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We study the 1:4 resonance for the conservative cubic H�enon maps C6 with positive and negative

cubic terms. These maps show up different bifurcation structures both for fixed points with

eigenvalues 6i and for 4-periodic orbits. While for C–, the 1:4 resonance unfolding has the so-called

Arnold degeneracy [the first Birkhoff twist coefficient equals (in absolute value) to the first resonant

term coefficient], the map Cþ has a different type of degeneracy because the resonant term can van-

ish. In the last case, non-symmetric points are created and destroyed at pitchfork bifurcations and, as

a result of global bifurcations, the 1:4 resonant chain of islands rotates by p/4. For both maps, several

bifurcations are detected and illustrated. Published by AIP Publishing.
https://doi.org/10.1063/1.5022764

We study both local and global aspects of the 1:4 reso-

nances in conservative cubic H�enon maps �x ¼ y; �y ¼ M1

�xþM2y6y3. The local aspects are related to analysis of

bifurcations of fixed points with eigenvalues 6i. For both

maps, we construct the complex Birkhoff normal form

�z ¼ izþ B21jzj2zþ B03ðz�Þ3 þ Oðjzj5Þ, where B21 and B03

are some complex coefficients depending on M1 and M2.

This normal form is nondegenerate if B21 6¼ 0, B03 6¼ 0,

and jB21j 6¼ jB03j. We show that, for the cubic H�enon

maps under consideration, there are two principally dif-

ferent types of degeneracy: the so-called Arnold degener-

acy, when jB21j ¼ jB03j, is observed in the map with –y3
;

another degeneracy, when B03¼ 0, is observed in the map

withþy3. Note that the latter type of degenerate conser-

vative 1:4 resonance looks to be rather new. As far as we

know, this resonance has not been studied before; there-

fore, we have presented the main elements of its bifurca-

tion theory in Appendix B. Concerning the global aspects

of the 1:4 resonances, we construct, both analytically and

numerically, bifurcation diagrams related to periodic

points of period 4. We pay a special attention to pitchfork

bifurcations. Since our maps are reversible with respect

to the involution x 7!y; y 7!x, such bifurcations are nonde-

generate and lead to the birth of a symmetric pairs of 4-

period points. Note that such bifurcations are relevant

for the theory of mixed dynamics—a new third type of

dynamical chaos characterized by the principal insepara-

bility of attractors from repellers and from the conserva-

tive elements of dynamics. In turn, the cubic H�enon maps

appear in applications as truncated normal forms of

first return maps near cubic homoclinic tangencies. If

the corresponding system is reversible, then the first

return maps should be too reversible and, in general, not

conservative. Then, these symmetry-breaking pitchfork

bifurcations should lead to the birth of a “sink-source”

pair of periodic orbits in general reversible contexts.

I. INTRODUCTION

We study the 1:4 resonance problem for the conserva-

tive cubic H�enon maps

C� : �x ¼ y; �y ¼ M1 � xþM2y� y3 (1)

and

Cþ : �x ¼ y; �y ¼ M1 � xþM2yþ y3; (2)

where x and y are coordinates and M1 and M2 are parameters.

For area-preserving maps, the basis of the 1:4 resonance

phenomenon consists in a local bifurcation of a fixed (or peri-

odic) point with eigenvalues e6ip=2¼6i. However, this can

be only the simplest, standard part of the general picture of

the resonance. As we show, the 1:4 resonance in the case of

maps (1) and (2) can be nontrivial, i.e., it can include not only

bifurcations of fixed points with eigenvalues 6i themselves

(local aspects) but also a series of accompanying bifurcations

(global aspects) of 4-periodic orbits which are initially born

from the central fixed point with eigenvalues 6i.
It is well known that the strong resonances, i.e., the

bifurcation phenomena connected with the existence of fixed

(periodic) points with eigenvalues e62pi=q with q¼ 1, 2, 3,

and 4 (that is, the 1:1, 1:2, 1:3, and 1:4 resonances), play a

very important role in the dynamics of area-preserving maps.

Among them, the 1:4 resonance (with q¼ 4) is, as a rule, the

most complicated and least studied. For example, the reso-

nances with q¼ 1, 2, and 3 are nondegenerate for the stan-

dard conservative H�enon map

�x ¼ y; �y ¼ M � x� y2: (3)
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Unlike this, the resonance 1:4 is degenerate here.3,28

The Birkhoff local normal form at the fixed point with

multipliers 6i, expressed in complex coordinates z¼ xþ iy
and z*¼ x – iy, can be written as follows:

�z ¼ izþ ðB21jzj2 þ B32jzj4Þzþ B03ðz�Þ3 þ B50z5 þ B14zðz�Þ4

þ Oðjzj7Þ; (4)

where, a priori, the coefficients Bij are complex. The

area-preserving property requires that (i) ImðB21Þ ¼ 0, (ii)

�3B�03B21 � 5iB50 þ iB�14 ¼ 0, and (iii) 3B2
21 þ 6ImðB32Þ

�9jB03j2 ¼ 0. Moreover, rotating the complex coordinates

one can consider B03 real. Condition (ii) implies in this case

that Re(B14)¼ 5 Re(B50). The main nondegeneracy condi-

tions of the normal form (4) are as follows:

B03 6¼ 0 and A ¼
����B21

B03

���� 6¼ 1: (5)

The simplest degeneracies occur when only one of the condi-

tions in (5) does not hold.

The local bifurcations at the 1:4 resonance, in the general

(not necessarily conservative) setting, were first studied by

Arnold in the 1970s, see Ref. 1, for the flow normal form

_z ¼ ezþ ~Azjzj2 þ ðz�Þ3, where ~A is a coefficient and e is a

small complex parameter. [However, one can consider that e
varies inside the unit circle jej ¼ 1 (as it was done, e.g., in

Ref. 2) by rescaling t ¼ T=jej; z ¼ Zjej.] He showed that the

structure of such resonance essentially depends on the relation

between Re ~A and Im ~A and he studied several cases, e.g.,

when j ~Aj < 1 or jRe ~Aj > 1. Numerous other cases (when

jRe ~Aj < 1 and j ~Aj > 1) were studied in many papers, see,

e.g., Refs. 22 and 23. Concerning the conservative case, where

Re ~A � 0, the Arnold normal form can be represented as

_z ¼ iezþ ibzjzj2 þ iðz�Þ3; (6)

where e and b ¼ Imð ~AÞ are real. This normal form is nonde-

generate in the case b 6¼ 1 and its bifurcations are well known

(see Fig. 1). We see that cases b< –1 [Fig. 1(a)] and jbj < 1

[Fig. 1(b)] are very different. In particular, the equilibrium

z¼ 0 is always stable in the first case, whereas, it can be

unstable (a saddle with 8 separatrices, at e¼ 0) in the second

case.

As it was shown in Refs. 3 and 28, in the case of map

(3), the degeneracy A¼ 1 (here B21¼ –B03) takes place. Note

that the H�enon map (3) has a fixed point with eigenvalues 6i
at M¼ 0. As it was shown in Ref. 3, the family �x ¼ y; �y
¼ e1 � x� y2 þ e2y3 can be considered as a two-parameter

general unfolding for the study of bifurcations of this point.

This result is quite important, since such maps (conservative

H�enon maps with small cubic term) appear naturally as

rescaled first return maps near homoclinic orbits to saddle-

focus equilibria of divergence-free three-dimensional flows5

or near quadratic homoclinic tangencies of area-preserving

maps.7,10 (The main bifurcations of area-preserving maps

with quadratic homoclinic tangencies were studied in Refs.

7, 10, and 26 and with cubic ones in Ref. 12. In all these

papers, the main technical tool was the so-called rescaling

method by which it was possible to represent the first return

map in the form of a map being asymptotically close to the

quadratic or to the cubic H�enon map.)

In this paper, we show that degeneracy A¼ 1 can take

place only in the case of cubic map (1) (here B03< 0 always).

This occurs for M1¼616/27 and M2¼ 1/3. For those parame-

ter values, one has B21 6¼ 0 and B03 6¼ 0, see Sec. III for the

concrete expressions of these coefficients as a function of M2.

Then, according to Ref. 3, case A¼ 1 is generic whenever the

coefficient X¼Re(B32 – B50 – B14) is non-zero, which guaran-

tees a non-vanishing twist for the 4th power of the local nor-

mal form (4). We show in Fig. 2 the graph of X for C– and Cþ
as a function of M2. In particular, we see that X� –0.25 when

degeneracy A¼ 1 takes place for C–. A description of the local

bifurcations in normal form (4) with A¼ 1, X 6¼ 0 was also

given in Ref. 3. However, we do not restrict ourselves only to

the study of the local structure of this resonance—the analysis

of the corresponding normal form is quite standard. We also

study the global effect of this resonance on the dynamics of

FIG. 1. Bifurcations of zero equilib-

rium in the family (6) for jbj 6¼ 1 in the

cases (a) b< –1, here only one equilib-

rium z¼ 0 (a nonlinear center) exists at

e� 0 and 8 equilibria appear surround-

ing z¼ 0 at e> 0; and (b) jbj < 1, here

5 equilibria (4 saddles and the center

z¼ 0) exist at e< 0; at e¼ 0, all these

equilibria merge to the point z¼ 0

which becomes the nonhyperbolic sad-

dle with 8 separatrices; at e> 0, the

point z¼ 0 becomes again a center and

the 4 saddles appear to be rotated by

p/4 with respect to the ones at e< 0.

Note that, in case b> 1, one needs to

change both e by –e and the time direc-

tion in the (a) row of the plot.
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map (1) as a whole. To this end, we find (analytically and/or

numerically) bifurcation curves relevant to describe the bifur-

cation diagrams related to both bifurcations of the fixed point

with eigenvalues 6 i as well as to accompanying bifurcations

of saddle and elliptic 4-periodic orbits belonging to the corre-

sponding resonant garland surrounding the fixed point. We

collect the corresponding results in Sec. III.

We also show that degeneracy B03¼ 0 can take place

only in the case of the cubic map (2), when M1¼620/27

and M2¼ –1/3 (for this map B21 6¼ 0 always). Moreover, for

map Cþ, the value of A is always greater than 1. As in the

case of map (1), we study both the local and global aspects

of this resonance (see Sec. IV).

As far as we know, this type of the conservative 1:4 res-

onance (with B03¼ 0) has not been studied before [However,

it was noted in Refs. 14 and 21 that such type resonances can

provoke symmetry-breaking bifurcations (of pitchfork type)

which, in the case of reversible maps, lead to the appearance

of nonconservative periodic orbits (e.g., periodic sinks and

sources)]; therefore, we describe the main elements of the

local bifurcations at such resonance in Appendix B. In this

case, we assume B�14 ¼ 5B50 6¼ 0. Note that the previous

equality of the coefficients guarantees the Hamiltonian char-

acter of the corresponding flow normal form [see Eq. (9) in

Sec. II], while the nonvanishing of those coefficients is an

additional nondegeneracy condition. In Fig. 3, we show the

graphs of B14 and B50, for the case of map (2), as a function

of M2. In particular, when degeneracy B03¼ 0 takes place in

map (2) (M1¼620/27 and M2¼ –1/3), one has that B14

� –5/64.

We note that the cubic H�enon maps (1) and (2) have an

important meaning for the theory of dynamical systems. For

example, they appear as truncated normal forms of first return

maps near cubic homoclinic tangencies. In Fig. 4, we illus-

trate the geometric idea how such maps can be obtained. Let

a two-dimensional map f have a fixed saddle point O and a

homoclinic orbit C at whose points the manifolds Wu(O) and

Ws(O) have a cubic tangency. Let Mþ 2 Ws
loc and M� 2 Wu

loc

be a pair of points of C and rk be a small (horizontal) strip

near Mþ. Under some number m of iterations of f, the strip rk

is mapped into a vertical strip ~rk located near the point M–.

The (local) map from rk into ~rk can be represented, for sim-

plicity, as the linear map �x ¼ kmx; �y ¼ k�my, where (x, y) are

coordinates of points in rk and ð�x; �yÞ are those in ~rk. Let q be

an integer such that f qðM�Þ ¼ Mþ. Then, since the curve

f qðWu
locÞ have a cubic tangency with Ws

loc at the point Mþ, the

image f qð~rkÞ of ~rk will have the form of a cubic horseshoe.

Thus, the geometry of the first return map fk: rk! rk, where

k¼mþ q, is like the one of a cubic horseshoe map. If one

rescales the initial coordinates (x, y) and the initial parameters

l1 and l2 (that are the usual parameters that unfold the initial

cubic homoclinic tangency between the curves f qðWu
locÞ and

Ws
loc at the point Mþ) in the appropriate way, then one can

rewrite the map fk: rk ! rk in the form of a cubic H�enon

maps with some terms that are asymptotically small as k
!1. Note that if k> 0, then there are two different types of

cubic homoclinic tangencies: the tangency “incoming from

above,” see Fig. 4(a), and the tangency “incoming from

below,” see Fig. 4(b). In the first case, the truncated rescaled

map is map (1), while in the second case, it is map (2). For

more details, see Ref. 12 for the area-preserving case and

Refs. 18 and 20 for the dissipative case.

FIG. 2. We represent the value of the Birkhoff twist coefficient X of C4
þ (for

M2< 0) and of C4
� (for M2> 0) as a function of M2.

FIG. 3. For map Cþ, we represent in

the left plot the values of Im(B14) (in

red) and of 5 Im(B50) (in blue) as a

function of M2. Both lines cross at 0

for the value M2¼ –1/3 where degen-

eracy B03¼ 0 takes place. In the right

plot, we represent Re(B14)¼ 5 Re(B50)

as a function of M2 for the same map.

FIG. 4. Two types of cubic homoclinic tangencies to a saddle fixed point

with positive eigenvalues and geometry of the first return maps.
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The main bifurcations of the dissipative cubic H�enon

maps (when the absolute value of the Jacobian is less than 1)

were studied in Refs. 13 and 15. In the paper,9 some bifurca-

tions of conservative maps (1) and (2) were studied. Note that

one of the main goals of Ref. 9 was to describe the bifurcation

structure of the 1:1, 1:2, and 1:3 strong resonances. The pre-

sent work as well as the papers12,16 are devoted mainly to the

study of the local and global aspects of the 1:4 resonances,

which complements the research of Ref. 9 on the dynamics

and the bifurcations of the conservative cubic H�enon maps.

The paper is organised as follows. In Sec. II, we review

the 1:4 resonance for general area-preserving maps and com-

ment about the degenerate cases. In Sec. III, we consider

map C– and describe the local and global aspects of the 1:4

resonance in this concrete case. The degeneracy A¼ 1 occurs

here and we study its influence on the global bifurcation dia-

gram. The same type of local and global bifurcation analysis

is performed in Sec. IV for the 1:4 resonance of the map Cþ.

We show that degeneracy B03¼ 0 takes place in this case. As

far as we know, this degeneracy has not been studied before;

therefore, we include the normal form analysis of this bifur-

cation in Appendix B. For both maps, some of the bifurca-

tion curves have been explicitly obtained and their equations

are derived in Appendix A. Finally, in Sec. V, we comment

on related topics where the results obtained in this paper

could be relevant.

II. LOCAL ASPECTS OF THE 1:4 RESONANCE IN
AREA-PRESERVING MAPS

The unfolding of the non-degenerate 1:4 resonance leads

to the one-parameter family of area-preserving maps

�z ¼ iei~bzþ B21z2z� þ B03ðz�Þ3 þ Oðjzj5Þ; (7)

being ~b a real parameter characterizing the deviation of the

angle argument u of the eigenvalues of the fixed point from

p/2 (u ¼ ~b þ p=2), the coefficients B21 :¼ B21ð~bÞ and B03 :
¼ B03ð~bÞ are real and depend smoothly on ~b. If B03 6¼ 0,

the fourth iteration of map (7) can be locally embedded into

the one-parameter family (6) of Hamiltonian flows, being

bð~bÞ ¼ B21ð~bÞ=B03ð~bÞ and e ¼ 4~b=B03. Local bifurcations

of this Hamiltonian system are shown in Fig. 1.

As mentioned in the Introduction, the 1:4 resonance is

degenerate whether A ¼ jbð0Þj ¼ 1 or B03(0)¼ 0 [see (5)].

The case A¼ 1 appears in the bifurcation diagram

of C– (see Sec. III). The unfolding of this case leads to a

two-parameter family of area-preserving maps. The fourth

iteration of such a family is close-to-identity and can be

approximated by the flow of the Hamiltonian system

_z ¼ ibzþ ið1þ lÞzjzj2 þ iz�3 þ i ~B32jzj4zþ i ~B50z5

þ i ~B14jzj2z�3 þ Oðjzj7Þ; (8)

where b ¼ 4~b=B03 and l is the parameter responsible for the

deviation from A¼ 1. The coefficients ~Bij are related to those

in (4) (see Refs. 3, 11, and 28). Namely, one has

1þ l ¼ B21

B03

þOðbÞ; ~B32 ¼
ReðB32Þ

B03

þOðbÞ;

~B50 ¼
ReðB50Þ

B03

þOðbÞ; ~B14 ¼
ReðB14Þ

B03

þOðbÞ:

The vector field has zero divergence provided that 5 ~B50

¼ ~B14.

The bifurcation diagram for (8), when considering (b, l)

in a small neighbourhood of the origin (case A¼ 1), is dis-

played in Fig. 5. There are three bifurcation curves L1, L2,

and L3 dividing the (b, l)-parameter plane into 3 domains.

Curves L1: {b¼ 0, l> 0} and L2: {b¼ 0, l< 0} correspond

to the passage from I to II and II to III, respectively, and

reconstructions of nonzero saddle equilibria occur. Curve

L3 : fl ¼
ffiffiffiffiffiffiffiffiffiffi
�bX
p

þ OðjbjÞg corresponds to a p/2-equivariant

parabolic bifurcation: 4 saddles and 4 elliptic equilibria

appear when crossing from I to III. This bifurcation takes

place far away from the origin of coordinates and it is a codi-

mension one bifurcation for (8), since the flow is invariant

under the rotation of angle p/2. Note that the origin is a non-

degenerate conservative center for b 6¼ 0; it is a degenerate

saddle with 8 separatrices for (b, l) 2 L1 and a degenerate

conservative center for (b, l) 2 L2. The origin in the (b, l)-

plane, which corresponds to the case A¼ 1, is the endpoint

of all the three bifurcation curves. Note that, in Fig. 5, we

represent the bifurcation diagram for the case X< 0 because

for map C–, as we have computed, one has X� –0.25 (see

Fig. 2).

The unfolding of case B03¼ 0 reduces to the study of

the Hamiltonian flow

_z ¼ ib̂zþ iB̂21zjzj2 þ i�z�3 þ iB̂32jzj4zþ iB̂50z5 þ iB̂14jzj2z�3

þ Oðjzj7Þ; (9)

where b̂ ¼ 4~b and � are real parameters and B̂ij ¼ ReðBijÞ
þOðb̂Þ comparing with (4). This degeneracy appears only

in the case of map Cþ (see Sec. IV). The generic scenario hap-

pens whenever B21 6¼ 0 and Re(B50) 6¼ 0. The bifurcation dia-

gram for (9), when considering ð�; b̂Þ in a small neighbourhood

FIG. 5. Main elements of bifurcation diagram in the case A¼ 1 (we assume

X< 0).
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of the origin, is displayed in Fig. 6. The curve L2 : fb̂ ¼ 0g
corresponds to the 1:4 resonance of the fixed point (the equilib-

rium z¼ 0 of flow (9) has two zero eigenvalues). The curves

L6 : b̂¼ �
2ReðB50Þ B216 �

2

� �
þOðb̂�Þ; �ReðB50Þ<0

n o
correspond

to p/2-equivariant pitchfork bifurcations related to the creation

of 8 nonzero equilibria of the system (9) (4 of the equilibria

correspond to a saddle 4-periodic orbit of the map while the

other 4 equilibria correspond to an elliptic 4-periodic orbit of

the map). The illustration in Fig. 6 corresponds to Re(B50)<0

and B21>0, as happens for the map Cþ for M2¼–1/3 when

degeneracy B03¼0 takes place [see Fig. 3 (right) and Sec. IV].

Note that normal forms (8) and (9) are Hamiltonian and

reversible with respect to two linear involutions: involution

R: z ! z* [in the real coordinates (x, y), it corresponds to

involution (x, y)! (x, –y)] and involution R*: z! iz* [it cor-

responds to involution (x, y) ! (y, x)]. Since flows (8) and

(9) are p/2-equivariant, two additional involutions also exist:
~R : z! �z� [it corresponds to (x, y) ! (–x, y)] and ~R

�
:

z! �iz� [it corresponds to the involution (x, y)! (–y, –x)].

The lines of fixed points of these involutions are the follow-

ing: FixðRÞ ¼ fy¼ 0g; Fixð ~RÞ ¼ fx¼ 0g; FixðR�Þ ¼ fx¼ yg,
and Fixð ~R�Þ ¼ fx¼�yg.

Returning to the bifurcation diagram of Fig. 6, we

see that at ðb̂; �Þ 2 I only one equilibrium exists (the trivial

equilibrium z¼ 0 that is a center), while nontrivial equilibria

(centers and saddles) appear in the other regions of the dia-

gram. In regions II and IV, there are 8 nontrivial equilibria,

while in region III, there exist 16 nontrivial equilibria. In the

case of regions II and IV, all nontrivial equilibria are sym-

metric, i.e., belong to the lines of fixed points of the involu-

tions: in II, two of the four centers belong to the axis y¼ 0

(Fix(R)), while the other two belong to x¼ 0 (Fixð ~RÞ), and

two of the four saddles belong to the bisectrix x¼ y (Fix(R*))

while the other two belong to x¼ –y (Fixð ~R�Þ). We see in

region IV another disposition of these equilibria: the picture

seems turned by an angle of p/4. Due to the strong reversibil-

ity properties of system (9), such simple rotation of the gar-

land is impossible without bifurcations. The corresponding

(providing such a rotation) symmetry breaking bifurcations,

at the passage from domain II to domain IV, are schemati-

cally shown in Fig. 6. When passing from I to IIIb, the cen-

ters undergo (supercritical) pitchfork bifurcations: they all

become saddles and four pairs of nonsymmetric centers are

born. The curve Lhom in domain III corresponds to a global

p/2-equivariant bifurcation of creation of heteroclinic con-

nections between all 8 saddles. (For the case of map Cþ, a

homoclinic zone should exist instead of the simple curve

Lhom.) The passage through Lhom from IIIb to IIIa is related to

reconstructions of the separatrices of the saddles. After this,

at passage from IIIa to IV, we observe a (subcritical) pitch-

fork bifurcation where asymmetric centers merge with sym-

metric saddles and the latter become centers.

Some details of the analysis of normal form (9) are given

in Appendix B. (In Appendix B, we denote b1 ¼ b̂; l ¼ 2�;
b2 ¼ 2B̂21, and B ¼ 16B̂50). See Fig. 11 for the bifurcation

scenario taking place for Cþ when crossing the region III.

III. THE 1:4 RESONANCE IN MAP C–

Consider map (1) with parameters (M1, M2) on the 1:4

resonance curve

L�p=2 : M2
1 ¼

4

27
M2ðM2 � 3Þ2; (10)

see Fig. 7. For M1> 0 (respectively, M1< 0) map C– has P�p=2

¼ �
ffiffiffiffiffiffiffiffiffiffiffi
M2=3

p
;�

ffiffiffiffiffiffiffiffiffiffiffi
M2=3

p� �
(respectively, Pþp=2

¼
ffiffiffiffiffiffiffiffiffiffiffi
M2=3

p
;

�
ffiffiffiffiffiffiffiffiffiffiffi
M2=3

p
Þ) as a fixed point with eigenvalues 6i. Note that L�p=2

has a self-intersection point (M1, M2)¼ (0, 3) where the map

has two fixed points (–1, –1) and (1, 1) with eigenvalues 6i
simultaneously.

The unfolding of normal form (7) at the fixed point

P6
p=2 (taking the suitable sign) has coefficients 8B21ð0Þ ¼ �3

þ 3M2; 8B03ð0Þ ¼ �1� 3M2 (see Ref. 16). Since M2� 0 in

curve L�p=2, we get B03(0)< 0. Consequently, one has

A ¼ j3� 3M2j
1þ 3M2

;

and all the three cases, A> 1, A< 1 (see Fig. 1), and A¼ 1

(see Fig. 5) take place for C–. The case A¼ 1 occurs at the

points Pþ(M1¼ 16/27, M2¼ 1/3) and P�ðM1 ¼ �16=27;
M2 ¼ 1=3Þ, both in curve L�p=2 (see Fig. 7).

The bifurcation diagram of the 1:4 resonance in map C–

is displayed in Fig. 7, where the bifurcation curves L�p=2; Li
4

and ~L
i

4; i ¼ 1; 2; 3; 4, are shown in the (M1, M2)-parameter

plane. The equation for L�p=2 is written in (10). The curves

Li
4; i ¼ 1;…; 4, are the curves of parabolic 4-periodic orbits

with double eigenvalue 1. The curves ~L
i

4; i ¼ 1;…; 4; are

the curves of parabolic 4-periodic orbits with double eigen-

value –1. Concretely,

• The curves L1;2
4 , whose equations are

L1;2
4 : 27M2

1 ¼ 4ð1þM2Þ3;
where M2 > 1=3 and M1 > 0

for L1
4 while M1 < 0 for L2

4; (11)
FIG. 6. Main elements of the bifurcation diagram in case B03¼ 0 (we

assume Re(B50)< 0 and B21> 0).
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are quadratically tangent to the curve L�p=2 at the points

P6 (case A¼ 1). When crossing L1;2
4 from bottom to top,

two 4-periodic orbits are created as a result of a parabolic

(elliptic-hyperbolic) bifurcation. Note that curves L1;2
4

come from the L3 curve in Fig. 5.
• The curve L3

4, given by

L3
4 : 27M2

1 ¼ 4ð2þM2Þ2ðM2 � 1Þ; (12)

is associated with pitchfork bifurcations of elliptic 4-

periodic orbits. This is a consequence of the fact that the

periodic orbit has a point on the symmetry line y¼ x (see

details in the proof of Lemma 1).
• The curve L4

4, with equation

L4
4 : 27M2

1 ¼ 4ðM2 � 2Þ3; (13)

corresponds to a parabolic bifurcation curve for 4-periodic

(non-symmetric) orbits. These orbits are not of Birkhoff

type since they are not ordered orbits surrounding the

elliptic fixed point P6
p=2.This curve has a special property.

For parameters on L4
4 with M1> 0 (respectively, M1< 0)

the fixed point Q� ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 � 2Þ=3

p
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 � 2Þ=3

p
Þ

(respectively, Qþ¼ –Q–) of map C– is created at a para-

bolic bifurcation. That is, both parabolic bifurcations, for

the 4-periodic orbit and the fixed point, take place simulta-

neously. See details below. This peculiarity is due to the

simple form of the cubic H�enon map and clearly is not a

persistent property under arbitrary small perturbations.
• The curves ~L

i

4; i ¼ 1;…; 4, are the curves of parabolic 4-

periodic orbits with double eigenvalue –1. We have com-

puted these curves numerically. The curves ~L
i

4, i ¼ 1, 2,

and 3 correspond to period-doubling bifurcations of ellip-

tic 4-periodic orbits.

Remark 1. We note that maps (1) and (2) possess certain

symmetries. First, they are invariant under the following

change of coordinates and parameters:

x! �x; y! �y; M1 ! �M1;

which means that all bifurcation curves on the (M1, M2)-

parameter plane are such that either they are self-symmetric

(with respect to axis M1¼ 0) or they compose a symmetric

pair of curves (see Figs. 7, 10, and 12). Second, maps (1)

and (2) are conservative and reversible with the involution x
! y and y ! x. This means that symmetric periodic orbits

can undergo nondegenerate conservative bifurcations of the

following types: symmetric parabolic and period-doubling

bifurcations and symmetry-breaking pitchfork bifurcations.

Then, such nondegenerate bifurcations of both types occur

as bifurcation curves on the (M1, M2)-parameter plane.

Remark 2. The curves L1;2
4 together with L�p=2 reflect a

peculiarity of local aspects of the 1:4 resonance in the case of

cubic map C–. On the other hand, the curves L3
4 and L4

4, and

the related bifurcations can be considered as peculiarities of

the global aspects. Moreover, the curve L4
4 has no direct rela-

tion with the problem of 1:4 resonance since it is a parabolic

bifurcation curve for simultaneously two non-symmetric 4-

periodic orbits which are symmetric one to other with respect

to involution R:(x, y)! (y, x).

Let us give further details on how bifurcation curves

organize the parameter space. Fix a vertical line M1¼C with

jCj > 4=3
ffiffiffi
3
p

. For parameters on this line, as we change

M2 from bottom to top, one has the following sequence of

bifurcations:

• For C > 4=3
ffiffiffi
3
p

(respectively, C < �4=3
ffiffiffi
3
p

) the elliptic

4-periodic orbit created on L1
4 (respectively, L2

4) becomes

hyperbolic when crossing ~L
1

4 (respectively, ~L
2

4) and, at the

crossing of this period-doubling bifurcation curve, an ellip-

tic 8-periodic orbit is born.
• For larger M2, there appears an elliptic 4-periodic orbit at

the inverse period-doubling bifurcation that takes place on
~L

2

4 (respectively, ~L
1

4).
• This elliptic 4-periodic orbit undergoes a pitchfork bifur-

cation when crossing L3
4 and two elliptic 4-periodic orbits

persist. The location of the latter elliptic orbits is symmet-

ric with respect to involution R: (x, y) ! (y, x). See more

details in the proof of Lemma 1 in Appendix A.
• Those symmetric orbits undergo a period-doubling bifur-

cation at ~L
3

4.

In Fig. 8, we show a sequence of phase space plots where

these bifurcations can be observed. The illustrations are for

parameters on the vertical line M1¼ 0.8. Fig. 8 (top left) corre-

sponds to M2¼ 0.65, which is located between L1
4 and ~L

1

4. We

see the main island around the fixed point and the 4-periodic

satellite islands. There are an elliptic 4-periodic orbit and a

hyperbolic 4-periodic one (this is located near the peaks of the

main stability island, the invariant manifolds of each one of

this saddle 4-periodic points surround the corresponding satel-

lite island). In Fig. 8 (top center), we see a magnification of

the 4-periodic satellite island of stability around the elliptic 4-

periodic orbit. This elliptic orbit undergoes a period-doubling

bifurcation when crossing ~L
1

4, the two stability islands can be

FIG. 7. Left: Bifurcation curves for the

map C–. Right: A zoom of the domain

near M1¼ 0 and M2¼ 2.
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seen in Fig. 8 (top right) for M2¼ 0.748. Finally, Fig. 8 (bottom

left and right), for M2¼ 1.36 and M2¼ 1.38, respectively,

illustrates the pitchfork bifurcation taking place when crossing

L3
4.

Curve L4
4 is the curve of parabolic 4-periodic orbits

with double eigenvalue 1 which is a parabolic bifurcation

curve for the 4-periodic orbits. As already said, this curve also

coincides with the curve which corresponds to a parabolic

bifurcation of the fixed point (or, when M1¼ 0, M2¼ 2, to a

pitchfork bifurcation of the fixed point). Let us give further

details on the sequence of bifurcations when crossing the lines
~L

4

4 and L4
4 in Fig. 7 (right). To this end, consider the vertical

line M1¼ 0.0003. When moving M2 from bottom to top in

Fig. 7 (right), one has the following sequence of bifurcations:

• First, we have the crossing of ~L
4

4. At this crossing, two non-

symmetric elliptic 4-periodic orbits and two non-symmetric

hyperbolic 4-periodic orbits are created as a result of an

inverse period-doubling bifurcation. The position of the two

elliptic 4-periodic orbits is shown in Fig. 9 (top left). A

magnification of one of the satellite islands is shown in

Fig. 9 (top center).
• When crossing L4

4, there is a parabolic bifurcation and two

new 4-periodic orbits, one elliptic and the other of saddle

type, are created. This can be seen in Fig. 9 (top right).
• Increasing M2, we have two consecutive crossings of ~L

4

4.

These correspond to period-doubling bifurcations of each of

the two elliptic 4-periodic orbits. The two satellite islands

after the period-doubling are shown in Fig. 9 (bottom left

and right), respectively.

IV. THE 1:4 RESONANCE IN MAP C1

Map Cþ has the fixed point P�p=2¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M2=3

p
;

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M2=3

p
Þ (respectively, Pþp=2

¼�P�p=2) with eigenvalues6i

for parameters (M1, M2) with M1>0 (respectively, M1<0) on

the 1:4 resonance curve

Lþp=2 : M2
1 ¼ �

4

27
M2ðM2 � 3Þ2:

The coefficients of normal form (7) around P6
p=2 are

8B21ð0Þ ¼ 3� 3M2; 8B03ð0Þ ¼ 1þ 3M2,16 hence

A ¼ j3� 3M2j
j1þ 3M2j

¼
1þ 2� 6M2

1þ 3M2

; � 1

3
< M2 � 0;

1þ 4

j1þ 3M2j
; M2 < �

1

3
:

8>>><
>>>:

Since M2� 0 in Lþp=2
, we always have A> 1. However, we get

degeneracy B03(0)¼ 0 at M1¼620/27 and M2¼ –1/3. These

are the points Pl
4 and Pr

4 in the bifurcation diagram shown in

Fig. 10 (left) where we display in red the bifurcation curves for

which there are parabolic 4-periodic orbits with double eigen-

value 1 (either parabolic or pitchfork bifurcations) and in green

those curves for which there are 4-periodic orbits with double

eigenvalue -1 (hence period-doubling bifurcations).

For parameters (M1, M2) above the curve Lþp=2
, the local

phase space is topologically equivalent to that of region I in

Fig. 5, that is, the fixed point P6
p=2 is elliptic and there are no

4-periodic orbits surrounding it.

FIG. 8. Sequence of bifurcations taking place on the line M1¼ 0.8. In the top left plot, for M2¼ 0.65, we see the 4-periodic satellite island surrounding the

main island around the fixed point. The top center plot is a magnification of the 4-periodic satellite island seen in the top left figure. When increasing M2, the

related elliptic 4-periodic orbit bifurcates. The top right plot is for M2¼ 0.748, after the crossing of ~L
1

4. The bottom left plot, for M2¼ 1.36, and the bottom

right, for M2¼ 1.38, show the island before and after the pitchfork bifurcation curve L3
4.
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Crossing the curve Lþp=2
through ðM1;M2Þ 2 Lþp=2

nfPr;l
4 g

is analogous to cross the line L2 in Fig. 5 from region I to II.

In particular, around P6
p=2, there appear a saddle 4-periodic

orbit whose invariant manifolds bound a 4-periodic island of

stability with an elliptic 4-periodic orbit inside.

The points Pl;r
4 , corresponding to degeneracy B03¼ 0,

are endpoints of the pitchfork bifurcation curves Bl
4; B̂

l

4 and

Br
4; B̂

r

4. The explicit equations of such curves are

Bl;r
4 : 27M2

1 ¼ 3
ffiffiffi
3
p
�3

ffiffiffiffiffiffiffiffiffiffi
�M2

p
�2M2

ffiffiffiffiffiffiffiffiffiffi
�M2

p� �2
; M2 <�1=3;

B̂
l;r

4 : 27M2
1 ¼ 4ð2þM2Þ2ð1�M2Þ; M2 <�1=3:

(14)

In Fig. 11, we display the sequence of bifurcations taking

place when getting inside/outside the region bounded by

curves B̂
r

4 and Br
4 (by symmetry, bifurcations through Bl

4 and

B̂
l

4 are analogous). For illustrations, we choose M2¼ –0.5 and

change M1. For M1¼ 0.7 (top left plot in Fig. 11), we see the

4-periodic island having the elliptic point on the symmetry

line y¼ x. For parameters on B̂
r

4, this point undergoes a pitch-

fork bifurcation: the elliptic 4-periodic orbit becomes a saddle

4-periodic orbit and a pair of elliptic 4-periodic orbits appear

nearby [see Fig. 11 (top center)]. Then, the separatrices of the

saddle 4-periodic orbits become larger [see Fig. 11 (top right)],

and at some moment between M1¼ 0.718 and M2¼ 0.719, the

separatrices merge (note that for map Cþ the invariant mani-

folds are not expected to exactly merge due to the splitting

of separatrices) with the exterior separatrices of the other sad-

dle 4-periodic orbits and a sequence of bifurcations related

to the reconstruction of homo/heteroclinic connections takes

place [see Fig. 11 (bottom left)]. After that, an inverse pitch-

fork bifurcation occurs, the two elliptic 4-periodic collide into

the saddle 4-periodic orbit which becomes elliptic [see Fig. 11

(bottom center and right)]. Note that for M1¼ 0.73 the saddle

4-periodic orbit is on the symmetry line y¼ x. This sequence

FIG. 9. Sequence of bifurcations taking place on the line M1¼ 0.0003. Top left: For M2¼ 2.008, we see the main island around the fixed point. The lines con-

nect the iterates of the two elliptic 4-periodic orbits. Top center: a magnification of the left plot showing one of the 4-periodic satellite islands. Top right: For

M2¼ 2.0095, we see the stability islands around one of the iterates of the two elliptic 4-periodic orbits. The new island (at the top right of the plot) is created

when crossing the parabolic curve ~L
4

4 in Fig. 7. Bottom left: For M2¼ 2.0171, we see that one of the elliptic 4-periodic orbits undergoes a period-doubling

bifurcation. Bottom right: For M2¼ 2.0232, the remaining elliptic 4-periodic island undergoes a period-doubling bifurcation.

FIG. 10. Bifurcation curves in map

Cþ. The right plot is a magnification of

the left one near (0, –1).
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of bifurcations (pitchfork, reconnection of the invariant mani-

folds, and inverse pitchfork) happens generically at the unfold-

ing of the degenerate case B03¼ 0 (see details in Appendix B).

A. Other bifurcation curves related to 4-periodic orbits

We have considered some of the local bifurcations of

4-periodic orbits emanating from the 1:4 resonance. The evo-

lution in phase space of the associated 4-periodic orbits leads

to other bifurcation curves of other 4-periodic orbits which

interact with the obtained ones. In this section, we aim to illus-

trate some aspects of their configuration in parameter space.

Remark 3. The curves Bl;r
4 and B̂

l;r

4 are related to the

local aspects of the 1:4 resonance. On the other hand, the

bifurcations curves considered in this section are not related

to the (local) 1:4 resonance problem.

Some of the bifurcation curves to be considered already

appear in Fig. 10. The curves Cr;l
4 , correspond to trace¼ 2

(double eigenvalue 1), given by

Cr;l
4 : 27M2

1 ¼ �4ð1þM2Þ3; M2 � �1; (15)

and the curves ~C
r;l

4 to trace¼ –2 (double eigenvalue –1). To

explain the bifurcations that take place, let us consider a hor-

izontal line M2¼C, with C1<C<C2, where C1� –1.6220

is the M2-coordinate of the intersection point between Cr
4

and ~C
r

4 [there is only one intersection point, shown in Fig. 10

(left)] and C2� –1.0647 is the M2-coordinate of the bottom

intersection point between ~C
r

4 and ~C
l

4 shown in Fig. 10

(right). When varying M1 from right to left in Fig. 10, one

has the following bifurcation sequence:

• For M1 in the right hand side of B̂
r

4, there are saddle

4-periodic orbits along with a pair of elliptic 4-periodic

orbits. Recall that curve B̂
r

4 corresponds to a pitchfork

bifurcation, hence to the left of this curve, we get a

4-periodic island of stability creating a garland containing

saddle and elliptic 4-periodic orbits.
• When decreasing M1, an inverse period-doubling bifurcation

occurs at the first crossing with curve ~C
r

4 in Fig. 10 (left).

The bifurcation is as follows: for parameters to the right of
~C

r

4, in a neighborhood of the elliptic 4-periodic orbit, there

appears a saddle 8-periodic orbit. This 8-periodic orbit bifur-

cates from the saddle 4-periodic orbit that remains to the left

of ~C
r

4.
• For parameters on the curve Cr

4, a parabolic bifurcation for

a 4-periodic orbit takes place. At this bifurcation a saddle

and an elliptic 4-periodic orbits are created. One of the

pairs of the elliptic and hyperbolic 4-periodic orbits that

bifurcate lie on the symmetry line y ¼ x. The elliptic orbit

undergoes a period-doubling bifurcation when crossing

the curve ~C
r

4 [see Fig. 10 (right)].

We have found other bifurcation curves related to

4-periodic orbits. We note that the corresponding 4-periodic

orbits do not lie on the symmetry line y¼ x of map Cþ. The

bifurcation curves are shown in Fig. 12 (left). Note that, in

the left plot, curves Dl;r
4 , which wrap the full structure of

FIG. 11. Sequence of bifurcations for fixed M2¼ –0.5 in map Cþ when crossing B̂
r

4 and Br
4. The values of M1 are 0.7, 0.715, 0.718 (top) and 0.719, 0.72, 0.73

(bottom).
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bifurcation curves shown, are confined in the region below

the curve Lþp=2
partially shown in Fig. 10. Let us give some

details on the bifurcation curves obtained.

• The curves Dl;r
4 are given by

Dl;r
4 : 6M1 ¼

ffiffiffiffiffiffiffiffiffiffi
�M2

3

r
2

3
M2 þ 1

� 	
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3M2 � 8

p
;

and they correspond to period-doubling bifurcation curves

of 2-periodic orbits. The bifurcation curves related to

2-periodic orbits were studied in Ref. 12, in particular,

curves Dl;r
4 were obtained there (they correspond to the

ones denoted by L�1
2 and L�2

2 in Ref. 12)
• The bifurcation curves D̂

l;r

4 correspond to a parabolic bifur-

cation of 4-periodic orbits. The curve D̂
l

4 ends up in a point

ðM1;M2Þ ¼ ðM�1;M�2Þ � ð0:041064;�2:944529Þ where it

becomes tangent to the curve Dr
4 [see details in Fig. 12

(right)]. When ðM1;M2Þ 2 D̂
l

4 tends to ðM�1;M�2Þ the

4-periodic orbit approaches the 2-periodic orbit that under-

goes the period-doubling bifurcation in Dr
4.

• The bifurcation curves �D
l;r
4 , whose equations are

�D
l;r
4 : 27M2

1 ¼ 3
ffiffiffi
3
p
þ 3

ffiffiffiffiffiffiffiffiffiffi
�M2

p
þ 2M2

ffiffiffiffiffiffiffiffiffiffi
�M2

p� �2
; M2 ��3;

(16)

correspond to a pitchfork bifurcation of 4-periodic orbits.

The curve �D
l
4 ends up at the point (M1, M2)¼ (0, –3)

where curves Dl
4 and Dr

4 intersect.
• Finally, the bifurcation curves ~D

l;r

4 correspond to 4-periodic

orbits with double eigenvalue –1, hence they are period-

doubling bifurcation curves of 4-periodic orbits.

To provide further details of the sequence of bifurcations that

take place we consider the horizontal line M2¼ –3.1 and, on

this line, different values of M1< 0. We refer to Fig. 12 (right)

to see the location of the different bifurcation curves. To start

with we consider M1¼ –0.047, which is between the curves

Dr
4 and ~D

r

4. For parameter values (M1, M2)¼ (–0.047, –3.1),

the phase space shows up a 2-periodic island and a 4-periodic

island (which is a 2-periodic satellite of the 2-periodic island).

Denote by e2 (respectively, by e4) the elliptic points around

which the 2-periodic (respectively, the 4-periodic) islands

of stability are organized. The 2-periodic elliptic island, for

M2¼ –3.1, persists for �0.047<M1� 0 (If one considers

M2< 4, the 2-periodic elliptic point persists when moving M1

from right to left until crossing a parabolic bifurcation curve

of 2-periodic orbits. This curve was obtained in Ref. 12 and

was denoted there by Lþ2 ) for –0.047<M1� 0. When chang-

ing M1 on the line M2¼ –3.1, the following bifurcations are

observed:

• At the crossing of ~D
r

4 from left to right, the point e4 under-

goes a period-doubling bifurcation, and an 8-periodic

elliptic point is created.
• When crossing Dr

4 from right to left, the point e2 under-

goes a period-doubling. Consequently, a 4-periodic elliptic

orbit is born, denote it by ~e4.
• At the crossing of �D

l
4 from right to left, there is an inverse

pitchfork bifurcation at which the two 4-periodic elliptic

points e4 and ~e4 collide and give rise to a 4-periodic ellip-

tic orbit. This 4-periodic elliptic orbit persists until the

crossing of D̂
l

4 where disappears at a parabolic bifurcation.

Other sequences of bifurcations can be observed for other

lines M2¼C [specially when considering M2 in the range

shown in Fig. 12 (right)]. For example, for M2¼ –2.9 and

moving M1 from right to left starting from M1¼ 0, one has

that the 2-periodic elliptic orbit undergoes a period-doubling

bifurcation at Dl
4 (roughly for M1� –0.1). The 4-periodic ellip-

tic orbit that bifurcates from the previous bifurcation under-

goes a period-doubling at ~D
l

4 (which happens for M1< –0.2).

As a final comment, we note that the bifurcation curves

considered before allow us to explain the sequences of bifur-

cations of 4-periodic orbits that we have observed when plot-

ting the islands of stability for different values of (M1, M2).

Hence, we believe that the bifurcation diagram for the

4-periodic orbits in the (M1, M2) regions shown is complete

(although we have no proof of this fact).

V. CONCLUSIONS AND RELATED TOPICS

We have obtained a detailed picture of the bifurcation

diagrams near the 1:4 resonance of maps C6 in (1) and (2). A

description of the bifurcations taking place when crossing the

main bifurcation curves derived (either analytically or numer-

ically) has been provided. Special emphasis has been put to

the clarification of the scenarios related to the degeneracies of

FIG. 12. Other bifurcation curves of 4-periodic orbits in map Cþ. In the left plot, we see the two (green) curves ~D
l;r

4 that correspond to parabolic 4-periodic

orbits with double eigenvalue –1. The curves Dl;r
4 correspond to period-doubling of 2-periodic orbits. The other curves are better seen in the right plot, which is

a magnification of the left one. In the right plot, we see that curves D̂
l;r

4 , corresponding to parabolic 4-periodic with double eigenvalue 1, respectively, become

tangent to Dl;r
4 . Finally, curves �D

l;r
4 , which correspond to a pitchfork bifurcation of 4-periodic orbits, end up at (M1, M2)¼ (0, –3).
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the 1:4 normal form. We have shown that degeneracy A¼ 1

happens for C– while degeneracy B03¼ 0 happens for Cþ,

and we have analysed the dynamical consequences of these

degeneracies in these concrete cases.

We believe that the results presented in this work are

relevant for related studies. Namely, we want to emphasize

that the study of the cubic H�enon maps (1) and (2) [and natu-

rally the quadratic one (3)] is important because

• these maps are the simplest nonlinear symplectic maps of

the plane, and therefore the understanding of the basic

properties of the dynamics and the bifurcations in such

maps will be very useful in more general contexts.
• as pointed out in the introduction, these maps are, in fact,

normal forms of the first return maps near the quadratic

[map (3)] and cubic [maps (1) and (2)] homoclinic tangen-

cies: it is easy to relate the structure of the bifurcations of

these maps with the global bifurcations happening at the

homoclinic tangency.

However, there is another important reason why the 1:4

resonance in the cubic H�enon maps is of interest. It is con-

nected with mixed dynamics—a new third type of dynamical

chaos characterized by the principal inseparability of attractors

from repellers [here, attractor and repeller are considered

in the Conley-Ruelle sense,6,27 see also Ref. 21] and from

the conservative elements of dynamics (for example, periodic

sinks, sources, and elliptic points), see, e.g., Refs. 8, 17, 19,

21, and 24. It is worth noting that the mixed dynamics can be

an open property of reversible non-conservative chaotic sys-

tems in which self-symmetric orbits are conservative (e.g.,

symmetric elliptic trajectories), while asymmetric ones appear

in pairs and have the opposite type of stability (e.g., “sink-

source” pairs). Such symmetric/asymmetric orbits emerge usu-

ally as a result of various homoclinic bifurcations, see more

details in Ref. 8, including local symmetry breaking bifurca-

tions like reversible pitchfork ones.25 However, the structure

of such bifurcations in many cases is not known, as happens

for example in the case of symmetric cubic homoclinic tan-

gencies. It can be deduced from Ref. 12 that the first return

map near a symmetric cubic homoclinic tangency must coin-

cide in the main order with the cubic H�enon map either of

form (1) or (2) which are reversible maps. When studying the

problem of 1:4 resonance in these maps, we have shown that

pitchfork bifurcations appear accompanying the resonance

local bifurcation. These bifurcations should lead to the birth of

a “sink-source” pair of periodic orbits in general reversible

contexts.

We believe that these topics certainly deserve future

devoted studies and we hope that the results presented here

will contribute to facilitate them.
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APPENDIX A: BIFURCATION CURVES ASSOCIATED
WITH PARABOLIC 4-PERIODIC ORBITS IN C6

In this section, we derive some of the equations of the

bifurcation curves displayed in Figs. 7, 10, and 12. These

curves correspond to the appearance of parabolic 4-periodic

orbits in maps (1) and (2).

The curves corresponding to trace¼ 2 are given by the

following lemma.

Lemma 1. The following bifurcation curves correspond-

ing to parabolic 4-periodic orbits with double eigenvalue 1

exist:

1. For map C– (1), curves Li
4, i ¼ 1, 2, 3, 4, displayed in

Fig. 7, are given by Eqs. (11), (12), and (13).

2. For map Cþ (2), curves Bl;r
4 ; B̂

l;r

4 , and Cl;r
4 , displayed in

Fig. 10. They are given by (14) and (15). Moreover, the
curves �D

l;r
4 , displayed in Fig. 12, are given by (16). Also,

curves D̂
l;r

4 , displayed in Fig. 12, satisfy the relation (A11).

Proof. We rewrite maps (1) and (2) in the form

�x

�y

 !
¼ C6

x

y

 !
¼

y

�xþ PðyÞ

 !
;

where PðyÞ ¼ M1 þM2y� dy3, being d¼ 1 in case of map

(1) and d¼ –1 in case of map (2). The point Q is a parabolic

4-periodic orbit with trace 2 for C6 if the following condi-

tions are satisfied:

að ÞC4
6ðQÞ ¼ Q and bð Þ tr DðC4

6ðQÞÞ ¼ 2; (A1)

where D stands for the Jacobi matrix.

Condition (a) is obviously equivalent to C�2
6 ðQÞ

¼ C2
6ðQÞ, which yields

ðy2 � yPðxÞ þ P2ðxÞ � dM2Þð�2yþ PðxÞÞ ¼ 0;

ðx2 � xPðyÞ þ P2ðyÞ � dM2Þð�2xþ PðyÞÞ ¼ 0;
(A2)

where (x, y) are the coordinates of the point Q. It is easy to

check that if (–2yþP(x))¼ 0 and (–2xþP(y))¼ 0 simulta-

neously, Q is actually either a 2-periodic orbit or a fixed

point. For this reason, for 4-periodic orbits, we assume that

at least one of these expressions is non-zero. Then, we get

two different cases, which we consider separately,

Case 1: (–2y þ P(x)) 6¼ 0 and (–2x þ P(y)) 6¼ 0;

Case 2: (–2y þ P(x)) ¼ 0, (–2x þ P(y)) 6¼ 0 (the case when

(–2xþP(y))¼ 0, (–2yþP(x)) 6¼ 0 is considered analogously).
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In case 1, Eq. (A2) are rewritten as follows:

y2 � yPðxÞ þ P2ðxÞ ¼ dM2; x2 � xPðyÞ þ P2ðyÞ ¼ dM2:

(A3)

The last equations show that pairs (y, P(x)) and (x, P(y))

are the coordinates of points on the ellipse given by equation

X2 – XYþY 2¼ dM2, and that (A3) has solutions for M2� 0

in case of C– and for M2� 0 in case of Cþ. Thus, we intro-

duce the parametrization with parameters t1 and t2 along this

ellipse in such a way that for some –p� t1, t2�p, we have

y ¼
ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t1 �

ffiffiffiffiffiffiffiffiffi
dM2

p
sin t1;

x ¼
ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t2 �

ffiffiffiffiffiffiffiffiffi
dM2

p
sin t2;

PðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t1;

PðyÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t2:

(A4)

The values of x, y, P(x), and P(y) given by the parame-

trization (A4) satisfy

2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t1 ¼ PðxÞ ¼ P

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t2 �

ffiffiffiffiffiffiffiffiffi
dM2

p
sin t2

 !

¼ M1 þ
2

3
ffiffiffi
3
p M2

ffiffiffiffiffiffiffiffiffi
dM2

p
cos 3t2;

2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t2 ¼ PðyÞ ¼ P

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t1 �

ffiffiffiffiffiffiffiffiffi
dM2

p
sin t1

 !

¼ M1 þ
2

3
ffiffiffi
3
p M2

ffiffiffiffiffiffiffiffiffi
dM2

p
cos 3t1: (A5)

Condition (b) in (A1) gives us the equation

P0ðyÞ þ P0ð�yþ PðxÞÞ

 �

P0ðxÞ þ P0ð�xþ PðyÞÞ

 �

¼ P0ðyÞP0ð�yþ PðxÞÞP0ðxÞP0ð�xþ PðyÞÞ; (A6)

which, using the parametrization (A4), is rewritten as

16M2
2 sin2t1 sin2t2 1�M2

2ð1þ 2 cos 2t1Þð1þ 2 cos 2t2Þ

 �

¼ 0;

(A7)

therefore, either j cos t1;2j > 1=2 or j cos t1;2j < 1=2.

Thus, we get 3 equations, (A5) and (A7), for variables

t1, t2, M1, and M2 and, in order to obtain the desired bifurca-

tion curves, we just need to exclude t1 and t2.

Consider first case 1.1 when cos t1 ¼ cos t2. With this,

Eqs. (A5) completely coincide and the parametric equation

of the bifurcation curve is as follows:

M1 ¼
2

3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffi
dM2

p
ð3 cos t1 �M2 cos 3t1Þ;

M2 ¼
d

j1þ 2 cos 2t1j
; 0 < t1 < p:

Excluding cos t1, we obtain the explicit formulas of the

curves, namely: in the case C–, we get L1
4 for 0< t1< p/3, L3

4

for p/3< t1< 2p/3 and L2
4 for 2p/3< t1< p, while in the case

Cþ, we get B̂
r

4 for 0 < t1 < p=3; Cr;l
4 for p/3< t1< 2p/3 and

B̂
l

4 for 2p/3< t1< p.

Consider next case 1.2 when cos t1 6¼ cos t2, then Eq.

(A5) can be solved with respect to M1 and M2

M1 ¼
2

3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffi
dM2

p
ð3 cos t2 �M2 cos 3t1Þ;

M2 ¼
3ðcos t1 � cos t2Þ
cos 3t2 � cos 3t1

: (A8)

Plugging M2 into Eq. (A7), we obtain the following rela-

tion between t1 and t2:

4 cos2t1 þ 16 cos t1 cos t2 þ 4 cos2t2 þ 3 ¼ 0;

where one can see that variables cos t1 and cos t2 satisfy the

equation of a hyperbola 4X2þ 16XYþ 4Y 2þ 3¼ 0. Thus,

they can be parametrized in the following way:

cos t1 ¼
ffiffiffi
2
p

8
1�

ffiffiffi
3
p� �

t�
ffiffiffi
2
p

8
1þ

ffiffiffi
3
p� � 1

t
;

cos t2 ¼
ffiffiffi
2
p

8
1þ

ffiffiffi
3
p� �

t�
ffiffiffi
2
p

8
1�

ffiffiffi
3
p� � 1

t
:

The natural conditions j cos t1;2j � 1 are fulfilled only

for t� � jtj � tþ, where t6 ¼
ffiffi
3
p

61ffiffi
2
p . Substituting this parame-

trization into (A8) and excluding t gives the curve L4
4 in

the case C–. Note that for this parametrization, we have M2

¼ � 4t2

t4�4t2þ1
which takes only positive values for t� � jtj

� tþ, and this case does not provide any bifurcation curve

for Cþ.

In case 2, we get the equations 2y ¼ PðxÞ; x2 � xPðyÞ
þP2ðyÞ ¼ dM2 and Eq. (A6). The second one admits the

parametrization as before (note that t 6¼ np, otherwise, we

have 2x¼P(y), i.e., a 2-periodic orbit or a fixed point)

x ¼
ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t�

ffiffiffiffiffiffiffiffiffi
dM2

p
sin t; PðyÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t;

and Eq. (A6) is written as

2ðM2 � 3dy2Þð�4M2 sin2tÞ ¼ ðM2 � 3dy2Þ2ð�4M2
2 sin2tÞ

� ð1þ 2 cos 2tÞ:
(A9)

Let us consider case 2.1, when M2 – 3dy2¼ 0 in (A9),

i.e., y ¼ 6

ffiffiffiffiffiffiffiffi
d M2

3

q
. Then, we have

2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t ¼ PðyÞ ¼ M16

2

3
ffiffiffi
3
p M2

ffiffiffiffiffiffiffiffiffi
dM2

p
;

62

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
¼ PðxÞ ¼ M1 þ

2

3
ffiffiffi
3
p M2

ffiffiffiffiffiffiffiffiffi
dM2

p
cos 3t:

The possible bifurcation curves are given parametrically

in the following form:
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M2 ¼ �
3

ð2 cos t61Þ2
; M1 ¼ 2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t7

2

3
ffiffiffi
3
p M2

ffiffiffiffiffiffiffiffiffi
dM2

p
:

(A10)

Since M2< 0, Eq. (A10) do not give any curve for the

map C–. In the case of Cþ, we obtain the equations for

curves Bl;r
4 (which corresponds to the branch that is obtained

for t 2 [0, 2p/3)) and the equations for the curves �D
l;r
4 (for t

2 (2p/3, p]).

For the case 2.2, when M2 – 3dy2 6¼ 0 in (A9), we have

the equations

2 ¼ ðM2 � 3dy2ÞM2ð1þ 2 cos 2tÞ;

2

ffiffiffiffiffiffiffiffiffiffi
d

M2

3

r
cos t ¼ PðyÞ ¼ M1 þM2y� dy3;

M1 þ
2

3
ffiffiffi
3
p M2

ffiffiffiffiffiffiffiffiffi
dM2

p
cos 3t ¼ PðxÞ ¼ 2y:

(A11)

We have numerically checked that D̂
l;r

4 fulfill these implicit

equations. w
Concerning parabolic 4-periodic orbits with double

eigenvalue –1 (trace¼ –2), an analogous proof to the previ-

ous Lemma can be done. The only difference is that condi-

tion (b) in (A1) now is tr DðC4
6ðQÞÞ ¼ �2 which gives

instead of (A6) and (A7), the third equation

P0ðyÞ þ P0ð�yþ PðxÞÞ

 �

P0ðxÞ þ P0ð�xþ PðyÞÞ

 �

¼ P0ðyÞP0ð�yþ PðxÞÞP0ðxÞP0ð�xþ PðyÞÞ þ 4; (A12)

that, using the parametrization (A4) in case 1, is rewritten as

16M2
2 sin2t1 sin2t2 1�M2

2ð1þ 2 cos 2t1Þð1þ 2 cos 2t2Þ

 �

¼ 4:

(A13)

Thus, the bifurcation curves ~L
i

4; i ¼ 1; 2; 3; 4; ~C
l;r

4 and
~D

l;r

4 , displayed in Figs. 7, 10, and 12, respectively, should

satisfy Eqs. (A5) and (A12). For example, in the simplest

case cos t1 ¼ cos t2, which is analogous to case 1.1 in the

proof of Lemma 1, Eq. (A13) becomes

4M2
2 sin4t1 1�M2

2ð1þ 2 cos 2t1Þ2
h i

¼ 1;

which makes sense for M2 to exist for j cos t1j �
ffiffiffiffiffiffiffiffi
2=5

p
.

Using the last equation as well as (A5), we get the parametric

expression

M1 ¼
2

3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffi
dM2

p
ð3 cos t1 �M2 cos 3t1Þ;

M2 ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2t16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin4t1 � ð1þ 2 cos ð2t1ÞÞ2

qr
2j1þ 2 cos 2t1jj sin t1j

;

where arccos
ffiffiffiffiffiffiffiffi
2=5

p
� t1 � arccos �

ffiffiffiffiffiffiffiffi
2=5

p� �
. The paramet-

ric expression gives the curves ~L
1;2

4 (note that for t1¼ p/2 the

curves have the intersection point M1 ¼ 0;M2 ¼ 1=
ffiffiffi
2
p

), in

the case of map C–, and the curves ~C
l;r

4 (as well for t1¼p/2

the curves intersect at M1 ¼ 0;M2 ¼ �1=
ffiffiffi
2
p

), in the case of

map Cþ.

The other cases (analogous to cases 1.2, 2.1, and 2.2 in

the proof of Lemma 1) lead to cumbersome equations that

we omit.

APPENDIX B: LOCAL ANALYSIS OF THE 1:4
RESONANCE WITH DEGENERACY B03 5 0

Consider a one-parameter family Fd : R2 ! R2 of area-

preserving maps which admit the reversibility (x, y)! (y, x).

Let us consider d 2 R, small enough, being a parameter that

unfolds a 1:4 resonant fixed point. Without loss of generality,

we assume Fd(0)¼ 0 and SpecDF0(0)¼6i. There exists a

(formal) change of coordinates such that it reduces Fd to its

Takens normal form Nd (see Refs. 4 and 29) which commutes

with the linearized map K0 of F0 at 0, that is,

Nd 	K0 ¼ K0 	Nd:

The normal form is easily expressed in terms of complex

conjugated variables z¼ xþ iy, z*¼ x – iy. The map K�1
0 Nd

is near-the-identity and can be (formally) interpolated by a

Hamiltonian flow, that is,

K�1
0 Nd ¼ /t¼1

Hd
;

where the Hamiltonian function Hd is K0-invariant and is the

sum of resonant terms

Hdðz; z�Þ ¼
X

j�k2C
hj;kzjðz�Þk;

being

C ¼ fs 2 Z; s ¼ 0 mod 4ð Þg;

the set of resonant monomials.

The area-preserving condition implies that coefficients

hi,i are real. Moreover, the reversibility (x, y)! (y, x) imply

that hij ¼ h�ij. Then, by introducing Poincar�e polar (symplec-

tic) coordinates

I ¼ jzj
2

2
; u ¼ argðzÞ;

the interpolating Hamiltonian is reduced to

HðI;uÞ ¼ b1I þ b2I2 þ b3I3 þ lI2 cos ð4uÞ

þ BI3 cos ð4uþ u1Þ þ OðI4Þ;

where all the coefficients are real and depend on d, and u1 is

an initial phase.

We are interested in the analysis of the unfolding of the

degenerate case (i.e., the situation with B03¼ 0). This means

that b1¼l¼ 0 at the exact resonance (when d¼ 0). Note

that it is natural to adjust the angle variable so that u1¼ 0.

Taking into account that b1¼ d, one has

HðI;uÞ ¼ dI þ b2I2 þ b3I3 þ lI2 cos ð4uÞ þ BI3 cos ð4uÞ

þ OðI4Þ:
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Our goal is to describe the bifurcations when d, l 6¼ 0

but small. Note that this degenerate 1:4 resonance case leads

to a codimension two bifurcation problem.

Ignoring higher order terms in I, the equations are

_I ¼ � @H

@u
¼ 4lI2 sin ð4uÞ þ 4BI3 sin ð4uÞ þ OðI4Þ;

_u ¼ @H

@I
¼ dþ 2b2I þ 3b3I2 þ 2lI cos ð4uÞ

þ 3BI2 cos ð4uÞ þ OðI3Þ:

We look for fixed points ðI�;u�Þ with I*> 0. Requiring
_I ¼ 0, one obtains

I� ¼ �
l
B
þOðl2Þ;

and substituting it into the equation _u ¼ 0 gives

ð2lI� þ 3BI2
�Þ cos ð4uÞ ¼ �ðdþ 2b2I�Þ þ Oðl2Þ;

which, fixed a small value of l, determines a small range of

values of d (close to –2b2I*) for which there are fixed points.

These are non-symmetric points which are created and disap-

pear in pitchfork bifurcations (see Ref. 14 for related com-

ments). One has

I� ¼ �
l
B
; cos ð4u�Þ ¼ �

B

l2
b1 � 2b2

l
B

� 	
:

For illustrations, we consider b2¼ 1, b3¼ 0, B¼ 1, l¼ –0.15.

The phase spaces for d¼ –0.28, –0.29, –0.3, –0.31, and –0.32

are shown in Fig. 13.
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