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We carried out an experiment using a conventional causal learning task but extending
the number of learning trials participants were exposed to. Participants in the standard
training group were exposed to 48 learning trials before being asked about the potential
causal relationship under examination, whereas for participants in the long training group
the length of training was extended to 288 trials. In both groups, the event acting as
the potential cause had zero correlation with the occurrence of the outcome, but both
the outcome density and the cause density were high, therefore providing a breeding
ground for the emergence of a causal illusion. In contradiction to the predictions of
associative models such the Rescorla-Wagner model, we found moderate evidence
against the hypothesis that extending the learning phase alters the causal illusion.
However, assessing causal impressions recurrently did weaken participants’ causal
illusions.

Keywords: causal illusion, illusion of causality, contingency learning, causal learning, extensive training,
Rescorla-Wagner model

INTRODUCTION

Several studies have found that, when certain conditions are met, people are easily led to develop
erroneous causal beliefs. In the canonical experiment, volunteers are initially informed that their
aim is to explore the extent to which a causal relationship exists. For example, they may be asked to
find out the extent to which a fictitious drug (a candidate cause) is effective in producing recovery
from a fictitious disease (the outcome). Then, participants observe several patients with the disease,
presented sequentially on a trial-by-trial basis. For each patient, they are told if the patient took
the drug or not (i.e., if the candidate cause is present or not), and whether the patient recovered
from the disease or not (if the outcome occurred or not). After seeing all patients, they have to
rate the effectiveness of the drug in a numerical scale, usually ranging from 0 to 100. In reality, the
experimenter has set up the task for the probability of recovery to be the same both for patients
taking the drug and for patients not taking it. Therefore, the normative answer in these conditions
should be that the drug is ineffective, because taking it does not increase the chances of recovery.
However, under some circumstances, people tend to perceive that the drug is effective, showing
what could be called a causal illusion or an illusion of causality (see Matute et al., 2015, for a review).

Previous research on this subject reveals that two factors play an essential role in the
development of causal illusions. In our previous scenario, even if the chances of recovery are
the same among patients taking the drug and patients not taking it, the drug has greater
chances of being perceived as effective if the recovery is, in general, very frequent (high outcome
density) and if there is a high proportion of patients taking the drug (high cause density)
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(e.g., Alloy and Abramson, 1979; Allan and Jenkins, 1983; Allan
et al., 2005; Hannah and Beneteau, 2009; Blanco et al., 2013).
Table 1 represents an example with both a high outcome density
and a high cause density, illustrating a situation that should
encourage strong causal illusions.

The relevance of this phenomenon is partly based on the fact
that many erroneous beliefs in our daily life might appear just
in the same manner as causal illusions emerge in these simple
computer tasks in the lab (Blanco et al., 2015; Matute et al., 2015;
Griffiths et al., 2018). This would be the case, for example, for
pseudomedicines or “miracle products” with no proven capacity
to produce improvement. In these cases, some people develop the
conviction of the effectiveness of a treatment, even when there
is no real covariation between using the pseudomedicine or the
miracle product and the improvement (Matute et al., 2011). In
fact, as previously noted by Blanco et al. (2014), pseudomedicines
seem to proliferate in contexts that are ideal for the rise of causal
illusions: first, they are usually applied to health problems (e.g.,
back pain, headache) that tend to show spontaneous recovery
(high outcome density) and, since they are frequently advertised
as lacking side effects, they tend to be used recurrently (high cause
density). As far as misbeliefs such as these can strongly impact
relevant daily life decisions, understanding the mechanisms by
which they are formed, the circumstances in which they most
probably proliferate, and the expected evolution of these over
time seems essential.

Associative learning models, such as the error-correction
algorithm proposed by Rescorla and Wagner (1972) are able
to predict the appearance of causal illusions (e.g., Shanks,
1995; Musca et al., 2008; Vadillo et al., 2016; Vadillo and
Barberia, 2018). The Rescorla-Wagner model assumes that
information about the relationship between different events
in the environment is encoded in the form of associations
whose strengths are dynamically updated as new evidence
is encountered. In a causal learning situation like the one
summarized in Table 1, the model assumes that whenever we
encounter a patient who takes the drug and recovers from the
disease, the link between the mental representations of these two
events (drug and recovery) are strengthened, while encountering
a patient who takes the drug but does not experience recovery
weakens the association between both events. The change in the

TABLE 1 | A contingency table showing an example of a situation prone to
generating the illusory perception of the drug being effective.

Patients recovered Patients not recovered

Patients taking the drug 27 (a) 9 (b)

Patients not taking the drug 9 (c) 3 (d)

Out of 48 patients (i.e., trials) 27 took the drug and recovered from the disease
(cell a), 9 took the drug but did not recover (cell b), 9 recovered without taking the
drug (cell c), and 3 did not take the drug and did not recover (cell d). Therefore, the
probability of recovery is 0.75 both among patients that took the drug [27 out of
36; a/(a+b)] and among patients that did not take the drug [9 out of 12; c/(c+d)].
Also, the outcome density is high (36 out of 48 patients recovered from the disease,
irrespective of the intake of the drug), and the cause density is high (36 out of 48
patients took the drug, irrespective of them experiencing subsequent recovery or
not). Although the drug does not increase the chances of recovery, a strong causal
illusion is expected in this situation.

strength of this association is given by equation:

1Vn = α · β · (λ−
∑

Vn−1) (1)

where 1Vn is the change in the associative strength on trial n, α,
and β are two learning rate parameters dependent on the saliences
of the two events to be associated, λ denotes whether the outcome
(i.e., the recovery) was observed or not in that trial, and

∑
Vn−1

is the sum of the associative strengths previously accumulated by
all the cues present in that trial. Of note, although the associative
strength of a cue (i.e., taking the drug) only changes when that cue
is present, the model assumes that in addition to the target cue
there is also a constant contextual cue, present in all trials, that
competes with the target cue to get associated with the outcome.
With this simple implementation, the model predicts that after
a representative sequence of trials, the associative strength of the
target cue will approach a value close to the objective correlation
between taking the drug and recovery (Chapman and Robbins,
1990; Wasserman et al., 1993), as measured by an index called
1P (Allan, 1980), which can be computed as:

1P = P(recovery|drug) − P(recovery| ∼ drug) (2)

In that sense, the Rescorla-Wagner model can be seen as
a “rational” theory of causal learning (Shanks, 1995), because
once sufficient information has been experienced, the strength
of the association between causes and effects will approach the
objective degree of correlation between them1. However, before
reaching the learning asymptote, the model also predicts that
the associative strengths will be biased by factors that, from a
rational point of view, should play no role at all. Specifically, the
model predicts that the development of the associations will be
positively biased by the overall probabilities of the two events to
be associated (i.e., outcome density and cause density).

As an example, Figure 1 shows the results of four simulations
of the Rescorla-Wagner model. The simulation represented by
black circles refers to the condition summarized in Table 1.
As can be seen, the associative strength between taking the
drug and recovering from the disease is strongly biased in the
initial trials and slowly declines as more information is gathered.
With sufficient training, the associative strength would eventually
reach an asymptotic value of zero. The comparison of this
condition with the remaining three conditions shows that the size
of the initial bias depends heavily on the marginal probabilities of
the cause and the effect. The condition denoted by red triangles
is identical to the one denoted by black circles, except that in
the latter the density of the cause is P(drug) = 0.75 while in
the former the density of the cause is P(drug) = 0.50. Similarly,

1It is worth noting that, for the asymptotic predictions of the Rescorla-Wagner
model to converge with 1P, it is necessary to assume a “restricted” version of
the model, where β is assumed to have the same value both in trials in which
the outcome occurs and in trials in which it does not occur. An “unrestricted”
version of the model, allowing β to vary depending on the presence or absence of
the outcome, is able to predict deviations from 1P on causal ratings at asymptote
(e.g., Wasserman et al., 1993; Buehner and Cheng, 1997; Lober and Shanks, 2000;
Buehner et al., 2003). However, this is only the case for non-zero (positive and
negative) correlation values, whereas unrestricting the model does not alter the
predictions for situations in which there is an absence of contingency (i.e., 1P = 0),
as it is the case in settings exploring causal illusions.
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FIGURE 1 | Four simulations of the Rescorla-Wagner model. The figure
legend summarizes the number of a, b, c, and d trials (see Table 1) included
in each simulation. Learning rate parameters αcue, αcontext, and β were set to
0.4, 0.2, and 0.6, respectively. The value of λ was set up to 1 for trials in
which the outcome was present and to 0 for trials in which the outcome was
absent. The figure shows the average results of 2,000 iterations with random
trial orders.

the condition denoted by green diamonds is identical to the
condition denoted by black circles, except that in the latter the
density of the effect is P(recovery) = 0.75, while in the former
the density of the effect is P(recovery) = 0.50. Finally, in the
last condition, represented by blue inverted triangles, both the
density of the cause and the density of the effect are 0.50. The
simulations show that increasing any of these probabilities makes
a substantial difference in the predictions of the model, even
though the degree of relationship between the cause and the effect
is zero in all cases.

Determining the extent to which the causal illusion is pre-
asymptotic or permanent is crucial, both because of theoretical
and applied reasons. At a theoretical level, the question of interest
is whether associative models such as Rescorla and Wagner’s
can account for the evolution of causal misbeliefs after extended
exposure to the candidate cause and the outcome. That is, are
these erroneous beliefs subject to normative adjustment following
a more extended exposure to them? In applied terms this issue
is also relevant as it could help us envisage if misbeliefs in
daily life, such as those related to pseudomedicine and miracle
products, can be expected to vanish as more information is
gathered or if, once implemented, these beliefs remain relatively
stable unless other counteractive, e.g., informative or educational,
initiatives are introduced. In this sense, it is worth noting that
previous evidence in the domain of anti-vaccination and political
misinformation suggests that, once erroneous beliefs are accepted
as valid, they tend to be quite resistant to any attempt to refute
them (e.g., Nyhan and Reifler, 2010; Lewandowsky et al., 2012;
Nyhan et al., 2014).

In the present study, we adapted the standard laboratory task
used in research on causal illusions to an extended learning
situation. Most of the previous experiments exploring causal
illusions employed training sessions of about 40 trials in the

shortest cases (e.g., Barberia et al., 2013; Blanco et al., 2015;
Griffiths et al., 2018) to about 100 trials in the longest cases
(e.g., Matute et al., 2011; Yarritu et al., 2014). For this study, we
decided to greatly extend the amount of training the participants
were exposed to and explore if this manipulation diminished the
intensity of the illusion developed.

With this goal in mind, all participants were exposed to a
causal learning task typically used in the research on causal
illusions (Matute et al., 2015). The scenario involved discovering
if a fictitious drug was effective in making patients overcome the
crises produced by a fictitious disease. Half of the participants
observed 48 patients (Standard Training group or “Standard”
group) and then evaluated the effectiveness of the drug, whereas
for the other half (Long Training group or “Long” group) the
length of training was multiplied by six (48 × 6) and thus,
participants in this condition observed a total of 288 patients
before evaluating the drug. If causal illusions are a product of
incomplete learning, causal ratings given after 48 trials (Standard
group) should be higher than those given after 288 trials (Long
group).

We note that studies from a related area of research, illusory
correlation in stereotype formation (Hamilton and Gifford,
1976), could be relevant for drawing informed hypotheses
regarding the results of our present study. Much like in the
case of causal illusion experiments, illusory correlation studies
rely on contingency detection tasks, in which volunteers tend
to overestimate the degree of covariation between two given
variables. Importantly, Murphy et al. (2011) demonstrated that
the illusory correlation effect might be a preasymptotic or
incomplete learning effect. In their experiments, the effect
emerged early in training but disappeared after more extended
training. However, another paper published that same year
(Kutzner et al., 2011) found a persistent illusory correlation effect
even after a longer training than that implemented by Murphy
et al. (2011). We consider that one important difference between
the procedures of both studies was that, whereas Murphy et al.
(2011) asked participants to give their evaluations every few trials,
Kutzner et al. (2011) only asked for explicit evaluations at the end
of training.

This observation led us to explore the effects of recurrent
ratings of causal relationship during causal illusion formation
as a secondary goal of our research. With this goal in mind,
the participants in what we have called the Standard group
were, in fact, further trained after observing the first 48 patients
and giving their first evaluation of the drug. Specifically, they
continued observing patients and evaluating the effectiveness of
the drug after every 48 trials, until reaching the same amount of
training as those participants in the Long group. Note that this
subsequent training does not influence the main measure taken
in the Standard group, which happened after the first 48 patients
were observed. Inspired by the differences detected between
previous results of illusory correlation studies (Kutzner et al.,
2011; Murphy et al., 2011), we hypothesized that, whereas no
differences would appear between the first causal ratings obtained
in the two groups, regardless of training length, repeatedly asking
participants to evaluate the effects of the drug might decrease the
causal illusion effect.
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MATERIALS AND METHODS

Participants
A total of 150 Psychology undergraduate students participated
in the experiment in return for course credits, and they were
randomly assigned to the Standard group or Long group (75
participants per group, 62 female, mean age = 21.28, SD = 7.06 in
the Standard group and 63 female, mean age = 19.80, SD = 3.26
in the Long group). Sample size was determined following
the criteria that participants would be added sequentially until
reaching a Bayes factor (BF) higher than 10 in favor or against
the alternative hypothesis, i.e., that participants in the Standard
group would show a stronger causal illusion than participants
in the Long group, as measured by the causal question (see
section “Materials and Methods”). If none of these values were
reached after 150 participants (75 per group) the experiment
would be stopped (see e.g., Wagenmakers et al., 2015, for
a similar sampling plan). In the end, the BF did not reach
any of the target boundaries and the final sample was of 150
participants. Although this stopping rule was based on a Bayesian
approach, we report both Bayesian and frequentist statistics for
all analyses. In the few occasions when the results of both types
of analyses seem to lead to different conclusions, we highlight
these discrepancies. Participants gave written informed consent
before participating in the experiment. The study protocol was
approved by the ethics committee of the University of Barcelona
(Institutional Review Board IRB00003099).

Procedure
The experiment was programmed using Xojo2 and all the
instructions were provided in Spanish. Participants were exposed
to a standard causal learning task. Specifically, they were asked
to imagine that they were specialists in a strange and dangerous
disease called Lindsay Syndrome (e.g., Blanco et al., 2011,
2013; Matute et al., 2011). They were further told that the
crises produced by this disease might be overcome with a new
experimental drug (Batatrim) whose effectiveness was still to be
determined. In order to evaluate the effectiveness of this drug,
participants were told that they would see the medical records
of several patients, presented one by one. Each patient would be
suffering from a crisis and some of them would receive the drug
whereas others would not receive anything. Whether the patient
had taken the drug or not, participants would have to predict
if the patient would overcome the crisis. The prediction would
be followed by a feedback indicating if the patient overcame
the crisis or not. Participants were further informed that, since
they would see many patients, they were free to take short
rests whenever they needed. (They were informed that they
were not allowed to perform any other activity, such as using
their cellphones, during these periods.) The instructions ended
informing the participants that their goal was to find out if the
drug was effective and that, after observing a good number of
patients, they would be asked some questions.

After the initial instructions, participants were exposed to a
sequence of 288 patients, presented one after the other. On each

2https://www.xojo.com/

trial, the same suffering emoticon appeared in the left side of the
screen, together with an image of a pill on the right side of the
screen, if the trial corresponded to a patient that had taken the
drug, or with the same pill crossed out, if the trial corresponded
to a patient that did not take the drug. A text in the upper side
of the screen indicated “This patient suffers from a crisis and
receives Batatrim” or “This patient suffers from a crisis and does
not receive anything,” respectively. An additional text in the lower
part of the screen asked participants “Do you think the patient
would overcome the crisis?” Participants could answer by clicking
on one of two (yes/no) buttons. After the participants had made
their prediction, the image of the suffering emoticon and all the
texts disappeared from the screen for 1 s. After this period, the
emoticon reappeared on the screen, either with the same suffering
expression or with a happy expression, and with the “The patient
did not overcome the crisis” or “The patient overcame the crisis!”
text, respectively. One second later, an additional button that
allowed participants to see the next patient was activated.

We assessed the causal illusion by means of three questions:
the causal question and two conditional probability questions.
For the causal question, which was our main dependent variable
(see e.g., Blanco et al., 2011; Barberia et al., 2013, for similar
questions), participants were asked “To what extent do you think
that Batatrim is effective to overcome the crises produced by the
Lindsay Syndrome?” and they could answer in a scale from 0 (not
effective at all) to 100 (totally effective). Given that the normative
calculation of covariation between cause and outcome depends
on the direct comparison between cause-present and cause-
absent outcome probabilities, we also introduced two conditional
probability questions in order to gain insight on the process that
might underlie the participants’ responses to the causal question.
For these two conditional probability questions, participants were
asked to estimate the number of patients that would overcome the
crisis among 100 new patients taking the drug [P(recovery|drug)
question], and among 100 new patients not taking the drug
[P(recovery|∼drug) question]: “Imagine 100 NEW PATIENTS
that are suffering a crisis produced by the Lindsay Syndrome and
TAKE BATATRIM [DO NOT TAKE ANYTHING]. How many
do you think they will overcome the crisis?” The order in which
the questions were answered was balanced across participants:
about half of the participants of each condition answered the
causal question first and then the two questions referring to the
conditional probabilities (also balanced in order), whereas for
the other half this order was reversed, resulting in four possible
orders.

In the case of the participants in the Standard group, after each
block of 48 patients, participants answered the causal question
and conditional probability questions and they were told that they
would continue observing more patients. They were requested
to answer the three questions (causal question and conditional
probability questions) again after every 48 trials and, therefore,
they experienced a total of six blocks of ratings until reaching the
same amount of training as the participants in the Long group.
For the Long group these questions were answered only after all
288 patients had been observed.

Participants in both groups were exposed to six blocks
of randomly presented 48 trials, of which 27 corresponded
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to a trials, 9 to b trials, 9 to c trials, and 3 to d trials (see
Table 1). Every 48 trials the program would re-randomize
the sequence. For the Standard group, this re-randomization
coincided with the moment in which the causal and conditional
probability questions were answered after each block of trials.
Note that the situation was set up so that the contingency
between the drug and recovery was zero, because the
probability of recovery among patients that took the drug [i.e.,
P(recovery|drug) = a/(a+b) = 27/(27+9) = 0.75] was the same
as the probability of recovery among those patient that did not
take any drug [i.e., P(recovery|∼drug) = c/(c+d) = 9/(9+3)
= 0.75]. Moreover, both the outcome density
[P(recovery) = (a+c)/(a+b+c+d) = (27+9)/(27+9+9+3) = 0.75]
and the cause density [P(drug) = (a+b)/(a+b+c+d) = (27+9)/(27
+9+9+3) = 0.75] were high, therefore emulating the conditions
under which the causal illusions are known to reach strong
levels (Blanco et al., 2013; Matute et al., 2015, see simulations in
Figure 1).

RESULTS

The dataset for this study can be found at: https://osf.io/35ytz/
All the analyses reported in this section were conducted

with JASP, https://jasp-stats.org/ (JASP Team, 2018; see also
Wagenmakers et al., 2018). Following Wagenmakers et al. (2018,
see their Table 1) we interpret BFs between 1 and 3 as anecdotal
evidence, BFs between 3 and 10 as moderate evidence, and BFs
>10 as strong-to-extreme evidence. Figure 2 shows the first
causal and conditional probabilities’ ratings given by participants
of each group, that is, the ratings given after 48 trials in the
Standard group and the ratings given after all 288 trials for
the Long group. As can be seen, mean causal ratings (our
main dependent variable, see panel A) were similar in both
groups. A Bayesian t-test contrasting the null hypothesis against

the alternative hypothesis that ratings would be different in
both groups (modeled as a two-sided Cauchy distribution with
r = 0.707) yielded a BF01 = 5.43, suggesting moderate evidence
in favor of the null hypothesis. Frequentist statistics yielded no
significant differences between both groups, t(148) = −0.317,
p = 0.752, d =−0.052.

In the case of the estimated conditional probabilities, visual
inspection of Figure 2 (panel B) indicates that the probability
of recovery was assumed to be higher among those patients
who took the drug than among those patients who did not take
the drug, which would be consistent with participants giving
causal ratings higher than zero in the causal question. Also,
Figure 2 suggests that the ratings of both probabilities seemed
to be somewhat higher in the Long than in the Standard group.
A 2 [question: P(recovery|drug) vs. P(recovery|∼drug)] × 2
[group: Standard vs. Long] Bayesian ANOVA confirmed these
impressions. The model including only the main effects of
question and group outperformed all other models, with a
BF = 2.70 over the model including just question, a BF = 5.58 over
the model including both main effects and their interaction, and
a BF = 1.99 × 1013 over the model including just the main effect
of group. The frequentist ANOVA yielded significant main effects
of question and group, F(1,148) = 68.690, p < 0.001, ηp

2 = 0.317,
and F(1,148) = 7.266, p = 0.008, ηp

2 = 0.047, respectively, but the
interaction failed to reach significance, F < 1.

A potential criticism to these results raised by a reviewer
is that perhaps participants had already reached the learning
asymptote after just 48 trials, in which case associative models
of learning predict no further change with additional training.
(Note, however, that the asymptotic level predicted by the
Rescorla-Wagner model is an associative strength of zero.) To
explore this possibility, we analyzed the trial-by-trial predictions
made by participants. Specifically, we calculated the proportion
of outcome predictions (i.e., “yes” responses) in cause-present
and cause-absent trials for the initial 48 trials in the Standard

FIGURE 2 | Mean causal ratings (A) and conditional probability ratings (B) after 48 trials in the Standard group and after all 288 trials in the Long group. Error bars
denote 95% confidence intervals.
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group and for the last 48 trials in the Long group. The descriptive
statistics show that outcome predictions tended to be higher for
the Long group, both in cause-present (Standard: Mean = 0.82,
SD = 0.12; Long: Mean = 0.86, SD = 0.12) and cause-absent
trials (Standard: Mean = 0.50, SD = 0.23; Long: Mean = 0.73,
SD = 0.22). These impressions were confirmed by a 2 [type
of trial: cause-present vs. cause-absent] × 2 [group: Standard
vs. Long] Bayesian ANOVA. The model including both main
effects and their interaction achieved the best performance, with
a BF = 9317.55 over the model including just the two main
effects and BFs > 4.11 × 109 over the rest of models. The
frequentist ANOVA yielded significant main effects of type of
trial, F(1,148) = 113.39, p < 0.001, ηp

2 = 0.434, and group,
F(1,148) = 42.47, p < 0.001, ηp

2 = 0.223, and a significant
type of trial × group interaction, F(1,148) = 21.01, p < 0.001,
ηp

2 = 0.124. The analysis of the interaction showed that outcome
predictions significantly differed between groups in the case of
the cause-absent trials, t(148) = −6.255, p < 0.001, d = −1.021,
BF10 = 2.39 × 106, and only marginally differed between
groups for the cause-present trials, t(148) = −1.862, p = 0.065,
d =−0.304, BF01 = 1.17.

As noted in the introduction, a complementary goal of our
study was to explore if the fact that the participants were
requested to answer the causal and conditional probability
questions several times during training would affect their
estimations. Figure 3 shows the evolution of causal and
conditional probabilities’ estimations over time in the Standard
group. A Bayesian repeated measures ANOVA on causal ratings
yielded a BF10 = 3.91 in favor of the model including the factor
block over the null model. This result was confirmed by an

FIGURE 3 | Mean causal and conditional probability ratings after each block
of 48 trials in the Standard group. Error bars denote 95% confidence intervals.

equivalent frequentist ANOVA, F(5,370) = 3.641, p = 0.003,
ηp

2 = 0.047. A direct (two-sided) comparison of blocks 1
and 6 shows that causal judgments declined from the first
to the last block of testing, t(74) = 2.720, p = 0.008,
d = 0.314, BF10 = 3.84. Regarding estimated conditional
probabilities, Figure 3 suggests that there was an increase
over time in the estimation of the P(recovery|∼drug) but
not in the estimation of the P(recovery|drug). A Bayesian
repeated measures ANOVA with the factors question [i.e.,
P(recovery|drug) vs. P(recovery|∼drug)] and block (1–6) showed
that the model including only question outperformed the rest
of models, with a BF = 2.34 over the model including question
and block, a BF = 19.3 over the model including both main
effects and their interaction, and a BF = 3.60 × 1016 over
the model including just block. Interestingly, the frequentist
ANOVA returned significant effects not only for question,
F(1,74) = 21.372, p < 0.001, ηp

2 = 0.224, but also for block,
F(5,370) = 3.948, p = 0.002, ηp

2 = 0.051, and for the interaction as
well, F(5,370) = 3.047, p = 0.010, ηp

2 = 0.040. Further separate
ANOVAs for each of the questions revealed no effect of block
in the case of the P(recovery|drug), BF01 = 72.63, F < 1, but a
significant block effect for the P(recovery|∼drug), BF10 = 355.50,
F(5,370) = 5.826, p < 0.001, ηp

2 = 0.073.
Another way of exploring the effect of repeated testing

is to compare ratings at the end of the experiment in
both experimental conditions. At that time, both groups of
participants have experienced the same number of trials, but
participants in the Standard group have already been tested
five times. The descriptive statistics show that at that time
causal ratings in the Standard group were numerically lower
(Mean = 43.77, SD = 31.08) than causal ratings in the Long group
(Mean = 55.31, SD = 25.46). The Bayesian analysis yielded a
BF10 = 2.905 in favor of the hypothesis that causal ratings were
different in both groups over the null hypothesis. A frequentist
t-test confirmed that the comparison was statistically significant,
t(148) = −2.486, p = 0.014, d = −0.406. A similar comparison of
conditional probability ratings revealed that, overall, estimations
of P(recovery|drug) tended to be higher (Standard: Mean = 68.73,
SD = 17.36; Long: Mean = 72.07, SD = 11.81) than estimations of
P(recovery|∼drug) (Standard: Mean = 61.76, SD = 19.32; Long:
Mean = 57.91, SD = 15.33). These ratings were analyzed through
a 2 [question: P(recovery|drug) vs. P(recovery|∼drug)] × 2
[group: Standard vs. Long] Bayesian ANOVA. The model
including only question outperformed all other models, with
a BF = 3.18 over the model including both main effects
and their interaction, a BF = 5.89 over the model including
both main effects, and a BF = 1.29 × 108 over the model
including just group. Note, however, that the frequentist
ANOVA yielded both a significant main effect of question,
F(1,148) = 44.038, p < 0.001, ηp

2 = 0.229, and a significant
question × group interaction, F(1,148) = 5.093, p = 0.025,
ηp

2 = 0.033, but not a main effect of group, F < 1. The analysis
of this interaction showed that estimations of P(recovery|drug)
and P(recovery|∼drug) differed both in the Standard group,
t(74) = 2.716, p = 0.008, d = 0.314, BF10 = 3.80, and
in the Long group, t(74) = 7.518, p < 0.001, d = 0.868,
BF10 = 9.22× 107.
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We also conducted a parallel set of frequentist analyses
including the order in which the causal question and conditional
probability estimations were answered by the participants. These
new analyses showed that the order of presentation of the
questions did not significantly impact our dependent variables
(see Supplementary Materials).

DISCUSSION

The main goal of the present study was to investigate the course
of causal illusions after an extensive training with the candidate
cause and its potential connection with the outcome. To reach
this aim, we compared causal impressions originated after a
conventional length of training (48 trials, Standard group) with
those emerged after a markedly extended training (288 trials,
Long group). Our results indicated that lengthening the amount
of training did not produce a significant decrease in the intensity
of causal illusions. Specifically, there was no change neither in the
causal ratings given by the participants nor in the difference in
their estimation of the two conditional probabilities.

This result is at odds with associative models such as
Rescorla-Wagner model, which predict that biased causal
impressions at zero contingency conditions would be pre-
asymptotic and should therefore adjust to the normative absence
of contingency as training moves forward. However, other
models could accommodate the present results, such as some
rule-based models. These models postulate that people encode
the frequencies of the different events (cells a, b, c, and d in
Table 1) or conditional probabilities of the outcome in the
presence and absence of the candidate cause (see Equation 2)
and apply some algebraic combination of them to form their
causal impressions (see Perales and Shanks, 2007; Perales et al.,
2017, for reviews). For example, the weighted 1P model (e.g.,
Lober and Shanks, 2000) assumes that people compute the
two conditional probabilities involved in the calculation of 1P
but assign different weights to the probability of the outcome
given the potential cause [P(recovery|drug) in Equation 2] and
to the probability of the outcome when the potential cause is
absent [P(recovery|∼drug) in Equation 2]. Typically, the best
fit is found if the probability of the outcome is given more
weight when the potential cause is present than when it is
absent (see Lober and Shanks, 2000; Perales and Shanks, 2007).
As another example, the Evidence Integration (EI) rule (Perales
and Shanks, 2007) proposes that causal ratings result from the
comparison between confirmatory (cells a and d in Table 1)
and disconfirmatory (cells b and c in Table 1) information,
and allows the four cells of the contingency table to be given
different weights (see Perales and Shanks, 2007, p. 583, for
more details about the proposed rule). Perales and Shanks
(2007) found in their meta-analysis that the best fit was for
weights (w) ordering corresponding to wa > wb > wc > wd.
Interestingly, both of these alternative models would anticipate
a biased (non-zero) causal impression for the participants in our
experiment, if the typical weighting is applied to the conditional
probabilities or cell frequencies. Crucially, as long as the two
relevant conditional probabilities (weighted 1P model) or the

relative frequencies of the four cells in the contingency table
(EI rule) remain unaltered along training, the predictions of
these models would be equal for any amount of trials, which
means that these models do not anticipate changes in mean
causal impressions after 48 trials versus 288 trials in our
experiment.

Regarding previous results on causal illusions literature
pointing out in the same direction as the present study, Blanco
et al. (2011) carried out two studies using a causal learning task
with a cover story similar to the one employed in our study.
Their Experiment 1 involved 50 trials and their Experiment
2 was composed of 100 trials. When they performed a cross-
experiments comparison they found that, if anything, causal
illusions were stronger in their second experiment. However,
their procedure involved an active contingency learning task,
i.e., participants could decide in every trial if they wanted
the candidate cause to be present or not, that is, if they
wanted to administer the drug or not. Therefore, participants
could decide the cause density to which they were exposed.
Since, as discussed in the Introduction, it has been previously
shown that higher cause density produces stronger causal
illusions, and Blanco et al. (2011) participants tended to (at
least marginally) increase the cause density they were exposed
to over blocks of trials, this cause density could have affected
the evolution of causal impressions over time. To this respect,
the present experiment shows a sustained causal illusion
in a passive task in which the cause density is externally
controlled by the experimenter and kept constant over all
training.

This finding has practical implications, because it suggests
that causal misbeliefs, once acquired, might be quite resistant
to change, even in light of persistent covariation information
that contradicts such beliefs. As we have already noted, causal
illusions are widely present in our everyday life, and they
influence some relevant quotidian decisions like those related
to health. Pseudomedicines tend to be repeatedly applied to
health conditions associated to high spontaneous recovery rates
(Blanco et al., 2014). These high cause density and high outcome
density situations are ideal for the appearance of causal illusions.
According to our results, we cannot expect the perceived
effectiveness of these pseudomedicines or miracle products to
spontaneously diminish, even after extended zero-contingency
experiences with them. This finding points out the necessity to
develop and apply specific interventions (Barberia et al., 2013,
2018) aimed to prevent the appearance of causal illusions or
to reduce their influence. As mentioned in the Introduction,
this result dovetails with previous research showing that, once
accepted as valid, erroneous ideas about topics as diverse as health
or politics tend to be resistant to change (e.g., Nyhan and Reifler,
2010; Lewandowsky et al., 2012; Nyhan et al., 2014).

Superficially, our results might seem contradictory with those
of previous studies where causal ratings (López et al., 1999;
see also Shanks, 1995) or illusory correlations (Murphy et al.,
2011) did decline over training. It is worth noting that we too
found a decrease in causal illusions, but only after repeated
testing. Taken together, our results and previous evidence suggest
that the decline might be driven by repeated testing and not
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extensive training. This result implies that the fact of asking
participants to repeatedly evaluate the potential cause may make
a difference in the way they solve the task. We hypothesize that,
by asking participants to estimate both the P(recovery|drug) and
P(recovery|∼drug) in our experiment, we could have brought
their attention to the comparison of these two conditional
probabilities when evaluating the effectiveness of the drug. In
fact, previous debiasing interventions that have proven effective
in decreasing causal illusions (Barberia et al., 2013) have focused
on instructing participants on the importance of considering not
only the P(recovery|drug) or the drug-recovery coincidences, but
also the P(recovery|∼drug), which might be typically given less
importance. Note that this idea might be implemented on the
previously discussed rule-based models as changes in the weights
given to the different pieces of evidence. It could also be the case
that participants start the task with some prior assumptions about
both the P(recovery|drug) and P(recovery|∼drug), expecting
the first to be high and the second to be low. This could
be a consequence of the specific cover story employed in this
experiment, involving a drug and the recovery from a disease.
Alternatively, it could be associated to a more general default
tendency to a priori assume that the cause under examination
produces the outcome, and to ignore the potential influence of
other unknown generative causes on the same outcome. When
participants face the task, the prior about the P(recovery|drug)
would reasonably fit the actual data they encounter (a lot of a
trials and much fewer b trials), whereas the P(recovery|∼drug)
would show a stronger discrepancy with participants’ prior.
This might require special attention to be driven to trials in
which recovery happens without the drug in order to this prior
to be modified and recurrently asking participant to estimate
the expected percentage of recovery among patients not taking
the drug might precisely act in this direction. It is also a
possibility that, by asking participants to estimate these two
conditional probabilities, we untangled the inherent ambiguity
of the causal question (Buehner et al., 2003; Baker et al.,
2005), making participants focus on those probabilities when
evaluating the effectiveness of the drug, as predicted by the 1P
model.

To conclude, the present study suggests that causal illusions
are not the consequence of incomplete learning, because they
show resistance to extensive training. This result implies that
erroneous causal beliefs of daily life are not expected to

disappear just because persistent empirical evidence against
them is gathered. Moreover, our analyses indicate that, the
fact of recurrently asking people to evaluate the potential
causal relationship and to estimate the conditional probabilities
involved in the contingency calculation, decreases the intensity
of the illusion. Further studies should investigate how exactly the
introduction of recurrent ratings during contingency detection
tasks could be applied to real-life situations in order to positively
influence participants’ decisions regarding the existence of causal
relationships.
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