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ABSTRACT 

The aim of this thesis is to quantify the market risk of an option portfolio under 
uncertainty. The fuzzy sets theory is introduced to model the parameters of the Black-
Scholes option-pricing formula. Since the option price is calculated through the fuzzy 
Black-Scholes formula, we can compute the Value-at-Risk as a fuzzy number. By doing 
so, we aim to capture extra information that is lost in traditional models given the 
uncertainty derived from the fluctuations of financial markets. Finally, we want to 
conclude whether the introduction of the fuzzy sets theory is useful in order to improve 
the risk management. 
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I. INTRODUCTION 
	

Financial risk management has become a fundamental issue in the development of any 
business, and it is especially relevant in corporations such as banks or insurance 
companies. The reason is double, economic and regulatory. On the one hand, it is vital 
to control the risk to which a business is exposed for its sustainable growth. On the 
other hand, organizations have to fulfill regulatory requirements that financial 
authorities impose.   

In order to quantify the risk of an option portfolio, we have to previously valuate this 
type of derivative. The Black-Scholes-Merton model introduced by Black and Scholes 
(1973) is the most used option pricing model since its publication. Such was the 
importance of this new methodology that in 1997 Merton and Scholes were awarded 
with the Nobel price in economics. Nevertheless, this methodology is still not suitable 
for fuzzy environments. Fluctuations on financial markets lead to uncertain scenarios 
where parameters needed to compute the option price are vague and cannot be 
determined as specific values. 

With the appearance of the uncertainty theory introduced by Zadeh (1965), new 
methodologies are proposed to model this kind of information that has a difficult 
treatment with traditional models because it is hardly measurable or not probabilizable. 
Thus, we can introduce useful and, a priori, non-measurable information that make 
models more complete. 

Fuzzy numbers seem to be a good methodology to model the parameters of the Black-
Scholes-Merton model. Under this transformation, the option price obtained with the 
Black-Scholes formula could be represented as a fuzzy number. In that way, we could 
choose different levels of prices according to our subjective expectation about future 
values of the parameters and the derivative. Thus, we might be able to capture some 
additional information that could be useful on the market risk quantification of an 
option portfolio. Since the option price is calculated through the fuzzy Black-Scholes 
formula, we can compute Value-at-Risk as a fuzzy number, constructing an interval 
delimitated by maximum and minimum possible boundaries. 

As a student of actuarial and financial sciences I am really interested in the valuation of 
derivatives and the market risk quantification. But although we have a strong 
knowledge of modelling random variables, methodologies to model uncertainty are 
usually quite unknown. This master thesis is a great opportunity to learn more about the 
uncertainty theory and its models. Additionally, it is interesting to introduce this 
methodology on the Black-Scholes-Merton option pricing model and see what impact 
has on the risk management. 

The paper structure is as follows: Firstly, we are going to explain useful concepts about 
risk, option pricing and fuzzy sets in order to understand the calculus that further on are 
develop. Secondly, we are going to price with the Black-Scholes formula the option 
portfolio that is going to be used in this paper. Then, we will introduce fuzzy sets on the 
previous mentioned Black-Sholes formula, representing it as a fuzzy number. After that, 
we will compute the Value-at-Risk using the values obtained with both methodologies, 
that is, the classical and the fuzzy Black-Scholes option pricing formula. Finally, we 
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will compare and analyze the results obtained, determining if the inclusion of the fuzzy 
sets theory is useful to improve risk management.   

 

II. PREVIOUS CONCEPTS AND CONSIDERATIONS 
	

2.1. Market risk framework and risk measures 

According to the Bank for International Settlements (BIS), Basel III is an internationally 
set of measures developed by the Basel Committee on Banking supervision in response 
to the financial crisis of 2007-09. The measures aim to strength the regulation, 
supervision and risk management of banks. This regulation stipulates the usage of two 
risk measures in order to compute market risk, that is, Value-at-Risk (VaR) and 
Expected Shortfall (ES). In this thesis, we are only going to consider Value-at-Risk, that 
is the most used risk measure over the financial environment. VaR represents the worst 
expected loss on a portfolio of instruments resulting from market movements over a 
given time horizon and a pre-defined confidence level. This risk measure is 
mathematically described below: 

The Value-at-Risk of a portfolio with loss X at a given confidence level 𝜌 ∈ (0,1) is 
defined by, 

𝑉𝑎𝑅! 𝑋 = inf 𝑥 ∈ ℝ ∶  𝑃 𝑋 > 𝑥 ≤ 1− 𝜌 = inf 𝑥 ∈ ℝ ∶  𝐹! 𝑥 ≥ 𝜌  . 

VaR cannot be computed in an option portfolio from a risk factor distribution because 
of their non-linear payoff. Instead of that, we need to valuate previously the price of the 
derivative in order to quantify the market risk of the portfolio. After that, we can 
compute VaR by means of Monte-Carlo simulation or using the Theta-Delta-Gamma 
approximation (Partial Monte-Carlo simulation).  

Further on, we are going to explain and develop the most popular methodology to 
compute option prices, that is, the Black-Scholes model. But previously, we have to 
explain what an option is and their characteristics. 

 

2.2. Options  

An option is a financial derivative that offers the holder the right, but not the obligation, 
to buy or sell the underlying asset at an agreed-upon price K (strike or exercise price) 
within a time period or on the maturity date T. Options can be negotiated in 
standardized or in OTC (over-the-counter) markets. 

Two types of options exist: Puts and Calls. A Put gives the buyer the right to sell the 
underlying asset whereas the call offers the holder the right to buy the underlying asset, 
both at a specified price and over a time period. 

We can also distinguish plain vanilla and exotic options. Plain vanilla options are the 
basic ones while exotic options are more complex derivatives because of their payment 
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structures, expiration dates and strike prices. In this thesis, we are only going to 
consider plan vanilla options.  

In this way, we can find different types of options depending on some criteria. 

• Exercising date 
 

a) European style: Options that only can be exercised at the maturity time T. 
b) American style: Options that can be exercised at any time during the contract time 

period. 
 

• Spread between the strike and the price of the underlying asset 
 

a) In the money (ITM): A call is ITM when the price of the underlying asset is higher 
than the exercise price. On the contrary, a put is ITM when the price of the 
underlying asset is lower than the strike. 

b) At the money (ATM): Calls and puts are ATM when the price of the underlying 
asset is equal to the exercise price. 

c) Out the money: A call is OTM when the price of the underlying asset is lower than 
the strike, while the put, is OTM when the price of the underlying asset is higher 
than the exercise price. 

Once we know what an option is, we proceed to explain the most common model used 
in pricing these type of derivatives. 

 

2.3. The Black-Scholes-Merton option pricing model 
The assumptions made in addition to the variables and parameters needed for the 
valuation of the option are described first. 

• Elements of the model 

𝐾: Strike or exercise price. 

𝑇: Maturity date. 

𝑡: Initial date 

𝑆 𝑡 : Price of the underlying asset at time 𝑡. 

𝜎: Volatility. 

𝑟: Interest free rate 

Black and Scholes (1973) assume “ideal conditions” in the market for the stock and for 
the option:  

a) The interest free rate is constant and known.  
b) The stock pays no dividends.  
c) The option is “European” and can only be exercised at maturity. 
d) There are no transaction costs. 
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e) It is possible to borrow any fraction of the price of a security to buy it or to hold 
it, at the interest free rate. 

f) There are no penalties to short selling. 
g) The stock price follows a Wiener process (Brownian motion) with r and σ 

constants described by the following stochastic differential equation (SDE). 

𝑑𝑆 𝑡 = 𝜇𝑆 𝑡 𝑑𝑡 +  𝜎𝑆 𝑡 𝑑𝑊 𝑡 . 

As follows, the original development of the Black-Scholes-Merton model is shown. 

• Derivation of the model 

The value of the option is a function of the time and the stock price, that is, 𝑉 𝑡, 𝑆 𝑡 . 
In order to simplify the notation, in large equations we are going to represent the 
processes without the variables (e.g: 𝑉 𝑡, 𝑆 𝑡 = 𝑉). 

 According to the Ito’s lemma, 

𝑑𝑉 =
𝜕𝑉
𝜕𝑡 𝑑𝑡 +  

𝜕𝑉
𝜕𝑆 𝑑𝑆 𝑡 +

1
2
𝜕!𝑉
𝜕𝑆! 𝑑𝑆

! . 

Note that following the stochastic calculus, the second derivative with respect to time 
and the cross derivatives disappear. 

Then, substituting 𝑑𝑆 𝑡 = 𝜇𝑆 𝑡 𝑑𝑡 +  𝜎𝑆 𝑡 𝑑𝑊 𝑡  and 𝑑𝑆(𝑡)! =  𝜎!𝑆(𝑡)!𝑑𝑡 and 
regrouping terms we obtain, 

𝑑𝑉 =
𝜕𝑉
𝜕𝑡 + 𝜇𝑆

𝜕𝑉
𝜕𝑆 +  

1
2𝜎

!𝑆!
𝜕!𝑉
𝜕𝑆! 𝑑𝑡 + 𝜎𝑆

𝜕𝑉
𝜕𝑆 𝑑𝑊 . 

We construct the replicating portfolio 𝑋 𝑡 = Δ𝑆 𝑡 −  𝑉(𝑡). Applying the Ito’s lemma 
again, we obtain the following dynamic (note that the function is linear and its second 
derivatives are equal to 0), 

𝑑𝑋 =
𝜕𝑋
𝜕𝑆 𝑑𝑆 +

𝜕𝑋
𝜕𝑉 𝑑𝑉 . 

Substituting  !"
!"(!)

= Δ, !"
!"(!)

= −1, 𝑑𝑆 𝑡  and 𝑑𝑉 𝑡  and regrouping terms we obtain, 

𝑑𝑋 = Δ𝜇𝑆 −
𝜕𝑉
𝜕𝑡 − 𝜇𝑆

𝜕𝑉
𝜕𝑆 −

1
2𝜎

!𝑆!
𝜕!𝑉
𝜕𝑆! 𝑑𝑡 + Δ𝜎𝑆 − 𝜎𝑆

𝜕𝑉
𝜕𝑆 𝑑𝑊 . 

By choosing Δ = !"
!" !

 we eliminate the randomness of the portfolio. Furthermore, if 
there are no arbitrage opportunities, the portfolio grows at the same rate that the risk 
free asset with dynamic 𝑑𝐵(𝑡) = 𝑟𝐵 𝑡 𝑑𝑡. Then,  

Δ𝜇𝑆 −
𝜕𝑉
𝜕𝑡 −

𝜕𝑉
𝜕𝑆 𝜇𝑆 −

1
2𝜎

!𝑆!
𝜕!𝑉
𝜕𝑆! 𝑑𝑡 = 𝑟𝑋𝑑𝑡 . 

After eliminating and regrouping terms, we obtain the Black-Scholes partial differential 
equation (PDE). 
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𝜕𝑉
𝜕𝑡 + 𝑟𝑆

𝜕𝑉
𝜕𝑆 +

1
2𝜎

!𝑆!
𝜕!𝑉
𝜕𝑆! = 𝑟𝑉 . 

The payoff of the call at the maturity time T is, 

𝑉(𝑇, 𝑆(𝑇) = [𝑆 𝑇 − 𝐾]! = max 𝑆 𝑇 − 𝐾, 0  . 

In addition, 

𝑉 𝑡, 0 = 0      

and 

𝑉 𝑡, 𝑆 𝑡 = 𝑆 𝑡 − 𝑒!!"𝐾   if 𝑆 𝑡 → ∞ , 

where 𝑒!!" is the discount factor with r as a continuously compounded interest rate and 
τ = T – t .  

Then, solving the heat equation we obtain, 

𝑉 𝑆(𝑡),𝜎, 𝜏, 𝑟,𝐾 =  𝑆 𝑡 Φ 𝑑1 − 𝐾𝑒−𝑟𝜏Φ 𝑑2   

where, 

𝑑! =  
𝑙𝑛 𝑆(𝑡)

𝐾 + 𝑟 + 12𝜎
! 𝜏

𝜎 𝑇 − 𝑡
 , 𝑑! =  𝑑! − 𝜎 𝜏 . 

This result is known as the Black-Scholes option pricing formula.  

The Black-Scholes formula could also be derived through the risk neutral approach 
(martingale method). Under this methodology we can obtain the terminal stock price 
solving the following stochastic differential equation, 

𝑑𝑆 𝑡 = 𝑟𝑆 𝑡 + 𝜎𝑆 𝑡 𝑑𝑊 𝑡  . 

Integrating the SDE between T and t , 

𝑑𝑆(𝑢)
𝑆(𝑢)

!

!
=  𝑟𝑑𝑢 +  𝜎𝑑𝑊(𝑢)

!

!

!

!
 , 

we derive the stock price at the maturity time T as, 

𝑆 𝑇 = 𝑆 𝑡 exp 𝑟 −
1
2𝜎

! 𝜏 + 𝜎𝑊 𝜏  

with τ = T – t . 

As 𝑆 𝑡  is the current price of the stock, we may assume that is known. The random 
variable 𝑊(𝜏) is normally distributed with mean 0 and variance 𝜏. If Z is a standard 
normal random variable, therefore we may represent the terminal stock price as, 

𝑆 𝑇 = 𝑆 𝑡 exp 𝑟 −
1
2𝜎

! 𝜏 + 𝜎 𝜏𝑍  . 
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This expression will be needed in order to compute the terminal value of the portfolio in 
Monte-Carlo simulations.  

 

2.4. Fuzzy sets theory 

We define a fuzzy subset 𝐴 of B as, 

𝐴 =  { (𝑥, 𝜇!(𝑥) | 𝑥 ∈ 𝐵} 

where A ⊂ B is defined by its membership function, 

𝜇!(𝑥) = 𝛼 ,  𝑥 ∈ 𝐴!  . 

The fuzzy subset 𝐴 of B is a fuzzy number when it is normal 

𝑚𝑎𝑥[𝜇!(𝑥)] = 1 

and convex, 

 (𝛼’ > 𝛼) ⇔ (  𝑎!!
! ,𝑎!!

! ⊂  𝑎!! ,𝑎!! ), 𝐴! =  𝑎!! ,𝑎!!  . 

A triangular fuzzy number could be defined as, 

𝐴 = (𝑎!,𝑎!,𝑎!), 

where 𝑎! = lowest possibility, 𝑎! = maximum level of presumption, 𝑎! = highest 
possibility. 
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Figure 1. Graphic representation of the triangular fuzzy number 𝑭 = 𝟑,𝟓,𝟕  

 
Source: Own elaboration. 

Depending on the presumption level α, we can construct subintervals of the fuzzy set. 
According to Buckley and Qu (1990), “α-cuts” are splits of a fuzzy subset producing 
regular non-fuzzy subsets.  

𝐴! = 𝑥 ∈ 𝐵  𝜇!(𝑥) ≥  𝛼} 

We can also compute “α-cuts” using an interpolation of the function 𝜇Ã(𝑥). 

𝐴! =  𝑎!! ,𝑎!! = [𝑎! + 𝑎! − 𝑎! 𝛼,𝑎! − 𝑎! − 𝑎! 𝛼] 

Gil Aluja & Kaufmann (1990) expose that a fuzzy number is the association of two 
concepts; the confidence interval linked to the uncertainty idea and the presumption 
level linked to the subjectivity idea. 
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III. OPTION PRICING 
	

3.1. Black-Scholes option pricing formula 
First of all, we have to mention that all data of this paper is extracted from Yahoo 
finance, and correspond to real statistics of the analysed corporation.  

The portfolio that we will use in this thesis is formed by a single option. We consider a 
standard European call on a non-dividend-paying stock of J.P. Morgan with maturity 
time 𝑇 = 10/05/2019 and exercise price 𝐾 = 106,000. The underlying asset quotates 
on the New York Stock Exchange (NYSE) and its closing price is equal to 𝑆 𝑡 =
111,100 at the initial time 𝑡 = 16/04/2019. The interest free rate corresponding to the 
13 week treasury bills is 𝑟 = 2,378%. 

We can derive the implied volatility for the option equalizing the given market value 
(𝑉!"#$%& ) with the call function, considering σ as an unknown variable. That is,  

𝑉!"#$%& = 𝑉. 

We can find iteratively a numerical solution for the equation applying the Newton-
Raphson method, 

𝑥!!! = 𝑥! −
𝑓 𝑥!
𝑓! 𝑥!

  . 

The given market price for the option is 𝑉!"#$%& = 5,500, obtaining an implied 
volatility equal to 𝜎 = 15,415%. 

We proceed to compute the value of the option at time t through the Black-Scholes 
option pricing formula. Substituting the parameters that we have already defined above, 
we obtain the following results: 

𝑑! = 1,240 , 

𝑑! = 1,201 , 

𝑉 𝑆(𝑡),𝜎, 𝜏, 𝑟,𝐾 = 5,500 . 

Further on, we will refer to this Black-Scholes formula as the classical Black-Scholes 
formula in order to distinguish it from the future transformations that we will apply on 
it. 

 

3.2. “Fuzzification” process of the parameters 
With the formalization of an option contract, both parts previously stipulate the exercise 
price (𝐾) and the maturity time (𝑇). However, the other necessary parameters for the 
option valuation remain variable depending on the evolution of the market. 

The fluctuations of the market, make the price of the underlying asset 𝑆(𝑡) not possible 
to be determined as a specific value. Instead of that, it usually moves over an interval of 
possible levels. Given the continuous nature of prices, we can observe on financial 
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markets different values for a stock over a period of time (e.g: one day). In addition, the 
bid/ask price plays an important role on the determination of the stock value. Following 
that reasoning, we think it could be interesting to model the price of the underlying asset 
through a fuzzy triangular number. In that way, we define the fuzzy price of the stock as 
𝑆(𝑡)  =  𝑆!(𝑡), 𝑆!(𝑡), 𝑆!(𝑡) . 

The same casuistic occurs with the interest free rate. It is not always the same value and 
depends on the market fluctuations. In the same way as we did above, we are going to 
use a triangular fuzzy number to model this parameter, that is, 𝑟 = (𝑟!, 𝑟!, 𝑟!).  

Given the fuzzy stock price and the fuzzy interest free rate, we can also compute the 
implied volatility as another triangular fuzzy number. In this way, the volatility could be 
expressed as 𝜎 = (𝜎!,𝜎!,𝜎!). 

The idea behind these transformations is that in addition to the randomness, we have to 
consider the uncertainty associated to the prices for the computation of the parameters. 
Using triangular fuzzy numbers, we are trying to do a more realistic approach by 
considering an interval of possible values. 

We take the price of the stock and the interest free rate at three different moments of the 
initial date. We use the highest and the lowest prices quoted on the market in addition 
with the closing price used before in the classical Black-Scholes formula. We obtain the 
fuzzy triangular parameters 𝑆(𝑡) =  (109,710, 111,100, 111,390) and 𝑟 % =
(2,373, 2,378, 2,380). Given the previous data, we also compute the implied volatility 
for each moment on t obtaining	𝜎 % = (15,294, 15,415, 26,216).  

As we commented before, the Black-Scholes model assumes constant interest rates and 
volatility. These assumptions are still being viable under our fuzzy model. Even though 
parameters are represented by intervals, the interest free rate and the volatility are 
constant in a given specific point, for example, in the lowest possible values. 

We proceed with the calculation of the “α-cuts”. 

Table 1. “α-cuts” of the triangular fuzzy parameter S(t). 

α 𝑺(𝒕)𝟏𝜶 𝑺(𝒕)𝟐𝜶	
0	 109,710	 111,390	
0,1	 109,849	 111,361	
0,2	 109,988	 111,332	
0,3	 110,127	 111,303	
0,4	 110,266	 111,274	
0,5	 110,405	 111,245	
0,6	 110,544	 111,216	
0,7	 110,683	 111,187	
0,8	 110,822	 111,158	
0,9	 110,961	 111,129	
1	 111,100	

 
Source: Own elaboration based on Yahoo finance data. 

 

 



	 10	

Table 2. “α-cuts” of the triangular fuzzy parameter r (%). 

α 	 𝒓𝟏𝜶 %	 𝒓𝟐𝜶 %	
0	 2,373	 2,380	
0,1	 2,374	 2,380	
0,2	 2,374	 2,380	
0,3	 2,375	 2,379	
0,4	 2,375	 2,379	
0,5	 2,376	 2,379	
0,6	 2,376	 2,379	
0,7	 2,377	 2,379	
0,8	 2,377	 2,378	
0,9	 2,378	 2,378	
1	 2,378	

 
Source: Own elaboration based on Yahoo finance data. 

 

Table 3. “α-cuts” of the triangular fuzzy parameter σ (%). 

α 	 𝝈𝟏𝜶 %	 𝝈𝟐𝜶 %	
0	 15,294	 26,216	
0,1	 15,306	 25,136	
0,2	 15,318	 24,056	
0,3	 15,330	 22,976	
0,4	 15,342	 21,895	
0,5	 15,354	 20,815	
0,6	 15,366	 19,735	
0,7	 15,378	 18,655	
0,8	 15,391	 17,575	
0,9	 15,403	 16,495	
1	 15,415	

 
Source: Own elaboration based on Yahoo finance data. 

 

Introducing these “α-cuts” cuts we add a subjective factor in our model not prior 
measurable with traditional methodologies. Depending on the uncertainty that an 
individual has on the expected value of the variable he will choose one alpha value or 
another. This subjectivity captures extra information that is lost with classical models 
and makes our estimations more realistic. 

 If we are absolutely sure about the value of one parameter, we will choose 𝛼 = 1 and 
the result will be equal to the one obtained with the classical model. But with the 
existence of uncertainty, it is likely that we do not know the specific value of the 
parameter. Depending on this degree of uncertainty and the chosen alpha, we will have 
a bigger or smaller interval of levels.  
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3.3. Fuzzy Black-Scholes option pricing formula 

Once estimated the fuzzy parameters of the formula and their levels of presumption, we 
can compute the price of the European call as a fuzzy number.  

𝑉 = 𝑉 𝑆(𝑡),𝜎, 𝜏, 𝑟,𝐾   è 𝑉 = 𝑉!,𝑉!,𝑉! , 

where 𝑉! 𝑆!(𝑡),𝜎!, 𝜏, 𝑟!,𝐾  is the lowest possible price, 𝑉! 𝑆!(𝑡),𝜎!, 𝜏, 𝑟!,𝐾  is the 
price with the maximum level of presumption and 𝑉! 𝑆!(𝑡),𝜎!, 𝜏, 𝑟!,𝐾  is the highest 
possible price.  

Substituting the values of the parameters for each possible state in the analytic 
expression, we derive the fuzzy Black-Scholes formula, 

𝑉! 𝑆!(𝑡),𝜎!, 𝜏, 𝑟!,𝐾 = 4,296 

 𝑉! 𝑆!(𝑡),𝜎!, 𝜏, 𝑟!,𝐾 = 5,500 

𝑉! 𝑆!(𝑡),𝜎!, 𝜏, 𝑟!,𝐾 = 6,511 

obtaining the triangular fuzzy number for the price of the European call. 

𝑉 = 4,296, 5,500, 6,511  . 

Note that if instead of computing the fuzzy value of the call through the estimated 
parameters, we only take the given market values for the call, we obtain a different 
triangular fuzzy number for the European call price. 

𝑉!"#$%& = 5,250, 5,500, 5,750  . 

This phenomenon occurs because we compute a specific implied volatility for every 
given market price according to the other fuzzy parameters. For the lowest values 
𝑆 𝑡 = 109,710, 𝑟 = 2,373% and 𝑉!"#$%& = 5,250, the calculated implied volatility 
is σ = 26,216 %. That value is the highest volatility obtained, and according to the fuzzy 
sets theory, it would be the upper boundary of our fuzzy volatility parameter.  

This fact has an important effect on the transformed price of the option, because the 
lower limit and the upper limit of the fuzzy number are more extreme than the direct 
market values. Thus, the lower boundary is lower and the highest boundary is higher. 

In addition, we can observe the deviation between the fuzzy price computed with the 
parameters and the fuzzy price constructed through the market values. 

𝜀 = −0,954,0,0,761  . 

Once commented this casuistic, we precede to calculate the “α-cuts” for the price 
computed through the fuzzy Black-Scholes formula. 
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Table 3. “α-cuts” of the triangular fuzzy European call price. 

α 	 𝑽𝟏𝜶	 𝑽𝟐𝜶	
0	 4,296	 6,511	
0,1	 4,416	 6,410	
0,2	 4,537	 6,309	
0,3	 4,657	 6,208	
0,4	 4,778	 6,107	
0,5	 4,898	 6,006	
0,6	 5,018	 5,905	
0,7	 5,139	 5,803	
0,8	 5,259	 5,702	
0,9	 5,380	 5,601	
1	 5,500	

 
Source: Own elaboration based on Yahoo finance data. 

 

IV. RISK QUANTIFICATION 
	

Once calculated the value of the option, we can proceed to quantify the market risk of 
our portfolio. As we said before, we are going to compute the most used risk measure, 
the Value-at-Risk. This risk measure is also one of those that banking companies have 
to calculate according to the Basel III framework. 

As the price at the maturity time is unknown, we have to simulate the values in order to 
derive VaR. The process that we are going to follow for computing market risk is 
simple. First, we are going to use the Monte Carlo simulation methodology. Secondly, 
we are going to apply the Partial Monte Carlo simulation (Theta-Delta-Gamma 
approximation) after computing the Greeks. Both methodologies will be applied for the 
value obtained through the classical Black-Scholes formula and for the fuzzy 
transformed values. 

In market risk management, VaR is calculated over short time horizons given the 
changing nature of the markets, usually in one or ten days. The confidence level 𝜌 is 
usually at the 95% or the 99%. In our case, we will compute the one-day VaR (Δ𝑡 =
!
!"#

) at the 99% confidence level (𝜌 = 0,99). 

 

4.1. Black-Scholes option pricing formula 

4.1.1. Monte Carlo simulation 

Given the price calculated through the classical Black-Scholes formula, we start 
applying the Monte-Carlo simulation in order to compute VaR. The process is described 
simply below. 
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First, we generate market moves (Δ𝑆(𝑡)) and revaluate the portfolio at 𝑡 + Δ𝑡, that is, 
𝑉(𝑆(𝑡)+ Δ𝑆(𝑡), 𝑡 + Δ𝑡). Then, we calculate the loss as 𝐿 = −Δ𝑉(𝑡). Finally, we order 
the sample and compute the quantile at the ρ confidence level. 

Applying this methodology we obtain: 

𝑉𝑎𝑅!,!! 𝐿 = 1,751 . 

 

4.1.2. Partial Monte Carlo simulation (Theta-Delta-Gamma approximation) 

In order to capture the non-linearity in the option payoff structure, we can model 
𝑉 𝑡, 𝑆 𝑡  through a quadratic Taylor expansion. The theta-delta-gamma approximation 
is based on this idea and is a useful way to compute VaR. 

∆𝑉 ≈
𝜕𝑉
𝜕𝑡 ∆𝑡 + 𝛿

!∆𝑆 +
1
2∆𝑆

!Γ∆𝑆 , 

But before starting to compute the market risk through this method, we need to define 
the Greeks.  

The Greeks are calculated as the partial derivatives of the Black-Scholes model, and 
they represent the sensitivity of the price of the option to a change in the parameters of 
the model. These variables are widely used in hedging and risk management. The most 
common Greeks are the following ones: 

Theta (Θ): 

𝜕𝑉
𝜕𝑡 = −

𝑆(𝑡)𝜙 𝑑1 𝜎
2 𝜏

− 𝑟𝐾𝑒!!"Φ 𝑑2  . 

Delta (𝛿): 

𝜕𝑉
𝜕𝑆(𝑡) = Φ 𝑑1  . 

Gamma (Γ): 

𝜕!𝑉
𝜕𝑆(𝑡)! =

𝜙(𝑑1)
𝑆(𝑡)𝜎 𝜏

 . 

Vega (𝜈): 

𝜕𝑉
𝜕𝜎 = 𝑆 𝑡 𝜙 𝑑1 𝜏 . 

Rho (𝜌): 

𝜕𝑉
𝜕𝑟 = 𝐾𝜏𝑒!!"Φ 𝑑2  . 
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For the theta-delta-gamma computation we only need the first three Greeks previously 
explained. Substituting the values of the parameters we obtain, 

Θ = −10,625 

𝛿 = 0,824 

Γ = 0,058 . 

Once the three Greeks are obtained, we calculate ∆𝑉 through the Taylor expansion 
described above. Then, we follow the same steps as in the Monte-Carlo method. That is, 
we calculate the loss as 𝐿 = −Δ𝑉 and order the sample. At last, we compute the 
quantile at the ρ confidence level. 

Applying this theta-delta-gamma approximation we obtain: 

𝑉𝑎𝑅!,!! 𝐿 = 1,793 . 

 

4.2. “Fuzzy” Black-Scholes option pricing formula 

Now we proceed to compute the fuzzy Value-at-Risk. The value of the risk measure for 
the maximum level of presumption coincides with the VaR calculated through the 
classical Black-Scholes formula. Thus, we only have to compute VaR for the boundary 
prices of the fuzzy call. 

In order to avoid confusion between the fuzzy numbers notation used in this thesis and 
the typical boundaries notation (𝑋), we will represent the upper limit as 𝑋! and the 
lower limit as 𝑋!.  

4.2.1. Monte Carlo simulation 

As we did before, we will start computing the market risk of our portfolio with the 
Monte-Carlo simulation. We obtain the following results applying this methodology: 
 

𝑉𝑎𝑅!,!!! 𝐿 = 1,549 

𝑉𝑎𝑅!,!!! 𝐿 = 2,538 . 

These two values in addition with the VaR obtained through the classical Black-Scholes 
model form the fuzzy VaR. That is, 

𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,549, 1,751, 2,538  . 

Simplifying, we could represent this fuzzy VaR as an interval with its upper and lower 
boundary.  

𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,549, 2,538  . 

This form to represent VaR is the same that the one used in Capital allocation, where 
the risk measure cannot be represented as a specific value. 
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4.2.2. Partial Monte Carlo simulation (Theta-Delta-Gamma approximation) 

Now, we continue to compute the Greeks. The results obtained by replacing the 
parameters in the partial derivatives are the following ones: 
 

Θ! = −10,447 

𝛿! = 0,824 

Γ! = 0,060 

Θ! = −18,439 

𝛿! = 0,785 

Γ! = 0,039 

After constructing the loss function and ordering the sample, we can compute the 
quantile for both limits, obtaining the upper and the lower boundaries of VaR. 

𝑉𝑎𝑅!,!!! 𝐿 = 1,597 

𝑉𝑎𝑅!,!!! 𝐿 = 2,621 

As we did with the Monte-Carlo simulation, we represent the Value-at-Risk for the 
fuzzy option price as a fuzzy number. 

𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,597, 1,793, 2,621  . 

We can also simplify the fuzzy VaR representing the interval only with its upper and 
lower limit. Thus, 

𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,597, 2,621  . 

 

V. RESULTS ANALYSIS 
	

5.1. Option price 

In this part, we are going to compare the main results obtained in this thesis. Although 
our last objective is to analyze the impact of the introduction of the fuzzy sets in the risk 
quantification of our option portfolio, we are going to, first, analyze the prices of the 
derivative obtained with the Black-Scholes formula and with its fuzzy transformation.  

Black-Scholes:  𝑉 = 5,500 

Fuzzy Black-Scholes:   𝑉 = 4,296, 5,500, 6,511  

As we can observe, with the introduction of the fuzzy Black-Scholes formula we obtain 
an interval of prices instead of having a unique and specific value for the option. The 
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length of the interval captures the uncertainty associated to the variables because it is 
constructed with the maximum and minimum possible values taken by the parameters. 
This interval range could be reduced and turned into more precise values according to 
the individual subjective perception about the expected value of the parameters and the 
option price. 

It is important to mention that, although we represent the call value as a fuzzy number, 
we also have the price obtained by applying the classical methodology. Thus, this form 
to represent the prices could be useful in uncertain scenarios and for volatile markets. 
We add certain flexibility in the model because, depending on the self-trust about the 
market, we can choose a more or less risky strategy. 

 

5.2. Value-at-Risk boundaries 
Now, we continue analyzing the VaR obtained through Monte-Carlo simulation and the 
Theta-Delta-Gamma approximation by using the classical option price and the fuzzy 
transformed value. 

• Monte-Carlo simulation 

𝑉𝑎𝑅!,!! 𝐿 = 1,751 . 

𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,549, 1,751, 2,538  . 

• Partial Monte-Carlo simulation 
 

𝑉𝑎𝑅!,!! 𝐿 = 1,793 . 

𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,597, 1,793, 2,621  . 

Just as it happens with the option price, by computing the VaR as fuzzy number we can 
obtain an interval of possible values. In this case, it is even more important because the 
values denote the worst expected losses of our portfolio according to the selected 
parameters. With this methodology, the maximum and minimum possible VaR are 
represented, and depending on the uncertainty and the subjective risk appetite that an 
individual has, we will choose a specific or a wide range of values. 

We think that this way of representing uncertainty is very useful in order to have 
different alternatives in the risk management. It is important to emphasize that the risk 
measures are computed under the same assumptions and with the same confidence 
level. It is known that different risk measures are available and that different 
distributions can be used, yet, we think that representing VaR through a range of 
possible values is an interesting way to deal against the fluctuations of the market. 

It is also interesting the fact that we could represent the VaR interval in the same form 
that is used in capital allocation. Thus, we only represent the upper and the lower VaR 
boundaries by simplifying the notation as a classic interval. In this way, we obtain for 
the Monte-Carlo simulation the first expression and for the partial Monte-Carlo 
simulation the second one. 
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𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,549, 2,538  , 

𝑉𝑎𝑅!,!! 𝐿 = 𝑉𝑎𝑅!,!!! 𝐿 ,𝑉𝑎𝑅!,!!! 𝐿 = 1,597, 2,621  . 

 

VI. CONCLUSIONS 
	

In order to quantify the market risk of an option portfolio, we have to previously valuate 
this type of derivative. The Black-Scholes-Merton model is the most used option pricing 
model, but it is still not suitable for fuzzy environments. Market fluctuations lead to 
uncertain scenarios where the needed parameters to valuate the option cannot be 
determined as specific values, and consequently, neither the price. 

The introduction of fuzzy parameters to the Black-Scholes formula enables us to 
represent the option price as a fuzzy number by using the fuzzy Black-Scholes formula. 
Computing the value of the option as fuzzy numbers makes the model more flexible and 
realistic, because it captures extra information not considered in the traditional models. 
By modelling the parameters and the prices through the fuzzy sets methodology, we can 
capture the market uncertainty and the subjectivity of individuals in addition to the 
randomness considered by the original model. Also, we can obtain the option price 
obtained with the classical Black-Scholes formula by assuming the highest presumption 
level about the expected value of the derivative. 

It is important to mention that, by computing the fuzzy option price using the fuzzy 
implied volatility, we obtain different values to the ones we obtain by constructing a 
fuzzy number with the option market values. By doing so, the fuzzy option price 
interval becomes more extreme using the fuzzy implied volatility, that is, the upper 
boundary is higher and the lower boundary is lower than the limits obtained through the 
given market values. 

Once the fuzzy transformed option price is computed, we can also calculate the Value-
at-Risk of the portfolio as a fuzzy number. This is a useful way to quantify risk, because 
we obtain the maximum and the minimum worst expected loss of the portfolio 
according to the option price and the selected parameters. Depending on the uncertainty 
and the subjective risk appetite that an individual has, we will choose a more or less 
risky strategy. 

Even in the fuzzy transformation in the VaR, the same assumptions are considered in 
the calculation of the different risk levels. We can simplify the notation of the risk 
interval by only representing it with the highest and the lowest boundaries. This form it 
is the same that the one used in capital allocation, where risk cannot be determined as a 
specific value. In that way, we obtain an interval instead of a specific value. 

Finally, we conclude that under uncertain scenarios, the fuzzy sets theory is a useful 
methodology to valuate and to quantify the market risk of an option portfolio, dealing 
against market fluctuations associated to the prices. 
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VII. APPENDIX 
	

###Implied volatility### 

f<-function(S,r,sigma,tau,K,Vmarket){ 

  d1<-(log(S/K)+(r+(1/2)*sigma^2)*tau)/(sigma*tau^(1/2)) 

  d2<-d1-sigma*tau^(1/2) 

  V<-S*pnorm(d1)-exp(-r*tau)*K*pnorm(d2) 

  f<-V-Vmarket; 

  f} 

vega<-function(S,r,sigma,tau,K,Vmarket){ 

  vega<-S*(tau^(1/2))*dnorm((log(S/K)+(r+(1/2)*sigma^2)*tau)/(sigma*tau^(1/2))) 

  vega} 

S<- 

sigma<- 

r<- 

K<- 

tau<- 

Vmarket<- 

maxlevel<-10^(-10) 

repeat{ 

  sigmaold<-sigma 

  sigma<-sigmaold-f(S,r,sigma,tau,K,Vmarket)/vega(S,r,sigma,tau,K,Vmarket) 

  if(abs(sigma-sigmaold)<maxlevel){ 

    break 

  } 

} 

cat(sprintf("%f\n",sigma)) 

 

###Option pricing### 

##Black-Scholes formula## 
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Black_Scholes<-function(S,r,sigma,tau,K){ 

  d1<-(log(S/K)+(r+(1/2)*sigma^2)*tau)/(sigma*tau^(1/2)) 

  d2<-d1-sigma*tau^(1/2) 

  V<-S*pnorm(d1)-exp(-r*tau)*K*pnorm(d2) 

  return(V)} 

 

S<- 

sigma<- 

r<- 

K<- 

tau<- 

 

Black_Scholes(S,r,sigma,tau,K) 

 

##Monte-Carlo simulation## 

n<-10^5 

Z<-rnorm(n) 

ST<-S*exp((r-(1/2)*sigma^2)*tau+sigma*Z*(tau)^(1/2)) 

mcV<-rep(1,n) 

for (i in 1:n){ 

  if (ST[i]-K>0) {mcV[i]<-exp(-r*tau)*(ST[i]-K)}  

  else {mcV[i]<-0} 

} 

mcVn<-sum(mcV)/n;mcVn 

 

###Fuzzy number### 

mu_x<-function(x,a1,a2,a3){ 

  mux<-ifelse(x<=a1,0,ifelse(x>a1&x<=a2,(x-a1)/(a2-a1),ifelse(x>a2&x<=a3,(a3-
x)/(a3-a2),0))) 

  return(mux) 
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} 

x<-seq() 

plot(x,mu_x(x,a1,a2,a3),type='l') 

 

###VaR### 

##Monte-Carlo simulation## 

n<-10^5 

deltat<-1/360 

alpha<-0.99 

L<-rep(1,n);length(L) 

sd<-(S*sigma*(deltat)^(1/2));sd 

MCd1<-rep(1,n) 

MCd2<-rep(1,n) 

MCV<-rep(1,n) 

MCS<-rep(1,n) 

deltaS<-rep(1,n) 

for(i in 1:n){ 

  deltaS[i]<-rnorm(1,mean=0,sd=sd) 

  MCS[i]<-S+deltaS[i] 

  MCd1[i]<-(log(MCS[i]/K)+(r+1/2*sigma^2)*(tau))/(sigma*(tau)^(1/2)) 

  MCd2[i]<-MCd1[i]-sigma*(tau)^(1/2) 

  MCV[i]<-MCS[i]*pnorm(MCd1[i])-exp(-r*(tau))*K*pnorm(MCd2[i]) 

  L[i]<-Black_Scholes(S,r,sigma,tau,K)-MCV[i] 

} 

L<-sort(L) 

VaR<-quantile(L,alpha);VaR 

 

###Delta-Gamma approximation## 

theta<-function(S,sigma,tau,r,K){ 
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  d1<-(log(S/K)+(r+(1/2)*sigma^2)*tau)/(sigma*tau^(1/2)) 

  d2<-d1-sigma*tau^(1/2) 

  theta<--(S*dnorm(d1)*sigma)/(2*(tau)^(1/2))-r*K*exp(-r*tau)*pnorm(d2) 

  return(theta)} 

delta<-function(S,sigma,tau,r,K){ 

  d1<-(log(S/K)+(r+(1/2)*sigma^2)*tau)/(sigma*tau^(1/2)) 

  delta<-pnorm(d1) 

  return(delta)} 

gamma<-function(S,sigma,tau,r,K){ 

  d1<-(log(S/K)+(r+(1/2)*sigma^2)*tau)/(sigma*tau^(1/2)) 

  gamma<-dnorm(d1)/(S*sigma*(tau)^(1/2)) 

  return(gamma)} 

theta(S,sigma,tau,r,K) 

delta(S,sigma,tau,r,K) 

gamma(S,sigma,tau,r,K) 

deltaV<-
theta(S,sigma,tau,r,K)*deltat+delta(S,sigma,tau,r,K)*deltaS+(gamma(S,sigma,tau,r,K)*
deltaS^2)/2 

Ldg<--deltaV 

Ldg<-sort(Ldg) 

VaRdg<-quantile(Ldg,alpha);VaRdg 
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