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Abstract. We prove that any smooth complex projective variety with generic vanishing index

bigger or equal than 2 has birational bicanonical map. Therefore, if X is a smooth complex

projective variety with maximal Albanese dimension and non-birational bicanonical map, then

the Albanese image of X is fibred by subvarieties of codimension at most 1 of an abelian

subvariety of AlbX.

1. Introduction

In the study of smooth complex algebraic varieties, the natural maps provided by the holo-

morphic forms defined in the variety, have a special importance. For example, the invertible

sheaf ωX of differential n-forms (where n is the dimension of X) produces a map to a projective

space, known as the canonical map. The multiples of this canonical sheaf ω⊗mX produce in this

way the pluricanonical maps

ϕm : X 99K PN = P(H0(X,ω⊗mX )∨).

When ϕm gives a birational equivalence between X and its image, we will simply say that ϕm is

birational. We say that X is of general type if for some m > 0 the rational map ϕm is birational.

For example, the curves of general type are those of genus g ≥ 2. The tricanonical map ϕ3

is always birational for such curves and the bicanonical ϕ2 is also birational once that g ≥ 3.

Moreover, the canonical map is birational as soon as the curve is non-hyperelliptic.

For surfaces, Bombieri [Bo] has given sharp numerical conditions for the birationality of ϕm

for m ≥ 3. The bicanonical map has revealed to be more complicated and has been studied by

many algebraic geometers. In fact, the surfaces with irregularity q(S) ≤ 1 and χ(S, ωS) = 1 are

not completely understood and there is no classification about which ones have birational ϕ2.

For a modern review of the state of the art in the surface case, we refer to [BCP, Theorem 8].

For higher dimensions not many results are known in general. Nevertheless, the example

of the bicanonical map on surfaces shows that for small irregularity q(X) = h0(X,Ω1
X), the

classification becomes more difficult. For complex varieties, recall that the differential 1-forms
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give rise to the Albanese map

alb : X → AlbX = H0(X,Ω1
X)∨/H1(X,Z).

from X to an abelian variety of dimension q(X) = h0(X,Ω1
X). We say that X is irregular if,

and only if, AlbX is not trivial, i.e. q(X) > 0. And we say that X is of maximal Albanese

dimension (m.A.d) if, and only if, the Albanese map alb : X → AlbX is generically finite onto

its image.

It turns out that some properties of m.A.d varieties seem to behave independently of the

dimension and, indeed, Chen-Hacon showed that this is the case for their pluricanonical maps.

Theorem (Chen-Hacon. [CH2]).

(a) X m.A.d and χ(ωX) > 0 ⇒ X is of general type, furthermore, ϕ3 is birational.

(b) X m.A.d ⇒ ϕ6 is the stable pluricanonical map.

For ϕ2, we cannot expect to use χ(ωX) to control directly its birationality. For example, if C

is a curve of genus 2, then the bicanonical map of the product C×Y is never birational. In fact,

it is clear that any variety that admits a fibration whose general fibre has non-birational ϕ2 will

have a non-birational bicanonical map. This should be considered, at least at first glance, as

the standard case for higher dimensional varieties.

The following theorem provides geometric constraints for the non-birationality of the bicanon-

ical map (see Theorem 5.2).

Theorem A. Let X be a smooth projective complex variety of maximal Albanese dimension

such that the bicanonical map is not birational. Then, the Albanese image of X is fibred by

subvarieties of codimension at most 1 of an abelian subvariety of AlbX. The base of the fibration

is also of maximal Albanese dimension.

That is, X admits a fibration onto a normal projective variety Y with 0 ≤ dimY < dimX,

such that any smooth model Ỹ of Y is of maximal Albanese dimension and

q(X)− dimX ≤ q(Ỹ )− dimY + 1.

Hence, if q(X) > dimX + 1, the inequality implies the existence of an actual fibration,

i.e. dimY > 0, whose general fibre is mapped generically finite through the Albanese map

of X either onto a fixed abelian subvariety of AlbX, or onto a divisor of this fixed abelian

subvariety. When dimY = 0 the theorem simply says that the image of X in AlbX has

codimension at most 1.

In particular, when X does not admit any fibration and q(X) > dimX, there is only one

possible case, i.e. X is birationally equivalent to a theta-divisor of an indecomposable principally

polarized abelian variety (see [BLNP, Theorem A]). When X does not admit any fibration and

q(X) = dimX, there is only one known case of variety of general type and non-birational
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bicanonical map: a double cover of a principally polarized abelian variety (A,Θ) branched

along a reduced divisor B ∈ |2Θ|. Is this the only case? The answer is affirmative in the case

of surfaces due to Ciliberto-Mendes Lopes [CM, Theorem 1.1].

To deduce Theorem A it is useful to consider the generic vanishing index introduced by

Pareschi–Popa in [PP3, Definition 3.1]

gv(ωX) = min
i>0

{
codimPic0X V

i(ωX)− i
}
,

where V i(ωX) =
{
α ∈ Pic0X hi(X,ωX ⊗ α) > 0

}
. As a consequence of Generic Vanishing

Theorem of Green–Lazarsfeld [GL1, Theorem 1], we have that for any irregular variety 1 −
dimX ≤ gv(ωX) ≤ q(X)− dimX.

Moreover, the negative values of gv(ωX) can be interpreted in terms of the dimension of the

generic fibre of the Albanese map (see Theorem 3.7) and X is a m.A.d variety if, and only if,

gv(ωX) ≥ 0. Due to the work of Pareschi–Popa [PP3] we can interpret the positive values of

gv(ωX) in terms of the local properties of the Fourier-Mukai transform of the structural sheaf

(see Theorem 3.3). They have also proved that the positive values of gv(ωX) give a lower bound

for the Euler characteristic χ(ωX) (see Theorem 3.4).

Using the generic vanishing index we have the following more synthetic result.

Theorem B. Let X be a smooth projective complex variety such that gv(ωX) ≥ 2. Then, the

rational map associated to ω2
X ⊗ α is birational onto its image for every α ∈ Pic0X.

Theorem A is deduced from this result by an argument of Pareschi-Popa. On the other hand,

this result (see Theorem 5.1) is proved using a birationality criterion (see Lemma 4.2) that is a

slight modification of [BLNP, Theorem 4.13].

For curves, gv(ωC) ≥ 2 is equivalent to g(C) ≥ 3. For surfaces, gv(ωS) ≥ 2 is equivalent to

suppose that q(S) ≥ 4 and does not admit an irregular fibration to a curve of genus ≤ q(S)− 3

(see Example 5.3).

Acknowledgments. This is part of my Ph.D. thesis. I would like to thank my advisors,
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2. Generalized Fourier-Mukai transform

X will be a smooth projective variety over an algebraically closed field k (from section 3.3

on, we will restrict to k = C). It will be equipped with a morphism a : X → A to a non-

trivial abelian variety A, in particular, X will be irregular. Let P be a Poincaré line bundle on

A× Pic0A. We will denote

(1) Pa = (a× idPic0X)∗P,
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the induced Poincaré line bundle in X × Pic0A. When a = alb, the Albanese map of X, then

the map alb∗ identifies Pic0(AlbX) to Pic0X and the line bundle Palb will be simply denoted

by P .

Letting p and q the two projections of X×Pic0A, we consider the left exact functor ΦPaF =

q∗(p
∗F ⊗ Pa), and its right derived functors

(2) RiΦPaF = Riq∗(p
∗F ⊗ Pa).

Sometimes we will have to consider the analogous derived functor RiΦP−1
a
F as well. By the

Seesaw Theorem [Mu, Corollary 6, p. 54], P−1 = (1A × (−1)Pic0 A)∗P, so

(3) RiΦP−1
a
F = (−1Pic0 A)∗RiΦPaF for any i.

Given a coherent sheaf F on X, its i-th cohomological support locus with respect to a is

V i
a (F) =

{
α ∈ Pic0A hi(F ⊗ a∗α) > 0

}
Again, when a is the Albanese map of X, we will omit the subscript, simply writing V i(F).

By base change, these loci contain the set-theoretical support of RiΦPaF , i.e. suppRiΦPaF ⊆
V i
a (F).

A way to measure the size of all the V i
a (F)’s is provided by the following invariant introduced

by Pareschi–Popa.

Definition 2.1 ([PP3, Definition 3.1]). Given a coherent sheaf F on X, the generic vanishing

index of F (with respect to a) is

gva(F) := min
i>0

{
codimPic0 A V

i
a (F)− i

}
.

By convention we define gva(F) =∞, when V i
a (F) = ∅ for every i > 0. When a is the Albanese

map of X, we will omit the subscript, simply writing gv(F).

By base change (see [PP3, Lemma 2.1]) it is easy to see that gva(F) can be also defined as

the mini>0

{
codimPic0 A suppRiΦPaF − i

}
.

3. Generic vanishing index of the canonical sheaf

3.1. Relations between gv(ωX) and the Fourier-Mukai transform of OX . Here we spe-

cialize some general results of Pareschi–Popa [PP3, PP4] to the canonical sheaf of a smooth

projective variety of dimension d. Some of these results were previously obtained by Hacon (see

[Ha]).

The negative values of the gv-index are related with the vanishing of the lowest cohomologies

of the Fourier-Mukai transform of its Grothendieck dual. In the case of ωX this can be stressed

simply as:

Theorem 3.1 ([PP3, Theorem 2.2]). The following are equivalent,
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(a) gva(ωX) ≥ −e for e ≥ 0;

(b) RiΦPaOX = 0 for all i 6= d− e, . . . , d.

Hence, when gva(ωX) ≥ 0, RiΦPaOX = 0 for all i 6= d, and we usually denote

ÔX = RdΦPaOX .

Note that, in this case, H i(X,ωX ⊗a∗α) = 0 for all i > 0 and general α ∈ Pic0A. Therefore, by

deformation-invariance of χ, the generic value of h0(X,ωX ⊗ a∗α) equals χ(ωX), in particular

χ(ωX) ≥ 0. Since, by base-change, the fibre of ÔX at a general point α ∈ Pic0A is isomorphic

to Hd(X, a∗α) ∼= H0(X,ωX ⊗ a∗α−1)∗, the (generic) rank of ÔX is rk ÔX = χ(ωX).

From Grothendieck-Verdier duality [Co, Theorem 4.3.1] and Theorem 3.1 it follows that,

Corollary 3.2 ([PP4, Remark 3.13]). If gva(ωX) ≥ 0 then Ext iOPic0 A
((−1Pic0 A)∗ÔX ,OPic0 A) ∼=

RiΦPaωX .

The following result of Pareschi–Popa gives a dictionary between the positive values of

gva(ωX) and the local properties of the Fourier-Mukai transform of ÔX .

Theorem 3.3 ([PP3, Corollary 3.2]). Assume that gva(ωX) ≥ 0. Then,

(4) gva(ωX) ≥ m if, and only if, ÔX is a m-syzygy sheaf.

In particular, gva(ωX) ≥ 1 is equivalent to ÔX being torsion-free and gva(ωX) ≥ 2 to ÔX being

reflexive.

Using the Evans–Griffith Syzygy Theorem and the previous theorem, Pareschi–Popa obtain

the following bound on the Euler holomorphic characteristic that generalizes to higher dimen-

sions the Castelnuovo-de Franchis inequality.

Theorem 3.4 ([PP3, Theorem 3.3]). Assume that gva(ωX) ≥ 0. Then, χ(ωX) ≥ gva(ωX).

Remark 3.5. In fact, the theorem of Pareschi–Popa is more general, namely that for any

coherent sheaf F if ∞ > gva(F) ≥ 0, then χ(F) ≥ gva(F). As a consequence, we easily obtain

that for any non-zero coherent sheaf F , gva(F) ≥ 1 ⇒ χ(F) ≥ 1. Observe also that if a is

non-trivial, we always have gva(ωX) <∞.

3.2. Top Fourier-Mukai transform of the canonical sheaf. In the case of abelian varieties

(or complex torus) the following result is well-known and crucial in the proof of the Mukai

Equivalence Theorem [M, Theorem 2.2]. We will need it in the proof of Theorem 5.1.

Proposition 3.6 ([BLNP, Proposition 6.1]). If a∗ : Pic0A→ Pic0X is an embedding, then

RdΦPaωX
∼= k(0̂).
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3.3. Generic vanishing theorem of Green–Lazarsfeld. The name of the gv-index comes

from the well-known Generic Vanishing Theorem of Green–Lazarsfeld. As other general van-

ishing theorems, it requires char k = 0 so from now on we will restrict ourselves to the case

k = C. Basically, the following theorem is [GL1, Theorem 1]. The converse implication was

proven independently in [LP, Theorem B] and [BLNP, Proposition 2.9].

Theorem 3.7. For any e > 0, the following are equivalent:

(a) the generic fibre of a : X → A has dimension e,

(b) gva(ωX) = −e.

Moreover gva(ωX) ≥ 0 if, and only if, a : X → A is generically finite onto its image.

In particular, observe that for any irregular variety 1− dimX ≤ gv(ωX) ≤ q(X)− dimX.

Remark 3.8. If gva(ωX) ≥ 0 and χ(ωX) > 0, then X is a variety of general type. Indeed,

by the previous result a : X → A is generically finite and since χ(ωX) > 0, we have that

V 0
a (ωX) = Pic0A, so by [CH1, Corollary 2.4], κ(X) = dimX. In particular, if gva(ωX) ≥ 1,

then X is of general type.

3.4. Subtorus theorem of Green–Lazarsfeld and Simpson. The following theorem is due

to Green and Lazarsfeld [GL2, Theorem 0.1] with an important addition due to Simpson [S,

Sections 4,6, and 7].

Theorem 3.9. Let W an irreducible component of V i(ωX) for some i. Then,

(a) There exists a torsion point β ∈ Pic0X and a subtorus B of Pic0X such that W = β+B.

(b) There exists a normal variety Y of dimension ≤ d− i, such that any smooth model of Y

has maximal Albanese dimension and a morphism with connected fibres f : X → Y such

that B is contained in f∗ Pic0 Y .

Remark 3.10. It is useful to recall that the morphism f : X → Y in the second part of the

previous theorem, arises as the Stein factorization of the morphism π ◦alb: X → Pic0W , where

π : AlbX → Pic0W is the dual map of the inclusion W ⊆ Pic0X. Hence, the key point of the

second part of the theorem is the dimensional bound for Y .

4. Birationality criterion for maximal Albanese dimension varieties

In this section, we will assume that a : X → A is a generically finite morphism onto its image,

where A is an abelian variety. We introduce another piece of notation.

Notation 4.1. Let F be a subsheaf of a line bundle and suppose that gva(F) ≥ 1.

(a) We denote UF , the open subset where h0(F ⊗ a∗α) has the minimal value, i.e. χ(F).

(b) Let Z be the exceptional locus of a : X → A, that is Z = a−1(T ), where T is the locus

of points in A over which the fibre of a has positive dimension.
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(c) We define

BFa (x) = {α ∈ UF x is a base point of |F ⊗ a∗α|} .

By Remark 3.5, χ(F) ≥ 1. So, by semicontinuity, it makes sense to speak of the base

locus of F ⊗ a∗α for all α ∈ Pic0A.

The following lemma is a slight modification of [BLNP, Theorem 4.13] and it is based on

[PP1, Proposition 2.12 and 2.13].

Lemma 4.2. Suppose that a : X → A is a generically finite morphism onto its image and let

F be a subsheaf of a line bundle such that gva(F) ≥ 1 and Ria∗F = 0 for all i > 0. Suppose

that for a general x ∈ X,

codimUF B
F
a (x) ≥ 2.

Then, the rational map associated to the linear system |F ⊗ L| is birational for every line bundle

L such that gva(L) ≥ 1.

Proof. We first compare the Fourier-Mukai transform of F ⊗ Ix and F .

Claim. Let x ∈ X be a closed point out of Z. Then Ria∗(F ⊗ Ix ⊗ a∗α) = 0 for i > 0. This

follows immediately from the exact sequence

(5) 0→ F ⊗ Ix → F → k(x)→ 0

and the hypotheses that Ria∗F = 0, a is generically finite, and x 6∈ Z. Hence, the degeneration

of the Leray spectral sequence yields to

(6) V i
a (F ⊗ Ix) = V i(a∗(F ⊗ Ix)).

By sequence (5), tensored by a∗α, it follows that

(7) V i
a (F ⊗ Ix) = V i

a (F) for all i ≥ 2.

For i = 1 we have the surjection H1(F ⊗ Ix ⊗ a∗α)� H1(F ⊗ a∗α), that is an isomorphism if,

and only if, x is not a base point of |F ⊗ a∗α|. In other words V 1
a (F ⊗ Ix) ⊆ BFa (x) ∪ V 1

a (F).

Since gva(F) ≥ 1, the hypothesis on BFa (x) guarantees that

(8) codimV 1
a (F ⊗ Ix) ≥ 2,

for a general x ∈ X \ Z. Hence by (6), (7) and (8), gv(a∗(F ⊗ Ix)) ≥ 1. By [PP1, Proposi-

tion 2.13], a∗(F ⊗ Ix) is continuously globally generated (CGG, see [PP1]). Therefore F ⊗ Ix
itself is CGG outside Z (with respect to a). Since the same is true for L, it follows from [PP1,

Proposition 2.12] that for all α ∈ Pic0A, F ⊗ L ⊗ Ix is globally generated outside Z. So the

rational map associated to |F ⊗ L| is birational. �

Remark 4.3. From the proof we see that if codimUF BFa (x) ≥ 2 for every x ∈ X \ Z, then

F ⊗ L is very ample out of Z, the exceptional locus of a.
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4.1. Adjoint line bundles. When F = ωX we will call UF simply U0 and BωX
a (x) simply by

(9) Ba(x) = {α ∈ U0 x is a base point of ωX ⊗ a∗α} .

Throughout subsections §4.1 and §4.2, we will assume that gva(ωX) ≥ 1.

Proposition-Definition 4.4. Let X be a variety such that gva(ωX) ≥ 1 and let L be any line

bundle on X such that gva(L) ≥ 1. Suppose that there exists α ∈ Pic0A such that ωX ⊗L⊗a∗α
is not birational. Then,

codimX×U0 {(x, α) ∈ X × U0 x is a base point of ωX ⊗ a∗α} = 1,

and its divisorial part is dominant on X and surjects on U0 via the projections p and q. We

endow this set with the natural subscheme structure given by the image of the relative evaluation

map q∗(q∗L) ⊗ L−1 → OX×U0, where L = (p∗ωX)⊗ Pa)|X×U0
and we call Y the union of its

divisorial components that dominate U0. Let Y be its closure in X × Pic0X. Then

(a) X is covered by the scheme-theoretic fibres of the projection Y → U0, that we will call

Fα, for α varying in U0. By definition, at a general point α ∈ U0, Fα is the fixed divisor

of ωX ⊗ a∗α.

(b) For a general x ∈ X, the fibre of the projection Y → X is a divisor, that we will call Dx.

By definition, Dx is the closure of the union of the divisorial components of the locus of

α ∈ U0 such that x ∈ Bs(ωX ⊗ a∗α).

Proof. Everything follows from taking F = ωX in Lemma 4.2. The surjectivity of the projection

to U0 is consequence of the Castelnuovo-de Franchis inequality 3.4, i.e. χ(ωX) ≥ gva(ωX) ≥
1. �

4.2. Decomposition. In the sequel we will need a∗ : Pic0A → Pic0X to be an embedding.

However, for simplicity we will go one step further and we will simply suppose that A = AlbX.

Suppose that we are under the hypotheses of the previous Proposition-Definition and consider

a fixed point α0 ∈ U0, and the map

(10) fα0 : U0 → Pic0X α 7→ OX(Fα − Fα0),

where Fα is the divisor defined in Proposition-Definition 4.4(a). For α ∈ U0, all the Fα are

algebraically equivalent since they are the fibres of Y → U0, so the map is well-defined.

The following lemma shows that this map induces a decomposition of Pic0X and that the

divisors Fα move algebraically along a non-trivial factor of Pic0X. Although the proof is

basically the same as [BLNP, Lemma 5.1], we do not require V 1(ωX) to be a finite set, but only

a proper subvariety.

Lemma 4.5. The map defined in (10), induces an homomorphism f : Pic0X → Pic0X such

that,
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(a) f2 = f and Pic0X decomposes as Pic0X ∼= ker f×ker(id−f). Moreover dim ker(id−f) >

0.

(b) Fix β̄ ∈ ker f such that U0 ∩
({
β̄
}
× ker(id−f)

)
is non-empty. Then, for γ ∈ U0 ∩

ker(id− f) the line bundle OX(Fβ̄⊗γ)⊗ γ−1 does not depend on γ. Since it is effective

by semicontinuity, we call it OX(F ).

(c) For all (β, γ) ∈ ker f × ker(id − f) ∼= Pic0X such that β ⊗ γ ∈ U0, |OX(F )⊗ γ| is

contained in the fixed divisor of ωX ⊗ β ⊗ γ.

Proof. Let OX(Mα) = ωX ⊗ a∗α ⊗ OX(−Fα). Then, the proof of (a) is the same as [BLNP,

Lemma 5.1](a). Item (b) follows directly from the definition of f . To prove (c), let (β, γ) ∈
ker f × ker(id−f) such that β ⊗ γ ∈ U0 and E ∈ |OX(F )⊗ γ|. Then OX(Fβ⊗γ − E) ∼=
OX(Fβ⊗γ − Fβ̄⊗γ) = f(β ⊗ β̄−1) = OX . Since Fβ⊗γ is a fixed divisor of |ωX ⊗ β ⊗ γ|, also

E = Fβ̄⊗γ is a fixed divisor in |ωX ⊗ β ⊗ γ|. �

Using the decomposition given by the previous Lemma we give an explicit description of the

“half” Poincaré line bundle.

Lemma 4.6 ([BLNP, Lemmas 5.1 & 5.3]). We call B = Pic0(ker f) and C = Pic0(ker(id−f))

so that

AlbX ∼= B × C and Pic0X ∼= Pic0B × Pic0C,

with dimC > 0. Then we have the following description of the “half” Poincaré line bundle.

(alb× idPic0X)∗(OB×Pic0B � PC) ∼= OX×Pic0X(Y)⊗ p∗OX(−F )⊗ q∗OPic0X(−Dx̄),

where x̄ is such that alb(x̄) = 0 in AlbX and PC is the Poincaré line bundle in C × Pic0C.

Proof. The decomposition of Pic0X comes directly from Lemma 4.5(a). By the definition of Y
(see Proposition-Definition 4.4) and the definition of F (see Lemma 4.5(b)) we have that the

line bundle

OX×Pic0X(Y)⊗ p∗OX(−F )⊗ q∗OPic0X(−Dp̄),

- restricted to X × {β ⊗ γ} is isomorphic to OX(Fβ⊗γ − F ) = γ, for all (β, γ) ∈ U0 ⊆
ker f × ker(id−f);

- restricted to {x̄} × Pic0X is isomorphic to OPic0X(Dx̄)⊗OPic0X(−Dx̄), i.e. trivial.

On the other hand, (alb× idPic0X)∗(OB×Pic0B � PC),

- restricted to X × {β ⊗ γ} is isomorphic to γ, for all (β, γ) ∈ ker f × ker(id−f);

- restricted to {x̄} × Pic0X is isomorphic to OPic0X , i.e. trivial.

Then, the Lemma follows from the seesaw principle. �
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5. The bicanonical map of irregular varieties

The next theorem gives a sufficient numerical condition for the birationality of the bicanonical

map, analogous to Pareschi–Popa Theorem [PP2, Theorem 6.1] for the tricanonical map.

Theorem 5.1. Let X be a smooth projective complex variety such that gv(ωX) ≥ 2. Then, the

rational map associated to ω2
X ⊗ α is birational onto its image for every α ∈ Pic0X.

As a first corollary we have the following geometric interpretation.

Theorem 5.2. Let X be a smooth projective complex variety of maximal Albanese dimension

such that the bicanonical map is not birational. Then 0 ≤ gv(ωX) ≤ 1. Moreover, it admits a

fibration onto a normal projective variety Y with 0 ≤ dimY < dimX, any smooth model Ỹ of

Y is of maximal Albanese dimension and

q(X)− dimX ≤ q(Ỹ )− dimY + gv(ωX).

Proof. By Theorems 3.7 and 5.1, it is clear that 0 ≤ gv(ωX) ≤ 1. Now, the proof is the same

as the proof of [PP3, Theorem B]. �

Example 5.3. We would like to show examples of varieties with gv(ωX) ≥ 2. For curves C,

this is equivalent to g(C) ≥ 3. For surfaces S, is equivalent to suppose that q(S) ≥ 4 and S

does not admit an irregular fibration to a curve of genus ≤ q(S)− 3 (see [Be, Corollary 2.3]).

On the other hand, if A is a simple abelian variety, then every subvariety X of codimension

≥ 2 has gv(ωX) ≥ 2. Moreover, the property of having gv(ωX) ≥ 2 is closed under taking

products and cyclic coverings induced by a torsion point α ∈ Pic0X − V 1(ωX).

The rest of the paper is devoted to the proof of Theorem 5.1.

Proof. Assume that gv(ωX) ≥ 1 and there exists α ∈ Pic0X such that ω⊗2
X ⊗α is non-birational.

Then, we want to see that gv(ωX) = 1. Under these hypotheses we can apply Proposition-

Definition 4.4 and Lemma 4.6, so AlbX ∼= B × C, where B = Pic0(ker(id−f)) and C =

Pic0(ker f). We have the following commutative diagram

(11) Pic0X

pb̂
��

X × Pic0X
q

oo alb× id//

id×pb̂
��

AlbX × Pic0X

pb×pb̂
��

Pic0B X × Pic0B
q

oo
b×id

// B × Pic0B

where

- pb : AlbX → B and pb̂ : Pic0X → Pic0B are the corresponding projections,

- b is the composition by b : X
alb→ AlbX

pb→ B, and

- abusing notation we also call q either the projection X × Pic0X → Pic0X or X ×
Pic0B → Pic0B and p the projections X × Pic0X → X or X × Pic0B → X.
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The effectiveness of Y give us the following short exact sequence on X × Pic0X

0→ (alb× id)∗(OB×Pic0B � PC)−1 ·Y→ p∗OX(F )⊗ q∗O(Dx̄)→ (p∗OX(F )⊗ q∗O(Dx̄))|Y → 0.

Recall that P = (alb× idPic0X)∗(PB �PC) since the Poincaré line bundle P in AlbX ×Pic0X

is isomorphic to PB �PC . We apply the functor Rdq∗( · ⊗ (alb× idPic0X)∗(P−1
B �OC×Pic0 C)),

that is, we tensor by the other “half” Poincaré line bundle and we consider the top direct image.

We get

· · · →RdΦP−1(OX)→ Rdq∗
(
p∗OX(F )⊗ (alb× idPic0X)∗(P−1

B �OC×Pic0 C)
)
⊗OPic0X(Dx̄)→

→Rdq∗
(

(p∗OX(F )⊗ q∗OPic0X(Dx̄))|Y ⊗ (alb× idPic0X)∗(P−1
B �OC×Pic0 C)

)
→ 0

Using that RiΦP−1
∼= (−1)∗

Pic0X
RiΦP (see (3)), we have the following short exact sequence,

(12) 0→ (−1)∗
Pic0X

ÔX
µ→ E(Dx̄)→ T → 0

where:

(a) By base change, E = Rdq∗(p
∗OX(F )⊗ (alb× idPic0X)∗(P−1

B �OC×Pic0 C)) is a coherent

sheaf of rank hd(OX(F )⊗β−1) by a general β ∈ ker f , i.e h0(ωX⊗OX(−F )⊗β) = χ(ωX)

by Lemma 4.5(c). Then,

E = Rdq∗(p
∗OX(F )⊗ (alb× id)∗(P−1

B �OC×Pic0 C))

= Rdq∗(p
∗OX(F )⊗ (id×pb̂)

∗(b× id)∗P−1
B ) right square of (11)

= Rdq∗(id×pb̂)
∗(p∗OX(F )⊗ (b× id)∗P−1

B ) abuse of notation on p

= p∗
b̂
Rdq∗(p

∗OX(F )⊗ (b× id)∗P−1
B ) flat base change

= p∗
b̂
RdΦP−1

b
(OX(F )),

following the notation of (1) and (2).

(b) T = Rdq∗
(

(p∗OX(F )⊗ q∗OPic0X(Dx̄))|Y ⊗ (alb× idPic0X)∗(P−1
B �OC×Pic0 C)

)
is sup-

ported at the locus of the α ∈ Pic0X such that the fibre of the projection q : Y → Pic0X

has dimension d, i.e. it coincides with X. Such locus is contained in V 1(ωX), therefore,

since gv(ωX) ≥ 1, codim supp T ≥ 2.

(c) The map µ is injective since it is a generically surjective map of sheaves of the same

rank (recall that rk ÔX = χ(ωX)), and, as gv(ωX) ≥ 1, the source ÔX is torsion-free

(Theorem 3.3).

(d) µ is Rdq∗(ms), where ms is the multiplication by the section defining Y. By base

change [Mu, Corollary 3, p. 53], Rdq∗(ms) ⊗ C(α) = Hd(ms|q−1{α}) where q is the

projection q : Y → Pic0X. When q−1 {α} = X, ms|q−1{α} = 0, so in these points

Rdq∗(ms)⊗ C(α) = 0.

Claim 5.4. T 6= 0.
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Proof of the Claim. Suppose that T = 0, so µ is an isomorphism. Taking Extd( · ,OPic0X) we

get

k(0̂) = RdΦPωX Proposition 3.6

= Extd(E ,OPic0X)⊗O(−Dx̄) Extd(µ,OPic0X) and Cor. 3.2

= p∗
b̂
Extd(RdΦPb

(OX(F )),OPic0B)⊗O(−Dx̄) see item (a),

which implies that codimAlbX B = dim ker(id−f) = 0 contradicting Lemma 4.6. �

Let τ(E(Dx̄)) be the torsion part of E(Dx̄) and Ẽ(Dx̄) the quotient of E(Dx̄) by its torsion

part. Hence Ẽ(Dx̄) is torsion-free. Now consider the following composition

(−1)∗
Pic0X

ÔX
µ
//

µ̃ ''

E(Dx̄)

����

Ẽ(Dx̄).

Since µ̃ is generically surjective and (−1)∗
Pic0X

ÔX is torsion-free (recall that gv(ωX) ≥ 1), we

have that µ̃ is injective. Completing the diagram we get,

(13) 0

��

0

��
τ(E(Dx̄))

��

τ(E(Dx̄))

��
0 // (−1)∗

Pic0X
ÔX

µ
// E(Dx̄)

����

// T //

��

0

0 // (−1)∗
Pic0X

ÔX
µ̃
// Ẽ(Dx̄)

��

// T̃ //

��

0

0 0

If T̃ = 0, then the middle horizontal short exact sequence splits. But, for α a closed point in

the support of T (by the previous claim we know that T 6= 0), µ⊗ C(α) = 0 by item (d), so µ

cannot split. Therefore T̃ 6= 0.

Let e = codimPic0X supp T̃ ≥ 2 (see item (c)). Then codimPic0X supp Exte(T̃ ,OPic0X) = e.

Now, we apply the functor Ext i( · ,OPic0X) to the bottom row of (13) using Corollary 3.2

. . .→ Re−1ΦPωX → Exte(T̃ ,OPic0X)→ Exte(Ẽ(Dx̄),OPic0X)→ . . .

Since Ẽ(Dx̄) is torsion-free, codimPic0X supp Exte(Ẽ(Dx̄),OPic0X) > e. Therefore, we must have

codimPic0X suppRe−1ΦPωX = e and gv(ωX) ≤ 1. �
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