 97 96 94198 96 97 9898 92 87 79|98 99 99 096

C-196 91 95 86|95 98 85 99|95 93 82 97|94 96 99 95

.G-|94 95 95 97|95 97 95 9995 99 92 99|99 99 98 98
.G-|94 93 88 96|87 93 79 97|92 99 92 90|97 92 90 99
A-195 97 98 96|95 98 98 92]195 97 97 96197 91 87 100
A-194 95 97 96|96 99 87 98|97 96 91 93|95 92 99 99

Flanks

o > >» 00 >» >0 4 400
-
1

C-|82 97 97 97|97 96 98 97|99 97 89 99|99 100 96 100
98 99 82 98|97 98 98 9995 99 98 100]97 97 95 98
T-]187 95 97 98|93 96 98 98|95 92 97 92|96 98 97 95
C-]97 94 92 98|96 98 97 96|97 97 93 98|97 99 94 93
A-193 97 08 98|98 88 97 98|95 96 99 00|99 67 99 96

G-]94 94 98 98|92 98 94 98|97 94 94 9698 100 88 97
A-191 06 98 97|96 98 96 96|72 98 92 93|98 77 99 98
G-]89 91 93 93|95 94 93 9798 98 93 97|99 94 99 98

GG GIA AIG AA GC GT AT ACCA TA TG CGCC CT TC TT
Step

13
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SUPPLEMENTARY FIGURES
AGCA
21 B muABC bsco
@ miniABC.bsc0
5]
8

Shift [A]
Figure §1. Shift distribution of the AGCA tetranucleotide obtained from pAECgsco-K and
miniABCgsco-K. Both are bell-shaped Gaussian distributions, with a similar standard
deviation, but different mean. All 1,631 pairs of other analogous marginal distributions
were more similar one to the other.
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Figure S2. Spectra of £, (dark blue) and #4 (dark red) persistence lengths computed
over an ensemble of 10K sequences for A} PARMBSCO, and B} PARMBSC1 parameter
sets, with mean for #; (black solid line} and mean for f1 (black dashed line). The #,
(coloured solid line) and ¢4 {dashed solid line) values for the 6 distinct dinucleotide
tandem repeats are also indicated in each case. The x-axis is in units of basepair, while
the frequency is reported on the y-axis. Note that using an average rise of 0.33 nm, the
peaks reported between 160 to 180 base pairs represent persistence lenths between
52 to 59 nm.
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Figure S3. Time evolution of rise and roll for the TAAA tetranucleotide. The trajectory
performed in K+ (blue) shows the formation of a reversible kink near 550 ns, not
present using Na* (pink). During the formation of the kink, up to two consecutive
adenines lose their Watson-Crick H-bonds and are partially un-stacked. Note that this
local distortion does not affect the main double helical structure of the oligomer.
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miniABC . K miniABCygc,-Na
AGA AAA AGA -
AGG - AAG AGG
GGA GAA - GGA
GGG GAG GGG
CGA- Insufficient Evidence  caa CGA
cGG Uninormal/Unimodal CAG o6
TGA - Binormal/Unimodal TaA TGA
66 Binormal/Bimodal TAG - TGG
AGC AAC AGC
AGT - [:]BinonnalfBimodaI AnT AGT
GGC due to a sub-state GAG GGG =
GGT with a population GAT eaT
oGe- <2% CAG - CGG -
cGT CAT caT

TOC - TAL - TGE =

TGT - TAT -|

- P ——— U — e ————
E652%82 5653288 5635282 6 528¢
;gmog: _::aocs ;gmgglé _:ﬂlmUQE
“sg2sg “Eg3sg “5 5388 "5 8388

Figure S4. Structural polymorphisms (normality and modality) in intra-basepair
helical conformations for all distinct trinucleotides. Results obtained from miniABCasci-
K and miniABCgsci-Na.
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miniABC-K
Insufficient Evidence
Uninarmal/Unimodal
Binormal/Unimodal
Binormal/Bimodal

Bimodal due to
a one-time event

TA CG

= = 3 £ 8 ez3E
2 E g 5 & -95

miniABC-Na

|!nsu1‘ﬂ|:|ent Evidence
Uninormal/Unimodal
Binormal/Unimodal

Binormal/Bimodal

§8 % FH]
2 2

GC
- !g

Figure S5. Structural polymorphisms (normality and modality) in inter-basepair
helical conformations for all the 136 distinct tetranucleotides. Results obtained from
miniABCgesci-K (top) and miniABCgsci-Na (bottom). Tetranucleotides classified as
binormal/bimodal (red) are considered as polymorphic (exist in two clear
conformational sub-states).
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Figure $6. Normalized shift distributions for all the bimodal cases found in the
miniABCgsc1-K dataset, overlapped with their counterpart computed using Na+. X-axes
represent the shift helical parameterin A.
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Figure 57. Normalized slide distributions for all the bimodal cases found in the
miniABCesci- K dataset, overlapped with their counterpart computed using Na+. X-axes
represent the slide helical parameter in A.

20

-127 -



CHAPTER IIl - RESULTS
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Figure $8. Normalized twist distributions for all the bimodal cases found in the
miniABCesci-K dataset, overlapped with their counterpart computed using Na+. The x-
axes represent the twist helical parameter in degrees. Nota that the two peaks observed
are in agreement with X-ray structures of DNA and protein-DNA complexes deposited
in the Protein Data Bank(21).
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A B
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T.C T.C

YYleT YYler
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Figure §9. Sequence dependence of BII backbone conformations. The percentage
occurrence of BII backbone states for the phosphodiester junction at the central base
step of each of the 256 possible tetranucleotide sequences is shown (BIl%), using the
color code defined on the right (0% is dark blue; 80% is dark red). The sequences are
arranged so that each column represents one of 16 dinucleotide steps, and each row
corresponds to one of the 16 possible flanking sequences; columns and rows are further
grouped on the basis of base type (R = purine and Y = pyrimidine). A) pABCgsco-K BII
percentages(24); B) miniABCgsci1-K BII percentages.
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Figure $10. Normalized distribution of the P angle for A, C, G and T bases (in degrees),
obtained from miniABCgsci-K dataset.
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Figure S11. Normalized distribution of the x angle for A, C, G and T bases (in degrees),
obtained from miniABCgsc1-K dataset.
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Figure $12. Normalized distribution of the (8 angle for A, C, G and T bases (in degrees),
obtained from miniABCssci-K dataset.
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Figure S13. Phase vs x distribution plot (in degrees) obtained from miniABCssci-K
dataset for A, C, G and T bases.
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Figure S§14. Phase vs x distribution plot (in degrees) obtained from miniABCesci-K
dataset and filtered according to BI/BII for A, C, G and T bases.
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Figure §15. Correlation coefficients between intra-basepair helical parameters (shear,
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stretch, stagger, propeller, buckle and opening) belonging to the same base pair in the
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Figure 516. Correlation coefficients between inter-basepair helical parameters (shift,
slide, rise, tilt, roll, and twist) belonging to the same step in the Watson strand. Results
obtained from miniABCgsc1-K dataset for all RR, RY and YR bps.
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Figure S17. Correlation coefficients between differences (A) and sums (Z) of inter-
basepair parameters and the BII state in the central junction. Results obtained from
miniABCpsci-K dataset for all steps grouped by RR, RY and YR.
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Figure §18. Correlation coefficients between shift, slide, or twist at the positionsi-1 (5’-
side), i, and i+1 (3’-side), and the backbone substate at the junction of inter-basepair i
in the Watson strand. Results obtained from miniABCpsci-K dataset. The numbers

inside each cell represent the % of specific tetranucleotides within a given family that
giverise to the correlation.
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Correlation
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Figure §19. Correlation coefficients between shift, slide, or twist at the positionsi-1 (5"-
side), i, and i+1 (3’-side), and the backbone substate at the junction of inter-basepair i
in the Crick strand. Note that we refer everything to the Watson strands (see Methods),
so in this plot, RRRR means YYYY since we are analyzing the correlation with the Crick
strand. Results obtained from miniABCssci-K dataset.

-139-

32



CHAPTER IIl - RESULTS

2
14
= = i
= o -4
2 3
14
GC CG GA AA AT TT TC CG GC
T
=
! 1
i i
-10 -15 ! b
GC CG GA AA AT TT TC CG GC GC CG GA AA AT TT TC CGGC GC CG GA AA AT TT TC CG GC
100 —§- NMR1
—7— NMR2
90 - @~ MINABCq.,-K
80 == MiNiABC,.,-Na
e 70 =d— DDD 10 ys MD
o
80
50
40

30

GC CG GA AA AT TT TC CG GC

Figure S20. Comparison between experimental structures (X-ray and NMR)
determined for the Drew-Dickerson Dodecamer(25), and conformations predicted by
using the MD datasets produced herein in conjunction with our extended rules. The six
intra-basepair parameters were predicted (red lines), and compared with all the
experimental structures (grey lines). Vertical dashed lines represent predicted
binormal/bimodal steps, while vertical dotted lines represent steps with clear multi-
peaked distributions although not bimodal according to Helguerro (see Methods). In
the last row, predicted BI% (yellow and green) were compared with *1P-NMR gold-
standard measurements, and a very long MD simulation of the same sequence using
PARMBSC1 force field(25). NMR1 stands for the work by Schwieters et al.(26), and
NMR2 from Tian et al.(27).
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1.2 Higher than tetranucleotide effects of d(CpTpApG) (Publication 2)

This work expands the previous study of tetranucleotide effects on the central base pair step to
effects of a specific tetranucleotide in different hexa- and octanucleotide environments. The
chosen tetranucleotide, CTAG, showed unusual flexibility behavior in the trajectories deposited
in our BigNAsim database as well as in the study of the 136 unique tetranucleotides. In total we
studied 40 different sequence contexts. In the analysis of these trajectories we find evidence of
intrinsic multi-modality of the individual trajectories in three inter base pair parameters (shift,
slide and twist). Shift distribution is tri-modal, while twist and slide distributions are bimodal but
only 4 specific combinations of substates are possible (see Figure 23). Additionally, different
sequence environments experience large differences in the distributions of these helical

coordinates of the d(TpA) step (see Figure 2 in the following publication).
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Figure 23. Normalized frequencies for shift, slide and twist (black line), and the BIC
decomposition in Gaussians (red, green, and blue lines) of the four groups obtained by PCA
and subsequent clustering
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The pathway of the information traveling through concerted movements of backbone and bases
which are also coupled to the formation of unconventional hydrogen bonds influences the central
d(TpA) step up to octamer level. We further examine the remote effects beyond hexanucleotide
level (see Figure 24), pointing out which types of sequences are more susceptible to transmitting

information and at which steps communication vanishes.
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Figure 24. Normalized frequencies of shift, slide and twist at the central TpA step for three
pairs of selected sequences showing non-negligible effects beyond next-to-nearest
neighbours. The colours used are related to the groups found in the clustering analysis.

PCA and subsequent clustering (for more details see ‘Materials and Methods’ of following
publication) show 4 distinct clusters of hexanucleotide variability, with all four clusters
experiencing distinct pattern of flanking purines or pyrimidines (see Figure 5 in the following
publication). A comparison of the resolved structures in the PDB database containing CTAG
reveals values for the shift, slide, roll and twist helical parameters that cover the multi-modal
distributions obtained in our trajectories (see Figure 8 in the following publication), confirming

our claims on the bimodal nature of slide and twist, with peaks in the distributions that fit well to
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our results which provides an indirect, but strong support of the 4-state model of the dynamics
of the central junction in CTAG.

Finally, an analysis of the genome of several different species uncovered that CTAG is one of the
lowest populated tetranucleotides appearing mainly on intergenic regions and very rarely in
genes (see Figure 9 and Supplementary Figure 10 of the following publication). Due its good
conservation, we can conclude that CTAG is important for the functionality of the cell or they are
easily accessible to the mismatch repairing machinery. The low mutation rate of CTAG in cancer
cell lines suggests that the cell takes advantage of the unusual properties of CTAG as points of
high flexibility that might help to fold chromatin.

In summary, this in-depth study uncovered previously unknown features of one of the most
structurally polymorphic tetranucleotides found in B-DNA. Analysis of the helical space of all
hexanucleotide environments and some octamer sequence contexts alongside with data mining
in the PDB data base lead to the assumption that CTAG exists in different conformational
substates where inter base pair parameters are tightly coupled to the backbone by concerted and
correlated movements which lets information travel up to half a helical turn away from the

affected base pair step.

Publication:

Alexandra Balaceanu, Diana Buitrago, Jiirgen Walther, Pablo D. Dans and Modesto Orozco;
Modulation of the helical properties of DNA: next-to-nearest neighbour effects and beyond,
Nucleic Acids Research, 2019, doi: 10.1093/nar/gkz255
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ABSTRACT

We used extensive molecular dynamics simulations
to study the structural and dynamic properties of
the central d(TpA) step in the highly polymorphic
d(CpTpApG) tetranucleotide. Contrary to the as-
sumption of the dinucleotide-model and its nearest
neighbours (tetranucleotide-model), the properties
of the central d(TpA) step change quite significantly
dependent on the next-to-nearest (hexanucleotide)
sequence context and in a few cases are modulated
by even remote neighbours (beyond next-to-nearest
from the central TpA). Our results highlight the exis-
tence of previously undescribed dynamical mecha-
nisms for the transmission of structural information
into the DNA and demonstrate the existence of cer-
tain sequences with special physical properties that
can impact on the global DNA structure and dynam-
ics.

INTRODUCTION

Early structural models of DNA derived from fibre diffrac-
tion data provide a static and averaged picture of the dou-
ble helix (1-3), which despite its simplicity was sufficient to
represent the general shape of DNA in physiological con-
ditions. However, as more accurate structural techniques
appeared, the intrinsic polymorphism of double-stranded
DNA become evident (4-7) as significantly different con-
formations were described depending on the sequence, the
environment or the presence of ligands (8-11). Six decades
alter the development of the first duplex models, we under-
stand that DNA as a flexible and polymorphic molecule is
able to sample a wide range of helical geometries, thanks
to a complex choreography of backbone rearrangements,
which allows the conformational changes required for DNA
functionality (11-19).

Attempts to determine the principles relating sequence
and structure originated in the eighties when by process-

ing the scarce experimental data available, Calladine er af.
(20), developed a series of heuristic rules relating sequence
with some structural characteristics of DNA (21,22). In the
late nineties (23), Olson ef @l developed a complete set of
parameters defining the expected distribution of helical pa-
rameters of the 10 unique base pair steps (bps). Parame-
ters were derived from the analysis of the available crystal
data on DNA-protein complexes and provided information
not only on the equilibrium geometry but also on the ex-
pected flexibility of the bps (extracted from the variability
of the same bps in different crystals). Twenty years after
their generation, Olson-Zhurkin parameters are still used
to represent DNA by means of helical mesoscopic descrip-
tors, However, we cannot ignore the strong assumptions in-
volved in their derivation: (i) the ensemble of configurations
obtained from the analysis of crystal structures should de-
fine a densely populated Gaussian distribution: (ii) a dinu-
cleotide (step) model is enough to represent DNA sequence
variability, i.e. the helical geometry can be decomposed at
the bps level; (i) conformational variability found in struc-
tures in PDB should exclusively depend on the flexibility of
the step and finally (iv) binding of a protein should not in-
troduce anharmonic distortions in the duplex geometry.
The eruption of atomistic molecular dynamics (MD) sim-
ulations gave the community an alternative source of pa-
rameters to describe DNA structure and flexibility. Com-
pared with results derived from the analysis of experimen-
tal structures, the MD-based ones are more robust as they
are obtained from processing an extremely large number
of snapshots, and provide information on flexibility that is
not contaminated by the presence of ligands, crystal lat-
tice or any other environmental artifacts. As a major caveat,
MD-derived descriptions of DNA properties are dependent
on the length of trajectories as well as on the quality of
the force field parameters used to describe DNA interac-
tions. Thus, early attempts to describe DNA from multi-
nanosecond trajectories led to artefactual results due to a
previously unknown error of the most used force field at
that time {24). A newer force field (25) and higher computa-
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tional capabilities provided descriptions of DNA properties
that were more reasonable, but still far from the required
accuracy (12,26,27). The availability of the highly accurate
PARMBSCI force field (28,29) and the development of new
MD codes taking advantage of a new generation of com-
puters (30-33) provide the community with the possibility
to derive reliable representation of the sequence-dependent
physical properties of DNA from the analysis of microsec-
ond long trajectories collected under highly controlled sim-
ulation conditions.

Results collected by the Ascona B-DNA Consortium
(34-37) revealed two major findings that challenged current
models of DNA flexibility. First, the dinucleotide-model is
insufficient to describe DNA flexibility, as the variability
in bps parameters depending on tetranucleotide environ-
ment can be more pronounced than the variability found
when comparing different bps for a given tetranucleotide
context. Second, several distributions of helical parameters
considering the nearest neighbours deviate from normality
and a part of them are in fact multi-modal, which means
that the physical properties of such tetranucleotides cannot
be represented by a single set of elastic parameters (equi-
librium values and associated stiffness). Analysis of MD
data revealed that the changes between substates happen
towards a series of coordinated changes along the back-
bone (17,37,38), where unusual H-bond interactions and
subtle changes in the solvent environment play a key role
(18,39). The analysis of ABC data and of additional trajec-
tories stored in our BigNASim database (40) suggested that
a nearest neighbour-based model was in general suflicient to
derive transferable descriptors of DNA structure and flexi-
bility, but a few exceptions to this general rule emerged; the
clearest one is the d(CpTpApG) tetranucleotide (in the fol-
lowing CTAG): a very polymorphic sireich of DNA, with
50% G-C content, for which results were significantly dif-
ferent depending on the simulation. The structural pecu-
liarities of TpA steps have been qualitatively pointed out in
the past by analysing a small number of experimental struc-
tures, especially when immersed in short A-tracks (41.42).

We present here a detailed analysis of CTAG in differ-
ent sequence contexts. Results demonstrate that next-to-
nearest effects modulate the geometrical properties of the
central d(TpA) step. Such structural effects are very visi-
ble when hexanucleotides are considered, but quite surpris-
ingly extend beyond the next-to-nearest level, indicating the
existence of a complex mechanism of information transfer
across DNA through the coordinated backbone and base
movements.

MATERIALS AND METHODS
The choice of sequences and the simulation details

The systematic study of sequence-dependent effects be-
yond the tetranucleotide level has been to date impossi-
ble, due to the huge number of sequences that need to be
considered. For example, the study of all hexanucleotides
would require the simulation of 2,080 sequences, while
to consider all octanucleotides 32,826 sequence combina-
tions are needed. Fortunately, the analysis of ABC simu-
lations where tetranucleotides appear in different molecu-
lar environments suggests that sequences effects beyond the

CHAPTER IIl - RESULTS

tetranucleotide are rare, and if they exist, are localized in
certain ultra-flexible sequences. We focused our interest here
in one of the most flexible tetranucleotide: CTAG. Thus, we
built a library of 40 different sequences covering the entire
hexanucleotide space (XpCpTpApGpX) as well as all pos-
sible pyrimidine(Y )/ purine(R ) combinations at the octanu-
cleotide level in several repeats (see Supplementary Meth-
ods). All the sequences were prepared using the leap mod-
ule of AMBERTOOLS 16 (43) and standard ABC proto-
col (37). Accordingly, systems were built from Arnott’s B-
DNA average parameters, neutralizing the DNA with K~
ions, adding water (at least 10 A of water separate DNA
from the faces of the box) and extra 150 mM KCI. Systems
were then optimized, thermalized and equilibrated before
production (34,35). Water was represented with the SCP/E
model (44), Smith-Dang parameters were used for ions (45
47yand the recent PARMBSCI force field was considered to
represent nucleic acids interactions (28). Trajectories (col-
lected in the NPT ensemble T — 298 K, P — 1 atm) were
extended from 0.5 s to up to 9 ps. All simulations were per-
formed with the pmemd.cuda code using periodic boundary
conditions and Particle Mesh Ewald (31,48). Movements of
hydrogen atoms were annihilated using SHAKE (49), which
allowed us the use of a 2 fs integration step. All trajectories
collected here are accessible through the MuG BigNASim
portal (40): https://mmb.irbbarcelona.org/BIGN ASim/

Analysis

Standard analysis was done using epptraj module of the
AMBERTOOLS 16 package (43), the NAFlex server (50)
CURVES+ and CANAL programs (51), following the stan-
dard ABC-conventions (37). The CANION module from
Curves+ (38) was used to determine distributions of ion
populations in curvilinear cylindrical coordinates for each
snapshot of the simulations with respect to the instanta-
neous helical axis. Duplexes were named following the Wat-
son strand (e.g. ATGG stands for (ATGG)-(CCAT)). The
letters R, Y and X stand for a purine, a pyrimidine or
any base respectively, while X:X and XX represent a base
pair and base pair step, respectively. Base pairs flanking the
CTAG were denoted using two dots to represent the central
tetrad (e.g. R--Y). The normality and modality of the heli-
cal distributions were evaluated using Bayesian Information
Criteria (52,53) and Helguerro’s theorem (54) as described
elsewhere (12). Classification of the torsional states of the
different rotatable bonds in the DNA backbone was done
using standard criteria (55). Correlations between different
torsions were determined by circular correlation analysis
(see Supplementary Methods for additional details). The
meta-trajectory analysis was used to define the global char-
acteristic of the d(TpA) essential deformation space. With
this purpose, the 40 individual trajectories were grouped
and subjected to principal component analysis (56,57)in the
helical space of the central d(TpA) step after Lankas’ nor-
malization of the different rotational and translational de-
grees of freedom (58). The essential dynamics of the central
d(TpA) step is then used to define the set of key movements
explaining the global deformation at the d(T'pA) step. The
distributions of the four informative bps deformations were
subjected to detailed analysis (see Supplementary Method
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Figure 1. Normalized frequencies of those bps helical parameters found to be bi-normal and tri-normal according to the BIC analysis. First row: Density
obtained from the meta-trajectory (black line), and the BIC decomposition in two Gaussians (slide, roll and twist: red and green lines) or in three Gaussians
(shift: red, green and blue lines). Second row: Overlapped density of the shift, slide, roll and twist parameters at the central TpA step of the 40 sequences

studied (see Supplementary Table S1).

for additional details). Comparison and clustering of the
individual trajectories of the central d(TpA) for the 40 se-
quences studied (all with a common CTAG central tetranu-
cleotide) were done using symmetrized Kullback-Leibler
(KL) divergences (58) followed by hierarchical cluster anal-
ysis using Ward's clustering criterion (59), where the dissim-
ilarities are squared before cluster updating (60), using as
descriptive variable the six distinguished helical variables
detected by the PCA of the meta-trajectory (see Supple-
mentary Methods for additional details). The clusters ob-
tained in this manner were subsequently analysed in detail,
further highlighting the differences between their individ-
ual accessible helical spaces. lon analysis was performed as
described elsewhere (18.38) to unravel the connections be-
tween the binding of cations on the DNA and its mecha-
nistic properties. Stacking strengths were followed by ge-
ometrical criteria for the central dinucleotide in the meta-
trajectory filtered by the three main states in helical space, as
described in detail in Supplementary Methods. Structural
database analysis was done using all DNA structures con-
taining the CTAG tetranucleotide. Genomic analysis was
done to determine the prevalence of the CTAG tetranu-
cleotide in different wild-type genomes and its resilience to
mutation. Genomes of Homo sapiens (hgl9), Escherichia
coli (NC_000913.3) and Saccharomyces cerevisiae (sacCer3)
were analysed. Occurrences of this tetranucleotide were
then mapped, using Homer software (61), to the annotated
regions of each organism obtained from UCSC and com-
pared to the overall frequency of each annotation type. To

compute the resilience to mutation, the frequency of muta-
tions for each tetranucleotide along the genome in 30 differ-
ent cancer types (data from (62)) was determined normaliz-
ing by tetranucleotide occurrence along the genome. Single-
nucleotide polymorphisms (SNPs) in the human genome
were retrieved from Ensembl Variation database (63), and
the number of SNPs per tetranucleotide was computed, nor-
malizing by genome-wide tetranucleotide frequency.

RESULTS AND DISCUSSION

The CTAG shows dramatic and complex structural polymor-
phism

We collected trajectories for 40 oligonucleotides containing
the CTAG tetranucleotide in a central position (see “Mate-
rials and Methods™ and Supplementary Table S1). All the
trajectories were stable along time in the sub-microsecond
timescale, sampling structures that fit well in the B-like dou-
ble helical conformation. As suggested by the analysis of
ABC-simulations (37), and of trajectories deposited in Big-
NASim, (40) CTAG is highly polymorphic as seen from
clear bimodal distributions of some helical parameters. To
check that the multi-peaked distributions were not artefacts
due to limited sampling, we extended trajectories for se-
lected tetranucleotides up to 9 ps (Supplementary Table
S1), tracing the changes in the distribution of helical pa-
rameters. The good convergence shown in Supplementary
Figure S1 supports the robustness of our results and sug-
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gests a fast dynamic of interchange of the different states
(see ‘Discussion’ section below).

In order to obtain a global average picture of the con-
formational space accessible to the CTAG tetranucleotide,
we joined the 40 individual trajectories (equal number of
snapshots in all cases) to generate a meta-trajectory, which
was then subjected to PCA and BIC analysis. Four base-
parameters (the symmetric buckle and propeller twist of
d(T-A) and d(A-T)) and four bps parameters at the cen-
tral d(TpA) step (roll, twist, shift and slide) emerged as
determinant to explain 60% of the variance in the meta-
trajectory; Six of which were used for further analysis. As
seen in the BIC analysis summarized in Figure 1, devia-
tions from Gaussianity in the form of multi-peaked distri-
butions are the main responsible for the structural poly-
morphisms detected at the bps level. Such deviations could
in principle emerge from two different sources: (i) intrinsic
multi-modality in the individual trajectories and (ii) indi-

CHAPTER IIl - RESULTS

vidual distributions (coming from the 40 sequences stud-
ied) are Gaussian, but they are centred at different average
values. To analyse which is the real origin of the deviation
from normality in meta-trajectories, we repeated the anal-
ysis for individual trajectories (Figure 1). Roll distributions
were unimodal in all cases, but the position of the peak was
displaced towards slightly higher values when the central
tetranucleotide is surrounded by R at 5" and Y at 3’ (i.e.
RpCpTpApGpY hexanucleotides). leading to a bi-normal
distribution of the meta-trajectory (see Figure 2). The situ-
ation is completely different for twist, slide and shift where
bi- or even tri-modality (three peaks in the distribution) is
clear for individual sequences (see Figure 2 and Supplemen-
tary Figure S2), with the different substates being sampled
in a fast equilibrium along the time scale of the simulations
(see examples in Supplementary Figure S3).

As shift distribution is tri-modal and twist and slide
distributions are bi-modal, we could in principle expect
12 states. However, many of the combinations of twist,
slide and shift substates are not possible, and in prac-
tice, only four states appear when meta-trajectory is pro-
jected in the twist-slide-shift 3D space (Figure 3). In
fact, one of them (high twist/positive slide/zero shift;
HPZ) is populated only in some of the simulations and
has globally a reduced impact in the meta-trajectory en-
semble, which is dominated by three main states (Fig-
ure 4): high twist/positive slide/negative shift (HPN);
high twist/positive slide/positive shift (HPP) and low
twist/negative slide/zero shift (LNZ). Experimental valida-
tion of the suggested polymorphisms is difficult as experi-
mental structures are always averaged (i.e. assuming a nor-
mal unimodal distribution). However, plotting the scarce
experimental data available for the CTAG tetranucleotide
on the 2D population plots (shift-twist, shift-slide and twist-
slide) derived from meta-trajectories provides an indirect,
but strong support to our results. For example, the shift dis-
tribution is very narrow and centred around zero for low
slide values, while when slide increases, larger values (either
positive or negative) of shift are sampled, in perfect agree-
ment with MD meta-trajectories. Similarly, low twist ap-
pears experimentally only in zero shift conformations, while
high shift (either negative or positive) is found only in ex-
perimental structures with a high twist. Although the ma-
jor discrepancies between MD and experiments seem to oc-
cur for the twist-shift plane, filtering the shift values accord-
ing to low/high twist reconcile partially the matching be-
tween experiments and theory (Supplementary Figure S4).
Finally, the twist-slide plot shows only two regions of high
probability consistent with the same slide/twist correlation
found experimentally (see Figure 3 and ‘Discussion’ section
below).

Next-to-nearest dependence in central d(TpA) conformation

All the sequences studied here correspond to the same
tetranucleotide, so a similar distribution of helical parame-
ters at the central d(TpA) step could be expected. However,
this is not the case as shown in selected examples in Sup-
plementary Figure S2, where large diftferences in the distri-
butions of helical coordinates for the d(TpA) step appear.
Analysis of the trajectories (Figure 1) reveals that the origin
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Figure 3. 3D and 2D counts in the shift, shde and twist planes from MD simulations at the central TpA step. In the 21 density plots, experimental
structures from the PDB (see Supplementary Methods) were added as black crosses (protein-DNA complexes) or blue crosses (isolated DNA).

of the difference emerges from the different weights of the
individual substates defining the global distributions (see a
global summary in Figure 2). Moreover, we observe that
the varying populations of these substates are a direct con-
sequence of sequence context. To go deeper in the analy-
sis of this hexanucleotide variability, we perform Kullback-
Leibler (KL) analysis of the 40 trajectories in the 6D space
defined from the PCA analysis as informative of the entire
flexibility space of the helix (see above). Clustering analy-
sis can be performed from the KL results to determine the
similarity between sequences based on the dynamics of the
central d(TpA) step and organized in the relational den-
drogram (Figure 5), which clearly shows the presence of at
least two major clusters. The first one is populated mainly
by sequences where the central tetranucleotide is flanked
by Y at 5 and R at 3, but also contains two 3'Y-3'Y se-
quences. The other cluster, the largest one, is subdivided

into three different subclusters, two of which are formed
almost exclusively of sequences where the central tetranu-
cleotide is surrounded by R at 5" and Y at 3'; finally, the last
cluster corresponds to situations where the CTAG tetrad
is surrounded by 5'R--3'R. Examples of prototypical distri-
butions obtained for representative sequences in each clus-
ter are shown in Supplementary Figure S5, which demon-
strate that the hexanucleotide content has a non-negligible
role in defining the properties of the central d(TpA) step in
the CTAG tetranucleotide, a clear exception of the nearest
neighbour model. Furthermore, the presence of some hex-
anucleotides in different clusters suggests that some cou-
plings might be possible even beyond the next-to-nearest
neighbour level (see below). The rules that govern the sam-
pling of a given substate of the sequences in each cluster can
be understood by analysing sequence-dependent stabilizing
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Figure 4. 2D density plots in the shift/twist and shift/slide planes at the central TpA step for three selected sequences.

factors that give rise to the characteristic distributions of
helical parameters depicted in Supplementary Figure S5.
The existence of such effects implies that the motion of
the central TpA step must be somehow connected to the
distant base pairs. Mechanical information should travel
from one site to the other to allow the TpA step to ‘feel’
its environment and respond in a different way according
to the nature of the base pairs located almost half heli-
cal turn away. We were able to find a possible explanation
based on the concerted and correlated movements of the
backbone and bases, by first noting that the twist polymor-
phism at TpA was behaving as the better well-known YpR
step: d(CpG) (18,34,37,39). The two possible twist substates
(HT/LT) at the TpA step were connected to the backbone
BI/BII polymorphism at the next GA junction (note that
BI/BII interconversion is mainly governed by the { tor-
sion). Furthermore, the BI/BII polymorphism at GpA is
possible due to the formation of the intra C8H8-O3" h-bond
and the shift polymorphism in the same junction (Figure
6A and B) (39). Similar results were found if looking to the
correlation of twist at the central TpA step with the bps
at the 5'-side (CpT). It is then clear that the main back-
bone polymorphism (BI/BII) is linked to the base poly-
morphisms, mainly to shift and twist (Supplementary Ta-
ble §2) up to the next-to-nearest neighbours. The informa-
tion travels through successive backbone and base poly-
morphisms, which are limited to some specific substates

due to DNA's crankshaft motion (Supplementary Table S2).
This dynamically concerted movement of either (alone or
in combination) shift/slide/twist step parameters and the ¢
torsion could be appreciated from the Pearson correlation
coefficients that clearly show a correlation/anti-correlation
pattern in successive bps. Since intra-molecular CH-O h-
bonds are mainly responsible for the information transfer
between the backbone and the base (39) (with perhaps a
small contribution from the known sugar puckering flex-
ibility, see Supplementary Table S2), both backbone and
base polymorphisms can be followed by looking only to
the formation of those C8H8-0O3' hbonds in RpR and YpR
steps, or CoOH0-O3" hbonds in RpY and YpY steps. The
correlated /anti-correlated formation of these h-bonds away
from the central TpA step clearly explains the transfer of
mechanical information up to the next-to-nearest neigh-
bours, and also beyond depending on the sequence (sce
‘Discussion’ section below and Figure 6C). As a general
rule, at the tetranucleotide level, the BII backbone state is
significantly favoured at the 3’ side on either strand (i.e. at
GpA step). The correlations of backbone substates with the
helical parameters at TpA paint a picture where negative
shift is related to having more BI at the GpA of the Watson
strand and more BII at GpA on the Crick strand, with pos-
itive shift being favoured in the exactly opposite situation.
Additionally, the TpA can be found in a low twist state only
when both 3" GpA junctions are in BII, while the simultane-
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Figure 5. Dendrogram obtained from a hierarchical clustering method using Ward's criterion to classify the sequences. The distances were obtained from

the symmetric Kullback-Leibler (KL) divergence in the space of six helical para
the buckle of dA (see Supplementary Methods).

ous Bl state on both strands at GpA will promote high twist
at TpA. The next-to-nearest context and sometimes more
remote sequence effects can modulate the relative popula-
tions of BI/BII on the two strands, which in turn will affect
the helical parameters at the central TpA. It’s worth noting
that the correlations between helical parameters in consec-
utive steps are mostly anti-correlations, and in general the
global twist distribution of a tetra- or hexanucleotide seg-
ment can be perfectly described by a single Gaussian func-
tion. This means that, from a static and averaged view, the
correlations/anti-correlations between substates in consec-
utive steps are leading to compensatory effects.

In addition to the backbone movements and h-bonds,
each substate at the TpA step is modulated and stabilized
by other factors, such as interactions with ions and stack-
ing between consecutive bases. For CpG, a relatively sim-
ple mechanism was found where the entrance of Na+/K+
inside the minor groove triggered and stabilized the low
twist state and hence BII (18). For TpA, the mechanism
is much more complex, since it involves a combination of
shift/slide/twist substates and the movements of K+ from
the major groove of CpT to the major groove of ApG,
when going from HPN (high twist/positive slide/negative
shift) to HPP (high twist/positive slide/positive shift) (Sup-
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meters: shift, slide and twist of TpA step, buckle and propeller of dT. and

plementary Figure S6). A depletion of cations inside both
grooves for the whole tetranucleotide was observed when
moving to the LNZ substate (low twist/negative slide/zero
shift). All the sequences studied share the same redistribu-
tion of K+ when moving between the substates, but the
sequence-specific populations of cach substate lead to dif-
ferent overall ion distributions when changing the next-to-
nearest neighbour’s context (Supplementary Figure S7). Fi-
nally, we found that at the TpA step, the stacking strength
on either strand increased significantly when shift moves to-
ward the minor groove at high twist and positive slide, an
interaction that further stabilizes the BII state at the 3’ junc-
tion (Supplementary Figure S8).

Structural information travels beyond next-to-nearest neigh-
bours

Sequences studied here cover all the next-to-nearest neigh-
bours’ space with some redundancy that allowed us to check
for some remote effects beyond this level. As noted above,
such effects are clearly visible already in Figure 5, where se-
quences containing the same hexanucleotide sequence ap-
pear in two very different branches of the dendrogram, in-
dicating the tuning of hexanucleotide preferences by more
remote effects. Analysis of the different octanucleotidic en-
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to Bl propensities, stabilizing the BII substate.

vironments (R-R/YY), (Y--R) and (R-Y) reveals the ex-
istence of a quite differential behaviour (see Figure 7). For
example, the conformational substates of the central TpA
step in YpCpTpApGpR sequences (Y--R) are fully defined
at the next-to-nearest neighbours level, with remote effects
being negligible: all (Y--R) hexanucleotides appear in the
same cluster in the dendrogram of Figure 5, and they dis-
play consistent distributions in all multi-modal helical pa-
rameters (shift has two main populations at £2 A, with
the zero shift state being less favoured). Slide and Twist
are, as a consequence, pushed towards higher values. This
makes sense, considering that, irrespective of the octanu-
cleotide level base, when ApG is followed by an R base
on both strands, the junction at ApG will be pushed out
of the BII state. This frustration of high BII propensity of

two adjacent bps (a direct consequence of the crankshaft
effect) will result in an overall higher BI population at
ApG, which corresponds to the high twist, positive slide
and negative/positive shift equilibrium at TpA. On the con-
trary, R--Y hexanucleotides (RpCpTpApGpY sequences)
have two very distinct behaviours depending on the next
flanking base: Central TpA steps in RpRpCpTpApGpYpY
(RR--YY) octanucleotides tend to populate zero shift states
and have equal populations of high/low twist as well as of
negative /positive slide. On the contrary, TpA in YR-YR
octanucleotide contexts have a strong preference for posi-
tive shift and rarely visit low twist or negative slide. Inspec-
tion of the trajectories suggests that this is probably due to
a domino effect of h-bond proclivity so that depending on
the base pairs flanking the R--Y hexanucleotide there is ei-
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Figure 7. Normalized frequencies of shift, slide and twist at the central TpA step for three pairs of selected sequences showing non-negligible effects beyond
next-to-nearest neighbours. The colours used are related to the groups found in the clustering analysis.

ther an equally strong preference towards BII at ApG on
the two strands, or the Watson strand BII state is favoured
over the Crick, which is necessarily compensated by shift-
ing the bases towards the major groove. Finally, remote se-
quence effects are present just in a few cases for R-R/Y-Y
hexanucleotides and lead to a change in shift from the mi-
nor to the major groove, maintaining similar distributions
of twist and slide (Figure 7). In summary, our results sug-
gest that CTAG is one of the few tetranucleotides (amongst
the unique 136) where next-to-nearest neighbours and be-
yond effects are observed, while in general, nearest neigh-
bour models can accurately explain by ‘concatenation of
tetranucleotides’ the described remote effects in longer se-
quences.

Data mining of structural databases and genomic implica-
tions

We analysed the structures of DNA obtained experimen-
tally (X-ray and NMR) and stored in the Protein Data Bank
that contained the CTAG tetranucleotide sequence in or-
der to validate our results. Only 106 occurrences of CTAG
in naked DNA structures were found (some with small lig-
ands or metal ions), and 160 occurrences in structures of

protein-DNA complexes. Moreover, only a fraction of the
tetranucleotide sequence space is covered (next-to-nearest
neighbours), and barely any of the hexanucleotide context
(octanucleotides of the type XpXpCpTpApGpXpX, where
X =C, T, A, G)is found (Supplementary Table S3). This
scarcity of data clearly limits the generality of the conclu-
sions that could be derived from the data mining of the
PDB, although a BIC analysis of the experimental struc-
tural parameters of TpA steps flanked by ¥C-3'G at least
confirms that multi-modality is not a force field artefact
(Supplementary Figure §9). PDB structures containing the
CTAG tetranucleotide have values for the shift, slide, roll
and twist helical parameters that cover the multi-modal
distributions obtained in our trajectories, confirming our
claims on the bimodal nature of slide and twist, with peaks
in the distributions that fit well to our results (see Figure 8
and Supplementary Figure 89). For shift, TpA steps distri-
bution displays peaks 2 A towards both the minor or ma-
jor groove in several protein-bound DNA structures, but
the data on naked DNA seem to be insufficient to cover
these deformations: there is a small peak at +2 A, but highly
underestimated compared to our results. Finally, roll has a
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broad distribution, similar to what we obtain from MD sim-
ulations, being bi-normal, but unimodal.

All analyses performed in this work suggests that CTAG
has really unique physical properties, which should provide
the genome with a point of high flexibility and polymor-
phism. Very remarkably, CTAG is one of the lowest popu-
lated tetranucleotides in the analysed species (see Figure 9)
appearing mainly on intergenic regions and very rarely on
genes (Supplementary Figure S10). We further highlighted
this by analysing comparatively, with and without including
exons, all the tetranucleotides containing the trinucleotide
TpApG (XTAG or TAGX, where X could be A, C, G or
T), which is known as the amber stop codon. Our results
still confirm the low rate of the CTAG tetranucleotide, even
removing the TpApG stop codon (Supplementary Figure
S11). Interestingly, this infrequent CTAG tetranucleotide
is well conserved, which suggest that (i) despite being far
from coding regions they are important for the functional-
ity of the cell, or alternatively, (ii) they are easily accessible
to the mismatch repairing machinery, avoiding the stabiliza-
tion of mutations. The same conclusion can be reached from

the analysis of cancer genomic data, which show that again
CTAG is very rarely mutated in cancer (Supplementary Fig-
ure S12). The unusual physical properties of the CTAG
tetranucleotide matches its unusual prevalence and distri-
bution in the genome and its extreme resilience to somatic
(cancer) mutations. It is tempting to believe that cell takes
advantage of the unusual properties of CTAG as points of
high flexibility that might help to fold chromatin.

CONCLUSIONS

We present here an in-depth study of one of the most “struc-
turally speaking’ polymorphic tetranucleotides found in B-
DNA. The complete helical space of the CTAG tetranu-
cleotide has been analysed by means of extensive molec-
ular dynamics simulations and by data mining the Pro-
tein Data Bank, confirming its highly polymorphic be-
haviour at several helical parameters: shift, slide, twist and
BI/BIL. This confers to CTAG the possibility to exist in
several different substates, being particularly flexible. We
present here clear evidence that the type of substate dis-
played by CTAG in a given sequence context, and in conse-
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quence its dynamics, is sequence dependent, and fine-tuned
by next-to-nearest neighbours and beyond. Based on the
concerted and correlated movements of bases and back-
bone torsions for the described multi-modal degrees of free-
dom, and driven by the mechanical limitations imposed by
DNA's crankshaft motions, we were able to found a pos-
sible explanation on how structural information can travel
almost half helical turn away from the central TpA step.
This remote structural ‘connection” allows the TpA step to
“feel” its sequence environment beyond the next-to-nearest
neighbours, and eventually adopts a different substate if
needed. Moreover, we found that previously described un-
conventional intra-molecular hydrogen bonds of the type
C8H8-03" and C6H6-O3 that link the movements of the
bases with the torsions in the backbone, could be used as
descriptors of such correlated motions. Finally, we estab-
lished that although this highly flexible tetranucleotide is
extremely under-represented in several genomes along the
animal Kingdome, being mostly present in intergenic se-
quences, it has been preserved with a low rate of mutation
implying a possible physical role for CTAG at the genomic
level.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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SUPPORTING METHODS

The choice of sequences. We built a library of 40 different 16 bp oligomer
sequences with a middle d(CpTpApG)z that cover the entire hexanucleotide space
featuring a XpCpTpApGpX sequence pattern (X stands for any nucleotide) as well as
all possible pyrimidine(Y)/purine(R) combinations at the octanucleotide level in
several (>3) repeats.

System preparation and MD simulations. All the sequences were prepared with
the leap program of AMBERTOOLS 16 (1) and simulated using pmemd.cuda code
(2). Following the ABC protocol (3}, canonical duplexes were generated using Arnott
B-DNA fiber parameters (4), and solvated by a truncated octahedral box with a
minimum distance of 10 A between DNA and the closest face of the box.

Simulations were run using parmbscl force-field, SPC/E water model (5) and 150
mM concentration of K*Cl salt using Smith/Dang parameters (6-8). Systems were
optimized and equilibrated as described in our previous works, and simulated for at
least 500 ns and up to 10 ps in the NPT ensemble, using Particle-Mesh Ewald
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corrections (2, 9) and periodic boundary conditions. SHAKE was used to constrain
bonds involving hydrogen (10), allowing 2 fs integration step. All the trajectories
and the associated analysis are accessible in the BigNAsim portal:
https://mmb.irbbarcelona.org/BIGNASim/.

Analysis of Molecular Dynamics trajectories. All the trajectories were processed
with the cpptraj module of the AMBERTOOLS 16 package (1), and the NAFlex server
(10) for standard analysis. DNA helical parameters and backbone torsion angles
were measured and analysed with the CURVES+ and CANAL programs (11),
following the standard ABC conventions (3). The CANION module from Curves+ (12)
was used to determine the position of cations in curvilinear cylindrical coordinates
for each snapshot of the simulations with respect to the instantaneous helical axis.
We obtained and analysed the ion distribution in one- (R, D, A) and two-dimensional
(RA, DA, DR) curvilinear cylindrical coordinates at the central tetranucleotide
sequence. Duplexes were named following the Watson strand (e.g. CTAG stands for
(CTAG)-(CTAG)). The letters R, Y and X stand for a purine a pyrimidine or any base
respectively, while X-X and XX represent a base pair and base-pair step respectively.
Base pairs flanking the CTAG were denoted using two dots to represent the central
tetrad (e.g. R-Y).

The Essential Modes of generic TpA in helical space. We performed Principal
Component Analysis (PCA) of the 18 intra- and inter- base-pair parameters that
define all degrees of freedom of the central TpA step in a rigid-base model. Before
calculating the covariance matrix in helical space, its entries had to be made
dimensionally uniform, so all rotational degrees of freedom were scaled by a factor
of 10.6 (13). The covariance was calculated from the joint equilibrated trajectories
of all 40 sequences taken at every 100 ps. The first 3 Principal Components, which
explain ~60% of the total variance, have their largest projections on a subset of 8 of
the original 18 helical parameters. These 3 PCs were used to perform
multidimensional clustering in the essential helical space using the mclust package
of R. The clustering is performed using the optimal model according to Bayesian
Information Criterion (BIC)} for an expectation-minimization (EM) algorithm
initialized by hierarchical clustering for parameterized Gaussian mixture models.

Distributions of helical parameters that guide specific sequence dependence.
The helical parameters that showed the highest variability across trajectories of
different sequences were identified using Principal Component Analysis (PCA) of
the 18 intra- and inter base pair parameters that define all degrees of freedom of the
central TpA step in a rigid-base model. The first 3 Principal Components, which
explain ~60% of the total variance have their largest projections on a subset of 8 of
the original 18 helical parameters. The Bayesian Information Criterion (BIC) (14,
15) was used, limiting the analysis to either two or three components to determine
the number of normal functions needed to meaningfully represent the appearance
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of possible substates in the shift, slide, roll and twist 1D distributions of the joint
trajectory of all sequences. The normal distributions obtained from the BIC
decomposition were compared to the distributions of the same parameters obtained
after the multivariate clustering (into 3 clusters) of the first 3 PCs.

From the eight parameters identified from the PCA as accounting for the most
variance, six are non-collinear in the essential helical space, namely the shift, slide
and twist of TpA bps, the buckle and propeller twist of dT and the buckle of dA. The
distributions of the subset of these 6 parameters were used to evaluate the
similarity between central TpA steps in different oligonucleotide sequences using
the Kullback-Leibler (KL) divergence theorem. For each pair of oligomers we
calculated the symmetrized values of the KL divergence and then applied
hierarchical cluster analysis using Ward's clustering criterion (16), where the
dissimilarities are squared before cluster updating (17) in order to identify specific
sequence effects on TpA helical space flexibility.

The 4-state model of TpA dynamics. The 3D and 2D distributions of these three
parameters and their paired combinations, respectively, in the meta-trajectory have
also been calculated and they show a clear preference of the TpA to occupy one of
four states in the Shift-Slide-Twist space. In fact, the states of the 3 helical
parameters that display polymorphisms are highly inter-dependent, as shown in the
2- and 3- dimensional distribution plots. The 3 most populated states in the twist-
slide-shift space, when considering the entire meta-trajectory of all
oligonucleotides, are: High Twist/Positive Slide/Negative Shift (HPN), High
Twist/Positive Slide/Positive Shift (HPP), and Low Twist/Negative Slide/Zero Shift
(LNZ). In order to capture and better understand these effects, we filtered the meta-
trajectory into 3 sub-trajectories corresponding to the 3 states, removing all frames
that did not belong to any of these. We compared the distribution of helical
parameters beyond the next-to-nearest neighbours (octanucleotide level) in both

“ 2

directions (“-” sign for moving towards the 5’ direction on the Watson strand and
“+” sign for the 3’ direction) between the 3 substate-trajectories and found
significant effects in the neighbouring shift, slide and twist. We also compared up to
the octanucleotide level, backbone torsions, sugar puckering, and glycosidic

torsions.

Breaking down the twist, slide and shift contributions to the distal sequence effects,
we calculate the Pearson’s correlations of these parameters at TpA to the helical
parameters at one and two levels away from TpA in each direction and the point
biserial correlations to the backbone torsion (zeta - categorized in trans and
gauche-), sugar pucker (categorized into South and North) and glycosidic torsion
(categorized into Anti and High Anti).
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Equilibrium distributions of inter base pair helical parameters at the TpA step
vary beyond next-to-nearest neighbours. BIC (Bayesian Information Criterion)
was used to distinguish between the normal (one Gaussian) or multi-normal (a
mixture of two or more Gaussians) nature of the distributions of TpA helical
parameters (14, 15).

Since for each individual trajectory, the BIC decomposition assign the same number
of Gaussians (1, 2 and 3) in the respective helical parameters (roll, twist/slide and
shift, respectively) and the peaks of the distributions are consistent thought the set
of oligomers, we compare the propensities of each Gaussian of the individual
trajectories with the total average propensity per peak, assigning them to one of
three ranges: mean - sd, mean + sd and within this interval, in order to identify large
deviations in population imposed by sequence.

Correlation between twist and zeta states. As previously analysed in depth for
the CpG case, we found strong correlations between the twist state and the BI/BII
backbone state at the 3’ side of the TpA step on both Watson and Crick strands. The
backbone state was defined by discretizing the zeta torsion sub-states into trans
(180 * 40 degrees - associated with a backbone in BII), gauche positive (60 = 40
degrees - extremely infrequent) and gauche negative (300 £ 40 degrees — associated
with a backbone in BI). Just like in the CpG case, a low twist state was found to
usually be coupled with BII transitions at both 3’ junctions.

Correlation between twist and C-H~03' hydrogen bond. Relying on strong
evidence from previous studies (18, 19) of almost perfect correlation between
backbone state and the formation of base to backbone hydrogen bonds, we looked
at the correlation between twist state at the TpA step and hydrogen bond formation
beyond the next-to-nearest neighbours. We found, as expected, a dependency of 3’
side adjacent bond formation to twist state that perfectly mirrors that of the
backbone state. But we also discovered an insightful sequential anti-correlation of
bond formation from one step to the next that is also highly dependent on sequence,
which favours the formation of one or the other.

Stacking and Base-pairing strength. In order to estimate the strength of stacking
at the TpA step we calculated a Stacking Factor based on the distance between the
centres of mass of DT and DA, and the angle between the two planes of the bases,
defined as (20):

TMm

o)

S(a) = e @ + g~ (@ ™" 4 g 1o (x-05m)"
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where rumis the distance between the two centres of mass and a the angle between
the base planes. We calculated the Stacking Factors separately for the major 3 of the
4 states in twist/slide/shift space defined above to determine the stabilizing factors
of the highly preferred states.

Database Analysis of structural features. We retrieved high resolution (< 34)
structures of double stranded DNA containing the CTAG tetrad and distinguished
between the protein-bound and free DNA structures. We compared helical
parameter distributions and components of BIC analysis between the database
structures and out results. We paid special attention to the sequence context bias
found in the database and performed the comparison to the meta-trajectory from
simulations containing the same hexanucleotide environments centred at TpA.

Database Analysis of genomic properties. Prevalence of CTAG in the genomes of
H. sapiens (hg19), E. coli (NC_000913.3) and S. cerevisiae (sacCer3) was computed,
finding low occurrence compared to other tetranucleotides (less than 0.5% in the
three species). Occurrences of this tetranucleotide were then mapped, using Homer
software (21), to the annotated regions of each organism obtained from UCSC and
compared to the overall frequency of each annotation type. CTAG is enriched at
intergenic regions in H. sapiens and E. coli, but not in S. cerevisiae probably due to
the low number of intergenic regions in this organism (less than 2.5% compared to
more than 20% in the other two). To evaluate resilience to mutation, the frequency
of mutations for each tetranucleotide (normalised by tetranucleotide frequency)
along the genome in 30 different cancer types (22) was computed. SNPs in human
genome were retrieved from Ensembl Variation database (23) and were mapped to
each tetranucleotide to compute normalized SNP frequency per tetranucleotide.
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Table S1. Sequence library used to study CTAG polymorphisms, number of replicas
and simulation time.

Num. Sequence Slml.llatmn Num. Sequence Slml.llatmn
time time
1 CGTCGGCTAGCCGAGC 500 ns 21 CGGAGACTAGACTCGC 500ns
2 CGTCTCCTAGGAGAGC 500 ns 22 CGGAGACTAGCCTCGC 500ns
3 CGAAAACTAGAAAAGC 500 ns 23 CGGAGACTAGGCTCGC 6 us
4 CGAAAACTAGTTTTGC 500 ns 24 CGGAGACTAGTCTCGC 6 us
5 CGATATCTAGATATGC 500 ns 25 CGGAGCCTAGACTCGC 500ns
6 CGTATACTAGTATAGC 2x500ns 26 CGGAGCCTAGCCTCGC 2x500ns
7  CGGGGGCTAGGGGGGC 500 ns 27 CGGAGCCTAGGCTCGC  500ns
8 CGGGGGCTAGCCCCGC 500 ns 28 CGGAGGCTAGACTCGC 500ns
9 CGGCGCCTAGGCGCGC 500 ns 29 CGGAGGCTAGCCTCGC 6 us
10 CGCGCGCTAGCGCGGC 500 ns 30 CGGAGTCTAGACTCGC 2 x500ns
11 CGTCTACTAGAGAGGC  500ns 31 CGCTAGCTAGCTAGGC 4 x500ns
12 CGTCTACTAGCGAGGC 2x500ns 32 CGATATCTAGAAATGC 2 us
13 CGTCTACTAGGGAGGC 6 ps 33 CGGAGCCTAGAATCGC 2 us
14 CGTCTACTAGTGAGGC 2x500ns 34 CGGCGCCTAGGGGCGC 2 us
15 CGTCTCCTAGAGAGGC 2x500ns 35 CGGAGGCTAGCATCGC 2 us
16 CGTCTCCTAGCGAGGC  500ns 36 CGAAAACTAGTATAGC 2 us
17 CGTCTCCTAGGGAGGC 500 ns 37 CGCTAGCTAGCGAGGC 2 us
18 CGTCTGCTAGAGAGGC 6 us 38 CGTCTGCTAGACAGGC 2 us
19 CGTCTGCTAGCGAGGC 9 us 39 CGAATCCTAGATAAGC 2 us
20 CGTCTTCTAGAGAGGC 500 ns 40 CGGACACTAGCGTCGC 2 us
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Table S2. Pearson correlation coefficients of Shift, Slide and Twist at TpA with
flanking bps parameters and selected backbone torsions up to next-to-nearest
neighbours.

Shift Slide Twist Shift Slide Twist

atTA atTA atTA atTA atTA atTA

Shift 0.06 0.002 0.025 zetaW -0.067 -0.063 -0.123

Slide 0.157 0149 0.206 zetaC -0.471 -0.286 -0.421

Rise -0.052 -0.022 -0.086 phaseW -0.130 -0.023 -0.073

-2 Tilt 0.086 0.031 0.051 phaseC -0.061 -0.079 -0.110
Roll 0.001 0.043 0.038 chiwW 0.018 0.002 0.025

Twist 0.089 0.051 0.021 chiC -0.074 -0.042 -0.057

Shift -0.607 -0.149 -0.257 zetaW -0.454 -0.098 -0.217

Slide -0.298 0.089 -0.094 zetaC 0.753 0.295 0536

Rise 0.028 -0.089 -0.109 phaseW -0.425 0.006 -0.105

-1 Tilt -0.12 0057 -0.11 phaseC 0.111 0102 0.090
Roll 0.002 0178 0157 chiw -0.140 -0.027 -0.058

Twist -0.223  -0.263 -0453 chiC 0.107 0173 0.153

Central TpA step

Shift -0.607 0192 0306 zetaW -0.736 0340 0.589

Slide 0.201 0.098 -0.078 zetaC 0456 -0.166 -0.260

Rise 0.017 -0.08 -0.114 phaseW -0.157 0130 0.103

+1 Tilt -0.104 -0.047 0.12 phaseC 0431 -0.045 -0.144
Roll -0.045 0176 0173 chiw -0.206 0.186 0.170

Twist 0.232  -0.25 -0455 chiC 0.166 -0.022 -0.053

Shift 0.185 -0.084 -0.148 zetaW 0.547 -0.332 -0.487

Slide -0.251 0195 0271 zetaC 0.023 -0.023 -0.061

Rise 0.09 -0.04 -0.103 phaseW 0.020 -0.072 -0.076

+2 Tilt 0.156 -0.091 -0.125 PhaseC 0.085 -0.004 -0.054
Roll 0.012 0.044 0.039 chiW 0.019 -0.012 -0.018

twist -0.095 0.079 0.067 chiC -0.067 0006 0.024
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Table S3. Number and frequency of unique occurrences of hexanucleotides
containing central CTAG in the PDB database.

Tvpe Hexanucleotide No. structures Frequen
yp Context . ! i

9
&
-
921

0.54

5 0.18
Naked DNA 3 0.11
structures 2 0.07
2 0.07
1 0.04
30 0.31
30 0.31
0.11
0.08
0.07
0.05

8
Protein-DNA 7
5
2 0.02
2
1
1

complexes

0.02
0.01
0.01
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Fig. §1. Normalized frequencies of the shift, slide, roll and twist helical parameters
for 3 selected sequences, whose trajectories were extended to 6 ps to check for

convergence. Four distributions were computed for each helical parameter using
segments of 1,000 or 2,000 ns.
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Fig. S4. 2D counts in the shift-twist plane from MD simulations at the central TpA
step. In the 2D density plots experimental structures from the PDB (see Supp.
Methods) were added as black crosses (Protein-DNA complexes), or blue crosses
(isolated DNA). We divided the plane between high twist (> 37°), and low twist (<
37°) and analysed the shift distribution for these two cases.
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2. A helical coarse grain model of B-DNA dynamics and its web
implementation

Based on the acquired knowledge on DNA dynamics we decided to develop a helical CG model
implementing it in a stand-alone and web application which is freely distributed. The
development of a helical coarse grain model involves different choices: the level of resolution, the
type of Hamiltonian to sample the conformations and the parameters on which the calculations
are based. We chose as level of resolution the base pair as smallest unit as in this case movements
at the base pair step level are limited to three translations and three rotations (shift, slide, rise,
tilt, roll, twist), which at the expense of some loss of resolution, drastically simplifies the
calculation and the parameterization of the model (10, 11). The choice of the energy function to
sample the helical states was until now a harmonic Hamiltonian assuming that under normal
conditions the distributions of inter base pair coordinates are Gaussian. Within this assumption
the energy of the DNA can be easily described by means of a stiffness matrix and a deformation
vector indicating the deviation of an inter base pair coordinate from its equilibrium value (see
Section 2 in Chapter IlI). However, we could conclude from the previous study of the whole
tetranucleotide space, many of the inter base pair parameter distributions are not behaving
Gaussian (80% of the inter base pair distributions of all tetranucleotides). For this reason, we
implemented a new Hamiltonian inspired by empirical valence bond theory (12), which considers
explicitly the different conformational substates of the tetranucleotides. The parametrization of
the conformational substates for each tetranucleotide was done in a systematic manner by
dividing the MD trajectory into corresponding structures belonging to a certain substate using
machine learning approaches. The sampling of the extended nearest neighbor helical CG model
via a Monte Carlo algorithm resulted in structure ensembles showing very similar global and local
sequence-dependent dynamics as in MD. Comparison to experimental structures from PDB yields
a good agreement in RMSd/bp and inter base pair parameters and the high computational
efficiency of the CG helical DNA model allows the treatment of DNA segments at time scales up
to five orders of magnitude faster than conventional atomistic MD and offers simulations of long
DNA stretches at unprecedented detail not reachable by atomistic MD. The algorithm is

implemented in a simple web interface (http://mmb.irbbarcelona.org/MCDNAlite/) and as a
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stand-alone package (http://mmb.irbbarcelona.org/MCDNAIlite/standalone) enabling easy access

for potential users to the model.

We developed the web interface even further to allow direct online sampling and subsequent
analysis of DNA equilibrium conformations via the extended nearest neighbor CG model. In this
webserver, the user is given the possibility to simulate — apart from unrestrained B-DNA dynamics
— DNA in a constrained environment such as supercoiled DNA or DNA coated with proteins. The
trajectories (at base pair resolution or using a pseudo-atomistic reconstruction) can be
downloaded and/or subjected to a large variety of analysis in the server. The server is accessible

at http://mmb.irbbarcelona.org/MCDNA/.

2.1 Extended nearest neighbor helical coarse grain model (Publication 3)

This work shows the development of a helical CG model (MC-eNN from now on) that produces
results comparable to those of atomistic MD, but at a fraction of computational cost (see Figure

25 for the workflow).

@ Watson strand

Shift2 Slide2 Rise2 Tilt2 Roll2 Twist2

'
© Shiftl Slidel Risel Tiltl Rolll Twistl [

80 100

Bl Probability (in %)
4 &

20

Figure 25. Workflow of the MC-eNN helical CG model.

The analysis of all unique tetranucleotides showed different helical states for several

tetranucleotides, a phenomenon not able to capture by a standard harmonic model which
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assumes all inter base pair parameter distributions to be Gaussian with only one single helical
state. The implementation of a new Hamiltonian to correctly sample the inter base pair
conformational substates makes use of parameters derived from a previous MD study of all
unique tetranucleotides using parmbscl force field. The energy function of the extended nearest
neighbor model is motivated by valence bond theory, converging to the standard harmonic model
in the limit of a single helical state. The different helical substates were obtained by deconvoluting
the inter base pair parameter distributions of each tetranucleotide into several harmonic
distributions by means of machine learning approaches such as PCA in helical space and
unsupervised clustering. We found that most tetranucleotides can be represented by 3-5 helical
states (Figure 3 in the following publication) and in less than 10% of all tetranucleotides more
than 5 helical states are needed. The extended nearest neighbor model is coupled to a Metropolis
Monte Carlo sampling algorithm in the inter base pair parameter space where sampled
configurations (examples see Figure 26) can be shown in an all-atom representation and backbone
torsions were reconstituted using the correlations between inter base pair coordinates and
backbone states (Bl or Bll) found in the previous study of the analysis of all tetranucleotides

(Figure 22).

To test the CG model we compare the sampled conformations (in atomistic detail) against
atomistic MD trajectories of different sequence length and context. An analysis of 10 different
18mers reveals similarity indices higher than 0.8 when comparing the MC-eNN method versus
MD (see Figure 5 in the following publication), much higher than the cross-similarity indices. Local
inter base pair distributions obtained from MC-eNN calculations are impossible to differentiate
from those derived from atomistic MD simulations (see Figure 6 in the following publication), even
in the cases where the inter base pair parameters are correlated in a highly non-linear manner.
We tested the MC-eNN performance against the longest naked DNA duplex in the BigNASim
database of 56 base pairs in length. Apart from high similarity in essential dynamics (a Boltzmann-
weighted similarity index close to 90%) and very similar average RMSd/bp (0.09 A x bp for MD
and 0.11 A x bp for MC-eNN), groove dimensions and many other subtle structural details such as

the sequence-dependent backbone substate population are well reproduced (see Figure 27).
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Figure 26. Bi-dimensional inter base pair parameter maps of Twist-Shift of three tetramers
CTAG (top), GCGG (middle) and TCGA (bottom) of MD simulations of the parmbsc1-ABC
data set (left) and MC-eNN simulations (right).

We performed an exhaustive comparison of MC-eNN configurations with highly-resolved
experimental structures (X-ray or NMR) from the PDB data base (see Supplementary Table 5 in
the following publication). We find good agreement in terms of the average inter base pair
parameters and an average RMSd of around 0.3 A x bp is very close to those found in atomistic

MD trajectories.
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The performance of the MC-eNN algorithm is such that to obtain converged inter base pair
distributions atomistic MD simulation of a 56-mer duplex would require more than 500 days in a
64-core cluster while to obtain equivalent sampling with MC-eNN would only require 12 minutes

outperforming MD by a factor of ~10° (see Supplementary Figure S12 in the following

publication).
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Figure 27. Comparison of MC-eNN (black) and MD simulations (red) of the longest naked
DNA duplex in the BigNASim database (56 bp in length, sequence see Suppl. Table S4 in the
following publication).

In summary, the new mesoscopic model for the representation of structure and dynamics of
naked DNA structures allows an accurate representation of complex polymorphisms in DNA while
maintaining its mathematical elegant description and computational efficiency. It is implemented

in simple tools that can be used by non-experts (http://mmb.irbbarcelona.org/MCDNAlite for the

web implementation and http://mmb.irbbarcelona.org/MCDNAlite/standalone for the stand-

alone version) aiming to serve as an easy-to-use model to obtain a more complete picture of DNA

structures.
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A MULTI-MODAL COARSE-GRAIN MODEL OF DNA
FLEXIBILITY MAPPABLE TO THE ATOMISTIC LEVEL

Jiurgen Walther?, Pablo D. Dans?, Alexandra Balaceanu?!, Adam Hospital’,

Genis Bayarri! and Modesto Grozcol:2*

We present a new coarse-grained method for the simulation of duplex DNA. The algorithm
uses a generalized multi-harmonic model that can represent any multi-normal distribution
of helical parameters, avoiding thus caveats of current mesoscopic models of DNA
simulation. The method has been parameterized from accurate parmbscl molecular
dynamics simulations of all unique 4-mer sequences of DNA embedded in long duplexes and
takes advantage of the correlation between helical states and backbone configurations to
derive atomistic representations of DNA, The algorithm, which is implemented in a simple
web interface and in a standalone package reproduces with a high computational efficiency
the structural landscape of long segments of DNA untreatable by atomistic molecular
dynamics simulations.

! Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science
and Technology.

2 Department of Biochemistry and Biomedicine. The University of Barcelona. Barcelona,
Spain.

* Correspondence to Prof. Modesto Orozco: modesto.orozco@irbbarcelona.org
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INTRODUCTION

Under physiological conditions DNA behaves like a polymeric entity whose
properties are dependent on the underlying sequence. Experimental approaches to
the determination of sequence-dependent physical properties of DNA are impaired
by their inability to deal with long and flexible polymers, which has fueled the
development of theoretical simulation techniques (1), among them atomistic
molecular dynamics (MD), a method that after recent improvements in force-fields
(2, 3) has shown extreme accuracy in describing the structural and dynamic
properties of a variety of DNA structures (4-10). Unfortunately, the computational
cost of MD simulation scales (roughly) with the 3 power of the length of the duplex,
and a simple 100 bp duplex would require a simulation box containing more than
107 water molecules, a system for which reaching reasonable simulation times is

nearly impossible.

Coarse grain (CG) methods are a cost-effective alternative to simulate very long
segments of DNA, approaching the chromatin scale. Summarizing, two families of CG
methods have been developed (1, 11-14): the first ones (Cartesian CG) are based on
reducing the atomistic representation of the nuclectides to a few beads whose
interactions are defined by empirical potentials and whose movements are followed
by means of (typically) Langevin-Brownian MD algorithms (15-17). The second
family of methods (helical CG) reduces the degrees of freedom in DNA by
considering the nucleobases or the base pairs (bp) as rigid planes whose movements
are defined by three rotations and three translations. In this second family of
methods the sampling is typically obtained by means of Monte Carlo (MC)
simulation techniques. While the Cartesian CG methods have the advantage of
universality, for physiological DNAs, helical CG methods are probably more efficient
as helical coordinates are better suited to describe the essential movements of DNA

(12,13).
Three crucial choices must be taken in defining a helical CG model. The first one is

the level of resolution: nucleobases or base pairs. In nucleobase-resolution scheme

the CG model should account for the movement of each nucleobase with respect to
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three neighbors in a simple base pair step (bps) (the paired one, one located at the
3’, and one at 5’ in the opposite strand), which sums up to 6% degrees of freedom per
nucleobase. By combining nucleobase (intra base pair) and base pair step (inter
base pair) helical coordinates the number of degrees of freedom can be significantly
reduced (18-20). Simpler and more popular (21, 22) are helical-CG methods that
represent the DNA at the base pair level. In this case movements at the base pair
step level are limited to three translations and three rotations (shift, slide, rise, tilt,
roll, twist), which at the expense of some loss of resclution, drastically simplifies the

calculation and the parameterization of the model.

The second important choice in building a helical CG model is the nature of the
Hamiltonian (energy function) used to describe the dependence between the energy
of the system and the change in helical coordinates. Most CG models rely on the use
of a harmonic Hamiltonian (1, 12, 13, 18-22), which assumes that under normal
conditions the distributions of helical coordinates (at either nucleobase or base pair
level) are Gaussian. Within this assumption the energy of the DNA can be easily
described by means of a stiffness matrix and a deformation vector indicating the
deviation of a helical coordinate from its equilibrium value (21). For the most
common base pair resolution model this means that the energy is computed as

shown in equation 1:
1
E(X) = T}, KjaXf (1)

where E is the energy, N is the number of bps, Kj is the 6x6 stiffness matrix for bps j,
and AX; is the 6-dimension deformation vector (AX; =X; -X]p), with X; and
X]-0 being the current conformation vector of bps at a given point of the ensemble and

the equilibrium vector respectively.

The last choice in the definition of a helical CG model is the origin of the parameters

(stiffness matrix and the equilibrium vector X]p used to compute the deformation

vector) defining the energy function. Original models developed by Olson & Zhurkin

(21) used a nearest-neighbor (NN) scheme, where parameters for the ten unique
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bps were derived by inspection of the helical geometries of bps found in databases
of crystal structures of DNA-protein complexes. Further refinements used MD
simulation of different DNA duplexes containing the ten-unique bps as source of
parameters (22, 23). More recently, as the shortcomings of the NN scheme became
evident, new harmonic models relying on inter base pair parameters adapted to all
the different tetranucleotides emerged (1, 6, 24), with the corresponding
parameters being fitted from atomistic MD simulations. These models showed a
good ability to reproduce the conformational space of DNA duplexes, but were
limited by two fundamental problems: i) they were parameterized from the
parmbscQ force-field (2) which showed caveats in the representation of certain
characteristics of the helix and ii) they were based on the harmonic approximation,
which is unable to reproduce multimodality shown both experimentally and
theoretically in the distribution of inter base pair coordinates of certain bps (4, 6, 7,

25, 26).

We present here an evolution of the helical CG model which assumes a novel multi-
normal model which accounts for the non-Gaussian nature of some inter base pair
deformations and considers a flexible extended nearest neighbor model (eNN
model), which reproduces very well the impact of remote neighbors in the definition
of the deformability of bps. Parameters (stiffness and equilibrium values per state
and shifting values between states) were derived from atomistic MD simulations
using parmbscl force-field and state-of-the-art simulation procedures. Sampling is
obtained by means of a highly efficient Metropolis Monte Carlo algorithm. The
method has been implemented in a server
(http://mmb.irbbarcelona.org/MCDNAlite/) which incorporates tools that, taking
advantage of correlations between helical states and backbone conformation (25,
27) allows the atomistic-level reconstitution of the DNA at the nucleobase and
backbone level. The method produces MC ensembles difficult to distinguish from
atomistic MD trajectories with a fraction of computational cost and reproduces well

known experimental structures.
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THE ALGORITHM

Hamiltonian definition: A recent analysis of the dynamics of the 136 unique
tetranucleotides of B-DNA performed by the ABC consortium (25) revealed that
80% of the 816 (136x6) unique inter base pair distributions cannot be correctly
described using a single normal distribution
(http://mmb.irbbarcelona.org/miniABC/ ;(25)). As described elsewhere (4) in
many cases the peaks of the fitted normal distributions are close, and a single
unimodal function can reasonably describe the real distribution. However, in 4% of
the cases at least a bimodal distribution must be used to obtain a reasonable fit to
the real distribution. Bimodality can be seen in slide (several tetranucleotides
containing the central d(GpG) step), shift (typically in a few tetranucleotides
containing d(YR) central step), and twist (very often in tetranucleotides containing
central d(CG) or d(AG) steps). Certain tetranucleotides, such as d{CdTdAdG) show
especially complex distributions (26) impossible to describe by a single Gaussian. In
summary, the normality assumption on which the harmonic model is based should

be revisited for more realistic representations of DNA flexibility.

We propose here a new Hamiltonian inspired by empirical valence bond theory
(28), where we assume that the distribution of inter base pair parameters (shift,
slide, rise, tilt, roll, twist) underlies a Boltzmann-averaged combination of Gaussian
distributions. The Hamiltonian leading to such a distribution can be derived as

shown in equation 2:

B(X) = —kgT XN, In 3 o For it +E) (g

where kg is the Boltzmann constant, T is the temperature, N is the number of bps, n
is the number of states in which the distribution of inter base pair parameters of a
given bps (in its sequence environment) can be decomposed (see below), K is the
stiffness matrix associated to the state i in step j; AX is the deformation vector (with
equilibrium values dependent on step j and state i) and Ej is the relative energy of
state i at bps j (shifting values between states). Note that for a single unimodal
distribution eq. 2 leads to the classical harmonic model shown in eq. 1. Also note

5
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that due to sequence end effects single state dimer stiffness parameters are used for

the first and last bps.

Definition of the states: Eq. 2 implies that the energy is computed from a set of
stiffness matrices and deformation vectors which are not only dependent on the
step, but also on the state. In principle, if there are m states for each inter base pair
distribution, we should expect mé states at the bps level (i.e. for bimodality m=2 we
could expect 64 different stiffness matrices and equilibrium vectors for each bps).
Fortunately, the number of unique helical states is smaller as some inter base pair
parameters are correlated and others show a purely uninormal-unimodal
distribution. To assign in a systematic manner the number of states to describe a
given bps we process ps-long parmbscl MD simulation of a large number of
duplexes (see Table 1) containing the 136 unique tetranucleotides (data can be
downloaded from http://mmb.irbbarcelona.org/BigNASim/ (29)). To this end, we
transform the original inter base pair coordinates of the central bps of each
tetranucleotide in a new set of dimensionless parameters using Lankal

transformation (30); see eq. 3:

¥i =8y +(1-48)10.6y; (3)

where y andy® are normal and dimensionless inter base pair parameters and & is
a Heaviside step function equal to 1 if ¥ is a translational parameter (measured in

A) and is equal to 0 when it is a rotational parameter (measured in degree).

Principal component analysis (PCA) is then performed to reduce the
coordinatespace where a certain number of components (those explaining at least
80% of variance) are kept (usually 3). Original trajectories projected in this reduced
space are subjected to clustering following a Gaussian finite mixture model (31). The
MD ensemble is then divided into several sub-ensembles for which the equilibrium
vector (Xo) is determined. The covariance matrix in the original inter base pair
parameter space is defined and inverted (22) to obtain the stiffness matrix specific

for a given state of a bps in a certain tetranucleotide environment. Finally, all the
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harmonic models defining the global energetics of the tetranucleotide are combined

by using eq. 2.

Monte Carlo simulations. Simulation of the movements of the DNA at the CG level
were performed using eq. 2 (or for comparison eq. 1) implemented in a Monte Carlo
(MC) sampling algorithm, where movements in the inter base pair parameter space
are attempted and accepted or not based on the Metropolis algorithm. For each MC
move one to four inter base pair parameters are randomly selected to be modified.
The strength of the change is determined by two values: a scaling factor which is
dependent on the diagonal entry of the stiffness matrix of the inter base pair
parameter and which is scaled to guarantee ~40 % acceptance rate. The output of a
MC run is a long file of 6xNxT (N number of bps, T number of snapshots) inter base
pair coordinates, which can be partially or totally transformed into Cartesian
coordinates as described below. The sampling algorithm is implemented in a simple
web interface (http://mmb.irbbarcelona.org/MCDNAlite) and ready to download as
a stand-alone version via the web interface

(http://mmb.irbbarcelona.org/MCDNAlite /standalone).

Atomic detail reconstitution. The inter base pair coordinates collected from the
MC algorithm above were transformed to derive Cartesian representations of the
DNA (Figure 1), as in many cases this is the level of detail required to understand
DNA functionality. For a given set of inter base pair coordinates the positions of the
phosphates were derived from helical axis by using Lavery’s rules (see Figure 1;
(32)). Atomistic coordinates of the nucleobases were derived using the SCHNArP
algorithm (33), and backbone torsions were reconstituted using the correlations
between inter base pair coordinates and backbone states (Bl or BII) found in a
recent ABC study (25). Thus, for each tetranucleotide the inter base pair coordinate
showing the highest correlation with the backbone state is used as a classifier of the
backbone state (typically shift; see Suppl. Table $1). The accuracy of the backbone
state prediction is typically in the range of 80-90% (see Suppl. Figure S1). Average
Bl and BII backbone conformations for each of the 16 dimers were extracted from
the meta-trajectory of all the occurrences of the dimers in a recent ABC simulation

set (see Table 1) and fit to the nucleobase position defined by the inter base pair
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coordinates (see Figure 1). A short restrained steepest descent optimization relaxes
mismatched local geometries without altering state definition. The mesoscopic MC-
eNN ensemble using full atomistic reconstruction can be analyzed with any common
MD analysis tool (links to NaFlex (34) are included in the web interface), which

highly increases the usability of the model.

Data and analysis tools. Original trajectories were obtained in previous works
using parmbscl force-field (3) and standard simulation protocols used by the ABC
consortium ((6), individual simulation times at least 1 ps; data deposited at
BigNASim (29) database; ID ‘miniABC_K'). DNA inter base pair parameters, groove
widths and backbone torsion angles were measured and analyzed with the
CURVES+ and CANAL programs (32, 35). Principal component analysis (PCA) in
Cartesian space was done using PCASUITE
(http://mmb.pcb.ub.es/software /pcasuite /pcasuite.html). Essential dynamics of
simulated trajectories were obtained using the Boltzmann’s averaged absolute
similarity index (36). BIC (Bayesian Information Criterion) was used to determine
the normal (one Gaussian) or multi-peaked nature of the distributions of inter base
pair parameters (see Suppl. Methods and (37, 38)). For multi-peaked distributions
we used an extension of the Helguerro's theorem (39, 40) to distinguish those cases
where the Gaussians are very close (unimodal) from those where they are
significantly separated. Clustering was done using the mclustlibrary (41)inR 3.1.2.
The same software package was used to perform all the statistic studies in the

manuscript.

RESULTS AND DISCUSSION

The inter base pair parameter space from MD simulations. All of the 136
tetranucleotides and 80% of the 136x6 inter base pair distributions can be classified
as multi-peaked, but fortunately, only 20 % of the tetranucleotides and 4 % of
individual inter base pair distributions are multi-modal based on Helguerro’s
theorem. However, these numbers mask the complexity of the coupling between
inter base pair coordinates. This is illustrated by inspection of normalized bi-

dimensional distributions (Figure 2 for examples), which show the existence of 4
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major scenarios: i) the inter base pair parameters are uncorrelated and show
uninormal distributions leading to clear 2D Gaussian distributions, ii) the two
parameters show unimodal distributions, but are correlated leading to ellipsoidal
shaped distributions, iii) at least one of the two parameters is double-peaked
resulting in two hotspots in the bi-dimensional map and finally, iv) multiple peaks
in two inter base pair parameters and correlation between them lead to a complex
bi-dimensional probability distribution. Certainly, by moving to higher dimensions
more complex probability distributions impossible to represent by combining 1D

distribution would be encountered.

To define unambiguously the number of states required to define the preferentially
sampled regions we performed a clustering algorithm (see Methods), finding that
most tetranucleotides can be represented by 3-5 clusters (Figure 3). The need to use
more than 5 clusters is found in less than 10% of the cases (Figure 3), but those
tetranucleotides where a single state is enough to represent the sampling are even
less common. As expected from previous studies (6, 25, 26), shift and twist are the
main drivers for the multiplicity of states (see Suppl. Table S2). Note that no
assumption on unimodality is made for the derivation of the different states, which
means that an inter base pair parameter distribution of an individual state may be
classified as multimodal. However, when Bayes-Helguerro’s analysis is done at the
state level, in only 0.8% of the clustered distributions (3192 in total) unimodality is
not satisfied and overall multi-normality decreases from 80% to 20%. This means
that the dimension reduction and clustering process outlined here reduces
dramatically the problem of multi-normality and multi-modality (see examples in
Figure 3 and Suppl. Figure S2) and produces a robust protocol to define the number
of states where a harmonic behavior is granted, the basic assumption required to

use eq. 2.

Equilibration and convergence of Monte Carlo Simulations. Before analyzing the
performance of the eNN method we evaluate the expected length of the simulation
required to obtain reasonably converged ensembles. To this end we performed
several MC simulations (room temperature) of duplexes of random sequence and

lengths ranging from 10 to 1,000 base pairs using Arnott’s fiber data to generate the
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starting structures. As Arnott’s parameters are known to overestimate twist by 1-2
degrees (42) we can evaluate the performance of the MC method to relax and
equilibrate an incorrect structure. Results in Figure 4A (and Suppl. Figure S3)
indicate that for the most sensitive parameter (the number of helical turns)
equilibration is achieved when the number of collected configurations equals the
length of the oligomer multiplied by 200 (for other parameters such as end-to-end
distance convergence is faster, ie. around 100 x length). Thus, for the largest
oligomer considered here (1,000 bp) equilibration is achieved after 100,000-
200,000 Monte Carlo steps. For oligomers of a size compatible with atomistic MD
simulations (~ 50 bp) equilibration is so fast that it is not visible in the plots (Suppl.
Figure S3).

Once the rules for the equilibration time were clear we evaluated the length of the
ensemble required to obtain converged distributions of local and global DNA
properties. Results in Figure 4B (and Suppl. Figure S$4) show that in general good
sampling for sensitive global parameters such as the helical turns is obtained after
a reasonably small number of configurations selected after equilibration (around
10,000-20,000 configurations). Irrespectively of the length of the duplex
convergence in local geometry takes from 10,000 to 40,000 configurations
depending on the complexity of the tetrad accessible inter base pair parameter
space (see examples in Suppl. Figure S5 and $6). When comparison is possible, MC-
convergence is faster than that obtained from MD simulations (see Suppl. Figure S6

and discussion below).

MC-eNN calculations reproduce well atomistic MD trajectories. We compare
ensembles obtained for several medium-sized DNA duplexes (Suppl. Table S3) using
our MC-eNN protocol and 0.5-2 us long atomistic MD simulations (using parmbscl
force-field). Figure 5 shows that MC and MD trajectories for the same sequence are
nearly indistinguishable. Auto-similarity indexes (diagonal in Figure 5) are always
larger than cross-similarity index (for a common set of equal atoms) which indicates
that the MC-eNN method reproduces very well the sequence-specific details of the
deformability of DNA. Local (Figure 6) inter base pair distributions obtained from

MC-eNN calculations are impossible to differentiate from those derived from

10
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atomistic MD simulations, even in those cases where the inter base pair probability
distributions are correlated in a highly non-linear manner, impossible to capture by
a standard harmonic model (see Suppl. Figure S7). To test the limit of the method
we compared MC-eNN and MD ensembles for the longest naked DNA duplex in the
BigNASim database (56 bp in length, see Suppl. Table S4). The essential dynamics
obtained from MC and MD samplings are nearly indistinguishable(absolute
similarity index of 0.88; see Suppl. Figure 58) and the same level of agreement is
found when looking to sequence-dependent inter base pair properties (Figure 7A-C
and Suppl. Figure 59). In addition, even local and fine details, such as compensatory
changesin neighboring steps, or the inter base pair distributions at highly structural

polymorphic sites are well captured by the MC-eNN model.

The reconstitution protocol provides reasonable backbone conformations, leading
to “atomistic” reconstitutions that are hard to distinguish from the atomistic MD
simulations. For example, for the 56-mer duplex the RMSd (using all heavy atoms as
reference) of the ensemble vs the MD-averaged structure is around 0.09 A x bp,
while the RMSd increases to only 0.11 A x bp when the MC-eNN ensemble is
compared with the MD-averaged structure. Groove dimensions and many other
subtle structural details such as the distribution of BI/BII states or the puckering of
the sugar are well reproduced by the method (Figure 7D-F) reflected by an average
difference in groove widths between MC-eNN and MD of (0.28 +0.68) A and a linear
correlation coefficient of 0.85 of Bl population along the sequence of MC-eNN vs MD,
significantly higher than when MD is compared with NMR experiments (0.45 in
average, (43)). The difference in backbone populations of MC-eNN and MD (1.1 +
10.8)% and lies within the experimental accuracy of backbone state determination
(10%; (43)) in more than 70% of the cases, compared to 53% when MD and
experiment are compared (43). Both MC-eNN and MD experience a South vs. North
pucker population of 0.95-1.00 in over 90% of the cases with overall mean Phase
angle of P = (161 + 19)° for MC-eNN compared to P = (149 * 30)° in MD. In summary,
it seems that the “atomistic” structures derived from MC-eNN calculations are

accurate enough as to be used to discuss specific protein-binding to the DNA.

11

-197 -



CHAPTER IIl - RESULTS

MC-eNN calculations reproduce well experimental structures. We performed
an exhaustive comparison of MC-eNN ensembles with experimental (X-Ray or NMR)
structures in PDB (Figure 8, Suppl. Figures S10 and S11 and Suppl. Table S5). Our
structures at T=300 K show average RMSd around 0.3 & x bp (using all heavy atoms
as reference) from the known experimental structure, a value that is close to those
found in atomistic MD trajectories performed at the same temperature (see Suppl.
Table $5), and not far from the RMSd generated by thermal noise (around 0.1 A x bp,
see previous section). The performance of the MC-eNN calculations is such that we
can detect regions where experimental structures might need to be revisited. For
example, large compensatory twist oscillations likely originated from the
refinement protocol (1DN9, 1HQ7 in Suppl. Figure S11D-E), or regions where
anomalous inter base pair parameter values (low Roll in last bps and very high twist

in bps 4 for PDB id 2]YK in Figure 8B) occur.

Computational performance. The MC-eNN method is very efficient from a
computational point of view. To obtain converged complex inter base pair
distributions (see Figure 4B and Suppl. Figure S3 and Suppl. Figure S5) atomistic MD
simulation of a 56-mer duplex (~550,000 atoms) would require more than 500 days
in one of our 64-core cluster (400 ns of trajectory), while to obtain equivalent
sampling (as determined from the convergence rate) would require only 12 minutes
in the same machine using the MC-eNN method outperforming MD by a factor of
~105 (see Suppl. Figure $12). The difference in computer performance between MD
and MC-eNN calculations increases for larger duplexes, as the cost of MD simulations
scales with the third power of the length of the DNA, while MC-eNN simulation time
increases only linearly with the length of the duplex. Furthermore, contrary to
atomistic MD, MC-eNN scales perfectly with the number of processors, which

facilitates its use in supercomputers.

The MC-eNN webserver. The MC-eNN simulation method is distributed as a stand-
alone executable version for MacOS and Linux systems (see Supplementary
Information; source code is available upon request), but it is also accessible as a
webserver http://mmb.irbbarcelona.org/MCDNAlite/ (the stand-alone version can

be downloaded via the webserver

12
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http://mmb.irbbarcelona.org/MCDNAlite /standalone) which requires just the
sequence of the duplex as input and provides as output a limited number of
alternative conformations, selected to capture the most probable configurations
according to the states at tetranucleotide level. All results can be viewed directly in
the web interface and downloaded for further local analysis. A direct link in the
webserver to our NAFlex tool (34) constitutes a user-friendly way for deeper online

analysis of the DNA structures.

CONCLUSIONS

We present a new mesoscopic model for the representation of the structure and
dynamics of naked DNA structures, which integrates all the information acquired
from the analysis of B-DNA dynamics from the latest efforts published by the ABC
consortium. The method maintains the simple bps model, but tackles rigorously the
multi-modality of inter base pair distributions and their dependence on nearest
neighbors, allowing an accurate representation of complex polymorphisms in DNA.
The mesoscopic ensembles provided by our algorithm can be transformed to
atomistic models of DNA with a high accuracy even in local details, something
beyond the expectations of a mesoscopic model. The method is extremely efficient,
making it possible to simulate long fibers of DNA that will be unreachable for
atomistic MD simulation in the next decades. It is implemented in simple tools that
can be used by non-experts aiming to obtain a more complete picture of DNA than

that derived from the inspection of canonical average structures.
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Figure 1. Workflow of the MC-eNN model. The model is parametrized by MD
simulations of a sequence set of all unique 136 tetramers (see Table 1 for
sequences). Monte Carlo sampling in the inter base pair parameter space based on
the new Hamiltonian (see eq. 2] of a structure with N+1 base pairs yields a set of
6xNxT inter base pair coordinates (T is the number of structures sampled). For a
single structure, atomistic coordinates of the nuclecbases are derived using the
SCHNATrP algorithm {31) and the position of the phosphates relative to the helical
axis using Lavery’s rules (30] are determined. Using correlations of inter base pair
parameters and backbone torsions the backbone states are classified to either Bl or
BIIL. For each central bps of atetranucleotide the inter base pair coordinate showing
the highest correlation with the backbone state is used as a classifier of the backbone
state (see Suppl. Table 51 and Methods for more details). Average BI and BII
backbone conformations for each of the 16 dimers were fit to the nuclecbase
position defined by the inter base pair coordinates. A short restrained steepest
descent optimization relaxes mismatched local geometries resulting in the final
structure {for more details see Methods).

- 208 -



CHAPTER IIl - RESULTS

A density B density
2 Mo 21 006
0.50 0.04
0 0.25 o 0.02
= 0.00 3 0.00
B . @
| 0.80 |
-2 060 -2
0.40
0.20
—4' T T
-6 -3 10
C 60 density
0.03
50-
| 0.02
40- N 0.01
Ban. Tl 0.00
530 densét_y004
20- | 0.003
033
10: Moo b
' . 008
0.000

%0 20 10 0 10 20 30 °0 10 20 30 40 50 60
ro twist

Figure 2. Examples of the four different scenarios of bi-dimensional inter base pair
parameter distributions found in the BigNASim database. A) Two uncorrelated and
uninormal distributions show Gaussian behaviour (tetramer AATT in MD
simulation with BigNASim ID ‘DDD_800ns"). B) Unimodal distributions which are
correlated show elipsoidal shaped pattern (tetramer AAGC in MD simulation with
BigNASim ID ‘miniabc_K_12"). C) Two hotspots appear when at least one of the two
parameters contains two separate peaks (third appearance of tetramer CTAG in MD
simulation with BigNASim ID ‘AGCT’). D) A complex multi-peaked bi-dimensional
map is obtained when both inter base pair parameters are multimodal and
correlated (tetramer TCGA in MD simulation with BigNASim ID ‘miniabe_K_10"). The
four isodensity lines equal to 100%, 75%, 50% and 25% of the maximum density
and the corresponding values are shown in each plot.
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Figure 3. Histogram of the number of clusters to represent the six-dimensional inter
base pair parameter space of the 136 unique tetramers (Middle). Examples for the
division of inter base pair parameter distributions into multiple states for the most
common number of clusters are shown for Shift (Top) and Twist (Bottom) for the
tetramers CTAG (3 clusters), TAAG (4 clusters) and ACGA (5 clusters). The inter base
pair parameter distributions (grey) are clustered into several distributions shown
in green, blue and red for 3 clusters; green, blue, red and orange for 4 clusters and
green, blue, red, orange and purple for 5 clusters.
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Figure 4. Equilibration and convergence of the MC-eNN simulation. A) Number of
MC moves needed for fiber equilibration obtained by investigating end-to-end
distance (left) and number of helical turns (right) of 10 individual simulations of a
fiber of random sequence of 50 bp (top) and 600 bp (bottom) in length. The 10
individual simulations are shown in different colors and a black line illustrates the
average of the 10 simulations. Equilibration is obtained when the number of Monte
Carlo moves equals the length of the oligomer multiplied by 200 (see main text). B)
Convergence rules were achieved by comparing the length of the ensemble needed
to obtain converged distributions. Distributions of end-to-end distance (left) and
number of helical turns (right) of 2,000-50,000 configurations of a fiber of random
sequence of 50 bp (top) and 600 bp (bottom) in length show that a small number of
configurations is sufficient for good sampling of sensitive global fiber parameters.
Note: the maximum of the scale of the axis of end-to-end distance is calculated as 4A
x fiber length (in base pair).
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Figure 5. Essential dynamics between MC-eNN and MD. Boltzmann-weighted
absolute similarity indices (34) of MC-eNN simulations (x-axis) versus MD
simulations (y-axis) of 10 different sequences of 18 bp in length (see Suppl. Table
§3) are calculated with the first 30 eigenvectors of the central 14 base pairs.
Absolute similarity indices of simulations of the same sequence (auto similarity
index) are computed using as reference all the heavy nucleobase atoms while when
comparing two different sequences the heavy atoms common in all the nucleobases
are used as reference (cross similarity index). The numbers in each square of the
matrix are rounded to a single decimal number and each square of the matrix is
color-coded according the color legend. Important to note is that the auto similarity
indices (diagonal) are always higher than the cross-similarity indices when
comparing MC-eNN and MD.
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Figure 6. Bi-dimensional inter base pair parameter maps of Twist-Shift of three
tetramers CTAG (top), GCGG (middle) and TCGA (bottom) of MD simulations of the
parmbsc1-ABC data set (left) and MC-eNN simulations (right) of the same sequences
(see Table 1). For each tetramer there is a different color legend. The four isodensity
lines equal to 100 %, 75 %, 50 % and 25 % of the maximum density and the
corresponding isodensity values are shown in the bottom right of each plot. The bi-
dimensional inter base pair parameter distributions of MD and MC-eNN simulations
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are indistinguishable even when correlated in a highly non-linear manner which is
impossible to capture by a standard harmonic model.
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Figure 7. Comparison of MC-eNN (black) and MD simulations (red) of the longest
naked DNA duplex in the BigNASim database (56 bp in length, sequence see Suppl.
Table $4). A) Roll distribution in degrees, B) Twist distribution in degrees and C)
Shift distribution in Angstrom of the central 53 bps. D) Difference in Bl Percentage
of backbone states of MC-eNN - MD in Watson (green) and Crick (brown) strand of
the central 54 base pairs. The green and brown dashed line show the average
difference in Bl percentage in the Watson (2.2%) and Crick (0.1%) strand, the grey
horizontal dashed lines illustrate the 10 % margin corresponding to the accuracy of
determining the backbone state in NMR experiments (41) and blue horizontal
dashed lines represent 20% difference in BI population similar to the average
discrepancy of backbone state population estimations of MD simulations compared
to NMR experiments (41). E) Major (top, in bold) and minor (bottom, transparent)
groove width. F) Histogram of the population of South pucker (Phase angle of 120°-
210°) of all the South/North (Phase angle of 340°-40°) pucker conformations of the
central 54 base pairs. All the error bars of Fig7A-D represent the standard deviation.
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Figure 8. Comparison of the rotational inter base pair parameter distributions Tilt
(left), Roll (middle) and Twist (right) of MC-eNN simulations (black) with
experimental structures in PDB (red). Error bars represent the standard deviation
of the MC-eNN simulation or the different models of the experiment, respectively.
A) PDB id 1ILC (12 bp, resolved by NMR). B) PDB id 2]YK (21 bp, resolved by NMR).
The translational inter base pair parameter distributions are compared in Suppl.
Figure S9 and more examples are depicted in Suppl. Figure $10 (see Suppl. Table S5
for more details on the experimental structures).
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Supplementary Methods

Stand-alone version

The Stand-alone version of the MC-enNN model can be downloaded via
http://mmb.irbbarcelona.org/MCDNAlite/standalone. The executables are available for
Linux and MacOS systems (source code available upon request to the authors).

The stand-alone version calculates an ensemble of DNA configurations simulated via a Monte
Carlo algorithm. The result is a set of DNA configurations which can be visualized according
to the desired level of resolution. There are two options of resolution:

1) Only nucleobase atoms and the phosphate are reconstructed of each DNA structure.
(“coarse grain”)
2) Nucleobase atoms and the whole backbone are reconstituted (“atomistic”)

Note that to obtain only information about the conformation of the nucleobases, the “coarse
grain” option is sufficient, otherwise the “atomistic” option is recommended.

Once downloaded, extract the tar.gz file. In the folder there are two relevant executable
“run_cg.sh” for option 1 and “run_atomistic.sh” for option 2.

The user needs to specify three parameters: the input sequence, the number of structures to
be calculated and the output folder in which the results are saved. A sequence file
‘Test_Sequence.dat’ is available in the main folder to test the algorithm. Generally, sequence
files have to be written in a single line with no spaces and all upper case letters using only
‘A’,'C", "G’ or “T". The minimum sequence length is 5nt.

Execute ‘coarse-grain’ model. To execute the model with ‘coarse grain’ resolution
following command has to be typed into the console (change directory in the console to the
directory where the executable are located):

sh run_cg.sh <absolute path of sequence file> <# of structures to generate> <output folder>

Example:

sh run_cg.sh /home/Directory/Test_Sequence.dat 10 /home/test (adjust directory path as
needed)
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This command calculates 10 structures in the ‘coarse-grain’ resolution taking the sequence
from ‘/home/Directory/Test_Sequence.dat’. The outputis saved in ‘/home /test’.

The structures are saved as pdb in the output folder in the folder called 'output_pdb' and the
bps coordinates of each structure are saved in the folder ‘output_helpar’ (the values in the
firstline in the file ‘table_all_twis.dat’ correspond to the Twist values of bps 1 to N of the first
structure and so on).

Execute ‘atomistic’ model. To execute the model with ‘atomistic’ resolution two
prerequisites have to be taken into account.

NOTE: Two prerequisites have to be fulfilled since freely available third party software is
used for the atomistic backbone reconstruction.

1) R needs to be installed (https://www.r-project.org/). An R version equal or higher
than 3.2.0 is necessary and the library ‘bio3d’ needs to be installed (this can be done
via the command ‘install.packages(“bio3d”)" after starting R). If this is not fulfilled the
program cannot execute correctly.

2) Ambertools needs to be installed (http://ambermd.org/AmberTools.php). The
environment variable AMBERHOME needs to be exported for the integrated tools to
work correctly.

The model with ‘atomistic’ resolution executes the same way as the ‘coarse grain’ one by just
changing the name of the executable (change directory in the console to the directory where
the executables are located):

sh run_atomistic.sh <absolute path of sequence file> <# of structures to generate> <output
folder>

Example:

sh run_atomistic.sh /home/Directory/Test_Sequence.dat 10 /home/test (adjust directory
path as needed)

This command calculates 10 structures in the “atomistic’ resolution taking the sequence from
‘/home/Directory/Test_Sequence.dat’. The output is saved in ‘/home/test’.
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IMPORTANT

(1) Depending on the version of R the function ‘read.pdb()’ from the bio3d package might
not work properly. However, the function ‘read.pdb2()’ will work. If this is the
problem change in the file Backbone_reconstruction/bkb_conf _helpars_function.R
the name ‘read.pdb’ to read.pdb2”.

(2) For a new version of Ambertools, the file ‘leaprc.ff14SB’ might not be located in the
folder ‘$AMBERHOME/dat/leap/cmd/leaprcff14SB’. The path in the file
Backbone_reconstruction/rec_bkb.sh then needs to be changed from
‘SAMBERHOME/dat/leap/cmd/leaprc.ff14SB’ to the correct path
‘$AMBERHOME /dat/leap /cmd/oldff/leaprc.ff14SB".

The ‘atomistic’ structures are saved as a trajectory in AMBER format (out.mdcrd and out.top)
in the output folder in the folder called 'output_pdb’ and the bps coordinates of each
structure are saved in the folder ‘output_helpar’ (the values in the first line in the file
‘table_all_twis.dat’ correspond to the Twist values of bps 1 to N of the first structure and so
on).

Note: Due to its ‘atomistic’ resolution the trajectory ‘out.mdcrd’ can be analyzed by all
common analysis tools for molecular dynamics simulations.

Execution time. The benchmarking of MC-enNN with MD simulations is shown in
Supplementary Figure 11. On an ordinary laptop the ‘atomistic’ resolution model takes 1
hour to calculate 1,000 DNA structures of 18 bp in length while the ‘coarse grain’ resolution
model lies in low minute range. Note that the execution time scales linearly with the number
of structures. If the user wishes to simulate more structures with ‘atomistic’ resolution it is
recommended to distribute the calculation on several cores. The time scales linearly with the
number of cores since no communication between the cores is needed (10,000 structures
would take 90 min on 8 cores).

Parallelization. To execute the MC-enNN model on several cores (for example 10,000
structures on 8 cores), the user needs to individually execute the program on each core
simulating 10,000/8 = 1,250 structures each. After the simulation the generated
trajectories can be combined using common MD analysis tools like Ambertools to obtain
the final trajectory of 10,000 structures.

Number of structures. Even though the ensemble size has to be around 40,000 structures to
fully recapitulate complex correlation between inter base pair parameters, a reduced size of
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5,000-10,000 snapshots in the ensemble of DNA structures are usually already sufficient for
general analysis purposes.

Bavesian Information Criterion (BIC), Baves Factors, and the Helguerro’s theorem. We used

the BIC methodology to determine the optimal number of Gaussian function needed to fit a
given distribution. This is done by finding the set of parameters that minimizes the BIC
values (the model with the lower BIC is chosen) according to (1, 2):

—2In p(x| k)= BIC =-2In(L)+ kIn(»)

Where x are the observed data, kis the number of free parameters to be estimated, and p{x/k)
is the probability of the observed data given the number of parameters, or, in other words,
the likelihood of the parameters given the dataset. L is the maximized value of the likelihood
function for the estimated model, and n is the number of data points in x (the number of
observations). In this work we limit the BIC to considering a maximum of two Gaussians,
leading to the classification of each distribution as uninormal (fitted with one Gaussian) or
binormal (fitted with a combination of two Gaussians). When a distribution is not classified
as uninormal sometimes it is referred to as multi-normal or multi-peaked in the manuscript.

The Bayes Factors, that can be extracted from the BIC analysis, were used to determine the
strength of the evidence in favour of the model chosen by BIC (see (3) for a detailed
discussion). This lead to a third classification labelled as “insufficient evidence”, when either
of the two models determined with BIC (uninormal or binormal) couldn’t be statistically
supported.

Finally, when there was sufficient evidence to favour a binormal fitting, we used an extension
of the Helguerro’s theorem (4, 5) to define the modality of the distribution and distinguish
the cases where the two peaks of the two fitted Gaussians are close together from those
where they are significantly separated. This is the most important distinction in terms of
understanding DNA dynamics. In the first case, for practical purposes, the use of a single
Gaussian distribution may often be justified to represent the data (the overall distribution
may be interpreted as binormal-unimodal), while it cannot be in the second (binormal-
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bimodal distributions). When a distribution is not classified as unimodal sometimes it is
referred to as multi-modal in the manuscript.
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Supplementary Tables

Table S1. Classification of BI/BII backbone state. Percentage of all 136 unique tetramers in
Watson and Crick strand showing the highest correlation of an inter base pair parameter
with the backbone state.

Shift Slide Twist Twist 5’
95.2 3.3 1.1 0.4

Table S2. Drivers of clustering of all 136 tetramers (in %). The inter base pair parameter of
a tetramer with the highest range of mean values of its clustered distributions (using non-
dimensionalization of the inter base pair parameters according to eq. 3) is termed driver of
clustering of this tetramer.

Shift Slide Rise Tilt Roll Twist

61.0 10.3 1.5 2.2 4.4 20.6

Table S3. Sequences of 18 bp used to compare essential dynamics between MC-enNN and
MD (see Figure 5). MD simulations were 1-2 ps in length using the parmBSC1 force field. The

ID corresponds to the name in the BigNASim database
(http://mmb.irbbarcelona.org/BigNASim /).
Seq. number ID Watson strand (5°-3” direction)
1 1r4i CCAGAACATCAAGAACAG
2 lzgw GCAAATTAAAGCGCAAGA
3 AGCG GCCGAGCGAGCGAGCGGC
4 AGCT GCCTAGCTAGCTAGCTGC
5 CGTG GCTGCGTGCGTGCGTGGC
6 lks1 GCCTATAAACGCCTATAA
7 lks2 CTAGGTGGATGACTCATT
8 lks3 CACGGAACCGGTTCCGTG
9 lks4 GGCGCGCACCACGCGCGG
10 muTCGA GCGATCGATCGATCGAGC
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Table S4. Sequences of 56merTIP3P and 42mer. The ID corresponds to the name in the
BigNASim database (http://mmb.irbbarcelona.org/BigNASim /)

ID Watson strand (5’-3’ direction)
NI15 ATGGATCCACTGATACTACGACCAGAACATGATGTTCTCA
56merTIP3P  CGCCGGCAGTAGCCGAAAAAATAGGCGCGCGCTCAAAAAAATGCCCCATGCCGCGC

Table §5. PDB structures of B-DNA duplexes used to compare with the MC-enNN method.
Resolution and RMSd/bp are given in A The RMSd of the MC-enNN ensemble with the
average PDB structure was calculated considering all heavy atoms of the duplex without
the flanking base pair on both ends.

PDB Method Resolution Number RMSd/bp with Sequence (Watson strand,
Code models MC-enNN 5’-3” direction)

1ILC  X-ray 2.2 3 0.38 ACCGAATTCGGT

2JYK  NMR - 10 0.25 ACAGCTTATCATCGATCACGT
1INA] NMR - 5 0.37 CGCGAATTCGCG

5F91  X-ray 3 2 0.25 CCAATAATCGCGATTATTGG
424D  Xray 2.7 1 0.38 ACCGACGTCGGT

1DN9  Xray 2.2 1 041 CGCATATATGCG

1HQ7 Xray 21 1 0.39 GCAAACGTTTGC
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Supplementary Figures

40 60 80

Frequency

20

O .
0.70 0.80 0.90 1.00
Accuracy
Figure 8§1. Accuracy of the backbone state (Bl and BII) prediction of the nucleobases of the
central base pair by the inter base pair parameter showing the highest correlation with the
backbone states (see Suppl. Table S1 for the distribution of inter base pair parameters with

highest correlation) for all unique 136 tetramers in Watson and Crick strand. In more than
85% of the cases the accuracy is above 0.85, the lowest accuracy is 0.78.
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Figure S§2. Examples for the division of inter base pair parameter distributions (Slide, Rise,
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Figure S3 Equilibration of MC-enNN simulation. Number of MC moves needed for fiber
equilibration of 10 individual simulations of a fiber of random sequence of 10, 25, 150, 300
and 1000 bp in length (results for fibers of 50 bp and 600 bp are shown in Figure 4A) by
investigating two parameters: A) End-to-end distance. B) Number of helical turns.
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The 10 individual simulations are shown in different colors and a black line illustrates the
average of the 10 simulations. Note: the maximum of the scale of the axis of end-to-end
distance is calculated as 4A x fiber length (in base pair). The scale of the axis of # of helical
turns differs for the fiber of 1,000 bp in length for better visualization.
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Figure S4. Convergence of MC-enNN simulation. Length of the ensemble needed to obtain
converged distributions of a fiber of random sequence of 10, 25, 150, 300 and 1000 bp in
length (results for fibers of 50 bp and 600 bp are shown in Figure 4B). A) End-to-end
distance. B) Number of helical turns. Note: the maximum of the scale of the axis of end-to-
end distance is calculated as 4A x fiber length (in base pair). The scale of the axis of # of
helical turns differs for the fiber of 1,000 bp in length to fit the scale as in Suppl. Figure S3B.
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Figure S5. Dependence of convergence of complex inter base pair distributions of MC-enNN
simulation on sequence length. A) Shift distribution of CTAG (left), GCAA (middle) and GCGG
(right) of a simulation of a random sequence of 15 bp (top) and (B) 150 bp in length
containing those three tetramers. B) Twist distribution of CTAG (left), GCAA (middle) and
GCGG (right) of a simulation of a random sequence of 15 bp (top) and (B) 150 bp in length
containing those three tetramers.
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Number of structures (MC) or consecutive frames (MD)
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Figure $6. Comparison of convergence of the complex Shift (top) and Twist (bottom)
distributions of the tetramer ACGA of MC-enNN simulation (left) with MD simulation (right)
of a sequence of 40 bp in length. (BigNASim ID NI15 in Suppl. Table $4). The number of
structures in the MC ensemble are compared against the number of consecutive frames (1
frame every 10 ps) in the MD simulation.
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Figure S7. Bi-dimensional inter base pair parameter maps of Twist vs. the other five
parameters of the tetramer CTAG of a simulation of sequence 13 of Tablel in the main text.
A) MD simulation. B) MC-enNN simulation. C) MC-enNN simulation with one state per
tetramer (‘Standard harmonic approach’, see eq. 2 in the manuscript). Note: The color
legends in a single row are in the same scale and each row has a different color legend. The
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four isodensity lines equal to 100 %, 75 %, 50 % and 25 % of the maximum density and the
corresponding isodensity values are shown in the bottom right of each plot.
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MD Eigenvectors

MC-enNN Eigenvectors

Figure $8. Matrix of inner product of the first 10 EV’'s of MC-enNN (x-axis) and MD (y-axis)
simulations of a sequence of 56 base pairs in length (see Suppl. Table S4). As reference the
heavy nucleobase atoms of the central 52 base pairs were used for PCA. Note: The numbers
in each square of the matrix are rounded to a single decimal number and each square of the
matrix is color-coded according the color legend.
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Figure §9. Comparison of MC-enNN (black) and MD simulations (red) of the longest naked
DNA duplex in the BigNASim database (56 bp in length, sequence see Suppl. Table §4). A)
Slide distribution in Angstrom, B) Rise distribution in Angstrom and C) Tilt distribution in
degrees of the central 53 bps.
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Figure $10, Comparison of the translational inter base pair parameter distributions Tilt
(lett), Roll (middle) and Twist (right) of MC-enNN simulations (black) with experimental
structures in PDB (red). Error bars represent the standard deviation of the MC-enNN
simulation or the different models of the experiment, respectively. A) PDB id 1ILC (12 bp,
resolved by NMR). B) PDB id 2JYK (21 bp, resolved by NMR). The rotational inter base pair
parameter distributions are compared in Figure 8 of the main text (see Suppl. Table S5 for
more details on the experimental structures).
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2.2 Web Implementation of the helical coarse grain model (Publication 4)

To give the user a more complete experience of the MC-eNN model we decided to implement it
in a large-scale computational environment where simulations and subsequent analysis of the
sampled configurations are directly carried out without any interference needed by the user. The
user only needs to specify the DNA sequence, if the structure at the free energy minimum or a set
of equilibrium conformations should be the output and few parameters related to the type of

simulation (workflow see Figure 28).

MCDNA: MonteCarlo Coarse-Grained Simulations.

Helical Parameters
Stiffness Constants
Distance Contact Maps
End to End Distances
Principal Components Analysis
Elastic Energy
Virtual Footprinting
Bending

MonteCarlo |
Simulation

Input Sequence: ¥
GATTACATACATACA

Figure 28. General workflow of the MCDNA webserver.

The webserver, named MCDNA, offers the user simulation of free B-DNA, circular DNA and
protein-coated DNA. The core of the sampling method is via the above described method,
however in constrained environments additional care has to be taken. Circular DNA is simulated
as free DNA glued together at the end and the sampling algorithm is based on recursive stochastic
closure (RSC; (13)) Monte Carlo moves in the inter base pair space (see Supplementary Methods

in the following publication). Different degrees of supercoiling can be introduced by the user to
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mimic superhelical density found inside the cell. Concerning simulations of protein-coated DNA,
we did an exhaustive search of protein-DNA complexes in the PDB data bank and imposed the
helical structure on the DNA where the protein is bound. The user only needs to provide the PDB
code of the protein(s) and the position(s) of DNA where the protein(s) is(are) placed. Alternatively,
the user can scan for the region(s) of DNA which are better shaped to adopt the bioactive

conformation (see Figure 29).

Protens@  Proein Lengih Inital position

Affinity for protein 1bnz ‘

Click on the position where you want to insert the protein
Totr

-z
-

v

Energy (keal/imal)

Figure 29. Details on the placement of the proteins along the fiber. A: Fragment of the input
form for the Protein-DNA method. A yellow box is attached to every input protein, offering
the possibility to launch a protein affinity process to identify the most favorable regions of
the sequence to position the protein structure. In order to avoid possible overlaps, the
proteins already included in the fiber are highlighted in colored rectangles, taking into
account the length of the sequence recognized by the protein. B: Examples of modeled
protein-DNA complexes from MC_DNA. Modeled complexes (left), and especially the DNA
fragment orientation, can be compared to the original PDB crystal (right).

The output information of MCDNA provides a summary about all the input parameters chosen for
the simulation together with an interactive visualization of the generated ground state structure
and trajectory. A more in-depth analysis provides a full description of DNA flexibility. The
inventory of analyses performed within the server includes helical parameters, stiffness energy
constants, distance contact maps (for DNA and proteins), end-to-end distances, DNA bending,

circular descriptors, elastic energies and virtual DNA footprinting. Results are presented in a very
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intuitive and friendly interface, exploiting interactivity when possible (see section below). A
guided tour for each analysis tool helps the user to get started navigating through the analysis

section.

Several examples of potential use of the tool can be viewed in the webserver (see Supplementary
Figures S1-3 for inputs and a selection of some outputs in Supplementary Figures S4-6 in the
following publication). The first example is the simulation of a free DNA duplex of 30 base pairs in
length for which the user can explore general structural and dynamic features, groove geometries
and end-to-end distances to evaluate circularization propensity offering and interactive interface
that displays the structure together with and end-to-end distance plot. By navigating through the
different structures the user can easily have a 3D view from the most extended to the most bent
structure (see Supplementary Figure S4 in the following publication). A second example shows
the simulation of a DNA minicircle, where the distance matrix highlights that long-range contacts
exist in the presence of super-helicity and in a third example the simulation of a protein-coated
DNA fiber, accessibility of the DNA fiber to nucleases can be tested via in silico footprinting and
generated conformations can be examined for DNA-mediated protein-protein contacts. The

server is accessible at https://mmb.irbbarcelona.org/MCDNA/.

Publication:

Jirgen Walther, Adam Hospital, Genis Bayarri, Felipe Cano, Marco Pasi, Victor Lépez-Ferrando,
J. Lluis Gelpi, Pablo D. Dans and Modesto Orozco; MC_DNA: A web server for the detailed study
of the structure and dynamics of DNA and chromatin fibers, (in preparation)
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21 mesoscopic model, using a tetramer-dependent base-pair step model fitted to reproduce
22 parmbsci atomistic molecular dynamics (MD) simulations. The Monte Carlo ensembles can be
23 ) - . ) "

24 projected to the atomistic level of resolution and processed to obtain quasi-time-dependent
25 trajectories. The method provides ensembles of quality comparable to those obtained from
26 atomistic MD, but at a tiny fraction of the computational cost, allowing to study systems much
27

8 larger than those explored by atomistic MD. The trajectories (at atomistic or bp resolution levels)
29 can be downloaded and/or subjected to a large variety of analysis in the server. All the tools are
;? implemented in a friendly web interface where the user needs to specify only the DNA
32 sequence, its topology (linear or circular) and whether the DMNA fiber is free or protein-bound.
33 The tool uses state-of-the-art technologies such as i) Open Nebula cloud infrastructure with
;: virtual machines deployed on demand for computations, i) WebGL-programmed NGL molecular
36 viewer and the javascript plotly library for interactive plots, and i} noSQL-MongoDE for
37 storage. The server is accessible at http://mmb.irbbarcelona.org/MCDNA/.
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1
2
3 MD simulations. Once collected, the coarse-grained ensemble (defined in a hybrid
4 helical/Cartesian space) can he downloaded or analyzed “in situ” using a variety of tools.
2 Furthermore, it can be conwverted into an atomistic ensemble for additional analysis or for
7 generating inputs for further simulations. Both coarse-grained and atomistic ensembles can be
8 transformed into a pseudo time-series (mimicking an MD trajectory) which can be visualized as
?0 an animation in an NGL viewer. The tool presented here is free and accessible without
1 restrictions at (http://mmb.irbbarcelona.crg/MCDNA/).
12
13
14
15 SIMULATION ENGINE
16
17
18
;g MC_DNA energy functional. The server uses a novel mesoscopic algorithm where the energy
21 of the system is represented by a combination of short- (eq. 1) and long-range interactions (eq.
22 2). The short-range interactions are computed assuming that the distribution of rotational and
ii translational parameters (rise, slide, shift, twist, roll, and tilt) in the helical space can be
25 expressed as a Boltzmann-averaged combination of Gaussian distributions, which can be
26 transformed into a simple (free) energy functional:
27
28 1 g .
——(4AX; C+E;

29 Fabort(X) = ~kpTIn Tl e Fo7 ’ (eq. 1)
30
31 where the sum extends for all the Gaussians required to fit the probability distribution (ie. the
32 number of individual minima in the energy space), ks is the Boltzmann constant, T is the
33 . ) . A . ) . .
34 absolute temperature, K is a 6x6 stiffness matrix obtained by inverting the covariance matrix
35 centered at minimum i (11, 12), AX? is the displacement of the given conformation (X) with
;? respect to the minimum energy conformation of minimum i (X,”}, and E is the relative energy of
18 minimum i with respect to the most stable minimum. Note that in the case of a unimodal-normal
39 distribution (13, 14) the equation above reduces to the Olson-Zhurkin's functional. Fgpo(X) =
:? K;AX;* (11), which has been implemented in the current version of the server. Parameters
42 defining the energy were obtained from ps-long parmbsct atomistic MD simulations of all
43 unique bps in all the different tetramer environments (ie. a next-nearest-neighbor model with
44 . . . .
45 136 different unique tetramers), as determined by the ABC consortium (Dans et al, to be
46 published, data available at http://mmb irbbarcelona org/BigNASIm (10), the set of sequences is
47 shown in Supplementary Table 1).
48
:3 In the current implementation of the server the treatment of long-range interactions is very
51 simple {(eq. 2), and is used only to avoid collision of two base-pairs:
52
53 12 o

U—gery. (Z) —(Z
" EY =4¢* ¥, [(‘_”) (rij) (eq. 2)
EE]
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where o (o = 13 A) and €* (¢* = kgT) are the Lennard Jones parameters and r; stands for the
distance of the center of base pair i with the center of base pair J. To speed up calculations for
linear DNA, this term is considered only after a check if values of the bending of the fiber
suggest that the structure could potentially overlap. E* is calculated only if ry is below 20 nm. To

th

not double count steric clashes, the long-range term is evaluated for every n'" bp (with n = 7 in

the current implementation of the server).

MC_DNA sampling. Ensembles are obtained by using as Metropolis movements the three
rotations and three translations of bps at a randomly selected number of places in the fiber. The
positions of the phosphates are determined by taking Lavery’s MD-averaged phosphate
positioning relative to the helical axis (15). Regions occupied by proteins are assumed to be
rigidified using the bps parameters of the DNA from the protein-DNA complexes in the PDB
(Protein Data Bank) and accordingly, are not included as part of the active space in the
generation of random movements. A computationally efficient version of Minary and Levitt's
recursive stochastic closure algorithm (see Suppl. Methods and (16)) was used for the sampling
of conformational space of mini-circles.

From coarse-grained ensembles to trajectories. The Metropolis algorithm guarantees that
the collected snapshots define a Boltzmann ensemble, but the Markov chain derived from an
MC run does not define a time-dependent series, something useful for obtaining dynamic
pictures of DNA flexibility like those provided by MD-derived animations. Time-dependent
pseudo-trajectories were built by re-ordering MC snapshots to guarantee that the step-to-step
RMSd (the RMS deviation between snapshots at time t and t+At) follows a Maxwell-Boltzmann
(MB) distribution for the entire trajectory. Accordingly, a randomly selected MC snapshot is
taken as the 1% step in the pseudo-trajectory and used as a reference to select the 2" one. The
process is repeated until no snapshot matches the expected target step-to-step MB RMSd
distribution. At this stage, we used a backtracking algorithm resuming the search back on time.
This “revisiting” procedure is repeated many times until 2 minimum number of MC shapshots

are left out of the pseudo-trajectory.

Either MC ensembles or pseudo-trajectories can be manipulated to gain atomistic detail of the
DMNA. For this purpose, the original mesoscopic “coarse-grained’ trajectories (base-pair
rotational and translational parameters for each base pair and phosphate positions in the
Cartesian space) are transformed by using the SCHMArP algorithm {17) to generate the
atomistic coordinates of the bases, taking as reference equilibrium geometries of the
nuclecbases (17). Finally, the backbone is generated using TLEAP Amber building capabilities
(18) followed by a short steepest descent optimization to relax mismatched local geometries.
Trajectories obtained at a given level of resolution can be downloaded or subjected to a variety

of analysis as described below.

Performance of the simulation engine. We have analyzed the ability of the MC_DNA to
reproduce atomistic MD simulations by comparing first the global characteristics of several 18-

4
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1

2

3 mer duplexes already simulated at the atomistic level (parmbsc1 force-field) by the ABC
4 consortium for more than 1 us under physiological conditions (Dans ef al, to be published, data
2 available at http.//mmb.irbbarcelona.org/BigNASIm/). As shown in Figure 2, MC_DNA
7 simulations reproduce wvery well both general and detailed characteristics of the atomistic
8 trajectories for all the duplexes studied, including the very long ones, where any error in the
?0 calibration of the model would result in dramatic errors. Good results are also obtained in the
1M simulation of mini-circles, even for the ones with high torsional stress (Figure 3A). Finally, both
12 global and local details of DMA-protein complexes are well represented (Figure 3B,C),
H suggesting that the method can be safely used to study long chromatin fibers. In summary,
15 MC_DNA provides reasonable ensembles of DNAs (very often difficult to distinguish from
1? atomistic MD structures) for a fraction of the computational cost of the MD simulations. For
18 example, the 0.4 us long atomistic trajectory of the 56-mer used here (see Figure 2A-D)
19 required 650,000 CPU hours in the Tier-0 MareMostrum |V supercomputer, and an atomistic
g? trajectory of just 13 ns of the 280-mer mini-circle (19) used 40,000 CPU hours in the Tier-0
22 Archer supercomputer. The MC_DNA calculations for these same systems were done in 3
ii minutes (56-mer) and 7 hours (260-mer mini-circle) using a medium-range desktop computer.
25

26

g; SERVER IMPLEMENTATION AND USAGE

29

30

31

32 Technology. MC_DNA is a web portal implemented with Slim PHP micro-framework
33 (https:fiwww slimframewaork.com/) following a Model-view-controller (MVC) architectural pattern,
g; supported by a MongoDB noSQL database (https:/fiwww.mongodb.org). NGL molecular viewer
36 (20) is used to wvisualize 3D structures and ftrajectories, and plotly javascript package
37 (https:#/plot Iyf) for modern data visualization was chosen to display all the analysis plots. Jobs
gg are queued using SGE manager (http://aridscheduler sourceforge.net/), and served in an on-
40 demand processing model performed by Virtual Machines automatically deployed in an Open
:; Nebula (21) OneFlow cloud environment for multi-tiered applications.

:3 Input information. Starting from a DMA nucleotide sequence of up to 500 bases (in the current
45 implementation), MC_DNA offers the possibility to study three types of nucleic acid systems:
46 free linear DNA, circular DNA, and protein-bound DNA (see above). The user should select the
:; desired level of resolution in the output (coarse-grained or atomistic) and the operations to be
49 performed (generate a single structure or an ensembleftrajectory, number of structures,
50 flexihility analyses, etc; see examples below). Depending on the type of DNA considered (free,
; protein-bound or circular), additional input parameters are needed. For example, the linking
53 number is required for circular DNAs, and the identification code in the PDB (Protein Data Bank)
:: of the protein(s) bound to DNA needs to be specified when simulating DNA-protein complexes.
56

57
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The server offers the user the possibility to place the protein(s) at specific site(s) or scan the

DNA to find the places where deforming the DNA to adopt the bioactive conformation is easier.

Upon submitting the job to the server, the user receives an URL address where he/she will find
all the results of the simulation once it is completed. If the user provides an email address in the
input form, hefshe will be notified once the job is finished addressing him/her to the URL
direction where the results of the job are shown/stored.

Output information. MC_DNA results are divided into three main sections:

«  Summary. The summary section contains information about all the input parameters
chosen for the job process, together with an NGL visualization of the generated
structure and trajectory (if chosen).

o Stucture flexibility analysis / Trajectory flexibility analysis: These two sections contain a
set of flexibility analysis done on the generated structure and/or trajectory (if chosen).
The list of analyses varies depending on the selected method and resolution and all
together provide a full description of DNA flexibility. The inventory of analyses
performed within the server includes helical parameters, stiffness energy constants,
distance contact maps (for DNA and proteins), end-to-end distances, DNA bending,
circular descriptors, elastic energies and virtual DNA footprinting. Results are presented
in a very intuitive and friendly interface, exploiting interactivity when possible (see
section below). A guided tour for each analysis tool helps the user to get started

navigating through the analysis section.

Each of the results sections offers the possibility to download the specific analysis raw data in a
compressed file for further analysis, or as a starting point for atomistic MD simulations using
either local tools or our NAFlex server ((22), http//mmb.irbbarcelona.org/NAFlex/). Access to
the web server is free, only an optional email address is requested to get a notification once the
results are ready. Sample inputs and outputs are supplied to easily start getting familiar with the

tool and its possibilities.

Examples of use. The server includes a few examples of the potential use of the tool to
represent DMA ensembles (inputs in Suppl. Figures 51-3 and a selection of some of the outputs
in Suppl. Figures S4-6). One prototypical example is the study of the dynamics of a medium-
sized sequence of DNA (a 30-mer in the example, Suppl. Figure S1), for which the user can
explore the general structural and dynamic features, the groove geometries (to explore possible
binding pockets) and the end-to-end distances to evaluate the circularization propensity (Suppl.
Figure 4AB). For this last case, the server offers an interactive interface that displays the
structure together with an end-to-end distance plot. Navigating through the top slider, the user
can easily have a 3D view of the generated ensemble, from the most extended to the most bent
structure (Suppl. Figure S4B). A second example demonstrates the potential of MC_DNA to

6
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1

2

3 study the dynamics of a DNA mini-circle (see Suppl. Figure S2 for input), particularly the
4 location of sharp distortions by analyzing the helical roll (compared to that expected from the
2 ABC library and from our local database of X-Ray values, see Suppl. Figure S4C). The long-
7 range contacts (Suppl. Figure S4D) highlight the existence of super-helicity (in this case a
8 typical 8-shape pattern). In addition, the animation of the output trajectory in the server shows
?0 the population of the different conformations sampled for a given linking number. A final
1 example illustrates the study of a short chromatin fiber, where the user first explores the best
12 placement for proteins along the fiber (Suppl. Figure S5A), selecting optimal position(s) for the
H protein{s). The server models the complex by structurally supenmposing the protein(s) on the
15 protein-bound DNA conformation of the fiber (Suppl. Figure S5B). Then, the server analyses the
16 obtained ensemble for accessibility of the DNA fiber to nucleases (in silico footprinting; see
17

18 Suppl. Figure S6A), and for example, for the possibility of DNA-mediated protein-protein
19 contacts (Suppl. Figure S6B). The server also allows the user to evaluate the suitability of the
20 target DNA sequence to accommodate its structure to the “bioactive state” and how the
21

22 distortion induced by the protein is distributed along the target DNA sequence (Suppl. Figure
23 SEC).
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LEGENDS TO FIGURES

Figure 1. The general structure of the MC_DNA web server.

Figure 2. Examples of the performance of the MC_DNA simulation engine for different free
DMA duplexes. (A) Mean and standard deviation of minor (left) and major (right) groove width of
(atomistic-explicit solvent) MD (red) versus MC_DNA (blue) simulations along a 56-mer DNA
duplex  (sequence  available at  http//mmb.irbbarcelona.org/BigNASIim  (10)  ID

‘NAFlex_56merTIP3P'). The mean values of both simulations lie within 1 A for each base-pair.
(B) Distribution of total bending of all & bp (left) and 10 bp (right) segments of the 56-mer
simulation. The overlap of the MC_DNA and MD distributions is shown in purple. (C) 2D scatter
plot of all possible combinations of bps parameters of the 56-mer simulations capping the first
and last base-pair. The overlap of the blue MC_DNA and red MD distributions is shown in
purple. (D) The inner product of the first ten PCA eigenvectors (vertical MD, horizontal
MC_DNA) of the 56-mer simulations. In each square, the value of the inner product is shown
along with the color code (note the high values obtained in the diagonal). The Boltzmann’s
average absolute similarity index (calculated as the Boltzmann-weighted sum of the inner
product of the first ten PCA eigenvectors (24)) between the MC_DMNA and the MD trajectory is
0.88, indistinguishable from the value obtained when the 1st and 2nd part of the MD trajectory
are compared. (E) Results for the central 12-mer of several 18-mer duplexes (sequences
available in Suppl. Table 1). Top: helical turns; middle: total bending, and bottom: RMSD of the
atomic coordinates of the bases with respect to the average structure of the MD trajectory. (F)
Values of Tilt, Roll and Twist (from left to right) along the sequence of the 36mer duplex
(sequence available at http://mmb.irbbarcelona.crg/BigNASIm (10) ID ‘NAFlex_36merTIP3P").

Figure 3. Examples of the performance of the MC_DMNA simulation engine for circular DMNA and
for DNA-protein complexes. (A) (Top) Average and standard deviation of Writhe and Twist of
the simulations of the 280-mer mini-circle at different ALk by MD (red) and by MC_DNA (blue).
Twist and Writhe values of the MD simulations are taken from (19), Twist in the MC_DNA
simulations is the cumulative sum of the Twist value of all base-pair steps, the Writhe then is
determined as ALk-Twist. Representative structures (bottom) of MD and MC_DNA runs for the
different ALk show a very similar pattem. (B) Average and standard deviation of Radius of
Gyration (top) and RMSd (bottom) for the four protein-DMNA complexes studied (1TRO, 2DGC,
3JXC, 3TQ6) with both MC_DNA (blue) and Molecular Dynamics (red). MD simulations used
correspond to 2 ps long trajectories containing both protein and DNA. MC_DNA simulations
used contain 500 snhapshots generated with the MC_DMNA web server, restricting the
movements for the base pair steps in contact with the protein. (C) RMSd of Roll {left) and Twist

(right) profiles obtained from MD trajectories, MC_DNA ensembles, and the crystal structure.
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Note that the difference between MD and MC_DNA profiles is typically smaller than the
difference between the MD simulation and the experiment.
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MCDNA: MonteCarlo Coarse-Grained Simulations.
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a1 Examples of the performance of the MC_DMNA simulation engine for different free DNA duplexes. (A) Mean

42 and standard deviation of minor (left) and major (right) groove width of (atomistic-explicit solvent) MD (red)

43 versus MC_DNA (blue) simulations along a 56-mer DNA duplex (sequence available at
http://mmb.irbbarcelona.org/BigNASIm (10) ID ‘MAFlex 56merTIP3P'). The mean values of both simulations

44 lie within 1 A for each base-pair. (B) Distribution of total bending of all 5 bp (left) and 10 bp (right)

45 segments of the 56-mer simulation. The overlap of the MC_DNA and MD distributions is shown in purple. (C)

46 2D scatter plot of all possible combinations of bps parameters of the 56-mer simulations capping the first

47 and last base-pair. The overlap of the blue MC_DNA and red MD distributions is shown in purple. (D) The

48 inner product of the first ten PCA eigenvectors (vertical MD, horizontal MC_DNA) of the 56-mer simulations.

49 In each square, the value of the inner product is shown along with the color code (note the high values
obtained in the diagonal). The Boltzmann’s average absolute similarity index (calculated as the Boltzmann-

S0 weighted sum of the inner product of the first ten PCA eigenvectors (24)) between the MC_DNA and the MD

51 trajectory is 0.88, indistinguishable from the value obtained when the 1st and 2nd part of the MD trajectory

52 are compared. (E) Results for the central 12-mer of several 18-mer duplexes (sequences available in Suppl.

53 Table 1). Top: helical turns; middle: total bending, and bottom: RMSD of the atomic coordinates of the

54 bases with respect to the average structure of the MD trajectory. (F) Values of Tilt, Roll and Twist (from left

55 to right) along the sequence of the 36mer duplex (sequence available at

56 http://mmb.irbbarcelona.org/BigNASim (10) ID "NAFlex_36merTIP3P").
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Examples of the performance of the MC_DNA simulation engine for circular DNA and for DNA-protein

35 complexes. (A) (Top) Average and standard deviation of Writhe and Twist of the simulations of the 260-mer

36 mini-circle at different ALk by MD (red) and by MC_DNA (blue). Twist and Writhe values of the MD

37 simulations are taken from (19), Twist in the MC_DNA simulations is the cumulative sum of the Twist value

38 of all base-pair steps, the Writhe then is determined as ALk-Twist. Representative structures (bottom) of MD

39 and MC_DNA runs for the different ALk show a very similar pattern. (B) Average and standard deviation of
Radius of Gyration (top) and RMSd (bottom) for the four protein-DNA complexes studied (1TRO, 2DGC,

31XC, 3TQ6) with both MC_DNA (blue) and Molecular Dynamics (red). MD simulations used correspond to 2
us long trajectories containing both protein and DNA. MC_DNA simulations used contain 500 snapshots

42 generated with the MC_DNA web server, restricting the movements for the base pair steps in contact with

43 the protein. (C) RMSd of Roll (left) and Twist (right) profiles obtained from MD trajectories, MC_DNA

44 ensembles, and the crystal structure. Note that the difference between MD and MC_DNA profiles is typically

45 smaller than the difference between the MD simulation and the experiment.
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SUPPLEMENTARY MATERIAL

MC_DNA: A web server for the detailed study of the structure and
dynamics of DNA and chromatin fibers

Jurgen Walther'® Adam Hospital'®, Genis Bayarri', Felipe Cano', Marco Pasi?, Victor Lépez-
Ferrando?, J. Lluis Gelpi®#4, Pablo D. Dans’
and Modesto QOrozco'**

juergen. walther@irbbarcelona.org, adam.hospital@irbbarcelona.org, genis.bayarri@irbbarcelona org
felipe. cano@estudiant. upc.edu, marco.pasi@ens-cachan.fr, victor. lopez ferrando@bsc.es, gelpi@ub.edu,

pablo.dans@ irbbarcelona.org, modesto.orozco@irbbarcelona.org

1 Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology.
2 Egole normale supérieure (ENS) Paris-Saclay. Paris. France

3 Barcelona Supercomputing Center.

4 Department of Biochemistry and Biomedicine. The University of Barcelona. Barcelona, Spain.

& Equally contributing authors.
* Correspondence to Prof. Modesto Orozco: modesto.orozco@irbbarcelona.org

SUPPLEMENTARY METHODS

Recursive Stochastic Closure Algorithm (RSC). In a usual Monte Carlo move in MC_DNA base-pair step
(bps) coordinates of a bps are changed inducing a rigid body move of the DNA above the changed bp step. In
the constrained circular model the rigid body move is done only for a segment of DNA of n base-pairs in length
above the changed bps. The procedure of the segmental Monte Carlo move is explained in Supplementary
Figure S7A. The initial Monte Carlo move is done on bps i. The orientations of bp i+2 until i+n are kept as before
the Monte Carlo move. This is compensated by a change in rotational bps parameters of step i+1. We found this
to be more efficient than distributing the distortion induced by the MC move in each bps. In the final step the
recursive stochastic closure (RSC) algorithm adapted from ref. 16 in the manuscript is applied to close the circle.
This is done by successive stages of stochastic partial closure that propagate the location of the chain break at
i+n backwards along the chain. In our adapted version of the RSC algorithm, first the position of the base pair
i+n is set to its position before the MC move (Suppl. Figure S7A). Then the stochastic partial closure (SPC)
algorithm is applied. In the first SPC move a line is defined connecting bp i+n-2 and i+n (Suppl. Figure S7B).
Then the intersection point of a sphere of radius r (r is the distance between bp i+n-1 and i+n before the chain
break) around bp i+n with the line is determined. The new position of bp i+n-1 is then chosen by randomly
selecting a point from a two-dimensional normal distribution around the intersection point on the surface of the
sphere. In the original code the position of the new position of bp i+n-1 is chosen on a tangential plane of the
surface, however we place the point directly on the surface of the circle since the point selected is usually very

close to the anchor point on the surface of the sphere which makes our implementation of the code
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1

2 computationally more efficient. The SPC scheme is recursively executed until the position of bp i+2. Bp i+1 is
i obtained by the deterministic full closure (OFC) procedure (Suppl. Figure 87B, bottomn). The position of bp i+1 is
5 obtained on the intersecting circle between two spheres with radius d centered around bp i and i+2. Radius d is
? the distance between bp i and i+1 before the Monte Carlo move. Using this procedure there exists either no (in
8 case the spheres do not overlap) or an infinite number of (in case of overlap) solutions. In case of overlap, the
2 new position of bp i+1 is chosen by finding the point closest to the previous position of base pair i+1 on the
1? intersecting circle.

12

13

14

15

16

17

18

19

20 SUPPLEMENTARY TABLES

21

22

ii Supplementary Table 1. Set of sequences where the central 14 bp’s contain all unique bps in all the different
25 tetramer environments. This set of sequences was determined by the ABC consortium and it is known as the
26 ‘'miniABC' library of sequences.

27

28 Seq. humber Watson strand (5'-3' direction)

20 1 GCAACGTGCTATGGAAGC

30 2 GCAATAAGTACCAGGAGC

31 3 GCAGAAACAGCTCTGCGC

32 4 GCAGGCGCAAGACTGAGC

33 5 GCATTGGGGACACTACGC

34 6 GCGAACTCAAAGGTTGGC

35 7 GCGACCGAATGTAATTGC

36 8 GCGGAGGGCCGGGTGGGC

37 9 GCGTTAGATTAAAATTGC

38 10 GCTACGCGGATCGAGAGC

39 11 GCTGATATACGATGCAGC

j? 12 GCTGGCATGAAGCGACGC

4 13 GCTTGTGACGGCTAGGGC

43
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SUPPLEMENTARY FIGURES

All the form fields are mandatory except the e-mail address and perform analysis. If you provide your e-mail address, you will be notified once the job is finished.
Disabling the analysis perform, the tool will calculate just the structure and / or the trajectory.

Write or paste DNA sequence @

Tool @

Resolution &

Operations @

Number of structures @

E-mail address @

Perform analysis @

GATTACATACATACAGATTACATACATACA

MC DNA v

Atomistic s

Create Structure Create Trajectory

100

@

~  Enable / Disable Analysis

Supplementary Figure 51: In this Sample Input of the tool MC DNA of an example sequence the resolution is

chosen to be atomistic and an equilibrated structure as well as 100 snapshots representative of a 1.5x108

trajectory will be simulated.
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=) INSERT YOUR INPUT DATA

All the form fields are mandatory except the e-mail address and perform analysis. If you provide your e-mail address, you will be notified once the job is finished.
Disabling the analysis perform. the tool will calculate just the structure and / or the trajectory.

[ e R R

o)

Write or paste DNA sequence @ TCTCTCTCTCTCTCTCTTAAAGGTATACAAGAAAGTTTGTTGGTCTTTTTACCTTCC
CGTTTCGCTCCAAGTTAGTATAAAAAAGCTGAACGAG

—_—= = = =
B =]

Tool @ Circular MC DNA v

_ = =
~ o LR

Resolution @ Atomistic hd

—_ =
Rl=Rie o)

AK® 1
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- =
*

o
o

Iterations per structure @ 25000000

NN
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“

Operations @ Create Structure Create Trajectory

]
~ o LA

Number of structures @ 10

N
o oo
o

E-mail address @

o
N = O

perform analysis @ v Enable / Disable Analysis

W W W W W
XL~ O R W

Supplementary Figure S2: In this Sample Input of the tool Circular MC DNA of a 94bp long example sequence

oW
o N

the resolution is chosen to be atomistic, the torsional stress expressed in ALk is set to -1. With these settings a

-y
uary

planar equilibrated circular structure as well as a trajectory of 10 snapshots with 25x106 iterations per snapshot

-y
[N

are chosen which enables to probe changes in the circular shape due to the induced torsional stress.
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W~ bhwN =

% INSERT YOUR INPUT DATA

All the form fields are mandatory except the e-maif address and perform analysis. If you provide your e-mail address, you will be notified once the job is finished.
Disabling the analysis perform, the tool will calculate just the structure and / or the trajectory.

Write or paste DNA sequence @

Tool @

Resolution @

Proteins @

Operations @

Number of structures @

E-mail address @

Perform analysis @

GATTACATACATACAGATTACATACATACAGATTACATACATACAGATTACATACAT
ACAGATTACATACATACAGATTACATACATACA

MC DNA + Proteins

Atomistic

Protein

1D: 1vfc - length:

Protein

ID: 1wtr - length:

Protein

ID: 3zhm - length

Protein

ID: 1bnz - length:

Create Structure

50

PDB Code
vfc

PDB Code
Twir

PDB Code
3zhm

PDB Code
1bnz

Create Trajectory

v Enable / Disable Analysis

Length
12

Length
7

Length

Length

Initial position
2 s
Initial position
30 a
Initial position
60 —
Initial position

80 =

O

Supplementary Figure S3: In the Sample Input of MC DNA + Proteins the resolution is chosen to be atomistic

and four proteins at specified initial positions are chosen for the chromatin fragment. The server will provide the

equilibrated structure as well as 50 representative snapshots of the trajectory (around 4 million movements in

this case).
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Supplementary Figure S4: Excerpt of Sample Outputs for MC_DNA and Circular MC_DNA. A: Minor groove
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base along the trajectory of atomistic representation of sample input for Circular MC_DNA. Due to the axis labels
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interactive plot in the server shows one base resolution

mmmmmmmmmmhhbbbﬁ-&-
(o IS I o R Wy RN S I O I B e I S R e I | i

For Peer Review

[=)
(=

- 262 -



[o N I N

G\U‘\U‘\U‘\U‘\U‘IU‘IU‘IU‘IU‘IU‘IJh-Jh-lh-JhJ}-ﬁLLLLWWWWWWWWWWMNMMMMMMNMdddddddddd@
P BN B s s B s 0y BN YR i N R Y R B T o Wk = S0 20~ U WM = SO0 kR Who = O W0 00~ O U Ul b — O

CHAPTER IIl - RESULTS

Nucleic Acids Research Page 24 of 25

o posean 0 4%
Y " g
= o ‘&l o9
% v
o0 of 4—';;7
o0
! v L s 2 f%} °
e o O}}’{
v
o 1
Poo
1WTR &>
Qo9
Click on the position where you want to insert the protein v 4
v ) 0" "% cg d £
+ v

A N Ry o

Supplementary Figure S$5: Details on the placement of the proteins along the fiber. A; Fragment of the
MC_DNA input form for the Protein-DNA method. A yellow box is attached to every input protein, offering the
possibility to launch a protein affinity process to identify the most favorable regions of the sequence to position
the protein structure. In order to avoid possible overlaps, the proteins already included in the fiber are highlighted
in colored rectangles, taking into account the length of the sequence recognized by the protein. B: Examples of
modeled protein-DNA complexes from MC_DNA. Modeled complexes (left), and especially the DNA fragment

arientation, can be compared to the original PDB crystal (right).
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Supplementary Figure S6: Excerpt of Sample Outputs for MC_DNA + Proteins. A; Solvent accessible surface

N
]

area (SASA) of DNA along trajectory of atomistic representation of sample input. Top: Selection of snapshot;

&

Bottom: SASA along the bases. B: DNA-mediated protein-protein contact analysis of trajectory of atomistic
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o

representation of sample input. Top: Selection of the two proteins to compare; Bottom: Mean distance between
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each amino acid of the proteins. C: Elastic Energy of DNA. Left: Table of mean and standard deviation of total
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elastic energy of DNA not bound to a protein along the trajectory, the graph underneath indicates the elastic
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energy of DNA nat bound to a protein per snapshaot; Right; Table of mean and standard deviation of elastic
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energy (per bp) of protein-bound DNA, the graph underneath shows the values of the elastic energy of the
protein-bound DNA.
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Supplementary Figure S7: Monte Carlo move corrections for the simulations of the tool Circular MC_DNA. A
Scheme of the segmental Monte Carlo move used in ‘Circular MC_DNA’. The regular Monte Carlo move (‘MC’)
is followed by a resetting step to keep the orientation of bps i+n until i+2 as before the MC move (‘'Orient’). In the
end, the Recursive Stochastic Closure (‘'RSC’) algorithm is applied to keep the circular structure intact. B: RSC
scheme shows first several moves of the Stochastic partial closure (SPC, grey) until in the last step the
deterministic full closure (DFC, green) algorithm completely repairs the chain break (adapted from ref 16 in the

manuscript).
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3. Development of a nucleosome fiber model (Publication 5)

The first compaction level of DNA in eukaryotic cell nuclei is the nucleosome with approximately
147 base pairs (bp) of DNA wrapped around an octamer of histones. The three dimensional
arrangement of the nucleosome units is connected via a DNA linker, often referred to as ‘beads-
on-a-string’ fiber, depicting the chromatin secondary structure (14). Advances in experimental
techniques and in computational modeling in the last decade revealed that chromatin in-vivo
adopts a dynamic and heterogeneous conformation (15) which depends on many different intra-
cellular factors. Our goal was to determine, with the help of experimental data, three dimensional

chromatin arrangements the way they can possibly occur inside the cell.

In yeast, for example, Micro-C (16) experiments revealed the formation of self-associating
domains at the nucleosome level where domain boundaries are enriched in nucleosome depleted
regions suggesting that the length of the DNA linker connecting two adjacent nucleosomes plays
a decisive role in chromatin compaction (17). MNase-seq experiments can determine the
nucleosome positions along the genomic sequence, however as is the case for Micro-C, those
experiments are performed with many thousands to millions of cells, and the obtained results
show population averages where no information for single cells can be obtained. To overcome
this issue, we developed a machine learning method to deconvolute population based MNase-
seq data to derive potential nucleosome positions in a single cell that lead to physically realistic

chromatin conformations by probing clashes in 3D space via a simple nucleosome fiber model.

To obtain physically realistic conformations we developed a nucleosome fiber model using the
bottom-up approach. In this model, linker DNA is modeled by the mesoscopic helical DNA model
at base pair resolution as previously described and the nucleosome is assumed to be rigid and
fixed in the sequence, with the nucleosomal DNA fixed to the 3D DNA path of the high-resolution
X-ray structure (PDB 1KX5) and with a coarse grained description of charges and steric constraints
of histone core and DNA to correctly account for electrostatics and excluded volume interactions.
The energetic contributions from those long-range interactions (electrostatics and steric
repulsion) combined with an elastic energy description of the DNA results in a Hamiltonian which
is coupled with Metropolis Monte Carlo sampling algorithm (see Figure 1 in the following

publication). There also exists the possibility to convert the coarse grain representation of the
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chromatin fiber back to atomistic coordinates of its constituents. As validation, we found that the
nucleosome fiber model reproduces well salt-dependent sedimentation coefficients in vitro (18)
and shows correct compaction by evaluating the fiber volume of a 100 nucleosome fiber (see

Figure 2 in the following publication).

A

Coverage

nucleosome calls
(nucleRr) § 00

3
Famivi D@ @ 0O 00 0000 . . o0
v D@D OO O 00 @ O 0 . . . .
Family 3 ... O 0 O 0 0 0 ... (OM®)
Famiy4 (@) 0 0 00 60 . . . . Q (@)

. .
0p) = D (i i~ +B(p)) +p HEY °
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Family

Coverage

Figure 30. Procedure of deconvolution of the MNase data. A: The experimental coverage
(red) of a genomic segment is approximated by a probability distribution (dashed black)
based on the nucleosome calls by ‘nucleR’. Possible physically realistic nucleosome
configurations called families are sampled based on the probability distribution. B:
Optimization to adjust the weights of each family. C: The combined artificial MNase signal

of the families (black histogram) shows good agreement with the experimental coverage
(red).
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With this working coarse grain chromatin model, we can probe for physical clashes for the
suggested conformations of single cells. To obtain those physically relevant configurations we
cluster the MNase-seq data of a genomic segment into a set of families that each contain a
number of nucleosomes similar to the sum the scores of the nucleosome calls detected by
‘nucleR’, a non-parametric method of detecting nucleosome dyads from MNase data. The families
combined describe the nucleosome coverage of the whole cell population by optimizing the
weights of each possible conformation (see Figure 30). Having incorporated nucleosome
positioning restraints from MNase data into the nucleosome fiber model we can make use of 3C-
based techniques (19) as a second filter to reach not only realistic nucleosome positions along the
genomic sequence, but also realistic three dimensional conformations. Micro-C data (16) provides
cell population data of chromatin compaction, with nucleosomal level of resolution. In our case,
we used Micro-C data to refine the ensemble of structures emerging from each physically realistic
nucleosome position configuration. The refinement procedure consists of smart structure filtering
followed by reweighting of the kept configurations to correctly reproduce the Micro-C contact
matrix (see Figure 4-5 in the following publication). This refinement procedure was applied to
probe the compaction of single genes in yeast cells with and without oxidative stress (see Figure
6 in the following publication) with the result that in general genes under oxidative stress are less

compact.

In summary, the pathway of introducing different experimental biases into in-silico base pair
resolution nucleosome fiber conformation modeling such as 1D nucleosome position restraints
based on MNase data and structure filtering based on Micro-C 2D contact matrices provides a
step towards sampling kb-long chromatin fiber conformations possibly present inside the cell

nucleus.

Publication:

Jurgen Walther, Pablo D. Dans, Manuel Sarmiento, Rafael Lema, Isabelle Brun-Heath and
Modesto Orozco, A method to predict chromatin fiber conformations by deconvolution of
nucleosome positioning data and Micro-C, (in preparation).
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A METHOD TO PREDICT CHROMATIN FIBER
CONFORMATIONS BY DECONVOLUTION OF
NUCLEOSOME POSITIONING DATA AND MICRO-C

Jirgen Walther!, Pablo D. Dans?, Manuel Sarmiento! and Modesto Orozco®:*

We present a method to obtain three dimensional ensembles of nucleosome fiber
structures in genomic segment by coupling a physical model of chromatin with MNase-seq
and Micro-C data obtained on a large population of cells. Machine learning methods
deconvolute the MNase-seq signal of a genomic segment into a minimum number of
families - non-overlapping in three dimensional space - that with appropriate weights
reconstitute the experimental nucleosome coverage. Simulation of the 3D dynamics of the
families using a simple chromatin fiber model yields an ensemble of structures which is
then filtered to match the Micro-C contact matrix. The filtered ensemble represents the
most probable three dimensional arrangements of the chromatin fiber in a given genomic
segment.

! Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science
and Technology.

2 Department of Biochemistry and Biomedicine. The University of Barcelona. Barcelona,
Spain.

* Correspondence to Prof. Modesto Orozco: modesto.orozco@irbbarcelona.org
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INTRODUCTION

The nucleosome comprises the first compaction level of DNA in eukaryotic cell
nuclei with approximately 147 base pairs (bp) of DNA wrapped around an octamer
of histones. The chromatin secondary structure is then depicted as the three
dimensional arrangement of the nucleosome units connected via a DNA linker,
often referred to as ‘beads-on-a-string’ fiber. Several regular topologies of
chromatin secondary structure have been proposed to exist based on in-vitro data
(1), the two most accepted models being: the ‘Solenoid’ (2) and the ‘zigzag
arrangement’ (3, 4). However, recent evidence has shown that chromatin in-vive
adopts more dynamic and heterogeneous conformations than those expected from
in vitro biophysical studies (5), and current knowledge suggest the nucleosome
string is defined as a quite plastic ensemble with different levels of structural
organizations in a fast equilibrium that can be modified based on a variety of inter

and intra-cellular factors.

Simple “chain-of-beads” models of chromatin representing the nucleosome fiber as
a chain of beads fail when assuming that all the linker segments are equal (which
will force regular secondary structures). Thus, recent Micro-C experiments (6) in
Saccharamyces cerevisiae revealed that nucleosomes form self-associating domains
of one to five genes in size (ca. 2-10kb) where boundaries are enriched in
nucleosome free regions (NFR), something that will be never possible in a
regularly distributed nucleosome fiber. Clearly, the length of the DNA linker
connecting two adjacent nucleosomes plays probably a decisive role in chromatin
compaction (7) as long NFR are acting as hinges making compaction of the

nucleosome fiber possible.

Second generation “chain-of-heads” models implement the linker distributions (8)
derived from MNase-seq experiments (9), and can incorporate Micro-C contact
maps as 3D constraints that the folded fiber should fulfill. However, these models,
which are a clear step forward in the field, suffer from the “ensemble” nature of the
experimental data. That is, both MNase-seq and Micro-C are obtained from the

analysis of millions of cells (to reduce noise), and the signal detected might not
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correspond to a real chromatin fiber, as single cell experiments (10, 11) suggest
cellular variability is huge. This is clearly shown in Micro-C maps, where
incompatible contacts are found, and in MNase-seq experiments where protected

reads are annotated to two “overlapping” nucleosomes.

We present here a method which employs machine learning procedures to
deconvolute MNase-seq data of a genomic segment into a minimal set of families
that combined describe well the experimental nucleosome coverage. Nucleosome
positions are sampled from a probability distribution consisting of a set of
Gaussians with their centers and standard deviations derived by the nucleosome
calls of ‘nucleR’ (12), a non-parametric method of detecting nucleosome dyads
from MNase-seq data. A short simulation using a simple nucleosome fiber model
untangles possible physical clashes in Cartesian space and subsequent clustering
of the physically realistic nucleosome conformations guarantees a minimal set of
relevant configurations. An optimization procedure assigns a weight to each
conformation to reconstitute the experimental coverage as accurate as possible.
Simulation of this set of configurations using a physical model of chromatin
accounting for sequence variability in the DNA allows to sample flexibility of long
segments of chromatin. We develop strategies to bias such ensembles using Micro-
C data, which is again considered as an “ensemble property” of a set of cells. We
explore the behavior of the model in a study where the chromatin structure of
yeast is investigated under oxidative stress (0S) and compared to the untreated
cells (WT). We find that nucleosomes are more fuzzy in 0S than in WT and as a
consequence local chromatin compaction at gene level under OS is generally lower
compared to the control no matter of the transcriptional state of the gene
(upregulated, no change, downregulated, -1 nucleosome missing in 0S) suggesting

that oxidative stress influences the whole nucleus in an equal manner.

THE ALGORITHM

Chromatin fiber model. A simple nucleosome fiber model was developed to

probe dynamics properties of chromatin at the kb-scale. The DNA is treated as a
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freely moving unrestrained polymeric entity and is described by the recently
developed extended nearest neighbor helical coarse grain DNA model (13). In
short, an elastic potential in the inter base pair parameter space (shift, slide, rise,
tilt, roll twist) describes the dynamics of a base pair step (bps). The flexibility
parameters are derived from atomistic molecular dynamics (MD) simulations and
depend on the tetranucleotide context of the central bps. For an accurate
parametrization of the model the inter base pair parameter distributions for the
central bps of each tetranucleotide are clustered into different helical states (see
{13) for more details). The elastic energy of the DNA fiber is then calculated as the
sum of the individual contributions of each bps

N n
EDNA(X) - _kBTZ lnz e—'k:‘—-r(%lﬁji\x“d +E|j)
= = (1)

where kg is the Boltzmann constant, T is the temperature, N is the number
of bps, n is the number of states in which the distribution of inter base pair
parameters of a given bps (in its sequence environment) can be decomposed (see
below), K is the stiffness matrix associated to the state i in step j; AX is the
deformation vector (with equilibrium values dependent on step j and state i) and
Ej is the relative energy of state i at bps j (shifting values between states). Note
that due to sequence end effects single state dimer stiffness parameters are used
for the first and last bps.
The inter base pair coordinates can be used to derive Cartesian representations of
the DNA. For a given sel of inter base pair coordinates the positions of the
phosphates are derived from the helical axis (see (13) for more details). Atomistic
coordinates of the nucleobases can be obtained using the SCHNArP algorithm (14),
however to increase computational efficiency in the Cartesian reconstruction

process we restrict the algorithm only to reconstruct the center of each base pair.
When DNA is bound to histones we keep the DNA's geometry restrained to that in

the experimentally resolved X-ray structure (PDB:1KX5). Nucleosome cores are

approximated as spherical particles with the center being the center-of-mass of the
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complex. The particles are anchored to the DNA bound to it and relative positions

between bound DNA and protein remain unchanged.

To account for interactions between the constituents of the chromatin fiber
excluded volume and electrostatic potentials are included in the model. The
electrostatic contribution is calculated using a Debye-Hiickel potential

EDH - qlq] e—KI‘1| [2]
- 4-n££[,rij
ij

where summation goes over all charged constituents (all charged protein
complexes, phosphates of DNA), g is the dielectric constant in vacuum, £ is the
dielectric constant in the medium (set to 80), 1;; is the distance between charged
constituent i and j and k the Debye length due to ionic screening in solution. k is
adjusted to resemble the monovalent ion concentration inside the cell nucleus.
To prevent the fiber from physical overlap a Lenard-]Jones potential is applied to all

fiber constituents (DNA and proteins). It is calculated as
o\ 12 5.\ ©
= ()7~ (3)
T rij rij

where g; and o are strength and equilibrium distance parameters
dependent on the fiber constituents i and j with distance r;;. Values for parameters
of equ. (2) and (3) are given in Supplementary Table 1.

The total energy of the chromatin fiber system is then calculated as

[tot — EDNA 4 pDH 4 LI (4)
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For example, if a DNA fiber is coated with only one type of protein complexes such
as nucleosomes, the input of the model is the DNA sequence and the position of the

nucleosomes along the genomic coordinates.

Simulation of the chromatin fiber model. The ensemble generation of the
chromatin fiber model for given nuclecsome positions and DNA sequence is done
via a Metropolis Monte Carlo algorithm with pivot moves in the helical space of the
unbound DNA. After each helical move the positions of the particles were
reconstituted by an efficient coordinate transformation algorithm and the total
energy of the system (equ. (4)) is evaluated based on the Metropolis criterion
Configurations are drawn after a certain number of Monte Carlo moves to
guarantee uncorrelated samples (for a more detailed description see
Supplementary Information and Figure 1). For efficient sampling of the
conformational space of the chromatin fiber, a short test run is performed and
1000 configurations are drawn equidistantly along the test run (~1M Monte Carlo
steps) as new starting configurations for 10 independent simulations to obtain in
total 10,000 conformations (~10M Monte Carlo steps). The ensemble is
transferred to GROMACS (15) trajectory format to be able to use the GROMACS

built-in suite of analysis tools.

Determining nucleosome positions from MNase-seq signal. To obtain
nucleosome positions from the reads of MNase-seq experiment we used the freely
available in-house package ‘nucleR’ (12). This algorithm employs a non-parametric
method of detecting all nucleosome dyads and scoring of the calls. First, a Fourier
analysis is applied to the raw coverage from NGS paired-end reads which results in
a smoother signal and it cleans the distortions in the coverage peaks. Noise is
removed from the coverage profile using FFT (16) resulting in a filtered trimmed
coverage profile that is subject to nucleosome dyad detection by a simple local
maxima search largely facilitated by the clarity of the filtered profile. The score of a
nucleosome call (from 0 to 1) is determined by the height and width of the peak,
giving a high score to well positioned nucleosomes with large and sharp peaks and

a low score to fuzzy nucleosomes with small and wide peaks. The total number of
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nucleosomes in a genomic segment can then be defined as the sum of the scores for

each nucleosome detected within that segment

N:ig" (5)

i=1

Where L is the total number of nucleosome calls detected in the considered

genomic segment and s; the score of nucleosome call i.

Sampling of physical relevant structures from determined nucleosome
positions. The nucleosome coverage is approximated as a sum of normal
distributions with the center, height and width of each Gaussian derived from
nucleosome calls parameters obtained by nucleR. The total approximated coverage

C of a genomic segment is then:

L .
h; - 1)?
= oo (-5 ) .
With
AT h? @

Where x is the genomic coordinate of the segment, the summation goes over all
nucleosome calls of the genomic segment (total number of L nucleosome calls), y;
the center of the Gaussian corresponding to the nucleosome dyad of the
nucleosome call i, o; the standard deviation of the Gaussian and w; and h; the
width and height of the nucleosome call i.

We then draw nucleosome configurations from C(x) which do not overlap in one
dimensional sequence space. Following parsimony principle and available single
cell data (10) we draw nucleosome configurations with a certain nucleosome
occupancy defined by an interval around the expected number of nucleosomes N in
the genomic segment: N— m < n < N + m, where n is the number of nucleosomes

drawn and m is the margin (m = 2 in our study). For each of the different

7
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nucleosome occupancies n, the drawn configuration is subject to a short simulation
with the simple chromatin fiber model (straight linker DNA according to Arnott's
B-DNA values is assumed as starting configuration of the model) to untangle
possible physical clashes. Configurations without clashes are detected during the
short simulation are kept for further processing until a total of M configurations
are sampled. A Gaussian mixture clustering algorithm is applied to achieve a
minimum number of conformations which together are able to describe the M

configurations.

Reproducing experimental nucleosome occupancy data by reweighting
realistic nucleosome conformations. The representatives of each cluster for all
allowed nucleosome occupancy numbers n (N—m < n < N+ m) are grouped
together and followed by a reweighting procedure to reproduce the experimental

coverage as accurate as possible. The objective function subject to minimization is

N+m Fn

0@y = Y D [AQun) + Bpi)] + D ®)

n=N-m k=1

With p being a vector of all weights of each conformation k with nucleosome

number n. The terms in the objective function are calculated as follows:

Ain) = ( D penC 00 - Ecxn) ©)

x=nl

B(Din) = In— NI* - pyn (10)
N+m Pn
D= Z n- -N
Pin (11}
n=N-m k=1
8
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where A(py,) corresponds to the difference in coverage of the experimental
coverage E and the reconstructed coverage C weighted by pyp,, nl and n2 being the
genomic coordinates of the start and end of the considered genomic segment.
B(pyn) penalizes nucleosome configurations with occupancy n which differ from
the experimentally derived nucleosome occupancy N by a squared penalty while D
assures that the nucleosome occupancy of the reweighted conformations stays
close to N. The summation over k goes over all cluster representatives B, for each
allowed nucleosome occupancy n and the summation over n includes all allowed
nucleosome occupancy value,
The optimization function is subject to a gradient descent optimization with
carefully adjusted starting and boundary conditions. Conformations which
contribute less than 1% to the experimental signal are neglected. The remaining

nucleosome conformations (total number Q) are then referred to as ‘families’.

Physical properties of a genomic segment. Each family is subject to a Monte
Carlo simulation with the nucleosome fiber model (as described above) to capture
ensemble properties. Physical properties of the nucleosome fiber such as radius of
gyration, packing ratio and distance matrix can be calculated from the ensemble
taking into account the weights of each configuration. A physical property L of a

nucleosome fiber of a genomic segment is then:
Q
L= Z P Lq (12)
g=1

where Lg is the dynamic property of family q weighted according to the
contribution p, of the nucleosome conformation to the experimental nucleosome

positioning signal with Q being the number of families.

Structure filtering with Micro-C data. In case that additionally to MNase-seq
data Micro-C data exists as is the case in yeast, the ensemble of structures of a
family is filtered to match the Micro-C contact matrix of the genomic segment
binned to the nucleosome positions of the family. For this purpose, a contact

between two nucleosomes is annotated if the distance between the nucleosome
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centers is less than 15 nm. In a first filtering process, all structures of the ensemble
which experience at least one long-range contact are kept (a long-range contact is
defined as a contact of nucleosome i with nucleosome i+0.8n where n is the total
number of nucleosomes in the family). In a second filtering process, the complete
ensemble of structures is clustered by the K-means method along the one
dimensional representation of the contact matrix to obtain two equal-sized
populations of structures, one involving structures with long-range contacts and a
second one containing representatives of the whole ensemble. In a last refinement
procedure the experimental contact matrix is intended to reproduce as accurate as
possible by assigning a weight to each structure of the reduced ensemble. Self-
interaction and contacts with the neighboring nucleosomes are neglected in the
fitting procedure as neighboring contacts can be contaminated by di-nucleosome
fragments which experienced insufficient MNase digestion. An objective function

subject to minimization is defined to obtain appropriate weights

ij
with
Ng
M= Z SEC (14}
k=1

where M is the contact matrix derived from the filtered structures where ¢,
is the contact matrix of snapshot k with weight sz, N is the ensemble size of family
g, A is a matrix displaying average contact counts of a selected part of the genome
(in the analysis of single genes A represents the average contact counts of all genes
in the genome) and the sum over i and j extends over the upper triangle of the
contact matrix without the diagonal and the +1 entries (see above). The weighls s
of the filtered structures are optimized by a steepest gradient descent algorithm.
To calculate physical properties such as radius of gyration or accessible surface

area of the 3D conformation of a genomic segment the contribution of each

10
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snapshot to the ensemble contact matrix is taken into account by extending

formula (12) to:

Q Ng
L :ZPQZSR 'qu (15}
g=1 k=1

where Ly, is the physical property of snapshot k of family q weighted
according to the contributions s; and pg to the contact matrix and experimental

nucleosome positioning signal respectively with Q being the number of families.

Physical properties of chromatin fiber structures. With the above described
method physical properties of nucleosome fibers can be calculated accounting for
experimental nucleosome positioning (see equ. (12)) and contact matrices (see
equ. (15)). In this work, we following parameters to probe chromatin compaction:
The sedimentation coefficient S of a nucleosome chain is calculated as in (17)

N N
e 2R 1
S=5(0 +T ZZR—U) (16)

Loj=i

where &) is sedimentation coefficient of a mononucleosome taken as equal
to 11.1 Svedberg, R the effective radius of the nucleosome (5.5 nm), N the number
of nucleosomes in the fiber and R;; the distance between the geometric center of
two nucleosomes. Another parameter to probe the occupied space of a nucleosome
fiber is the radius of gyration which is calculated according to

N
Z(ri - rm)2
\ i=1

1
R, =— (17)
EN

where N is the number of nucleosomes, r; the position of the geometric
center of nucleosome i and ry, the center-of-mass of all nucleosomes. The solvent
accessible surface area and the total volume of the fiber are calculated with the
GROMACS suite of tools using a spherical probe of radius 3 nm, a size in the range
of a transcription factor and 55/1.0 nm as excluded volume radii for

DNA/nucleosome core.

11
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RESULTS AND DISCUSSION

The nucleosome fiber model reproduces chromatin compaction. The three
dimensional arrangement of the nucleosome fiber ensembles is a crucial indicator
for the performance of the model. It is difficult, though, to obtain high quality in
vivo data at bp resolution even though experimental resolution steadily increases
(18). In some in vitro experiments chromatin fibers are artificially built to
guarantee a robust comparison of the interplay of nucleosome positions and
environmental changes. We compared our simulation results with sedimentation
coefficient experiments at different salt concentrations of a fiber of 12
nucleosomes, each nucleosome separated by 62 bp from its neighbor (see Figure
2). The average ensemble properties of the simulation reveal a good agreement
with the salt dependent sedimentation coefficient values bearing in mind that the
only parameter subject to change resembling different salt concentration in the
nucleosome fiber model is the Debye length for the electrostatic screening. We also
compare the average volume experienced by a 100 nucleosome fiber with
regularly spaced nucleosomes and a NRL of 162bp with experimental data. The
average volume of our model deviates by less than 5% from the experimental data
which shows that the nucleosome fiber model performs equally well for short and
long fiber configurations suggesting its suitability to sample more in-vivo like

chromatin conformations with non-regular nucleosome positioning.

Nucleosome positioning deconvolution recovers experimental data. As
nucleosome positioning data arises from cell population data a single nucleosome
position configuration is unable to capture the dynamics in nucleosome
positioning of the whole population. A more biologically reasonable approach
would be to represent the population signal by a minimum set of physically
relevant nucleosome conformation. For this reason, we developed an algorithm
based on machine learning approaches to represent the total experimental
nucleosome coverage of a genomic segment by a weighted set of physically
realistic families of different nucleosome positioning. First, the experimental

coverage of a genomic segment is approximated by a probability distribution

12
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which is based on the nucleosome calls detected by ‘nucleR’ (as an example we
chose the PAM-1 gene in yeast with a total length from TSS to TTS of ~3 kb; see
Figure 3A). Possible physically realistic nucleosome configurations (usually 1,000)
are sampled based on the probability distribution. The number of nucleosomes in
each conformation is kept close to the average nucleosome number in this genomic
segment to satisfy principles of parsimony. A Gaussian mixture clustering
algorithm on the 1D nucleosome positions reduces the sampled configurations into
a set of families (see Figure 3A). The weights of the representatives of each family
are carefully optimized by balancing the penalty of configurations with
nucleosome occupancy differing from the experimentally derived nucleosome
occupancy N while assuring that the nucleosome occupancy of the reweighted
conformations stays close to N (see Figure 3B). The reconstructed coverage shows
good agreement with the experimental coverage (see Figure 3C and
Supplementary Figure S1 for more examples) suggesting that a small set of
physically possible nucleosome fiber conformations where a single conformation
could potentially represent a configuration in an individual cell are sufficient to

describe population data.

Refinement by Micro-C delivers realistic 3D conformations. We used Micro-C
data to refine the ensemble of structures sampled via the nucleosome fiber model
(10,000 configurations for each family are sampled). For each family we binned the
Micro-C contact matrix to the corresponding nucleosome positioning profile and
we transformed each configuration of the nucleosome fiber model into a contact
matrix containing 1 in case of a contact and 0 otherwise. A two-step filtering
process ensures that only a relevant set of the sampled configurations are
considered. In the first step, all structures which experience long range contacts
are kept for further analysis. In the second step the complete ensemble of
structures is clustered to obtain two equal-sized populations of structures, one
involving structures with long-range contacts and a second one containing
representatives of the whole ensemble (see Supplementary Figure S2). In a last
refinement procedure, the experimental contact matrix is intended to reproduce as

accurate as possible by assigning a weight to each structure of the reduced

13
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ensemble (see Figure 4 and Supplementary Figure S3). Self-interaction and
contacts with the neighboring nucleosomes are neglected in the contact matrices
since neighboring contacts can be contaminated by di-nucleosome fragments
which experienced insufficient MNase digestion. Formula (15) can then be used to
obtain physical properties of the chromatin configuration of a genomic segment
incorporating both weights arising from the deconvolution of the nucleosome

positioning signal and structure refinement using Micro-C (see Figure 5).

Yeast chromatin experiencing oxidative stress is less compact. Yeast
constitutes a suitable organism to probe local chromatin compaction by
incorporating experimental restraints since because of its size MNase-seq and
Micro-C experiments yield a good coverage along the whole genome. We analyzed
yeast undergoing oxidative stress (0S) versus untreated cells. In general
nucleosomes appear more fuzzy in OS and lead to a lower nucleosome occupancy
according to formula (5) (Figure 6A). Furthermore, to detect difference in local
chromatin compaction related to gene expression we analyzed the top five genes
upregulated and downregulated in OS and a set of five key genes which do not
change expression. Local compaction properties such as radius of gyration showed
that incorporation of Micro-C contact matrices as a restraint in the model leads to
more compact ensemble properties. This suggests that even though the
nucleosome fiber model was parametrized according to in vitro data, the cellular
environment drives the fiber probably to a more compact conformation (Figure
6A). We explored apart from the radius of gyration other physical properties such
as volume and transcription factor accessible surface area to investigate in more
detail the different compaction states (Figure 6B and 6C). Genes show higher
volume and more accessible surface in OS in absolute (Figure 6B) values. To
compare the compaction of different genes we calculated the volume or surface
area per nucleosome (Figure 6C). We find no clear trend of any gene type being
responsible for the compaction, instead a general trend can be deduced suggesting

less compaction of yeast under oxidative stress.

14
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CONCLUSIONS

We present a method to obtain physically realistic nucleosome fiber conformations
with sequential nucleosome positions derived from in-vivo data where
deconvoluted states can serve as possible single cell nucleosome arrangements.
We extended this procedure to match the three dimensional conformation of the
simulated fiber ensembles with Micro-C data. We find out with this method that
the local compaction of yeast is lower in cells undergoing oxidative stress than in
untreated cells, a general phenomenon independent of the transcription state of
the genes. In summary, this method provides a large step towards sampling
biologically and physically realistic chromatin fiber conformations possibly

present in single cells.

ACKNOWLEDGEMENTS

We thank ... ] W. is a La Caixa PhD fellow (UB and IRB Barcelona, Spain). P.D.D. is a
PEDECIBA (Programa de Desarrollo de las Ciencias Basicas) and SNI (Sistema
Nacional de Investigadores, Agencia Nacional de Investigacion e Innovacion,
Uruguay) researcher. M.0. is an ICREA (Institucidé Catalana de Recerca i Estudis

Avangats) researcher.

AUTHOR CONTRIBUTIONS

J.W designed the nucleosome fiber model, developed and coded the method and
performed all the analysis with support of P.D.D. and M.S.. M.S. developed the
nucleosome deconvolution method. ] W., P.D.D,, and M.0. discussed the analysis
and wrote the manuscript with contributions from all the co-authors. M.0. directed

the work.

15

-283 -



CHAPTER IIl - RESULTS

REFERENCES

1. Tremethick,D.]. (2007) Higher-Order Structures of Chromatin: The Elusive
30 nm Fiber. Cell, 128, 651-654.

https://doi.org/10.1016/j.cell.2007.02.008

http:/ /www.ncbi.nlm.nih.gov/pubmed/17320503

2. Robinson,P.].]., Fairall, L., Huynh,V.A.T. and Rhodes,D. (2006) EM
measurements define the dimensions of the &quot;30-nm&quot; chromatin
fiber: Evidence for a compact, interdigitated structure. Proc. Natl. Acad. Sci.,
103, 6506-6511.

https://doi.org/10.1073/pnas.0601212103

http:/ /www.ncbi.nlm.nih.gov/pubmed/16617109

3. Schalch,T., Duda,S., Sargent,D.F. and Richmond,T.]. (2005) X-ray structure of
a tetranucleosome and its implications for the chromatin fibre. Nature, 436,
138-141.

https://doi.org/10.1038/nature03686

http:/ /www.ncbi.nlm.nih.gov/pubmed/16001076

4. Song,F.,, Chen,P,, Sun,D., Wang,M., Dong,L., Liang,D., Xu,R.-M,, Zhu,P. and Li,G.
(2014) Cryo-EM Study of the Chromatin Fiber Reveals a Double Helix Twisted
by Tetranucleosomal Units. Science (80-. )., 344, 376-380.
https://doi.org/10.1126/science. 1251413

http:/ /www.ncbi.nlm.nih.gov/pubmed/24763583

5. Grigoryev,S.A,, Arya,G., Correll,S., Woodcock,C.L. and Schlick, T. (2009)
Evidence for heteromorphic chromatin fibers from analysis of nucleosome
interactions. Proc. Natl. Acad. Sci,, 106, 13317-13322.
https://doi.org/10.1073/pnas.0903280106

6. Hsieh,T.-H.S., Weiner,A,, Lajoie,B., Dekker,]., Friedman,N. and Rando,0.].
(2015) Mapping Nucleosome Resolution Chromosome Folding in Yeast by
Micro-C. Cell, 162, 108-119.

https://doi.org/10.1016/j.cell.2015.05.048

http:/ /www.ncbi.nlm.nih.gov/pubmed/26119342

7. Wiese, (., Marenduzzo,D. and Brackley,C.A. (2018) Nucleosome positions
alone determine micro-domains in yeast chromosomes. bioRxiv,
10.1101/456202.

https://doi.org/10.1101/456202

8. Bascom,G.D., Myers,C.G. and Schlick,T. (2019) Mesoscale modeling reveals

16

-284 -



CHAPTER IIl - RESULTS

formation of an epigenetically driven HOXC gene hub. Proc. Natl. Acad. Sci. U. S.
A, 116, 4955-4962,

https://doi.org/10.1073/pnas. 1816424116

http:/ /www.ncbi.nlm.nih.gov/pubmed/30718394

9. Teng,Y., Yu,S. and Waters,R. (2001) The mapping of nucleosomes and
regulatory protein binding sites at the Saccharomyces cerevisiae MFA2 gene:
a high resolution approach. Nucleic Acids Res., 29, 64e - 64.
https://doi.org/10.1093/nar/29.13.e64

10. Lai,B,, Gao,W,, Cui,K,, Xie,W, Tang,Q,, Jin,W,, Hu,G., Ni,B. and Zhao,K. (2018)
Principles of nucleosome organization revealed by single-cell micrococcal
nuclease sequencing. Nature, 562, 281-285.
https://doi.org/10.1038/541586-018-0567-3

http:/ /www.ncbi.nlm.nih.gov/pubmed/30258225

11. Stevens,T.],, Lando,D,, Basu,S,, Atkinson,L.P., Cao,Y., Lee,S.F, Leeb,M,,
Wohlfahrt,K.]., Boucher,W., O’Shaughnessy-Kirwan,A,, et al. (2017) 3D
structures of individual mammalian genomes studied by single-cell Hi-C.
Nature, 544, 59-64.

https://doi.org/10.1038/nature21429

http:/ /www.ncbi.nlm.nih.gov/pubmed/28289288

12. Flores,0. and Orozco,M. (2011) nucleR: a package for non-parametric
nucleosome positioning. Bioinformatics, 27, 2149-2150.
https://doi.org/10.1093/biocinformatics/btr345

http:/ /www.ncbinlm.nih.gov/pubmed/21653521

13. Walther,],, Dans,P.D., Balaceanu,A., HospitalA., Bayarri,G. and Orozco,M.
(2019) A MULTI-MODAL COARSE-GRAIN MODEL OF DNA FLEXIBILITY
MAPPABLE TO THE ATOMISTIC LEVEL. Submitted.

14. Lu,X.-], El Hassan,M.A. and Hunter,C.A. (1997} Structure and conformation
of helical nucleic acids: rebuilding program (SCHNArP) 1 1Edited by K. Nagai.
J. Mol. Biol,, 273, 681-691.

https://doi.org/10.1006/jmbi.1997.1345

http:/ /www.ncbi.nlm.nih.gov/pubmed/9356256

15. Abraham,M.],, Murtola,T., Schulz,R,, P4ll,S., Smith,].C., Hess,B. and Lindahl,E.
(2015) GROMACS: High performance molecular simulations through multi-

level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25.
https://doi.org/10.1016/].S0FTX.2015.06.001

16. Smith,S.W. and W.,S. (1997) The scientist and engineer’s guide to digital
signal processing California Technical Pub.

17

-285-



CHAPTER IIl - RESULTS

17. Arya,G. and Schlick,T. (2009) A tale of tails: how histone tails mediate
chromatin compaction in different salt and linker histone environments. J.
Phys. Chem. A, 113, 4045-59.

https://doi.org/10.1021/jp810375d

http:/ /www.ncbi.nlm.nih.gov/pubmed/19298048

18. Ricci,M.A, Manzo,C., Garcia-Parajo,M.F., Lakadamyali,M. and Cosma,M.P.
(2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes
in vivo. Cell, 160, 1145-58.

https://doi.org/10.1016/j.cell.2015.01.054

http:/ /www.ncbinlm.nih.gov/pubmed/25768910

18

- 286 -



Random move on
helical parameters of
a bp step

N
 §

FIGURES

Base pair N

A
'

A . .
+ Rotation + Translation
+ (based on 6 helical

A paraéneters-]

. ase Pair 7

A
'

'

Base Pi“ ol ?

Cartesian

r

\ reconstruction /

ﬁandom move on helical parameters gth
accepted if the total energy

Etot = Eetast + EP¥ + EY

satisfies the Metropolis criterion.

If accepted, repeat all steps with new linker

configuration. If rejected repeat all steps with
\ previous linker configuration /

P

-

Nucleosome as a rigid
body (spatial pathway
according to X-ray
structure of nucleosome)

Positive charge in
geometric center of the
nucleosome

CHAPTER IIl - RESULTS

Base pair (i-1)

Determine position of
phosphates in the
backbone

-
A 4

-3y
gy

o

qiq;

e M
dmeegryj

N

=1 j=i
M
i=1 j=i

Excluded Volume

NHER.

ﬁng range electrostatic and excluded volume potential for Iin@
DNA, nucleosomal DNA and nucleosome cores

—

- 287 -

Figure 1. Workflow of the nucleosome fiber simulation.
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Figure 2. Comparison of compaction of nucleosome fiber model and experiment. A: Salt-
dependent sedimentation coefficient experiments of a regular fiber of 12 nucleosomes with 62
bp of linker DNA. The insets show representative snapshots of the nucleosome fiber ensemble

modeled at the specific salt concentration. B: Volume estimation of a regular fiber of 100
nucleosomes with 15 bp of linker DNA.
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Figure 3. Procedure of deconvolution of the MNase data. A: The experimental coverage (red) of
a genomic segment is approximated by a probability distribution (dashed black) based on the
nucleosome calls by ‘nucleR’. Possible physically realistic nucleosome configurations called
families are sampled based on the probability distribution. B: Optimization to adjust the weights
of each family. C: The combined artificial MNase signal of the families (black histogram) shows

good agreement with the experimental coverage (red).
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Figure 4. Reproducing experimental contact maps from Micro-C. A: Using the nucleosome
positions of a given family a subset of the generated ensemble of structures (for more
information see ‘Materials and Methods’) is selected for fitting. Representative structures of the
ensemble subset are shown. B: An optimization procedure (center) assigns a weight to each
structure of the ensemble subset to reproduce the Micro-C contact matrix binned to the

nucleosome positions of the family (left). The resulting in-silico Micro-C matrix can be seen on

the right.
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Figure 5. Workflow of Mnase-seq deconvolution and Micro-C fitting. The generated 1D families
are assigned weights p to recover the experimental nucleosome signal. A simulation of each
nucleosome family is performed to fit a set of 3D configurations to the experimental Micro-C
matrix binned to the corresponding nucleosome positions using a reweighting procedure {(of the

weights s;) of the relevant fiber conformations.
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Figure 6. Physical properties of genes in oxidative stress (OS) compared to wildtype {(WT). The
five most upregulated genes (from WT to 0OS), five genes where expression remains unchanged,
the five most downregulated genes and seven genes where the -1 nucleosome is missing in OS
were selected to do an analysis of compaction {gene names are given in Supplementary Table

S2). A: Radius of gyration (left) of the whole simulated ensemble of all families {light) and with
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Micro-C fitting of the ensemble subset (bold) in OS (red) and WT (black) condition. In some cases,
the number of nucleosomes in the gene was too low, so the fitting to Micro-C could not be
performed (indicated as 0). Standard deviation was calculated as the variance of all families.
Right: Nucleosome occupancy of all genes according equ. 5. B: Volume (left) and transcription
factor accessible surface area {right) of the genes that could be fit to Micro-Cin OS (red) and WT
(black) condition. C: Normalized (by the number of nucleosomes) volume (left) and transcription

factor accessible surface area (right) of OS versus WT. The black line represents the diagonal.
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Supplementary Information
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Supplementary Methods

Simulation of the chromatin fiber model. In the following the ensemble generation of the
chromatin fiber model for given nucleosome positions and DNA sequence is described (see
Figure 1).

1) A Monte Carlo move is performed on randomly selected bps of the unbound DNA. For
each MC move one to four inter base pair parameters are randomly selected to be
modified. The strength of the change is determined by a scaling factor which is
dependent on the diagonal entry of the stiffness matrix of the inter base pair
parameter and which is scaled to guarantee ~40 % acceptance rate in the case of
simulation of free DNA solely considering the elastic potential.

2) The inter base pair coordinates collected were transformed to derive Cartesian
representations of the center of each base pair and the phosphates in the backbone
of the DNA. The starting configuration was obtained using the SCHNArP algorithm (1)
and an efficient coordinate transformation algorithm was used for the rigid body
motion after each MC move which guarantees fast transformation between helical
and Cartesian space.

3) The total energy of the system E'! is evaluated. We calculate the long-range
interactions EP" and EY of every i-th base pair with each other and with the
nucleosomes to increase computational efficiency without influencing model
accuracy (nucleosome core charges are then scaled accordingly; we chose i=7 to
ensure that the fiber does not overlap sterically in between every i-th base pair,
parameters for i=7 can be seen Supplementary Table 1). The MC move is then

accepted or rejected based on the Metropolis algorithm.

Step 1) - 3) are repeated several million times until enough configurations are sampled.
Configurations are drawn after a certain number of Monte Carlo moves defined by the run

test method algorithm (2) (http://inka.mssm.edu/~mezei/mmc) to guarantee uncorrelated

samples.
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For efficient sampling of the conformational space of the chromatin fiber, a short test run is
performed and 1000 configurations are drawn equidistantly along the test run (~1M Monte
Carlo steps) as new starting configurations for 10 independent simulations to obtain in total
10,000 conformations (~10M Monte Carlo steps). The ensemble is transferred to GROMACS
(3) trajectory format to be able to use the GROMACS built-in suite of analysis tools.
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Supplementary Tables

Parameter Value

Anuct

Anucleff = i

94e _ 134
= = g e
-e
1.1126 - 10719 eV/A
80

0.103 1/A (for 100mM monovalent

salt)

Enuct-nucl
Enucl-bp
Ebp—bp
Onuct—nuct

Onuci-b il

Opp-bp

1KT = 0.0257 eV
1kT = 0.0257 eV
1KT = 0.0257 eV
71.0A
2434
129 &

Supplementary Table 1. Parameter values for potentials of nucleosome fiber
simulation. For qpqeff the division is by i and qy,;, = -e because only the phosphate with the

shortest distance to its interaction partner is evaluated for energy calculation.
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Gene name Index

HSP30 1
TDH3 2
ACT1 3
ALG9 4
HHO1 5
PAM1 6

HSP31 7

HSP26 8
GPX1 9

HSP42 10
PCL1 11
YOX1 12
HLR1 13
CLN1 14

HSH49 15

YALO53W 16
YBR169C 17
YDR138W 18
YGLO96W 19
YLLO11W 20
YLR350W 21
YOR098C 22

Supplementary Table 2. Gene names for the analyzed genes
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Supplementary Figures
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Supplementary Figure S1. Reconstruction by families (black) of the experimental
nucleosome coverage (red) of different genes. A: PAM-1. B: HSP26. C: HLR1. D: CLN1. E:
YDR138W. F: YALO53W.
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Supplementary Figure S§2. Representative snapshots of the subset of the simulated
ensemble of a family of the PAM-1 gene (gene number 6 in Figure 6). Contacts appear within
the dashed circles.
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Nucleosome index
-

Supplementary Figure §3. Reconstructed Micro-C matrices (left) compared to experiment
(right) of the PAM-1 gene {gene number 6 in Figure 6). Each row corresponds to the fitting
of a different family.
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CHAPTER IV - DISCUSSION

1. Sequence-dependent properties of B-DNA and structural
polymorphisms

Experimental and computational data show that DNA dynamics is far from that of a homogeneous
linear rod, and sequence plays a dramatic role in determining the physical properties of the
duplex. An elegant way to determine flexibility properties of DNA is via the helical parameter
space. In the inter base pair parameter space it can be clearly seen that each of the ten unique
base pair steps prefers distinct internal geometries. While some conformations such as d(ApT)
base pair step exhibit harmonic behavior in the inter base pair parameters, others can occupy two
(or more) configurational sub-states in some inter base pair parameters such as d(CpG) in twist.
Extensive simulations have shown us that the multimodality is not only a property of the base pair
step, but it is also modulated by the neighbors, leading to a tetramer model of deformability.
Extensive multi-us MD simulations using parmbscl force field of all 136 unique tetranucleotides
show that around 80% of the inter base pair parameter distributions of all tetranucleotides cannot
be correctly described using a single normal distribution. For example, bimodality in shift is
generally coupled to the appearance of high shift values (above 1 A). These anharmonic
deformations in helical geometries are particularly prevalent for certain tetranucleotide sequence
contexts, and are always coupled to a complex network of coordinated changes in the backbone,
with BI/BII equilibria being a major determinant. Some of these correlations can be summarized
in an extended set of rules. For example RR backbones exhibit high Bl levels contrary to YY which
are biased towards the Bl state, generating a strong asymmetry at RR:YY steps. In general for all
tetramers there is a tendency of larger shift values with increased BIl percentage of the central
junction and a strong correlation between the backbone state transition Bl -> BII of the central
junction and the formation of an unconventional hydrogen bond of the type CH—O. In summary,
the carried out analysis of this work leads to a detailed scheme with strong predictive power of
DNA geometrical properties at the tetranucleotide level. The power for each tetranucleotide to

predict internal geometries such as the multimodal nature of some inter base pair parameters
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and complex couplings such as the connection between backbone sub-states and helical state can
turn out to be a good starting point to refine standard helical coarse grain models of DNA flexibility
based on a harmonic approximation by using a multimodal approach to display the internal

conformation at higher detail.

A logical consequence after the study of all 136 unique tetranucleotides would be to study DNA
in all its unique hexanucleotide environments, however the existence of more than 800 unique
hexanucleotides would make a computational analysis very costly and probably too difficult to
draw general conclusions compared to the tetranucleotide study. For this reason, we decided to
focus on a single case of special complexity: the central d(TpA) step in the highly polymorphic
CTAG tetranucleotide in different hexa- and octamer environments. We found that the
conformational landscape in the distinct neighboring environments was formed by concerted and
correlated movements of backbone and bases. More specifically, the previously shown
correlation of BI/BIl inter-conversion with the formation of specific hydrogen bond contacts
between adjacent bases of type CH—O at the tetrameric level seems to be crucial in the
propagation of structural information (especially due to frustration driven by the mechanical
limitations imposed by DNA’s crankshaft motions) at hexa- and octanucleotide level. Also the
connection of backbone (BI/BII) and base (mostly shift and twist) polymorphisms can be spotted
up to the octamer level. In summary, those long-range effects indeed modulate subtly the
geometrical properties of the central d(TpA) step at both hexa- and octanucleotide level giving a
possible explanation on how structural information can travel almost half a helical turn away from
the central junction. The results also indicate a high detail description of DNA flexibility for the
CTAG tetranucleotide that extends beyond the nearest neighbor model while in general nearest
neighbor models which describe DNA as a chain of tetranucleotides can accurately explain the

described remote effects in longer sequences.

2. A helical coarse grain model of B-DNA dynamics and its web
implementation

Even though the study of the CTAG tetranucleotide suggests higher than nearest-neighbor effects

of DNA flexibility for some tetranucleotides, a complete study of all unique sequence
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environments is far from becoming reality due its immense computational cost. For this reason
we decided to build a helical coarse grain model of DNA based on inter base pair coordinates
exploiting the nearest neighbor sequence effect of DNA flexibility previously studied by atomistic
MD simulations with parmbscl force-field. Using machine learning approaches — dimension
reduction using PCA in helical space followed by a clustering algorithm - we could deconvolute
the inter base pair parameter distributions of each tetranucleotide into several harmonic helical
sub-states to correctly capture the conformational space sampled by MD which constitutes a
significant improvement to the commonly used model with the use of only one Gaussian to
describe the inter base pair parameter space, also referred to as the standard harmonic model.
The energy function of the extended nearest neighbor model is motivated by valence bond theory
and completely converges to the standard harmonic approach if only a single helical state is
considered. The extended nearest neighbor model is coupled to a Metropolis Monte Carlo
sampling algorithm in the inter base pair parameter space and the sampled configurations can be
mapped from helical space to the fully atomistic level taking advantage of the correlation between
helical states and backbone configuration. The resulting structures show very high similarity to
global dynamics of atomistic MD simulations when comparing Boltzmann weighted absolute
similarity indices. Several sequence-dependent properties such as backbone sub-state
populations, groove widths and sugar puckering are reproduced with high fidelity and a
comparison to experimental structures yields a good agreement in RMSd/bp and average inter
base pair parameters. The high computational efficiency allows the treatment of DNA segments
at time scales up to 10> times faster than conventional atomistic MD and offers simulations of
long DNA stretches at unprecedented detail not reachable by atomistic MD. The implementation
of the algorithm in a simple web interface and as a stand-alone package enables expert and non-

expert users an easy access to this model.

A more elaborate web environment allows direct online simulation and analysis of trajectories
simulated with our coarse grain model. In this implementation the user is given the option to
simulate - apart from free linear B-DNA - DNA dynamics in a constrained environment such as
supercoiled or protein-coated DNA. The analysis of the resulting trajectories is performed directly
with the tool and can be viewed in interactive plots in the webserver. Analysis tools range from
local helical analysis, distance contact maps, end-to-end distances and elastic energies to specific

descriptors such as circular parameters or virtual DNA footprinting. To our knowledge, this
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webserver constitutes the first of its kind to offer the simulation of trajectories at atomistic detail

in-situ with an integrated analysis pipeline.

3. Development of a nucleosome fiber model

Due to recent improvements in experimental techniques there is increased knowledge of the
general 3D genome organization at the nucleosome scale. However, the precise secondary
structure of chromatin depends on the cell type and other internal and external factors, and is
still controversial ranging from the detection of nucleosome clutches in human cells via STORM
microscopy to the arrangement of a few genes into self-interaction domains detected in yeast by
Micro-C suggesting that the nucleosome arrangement along the genomic sequence plays a crucial
role in secondary chromatin structure. To probe chromatin dynamics at kb scale in different
conditions, we designed a mesoscopic nucleosome fiber model at base pair resolution which is
coupled with a Metropolis Monte Carlo sampling algorithm. The method is flexible enough to
incorporate experimental data such as in-vivo nucleosome positions along the genomic sequence
and three dimensional structural restraints derived from state-of-the-art experimental
techniques such as STORM or Micro-C to refine the ensemble of simulated structures. This
bottom-up model uses the mesoscopic helical DNA model for the description of linker DNA and
assumes the nucleosome to be rigid and fixed in the sequence, with the nucleosomal DNA fixed
to the DNA path of the high-resolution X-ray structure (PDB 1KX5) and with a simple coarse
grained description of charges and steric constraints of the histone core. The nucleosome fiber
model reproduces well in-vitro experiments of salt-dependent sedimentation coefficients and is

able to show a fiber volume similar to that obtained experimentally.

Standard nucleosome fiber models assume a regularly spaced nucleosome distribution, which is
not what is experimentally found. Thus we implement a method of nucleosome positioning based
on the analysis of experimental MNase-seq maps, which provide averaged pictures of the
preferred nucleosome positions in a pool of cells. To transform these average maps into individual
nucleosome architectures which can be then used to bias the coarse grained simulations we
developed a machine learning algorithm to deconvolute the MNase-seq signal of a genomic

segment into a small number of physically realistic 3D fiber configurations representing individual
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cells. The combination of the different configurations recovers the experimental signal, but

avoiding the generation of physically unrealistic fiber arrangements.

With the emergence of 3C-based techniques the 3D arrangement of a population of cells can be
represented via a contact matrix, with Hi-C providing information of genomic fragments of down
to 1kb resolution and Micro-C providing even nucleosome level resolution. In terms of the
nucleosome fiber model the Micro-C data of a genomic segment can be used to refine the
ensemble of structures of each of the different physically realistic configurations arising from the
deconvolution of the MNase-seq maps. A filtering procedure followed by structure reweighting

ensures that a small set of relevant conformations describe the Micro-C contact matrix.

In summary, the nucleosome fiber model can accurately reproduce in-vitro chromatin compaction
data. It is also used to provide physically realistic fiber conformations of genomic segments based
on MNase-seq maps. The fitting of the ensembles of the simulated structures of the individual
deconvoluted states is the last step of a rigorous description of second order chromatin
organization by implementing experimental data at different dimensional level together with a

bottom-up coarse grain model at bp resolution.

4. VRE implementation

The Virtual Research Environment (VRE) developed by the Multiscale Complex Genomics (MuG)
consortium is a web environment in which tool developers can implement their programs related
to genome structure at all resolution levels. A striking advantage consists in the fact that all those
tools can be executed from a single user workspace where all the input and output data after tool
execution can be viewed. This also enables the user to execute different tools and interconnect
its output data. | integrated the helical DNA coarse grain model (MCDNA) as well the nucleosome
fiber model (ChromatinDynamics) into the VRE to enable the user the simulation of unrestrained

DNA and chromatin structure up to kb scale (see Figure 31).
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BENDING

Bending distribution of DNA fiber Bending along DNA Fiber
Hi- dr e . Hjr-breimie

3N - \"l l]“ *( }T
8 wJ \‘ . { i |‘# J‘ || il \‘f\b_.i
A - | D 'n WU
454 | \ i

2 \\ -

4 .‘ -

Al al e A I e el T Uk

x|x|x|x|x{x|x|x|x|[x|x|x|x[x]|x
FA-TwGaCmCuTeAnA-G-GuArA=A~A-AC~

log(distance (in A})
58

- -
2 a 6 8 10

Distance {in # of nucleosomes)

cellcycleG2,_chril.bam

NE“ESUEYEISCT. chril.gif

Figure 31. Snapshots of VRE output of MCDNA and ChromatinDynamics. A: Snapshot of a
DNA fragment of 150bp in length simulated with MCDNA. B: Screenshots of bending
analysis within MCDNA (top) and NAFlex (bottom). C: From left to right: Snapshot of a
chromatin fiber created with ChromatinDynamics, its nucleosome distance matrix and
internucleosomal distance graph. D: Nucleosome calls obtained with nucleR of a MNase-
seq profile (left) is transformed into a 3D representation of the nucleosome fiber via
ChromatinDynamics (right).
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The tools make use of the interconnectivity, as for example the generated trajectory of the DNA
coarse grain model at atomistic detail can be used as input for the NAFlex analysis suite where
global and local DNA features can be analyzed in more detail. Another example is the direct
connection between MNase-seq data and the nucleosome fiber model. The analysis of a MNase-
seq experiment by the tool nucleR outputs nucleosome positions of a genomic fragment which
can directly be used to construct a three-dimensional representation of said fragment with the
nucleosome fiber model. This enables the user to instantly visualize genomic segments in 1D and
3D and avoids complex data format conversions between the output and input of different tools.
In summary, the integration of the two models | developed into the VRE constitutes a step forward

towards large-scale availability, usability and interconnectivity with other tools.
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CONCLUSIONS

In this work scientific advances in every resolution level of the multi-scale simulation of DNA are
achieved reaching from atomistic MD simulations to mesoscopic secondary chromatin structure
modeling. We show that the theoretical description of DNA dynamics mesh together like cogs
among different resolution levels. We developed a force-field for the accurate description of
atomistic DNA dynamics based on quantum mechanical simulations. With the accuracy of
parmbscl, sequence-dependent effects of B-DNA beyond the base pair level were described and
used as a starting point to parametrize a novel helical coarse grain model which shows similar
accuracy to the DNA dynamics obtained by atomistic MD, but at much lower computational cost.
In the nucleosome fiber model the coarse grain DNA algorithm is used for the linker DNA
description and along with a simple mesoscopic characterization of the nucleosome chromatin
dynamics can be probed at kb scale with a DNA model whose roots lie in the quantum mechanical

regime.

The free availability of the developed helical DNA and nucleosome fiber model as stand-alone
versions or integrated in a single webserver or large-scale online research environment platform
correspond to the standards of today’s research in terms accessibility and usability. In the

following | will summarize the main conclusions of each topic in bullet points:

1. Parmbscl simulations of canonical B-DNA duplexes show that nearest neighbor effects
strongly influence mechanical properties of the central base pair step with polymorphisms
appearing in helical geometries for certain tetranucleotide sequence contexts, always

coupled to coordinated changes in the backbone geometry.

2. The study of the highly polymorphic d(CpTpApG) tetranucleotide reveals that hexa- and
octamer effects can influence helical dynamics at the central d(TpA) junction based on

concerted and correlated movements of backbone and bases.
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The newly developed coarse grain model for the simulation of duplex DNA accurately
recapitulates the multi-harmonic nature of helical parameters in an extended nearest
neighbor model, and with its ability of atomistic backmapping and smart backbone
reconstruction it reproduces in high detail global and local dynamics simulated by MD or

determined by experiments.

The multi-harmonic coarse grain model outperforms MD simulations in terms of simulation
time by a factor of up to 10> and is available for free as a stand-alone version and in a simple

web interface.

A more elaborate web environment called MCDNA allows direct online simulation and
analysis of trajectories simulated with the coarse grain model of free duplex DNA and in a

restrained environment such as supercoiled circular DNA or protein-bound DNA.

The new bottom-up nucleosome fiber model correctly reproduces chromatin compaction of
short and long chromatin fibers and can be used to derive chromatin fibers with biologically

and physically realistic nucleosome positioning based on MNase-seq and Micro-C maps.

The integration of the mesoscopic DNA model and the bottom-up nucleosome fiber model
into the MuG-VRE constitutes a step forward towards large-scale availability, usability and

interconnectivity with other tools.
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RESUMEN EN ESPANOL

El estudio del ADN desde la escala atdmica a la mesoscdpica y la conexidn entre dichos niveles de
resolucién constituye uno de los desafios mayores del nuevo milenio. Desde el inicio del siglo XX,
diversos experimentos han permitido elucidar la estructura del nucleosoma a escala atomica, y
por otro lado capturar los contactos entre segmentos del genoma cuyas secuencias se encuentran
muy alejadas. En paralelo, el desarrollo tedrico de campos de fuerza para la simulacidon de
sistemas atomisticos logrd su primera madurez con la publicacion de parmbsc0 en 2007, al tiempo
gue empezaron a salir publicados los primeros modelos de grano grueso para representar fibras
de nucleosomas. La primera década del presente milenio termina con uno de los experimentos
gue considero personalmente de los mds destacados a la hora de visualizar el genoma completo:
Hi-C. Actualmente, a casi 10 afios del advenimiento del Hi-C, la estructura del nucleo celular sigue
siendo un campo muy activo. Es ahora el momento justo para cosechar de los frutos plantados
por los pioneros una década atrds y trabajar en la conexidn entre los diferentes niveles de
resolucién logrando una imagen completa y global del ADN en el nicleo celular desde los

electrones hasta los cromosomas.

En este trabajo, usamos una aproximacion computacional para integrar los diferentes niveles de
resolucion, desde simulaciones atomisticas de Dindmica Molecular hasta el modelado de fibras
de cromatina. Desarrollamos un campo de fuerza atomistico que reproduce de forma exacta la
dindmica del ADN, basado en célculos de mecdnica cuantica. Gracias a la exactitud de parmbsc1,
los efectos estructurales secuencia-dependientes a nivel atémico fueron capturados y usados
como parametros para desarrollar un nuevo modelo helicoidal de grano grueso que ha mostrado
una exactitud similar con un coste computacional mucho menor. En el modelo de fibra de
cromatina, el modelo de grano grueso mencionado anteriormente es usado para simular el
comportamiento del ADN “linker” (libre) entre los nucleosomas que son representados de forma
simple pero que permiten estudiar fibras a la escala de kilobases (kb) con un modelo basado en

la mecanica cuantica.

Sumado a lo anterior, y para hacer nuestros modelos y herramientas disponibles y accesibles de

acuerdo a los estdndares actuales, los modelos y métodos desarrollados en esta tesis se
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distribuyen de forma libre como una versién “stand-alone” o integrado en una plataforma de

investigacion online.

Los capitulos de la presente tesis estan organizados de la siguiente manera: En el Capitulo | se
introduce de forma general los conceptos tedricos y experimentales comunes a los estudios
realizados, desde la estructura del ADN hasta la organizacién de la cromatina en el nucleo celular.
En el Capitulo I, se expanden y detallan algunos de los conceptos especificos necesarios para
comprender e interpretar los resultados obtenidos en esta tesis. Los resultados se presentan en
el Capitulo Il en forma de compilado de siete articulos (publicados o en via de publicar) que se
organizan en tres sub-secciones: i) Un estudio de las propiedades fisicas y dinamicas del ADN
dependientes de secuencia (aplicando parmbscl), y el analisis detallado de los polimorfismos
estructurales a nivel de las nucleobases. ii) El desarrollo de un nuevo modelo helicoidal de grano
grueso para simular y modelar secuencias de ADN en forma B basado en el conocimiento de la
mecanica del ADN obtenido en (i), y su ejecucion a través de un sitio web. iii) La implementacion
de un modelo de fibra de nucleosomas capaz de predecir conformaciones realistas compatibles
con las que se pueden encontrar en nucleo celular. La discusion de todos los resultados generados

es presentada en el Capitulo IV, junto a las conclusiones al final del presente manuscrito de tesis.

A continuacién se encontra un resumen de los resultados mas importantes obtenidos en esta

tesis.

Efectos estructurales secuencia- dependientes del ADN en forma B mas alla del par de
bases

Estudios experimentales y tedricos han mostrado invariablemente que la dindmica del ADN no
puede representarse adecuadamente usando un polimero lineal homogéneo. La secuencia del
ADN tiene un efecto dramatico a la hora de determinar las propiedades fisicas de la doble hebra.
Es posible estudiar la flexibilidad del ADN en un sistema de coordenadas especial, Ilamado espacio
helicoidal. En ese espacio es claramente visible que las propiedades del ADN varian con la
composicion del par de bases (pasos). La mayoria de los pasos del ADN muestran un
comportamiento armonico en los parametros helicoidales, mientras que algunos pueden
presentar distribuciones multimodales. A través de la simulacion en los microsegundos de todos

los posibles tetrdmeros de ADN (136 combinaciones), hemos logrado desarrollar una serie de

-322-



Resumen en espafiol

reglas que permiten predecir el comportamiento promedio de cualquier ADN de doble hebra, y
la aparicion de polimorfismos estructurales. Por ejemplo, hemos mostrado como secuencias con
dos purinas (RR) exhiben altas proporciones de la conformacién Bll, mientras que dos pirimidinas
consecutivas (YY) favorecen el estado BI. El poder de las reglas derivadas en este estudio, es que
permiten el desarrollo de modelos de grano grueso helicoidales que vayan mas allad del modelo
armonico y permitan reproducir estados multimodales describiendo la estructura interna con

mayor detalle y exactitud.

Para estudiar el efecto de la secuencia mas alld de los tetranucledtidos, centramos nuestros
esfuerzos en un paso particular y complejo: d(TpA) embebido en el tetranucledtido altamente
flexible y polimdrfico CTAG y todos los posibles entornos de hexanucledtidos y octanucleétidos.
Encontramos que el espacio conformacional en los distintos entornos podia comprenderse en
términos de movimientos concertados y correlacionados entre las bases y la cadena de azucar-
fosfato. En concreto, se mostré cémo la correlacidn entre el sub-estado BI/BIl y la formacion de
un enlace de hidrégeno del tipo CH-O a nivel del tetranucleétido era crucial para comprender la
propagacion de informacién estructural a través de la doble hebra de ADN. En resumen,
mostramos como efectos de “largo alcance” eran capaces de modular sutilmente las propiedades
estructurales del paso central d(TpA), dando una posible explicaciéon a la manera en la que la

informacién mecdnica viaja por la hebra de ADN.

Un modelo mesoscépico de ADN y su implementacion en un servidor web

Hemos desarrollado un modelo de grano grueso de ADN basado en las coordenadas de un par de
bases de Watson-Crick, haciendo uso de los efectos que tienen los dos vecinos en la flexibilidad
de los pasos que fueron estudiados a nivel atdmico en la seccidén anterior. Usando una
aproximacién de “machine learning” (reduccién del espacio helicoidal por técnicas de
componentes principales seguido de métodos de agrupamiento “clustering”) hemos llevado a
cabo una deconvolucidon de las distribuciones de cada parametro helicoidal para cada
tetranucledtido en varios sub-estados representados armdnicamente (multi-modales). Esto
representa una mejora significativa sobre los modelos armdnicos tradicionales. EI modelo
desarrollado esta acoplado a un algoritmo de muestreo Metropolis Monte Carlo en el espacio

conformacional de los pares de bases, y las configuraciones obtenidas en el espacio helicoidal
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pueden reconstruirse completamente a nivel atdmico teniendo en cuenta el conocimiento
generado sobre las correlaciones entre los sub-estados de las bases y la configuracion de la cadena
de azucar-fosfato. Las estructuras resultantes muestran una alta similitud con las estructuras
obtenidas en las dindmicas moleculares atomisticas. Varias propiedades dependientes de la
secuencia como los sub-estados BI/BII, las dimensiones de los surcos, y la conformacion de los
azucares se logran reproducir con alta fidelidad cuando se compara con estructuras
experimentales. La gran eficiencia computacional del modelo de grano grueso desarrollado
permite simular segmentos de ADN 10° veces mds rapido que la dindmica atomistica
convencional. La implementacidon del modelo y algoritmos en una interfase web y como un
paquete independiente permite el uso de nuestro desarrollo por la comunidad no-experta.
Asimismo, se elabord en base al mismo modelo un segundo sitio web mas detallado que permite
la simulacién y el andlisis de las trayectorias. En dicha implementacion web avanzada, el usuario
puede simular, ademas de ADN lineal, ADN en entornos constrefiidos como en el caso del ADN
circular o el ADN interactuando con proteinas. El andlisis de las trayectorias se hace de manera

interactiva, produciendo los graficos de forma on-line.

Modelo de fibra de nucleosomas

Los recientes avances en las técnicas experimentales han permitido aumentar sensiblemente el
conocimiento sobre la organizacion 3D del genoma a nivel de los nucleosomas. Sin embargo, la
estructura secundaria precisa de la cromatina depende del tipo celular, y de otros factores
externos, y sigue siendo muy controversial desde la deteccidn de “nidos” de nucleosomas en
células humanas usando microscopia STORM, hasta las conformaciones de unos pocos genes
obtenidas a través de técnicas de Micro-C. Para poder estudiar la dindmica de fibras de
nucleosomas en la escala de las kilobases (kb), disefiamos un modelo mesoscépico de fibra de
cromatina acoplado a un algoritmo de muestreo basado en Metropolis Monte Carlo. El método
desarrollado es lo suficientemente flexible como para incorporar datos experimentales como las
posiciones de los nucleosomas obtenidas por técnicas in-vivo y restricciones geométricas
experimentales derivadas de microscopia STORM o técnicas de Micro-C. Este modelo
mesoscopico “bottom-up” usa el modelo de ADN presentado en la seccidn anterior para simular
el comportamiento del ADN que conecta cada nucleosoma, manteniendo el ADN del nucleosoma

fijo de acuerdo a una estructura experimental de rayos-X. El modelo reproduce correctamente
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experimentos in-vitro como el coeficiente de sedimentacion dependiente de la concentracion de

sales y se obtienen volimenes de fibras en acuerdo con los datos experimentales.

Nuestro modelo se diferencia del resto al incorporar datos de MNase-seq para determinar la
posicién de los nucleosomas a lo largo de la secuencia. Hemos desarrollado un algoritmo de
“machine learning” para deconvolucionar las sefiales que provienen de MNase-seq promedios -
realizados sobre millones de células - en nimero bajo de configuraciones de fibras de cromatina
fisicamente realistas que vienen a representar las distribuciones de las células individuales. Esto
permite obtener fibras de cromatina 3D con una distribucién experimental de los nucleosomas a
lo largo de la secuencia. Del mismo modo, con el advenimiento de la técnicas basadas en 3C, el
arreglo 3D de una poblacidn de células puede representarse a través de una matriz de contactos
gue puede llegar a la resolucién de un solo nucleosoma con técnicas como Micro-C. La matriz de
contacto proveniente de Micro-C puede ser incorporada a nuestro modelo para refinar un
conjunto de estructuras que contengan los contactos fisicamente posibles y en acuerdo con los
datos experimentales. Un procedimiento de filtrado y de peso de las mayores configuraciones 3D
permite recuperar, con un conjunto relativamente pequefio de conformaciones, la matriz de

Micro-C experimental.
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