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Abstract 

The frequently used visual analysis of single-case data focuses on data aspects such as 

level, trend, variability, overlap, immediacy of effect, and consistency of data patterns; 

most of these aspects are also commonly quantified besides inspecting them visually. 

The present text focuses on trend, because even linear trend can be operatively defined 

in several different ways, while there also different approaches for controlling for 

baseline trend. We recommend using a quantitative criterion for choosing a trend line 

fitting technique and comparing baseline and intervention slopes, instead of detrending.  

We implement our proposal it in a free web-based application created specifically for 

following the What Works Clearinghouse Standards recommendations for visual 

analysis. This application is especially destined to applied researchers and provides 

graphical representation of the data, visual aids, and quantifications of the difference 

between phases in terms of level, trend, and overlap, as well as two quantifications of 

the immediate effect. An evaluation of the consistency of effects across replications of 

the AB sequence is also provided. For methodologists and statistician, we include 

formulas and examples of the different straight line fitting and detrending techniques in 

order to improve the reproducibility of results and simulations.  

Keywords: single-case designs, trend, visual analysis, software  
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Single-case designs (SCD) data are still commonly analyzed visually (Campbell & 

Herzinger, 2010; Kratochwill, Levin, Horner, & Swoboda, 2014; Parker, Cryer, & 

Byrns, 2006; Smith, 2012), either on exclusive basis or jointly with an objective 

quantification. When describing SCD visual analysis, the What Works Clearinghouse 

(WWC) technical report (Kratochwill et al., 2010) mentions six aspects of the data: 

level, trend, overlap, variability, immediacy of effect, and consistency of data patterns 

across similar conditions. These data aspects can be assessed purely visually, but they 

are also frequently quantified. Specifically, level is usually represented by the mean and 

the median (Fisher, Kelley, & Lomas, 2003; Lane & Gast, 2014); trend is defined as the 

“best fitting straight line” (Kratochwill et al., 2010); variability can be represented using 

standard deviation bands (Fisher et al., 2003; Pfadt & Wheeler, 1995), range and the 

stability envelope (Lane & Gast, 2014); and overlap is commonly assessed in visual 

analysis via the Percentage of nonoverlapping data (PND; Lane & Gast, 2014). PND is 

also frequently used as main quantification of effect (Schlosser, Lee, & Wendt, 2008; 

Scruggs & Mastropieri, 2013), despite its limitations (Allison & Gorman, 1994; 

Campbell, 2013), and despite the number of nonoverlap alternatives that have already 

been discussed extensively elsewhere (Parker, Vannest, & Davis, 2011; Wolery, Busick, 

Reichow, & Barton, 2010). The immediacy of the effect can be assessed focusing on the 

level of last three baseline measurements versus the first three intervention phase 

measurements (Kratochwill et al., 2010). Regarding the final data aspect, the WWC 

Standards define the consistency of similar phases as the “extent to which the data 

patterns in phases with the same (or similar) procedures are similar” (Kratochwill et al., 

2010, p. 20). We refer to this topic in a later section entitled “Consistency of Effects and 

Type of Single-Case Design”. 
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The Importance of Trend 

The focus of the current text is on trend, due the evidence of the importance of trend 

lines for improving the performance of visual analysts (Bailey, 1984; Skiba, Deno, 

Marston, & Casey, 1989) and given that neither the WWC Standards, nor Horner 

Swaminathan, Sugai, and Smolkowski (2012) mention a specific technique for fitting 

trend. Trend has been the focus of attention in relation to both visual analysis (Mercer & 

Sterling, 2012) and statistical analytical techniques (e.g. Parker et al., 2006; Solomon, 

2014), but even “linear trend” is an ambiguous term, unless clearly defined. Actually, to 

the best of our knowledge, there has been no broad review and no systematic 

comparison performed on the different ways in which a straight line can be fitted to the 

single-case data. In order to underline the importance of trend, we can relate it to the 

other data aspects mentioned in the WWC Standards. First, a trend line is a less 

restrictive visual representation of the data than a median line, which imposes lack of 

change in level with time, or stationarity. Second, the trend line can be used as a basis 

of the visual representation and the quantification of variability (i.e., if variability is 

defined as the amount of variation around the trend line). Third, as will be reviewed in 

depth in Appendix A, some nonoverlap indices take trend into account, in order to 

provide a more meaningful comparison between conditions. Finally, the immediate 

effect of the intervention can also be conceptualized and quantified on the basis of the 

projection from the baseline (Horner et al., 2012), for instance, as the difference 

between the predictions for the first intervention phase value from the baseline and the 

intervention phase trend lines, as in piecewise regression (Center, Skiba, & Casey, 

1985-1986). Thus, we consider that trend is crucial data aspect that requires thorough 

discussion. 
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Consistency of Effects and Type of Single-Case Design 

The consistency of effects can be assessed in relation to the type of single-case design 

used. Specifically, although comparing level, trend, and variability and assessing 

overlap can be done separately for each AB-pair of phases, an AB design is not 

sufficiently rigorous from a methodological perspective. Actually, the WWC Standards 

(Kratochwill et al., 2010) require a minimum of three replications of the effect that can 

be observed in an AB-pair. However, not all replications are equivalent. For instance, 

focusing on two recently compared designs (Novotny et al., 2014), a nonconcurrent 

multiple-baseline design would entail three AB comparisons, whereas an ABAB design 

entails comparing A1-B1, B1-A2, and A2-B2. Therefore, what is different is that in an 

ABAB design: (a) there is a single participant and potentially more consistency can be 

expected; (b) one of the comparisons is in the BA order, which might affect the visual 

impression of the results; (c) the information from two of the phases is used twice, 

which could lead to apparently greater consistency; and (d) in some cases, A2 may not 

be considered comparable to A1, because the effect of the intervention may not wash out 

completely, which could lead to lower consistency. It is even more relevant to 

distinguish between a concurrent and a nonconcurrent multiple-baseline design across 

participants (Carr, 2005), given that for the former the staggered introduction of the 

interventions is crucial for assessing experimental control via within-series and 

between-series comparisons (Ferron, Moeyaert, Van Den Noortgate, & Beretvas, 2014; 

Horner et al., 2005). Therefore, even if there is similar consistency in AB-comparisons 

arising from these two designs, the evidence from a concurrent multip le-baseline design 

is stronger. In summary, it has to be underlined that in absence of replication and 

consistency of the effect, a difference observed in an AB-comparison (in terms of level, 
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trend, variability or overlap) is insufficient. Moreover, the assessment of consistency 

across AB-comparisons has to take place considering the type of SCD actually used.  

Aims of the Article, Justification, Intended Audience and Organization 

The article aims to provide an answer to several questions. As presented in Table 1, we 

consider that some of these questions (How to choose a technique for fitting a straight 

line?, Is it necessary to always fit a (straight) line?, Is it necessary to always control for 

baseline trend?, How to follow the WWC Standards recommendations for visual 

analysis?) might be of greater interest to applied researchers. The ultimate aim is that 

applied researchers have a tool enabling them to perform visual analysis, focusing on 

each of the six data aspects mentioned in the WWC Standards in a systematic way. For 

that reason, we have included our comments and recommendations on these questions 

in the main text.  
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Table 1. Questions aimed to be answered, intended audience, and organization of the 

text. 

Question Intended 

audience 

Content 

availability 

Approach to 

answering the 

question 

Summary for 

applied 

researchers 

What trend line 

fitting techniques 

exist and how do 

they differ? 

Methodologists 

/ statisticians 

Main text (verbal 

explanations) and 

Appendix A 

(formulas and 

examples) 

Review of trend 

line fitting 

techniques 

incorporated in  

single-case data 

analysis 

procedures 

There are 

several options 

that do not 

necessarily lead 

to the same 

result 

How to choose a 

technique for 

fitting a straight 

line? 

Applied 

researchers; 

Methodologists 

/ statisticians 

Main text (verbal 

explanations) and 

Appendix B 

(formulas and 

examples) 

Search in the 

literature for a 

quantification of 

fit of a trend line 

to the data 

Use the Mean 

Absolute 

Scaled Error 

criterion 

Is it necessary to 

always fit a 

(straight) line? 

Applied 

researchers 

Main text Review of 

alternatives and 

a 

recommendation 

No, but it is 

easier, more 

parsimonious, 

more common 

What ways of 

controlling for 

baseline trend 

have been 

incorporated in 

single-case data 

analytical 

procedures? 

Methodologists 

/ statisticians 

Main text (verbal 

explanations) and 

Appendix C 

(formulas and 

examples) 

Review of 

existing 

approaches to 

controlling for 

baseline trend 

There are 

several options 

that do not 

necessarily lead 

to the same 

result 

Is it necessary to 

always control for 

baseline trend? 

Applied 

researchers 

Main text Discussion and a 

recommendation 

Baseline trend 

control is not 

the same as 

detrending; 

separate trend 

lines can be fit 

How to follow the 

WWC Standards 

recommendations 

for visual 

analysis? 

Applied 

researchers 

Main text Creation of a 

web application 

Use the web 

application 

created 
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We also aim to provide answers to questions we might be of greater interest to 

methodologists and statisticians (What trend line fitting techniques exist and how do 

they differ?, What ways of controlling for baseline trend have been incorporated in 

single-case data analytical procedures?). Thus, we provide formulas and examples on 

the existing options for fitting trend lines and for detrending in Appendices A and B. 

We consider that a single document containing this information is relevant and 

necessary, because otherwise this information is either missing (for Tau-U and Baseline 

corrected Tau) or scattered in several documents, including difficult to access sources. 

For applied researchers not interested in the details, the brief verbal comments in the 

main text and the answers provided in the last column of Table 1 would be sufficient.  

 

What Trend Line Fitting Techniques Exist and How Do They Differ? 

The current overview is focused on techniques that have been incorporated in analytical 

procedures proposed for single-case data analysis. Thus, several trend estimation 

techniques are not included, such as the minimum m-estimation (Anderson & 

Schumacker, 2003; Yohai, 1987) tested by Brossart, Parker, and Castillo (2011) but not 

included in a data analytical procedure, or the least median of squares (see Wilcox, 

2012, Chapter 10). The current review is also focused on linear trend here rather than on 

nonlinear trend (commented more extensively in the section entitled “Is It Necessary to 

Always Fit A (Straight) Line?”), because it is simpler, potentially more easily 

understood (Chatfield, 2000), and also more frequently present in visual aids (Fisher et 

al., 2003; Lane & Gast, 2014). Thus, we prioritize the accessibility of the techniques 

(Parker, Vannest, & Davis, 2014). Moreover, in the WWC Standards linear trends are 
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the focus of attention, according to the illustrations provided in Kratochwill et al. 

(2010).  

Apart from stating that there are many more trend line fitting techniques than the 

linear trend line fitting techniques incorporated in single-case data analytical 

procedures1, the answer to first part of the question is provided in Table 2. As seen in 

Table 2, least squares estimation is the technique most frequently incorporated in single-

case data analytical procedures. Moreover, some analytical procedures model only 

baseline trend (for detrending or for comparing with the intervention phase data), 

whereas the majority of procedures using least squares estimation fit separate trend lines 

to the baseline and the intervention phases.  

 

 

  

                                                                 
1
 It can be verified that the analytical procedures mentioned cover the procedures l isted in previous 

broad overviews (e.g., Gage & Lewis, 2013; Manolov & Moeyaert, 2017; see also Tate et al.’s, 2016, 
Appendix), considering that the focus here is only on procedures incorporating trend estimation.  
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Table 2. Cross tabulation of straight line fitting techniques (columns) and the portion of 

the data to which the trend line is fitted (rows) 

Where trend 

is modeled 

Least squares estimation Bi-split  

(split-middle 

method) 

Tri-split Theil-Sen 

estimator 

Differencing 

Baseline only Allison and Gorman (1993) 

ordinary least squares 

regression model 

Conservative Dual 

Criterion (Fisher et 

al., 2003);  

Percentage of data 

points exceeding 

median trend 

(Wolery et al., 

2010) 

Graph 

rotation 

procedure 

(Parker et 

al., 2014) 

Baseline 

corrected 

Tau 

(Tarlow, 

2017) 

Mean Phase 

Difference 

(Manolov & 

Rochat, 2015; 

Manolov & 

Solanas, 

2013) 

Baseline and 

intervention 

phase 

separately 

Last Treatment Day 

procedure (D. M. White, 

Rusch, Kazdin, & Hartmann, 

1989); Piecewise regression 

(Center et al., 1985-1986);  

Mean and Slope Adjustment 

(MASAJ) mean plus trend 

shift (Parker et al., 2006); 

Generalized least squares 

regression proposal by 

Swaminathan et al. (2014); 

Standardized mean difference 

based on multilevel modeling 

of level and trend 

(Pustejovsky et al., 2014) 

Visual analysis 

(Lane & Gast, 

2014; Miller, 1985) 

None None Slope and 

Level Change 

(Solanas et al., 

2010) 

Baseline and 

intervention 

phase jointly 

Gorsuch‟s (1983) trend 

analysis 

None None None None 
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Regarding the second part of the question (“How do the trend line fitting techniques 

differ?”), from an applied perspective it is sufficient to say that greater differences 

between the trend lines fitted are expected when the data conform worse to a straight 

line (as is the case in the A phase in Figure 1). Complementarily, smaller differences are 

expected when the data are more easily approximated by a straight line (as is the case in 

the B phase in Figure 1).  
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Figure 1. Data (obtained by Eilers and Hayes, 2015) for Jacob (tier 3), a participant 

with autism spectrum disorder, treated with cognitive defusion exercise and exposure 

therapy. Black continuous line: bi-split technique for estimating trend; Light grey solid 

line: tri-split technique for estimating trend; dash-and-dot line: ordinary least squares; 

dotted line: differencing; dark grey dashed line: Theil-Sen. The values before the 

vertical line refer to the baseline (A) phase, whereas the values after the vertical line 

refer to the intervention (B) phase. 
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In brief, ordinary least squares estimation fits the trend line in such a way that the 

squared difference between itself and the actual values is the smallest possible. In 

comparison to the ordinary least squares estimation, tri-split and the Theil-Sen estimator 

are intended to be more resistant to (i.e., less affected by) outliers. In contrast to the 

previously mentioned techniques, the main advantage of the split-middle method is its 

simplicity and possibility to use it manually (Miller, 1985). Finally, differencing can be 

used for estimating trend as the average of the differences between successive data 

points, and not only for detrending, as it will be mentioned later. For further detail, a 

technical and formulaic representation of the five straight line fitting techniques is 

available in Appendix A.  

How to Choose a Technique for Fitting a Straight Line? 

We consider that it is important to reach the same conclusion about intervention effect 

when focusing on the same data feature (here, trend). However, reaching the same 

conclusion is not ensured in light of the variety of straight line fitting techniques 

summarized in Table 2. Thus, it is not desirable that an apparently clear criterion such 

as “linear trend” would lead to very different graphical representations (superimposed 

lines) and numerical results. Accordingly, in visual analysis the need for formal 

decision rules has been underscored (Ottenbacher, 1990). Moreover, Parsonson and 

Baer (1992) explicitly who mention the importance of both comparing trend line fitting 

techniques and having a rule for such a comparison. 

A logical option for choosing between techniques is on the basis of the reliability 

(Parker, Vannest, Davis, & Sauber, 2011) or the amount of fit of the trend line to the 

data. It can logically be expected that, for the same amount of residual variability, more 

reliable estimates will be obtained for longer data series. The amount of fit of the 
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straight line to the data can be quantified in several ways, the most well-known of 

which is R2, quantifying the proportion of data variability explained by a linear. 

Actually, Hyndman and Koehler (2006) compare several options for comparing the 

actual values to the fitted values (e.g., the trend line) and they propose a measure called 

the Mean Absolute Scaled Error (MASE). Values of MASE greater than one indicate 

that the trend line provides a worse fit than predicting each value from the previous one. 

In general, the greater the MASE, the worse the fit of the trend line to the data. In 

Appendix B, the formulas for several measures of fit, including the MASE 

recommended here, are provided. 

Is It Necessary to Always Fit A (Straight) Line? 

A straight line not always easily or meaningfully represents data. In general, it may not 

be always visually clear whether: (a) a straight line represents the data well; (b) a 

straight or a curved line is a better representation; and (c) which curved line to choose. 

For simple monotonic relations in which there is only one bend in the curve 

representing the relation between the measurement occasions and the measurements, it 

is possible to use Mosteller and Tukey‟s bulging rule (see e.g. Fox, 2016, p. 66) for 

transforming the data and using afterwards any of the techniques for finding a best-

fitting straight line. However, single-case researchers may not be willing to transform 

the data, as it goes against the importance of an in-depth understanding of the values 

obtained (Fahmie & Hanley, 2008). Without the need to transform, three options have 

been mentioned in the literature in order to model nonlinear trends: (a) polynomial 

regression (Swaminathan, Rogers, Horner, Sugai, & Smolkowski, 2014), considering 

that Horner et al. (2012) explicitly mention quadratic lines; (b) local regression (Solmi, 

Onghena, Salmaso, & Bulté, 2014); and (c) generalized additive models: applying cubic 

regression splines with many knots (e.g., 10 knots for a data series of 15 measurements; 
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Sullivan, Shadish, & Steiner, 2015). These two latter options are also useful when a 

nonlinear relation presents more than one bend, unlike quadratic models.  

We consider that there are three criteria for selecting the appropriate model. First, in 

case there is substantive knowledge on the expected evolution of the target behavior 

(e.g., about the type of natural recovery during baseline, about the presence of an upper 

or a lower asymptote once the behavior has started improving after the intervention), 

such knowledge should be used. Second, scientific parsimony calls for using the 

simplest possible model that implies only a minor loss of information (or loss of 

goodness of fit) with respect to more complex models. In that sense, a linear model 

would be warranted in absence of a justification for a specific nonlinear model. Third, 

quantifications such as the R2 and MASE may be used for selecting a model of the data. 

Finally, it is also possible to use single-case analytical procedures that do not 

summarize the data via trend lines or mean lines, such as the Nonoverlap of all pairs 

(NAP; Parker & Vannest, 2009).  

  

What Ways of Controlling for Baseline Trend Have Been Incorporated in Single-

Case Data Analytical Procedures? 

Just as “linear trend” does not necessarily refer to a single possible straight line 

representing the relation between the measurement occasions and the measurements, 

“detrending” (i.e., removing baseline trend from the data) could also be an ambiguous 

term. Table 3 provides a brief summary of the different options for detrending, whereas 

in Appendix C we have included the formulas for each detrending technique and an 

example. Note that apart from using baseline trend for detrending, some analytical 

procedures extrapolate baseline trend for comparison purposes (e.g., Conservative dual 
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criterion; Percentage of data points exceeding median trend; Mean Phase Difference), 

whereas others compare the slopes of the trend lines fitted separately to the baseline and 

intervention phase (e.g., Piecewise and Generalized least squares regression, multilevel 

models). 

Table 3. Approaches to detrending in several single-case data analytical procedures. 

Detrending approach Single-case data analytical 

technique 

Measurement units of 

the detrended data 

Initial baseline regression 

with time as predictor 

Allison & Gorman (1993) Transformed (residuals) 

Initial regression with time 

and the interaction between 

time and phase as 

predictors 

Before the Between-cases 

standardized mean 

difference (Shadish et al., 

2014) 

Transformed (residuals) 

Single regression step 

modeling general trend and 

change in level 

Trend analysis (Gorsuch, 

1983) 

Transformed (residuals) 

Removing baseline trend 

from the whole series 

Baseline corrected Tau 

Slope and Level Change 

 

Original 

Removing baseline trend 

from the intervention phase 

data 

Mean and Slope 

Adjustment (Parker et al., 

2006) 

Original 

Subtracting the number of 

improving baseline data 

points from the nonoverlap 

comparison 

Tau-Y (Parker, Vannest, 

Davis, & Sauber, 2011) 

Original 

Differencing Differencing analysis 

(Gorsuch, 1983) and 

ARIMA models (Harrop & 

Velicer, 1985) 

Transformed 

Note. ARIMA – autoregressive intergrated moving average. 
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Is It Necessary to Always Control for Baseline Trend? 

Parker et al. (2006) underscore the importance of taking baseline trend into account 

before quantifying intervention effects. However, it needs to be highlighted that taking 

baseline trend into account does not necessarily imply detrending (transforming the 

data), because baseline trend can be compared to the intervention phase trend. Actually, 

we here advocate for avoiding detrending by modeling separately the trend in each 

phase. In the next paragraph, we present the justification for our recommendation.  

A first issue with detrending is that there are several different ways in which it can be 

achieved, as reviewed in the section entitled “What Ways of Controlling for Baseline 

Trend Have Been Incorporated in Single-Case Data Analytical Procedures?”.  Thus, it 

would be necessary to have a criterion for choosing one of these options. A second issue 

is that it may not always be easy to decide for which data sets to detrend: always, only 

when baseline trend that is statistically significant, or only when the baseline trend 

represents well the data. A similar concern has been expressed by Parker, Vannest, 

Davis, and Sauber (2011), who underline that the length of the baseline, and the 

possibility of the data correction being excessively strong have to be considered.  

Moreover, detrending is not flawless. The evidence suggests that in some cases baseline 

trend control may be insufficient, leading to excessively large estimates of effect. For 

instance, Tarlow (2017) reports such evidence for Tau-U and also for Baseline corrected 

Tau, if the statistical significance of the baseline slope is assessed in baselines with 

fewer than 10 measurements (Tarlow, 2017). Complementarily, in other cases baseline 

trend control may be excessively strong control, leading to conservative estimates of 

effect (e.g., see Parker & Brossart, 2003, for Gorsuch‟s, 1983, trend analysis and 

Manolov, Arnau, Solanas, & Bono, 2010, for differencing analysis). Similarly, in 

relation to the initial detrending before applying the BC-SMD, Shadish, Hedges, and 
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Pustejovsky (2014) underline that detrending should be used with caution, because it 

may remove part of the intervention effect when it is expressed as change in slope. 

More favorable results have been reported for the Allison and Gorman (1993) model 

(Manolov & Solanas, 2008; Tarlow, 2017), for the Mean Phase Difference (Tarlow, 

2017), and for the Slope and Level Change procedure (Solanas et al., 2010). However, it 

is difficult to disentangle the performance of the detrending technique from the 

performance of the data analytical procedures in which it is incorporated.  

Regarding our recommendation, the separate modelling of baseline and intervention 

phase trend is best aligned with the way in which visual analysis proceeds. We here 

suggest choosing the straight line fitting technique on the basis of the MASE. In terms 

of further quantifications, it is possible to compare trend lines by means of a 

randomization test (Michiels, Heyvaert, Meulders, & Onghena, 2017). Additionally, 

multilevel models also proceed estimating trend lines separately. For instance, an option 

to quantify the BC-SMD for data potentially presenting trend is to use multilevel 

models and maximum likelihood estimation (Pustejovsky, Hedges, & Shadish, 2014) 

instead of detrending first.  

How to Follow the WWC Standards Recommendations for Visual Analysis? 

In the present section, we describe a web-based application available at 

https://manolov.shinyapps.io/Overlap/ and making easier following the WWC 

Standards recommendations for visual analysis and also for favoring the integration of 

visual and statistical analysis (Horner et al., 2012). The website also reflects the fact that 

most quality standards include items on both visual and statistical analysis (Heyvaert, 

Wendt, Van Den Noortgate, & Onghena, 2015). Additionally, we have included the 

conservative dual criterion (Fisher et al., 2013), which is a visual aid for which there has 

https://manolov.shinyapps.io/Overlap/
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already been evidence that it improves visual analysis (Stewart, Carr, Brandt, & 

McHenry, 2007; Wolfe & Slocum, 2015; Young & Daly, 2016) and that it performs 

well in terms of avoiding false positives (Lanovaz, Huxley, & Dufour, 2017). The input 

of the application is a data file organized as illustrated in the webpage. The output is 

provided in Figures 2 and 3.  

Regarding level, two lines marked with different colors are superimposed for each 

phase (one based on the within-phase mean and one based on the within-phase median) 

and the difference in means and medians is computed. Regarding trend, the MASE 

criterion is used to identify which of five techniques for finding a best fitting straight 

line (least squares, Theil-Sen, bi-split, tri-split, or differencing) leads to better fit. The 

slopes for the trend lines for the two phases are provided. Moreover, the values of 

MASE and R2 for each phase, in order to assess the goodness of fit. These values can 

also be understood as informing about trend stability: smaller MASE and greater R2 

correspond to data that show less variability around the trend line. Note that following 

the MASE criterion makes unnecessary the subjective decisions regarding the straight 

line fitting technique to use. Moreover, fitting trend lines separately to each phase 

makes unnecessary the subjective decision regarding how to detrend the intervention 

phase data.  

Regarding data variability, the idea of a trend stability envelope (Lane & Gast, 2014) 

is followed: the limits of the envelope are defined by adding and subtracting 25% of the 

within-phase median to the previously identified best fitting straight line. Regarding the 

immediacy of effect, one graphical representation and quantification focuses on the 

mean and median level of the last three baseline data points as compared, respectively, 

to the mean and median level of the first three intervention phase data points. Another 

graphical representation and quantification focuses on the prediction of the first 
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intervention phase data point according to the baseline vs. intervention phase trend 

lines, as previously identified according to MASE. Regarding overlap, the graphical 

representations shows, for each phase B value, the number of phase A values that it 

improves, apart from providing the values of the PND and the NAP. 

All the aspects mentioned thus far are available in a single page (see Figure 2) with 

six panels, so that a visual analyst may have all this information visible simultaneously 

in order to respond to the “holistic and integrative nature” of visual analysis (Parker et 

al., 2006, p. 419). Overall, for the example data, it can be stated that the phase A data 

are not stable and not well represented by linear trend. Nevertheless, a general 

improvement is observed, especially at the end of the baseline. The phase B data are 

more stable and better represented by a slightly deteriorating trend line. In terms of the 

difference between phases, there is a clear and apparently large immediate decrease in 

the undesirable behavior and no overlap between the measurements of the different 

conditions. 

  



21 

Running head: SINGLE-CASE LINEAR TREND 

 

Figure 2. A snapshot of the web-based application for following the What Works Clearinghouse Standards recommendations for visual analysis. 

These data represent one tier (i.e., an AB-pair) of a nonconcurrent multiple-baseline design. The values before the vertical line refer to the 

baseline (A) phase, whereas the values after the vertical line refer to the intervention (B) phase
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On Figure 3, we represent the way in which the assessment of consistency of data 

patterns is implemented in the website. As stated in the beginning of the text, inferring a 

causal relation between intervention and target behavior requires at least three 

replications and consistency in the effects. In this case, all three tiers from the 

nonconcurrent multiple baseline design used by Eilers and Hayes (2015) are represented 

in an attempt to explore whether there is a similarity between: (a) the data from the A 

phases; (b) the data from B phases; and (c) the type of change between phases. 

Specifically, a multilevel model is implemented (see Baek, Petit-Bois, Van Den 

Noortgate, Beretvas, & Ferron, 2016, for a visually-based example), including general 

trend, the effect of the intervention on the trend, and effect of the intervention on level. 

The average estimates obtained via the multilevel model2 for the three tiers are 

presented with a thick line. These average estimates can be compared to the least 

squares regression lines fitted separately to each phase within each tier. The degree of 

similarity between the average levels and trends and the individual levels and trends can 

be used to assess the consistency of data patterns. In this particular example, there is 

greater similarity of the data patterns for the tiers represented in the upper part of Figure 

3, whereas the tier in the lower part shows a different pattern. 

  

                                                                 
2
 The multilevel model  (measurements nested in individuals) is used here only as a visual aid, without 

dealing with the specific numerical estimates of the effects and their statisti cal significance. 



23 

Running head: SINGLE-CASE LINEAR TREND 

 

Figure 3. A snapshot of the web-based application for following the What Works Clearinghouse Standards recommendations for visual analysis 

and assessing consistency. These data represent a nonconcurrent multiple-baseline design. The values before the vertical line refer to the baseline 

(A) phase, whereas the values after the vertical line refer to the intervention (B) phase
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Is it Necessary to Follow the WWC Standards? 

It has been clearly stated by the WWC panel of experts (Kratochwill et al., 2013) that 

the Standards described in the 2010 document are pilot and not definitive. Accordingly, 

there have been efforts to make them more systematic by developing protocols 

(Maggin, Briesch, & Chafouleas, 2013) and also to emphasize the availability of 

additional tools related to the assessment of external validity (Hitchcock, Kratochwill, 

& Chezan, 2015). It is also important to state that there is a variety of rubrics proposing 

criteria for methodological quality (Smith, 2012) and that these rubrics do not always 

agree (Maggin, Briesch, Chafouleas, Ferguson, & Clark, 2014). This challenge can also 

be seen in the wider context of concerns expressed regarding the accuracy of WWC 

reports and the procedures and standards that guide them (Wood, 2017). 

Despite these challenges, if the focus is put specifically on evidence standards and 

not on design standards, the picture looks somewhat different. The main tool for judging 

the availability of sufficient evidence of a functional relation is visual analysis and six 

data features are highlighted. These data features are well-aligned with: (a) the ones 

identified in empirical research (e.g., Knapp, 1983); (b) the ones discussed by 

authorities in the field, who were not members of the WWC panel of experts (e.g., Lane 

& Gast, 2014; Parsonson & Baer, 1992); (c) the data features on which the empirically-

supported conservative dual criterion (Fisher et al., 2003) is based; and (d) the data 

features included in the set of rules used by Krueger, Rapp, Ott, Lood, and Novotny 

(2013) flor defining what a clear change and a potential for clear change is. In that 

sense, it seems logical to focus on these data features, although the specific way in 

which they are assessed (e.g., how to estimate the best fitting trend line, how to quantify 

nonoverlap) and the importance of each of them when determining whether a functional 

relation has been established are much more open to debate. We make 
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recommendations regarding how each of the data features can be assessed, but their 

weight in the overall assessment of intervention effectiveness is yet to be discussed 

thoroughly.  

Finally, assessing the cumulative amount of evidence can be done following the 5-3-

20 rule (Kratochwill et al., 2013), specifying respectively the minimum number of 

studies, independent research teams, and participants required for considering a practice 

as “evidence-based”. However, this is not the only option. For instance, Lanovaz and 

Rapp (2016) suggest that any such recommendation should have an objective basis. In 

that sense, they provide criteria based on the binomial distribution for the minimum 

proportion of experiments with positive results in order to achieve a success rate of at 

least 50% and a confidence interval range of 40% or less.  

Discussion 

In order to favor the transparency of reporting (Tate et al., 2016) and the replicability of 

results, we recommend that researchers clearly state exactly how a trend line is fitted 

and how baseline trend is controlled for, if such a control is performed. We hope that 

the details provided here and the information depicted in the output of the web 

application are helpful for transparent reporting. Additionally, similar explicit 

statements regarding the quantification of the difference in level, overlap, immed iacy of 

effect or variability are also required. 

Implications 

The main implication of the current work for applied researchers and practitioners is the 

possibility to carry out, online and for free, systematic visual analysis, using visual aids 

and quantifications referring to the six data features highlighted in the WWC Standards. 

Regarding the analytical challenges identified in the article, the question of exactly how 
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to detrend (i.e., how to remove baseline trend) is avoided by fitting trend lines 

separately to each phase, whereas the question about the trend line fitting technique is 

answered objectively by using the MASE. The quantification, implemented in the 

website, of the remaining data aspects has also been explained, in order to improve 

transparency. 

The main contribution for methodologists and statisticians is the systematization of 

best fitting straight line techniques and detrending procedures. The formulaic 

representations included in the Appendices are useful for simulation studies and further 

software implementations in order to improve reproducibility.    

Limitations  

Regarding the overview of techniques for finding a best fitting straight line, it was 

already underlined that it should not be considered comprehensive, as the focus is on 

techniques included in single-case data analytical procedures. Another limitation 

already mentioned is the focus on linear trend, which should be understood as a 

parsimonious simplification of reality and not as an assumption that all trends are linear. 

Moreover, we did not perform a simulation study to compare the different trend line 

fitting techniques; we rather implemented, in the web-based application, an objective 

criterion based on MASE for selecting the trend line fitting technique to use for each 

separate actually obtained data set.  

Regarding the application developed, we do not claim that it includes all possible 

ways of implementing the WWC Standards recommendations for visual analysis. On 

the one hand, some researchers may prefer other ways of representing variability. For 

instance, in the SCDA [single-case data analysis] plug-in (Bulté & Onghena, 2012) for 

R-Commander (which is part of R; https://www.R-project.org/), variability can be 

https://www.r-project.org/
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represented using range lines, range bars, and a trended range. On the other hand, the 

SCDA, unlike the application presented in the current text, allows representing 

nonlinear trends via running medians (Tukey, 1977), without assuming any particular 

model for the data. Thus, we encourage applied researchers to also use the SCDA plug-

in for visual analysis.  
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1 Presenting the example

The data we use as a main illustration are collected from a participant called Jacob, who is part of the multiple-
baseline data presented by Eilers and Hayes (2015; Experiment 1) on problematic (repetitive and restrictive)
behavior in children with autism spectrum disorder, with the intervention consisting of cognitive defusion exercise
and exposure therapy. The data were retrieved using Plot Digitizer for Windows (plotdigitizer.sourceforge.net),
obtaining the following values: 66.39, 71.55, 100, 100, 87.06, 40.74, 37.7, 42.12, 0, 5.44, 3.89, 11.31, 11.25, and
4.48.

Figure 1 provides a graphical representation of the data. Black continuous line: bi-split technique for
estimating trend; Orange solid line: tri-split technique for estimating trend. Dash-and-dot red line: ordinary
least squares. Blue dotted line: differencing. Dark green dashed line: Theil-Sen. The values before the vertical
line refer to the baseline (A) phase, whereas the values after the vertical line refer to the intervention (B) phase.



2 Appendix A: What trend line fitting techniques exist and how do
they differ?

2.1 Notation

In the formulas that we present in the current section, we assume that a trend line is fitted to the data of a
single phase. The number of measurements in the phase would be denoted by n, which can be denoted by nA
when referring to the baseline data or by nB when referring to the intervention phase data. The measurement
occasions will be denoted by t, including the ordinal numbers 1, 2, . . . , n. The actually obtained values of
the outcome variable will be denoted by yt, indicating the measurement occasion t to which they refer. The
mean of the actually obtained values is denoted by ȳ. The fitted values obtained by any of the trend fitting
techniques will be denoted by ŷt. The median of a set of values will be represented as Md(), with the values
being specified in parenthesis. Additional terms (g, h, i, j, k, l, r, s, u) will be defined in each of the expressions,
whenever necessary. Several letters are used in order to avoid using two different definitions for the same term.



2.2 Straight line fitting techniques formally presented

2.2.1 Least squares

First, regarding ordinary least squares estimation, the trend line is fitted in such a way that the squared
difference between itself and the actual values is the smallest possible. The least squares estimate of the slope
of the baseline trend line is obtained as:

b1(LS) =

∑n
t=1(yt − ȳ)(t− t̄)∑n

t=1(t− t̄)2
(1)

The intercept is estimated as:

b0(LS) = ȳ − b1(LS) × t̄ (2)

Using the phase A data from the example represented on Figure 1, ȳ = (66.39+71.55+100+100+87.06+40.74+37.7+42.1
8 =

545.56/8 = 68.195 and t̄ = 1+2+3+4+5+6+7+8
8 = 36

8 = 4.5. b1(LS) =
∑

t=1 n(yt−ȳ)(t−t̄)∑
t=1 n(t−t̄)2 = −6.308 and b0(LS) =

ȳ − b1(LS) × t̄ = 68.195− (−6.308)× 4.5 = 96.581.



2.2.2 Bi-split

Bi-split (Parker et al., 2014) has also been referred to as the split-middle method (Gast & Spriggs, 2010; Miller,
1985) and extended celeration line (O. R. White & Haring, 1980). It entails splitting the data into two equally-
sized sections and connecting the medians of these sections with a straight line. Its main value is its simplicity
and possibility for hand calculation (Miller, 1985).

When n is an even number, each of the portions contains n/2 data points. When n is an odd number the
dividing line falls on the middle measurement occasion (Miller, 1985) and thus the middle value will not be
used when defining the medians (Lane & Gast, 2014). In the expressions we present here we follow this logic,
which is also similar to the one followed when defining the tri-split (Velleman & Johnstone, 1985). A different
approach is followed in the SCDA plug-in for R (Bulté & Onghena, 2012) in which two different split-middle
lines are represented according to the portion of data to which the extra measurement is assigned.

Formally the slope is defined as

b1(bi) =
Md(yj , ..., yn)−Md(y1, ..., yi)

j+n
2 −

1+i
2

(3)

with

n mod 2 =

{
0: i = n/2;j = (n/2) + 1

1: i = ((n− 1))/2;j = ((n+ 1))/2 + 1)

In the Equation 3 i is the last value included in the first portion of data and j is the first value included
in the second portion; n mod 2 refers to the remainder of the division n/2. The denominator of b1(bi) in-
cludes the following expressions for the middle points of the two portions: Md(1, 2, ..., i) = ((1 + i))/2 and
Md(j, j + 1, ..., n) = ((j + n))/2.

Regarding the intercept, it is obtained as

b0(bi) = Md(y1, y2, ..., yi)− b1(bi) ×
1 + i

2
(4)

Finally, it is possible to shift the trend line upwards or downwards until 50% of the data are above the line
and 50% are below it.

Using the phase A data from the example represented on Figure 1, nA = 8 and thus nAmod2 = 0. Therefore,
the last measurement in the first portion is i = n/(2 = 8/2 = 4) and the first measurement in the second portion
is j = (n/2) + 1 = (8/2) + 1 = 5. Md(yj , y(j+ 1), . . . , yn) = Md(y5, y6, y7, y8) = Md(87.06, 40.74, 37.7, 42.12) =
((40.74 + 42.12))/2 = 41.43. Md(y1, y2, . . . , yi) = Md(y1, y2, y3, y4) = Md(66.39, 71.55, 100, 100) = ((71.55 +
100))/2 = 85.775. With these values, the slope and the intercept are estimated, respectively, as follows:

b1(bi) =
41.43− 85.775

5+8
2 −

1+4
2

=
−44.345

6.5− 2.5
' −11.09

b0(bi) = 85.775− (b1(bi))− 11.09)× 1 + 4

2
= 113.5



2.2.3 Tri-split

In tri-split (also known as three-group resistant line, Johnstone Velleman, 1985), the data of a phase are divided
into three equally-sized portions and the medians of the first and third portions are used for estimating the
trend, whereas as the medians of all three portions are used for estimating the intercept. The aim is for the
tri-split trend line to be resistant to outlying values (Velleman & Hoaglin, 1981).

Regarding how exactly the split is performed, Vannest, Davis, and Parker (2013) mention that the usual
recommendation (e.g., Bartlett, 1949) is for the three slices or portions of data to be of the same size (when
the focus is on the baseline, each portion would be nA/3), but they suggest an additional rule with the fol-
lowing size of the three portions: 27%, 46%, and 27%. Vannest et al. (2013) base their recommendation on
McCabe’s (1980) article, but McCabe alerts that the favorable results for the 27% rule (or, even better, the
25% rule which is equivalent to the 1:2:1 ratio) is based on asymptotic results and assumptions of normality.
Accordingly, Gibson and Jowett (1957) also suggest the 1:2:1 rule (having 25% of the data in the first portion,
50% in the second portion, and 25% in the third portion) for a normal independent variable (X), but they
suggest the ratio 1:1:1 (i.e., equally-size portions) when X is uniform, as is the case for the measurement oc-
casions (each of the value 1, 2, . . . , nA occurs the same number of times: once). Velleman and Hoaglin (1981)
recommend the following rules for achieving a split into approximately equal slices when nA is not a multiple
of 3: (a) when the remainder of the division nA/3 is 1 (e.g., when nA = 7), the exceeding value goes into
the middle portion of the data (two values in portion 1, three values in portion 2, and two values in portion
3); and (b) when the remainder of the division nA/3 is 2 (e.g., when nA = 8), the exceeding values go into
the extreme portions of the data (three values in portion 1, two values in portion 2, and three values in portion 3).

Thus, the slope is estimated formally as

b1(tri) =
Md(yk, ..., yn)−Md(y1, ..., yl)

k+n
2 − 1+l

2

(5)

with

n mod 3 =


0: l = n/3;k = n− (n/3) + 1

1: l =
⌊
< U + 230A > n/3

⌋
;k=n-

⌊
n/3

⌋
< U + 230B > +1

2: l =
⌊
< U + 230A > n/3

⌋
;k = n−

⌊
n/3

⌋

In the Equation 5, l is the last value included in the first portion of data and k is the first value included in
the third portion; n mod 3 refers to the remainder of the division n/3. The denominator of b1(tri) includes
the following expressions for the middle points of the two portions: Md(1, 2, . . . , l) = ((1 + l))/2 and Md(k, k+
1, . . . , n) = ((k+n))/2. For estimating the intercept Velleman and Hoaglin (1981) recommend using the average
of the intercepts estimated from each of the three portions of data, so that the intercept is not determined only
by the middle portion:

b0(first) = Md(y1, y2, ..., yl)− b1(tri) ×
1 + l

2

b0(second) = Md(yl+1, yl+2, ..., yk−1)− b1(tri) ×
(1 + l) + (k − 1)

2

b0(third) = Md(yk, yk+1, ..., yn)− b1(tri) ×
k + n

2

b0(tri) =
b0(first) + b0(second) + b0(third)

3
(6)

Using the phase A data from the example represented on Figure 1, nA = 8 and thus nA mod 3 = 2.
Therefore, the last measurement in the first portion is

l =
⌊
8/3
⌋

+ 1 = b2.67c < U + 230B > +1 = 2 + 1 = 3



and the first measurement in the third portion

k = 8−
⌊
8/3
⌋

= 8− b2.67c = 8− 2 = 6

Md(yk, yk+1, . . . , yn) = Md(y6, y7, y8) = Md(40.74, 37.7, 42.12) = 40.74. Md(y1, y2, . . . , yl) = Md(y1, y2, y3) =
Md(66.39, 71.55, 100) = 71.55. With these values, the slope is estimated follows:

b1(tri) =
40.74− 71.55

6+8
2 −

1+3
2

=
−30.81

7− 2
= −6.162

The intercept is estimated follows:

b0(first) = 71.55− (−6.162)× 1 + 3

2
= 83.874

b0(second) = Md(y4, y5, ..., yk−1)− (−6.162)× (1 + l) + (k − 1)

2

= Md(87.06, 100) + 6.612× (4) + (5)

2
= 93.53 + 27.729

' 121.26

b0(third) = 40.74− (−6.162)× 6 + 8

2
= 83.874

b0(tri) =
b0(first) + b0(second) + b0(third)

3
=

83.874 + 121.26 + 83.874

3
' 96.34



2.2.4 Theil-Sen estimator

The Theil-Sen estimator can be understood as the “median slope of many ‘mini-slopes’ created from all pairwise
data comparisons made in time order (early to late) in a time series” (Parker et al., 2014, p. 81). Another way
of conceptualizing the Theil-Sen estimator is as a way of estimating slope, b, so that the Kendall’s correlation
between the measurement occasions, t, and the difference (yt − b × t) is approximately equal to zero (Wilcox,
2012). The Theil-Sen estimator has been presented (Sen, 1968) as a robust alternative to the least squares
estimator in case of outliers and non-normality. The Theil-Sen estimator (Sen, 1968; Theil, 1950) estimates
slope as:

b1(TS) = Md(
yr − ys
r − s

); r = 1, 2, ..., t; s = 1, 2, ..., n;n 6= s (7)

The intercept is estimated as the median of the differences between the actual measurements and the values
predicted according to the slope and the measurement occasion. Formally,

b0(TS) = Md(yt − b1(TS)t) (8)

Using the phase A data from the example represented on Figure 1, there are nA(nA − 1) = 8 × 7 = 56
pairs of data points and thus 56 slopes are computed. The median of these slopes is b1(TS) = −5.0175. For
computing the intercept, it is necessary to obtain y1−b1(TS)×1 = 66.39− (−5.0175)1 = 71.4075, y2−b1(TS)1 =
71.55− (−5.0175)× 2 = 81.585, up to y8 − b1(TS)8 = 42.12− (−5.0175)× 8 = 82.26. The median of these eight
values is b0(TS) = 81.9225.



2.2.5 Differencing

Differencing refers to the operation of subtracting each data point from the next one and thus the n − 1
differenced values are obtained as y

′

t = yt+1 − yt. Differencing is used here for estimating and not for removing
trend (Solanas, Manolov, & Onghena, 2010). In analytical procedures using differencing for fitting a straight
line, the slope represents the average of the differences between successive values. Formally,

b1(D) = ȳ
′

t =

∑n−1
t=1 y

′

t

n− 1
(9)

Regarding the estimate of intercept, it is necessary to refer to a single-case data analytical procedure called
the Mean Phase Difference. In the initial version (Manolov Solanas, 2013; hereinafter MPD2013) baseline
trend is extrapolated into the intervention phase by adding the trend estimate (b1(D)) to the last baseline phase
data point (ynA

) so that the first fitted intervention phase value is ŷnA+1 = ynA
+b1(D). From this specification,

it can be derived that the intercept is defined formally, using the general term n instead of nA as:

b0(MPD2013) = yn − b1(D) (10)

In the modified version of the procedure (Manolov Rochat, 2015; hereinafter MPD2015) it was suggested
that the trend line should pass through the point that corresponds to the median measurement occasion Md(t) =
((n+1)/2) in the phase and the median valueMd(yt). From this specification, it can be derived that the intercept
is formally defined as:

b0(MPD2015) = Md(yt)− b1(D)
n+ 1

2
(11)

Using the phase A data from the example represented on Figure 1, it is first necessary to obtain the differenced
values: y

′

1 = y2−y1 = 71.55−66.39 = 5.16; y
′

2 = y3−y2 = 100−71.55 = 28.45 up to y
′

7 = y8−y7 = 42.12−37.70 =
4.42. The average of the seven differenced values is

b1(D) =
5.16 + 28.45 + 0 + (−12.94) + (−46.32) + (−3.04) + 4.42

7
' −3.47

In Figure 1, b0(MPD2015) is used for defining the intercept and thus it is necessary to obtain the median of all

eight baseline phase value Md(yt) = Md(66.39, 71.55, 100, 100, 87.06, 40.74, 37.7, 42.12) = 66.39+71.55
2 = 68.97.

b0(MPD2015) = Md(yt)− b1(D)
n+ 1

2
= 68.97− (−3.47)

8 + 1

2
' 84.57

In case b0(MPD2013) had been used, the intercept would have been

b0(MPD2013) = yn − b1(D) = 42.12− (−3.47)× 8 = 68.88



2.2.6 Summary table of linear trends

As a summary, Table A.1 includes the estimates of intercept and slope according to the different techniques
reviewed in the current Appendix A.

Table A.1. Intercept and slope estimates for the best fitting straight line to the two phases depicted in
Figure 1, according to several techniques.

Technique Baseline phase Intervention phase
Intercept Slope Intercept Slope

Least squares 96.581 -6.308 1.337 1.350
Theil-Sen 81.822 -5.018 -0.177 1.937
Bi-split 113.490 -11.087 -1.017 2.453
Tri-split 96.336 -6.162 1.560 1.286
Differencing 84.572 -3467 1.824 0.896

For Differencing the definition of the intercept is according to Equation (11) from Appendix A



2.3 A quantification of monotonic trend

The criteria used for selecting the trend line fitting techniques on which to focus were their inclusion in single-
case data analytical procedures and the fact that a straight line is being fit. There is an analytical procedure
called Tau-U (Parker, Vannest, Sauber, & Davis, 2011), which also takes baseline trend into account, but it does
not entail estimating linear trend; monotonic trend is rather quantified. We decided to include the technique for
quantifying monotonic trend that is incorporated in Tau-U for three reasons: (a) the main text makes reference
to Baseline corrected Tau (Tarlow, 2017), which is a modification of Tau-U; (b) to the best of our knowledge,
the formula for quantifying and correcting monotonic trend in Tau-U is not available elsewhere (e.g., Parker et
al., 2011, only provide numerical examples); and (c) we later comment on how baseline trend is controlled for
in Tau-U, which requires explaining first how this trend is quantified.

Specifically, Parker et al. (2011) propose to quantify the amount of improvement in the baseline as the
number of pairwise comparisons for which a baseline measurement is larger than a previous baseline measure-
ments minus the number of comparisons for which a baseline measurement is smaller than a previous baseline
measurements, divided by the number of pairwise comparisons; formally:

τa =
(yd > yc)− (yd < yc)

nA(nA−1)
2

; c = 1, 2, ...nA − 1; d = 2, 3, ..., nA; c < d (12)

From the expression it is clear that yd and yc are baseline phase measurements, c and d are measurement
occasions, with each value being compared only to previous measurement occasions.

For the phase A of the running example, given that nA = 8, the number of comparisons to perform is equal
to (nA(nA−1))/2 = (8(8−1))/(2 = 28). The second measurement (71.55) higher than 1 previous measurement
and lower than 0 previous measurements. The third measurement (100) is higher than 2 previous measurements
and lower than 0. The fourth measurement (100) is higher than 2 previous measurements and lower than 0. The
fifth measurement (87.06) is higher than 2 previous measurements and lower than 2. The sixth measurement
(40.74) is higher than 0 previous measurements and lower than 5. The seventh measurement (37.7) is higher
than 0 previous measurements and lower than 6. The eighth measurement (42.12) is higher than 2 previous
measurements and lower than 5. Formally,

τa =
(1− 0) + (2− 0) + (2− 0) + (2 + 2) + (0− 5) + (0− 6) + (2− 5)

nA(nA−1)
2

=
1 + 2 + 2 + 0− 5− 6− 3

28
=
−9

28
' −0.3214

This value can be interpreted as approximately one third of the measurements being lower than previously
obtained measurements.



3 Appendix B: Comparing trend lines via measures of fit

3.1 Well-known options

Formally, an R2-type of index, as a measure of fit, can be defined as the complementary to the proportion of
residual variability:

R2 = 1−
∑n

t=1(yt − ŷt)∑n
t=1(yt − ȳt)

(13)

It will provide greatest value for least squares estimation, given that it minimizes
∑n

t=1(yt − ŷt)2.

The coefficient of variation of the residual around the trend line, as a relative measure of lack of fit (Menden-
hall & Sincich, 2012), is quantified as

CV =

√∑n
t=1(yt−ŷt)2

n

|ŷ|
(14)

The Mean Square Error is based on a quadratic loss function and is computed as∑n
t=1(yt − ŷt)2

n
(15)

The Mean Absolute Error is based on a linear loss function and is computed as∑n
t=1|yt − ŷt|

n
(16)

3.2 Our recommendation

Our suggestion is to use the Mean Absolute Scaled Error (MASE), proposed by Hyndman and Koelher (2006).
For a trend line fitted to the nA baseline measurements, MASE can be written as follows:

MASE =

∑nA

t=1

∣∣∣∣∣∣ (yt−ŷt)∑n
u=2|yu−yu−1|

n−1

∣∣∣∣∣∣
n

(17)

Hyndman and Koehler (2006, p. 687) state that MASE is “easily interpretable, because values of MASE
greater than one indicate that the forecasts are worse, on average, than in-sample one-step forecasts from the
näıve method”. (The näıve method entails predicting a value from the previous one, that is, the random walk
model that has frequently been used to assess the degree to which more sophisticated methods provide more
accurate forecasts that this simple procedure; Chatfield, 2000.) Thus, values of MASE greater than one could
be indicative that a general trend (e.g., a linear one as in MPD) does not provide a good enough fit to the data
from which it was estimated, because it does not improve the fit of the näıve method.



4 Appendix C: What ways of controlling for baseline trend have
been incorporated in single-case data analytical procedures?

4.1 Differencing analysis

Differencing Analysis In differencing, which is part of autoregressive integrated moving average (ARIMA) models
(Harrop & Velicer, 1985), each measurement is subtracted from subsequent measurements to eliminate linear
trend. In one of the data analysis proposals by Gorsuch (1983), differencing analysis, a regression analysis
is performed on the differenced data (y

′

t = yt+1 − yt) rather than on the original measurements (yt). For
the running example, differencing the original values would lead to y

′

1 = y2 − y1 = 71.55 − 66.39 = 5.16,
y
′

2 = y3 − y2 = 100 − 71.55 = 28.45, up to y
′

13 = y14 − y13 = 4.48 − 11.25 = −6.77. The main analysis is
performed with the differenced data.



4.2 Trend analysis

Gorsuch’s (1983) Trend analysis entails performing a regression analysis with all n = nA + nB values using the
model

ŷ = b0 + b1t+ b2Phase (18)

In that sense, the quantification of the difference in level (i.e., b2) is computed partialling out the effect of
general trend. Gorsuch (1983) also mentions the possibility to enter the predictors t and Phase hierarchically
(i.e., sequentially) instead of simultaneously. For the running example, the use of the simultaneous multiple
regression model from Equation (18) would result in the following estimates: b0 = 86.445, b1 = −4.056, and
b2 = −33.745. In contrast, if trend were not considered and the model ŷt = b0 +b1Phase were used, the estimate
of average change in level would be -62.13 instead of -33.745.

Another option for performing trend analysis (Parker & Brossart, 2003) is to first fit the model ŷt = b0 + b1t
and then perform a second regression analysis on the residuals of the previous analysis: et = b0 + b1Phase.
For the running example, such an analysis would lead to the following equation for the first model ŷt =
98.682 + (−7.615)t, indicating an overall decrease of more than 7.5 per measurement occasion; for the residuals
the regression equation would be et = 3.782 + (−8.825)Phase, i.e., the estimate of the average change in level
would be -8.825.



4.3 Allison and Gorman (1993) Regression Model

In this model a trend line is fitted only to the nA baseline data only according to Equations (1) and (2). The fol-
lowing steps are: (a) the straight line fitted to the baseline is extrapolated into the intervention phase, so that the
fitted values are obtained for all n = nA+nB values: ŷt = b0(LS) +b1(LS)t; (b) the residuals for both the baseline
and the intervention phase are computed as the difference between the actual ytvaluesandthepredictedvaluest,
that is, et = yt− ŷt; (c) a regression analysis is performed for using the residuals as a dependent variable, mod-
elling both change in level and in slope (if these are in opposite directions) or only change in level (otherwise).
For the running example, we already obtained b1(LS) = −6.308 and b0(LS) = 96.581. The predicted values
for both phase are obtained as follows: ŷ1 = 96.581 − 6.308 × 1 ' 90.27, ŷ2 = 96.581 − 6.308 ' 83.96, up
to ŷ14 = 96.581 − 6.308 × 14 ' 8.27. The residuals are obtained as e1 = y1 − ŷ1 = 66.39 − 90.27 = −23.88,
e2 = y2 − ŷ2 = 71.55 − 83.96 = −12.41, up to e14 = y14 − ŷ14 = 4.48 − 8.27 = −3.79. The main analysis is
performed with the residuals.



4.4 Mean and Slope Adjustment (MASAJ)

Parker et al. (2006) proposed a modification of the way in which Allison and Gorman’s (1993) regression model
controls for baseline trend. According to MASAJ, baseline trend is removed only from the intervention phase
data, maintaining the baseline data intact, while also maintaining the scale of the original scores. Thus, the steps
are: (a) apply Equations (1) and (2) to estimate baseline trend intercept and slope; (b) obtain the n = nA +nB
fitted values: ŷt = b0(LS) + b1(LS)t; (c)obtainthen=nA + nB residuals via et = yt − ŷt; (d) replace the first nA
residuals by the actual measurements yt; and (e) add the mean of the baseline data to the last nB residual. In
one expression, the detrending for the intervention phase data can be formalized as:

ỹ = yt − (b0(LS) + b1(LS)t) +

∑
h=1

nA
yh; t = nA + 1, ..., nA + nB (19)

For the running example, the least squares estimates of the intercept and the slope of the baseline trend
line are b0(LS) = 96.581 and b1(LS) = −6.308, whereas the mean of the baseline data is 68.195. The detrended
intervention phase values are ỹ(8 + 1) = 0− (96.581 + (−6.308)× (8 + 1)) + 68.195 = 28.386, ỹ(8 + 2) = 5.44−
(96.581+(−6.308)×(8+2))+68.195 = 40.133 up to ỹ(8+6) = 4.48−(96.581+(−6.308)×(8+6))+68.195 = 64.406.



4.5 Tau-U

Among nononverlap indices, for Tau-U (Parker et al., 2011) the way in which trend is controlled for is not
the same in the Parker et al. (2011) article and in the official website for implementing Tau-U (http:
//www.singlecaseresearch.org/calculators/tau-u). According to the example provided in Parker et al.
(2011) and also according to the R code mentioned in Brossart, Vannest, Davis and Patience (2014: http:

//ktarlow.com/stats/r/tauu.txt by Kevin Tarlow) Tau-U with baseline trend control (also referred to as
Tau− UAvs.B−trendA) is computed :

[(yg > yh)− (yg < yh)]− (yd > yc)− (yd < yc)]

[nAnB ] + [nA(nA−1)
2 ]

; g = 1, ..., nB ;h = 1, ..., nA (20)

where yg and yh are intervention phase measurements and the remaining terms are as defined previ-
ously. However, according to the way in which Tau-U Avs.B-trendA is computed in the website (http:
//www.singlecaseresearch.org/calculators/tau-u; Vannest, Parker, Gonen, & Adiguzel, 2016), the for-
mula would be:

[(yg > yh)− (yg < yh)]− (yd > yc)− (yd < yc)]

[nAnB ]
(21)

What is common is that in both cases the number of measurements improving in the course of the baseline
only (i.e., baseline measurements improving previous baseline measurements) is subtracted from the number
of intervention phase measurements that improve baseline measurements (using all pairwise comparison as in
NAP). However, the denominator of the resulting index is different.

For the running example, there are nAnB = 8 × 6 = 48 comparisons between baseline and intervention
phase measurements and [(yg > yh)− (yg < yh)] = −48, because all intervention phase data are lower than the
baseline data.

The results for Tau-U according to the Parker et al. (2011) illustration and the R code:

[(yg > yh)− (yg < yh)]− (yd > yc)− (yd < yc)]

[nAnB ] + [nA(nA−1)
2 ]

=
−48− (−9)

48 + 28
=
−39

76
' −0.5132

The result for Tau-U according to the website is:

[(yg > yh)− (yg < yh)]− (yd > yc)− (yd < yc)]

[nAnB ]
=
−48− (−9)

48
=
−39

48
' −0.8125

http://www.singlecaseresearch.org/calculators/tau-u
http://www.singlecaseresearch.org/calculators/tau-u
http://ktarlow.com/stats/r/tauu.txt
http://ktarlow.com/stats/r/tauu.txt
http://www.singlecaseresearch.org/calculators/tau-u
http://www.singlecaseresearch.org/calculators/tau-u


4.6 Baseline Corrected Tau

According to the “additional output” of http://ktarlow.com/stats/tau/, the Baseline corrected Tau (Tarlow,
2017) removes baseline trend from the baseline and intervention phase data using the expression

ỹt = yt − b1(LS)t; t = 1, ..., nA + nB (22)

This correction entails that the original measurement units of the dependent variable are maintained.

For the running example using the data from both phases depicted in Figure 1, ỹ1 = 66.39− (−5.0175)×1 =
71.4075, ỹ2 = 71.55− (−5.0175× 2 = 81.5850, up to ỹ14 = 4.48− (−5.0175)× 14 = 74.7250.

We also present the expression for computing Baseline corrected Tau, given that it is not available in Tarlow
(2017). The index is computed, either on the corrected data ỹ or on the original data yt, as Kendall’s (1970)
tau correlation coefficient (specifically, τB) between the measurements and a dummy variable Phase with nA
values equal to 0 followed by nB values equal to 1. Formally, the result can be obtained as:

[(yg > yh)− (yg < yh)]√
[n(n−1)

2 − TX ][n(n−1)
2 − TY ]

(23)

where n = nA + nB , TX = nA(nA−1)
2 + nB(nB−1)

2 , representing the ties in the Phase variable, and TY =∑m
i=1

fi(fi−1)
2 , representing the ties in the outcome variable Y, with fi being the frequency of each of the m

different values of Y. For instance, if the Y values are 8, 5, 7, 7, 8, and 7, there are three different values (5,
7, and 8) and thus m = 3, with f1 = 1 (5 occurs once), f2 = 3 (7 occurs three times), and f3 = 2 (8 occurs twice).

For the running example we used the transformed data (71.4075, 81.5850, 115.0525, 120.0700, 112.1475,
70.8450, 72.8225, 82.2600, 45.1575, 55.6150, 59.0825, 71.5200, 76.4775, and 74.7250). There are (n(n− 1))/2 =
(14(14 − 1))/2 = 91 comparisons performed. From these comparisons, there are 8 cases in which a phase B
corrected value is greater than a phase A corrected value and 40 cases in which a phase B corrected value is

smaller than a phase A corrected value. The number of ties in the Phase variable is TX = nA(nA−1)
2 + nB(nB−1)

2 =
8(8−1)

2 + 6(6−1)
2 = 28+15 = 43. The number of ties in the outcome variable Y is 0, because all the values appear

only once (m = 14 and all fi = 1). Thus, Baseline corrected Tau is equal to:

[(yg > yh)− (yg < yh)]√
[n(n−1)

2 − TX ][n(n−1)
2 − TY ]

=
8− 40√

(91− 43)(91− 0)
=
−32

66.06
'= −0.484.

http://ktarlow.com/stats/tau/


4.7 Detrending in the Between-Case Standardized Mean Difference (BC-SMD)

The BC-SMD is mainly applicable to stable data, but it is possible to detrend the measurements before obtaining
its value (Shadish, Hedges, & Pustejovsky, 2014). Shadish et al. (2014) and Marso and Shadish (2015) comment
that one possible way of detrending is to first run the model

yt = b0 + b1t+ b2Phase× t (24)

and then to perform the main analysis on the residuals of the previous analysis: et = yt−ŷt. Additionally the
researcher may center the measurement occasion variable t, according to substantive criteria (Marso & Shadish,
2015), for instance, t.cent = t − (nA + 1) would lead to the value of 0 being assigned to the first intervention
phase measurement occasion.

For the running example, the regression model from Equation (24) leads to b0 = 88.85, b1 = −4.94, and
b2 = −2.07. The fitted values are, therefore, y1 = 88.85 + (−4.94) × 1 + (−2.07) × 0 × 1 = 83.91, y2 =
88.85 + (−4.94) × 2 + (−2.07) × 0 × 2 = 78.96, up to y14 = 88.85 + (−4.94) × 14 + (−2.07) × 1 × 14 = −9.35.
e1 = y1 − ŷ1 = 66.39 − 83.91 = −17.52, e2 = y2 − ŷ2 = 71.55 − 78.96 = −7.441, up to e14 = y14 − ŷ14 =
4.48− (−9.35) = 13.83. The main analysis is performed with the residuals.



4.8 Slope and Level Change (SLC)

In SLC, baseline trend estimated according to Equation (9) is removed from the baseline and intervention phase
measurements using the expression:

ỹt = yt − b1(D)t; t = 1, ..., nA + nB (25)

This expression is equivalent to Equation (22) but for the estimate of slope used. Thus, just like for the
Baseline corrected Tau, the original measurement units of the dependent variable are maintained.

Using the detrended data, the following steps in SLC are: (a) to estimate the slope of the trend line fitted
to the intervention using Equation (9), which represents the change in slope (SC); (b) remove the trend from
the intervention phase via˜̃yg = ỹg − (i− 1)× SC; g = 1, 2, . . . , nB ; (c) estimate the net change in level as the
difference between the average of double-detrended intervention phase data˜̃yg and the average of the detrended
baseline data ỹh (where h = 1, 2, ..., nA).

For the running example, we already obtained b1(D) = −3.47 from the baseline data. The detrended base-
line and intervention phase data is, therefore, obtained as ỹ1 = y1 − b1(D)× 1 = 66.39− (−3.47)× 1 = 69.86,
ỹ2 = y2 − b1(D) × 2 = 71.55− (−3.47)× 2 = 78.49, up to ỹ14 = y14 − b1(D) × 14 = 4.48− (−3.47)× 14 = 53.06.
The subsequent analyses are performed with the detrended data.



4.8.1 Summary table of results after detrending

Table C.1 illustrates the different results to which a quantification such as the mean difference would lead to,
after following the different approaches for controlling for baseline trend.

Table C.1. Baseline and intervention means of the Figure 1, detrending according to several different
approaches.

Detrending approach Baseline phase Intervention phase Mean difference
(A) mean (B) mean (B-A)

None: Original data 68.195 6.061 -62.134
Allison and Gorman 0.00 -17.978 -17.978
Mean and Slope Adjustment 68.195 50.217 -17.978
Trend analysis by Gorsuch 3.782 -5.043 -8.825
Differencing analysis by Gorsuch -3467 -6.273 -2.806
Slope and level change 83.797 45.934 -37.863
Detrending from BC-SMD 1.591 -2.121 -3.731
Baseline corrected Tau 90.774 63.763 -27.010

Gorsuch’s trend analysis applied by removing overall trend
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