Multi-Level Integrated Analysis of Chronic Obstructive Pulmonary Disease (COPD) heterogeneity

Guillaume Noell
MULTI-LEVEL INTEGRATED ANALYSIS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) HETEROGENEITY

Guillaume Noell
MSc in Bioinformatics for Health Sciences

PhD co-directors:
Dra. Maria Rosa Faner Canet
Dr. Àlvar Agustí

PhD program in biomedicine
Department of medicine
University of Barcelona (UB)
January 15th 2019

Thesis co-director
Dra. Maria Rosa Faner Canet

Thesis co-director
Dr. Àlvar Agustí

Doctoral student
Guillaume Noell
Acknowledgements

First, I would like to express my utmost gratitude to Dra. Maria Rosa Faner and Dr. Àlvar Agustí for their guidance, hard work and the trust that have put in me from the very start of the PhD. I sincerely feel privileged to have had them as my supervisors. Without sacrificing to the pursuit of scientific excellence, they have mastered the art of encouragement, positive reinforcements, honest feedback and human connection which I valued immensely and made my PhD trouble-free. They are experts in their field and exemplary researchers, always looking out to foster positive collaborations between scientists with the utmost consideration for scientific truth and the progress of medicine. I will miss working with them and will remember their supervision as an example to follow for the remainder of my professional career.

Besides my directors, I would like to thank the members of my thesis defense committee: Dr. Ferran Sanz Carreras, Dr. Josep Roca Torrent, and Dra. Esther Barreiro.

I would also like to thank my colleagues and lab mates for their unwavering enthusiastic support, assistance and kindness.

Last but not least, I am most happy to thank my family, my parents, brothers, sister and grandparents. They have supported me wholeheartedly throughout my studies and life choices, shaped my core values, and always provided me with the best material and emotional conditions. They encouraged me to aim high in whichever path I personally chose to pursue. I owe them much of my accomplishments.
Table of Contents

Acknowledgements .. 3
Table of Contents ... 5
Abbreviations ... 7
Introduction .. 9
1. Non-Communicable Diseases .. 9
 1.1 Global Prevalence .. 9
 1.2 NCDs are Complex and Heterogeneous Conditions ... 9
2. Biomedical Research of Complex Diseases ... 10
 2.1 Historical Perspective .. 10
 2.2 Biotechnological Revolution .. 12
 2.3 Systems Medicine, Biostatistics and Bioinformatics ... 13
3. COPD: a Major Non-Communicable Disease .. 14
 3.1 Epidemiology and Clinical Presentation .. 14
 3.2 COPD Risk Factors ... 15
 3.3 COPD Heterogeneity .. 19
Research Hypothesis .. 25
Objectives ... 27
Results ... 29
Original Paper 1:
Multi-level Differential Network Analysis of COPD Exacerbations 31
Original Paper 2:
Low Lung Function in Early Adulthood and Health in Later Life: a Transgenerational Cohort Analysis ... 45
General Discussion .. 57
1. Specific Discussion of the First Aim:
 Multilevel Characterization of COPD Exacerbations ... 59
 1.1 Characterization of ECOPD ... 59
 1.2 Biomarkers Diagnostic of Exacerbations ... 60
 1.3 Multi-Level Differential Network Analysis of Exacerbations (MLDNA) 61
 1.4 Core Paper 1 Limitations ... 63
2. Specific Discussion of the Second Aim:
 Relevance of Low Lung Function in Early Adulthood ... 64
 2.1 Early Life and Pre-Birth Factors of Abnormal Low Lung Function 64
 2.2 Tobacco as a Potential Cause of Early Adulthood Low Lung Function 66
 2.3 Novel Hypothesis: The factors that Cause an Abnormal Lung Development Might Also Compromise the Cardiovascular and Metabolic Systems 67
 2.4 (Epi-)Genetic Factors that Lead to Abnormal Lung Development 68
 2.5 Potential Opportunities for Treatment, Prevention and Early Intervention 69
 2.6 Core Paper 2 Limitations ... 69
 2.7 Futures Challenges of Systems Medicine in this Field 70
Conclusions .. 73
Appendix ... 75
Informe de publicaciones de la Tesis ... 85
Bibliography ... 87
Abbreviations

A1PI or A1AP: Alpha1–Proteinase Inhibitor
ACO: co-occurrence of Asthma and Chronic Obstructive Pulmonary Disease
AUC: Area Under the Score
BAFFs: B cell Activating Factor belonging to the tumor necrosis factor (TNF) Family
BMI: Body Mass Index
COPD: Chronic Obstructive Pulmonary Disease
CRP: C-Reactive Protein
DLCO: Diffusing Capacity of the Lung for Carbon Monoxide
DPPIV: Dipeptidyl Peptidase IV
ECM: ExtraCellular Matrix
ECOPD: Exacerbations of Chronic Obstructive Pulmonary Disease
ELLF: Early adulthood Low peak Lung Function
ENLF: Early adulthood Normal peak Lung Function
FDR: False Discovery Rate
FEV1: Forced Expiratory Volume in 1st second
FFMI: Fat-Free Mass Index
FOC: Framingham Offspring Cohort
FVC: Forced Vital Capacity
FiO2: Fraction of Inspired Oxygen
GDF-15: Differentiation Factor-15
GOLD: Global Initiative for Obstructive Lung Disease
HDACs: Histone Deacetylases
HGP: Human Genome Project
HR: Hazard Ratio
IgE: Immunoglobulin E
KCO: Carbon Monoxide transfer coefficient
LAMAs: Long-Acting Muscarinic Antagonists
LFs: Lymphoid Follicles
LVRS: Lung Volume Reduction Surgery
MLDNA: Multi-Level Differential Network Analysis
MM: Module Modularity
MMPs: Matrix-Metalloproteinases
NCDs: Non-Communicable Diseases
NF-κB: transcription factor nuclear factor
NT-proBNP: N-Terminal pro B-type Natriuretic peptide
PAFI: PaO2/FiO2
PDE4: Phosphodiesterase 4
PFT: Pulmonary Function Test
PPMs: Potential Pathogenic Microorganisms
PaO2: Partial Pressure of Oxygen
ROC: Receiver operating Characteristic
SAA: Serum Amyloid A
SABA: Short-Acting inhaled Beta-Agonists
SAMA: Short-Acting Muscarinic Antagonist
SLPI: leukocyte Protease Inhibitor
SP-D: Human surfactant Protein D
TNF-α: Tumour Necrosis Factor-alpha
VmaxFRC: maximal expiratory flows at Functional Residual Capacity
iNOs: inducible Nitric Oxide synthase
mMRC: modified British Medical Research Council
Introduction

1. NON-COMMUNICABLE DISEASES

1.1 Global Prevalence

Non-Communicable Diseases (NCDs) are chronic diseases that result from a combination of genetic, physiological, environmental and behavioral factors [1]. The main types of NCDs are cancer, cardiovascular and cerebrovascular diseases, chronic obstructive pulmonary disease (COPD), asthma and metabolic diseases (diabetes). NCDs are a major global health problem of the 21st century [1]. They are estimated to represent 63% of global annual deaths according to the World Health Organization (WHO) [2, 3]. They are known to be by-and-large preventable with the appropriate management of their principal risk factors at an individual level throughout life: tobacco smoking, alcohol abuse, physical inactivity and unhealthy dieting. Specifically, the WHO estimates that up to 40% of cancers and 75% of heart diseases, stroke and type 2 diabetes could be prevented. Unfortunately, 80% of NCDs deaths occur in low- and middle-income countries [2] where individuals lack preventive information, early detection, access to healthcare and the economic resources to minimize the risk factors or afford treatment.

1.2 NCDs are Complex and Heterogeneous Conditions

NCDs are caused by complex gene-environment interactions that develop over years or decades (thus are associated with aging) and often co-exist in the same individual as they share risk factors [4] and pathological mechanisms (leading to what is known as multimorbidity) [5]. These cooccurrences lie at the heart of NCDs and make clear-cut singular diagnostics difficult. Their pathobiology is also complex, heterogeneous and may lead to unspecific symptoms. For most NCDs, current available treatments are not able to cure the condition, but rather only alleviate symptoms and slow the disease progression.

NCDs often share major risk factors [4]. Therefore, multimorbidity may be explained by the hypothesis that the progressive abnormal transformation of a biological system (e.g. metabolic or respiratory) that lead to a dysfunctional long-lasting state with observable symptoms is likely to also affect other parts of the organism in its course or to be caused by a
common denominator (e.g. systemic inflammation or impaired immune response, or common susceptibility genes [6]).

2. BIOMEDICAL RESEARCH OF COMPLEX DISEASES

2.1 Historical Perspective

The continuous ageing of the general population worldwide over the last two centuries [7] has caused an increase in the overall incidence of NCDs since they are more prevalent in older individuals. Life expectancy in fact rose from a worldwide average of 32 years in 1850, to 48 years in 1950 and is now, as of 2018, over 70 years (Figure 1), and is associated to three cooccurring factors: the worldwide expansion of modernization and industrialization, general lifestyle improvements in high-income countries (such as overall reduced tobacco smoking [8] and less physical strenuous jobs), and unprecedented progress in experimental medicine.

![Life Expectancy of the World Population in 1800, 1950 and 2012](https://ourworldindata.org/life-expectancy)

Figure 1. Progress of worldwide life expectancy. Reproduced from https://ourworldindata.org/life-expectancy

Significant scientific advances in our understanding of health and (chronic) diseases since the nineteenth century [9] have been translated into numerous novel treatments,
medication, drugs, surgical procedures and preventive measures that drastically reduced maternal, infancy and elderly mortality (Figure 2). A non-exhaustive list of these innovations [9] range from Louis Pasteur and Robert Koch germ theory of disease in 1870s, to a host of first vaccines in the second half of the 19th century (for cholera, rabies, plague, etc.), as well as the discovery of insulin for diabetes in 1922, the first pacemaker by Paul Zoll in 1952, the first kidney transplant by Dr Jose E. Murray in 1954, the HIV discovery in 1983, the first released draft of the human genome in 2003, the creation of embryonic stem cells from human skin cells in 2007, and the 2014 first FDA-approved US clinical trial for a wearable artificial kidney (Blood Purification Technologies Inc.). The rate of innovations is incrementing swiftly, as corroborated by the double-exponential increase of the biomedical literature in the last 20 years (Figure 2).

![Medline Growth](image)

Figure 2. Growth in the Biomedical Literature, 1986–2005, reproduced from ref. [10]

This growth is fueled by increasing worldwide funding for biomedical research (estimated in 2012 at 268 billion of U.S. dollars [11]), and, as mentioned, driven by technological advances and breakthroughs (e.g. internet, which has enabled the fast exchange of information and facilitated scientific collaborations, as well as software and hardware improvements in terms of availability, versatility, power and cost). Nevertheless, all these progressive efforts still remain insufficient as most chronic diseases do not yet have a cure.
2.2 Biotechnological Revolution

Over the last three decades, biomedical research has undergone a fast-paced revolution in methods and scope. Experimental medicine research of NCDs now routinely collects extensive samples data at several biological levels, termed omics, thanks to novel arrays, sequencing and imaging technologies [12], that commonly are genetic (genomics), messenger RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics). The first international milestone enabled by the interleaving of biology and technology is arguably the Human Genome Project (HGP), which started in 1990 and was declared completed in April 2003 with the release of the first human complete DNA sequence (genome), consisting of 3 billion base pairs, for a total cost of 2.7 billion dollars. Since then, incredible advances in technology and cost reduction have led to the pursuit of the “1000 dollars Genome”. It is now a reality in the strict sense if considering only the cost of sequencing. The cost of interpreting the data, however, is still several order of magnitudes higher [13, 14].

Because of the increase in biomedica data size and complexity, many fields of expertise are now necessary to the research efforts on NCDs. The cost of studies is also increasing, partly because the higher the number of biological (omics) determinations characterized, the more samples are required to separate signal from noise and reach statistical significance. Even in the simplified case of a single omic analysis, detecting variants (e.g. genes) that have a different average expression between two conditions (e.g. healthy versus NCD) requires many samples because of the high number of measurements (e.g. up about 10000-50000 genes per sample for a routine transcriptomics array). In statistical terms, because these measured biological variables tend to follow a (normal) distribution of substantial variability, the probability (p-value) that some of them will be significantly differentially expressed by chance (false positives) between any two groups of interest is not negligible. Fortunately, p-values calculations can be corrected for multiple testing [15], e.g. controlling for the relative proportion of false positives to true positives. However, to reach statistical significance, the sample size must be in the order of tens or hundreds of samples for the most complex chronic conditions (or even thousands for exhaustive multi-omics or genome-wide association studies). Collaborations between scientists and research groups have become paramount to cover the scientific expertise and reduce the research costs of these complex studies.
2.3 Systems Medicine, Biostatistics and Bioinformatics

It is plausible to conceptualize human health and NCDs as emergent properties of a complex, non-linear, dynamic multilevel biological system. The existence of heterogeneity as an intrinsic property of a (diseased) biological system implies that the system processes are sufficiently complex for its emergence, and that no isolated part of the system can fully grasp the heterogeneity on its own [16].

As such, the ongoing scientific approach to better understand NCDs like COPD lies in the analysis of the interaction between the many biological components upon which they rest, in an attempt to relate the observed clinical symptoms to their underlying biological (and environmental) systems’ parts. These components, or variables, exist as useful abstractions at different conceptual levels, for example organs at the physiological level, proteins at the cellular levels, genes at the (epi-)genetic level, diet/exercise/pollution at the environmental level and so on and so forth [17].

That being said, determining the isolated state of each of these components (e.g. whether an organ is functioning properly or not, how much a single protein is expressed, how healthy the patient’s diet is, etc.) fails to capture the disease processes and symptoms, because, as stated, they are emergent [16] properties of the mechanistic interactions between the variables, and not of the isolated variable states by themselves. Systems medicine thus places the dynamic interaction of the parts in a holistic system at the centre of the research approach. Conceptually diseases are understood as abnormal states of a dynamic network of (biological and environmental) interactions.

This NCDs research approach then requires the expression of as many relevant biological components as possible, plus their dynamic interaction, which appears daunting when considering the sheer number of potentially involved genes or genetic variants alone. That is precisely, however, what the exponential progress of (bio)technologies in the last decades has made possible. In parallel, the computational tools required for the task, i.e. bioinformatics and biostatistics algorithms able to process and extract the relevant variability
and processes out of the data, are also the subject of an incredibly fast progress in order to yield powerful mechanistic or predictive models. Network correlation analysis in particular is a novel research approach that is able to unravel the complexity of biological systems [12]. Other useful methods exist, based either on Bayesian statistics, machine learning or matrix factorization [12].

These emerging tools can be divided into biased (also termed supervised) or unbiased (unsupervised) algorithms. Biased algorithms use a priori hypothesis about the data, such as which are the relevant clinical subgroups of a disease and which are the known relationships between variables (e.g. protein-protein interactions), and then identify the variables and mechanisms that best distinguish and describe these subgroups, while unbiased algorithms look for (combinations of) variables that best capture the variance of the data and attempt to cluster patients without leveraging any prior knowledge of their condition. Both analytical strategies have strengths and drawbacks (detailed in table 3 of my systems biology review [12]) that have to be considered when deciding which method is best suited for a particular research question and dataset.

3. COPD: A MAJOR NON-COMMUNICABLE DISEASE

3.1 Epidemiology and Clinical Presentation

Chronic Obstructive Pulmonary Disease (COPD) is currently viewed as a broad diagnostic term that may encompass a continuum of subtypes each characterized by a distinct functional and pathobiological mechanism (endotypes [18]) and is characterized by persistent respiratory symptoms and airflow limitation [19].

COPD global age-standardised prevalence is 9.23% (95% credible interval [CrI]: 8.16%–10.36%) in men and 6.16% (95% CrI: 5.41%–6.95%) in women [20], although it may equalize in the near future, as women are now more exposed to indoor air pollution (from low-income countries biomass fuel used for cooking and heating) [20]. Females appear to be more susceptible to the harmful effects of smoking on lung function [21], and COPD-related deaths in U.S. women have now surpassed those among U.S. men [22].
COPD frequency is increasing worldwide and is projected to be by 2020 the third leading cause of death worldwide. It also represents a major financial burden on countries economies. Direct US healthcare cost was estimated at 29.5 billion dollars in 2010 and is projected to reach 49 billion by 2020 [19, 23], which includes treatment, prevention, detection and rehabilitation. The inability to work cost caused by the disease morbidity and mortality also adds indirect costs to the economy.

Exhaustive and updated diagnostics criteria are established by the Global Initiative for Obstructive Lung Disease (GOLD), which publishes yearly a comprehensive guide for health care professionals [19]. The report also covers treatment recommendations based on severity and disease progression, prevention and management recommendations, medication and therapies review, as well as comorbidities information. The GOLD diagnostic criteria keep updating slightly as clinical research progresses [24]. Additionally, COPD was found to be both regularly misdiagnosed [25] and under-diagnosed [26].

Available treatment options for COPD significantly improve the patient’s quality of life, but they arguably mostly operate at the symptoms level, only slow the progression of the disease and are not yet able to restore the lung biological system to a normal healthy and optimal state. Current therapies are not based on biomarkers of specific underlying pathological processes (endotypes) because these are still unknown [12]. In order to provide more effective and personalized therapeutic interventions, as well as to decrease the costs associated to chronic airway diseases, a better understanding of their pathobiology is needed and appropriate patient stratification is required.

3.2 COPD Risk Factors

COPD has been traditionally considered a self-inflicted condition caused by tobacco smoking, that induces an abnormal inflammatory response and accelerates the normal decline of lung function with age [27]. This paradigm is now challenged since recent reports showed that half of patients with spirometrically defined COPD at 60 yrs. of age never had a normal peak lung function in early adulthood [28] (Figure 3), pointing to a dynamic heterogeneity of the natural history of COPD. Furthermore, it is now estimated that 25-45% of COPD patients
never smoked [29]. Of note, however, approximately 75% of individuals with a low peak FEV1 in early adulthood do not develop COPD.

More specifically, the following COPD risk factors have been proposed:

Tobacco Smoking and Age

COPD incidence increases with age and is typically diagnosed in individuals older than 40 y.o. (on average at 64 y.o. [31, 32]) who have accumulated years of smoking (commonly measured in pack-years, that is the number of packs of cigarettes smoked per day multiplied by the number of years of smoking). It is estimated that up to 50% of smokers develop COPD [33]. Inversely, currently up to one third of never-smokers meet the COPD criteria [34]. It is worth mentioning that the relative prevalence of COPD never-smokers will increase in developed countries since the proportion of smokers in the general population is decreasing. The effect of smoking is very variable and is tied to the host genetics and immune system [35, 36].
Occupational Exposure to Dusts and Chemicals or to Biomass Fuel

Prolonged exposure to toxic particles for the lung is estimated to be responsible for 15-20% of COPD diagnosis [37]. They are mostly linked to either workplace environments that involve dust, vapours, chemicals, fumes, or household environments that make use of wood smoke, coal or coke open-fires [38]. Both conditions are more prevalent in developing countries due to less stringent protections of employees and less household regulations.

Air Pollution

As mentioned, short-term exposure to air pollution intensifies COPD exacerbations [39], and it generally has adverse effects on COPD symptoms. The influence of chronic exposure to air pollution on COPD is still unclear, although recent cross-sectional studies (on healthy individuals) suggest that it is related to delayed pulmonary function growth in children, and to a faster decline of lung function in adults [40].

Chronic Respiratory Infections

Infections like tuberculosis or HIV are unfortunately still endemic in low and middle-income countries. A meta-analysis evaluates that tuberculosis may double the odds-ratio of chronic airflow obstruction [41], and HIV is a similar risk factor [42]. The inverse is also true as COPD exacerbates the sensitivity to tuberculosis and mycobacterial infections [43, 44]. A history of severe medical illnesses in childhood like respiratory infections and HIV increases COPD risk as well [45].

Genetics

Only about 20% of smokers develop COPD [46], and inversely there is a minority of never-smokers that fit the COPD diagnostic criteria. There is transgenerational association of COPD diagnostic within families [47], so it is likely that genetic (and environmental) factors play a significant role in disease susceptibility. The only endotype of COPD in which the underlying pathobiology is known is due to mutations in the SERPINA1 gene, that cause alpha1–proteinase inhibitor (A1PI) enzyme deficiency [48], and is considered as a different disease entity. Mutations in the SERPINA1 gene account for only 1 to 3% of COPD patients. Since 2009 several genome-wide association studies (GWAS) and meta-analysis have been conducted in several cohorts that include COPD patients [49-52]. Overall these studies have
contributed to the identification of several genomic regions that are associated with COPD at genome-wide significance, including FAM13A, HHIP, CHRNA3/CHRNA5/IREB2, and a region on chromosome 19. Several other genes and gene regions, including ADAM19, FGF7, and SP-D showed evidence for association to develop COPD in smokers. Furthermore, several genes have been associated to the heterogeneity of COPD, for example: i) CHRNA3/5 mutations are associated with cumulative smoking exposure (pack-years), emphysema and airflow limitation [49], ii) HHIP - although not associated with pack-years - is related to FEV₁/FVC ratio, lean body mass and COPD exacerbations in the ECLIPSE cohort [49]; iii) BICD1 SNPs are associated to the presence of emphysema as assessed by radiologist scores [53]. Since variants in BICD1 are correlated with telomere length [53], this observation suggests accelerated aging as a potential mechanism involved in the development of emphysema [54, 55]. It was also found that a significant proportion of emphysema patients have a genetic predisposition for abnormally small telomeres that affects alveolar cells [54], on genes TERT, TR, or NAF1 [56].

Microbiome

Perturbations of the microbiome is an emerging risk factor for both COPD initiation and development [57]. The common characteristic observed in the recent COPD studies is a loss of microbiotic diversity that is correlated to COPD severity, as seen in other non-lung pathological conditions.

Diet

The comparison of dietary elements in terms of preventive and protective effects is generally difficult to investigate due to the lack of relevant longitudinal cohorts data. A 2010 Study of the Hertfordshire Cohort showed by regression analysis that a “prudent” dietary pattern (high consumption of fruit, vegetables, oily fish and wholemeal cereals) is positively associated with FEV1 and FVC in both sexes, and that in males specifically a higher “prudent” pattern score is linked to a higher FEV1/FVC and a lower prevalence of COPD, with associations in males stronger in smokers than non-smokers [58]. A 2016 Spanish cross-sectional study analysis of 207 adult smokers without respiratory disease identified three major dietary patterns from PCA analysis of semi-quantitative food-frequency questionnaire, and then derived from regression analysis that the Mediterranean-like pattern appears to be
associated with preserved lung function, while the Alcohol-consumption pattern and the Westernised pattern are associated with impaired lung function (reduced FEV1, FVC or FEV1/FVC), especially in women [59]. Similarly in 2017, Kaluza J. and colleagues add evidence that high consumption of fruits and vegetables is correlated with reduced COPD incidence in ever-smokers [60], possibly linked to the consumption of antioxidants.

3.3 COPD Heterogeneity

As described above, COPD is currently defined by the presence of chronic airflow limitation [19]. Yet, from the clinical and pathological points of view, we now know that airflow limitation is only one component of COPD [61]. The disease has many other elements that contribute to its clinical presentation, both in the lungs and outside them [62]. As a result, it is often said that COPD is a “complex and heterogeneous disease” [63]. However, in this setting, it is important to define precisely the meaning of words. “Complex” means that COPD has several components which display nonlinear interactions between them, whereas “heterogeneous” indicates that not all of these components are present in all patients or, in a given patient, at all-time points (i.e., there is dynamic heterogeneity [64]). Several examples of this complexity and heterogeneity will be introduced, with special emphasis on exacerbations and comorbidities as they are two aspects that have been investigated in this PhD.

Emphysema and Chronic Bronchitis

The clinical manifestation of COPD can result from a mixture of two pathological processes, emphysema and chronic bronchitis (Figure 4), whose relative proportion vary greatly from patient to patient, evidencing the heterogeneity of the disease.

Emphysema can be broadly defined as impaired alveoli structure (or parenchymal destruction). Alveoli are the tiny air sacs localized in the lungs at the end of the smallest air passages (bronchioles), where the lungs and the bloodstream exchange carbon dioxide and oxygen. Chronic bronchitis refers to inflammation of the bronchial tubes that carry air to and from the alveoli, and is associated with daily cough and mucus production. The presence of emphysema is usually diagnosed by CT scan, and/or impaired diffusing capacity of the lungs.
for carbon monoxide (DLCO) [65, 66]. Different pathobiological mechanisms have been postulated for both conditions such as protease/anti-protease imbalance, apoptosis, abnormal immune response and abnormalities in telomeres [67].

![Figure 4. Emphysema versus Chronic Bronchitis. Reproduced from https://www.livingwellwithcopd.com/en/what-is-copd.html](https://www.livingwellwithcopd.com/en/what-is-copd.html)

COPD Exacerbations (ECOPD)

ECOPD are acute episodes of worsening of the symptoms [19], whose frequency is variable and correlates with the disease stage [32]. The episodes are clinically defined by significant lung function alterations, acute dyspnoea or respiratory failure that require special management and hospitalization for the most severe instances. Early signs of exacerbations include feelings of unusual breathlessness, noisy breathing and worse coughing, chest pains, abnormal difficulty in sleeping or eating, changes in skin or nail colour, or fever (in case of infection). Aside from the negative impact in patients regular quality of life, exacerbations also worsen significantly the FEV1 decline and increase the mortality rate [68]. Physiological recovery from an exacerbation do not fully restore patients health, which makes future exacerbations even more frequent. ECOPD are also statistically linked to the incidence of a varied range of comorbidities, such as cardiovascular, cognitive or metabolic chronic disorders, depression, osteoporosis, dysfunctional skeletal myopathy, lung cancer, etc. [69].
Physical fitness, muscle mass, BMI, and diet play a role in the risk of exacerbations. In a 12-months follow-up study of patients hospitalized for acute COPD exacerbation, low initial body mass index (BMI) and weight loss were shown to be risk factors for increased frequency of exacerbations and mortality rate [70]. Peripheral muscle force is also statistically weaker during exacerbations [71]. Finally, daily variations in exposure to outdoor air pollution also intensify the frequency of acute ECOPD [40]. Common biomarkers include plasma or sputum inflammatory mediators (fibrinogen, CRP, tumour necrosis factor-alpha (TNF-α), differentiation factor-15 (GDF-15), interleukins, chemokines) [72] and sub-populations of activated immune cells (decreased CD4+ & CD8+ T cells, increased macrophages and neutrophils) [73]. Neutrophils play not only a role in COPD initiation and inflammatory response but also in exacerbations, in which case their proportion is increased in submucosa and subepithelial tissue [74] and is correlated (r 0.3) with percent FEV1 lost because of the exacerbation [75]. Significant blood eosinophilia (count ≥2%) affects up to 60% of severe exacerbations and airway eosinophilia is increased in 20-40% of exacerbations [76]. These cases respond well to systemic corticosteroid therapy [77, 78].

The pathobiology of exacerbations is an active area of research. It is complex, clearly varies among patients and depends on (epi-)genetic factors, baseline airway inflammation, microbiome, as well as host immunological responses and susceptibility to infections. Most exacerbations are associated to a burst in airway or systemic inflammation that is thought to be caused, for the majority of cases, by respiratory viruses or bacterial species [79], while one third remains of undetermined cause [80]. 58% of viral infections are caused by rhinovirus, while the others comprise human respiratory syncytial virus, coronavirus, influenza virus, parainfluenza virus and adenoviruses [81]. 25% of exacerbations involve coinfection of both viruses and bacteria and recent research suggests that bacterial exacerbation may be precipitated by viruses [82].

A strategy to better manage exacerbations is to distinguish between different clinical subgroups or different pathobiologies so that patients can be treated accordingly. A new "frequent exacerbator" phenotype is now firmly established [83]. These patients are at greater risk of comorbidities and poor health outcomes. They have higher levels of inflammatory
biomarkers (plasma fibrinogen and CRP, sputum interleukin IL-6 and IL-8). In terms of pathophysiology, they are afflicted by increased airway and systemic inflammation, dynamic lung hyperinflation, as well as changes in lower airway bacterial colonization. Arostegui I. et al. identified, from exacerbation variables and past clinical history, four main subgroups of ECOPD patients that have different prognosis, comorbidities, hospitalization and mortality rates [84].

Under-Nutrition and Muscle Mass Wasting

Low Body Mass Index (BMI) and low fat-free mass index (FFMI) are more prevalent in COPD patients (especially in females) than in the general healthy population [85] and are demonstrated to be poor-prognostic factors that can be partly addressed by nutritional supplement therapy [86].

Exercise and Muscle Dysfunction

In relation with low muscle mass, low exercise tolerance affects COPD patients in terms of disease progression; quality of life and mortality rate [86, 87]. Exercise-based pulmonary rehabilitation programme were shown to make a difference in that regard [88].

Comorbidities

More than 80% of COPD patients suffer additional comorbid conditions [89] that are varied and most commonly consist of respiratory, cardiovascular, metabolic and gastrointestinal diseases, as well as lung cancer, osteoporosis, anxiety, depression, skeletal muscle dysfunction, or cachexia. They have significant effects on mortality rate, clinical outcomes and patients quality of life.

Clinically, these conditions share risk factors that explain part of the multimorbidity: smoking and exposure to air pollution in particular are causally associated to many pulmonary and nonpulmonary conditions [90]. Other shared risk factors include early life events (e.g. prematurity [91, 92]), low BMI and physical inactivity [93].
In terms of pathobiology, several conditions share genetic loci for their development (e.g., for COPD and lung cancer [94, 95], or COPD and asthma [96]). A clear biological hallmark of multimorbidities is shared common pathways such as oxidative stress and systemic inflammation. Rubio-Perez C. et al. built networks that combined disease-disease associations, protein-protein interactions as well as gene-disease and variant-disease associations, in order to cluster diseases into related subgroups that internally share genetic alterations and mechanistic (mostly inflammation-based) pathobiological pathways [97]. Similarly, correlation networks analysis by Faner R. et al. added evidence of a shared unspecific molecular diseasome (in particular, mechanisms related to inflammation and vascular tone regulation) to explain the frequent comorbidities occurrence [98].
Research Hypothesis

The general hypothesis underlying this PhD Thesis is that the use of multi-level integrated analysis will help us understand holistically highly heterogeneous respiratory diseases such as COPD.

This general hypothesis has been divided in two specific hypotheses that correspond to two distinct well defined clinical scenarios.

1) Exacerbations of COPD

ECOPD are highly heterogeneous episodes of worsening of the symptoms with a non-specific diagnosis biomarker, whose pathogenesis and biology is not entirely understood. We hypothesize that the comparison of multi-level (i.e., clinical, physiological, biological, imaging and microbiological) correlation networks determined during ECOPD and clinical recovery can help us identify the key diagnostic biomarkers and features of these highly heterogeneous episodes.

2) Lung function in early adulthood

Low peak lung function in early adulthood, which can result from abnormal lung development, is associated with the diagnosis of COPD later in life. If for any reason the lungs have been poorly developed, it is conceivable that other organs have also done so (e.g. from the cardiovascular or metabolic systems). Accordingly, we hypothesize that abnormal lung development is linked to the impaired development of other organs and systems, and is associated to an increased frequency of subclinical abnormalities and comorbidities in later adulthood.
Objectives

The general aim of this PhD Thesis is to apply multi-level integrated analysis to better understand highly heterogeneous respiratory complex diseases such as COPD.

The specific goals that have been addressed refer to two specific aspects of COPD heterogeneity:

1) Exacerbations of COPD (ECOPD), specific goals:
 - To characterize the heterogeneity of ECOPD, using a common set of variables and individuals during the exacerbation phase and at convalescence.
 - To integrate and compare the information using Multi-Level Differential Networks.
 - To identify ECOPD biomarkers.

2) Early low lung function and health in later life, specific goals:
 - To determine the prevalence of low peak lung function in early adulthood in the general population.
 - To assess the association of early low peak lung function with subclinical abnormalities from the lungs and other organs.
 - To evaluate if early low peak lung function is a risk factor for earlier incidence of comorbidities.
 - To investigate the relationship between early low peak lung function and later mortality risk.
 - To determine the transgenerational reproducibility of early low lung function status.
Results

The core results of this PhD Thesis have been published in the form of two original papers in high impact factor international journals (Eur. Respir. J, IF 2018: 12.2, paper cited 4 times; and the Lancet Respiratory Medicine, IF 2018: 21.5, paper cited 5 times). Besides, the experience gained with this work has also been substantiated in a review paper (Eur. Respir. Rev.) which is presented in the appendix but not discussed directly.
Original Paper 1: Multi-level Differential Network Analysis of COPD Exacerbations

Multi-level differential network analysis of COPD exacerbations

Guillaume Noell, Borja G. Cosío, Rosa Faner, Eduard Monsó, German Peces-Barba, Alfredo de Diego, Cristobal Esteban, Joaquim Gea, Robert Rodríguez-Roisín, Marian Garcia-Nuñez, Francisco Pozo-Rodriguez, Susana G. Kalko and Alvar Agustí

Affiliations: 1CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Barcelona, Spain. 2Institut d’investigaciones Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. 3Servei Pneumologia, Hospital Universitari Son Espases-IDIBa, Mallorca, Spain. 4Servei Pneumologia, Hospital Parc Taull, Sabadell, Spain. 5Servicio Neumología, Fundación Jiménez Díaz, Madrid, Spain. 6Servicio Neumología, Hospital Universitario La Fe, Valencia, Spain. 7Servei Neumologia, Hospital Galdakao, Bizkaia, Spain. 8Servei de Pneumologia, Hospital del Mar - IMIM, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain. 9Departament de Medicina, Universitat de Barcelona, Barcelona, Spain. 10Hospital Universitario 12 de Octubre, Madrid, Spain. 11Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain. 12Joint lead authors.

Correspondence: Alvar Agustí, Respiratory Institute, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain. E-mail: AAGUSTI@clinic.cat

@ERSpublications
This is the first study to investigate COPD exacerbations using multi-level differential network analysis http://ow.ly/UYW30eMpwR

ABSTRACT Patients with chronic obstructive pulmonary disease (COPD) often suffer episodes of exacerbation (ECOPD) that impact negatively the course of their disease. ECOPD are heterogeneous events of unclear pathobiology and non-specific diagnosis. Network analysis is a novel research approach that can help unravelling complex biological systems. We hypothesised that the comparison of multi-level (i.e., clinical, physiological, biological, imaging and microbiological) correlation networks determined during ECOPD and convalescence can yield novel patho-biologic information.

In this proof-of-concept study we included 86 patients hospitalised because of ECOPD in a multicentre study in Spain. Patients were extensively characterised both during the first 72 h of hospitalisation and during clinical stability, at least 3 months after hospital discharge.

We found that 1) episodes of ECOPD are characterised by disruption of the network correlation observed during convalescence; and 2) a panel of biomarkers that include increased levels of dyspnoea, circulating neutrophils and C-reactive protein (CRP) has a high predictive value for ECOPD diagnosis (AUC 0.97).

We conclude that ECOPD 1) are characterised by disruption of network homeokinesis that exists during convalescence; and 2) can be identified objectively by using a panel of three biomarkers (dyspnoea, circulating neutrophils and CRP levels) frequently determined in clinical practice.

This article has supplementary material available from erj.ersjournals.com

Received: Jan 13 2017 | Accepted after revision: June 26 2017

This study is registered at www.clinicaltrials.gov as NCT01750658.

Support statement: Supported, in part, by Fondo de Investigación Sanitaria, Instituto Carlos III (PI 05/1463 and PI 15/00799), CIBERES, an unrestricted grant from GlaxoSmithKline, a PhD scholar grant from the Catalan Government (FI-2016) and CERCA Programme/Generalitat de Catalunya. Funding information for this article has been deposited with the Crossref Funder Registry.

Conflict of interest: Disclosures can be found alongside this article at erj.ersjournals.com

Copyright ©ERS 2017

https://doi.org/10.1183/13993003.00075-2017
Introduction

Patients with chronic obstructive pulmonary disease (COPD) often suffer episodes of exacerbation (ECOPD) that impact negatively their health status and prognosis [1]. The pathogenesis of these episodes is not entirely understood, but it is presumed complex and heterogeneous [2–4]. Their diagnosis relies mostly on symptom perception by the patient [5] and their prevention and treatment is, by and large, empiric [1].

Network analysis is an integrative research strategy well suited for the investigation of heterogeneous and complex diseases [6, 7] such as COPD [8–14]. We hypothesised that multi-level differential network analysis (MLDNA), a novel analytical method that involves the comparison of clinical, physiological, biological, imaging and microbiological (i.e. multi-level) correlation networks determined during ECOPD and clinical stability, can provide new insights into the pathobiology and diagnosis of ECOPD [15, 16]. Accordingly, in this proof-of-concept study we used MLDNA, for the first time to our knowledge, to 1) compare the multi-level network structure determined during ECOPD and convalescence, and 2) identify a panel of specific ECOPD biomarkers.

Methods

Methods are described in detail in the supplementary material.

Study design and ethics

This observational, prospective proof-of-concept study was carried out in seven tertiary referral hospitals in Spain (www.clinicaltrials.gov: NCT01750658). Patients were recruited and studied during the first 72 h of hospitalisation because of ECOPD, and investigated again during convalescence, at least 3 months after hospital discharge. The Institutional Review Boards of participating institutions approved the study, and participants gave their informed consent.

Patients

All patients were older than 45 years, current or former smokers (>10 pack-years) and had COPD (and ECOPD) according to the Global Initiative for Chronic Obstructive Lung Disease criteria [1]. In order to homogenise the studied population as much as possible, pneumonia on chest radiography, the presence of severe comorbidity driving the clinical presentation of the patient and/or need of (invasive or noninvasive) mechanical ventilation were exclusion criteria. We initially attempted to recruit patients who had not received oral steroids and/or antibiotic treatment in the community before hospitalisation. Yet, this strategy limited recruitment a lot, so we decided to adopt a more pragmatic design and exclude patients who received oral steroids before hospitalisation (with a potential rapid anti-inflammatory effect) but not those who may have received antibiotics (which may take longer to affect microbiological results). A total of 14 patients (16%) were included in the analysis despite they received antibiotic treatment in the community before hospitalisation.

Measurements

Clinical, functional, biological, microbiological and imaging variables were recorded following standard procedures, as detailed in the supplementary material.

Data analysis

Descriptive statistics

Because many variables were non-normally distributed, the results are presented as median (and 95% confidence intervals) or proportions. Likewise, because not all measurements were available in all patients in both visits, to maximise the potential of available information, the results at ECOPD and convalescence were compared using pairwise statistics (paired Wilcoxon or Chi-squared tests for continuous and discrete variables, respectively). Participants with missing data were discarded on a per-variable basis, such that no value imputation was required. We used false discovery rates (FDRs) to account for multiple comparisons [17]. All analyses were performed using R [18].

Multi-level correlation networks

We built multi-level correlation (Spearman) networks that integrate quantitative and qualitative clinical, functional, biological, microbiological and imaging variables (independently for ECOPD and convalescence) using R [18], and we graphed them with Cytoscape [19].

Module finding

We used the fast-greedy community algorithm to identify network modules on the basis of their module modularity (MM) score, so those with more dense internal connections and fewer external links get higher MM scores [20, 21].

https://doi.org/10.1183/13993003.00075-2017
Differential network analysis
To compare multilevel correlation networks at ECOPD and convalescence we 1) nominally contrasted the variables and modules identified under both clinical circumstances; 2) estimated the mean "density" of networks determined at ECOPD and convalescence by comparing (Wilcoxon test) the number of nodes, and the average number of edges per node (node degree, k) during ECOPD and convalescence [6]; and, 3) used Monte Carlo permutation tests [22] to identify those Spearman correlations that were significantly different between ECOPD and convalescence.

ECOPD biomarkers
We defined as "outliers" at ECOPD those values below or above the 5th or 95th percentiles, respectively, of the same variable at convalescence, and we identified those ECOPD variables with a significant (bootstrapping FDR <0.05) number of outliers. To identify potential ECOPD biomarkers, we calculated receiver operating characteristic (ROC) curves considering all values determined at ECOPD and convalescence and excluding missing data on a per-variable basis.

Results
We studied 86 patients at ECOPD (mean±SD age of 67±9 years). As shown in figure 1, 19 patients were lost for follow-up, so we could study 67 of them at convalescence. Table 1 presents the main characteristics of participants at both time points.

Observations at ECOPD
Besides the expected observations during ECOPD (dyspnoea, tachypnoea, tachycardia, respiratory failure) some other salient findings were (table 1): 1) elevated blood glucose levels, likely to be in relation to the generalised use of systemic steroids in the management of ECOPD [1, 23]; 2) echography identified the presence of pulmonary hypertension in 21.2% of patients and right chamber enlargement in 19.1%, but no patient suffered heart failure with low ejection fraction; 3) computed tomography (CT) emphysema was present in 56.7% of patients, bronchiectasis in 17.5% and, interestingly, alveolar infiltrates (not seen in chest radiography films) in 23.8%. Pulmonary embolism was found in 1.5% of individuals; and 4) in patients producing spontaneous sputum (77.9%), bacterial culture was positive for potential pathogenic microorganisms (PPMs) in 19.4% of them, whereas viruses were detected by a positive sputum virus in 30.9%. A total of 37.8% of patients were positive for sputum PPMs and/or viruses (table 1). More detailed microbiologic information can be found in the supplementary material.

Changes at convalescence
The main changes from ECOPD to convalescence (highlighted in bold type in table 1) included 1) improved dyspnoea; 2) reduced heart and respiratory rate; 3) reduced serum levels of glucose and urea; 4) improved pulmonary gas exchange without significant changes in spirometric variables; 5) reduced total leukocyte count, with lower circulating neutrophils and higher lymphocyte and eosinophil proportions; 6) reduced concentration of acute phase reactants (C-reactive protein (CRP) and fibrinogen) with increased levels of serum amyloid A (SAA). Other systemic inflammatory markers did not change significantly or changed marginally; and, finally, 7) neither bacterial load, viral load nor inflammatory markers changed significantly.

Multi-level differential network analysis
Figure 2 shows the correlation networks determined at ECOPD and convalescence, and table 2 their quantitative comparison. The main observations were 1) the number of nodes at ECOPD and
<table>
<thead>
<tr>
<th>Table 1 Clinical, physiologic, imaging, biological and microbiological data determined during exacerbation of chronic obstructive pulmonary disease (ECOPD) and convalescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOPD</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Vital constants</td>
</tr>
<tr>
<td>Heart rate min⁻¹</td>
</tr>
<tr>
<td>Respiratory rate min⁻¹</td>
</tr>
<tr>
<td>Dyspnea; MMRC scale</td>
</tr>
<tr>
<td>Dyspnea (1–10); visual scale</td>
</tr>
<tr>
<td>Body temperature °C</td>
</tr>
<tr>
<td>Biochemistry</td>
</tr>
<tr>
<td>Urea mg/dL⁻¹</td>
</tr>
<tr>
<td>Creatinine mg/dL⁻¹</td>
</tr>
<tr>
<td>Glucose mg/dL⁻¹</td>
</tr>
<tr>
<td>Haemoglobin g/dL⁻¹</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate mm/h⁻¹</td>
</tr>
<tr>
<td>Lung physiology</td>
</tr>
<tr>
<td>FVC % reference</td>
</tr>
<tr>
<td>FEV₁ % reference</td>
</tr>
<tr>
<td>FEV₁/FVC %</td>
</tr>
<tr>
<td>% IC reference</td>
</tr>
<tr>
<td>RV % reference</td>
</tr>
<tr>
<td>TLC % reference</td>
</tr>
<tr>
<td>RV/TLC %</td>
</tr>
<tr>
<td>D.lco % reference</td>
</tr>
<tr>
<td>Kco % reference</td>
</tr>
<tr>
<td>PaO₂, mmHg</td>
</tr>
<tr>
<td>PAFI</td>
</tr>
<tr>
<td>Paco₂, mmHg</td>
</tr>
<tr>
<td>Arterial pH</td>
</tr>
<tr>
<td>6MWd m</td>
</tr>
<tr>
<td>Cardiovascular physiology</td>
</tr>
<tr>
<td>Creatinine phosphokinase U/L⁻¹</td>
</tr>
<tr>
<td>Fibrinogen mg/dL⁻¹</td>
</tr>
<tr>
<td>Pro-BNP pg/mL⁻¹</td>
</tr>
<tr>
<td>Tropinone I % detected above 0.05 µg/L⁻¹</td>
</tr>
<tr>
<td>Echography</td>
</tr>
<tr>
<td>Left ventricle ejection fraction %</td>
</tr>
<tr>
<td>Right atrial enlargement</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
</tr>
<tr>
<td>CT imaging</td>
</tr>
<tr>
<td>Emphysema</td>
</tr>
<tr>
<td>Bronchiectasis</td>
</tr>
<tr>
<td>Alveolar infiltrates</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td>Lung inflammation (sputum)</td>
</tr>
<tr>
<td>TAS mM</td>
</tr>
<tr>
<td>IL-8 pg/mL⁻¹</td>
</tr>
<tr>
<td>IL-1β pg/mL⁻¹</td>
</tr>
<tr>
<td>IL-6 pg/mL⁻¹</td>
</tr>
<tr>
<td>TNF-α pg/mL⁻¹</td>
</tr>
<tr>
<td>TGF-β pg/mL⁻¹</td>
</tr>
<tr>
<td>TNF R5 pg/mL⁻¹</td>
</tr>
<tr>
<td>SAA pg/mL⁻¹</td>
</tr>
<tr>
<td>Systemic inflammation</td>
</tr>
<tr>
<td>Leukocytes ×10⁶ µL⁻¹</td>
</tr>
<tr>
<td>Neutrophils %</td>
</tr>
<tr>
<td>Lymphocytes %</td>
</tr>
<tr>
<td>Eosinophils %</td>
</tr>
<tr>
<td>% of patients with eosinophils >2%</td>
</tr>
<tr>
<td>C-reactive protein mg/L⁻¹</td>
</tr>
<tr>
<td>Total antioxidant status mM</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>IL-8 pg mL⁻¹</th>
<th>Median (95% CI) or n (%)</th>
<th>Convalescence</th>
<th>Pairwise n</th>
<th>FDR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.26–4.37</td>
<td>67</td>
<td>1.3 (0.35–4.53)</td>
<td>67</td>
</tr>
<tr>
<td>1</td>
<td>0.16–0.83</td>
<td>67</td>
<td>0.2 (0.16–0.75)</td>
<td>67</td>
</tr>
<tr>
<td>1</td>
<td>0.3 (0.3–7.4)</td>
<td>67</td>
<td>0.3 (0.3–8.8)</td>
<td>67</td>
</tr>
<tr>
<td>79</td>
<td>0.5 (0.51–1.89)</td>
<td>67</td>
<td>1.3 (0.51–2.49)</td>
<td>67</td>
</tr>
<tr>
<td>85</td>
<td>0.4 (0.09–0.93)</td>
<td>67</td>
<td>0.4 (0.03–0.86)</td>
<td>67</td>
</tr>
<tr>
<td>86</td>
<td>0.8 (0.21–3.55)</td>
<td>67</td>
<td>1.1 (0.17–6.05)</td>
<td>67</td>
</tr>
<tr>
<td>86</td>
<td>12.7 (1.36–50.19)</td>
<td>67</td>
<td>19.4 (1.45–71.49)</td>
<td>67</td>
</tr>
<tr>
<td>84</td>
<td>0.8 (0.13–6.11)</td>
<td>67</td>
<td>1.4 (0.13–7.64)</td>
<td>67</td>
</tr>
</tbody>
</table>

Microbiology

- Spontaneous sputum production: 86/67 (77.9%)
- Positive sputum bacteria [culture]: 67/13 (19.4%)
- Positive sputum virus [PCR]: 55/17 (30.9%)
- Positive bacteria [culture] and/or virus [PCR]: 74/28 (37.8%)
- Adenovirus seroconversion: 39/1 (2.6%)
- Chlamydia seroconversion: 45/2 (4.4%)
- Influenza seroconversion: 43/4 (9.3%)
- Mycoplasma seroconversion: 59/1 (1.7%)
- Parainfluenza seroconversion: 43/7 (16.3%)
- RSV seroconversion: 40/5 (12.5%)

Values in bold type identify those variables with a statistically significant change from ECOPD to convalescence. Wilcoxon or Fisher exact tests, corrected for multiple comparison (false discovery rate (FDR), for continuous and categorical variables, respectively). MMRC: modified Medical Research Council; FVC: forced vital capacity; FEV₁: forced expiratory volume in 1 s; IC: inspiratory capacity; RV: residual volume; TLC: total lung capacity; DCO: carbon monoxide diffusing capacity of the lung; DCOA: DCO/alveolar volume [transfer factor]; PaO₂: arterial partial pressure of oxygen; PAFI: PaO₂ (mmHg); I; Pao2; arterial partial pressure of carbon dioxide; 6MWD: 6-min walking distance; BNP: brain natriuretic peptide; CT: computed tomography; TASS: total antioxidant status; IL: interleukin; TNF: tumour necrosis factor; TGF: transforming growth factor; SAA: serum amyloid A; TNF-R5: tumour necrosis factor soluble receptor; RSV: respiratory syncytial virus.

Convalescence was similar (51 versus 47), but the convalescence network was significantly denser, as shown by the higher total number of edges, a significantly higher node degree (k), and lower modularity; 2) there were six hubs with a Kleinberg score >0.8 in the ECOPD network and four in the convalescence one. All of the former correspond to sputum inflammatory markers whereas all of the latter correspond to lung function variables; 3) there were five modules at ECOPD and six at convalescence (figure 2, blue areas). All of them appear relatively homogeneous in terms of their biological content, since the majority contained nodes of similar functional category (see colour codes in figure 2). A detailed description of each of these modules is provided in the supplementary material; and 4) the comparison of both networks showed a higher density of significantly different Spearman correlations at convalescence than during ECOPD (table 2 and figures 3) and that more than half of these differential correlations linked different modules (figure 3): at ECOPD, TNF-α was the node with more differential links (n=4) whereas at convalescence these were TGF-β (n=6), KCO (n=5), PAFI (n=5), PaO₂ (n=5) and heart rate (n=4). All in all, these observations suggest that the network “perturbation” induced by ECOPD involves a reduction in module co-regulation (i.e. co-occurrence).

ECOPD biomarkers: outlier analysis

To investigate potential ECOPD biomarkers, we 1) identified 16 variables (12% of the total number of variables analysed in the study (table 1)) with a significant proportion of ECOPD “outliers”, this is a significant (FDR p-value<0.05) proportion of variable values outside the 5th to 95th percentile range of the same variable determined at convalescence (by Monte-Carlo ECOPD/convalescence permutation test on the statistic (% outliers at ECOPD – % outliers at convalescence)); 2) assessed the extent to what these outliers co-occur in the same patients. To this end, we built a co-occurrence network (figure 4) where each node correspond to one of these 16 variables, node size to the proportion of outliers at ECOPD (as indicated by the percentage for each of them), node shape (up or down triangle) indicates if a given variable is higher (up) or lower (down) at ECOPD, and edge colours represent the proportion of co-occurrence between two given nodes (see keys). Circulating lymphocytes and neutrophils were co-alktered (albeit in opposite directions) in more than 75% of the exacerbated patients (blue edge), and eosinophils, dyspnoea and glucose levels in 50–75% of patients (green edges; note also the different
triangle shapes). The remaining nodes co-occurred in 25–50% of patients (orange edges); 3) explored the capacity of these 16 variables to predict ECOPD by ROC analysis, and identified a subset of seven of them with an area under the curve (AUC) >0.8. Figure 5a presents the scatter distribution of these seven variables and their individualised ROC profile and AUC (figure 5b); of note, although all of them had a large number of outliers at ECOPD (red symbols), a proportion of values at ECOPD still remained within the 5th to 95th range (horizontal lines) determined at convalescence (figure 5a), likely reflecting the heterogeneity of ECOPD episodes and, finally, 4) included these seven variables in a general linear mixed model to identify the best diagnostic biomarker panel of ECOPD. We found that the combination of dyspnoea severity, raised circulating neutrophils and elevated CRP levels had an AUC of 0.97 (95% CI 0.95–1) to diagnose ECOPD (figure 5c). Finally we calculated what different combinations of abnormal values of these three variables gave the better specificity, sensitivity, positive and negative prediction values for the diagnosis of an ECOPD (table 3). We observed that dyspnoea levels ≥5 (on an analogue visual score that ranges from 0 to 10), CRP ≥3 mg·L⁻¹ and ≥70% circulating neutrophils had a specificity of 0.96, a sensitivity of 0.901, negative predictive value of 0.88 and positive predictive value of 0.97 for the identification of ECOPD.

Discussion
This proof-of-concept study develops and applies for the first time MLDNA to a relevant, complex and heterogeneous clinical problem (ECOPD). By doing so it shows that 1) ECOPD episodes are characterised by fragmentation of the correlation network observed during clinical stability, suggesting loss of systemic control and reduced resilience during ECOPD [24, 25]; and 2) a panel of biomarkers that includes dyspnoea (≥5 on an analogue visual score from 0 to 10), CRP level (≥3 mg·L⁻¹) and ≥70% circulating neutrophils had an extremely high value (AUC 0.97) for the diagnosis of ECOPD.

Previous studies
Many studies have previously described the clinical, physiological, biological and microbiological characteristics of ECOPD [26]. By and large, our clinical observations are in keeping with them, but some
TABLE 2	Comparison of correlation networks determined at exacerbation of chronic obstructive pulmonary disease (ECOPD) and convalescence		
Number of nodes	51	47	
Number of edges	96	125	
Within-module edges/between-module edges	12/84	37/88	
Node degree (k)	3.8±2.6	5.3±2.8	<0.01
Hubs with (Kleinberg score) >0.8	SAA (1.00)	FEV1 (1.00)	
	TNF-α (0.92)	PAF (0.97)	
	IL-1b (0.92)	P<0.05	
	IL-8 (0.92)	IC (0.90)	
	TNF-RS (0.92)		
	IL-6 (0.88)		
	[all sputum variables]		
Number of modules of at least 3 nodes	5	6	
Modularity score (fast-greedy algorithm)	0.871	0.685	
Total number of significantly different Spearman correlations	11	43	
Differential correlations with	11 (100%)	25 (58%)	
[Rho(ECOPD)−Rho(3)] >0.5	0 (0%)	18 (42%)	<0.01
Within-module differential correlations/between-module differential correlations	7/4	24/19	

SAA: serum amyloid A; TNF: tumour necrosis factor; IL: interleukin; TNF-RS: tumour necrosis factor soluble receptor; FEV1: forced expiratory volume in 1 s; PsO2: arterial partial pressure of oxygen; PAF: P<0.05; mmHg/inspired fraction of oxygen ratio [%]; IC: inspiratory capacity.

deserve specific comment. During ECOPD, 1) a substantial number of patients had pulmonary hypertension and right chamber enlargement, in keeping with recent reports [27], but we did not identify patients with low ejection fraction heart failure [28]; and 2) CT found evidence of pulmonary embolism in only 1.5% of patients [29, 30] but, in contrast, alveolar infiltrates (not seen in chest radiographs) were identified in about a quarter of patients, as reported recently too [31]. These alveolar infiltrates can correspond to pneumonia condensations not apparent in plain chest radiographs and/or areas of local inflammation/oedema. At convalescence many (but not all) abnormalities observed during ECOPD improved. Of note, 3) even though dyspnoea and pulmonary gas exchange improved, spirometric changes only showed a statistically nonsignificant trait to improvement, which is at variance with other previous, smaller studies [32–34]; 4) as expected, several markers of systemic inflammation (total leucocyte count and levels of circulating neutrophils, CRP and fibrinogen) were reduced at convalescence. Of note, however, only 5.7% of patients showed >2% circulating eosinophils during ECOPD, and this proportion increased up to 54.7% at convalescence. This is at variance with reports from other centres, where between 25% and 50% of the patients have >2% circulating eosinophils during ECOPD [3, 35, 36]. We do not have a clear explanation for these discrepancies but regional differences may play a role [37]; and, finally, 5) in patients producing spontaneous sputum, the prevalence of PPM and/or viruses did not change at convalescence. Given that bronchial colonisation in clinically stable COPD patients that produce spontaneous sputum is common [38], this may have contributed to explain this lack of statistically significant changes.

Interpretation of novel results

Homeokinetic disruptive effects of ECOPD

Homeokinesis has been defined as "the ability of an organism to maintain a highly organised internal environment fluctuating within acceptable limits in a far from equilibrium state" [24, 25]. ECOPD episodes appear to be characterised by disrupted homeokinesis since, during clinical stability we observed a dense and well-connected correlation network with physiologically meaningful modules whereas, during ECOPD, although these modules mostly remain their connections become disrupted to a large extent (figure 2, table 2). Specifically, during clinical stability a central module (MM7), which basically includes all lung function parameters, was closely co-regulated with other modules that include pulmonary and systemic inflammatory markers (MM8, MM9, MM10) as well as a general biochemical module (MM6). By contrast, during ECOPD, the system becomes more fragmented, the sputum inflammation module (MM5) appears isolated, and systemic inflammatory markers are also less well coordinated and distributed across two different modules (MM3 and MM4). That microbiological nodes appear isolated from the main network during ECOPD probably reflects the heterogeneity of these ECOPD. Finally, the Monte Carlo
permutation test [22] also identified more significantly different Spearman correlations at convalescence than during ECOPD (figure 3). All in all, these observations suggest that episodes of ECOPD are characterised by breakdown of the normal homeokinetic characteristics of the system with presumably less system control and resilience [24, 25].

A panel of biomarkers for the diagnosis of ECOPD
The diagnosis of ECOPD currently relies on the patient’s perception of increased symptoms (mostly dyspnoea) [1, 5]. Yet, recent research has shown that dyspnoea perception vary between patients with frequent and infrequent exacerbations [39]. Thus, having an objective way to diagnose ECOPD is of great clinical relevance [2]. Our results indicate that the combination of increased dyspnoea (≥5) and raised levels of circulating neutrophils (≥70%) and CRP (≥3 mg.L⁻¹) has an excellent value for the diagnosis of ECOPD (AUC 0.97) (figure 5c). Although the methodology we used is different, results are similar to those reported by Huvet et al. [40], who showed that elevated CRP levels were the best diagnostic biomarker for ECOPD, although their diagnosis accuracy was suboptimal (AUC 0.73); however, their combination with a major exacerbation symptom (dyspnoea, sputum volume or sputum purulence) significantly increased the AUC to 0.88 (p<0.0001) [40]. Our results extend these observations further by showing that this can be further improved (AUC 0.97) by considering too the number of circulating neutrophils. The potential diagnostic utility of this biomarker panel (as well as its specific cut-off values) will have to be validated prospectively in other cohorts, but it may greatly help to advance clinical research in this area by offering for the first time an objective diagnostic tool of ECOPD. Needless to say that increased dyspnoea, elevated CRP and leukocytosis can also occur in other clinical circumstances that may not even arise from the lungs (e.g. cholecystitis, pneumonia or sickle cell crisis, among others). Therefore, the clinical context in which these three biomarkers can contribute to the diagnosis of ECOPD is of paramount importance. Finally, using unbiased cluster analysis of 182 ECOPD episodes, Bafadhel et al. [3] recently provided convincing evidence of the heterogeneity of such episodes. Unfortunately, the relatively small sample size of our cohort (n=86) limits this type of analysis in our cohort.

https://doi.org/10.1183/13993003.00075-2017
Strengths and limitations
The development and application, for the first time to our knowledge, of a new analytical approach (e.g. MLDNA) to get further insight into the complexity of a relevant clinical problem like ECOPD is a clear strength of our study since it provides novel, integrated, dynamic and holistic information on this frequent condition. Importantly, it also paves the way for MLDNA to be applied to other complex biological conditions in respiratory medicine and elsewhere [6, 8, 16, 41, 42].

On the other hand, several potential limitations deserve comment. First, we included in the study a slightly lower number of patients (n=86) than anticipated (n=100; www.clinicaltrials.gov: NCT01750658), and not all measurements were available in all patients for comparison between ECOPD and convalescence. This is why we consider our study as proof-of-concept and we acknowledge that it requires validation in larger cohorts. Second, we studied severe (hospitalised) ECOPD, so our results are not directly generalisable to other milder forms of ECOPD. Third, some clinical variables, such as cough and sputum colour, were not registered. Fourth, it is not clear how much the initiation of systemic corticosteroids, before the collection of biological samples (within 72 h after admission) might have modified the inflammatory profile of ECOPD. Yet, it is of note that we excluded patients who received oral corticosteroid treatment before hospitalisation. Finally, patients present to hospital at various time points in the evolution of an ECOPD. All in all, we acknowledge that the results of this study will have to be confirmed in future studies, since the exclusion of severe co-morbidity, pneumonia, relatively small sample size and study of hospitalised patients (not ambulatory ECOPD) may restricts the generalisability of our observations.

Conclusions
By using a novel analytical strategy (MLDNA), this study shows that ECOPD 1) are characterised by disruption of network homeokinesis observed during clinical stability; and 2) in the appropriate clinical
FIGURE 5 a) Scatter plot of seven continuous variables with a significant (bootstrapping FDR p-value < 0.05) proportion of exacerbation of chronic obstructive pulmonary disease (ECOPD) outliers <5th or >95th percentiles (horizontal lines) at convalescence. Red symbols represent outlier values; blue symbols represent values within the convalescence 5th to 95th percentiles. b) Receiver operating characteristic curves and corresponding area under the curve (AUC) values for each of these 7 potential diagnostic biomarkers of ECOPD identified in a) with an AUC >0.8. c) When the seven variables identified in b) were combined in a general linear mixed model, the best panel of biomarkers to predict ECOPD (AUC 0.97) included circulating neutrophils, C-reactive protein levels and dyspnoea. For further explanations, see text.

<table>
<thead>
<tr>
<th>Dyspnoea (visual analogue scale 1–10)</th>
<th>Neutrophils (%)</th>
<th>CRP (mg L⁻¹)</th>
<th>Specificity</th>
<th>Sensitivity</th>
<th>NPV</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥5</td>
<td>≥60</td>
<td>≥3</td>
<td>0.89</td>
<td>0.94</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>≥5</td>
<td>≥65</td>
<td>≥3</td>
<td>0.95</td>
<td>0.91</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>≥5</td>
<td>≥70</td>
<td>≥3</td>
<td>0.96</td>
<td>0.90</td>
<td>0.88</td>
<td>0.97</td>
</tr>
</tbody>
</table>

https://doi.org/10.1183/13993003.00075-2017
context, ECOPD can be objectively identified by a panel of three biomarkers (dyspnoea, circulating neutrophils and CRP) commonly measured in clinical practice.

Acknowledgements
The authors thank participating patients for their willingness to contribute to medical research, and field attending physicians and nurses for their dedication and excellent care. The authors also thank Joao Soriano and Dolores Guerrero for their help in the start-up of the project, and Jürgen Vestbo, Judith García-Aymerich, Josep Maria Antó and Peter J. Barnes for helpful suggestions.

References

https://doi.org/10.1183/13993003.00075-2017
Original Paper 2: Low Lung Function in Early Adulthood and Health in Later Life: a Transgenerational Cohort Analysis

Lung function in early adulthood and health in later life: a transgenerational cohort analysis

Alvar Agustí*, Guillaume Noell*, Josep Brugada, Rosa Faner

Summary

Background Early life events can affect health in later life. We hypothesised that low lung function (FEV₁ < 80% predicted) in early adulthood (25–40 years) is associated with higher prevalence and earlier incidence of respiratory, cardiovascular, and metabolic abnormalities, and premature death.

Methods In this cohort analysis, we tested this hypothesis using data from the Framingham Offspring Cohort (FOC) and validated our observations in CARDIA (an independent cohort) and GENIII (which includes the direct descendants of FOC participants). These were three general population cohorts that included men and women, who were regularly and prospectively followed up to collect extensive clinical, physiological, biological, and imaging information. Main outcomes were prevalence (in early adulthood) and incidence (during follow-up) of comorbidity, and all-cause mortality, χ² test, unpaired t test, Fisher’s exact test, and Cox proportional hazards models were used for data analysis. Differential dropout rates during follow-up were regarded as a potential source of bias.

Findings We found that 111 (10%) of 1161 participants in FOC, 338 (13%) of 2648 participants in CARDIA, and 71 (4%) of 1912 participants in GENIII had FEV₁ of less than 80% predicted at the age of 25–40 years. These individuals also had higher prevalence of respiratory, cardiovascular, and metabolic abnormalities in early adulthood; higher and earlier (about a decade) incidence of comorbidities during follow-up (39 years vs 47 years in FOC; 30 years vs 37 years in CARDIA, p<0.0001); and higher all-cause mortality than individuals with normal lung function in early adulthood (in FOC, hazard ratio 2·3 [95% CI 1·4–3·7], p=0·001), which was independent of, but additive with, cumulative smoking exposure. In GENIII, we observed that individuals with at least one parent stratified as having low lung function in early adulthood in FOC (n=115) had lower FEV₁ in early adulthood (10% had FEV₁ of less than 80% predicted; this proportion was 3% in those with both parents classified as normal in FOC [n=248], p<0.0001); and early adulthood FEV₁ of GENIII participants was related (R²=0·28, p<0·0001) to FOC parents’ average FEV₁, in early adulthood.

Interpretation Low peak lung function in early adulthood is common in the general population and could identify a group of individuals at risk of early comorbidities and premature death.

Funding Fondo de Investigacion Sanitaria, Sociedad Española de Neumología y Cirugía Torácica, Formación Personal Investigador, Agencia de Gestión d’Ajuts de Recerca 2016, and AstraZeneca Foundation Young Researcher Award.

Introduction

Chronic obstructive pulmonary disease (COPD) is a major cause of disability and death around the globe.¹ COPD is generally considered to be a self-inflicted disease caused by tobacco smoking and characterised by an accelerated decline of lung function with age.² Yet, other COPD risk factors, including occupational exposures to organic and inorganic dusts; chemical agents and fumes; indoor pollution from biomass cooking and heating in poorly ventilated dwellings; and a history of severe childhood respiratory infection, HIV, or tuberculosis, have also been identified.³ Furthermore, low peak lung function in early adulthood has been shown to increase the risk of COPD later in life, independently of the rate of lung function decline.⁴ A previous study showed that about half of patients diagnosed with COPD in late adulthood had evidence of low peak lung function in early adulthood.⁵ These observations suggest that abnormal lung development (in utero, after birth, or both) could be a novel risk factor for COPD.⁶

Lung development is a complex process that can be altered by various genetic or environmental factors,⁷ including passive smoking, poor nutrition, and repeated infections.⁸ These factors (acting alone or in combination) might also compromise the development of other organ systems (eg, the cardiovascular and metabolic systems).⁹,¹⁰ We hypothesised that individuals with low lung function in early adulthood would also present a higher prevalence of respiratory, cardiovascular, and metabolic abnormalities, as well as a higher and earlier incidence of comorbid diseases and premature mortality during follow-up compared with individuals with normal lung function. Given that there is familial COPD aggregation,¹¹ and that lung function has been related to several environmental exposures and gene polymorphisms,¹² we also aimed to explore the trans-generational reproducibility of these traits.

Methods

Study design and participants

For this cohort analysis, we obtained permission to access two large independent cohorts (the Framingham...
Research in context

Evidence before this study
We searched for articles published in English up to June 30, 2017, in PubMed with the search terms “lifelong association lung function (GWAS),” “lung function trajectories,” and “longitudinal lung function patterns.” We also searched for relevant references in major review articles from noted experts. We identified evidence supporting that lung function is heritable (with up to 95% associated genetic variants described so far), and that lung function early in life tracks with lung function later in life and is a novel risk factor for chronic obstructive pulmonary disease (COPD).

Added value of this study
To our knowledge, this is the first study to test the hypothesis that the genetic or environmental factors that affect lung development might also affect other organ systems, such as the cardiovascular and metabolic systems, and that this might increase the likelihood of having a higher prevalence and earlier incidence of comorbidities during follow-up, which could lead to premature death. We tested this hypothesis in the Framingham Offspring Cohort (FOC) and validated the reproducibility of observations in CARDIA (an independent cohort) and GenIII (which includes the direct descendants of participants in FOC).

Our results showed that low peak lung function in early adulthood is associated with a higher prevalence, and about a decade earlier incidence, of respiratory, cardiovascular, and metabolic abnormalities, as well as with premature death.

Implications of all the available evidence
Our results confirm previous observations that indicate that smoking is not the only risk factor for COPD and extend them by showing that low peak lung function in early adulthood identifies a group of individuals at risk of poor health outcomes later in life (higher incidence of comorbidities and premature death). Thus, the possibility that spirometry measured during infancy or early adulthood identifies these individuals and facilitates the implementation of effective preventive or therapeutic measures merits further research.

Offspring Cohort [FOC] and the Coronary Artery Risk Development in Young Adults Study [CARDIA] Cohort and the Framingham Generation III cohort (GenIII), which includes the direct descendants of FOC participants.

The FOC started between August, 1971, and September, 1975, and includes 5124 participants aged between 5 and 93 years. The offspring cohort consists of children of individuals in the original Framingham cohort, who were respondents of a random sample of two-thirds of the adult population of Framingham, MA, USA.

CARDIA is a community-based cohort that recruited black and white individuals (aged 18–30 years) from March 26, 1985, to June 7, 1986, from four US centres. The GenIII cohort includes the offspring of FOC participants (aged 19–78 years). Most participants (98%) were white. Thus, these two cohorts are not fully independent and might share some genetic background and might have been exposed to similar environmental factors. GenIII started in April, 2002, and is ongoing.

We obtained ethics approval from the institutional review board of Hospital Clinic (Barcelona, Spain) for the analysis (DbGaP project 7202).

Procedures
In these cohorts, we investigated cross-sectional differences between participants with normal versus low lung function (FEV₁ ≥80% [normal] or <80% [low] predicted), both in early adulthood (25–40 years; FOC, CARDIA, and GenIII) and late adulthood (50–65 years; FOC, CARDIA); and the incidence of comorbidities (appendix) and death during follow-up (FOC, CARDIA).

For our analysis, we extracted data from eight clinical visits for the FOC (exam 1, 1971–75; exam 2, 1979–83; exam 3, 1983–87; exam 4, 1987–91; exam 5, 1991–95; exam 6, 1995–98; exam 7, 1998–2001; exam 8, 2005–08), which spanned almost 40 years of follow-up. Following the same criteria used in our previous analysis of the FOC cohort, participants were stratified in two groups (normal or low) according to their FEV₁ value (≥80% or <80% predicted) in early adulthood (25–40 years). To reduce classification errors due to spirometry variability, we restricted our analysis to FOC participants with two or more concordant (normal or low) FEV₁ values in early adulthood (n=1161). These individuals were followed up until they dropped out of the study, death, or late adulthood (50–65 years), when clinical and functional measurements were repeated in survivors.

For the CARDIA cohort, we included in the analysis only those participants with two or more concordant FEV₁ values in early adulthood (n=2648). We extracted data from six clinical visits for these participants (recruitment and visits at 2, 5, 7, 10, and 15 years), which spanned 20 years of follow-up.

For the GenIII cohort, we extracted data from two visits (2002–05 [n=4095], and 2008–11 [n=3411]) and finally included 1912 individuals with available spirometric measurements at the age of 50–65 years. In these individuals, only one spirometry was available (and used) for analysis.

Outcomes
Main outcomes were the prevalence and incidence of comorbid diseases and all-cause mortality in normal versus low individuals. Differential dropout rates during follow-up were considered as a potential source of bias.
<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Low</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>n (% or mean (SD))</td>
<td>N</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>1050</td>
<td>33.7 (1.5)</td>
<td>111</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>1050</td>
<td>488 (47%)</td>
<td>111</td>
</tr>
<tr>
<td>Women</td>
<td>1050</td>
<td>562 (53%)</td>
<td>111</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>1050</td>
<td>25.2 (4.1)</td>
<td>111</td>
</tr>
<tr>
<td>Morbid obesity (BMI>40 kg/m²)</td>
<td>1050</td>
<td>14 (1%)</td>
<td>111</td>
</tr>
<tr>
<td>Pregnancy, delivery, and infancy data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low birthweight (<2.5 kg)</td>
<td>472</td>
<td>41 (9%)</td>
<td>50</td>
</tr>
<tr>
<td>Caesarean delivery</td>
<td>745</td>
<td>62 (8%)</td>
<td>76</td>
</tr>
<tr>
<td>Maternal obesity, diabetes, or hypertension</td>
<td>241</td>
<td>21 (9%)</td>
<td>30</td>
</tr>
<tr>
<td>Overweight children</td>
<td>268</td>
<td>63 (24%)</td>
<td>32</td>
</tr>
<tr>
<td>Smoking exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever smoker</td>
<td>1050</td>
<td>676 (64%)</td>
<td>111</td>
</tr>
<tr>
<td>Age started smoking (years)</td>
<td>619</td>
<td>17 (3.5)</td>
<td>75</td>
</tr>
<tr>
<td>Number of cigarettes smoked per day</td>
<td>576</td>
<td>20 (11.9)</td>
<td>74</td>
</tr>
<tr>
<td>Current smoker</td>
<td>676</td>
<td>486 (72%)</td>
<td>84</td>
</tr>
<tr>
<td>Respiratory measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁ (% predicted)</td>
<td>1024</td>
<td>97 (8.6)</td>
<td>109</td>
</tr>
<tr>
<td>FEV₁/FVC (%)</td>
<td>1050</td>
<td>84-4 (5.7)</td>
<td>111</td>
</tr>
<tr>
<td>Inhaled medication for respiratory diseases</td>
<td>771</td>
<td>5 (1%)</td>
<td>91</td>
</tr>
<tr>
<td>Asthma</td>
<td>1050</td>
<td>86 (8%)</td>
<td>111</td>
</tr>
<tr>
<td>Chronic bronchitis, emphysema, COPD</td>
<td>1049</td>
<td>58 (6%)</td>
<td>110</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>571</td>
<td>6 (2%)</td>
<td>45</td>
</tr>
<tr>
<td>Other pulmonary disease</td>
<td>910</td>
<td>16 (1%)</td>
<td>69</td>
</tr>
<tr>
<td>Cardiovascular measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrocardiogram abnormality</td>
<td>1046</td>
<td>187 (27%)</td>
<td>111</td>
</tr>
<tr>
<td>Arterial hypertension treatment</td>
<td>1050</td>
<td>81 (8%)</td>
<td>111</td>
</tr>
<tr>
<td>Cardiovascular disease medication</td>
<td>585</td>
<td>17 (3%)</td>
<td>47</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>1048</td>
<td>41 (4%)</td>
<td>111</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>1049</td>
<td>1 (+1%)</td>
<td>111</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>1050</td>
<td>52 (5%)</td>
<td>111</td>
</tr>
<tr>
<td>Vascular disease (aortic, mitral, rheumatic)</td>
<td>1050</td>
<td>30 (3%)</td>
<td>111</td>
</tr>
<tr>
<td>Other heart disease (excluding above)</td>
<td>928</td>
<td>13 (1%)</td>
<td>92</td>
</tr>
<tr>
<td>Echocardiographic abnormalities</td>
<td>902</td>
<td>140 (16%)</td>
<td>96</td>
</tr>
<tr>
<td>Left ventricular ejection fraction</td>
<td>905</td>
<td>74.2 (4.2)</td>
<td>98</td>
</tr>
<tr>
<td>Metabolic measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1046</td>
<td>7 (1%)</td>
<td>109</td>
</tr>
<tr>
<td>Hypercholesterolaemia treatment</td>
<td>1034</td>
<td>3 (+1%)</td>
<td>110</td>
</tr>
<tr>
<td>Circulating blood measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White blood count (1000 cells per µL)</td>
<td>909</td>
<td>6.3 (1.7)</td>
<td>98</td>
</tr>
<tr>
<td>C-reactive protein (mg/L)</td>
<td>916</td>
<td>2 (0.4)</td>
<td>93</td>
</tr>
<tr>
<td>Plasma fibrinogen (mg/dL)</td>
<td>172</td>
<td>284.9 (49.6)</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of FOC participants with normal or low lung function in early adulthood

Statistical analysis

When several continuous variable measurements from different clinical visits during a given study period (early or late adulthood) were available for the same individual, they were averaged to get a unique estimate per participant and time period. The key categorising variable (FEV₁) was not averaged when it was used to stratify participants into the low or normal group, as we required the
Figure 2: Proportion of participants with at least one respiratory, cardiovascular, or metabolic abnormality by lung function level in early adulthood
(A) FOC, (B) CARDIA, (C) GenHLS. CARDIA=Coronary Artery Risk Development in Young Adults Study. FOC=Framingham Offspring Cohort. GenHLS=Framingham Generation III cohort.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Normal</th>
<th>Low</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n (%) or mean (SD)</td>
<td>n (%) or mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>2310</td>
<td>31.9 (1.6)</td>
<td>338</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>2310</td>
<td>10.4 (4.4)</td>
<td>338</td>
</tr>
<tr>
<td>Women</td>
<td>2310</td>
<td>12.9 (5.6)</td>
<td>338</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>2304</td>
<td>25.6 (5.1)</td>
<td>337</td>
</tr>
<tr>
<td>Morbidity BMI (BMI>40 kg/m²)</td>
<td>2304</td>
<td>7.7 (3.3)</td>
<td>337</td>
</tr>
<tr>
<td>Pregnancy, delivery, and infancy data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paternal or maternal diabetes</td>
<td>2258</td>
<td>49.1 (12.2)</td>
<td>324</td>
</tr>
<tr>
<td>Maternal diabetes</td>
<td>2239</td>
<td>26.9 (12.8)</td>
<td>318</td>
</tr>
<tr>
<td>Paternal diabetes</td>
<td>2103</td>
<td>27.3 (13.3)</td>
<td>278</td>
</tr>
<tr>
<td>Maternal high blood pressure</td>
<td>2160</td>
<td>92.8 (43.3)</td>
<td>313</td>
</tr>
<tr>
<td>Paternal high blood pressure</td>
<td>1970</td>
<td>887 (45.7)</td>
<td>268</td>
</tr>
<tr>
<td>Smoking exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever smoker</td>
<td>2051</td>
<td>1083 (53.3)</td>
<td>277</td>
</tr>
<tr>
<td>Age started smoking (years)</td>
<td>1002</td>
<td>17.6 (4.1)</td>
<td>158</td>
</tr>
<tr>
<td>Number of cigarettes smoked per day</td>
<td>1843</td>
<td>6.2 (8.3)</td>
<td>245</td>
</tr>
<tr>
<td>Years smoked regularly</td>
<td>781</td>
<td>8.7 (5.6)</td>
<td>107</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1085</td>
<td>710 (64.2)</td>
<td>169</td>
</tr>
<tr>
<td>Respiratory measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁ (% predicted)</td>
<td>2310</td>
<td>97.7 (9.3)</td>
<td>338</td>
</tr>
<tr>
<td>FEV₁/FVC (%)</td>
<td>2310</td>
<td>82.0 (5.3)</td>
<td>328</td>
</tr>
<tr>
<td>Lung problems before age of 16 years</td>
<td>1557</td>
<td>98 (6.5)</td>
<td>191</td>
</tr>
<tr>
<td>Respiratory symptoms</td>
<td>2310</td>
<td>67.0 (29.0)</td>
<td>338</td>
</tr>
<tr>
<td>Asthma</td>
<td>2310</td>
<td>34.7 (15.2)</td>
<td>338</td>
</tr>
<tr>
<td>Chronic bronchitis, emphysema, COPD</td>
<td>2307</td>
<td>34.9 (15.5)</td>
<td>337</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>2323</td>
<td>413 (18.0)</td>
<td>338</td>
</tr>
<tr>
<td>Tuberculosis or lung cancer</td>
<td>2153</td>
<td>65 (3.2)</td>
<td>333</td>
</tr>
<tr>
<td>Cardiovascular measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High blood pressure or treatment</td>
<td>2310</td>
<td>647 (20.0)</td>
<td>338</td>
</tr>
</tbody>
</table>

FEV₁, % predicted values of each individual to be concordant in the age range of 25–40 years, both in FOC and CARDIA (ie, either all values higher than 80% predicted or all below 80% reference). Likewise, main outcome variables (comorbidity, death) are categorical and were not averaged either. We selected variables to be included in the analysis from those available in each of the three cohort datasets by clinical judgment—ie, by considering those which could eventually be more helpful to test our hypothesis and to interpret the results clinically. We used the χ² test to compare categorical variables and the unpaired t test to compare continuous variables, in normal versus low participants cross-sectionally. We used a Cox proportional hazards model adjusted for potential baseline confounders (sex and body-mass index [BMI]) to estimate the time to first reported comorbidity or death in individuals with normal or low peak lung function in early adulthood both in FOC and CARDIA. We compared differential dropout proportions during follow-up (excluding deaths) in 5-year bins, from 20 to 65 years, with Fisher’s exact tests. p values less than 0.05 were considered statistically significant. All statistical analyses were performed with custom R scripts and relevant Bioconductor packages.

Role of the funding source
The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. GN and RF had access to the raw data. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results
In participants from the FOC cohort, recruited between August, 1971, and September, 1975, FEV₁ in early adulthood (25–40 years) was consistently 80% or higher than
predicted in 1050 (90%) of 1161 participants, who were therefore classified as having normal lung function, whereas FEV, was less than 80% predicted in 111 (10%), who were classified as having low lung function. Demographics were similar between the two groups (table 1). The proportion of individuals with low birthweight was two-times higher in participants with low lung function that in those with normal lung function. There were no differences in reported maternal illnesses, caesarean deliveries, or overweight children. The prevalence of ever smokers was higher in individuals with low lung function, who also started smoking almost a year earlier, and had higher cumulative smoking exposure, and included a higher proportion of current smokers than in the normal lung function group. By design, FEV, was less than 80% predicted in individuals with low lung function. Notably, the FEV, to-forced vital capacity ratio (FEV/FVC) was also significantly lower in these participants than in those with normal lung function. In keeping with these functional abnormalities, individuals with low lung function used inhaled medications for respiratory diseases more often and were diagnosed with respiratory diseases such as asthma, chronic bronchitis, emphysema, or COPD more frequently than those with normal lung function. Accordingly, the proportion of cumulative (at least one) respiratory abnormalities was significantly increased in participants with low lung function (figure 1A).

Individuals with low lung function also had a significantly higher prevalence of electrocardiogram abnormalities, and other clinical cardiological diagnoses were numerically more prevalent, but not statistically different (table 1). However, there was a significantly higher prevalence of cumulative cardiovascular abnormalities in participants with low lung function (figure 1A). Likewise, the prevalence of diabetes was four times higher in individuals with low lung function and, these individuals also had higher circulating leucocyte counts (table 1).

338 (13%) of 2648 participants in CARDIA were classified as individuals with low lung function in early adulthood. Observations in CARDIA were largely the same as in FOC participants (figure 2, figure 1B), but some differences should be noted. Although statistically different, probably due to the large sample size, there were clinically insignificant differences in age (31-7 vs 31-9 years). There were more men and participants who were overweight in those with low lung function, and their mothers and fathers reported having diabetes and arterial hypertension more often. Similar to FOC, smoking exposure was higher in individuals with low lung function, but the proportion of current smokers was lower than in participants with normal lung function. CARDIA participants with low lung function in early adulthood also reported more frequent respiratory symptoms, before the age of 16 years, and reported having been diagnosed with other respiratory diseases, such as asthma, tuberculosis, and lung cancer, more often than in the normal lung function group. These individuals had numerically more cardiovascular and metabolic abnormalities, including higher concentrations of some systemic inflammatory markers, although differences did not reach statistical significance in some instances (table 2). The proportion of participants with at least one respiratory, cardiovascular, and metabolic abnormality in CARDIA was higher in participants with low lung function than in those with normal lung function (figure 1B).

The GenIII cohort included 1912 individuals, 1841 (96%) of whom had normal, and 71 (4%) of whom had low lung function in early adulthood (table 3). Because participants in GenIII are direct descendents of FOC participants, they are genetically related and, therefore, observations need to be considered with caution when considering the reproducibility of observations. With this caveat in mind, participants in GenIII with low lung function in early adulthood had similar proportions of abnormalities measured to those in FOC (related cohort) and CARDIA (independent cohort). Participants with low lung function in GenIII were again most often men, were more often overweight, with a higher prevalence of parental asthma, with higher smoking exposure, who had evidence of airflow limitation and reported more respiratory

<table>
<thead>
<tr>
<th>Normal</th>
<th>Low</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n (%) or mean (SD)</td>
<td>N</td>
</tr>
<tr>
<td>Cardiovascular disease medication</td>
<td>2593 63 (3%)</td>
<td>314 21 (7%)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>377 14 (4%)</td>
<td>62 6 (10%)</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>938 2 (1%)</td>
<td>91 1 (1%)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>2229 5 (1%)</td>
<td>318 2 (1%)</td>
</tr>
<tr>
<td>Valvular heart disease (including rheumatic heart disease)</td>
<td>365 51 (14%)</td>
<td>61 10 (16%)</td>
</tr>
<tr>
<td>Congenital heart diseases</td>
<td>114 7 (6%)</td>
<td>16 2 (12%)</td>
</tr>
<tr>
<td>Maximum heart rate during exercise</td>
<td>2016 179 (139)</td>
<td>277 172 (180)</td>
</tr>
<tr>
<td>Recovery time to heart rate 130 bpm (s)</td>
<td>2007 268 (155)</td>
<td>268 243 (125)</td>
</tr>
</tbody>
</table>

Table 2: Characteristics of CARDIA participants with normal or low lung function in early adulthood

(CARDIA=Coronary Artery Risk Development in Young Adults Study. N=number of individuals available for each specific comparison. BMI=body mass index. FVC=forced vital capacity. COPD=chronic obstructive pulmonary disease. bpm=beats per min.)
symptoms, and who were more likely to have been diagnosed with asthma or pneumonia. Unlike FOC or CARDIA, which did not have information on emphysema, GenIII used two specific methods to assess the disorder (CT scan and lung diffusing capacity [DLCO]) and both methods resulted in the report of higher prevalence of emphysema in individuals with low lung function (table 3). As in FOC and CARDIA, individuals in GenIII with FEV₁ less than 80% predicted had a higher prevalence of cardiovascular and metabolic abnormalities (figure 1C), as well as higher concentrations of circulating inflammatory markers (table 3).

Longitudinal observations during follow-up in FOC showed that dropout rates were higher in participants with low lung function in early adulthood (appendix). The incidence of reported comorbid diagnoses during follow-up was higher in individuals with low lung function at any age (appendix). The mean age at which 50% of individuals reported the presence of one comorbid diagnosis was around a decade earlier in those with low lung function in early adulthood than in those with normal lung function (39 years vs 47 years, p<0.0001; figure 2A). Cox analysis showed that low lung function in early adulthood significantly increased first disease occurrence during follow-up, whereas never smoking (in or before early adulthood) and lower baseline BMI decreased it significantly; sex had no significant effect on age at first disease occurrence (appendix).

All-cause mortality during follow-up in FOC was higher in ever smokers (Cox model hazard ratio [HR] 1.8 [95% CI 1.1–2.8], p=0.028) and in individuals with low lung function in early adulthood (2.3 [1.4–3.7], p=0.001; figure 3). These two effects were statistically additive and independent (non-significant Fisher association and non-significant interaction in Cox models), and BMI did not significantly influence mortality. We did not find statistically significant differences in cause-specific mortality between high and low lung function groups, but there was a numerically higher, but non-significant, cardiovascular mortality in participants with low lung function (appendix).

FOC participants who were alive and not lost to follow-up were reassessed in late adulthood (50–65 years). Most of the differences observed between participants with low and normal lung function in early adulthood remained (appendix). The prevalence of emphysema (not assessed in early adulthood) was much higher in individuals with low lung function in early adulthood than in those with normal lung function (appendix).

Available follow-up data in CARDIA is shorter (20 years) than in FOC (40 years). However, observations during follow-up in CARDIA were similar to those of FOC discussed above. Similar to FOC, dropout rates and the incidence of comorbid diagnoses during follow-up were higher in those with low lung function in early adulthood (appendix), and the mean age at which 50% of individuals reported the presence of one comorbid diagnosis was

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Normal</th>
<th>n (% or mean (SD))</th>
<th>Low</th>
<th>n (% or mean (SD))</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>1841</td>
<td>34.9 (4.1)</td>
<td>71</td>
<td>35.7 (3.7)</td>
<td>0.134</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1192</td>
<td>73.3 (47%)</td>
<td>65</td>
<td>76.5 (55%)</td>
<td>0.221</td>
</tr>
<tr>
<td>Female</td>
<td>649</td>
<td>85.4 (53%)</td>
<td>65</td>
<td>93.5 (45%)</td>
<td>0.134</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>1841</td>
<td>26.5 (5.1)</td>
<td>71</td>
<td>29.3 (7.9)</td>
<td>0.004</td>
</tr>
<tr>
<td>Morbid obesity (BMI ≥40 kg/m²)</td>
<td>1841</td>
<td>41 (2%)</td>
<td>71</td>
<td>5 (7%)</td>
<td>0.028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pregnancy, delivery, and infancy data</th>
<th>Normal</th>
<th>n (% or mean (SD))</th>
<th>Low</th>
<th>n (% or mean (SD))</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paternal asthma</td>
<td>1457</td>
<td>217 (15%)</td>
<td>54</td>
<td>15 (28%)</td>
<td>0.017</td>
</tr>
<tr>
<td>Maternal asthma</td>
<td>1549</td>
<td>245 (16%)</td>
<td>58</td>
<td>12 (23%)</td>
<td>0.417</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smoking exposure</th>
<th>Normal</th>
<th>n (% or mean (SD))</th>
<th>Low</th>
<th>n (% or mean (SD))</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever smoker</td>
<td>1841</td>
<td>654 (36%)</td>
<td>71</td>
<td>29 (41%)</td>
<td>0.428</td>
</tr>
<tr>
<td>Age started smoking regularly</td>
<td>121</td>
<td>17.5 (2.1)</td>
<td>7</td>
<td>17.7 (4.5)</td>
<td>0.795</td>
</tr>
<tr>
<td>Number of cigarettes smoked per day</td>
<td>259</td>
<td>13.1 (7.3)</td>
<td>15</td>
<td>17.4 (8.2)</td>
<td>0.065</td>
</tr>
<tr>
<td>Current smoker</td>
<td>653</td>
<td>287 (44%)</td>
<td>29</td>
<td>18 (62%)</td>
<td>0.084</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory measures</th>
<th>Normal</th>
<th>n (% or mean (SD))</th>
<th>Low</th>
<th>n (% or mean (SD))</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁ (% predicted)</td>
<td>1841</td>
<td>702 (82)</td>
<td>65</td>
<td>72.0 (105)</td>
<td>-0.0001</td>
</tr>
<tr>
<td>FEV₁/FVC (%)</td>
<td>1841</td>
<td>702 (82)</td>
<td>65</td>
<td>67.0 (54)</td>
<td>-0.0001</td>
</tr>
<tr>
<td>Presence of respiratory symptoms (dyspnea, wheezing, chest discomfort)</td>
<td>1841</td>
<td>711 (39%)</td>
<td>71</td>
<td>39 (55%)</td>
<td>0.008</td>
</tr>
<tr>
<td>Asthma</td>
<td>1840</td>
<td>259 (14%)</td>
<td>71</td>
<td>21 (30%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Chronic bronchitis, emphysema, COPD</td>
<td>1841</td>
<td>679 (37%)</td>
<td>71</td>
<td>31 (44%)</td>
<td>0.257</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>1841</td>
<td>378 (21%)</td>
<td>71</td>
<td>25 (35%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Sleep apnea</td>
<td>1840</td>
<td>71 (4%)</td>
<td>71</td>
<td>4 (6%)</td>
<td>0.732</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>1841</td>
<td>378 (21%)</td>
<td>71</td>
<td>25 (35%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Other pulmonary disease</td>
<td>1841</td>
<td>378 (21%)</td>
<td>71</td>
<td>25 (35%)</td>
<td>0.005</td>
</tr>
<tr>
<td>DLCO (% reference)</td>
<td>1564</td>
<td>98.6 (13.3)</td>
<td>53</td>
<td>88.3 (16.2)</td>
<td>-0.0001</td>
</tr>
<tr>
<td>CT-diagnosed emphysema (measured at 40–50 years)</td>
<td>397</td>
<td>17 (4%)</td>
<td>18</td>
<td>4 (22%)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiovascular measures</th>
<th>Normal</th>
<th>n (% or mean (SD))</th>
<th>Low</th>
<th>n (% or mean (SD))</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiogram abnormality</td>
<td>1841</td>
<td>840 (46%)</td>
<td>71</td>
<td>37 (52%)</td>
<td>0.383</td>
</tr>
<tr>
<td>Mean arterial pressure (mm Hg)</td>
<td>1841</td>
<td>86.7 (9.8)</td>
<td>64</td>
<td>92.3 (12.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>Arterial hypertension treatment</td>
<td>1840</td>
<td>89 (5%)</td>
<td>71</td>
<td>9 (13%)</td>
<td>0.008</td>
</tr>
<tr>
<td>Cardiovascular disease treatment</td>
<td>2838</td>
<td>11 (1%)</td>
<td>71</td>
<td>0 (0)</td>
<td>0.999</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>1838</td>
<td>22 (1%)</td>
<td>71</td>
<td>1 (1%)</td>
<td>0.999</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>1692</td>
<td>1 (1%)</td>
<td>65</td>
<td>0 (0)</td>
<td>0.999</td>
</tr>
<tr>
<td>Valvular disease (aortic, mitral, rheumatic)</td>
<td>1839</td>
<td>22 (1%)</td>
<td>70</td>
<td>0 (0)</td>
<td>0.726</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>1841</td>
<td>19 (1%)</td>
<td>71</td>
<td>0 (0)</td>
<td>0.802</td>
</tr>
<tr>
<td>Other heart disease</td>
<td>278</td>
<td>15 (1%)</td>
<td>68</td>
<td>1 (2%)</td>
<td>0.999</td>
</tr>
<tr>
<td>Echocardiography: left ventricular percentage fractional shortening</td>
<td>1663</td>
<td>34.8 (2.4)</td>
<td>60</td>
<td>35.7 (4)</td>
<td>0.412</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td>1690</td>
<td>36.9 (37.7)</td>
<td>64</td>
<td>41.5 (48.6)</td>
<td>0.452</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metabolic measures</th>
<th>Normal</th>
<th>n (% or mean (SD))</th>
<th>Low</th>
<th>n (% or mean (SD))</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/dL)</td>
<td>1692</td>
<td>92.8 (16.5)</td>
<td>64</td>
<td>94.6 (9.6)</td>
<td>0.167</td>
</tr>
<tr>
<td>Glucose levels 2 h post tolerance test beverage (mg/dL)</td>
<td>719</td>
<td>98.5 (22.7)</td>
<td>19</td>
<td>114.6 (27.2)</td>
<td>0.019</td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td>765</td>
<td>5.3 (0.4)</td>
<td>22</td>
<td>5.6 (0.5)</td>
<td>0.028</td>
</tr>
<tr>
<td>Diabetes medication</td>
<td>1840</td>
<td>23 (1%)</td>
<td>71</td>
<td>2 (3%)</td>
<td>0.543</td>
</tr>
</tbody>
</table>

(Table 3 continues on next page)
7 years earlier in CARDIA participants with low lung function in early adulthood (30 years vs 37 years, p=0.0001; figure 2B). Similarly, using a Cox model to investigate which factors affect the incidence of comorbid diagnoses during follow-up in CARDIA, we found that low lung function in early adulthood significantly increases risk; whereas, unlike in FOC, smoking status and baseline BMI did not have a significant effect on comorbidity incidence in CARDIA (appendix).

Because the precise date of death is not registered in the CARDIA database, we could not generate Kaplan-Meier survival curves for this cohort. However, all-cause mortality before the age of 50 years in CARDIA participants with low lung function in early adulthood was three times higher than that of people with normal lung function (3% vs 0.7%, odd ratio [OR] 4.1 [95% CI 1.7–9.6], p=0.001).

We could not investigate the reproducibility of FOC and CARDIA longitudinal observations in GenIII because it is an ongoing cohort and extended follow-up data are not yet available.

Finally, to assess the transgenerational reproducibility of low lung function in early adulthood, we compared the characteristics of Gen III participants for whom both parents were classified as normal in FOC (n=248) with those who had at least one parent classified as having low lung function in FOC (n=115; figure 4). More individuals with at least one parent who had low lung function in early adulthood were women, reported more parental history of asthma, and, albeit within the normal range, had lower FEV1, % predicted and FEV1/FVC than those who had two parents with normal lung function. In GenIII participants with at least one parent stratified as having low lung function in FOC (n=115), 10% had FEV1 of less than 80% predicted; this proportion was 3% in those with both parents classified as normal in FOC (n=248; p<0.0001; figure 4A, appendix). Further, we found a positive correlation between the FEV1 of GenIII participants and FOC parents’ average FEV1, (R=0.28, p<0.0001; figure 4B). We did not find significant cardiovascular, metabolic, or systemic inflammatory marker differences between these two groups, although the prevalence of arterial hypertension was higher in descendents of FOC participants with low lung function in early adulthood (8.2% vs 2.9%, p=0.051).

Discussion

In this study, we analysed three large cohorts (FOC, GenIII, and CARDIA) and found that 4–13% of the general population has low lung function (FEV1, <80% predicted) in early adulthood (25–40 years of age); that this is not a bystander effect because these individuals also have a higher prevalence of respiratory, cardiovascular, and metabolic abnormalities and a higher and earlier incidence of comorbidities during follow-up than those with normal lung function in early adulthood, and these individuals also die prematurely; and some of these abnormalities are also found in direct descendents (GenIII).

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Low</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>n (%) or mean (SD)</td>
<td>N</td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
<td>1692</td>
<td>184.3 (35.3)</td>
<td>64</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dl)</td>
<td>1840</td>
<td>54.7 (15.0)</td>
<td>70</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>1692</td>
<td>109.3 (86.8)</td>
<td>64</td>
</tr>
<tr>
<td>Cholesterol medication</td>
<td>1840</td>
<td>90 (50)</td>
<td>71</td>
</tr>
</tbody>
</table>

Circulating blood measures

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>White blood count (10^9 cells per μl)</td>
<td>480</td>
<td>0.027</td>
</tr>
<tr>
<td>C-reactive protein (mg/L)</td>
<td>1838</td>
<td>0.029</td>
</tr>
<tr>
<td>Fibrinogen (mg/dl)</td>
<td>1680</td>
<td>0.591</td>
</tr>
<tr>
<td>Interleukin 6 (pg/mL)</td>
<td>1673</td>
<td>0.020</td>
</tr>
</tbody>
</table>

GenIII=Framingham Generation III cohort. N=number of individuals available for each specific comparison. BMI=body-mass index. FVC=forced vital capacity. COPD=chronic obstructive pulmonary disease. DLCO=diffusion lung capacity for carbon monoxide. NT-proBNP=N-terminal pro-B-type natriuretic peptide. HbA1c=glycosylated haemoglobin.

Table 3: Characteristics of GenIII participants with normal or low lung function in early adulthood

It is well established that low birthweight is associated with dysfunction of several organs later in life,22–25 and that low lung function in infancy tracks into adulthood.20–22 To our knowledge, however, this is the first study to test the hypothesis that the genetic or environmental factors that govern lung development26–28 might also affect the development of other organ systems, such as the cardiovascular and metabolic systems, and that this might increase the likelihood of having a higher prevalence and earlier incidence of comorbidities during follow-up, eventually causing premature death. Our results support this hypothesis because individuals with low lung function in early adulthood consistently reported more frequent symptoms, were more often diagnosed with (and received treatment for) various clinical conditions, had higher and earlier incidence of comorbidities, and died earlier. Further, individuals with low lung function surviving into late adulthood continued to have a higher proportion of abnormal cardiopulmonary and metabolic disorders than those who had normal lung function, as well as evidence of low-grade systemic inflammation. An analysis of the Tucson Epidemiological Study of Airway Obstructive Disease recently confirmed that low FEV1 by the age of 21–35 years predicts risk of early cardiopulmonary mortality.29 Overall, these observations suggest that some of the comorbidities frequently reported in patients with COPD might originate earlier in life than previously thought and might not always be associated with ageing. This finding indicates that potential opportunities exist for prevention and early intervention.7,18 Finally, the high reported prevalence of a previous diagnosis of several respiratory diseases, such as asthma, was notable. We propose that, if the lungs develop suboptimally, resulting symptoms or airflow limitation can be easily misdiagnosed as asthma. This potential misclassification should be considered in future studies.

The precise biological mechanisms underlying these observations cannot be disentangled from our results.
Theoretically, the observed associations between low peak lung function and the earlier incidence of comorbidities and premature death can result from shared genetic or environmental factors (eg, cumulative smoking exposure) or both. In fact, smokers with low lung function in early adulthood consumed significantly more cigarettes than smokers with normal lung function. This exposure in early life might be a risk factor for having low lung function in the first place, and is certainly associated, as shown in many previous studies, with a higher incidence of comorbidity and premature death during follow-up. Further mechanistic studies are required to investigate the interaction between these factors. That observations in FOC and CARDIA were largely reproduced in GenIII participants (who were direct descendants of FOC participants) support genome-wide association studies in the general population, which identified specific gene variants associated with lung function levels, but might also be the result of a shared exposure (eg, similar smoking habits or diet in families).
or, again, the interaction of both. However, it is interesting to note that individuals with low peak lung function also reported a higher prevalence of emphysema, which might represent poor lung development, enhanced lung destruction, or deficient lung maintenance capacity. Finally, individuals with low lung function were often men, overweight, and had a high prevalence of diabetes and who often reported family history of asthma, hypertension, and diabetes, potentially illustrating the complex interactions between the genome and the exposome.

The main strength of our study is that it tests a novel hypothesis in three large and well characterised, independent (FOC and CARDIA) and family related (FOC and GenIII) cohorts, whose participants were followed up for long periods of time (FOC and CARDIA). Potential limitations include higher dropout rates during follow-up in participants with low lung function, both in FOC and CARDIA. Yet, if anything, this should contribute to underestimate the effect size of the observed differences. The prevalence of individuals’ low lung function in early adulthood in GenIII was lower than that in FOC or CARDIA. One potential explanation is that, because only one spirometry was available for analysis in GenIII (compared with two or more in FOC and CARDIA), a significant number of participants might have been misclassified in GenIII. We do not think that this is the case because this might have overestimated (not underestimated) the prevalence of participants with low lung function in GenIII. Further, we calculated that the proportion of individuals misclassified as having low lung function if one rather than two or more measures were used for stratification would have been 10% in FOC and 5% in CARDIA. It is therefore, unlikely, that a similar number in GenIII would have altered the main results. Additionally, the GenIII cohort started about 30 years later than FOC and about 17 years later than CARDIA. During this long period of time, many environmental factors (eg, smoking prevalence, air pollution, or diet) have changed significantly. For instance, findings from one study showed that air pollution levels have chronic, adverse effects on lung development in children from the age of 10–18 years, so the proportion of individuals with FEV1 of less than 80% predicted was 1-6% at the lowest level of exposure compared with 7-9% at the highest (p<0.002). 10 years later, this same group of investigators also showed that the progressive decrease in air pollution levels that occurred after the implementation of air quality control policies in southern California was associated with statistical and clinical improvements in respiratory health in children. In any case, although we cannot ascertain with certainty the causes of a reduced prevalence of participants with low lung function in early adulthood in GenIII, observations basically reproduced those of FOC and CARDIA.

Because variables included in the analysis vary between cohorts, their pairwise comparison is limited. However, within each cohort, observations comparing individuals with low and normal lung function were consistent, showing that individuals with low lung function always had a higher proportion of cardiorespiratory and metabolic abnormalities. We also cannot exclude a potential detection bias because individuals with low lung function and poorer health might be seen more often in the health-care system, presenting increased
opportunities for tests and diagnoses, and hence treatments for comorbid conditions. This potential bias does not detract from the basic observation of this study that individuals with low peak lung function in early adulthood have increased prevalence and incidence of comorbidities, as well as premature death. The cross-sectional nature of comparisons in early and late adulthood between individuals with low and normal lung function in early adulthood makes inference about causation challenging, although the reproducibility of observations in the three cohorts studied make them more robust. Finally, because many comparisons were explored in this study, some of them might have achieved statistical significance by chance. However, the reproducibility of observations in the three cohorts studied argues against this possibility, as do the findings of a 2017 analysis of the Tucson Epidemiological Study of Airway Obstructive Disease, which also showed that low levels of FEV, achieved by the age of 21–35 years predict risk of early mortality.33

The results of this study can have clinic and public health implications because they show that abnormal spirometry results in early adulthood, a cheap and reproducible test, has the potential to identify a group of individuals at high risk of having earlier comorbidities and premature death. Although we did not do a predictive risk modelling study that determines the sensitivity, specificity, positive and negative predictive values of spirometry in this particular setting, these are well established in practice where spirometry is routinely used for diagnosis and treatment of many respiratory diseases.33 Spirometric evaluation of the general population at an early age (at school or, when applying for a driving licence) can potentially help in the identification of this high-risk group of individuals in whom to establish the appropriate preventive measures, monitor health status regularly and closely, and implement therapeutic measures as early as possible when needed.33 Alignment of spirometric testing to a highly focused and effective educational campaign on the dangers of smoking might likely have a bigger impact than either in isolation.33

In conclusion, low lung function (FEV, <80% predicted) in early adulthood (aged 25–40 years) occurs in 4–13% of the general population and is associated with increased prevalence and earlier incidence of respiratory, cardiovascular, and metabolic comorbidities, and premature death.

Acknowledgments
This study was supported by FIS (PI15/00790-CP16/00039), SEPAR (P106S-2013-P1068/2015), F1-DGR 2016-CEIIGA, and AstraZeneca Foundation Young Researcher Award. We thank Ferran Torres (Medical Statistics Core Facility, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] Hospital Clinic, Barcelona, Spain) for providing statistical support.

References
(accessed Nov 16, 2016).
19 Andersen AJ. The child is father of the man: the importance of early life influences on lung development. Thorax 2014; 69: 976–78.
General Discussion

The main findings of the two original papers that form the core of this PhD Thesis are that:

1) Episodes of ECOPD are characterized by (1) a wide range of bioclinical variables significantly altered at exacerbation (including lung physiology, vital signs, microbiology, lung inflammation, CT imaging as well as biochemistry, systemic inflammation and cardiovascular variables), (2) a panel of biomarkers - comprised of increased levels of dyspnoea (⩾5 on an analogue visual score from 0 to 10), C-reactive protein level (⩾3 mg/L −1) and ⩾70% circulating neutrophils - that has a high predictive value for ECOPD diagnosis (AUC = 0.97) and by, (3) a disruption of the biological correlation network associated with clinical stability.

2) Early adulthood low peak lung functions is clearly associated with global increased health risks later in life. These observations were first made in the Framingham Offspring Cohort (FOC) and then reproduced in CARDIA (independent cohort) and GenIII (which includes the direct descendants of FOC participants). In all cohorts a sizeable proportion of individuals (in the range 4-12%) had FEV1<80% ref. at 25-40 years of age and were therefore classified as having Early adulthood Low peak Lung Function (ELLF). Analysis of the data revealed that: (1) they have, vs. those with Early adulthood Normal peak Lung Function (ENLF), a higher prevalence of respiratory, cardiovascular and metabolic abnormalities in early adulthood; and, (2) they also have a higher and earlier (about a decade) incidence of co-morbidities during follow-up as well as an increased all-cause mortality (Hazard Rate (HR) 2.3 [95% CI 1.4-3.7], p=0.001). Finally, in GenIII we observed that: (3) individuals with at least one parent stratified as ELLF in FOC had lower FEV1 in early adulthood (p<0.0001); and early adulthood FEV1 of GenIII participants was related (p<0.0001) to their FOC parents average FEV1 also in early adulthood.

All in all, these observations indicate that COPD heterogeneity refers to both cross-sectional differences between patients as well as longitudinal variations at several time scales, months in the case of exacerbations and throughout life for the lung function trajectories that
lead to COPD. These disparities identify subgroups of patients that have on average significant differences in aetiology, pathobiological patterns, as well as different clinical implications such as differential prognosis, comorbidity susceptibility and therapeutic targets.

The challenge of investigating the heterogeneity of complex conditions lies in the integration of clinical and biological variables that have distinct properties, in terms of proportion of variance explained, distribution shape, effect size that can be considered clinically relevant, normalization requirements, redundancy, etc. Clinical data is often lacking in details, reported as discrete (e.g. categorical) information, may contain missing values whose imputation is not trivial, or be of imprecise quantification (e.g. smoking exposure, one of the most central risk factors, is rarely accurately reported in longitudinal studies since at best it consists of self-reported periodic estimations of average consumption). In contrast, biological data usually consists of a large amount of continuous determinations that individually show poor correlations to clinical outcomes and phenotypes (small effect size and high dimensionality). Furthermore, since omics technologies are still in infancy and regularly upgraded, the normalization procedures that need to be applied to the data, as well the statistical methods for differential expression and multi-level integration, are not yet well established and standardized.

In this context, given the research questions and cohorts data of this PhD Thesis, standard statistics methodologies as well as a networks approach were applied to the study of ECOPD heterogeneity, while standard statistical tools only were used for the study of low peak lung function in early adulthood in relation to health in later adulthood. The networks approach to the study of correlation structures presents several specific advantages and drawbacks:

- As mentioned, networks are an accurate representation of biological systems since these consist of interacting parts in a global dynamic system. Networks allow for the visualization of mechanistic pathways and subsystems (modules) that are perturbed in disease states (e.g. ECOPD versus clinical stability).

- In contrast to standard (mixed effects or logistic regression) models, correlation networks explicitly lay out all the relationships (collinearity) between covariates.
• Due to the high number of associations estimated (between every pair of variables), networks approaches need to comply with several requirements in order to filter out false positives (correlations significant by chance only): a high sample size, the use of multiple p-value adjustment methods [99], and optionally the application of custom bootstrapping methods.

• A correlation (calculated with Pearson/Spearman method or similar) only reveals an association and as such do not necessarily imply causality, nor give the direction of causality if any (which or the two variables is the cause or consequence of the other).

• The comparison of correlation networks and their interpretation are challenging, in part because of the lack of causality information, but also because a cut-off based on p-value or correlation strength (such as R² or odds-ratio) has to be arbitrarily chosen below which weaker correlations are not shown. The density of the networks is thus arbitrary (as well as depends heavily on the sample size) and must be interpreted with caution.

The specific research results of the two core original papers that form this PhD Thesis are discussed below:

1. SPECIFIC DISCUSSION OF THE FIRST AIM: MULTILEVEL CHARACTERIZATION OF COPD EXACERBATIONS

This paper constitutes a proof-of-concept study in which Multi-Level Differential Network Analysis (MLDNA) was applied for the first time to a relevant, complex and heterogeneous clinical problem (ECOPD). Below we further discuss the specific findings and the main limitations of that work.

1.1 Characterization of ECOPD

The reported biological and clinical characteristics determined in core paper 1 both during exacerbation and at convalescence are largely in agreement with previous studies on ECOPD, in terms of individual measures (physiological, biological and microbiological) [100]. Importantly the heterogeneity of exacerbations is made clear in the analysis of the 16 continuous variables that had a significant (bootstrapping False Discovery Rate (FDR) p-
value <0.05) proportion of ECOPD outliers (<5th or >95th percentiles established at convalescence). More than 50% of values of all the study variables at ECOPD still remained within the 5th to 95th range determined at convalescence, indicating a major overlap between the two clinical states. Furthermore, an analysis of the correlations between alterations for all possible pairs of variables reveals that only neutrophils and lymphocytes had their outliers co-occurring in more than 75% of patients. In contrast, all other pairs of variables had at least 25% of their outliers associated with a "normal" value (non-outlier value in the 5%-95% percentiles range of convalescence) in the other pair's variable, pointing out that patients do not all share the same subset of altered variables at exacerbations. Likewise, considering possible causes of the acute event, pathogenic virus or bacteria were not detected from spontaneous sputum at ECOPD in more than 60% of the patients, likely due to the fact that positive cultures were used instead of the qPCR-based techniques (16sRNA sequencing) that tend to provide better detection sensitivity. Of note, the large proportion of outliers in glucose levels is probably caused by systemic steroids taken at or before hospitalization [19, 101]). Additionally, only 5.7% of patients at ECOPD had >2% circulating eosinophils, which increased to 54.7% at convalescence. This differs significantly from other studies where 25% to 50% of patients have >2% circulating eosinophils during ECOPD [78, 102, 103], suggesting that in this cohort the population did not capture eosinophilic-associated exacerbations.

1.2 Biomarkers Diagnostic of Exacerbations

Biomarkers analysis derived from the patients’ data showed that ECOPD episodes can be accurately identified (with an AUC of 0.97) by combining the levels of dyspnoea (⩾5 on 1-10 visual analog scale), blood neutrophils (⩾70%) and plasma CRP (⩾3 mg/L) into an optimized general linear mixed model, providing a simple yet reliable diagnostic tool of hospitalized exacerbations. The patients were all recruited at the hospital because of the episode so that the validity of the model to detect non-hospitalized (thus milder) forms of exacerbations could not be investigated. Several other studies [104-108] have defined a higher threshold of CRP for hospitalized acute ECOPD, mostly >10 mg/L, possibly due to a higher severity of the included exacerbations [109]. Needless to say that increased dyspnoea, elevated CRP and leucocytosis can also occur in other clinical circumstances that may not even arise from the lungs (e.g. cholecystitis, pneumonia, sickle cell crisis, pulmonary embolism (PE) or congestive heart failure). The dyspnoea levels reported consist of patients
self-evaluation and the diagnostic would be less subjective if dyspnoea were replaced by a biological biomarker, for example from a serum or sputum sample. For research and clinical use, the computational model requires cross-examination and validation in external cohorts [72]. Maria Montes de Oca et al., in a 2018 review citing our study and others, present different schemes to precisely define exacerbations and propose to use the same three parameters and associated cut-off values of the core paper 1 in addition to three new parameters in order to improve the definition of acute ECOPD. These new parameters are: Procalcitonin >0.25 μg/L (suggestive of bacterial aetiology and encourage the use of antibiotic therapy), N-terminal pro b-type natriuretic peptide (NT-proBNP) >300 pg/mL (suggestive cardiac dysfunction [108]) as well as X-Rays (to evaluate the presence of pneumonia) [110].

1.3 Multi-Level Differential Network Analysis of Exacerbations (MLDNA)

With the application of MLDNA, the core paper 1 aimed to draw attention to the usefulness of this new analytical approach to add novel, integrated, dynamic and holistic information to the heterogeneity of a complex biomedical condition. Networks medicine premise is that complex multi-level states like exacerbations or COPD can be viewed as derailed biological systems, or perturbed networks, in which the normal dynamic interactions at the subclinical levels (for example in terms of lung gas exchange pathways and cellular processes) are going through an abnormal state far from ideal homeokinetic operating conditions [16, 111]. In that paradigm, the phenotypic abnormalities observed in patients (i.e. clinical symptoms of exacerbations) are emergent properties of a dysfunctional physiological system that are associated to subclinical alterations and improper biological interactions. These can be represented as perturbed pathways or perturbed correlation networks. In the worst-case scenario where the disease progressively gets worse, the system departs too far from functional equilibrium towards a partial system collapse (i.e. lung respiratory failure, heart attack, etc.) or complete collapse (death). In core paper 1, the perturbed Spearman correlation network of ECOPD with respect to clinical stability indicates a loss of system control and reduced resilience during ECOPD. Most of the correlations that significantly differ between the two states are present at clinical stability while absent at ECOPD. Furthermore, supporting the idea that network modules represent biological subsystems that consist of variables highly connected internally but little to outsiders, it can be noted that network nodes in both clinical states did cluster into sparsely connected modules that appear
biological homogeneous: five modules at ECOPD and six at clinical stability were identified by a common unsupervised unbiased algorithm, and the resulting modules were mostly comprised of node of one or two of the following categories: systemic inflammation, lung inflammation, biochemistry, lung physiology, vital signs, microbiology, CT imaging or cardiovascular. In addition, more than half of the differential correlations between the two states linked different modules at ECOPD, which can be interpreted as a reduction in biological subsystems (modules) co-regulation. In addition, dynamic non-linear systems may have some components (biological mediators or variables) that are more critical than others to their proper regulation. In a network framework, these are referred to as "hubs" and "bottleneck" nodes and are defined by being respectively either more central and more connected than the other nodes, or forming a non-redundant thus important link between modules [112, 113]. Specifically in core paper 1 networks, only one node had more differential links at ECOPD (TNF-α, with n=4 links to other nodes) while there were many nodes with more differential links at convalescence: TGF-β (n=6), KCO (n=5), PAFI (n=5), PaO2 (n=5) and heart rate (n=4), suggesting that these markers are central to the regulatory processes of lung function, and it can be hypothesized that their alteration are more likely to lead to health complications. For pharmaceutical research purposes, the central hubs and bottleneck variables are a priori the ones most susceptible to be relevant, as targeting them with a specific pharmaceutical agent might help returning the network to the clinically stable equilibrium state, or inversely to prevent a healthy network topology from turning into one susceptible to lead to future episodes of exacerbations.

The heterogeneity of exacerbations can then be conceptualized by considering that there is always more than one way for a system to dysfunction and display the same subset of observable symptoms. In the physiological and biological network operating in COPD patients, nominal alterations (such as increased CRP levels) and pressure points (prolonged submission to tobacco toxic particles) have consequences that spread throughout the network via the connections of the different parts and nodes (e.g. via systemic inflammation mediators). Thus exacerbations are not only associated to lung abnormalities but may also be correlated to cardiovascular, metabolic and systemic complications in COPD patients.

Systems biology approaches that involve networks are now widely used in respiratory medicine studies that involve omics data [12], for example to investigate lung transcriptomics
of emphysema [114] or to characterise COPD comorbidities co-occurrence [115]. To my knowledge, it is the first time that networks medicine is used to get further insight into the complexity of a relevant clinical problem like ECOPD. Hopefully, core paper 1 paves the way for network analytical strategies to be applied to other complex biological conditions in respiratory medicine and elsewhere.

Heterogeneity can be investigated with other systems biology approaches than differ from networks medicine and complements it. Another common and useful scheme to look into complex conditions is to perform unbiased clustering of the patients and their data, then look for significant differences between the clusters with the end goal to (in)validate the findings in other cohorts. Such an unbiased cluster approach was successfully used on ECOPD by Bafadhel et al. on a dataset of 182 ECOPD episodes [102]. Unfortunately, the sample size of the core paper 1 cohort (n=86) was too small for that approach.

1.4 Core Paper 1 Limitations

This paper’s research has several limitations worth pointing out. It is not clear how much the initiation of systemic corticosteroids, before the collection of biological samples (within 72h after admission) might have modified the inflammatory profile of ECOPD. It must also be noted that only hospitalised ECOPD were included, so that the results are not directly generalisable to other milder (or more severe) forms of ECOPD. Furthermore, patients presented to hospital at various time points in the evolution of an ECOPD and it is unclear where the exacerbations were sampled along that continuum. Additionally, the recovery phase data at 3 months was used as a proxy for COPD clinical stability in our (networks and biomarkers) differential analysis. However, the underlying assumption that the patients’ bioclinical status is the same before and after the exacerbations is partially incorrect. The cohort further lacks controls without COPD and COPD patients who do not suffer exacerbations. Finally, the core paper 1 networks analysis must be considered a proof-of-concept study because of the relatively low number of patients included (n=86) so that the findings require validation in larger cohorts. All in all, the exclusion of severe co-morbidity, pneumonia, relatively small sample size and study of hospitalised patients (not ambulatory ECOPD) restrict the generalisability of the results.
2. SPECIFIC DISCUSSION OF THE SECOND AIM: RELEVANCE OF LOW LUNG FUNCTION IN EARLY ADULTHOOD

The analysis of the prevalence, associated biomarkers and clinical relevance of the low lung function in early adulthood, in three large cohorts (FOC, GenIII, and CARDIA) constitutes the follow-up of the vital lung function trajectories described by my group in 2015 [28]. Specifically, the novel information provided is that 4–12% of the general population has low lung function (FEV1 <80% predicted) in early adulthood (25–40 years of age); that this is not a bystander effect because these individuals also have a higher prevalence of respiratory, cardiovascular, and metabolic abnormalities and a higher and earlier incidence of comorbidities during follow-up than those with normal lung function in early adulthood, as well as a higher rate of premature death; and that low lung function status in early adulthood is correlated between parents and direct descendants (GenIII), suggesting genetic heritability.

These results were not derived from a novel networks analysis as in core paper 1 analysis of COPD exacerbations, but instead from standard statistical tools. However, the core paper 2 also analyzed the heterogeneity globally from a multi-level perspective since, on one hand, the analysis processed longitudinal data at multiple time points within adulthood and across population generations, and on the other hand, they integrated multiple biomedical variables (e.g. FEV1 or biomarkers) in correlation with clinical outcomes such as comorbidities and death. These specific aspects and the main limitations are further discussed hereafter:

2.1 Early Life and Pre-Birth Factors of Abnormal Low Lung Function

The traditional hypothesis of COPD aetiology is an accelerated decline of lung function with age mainly caused by prolonged tobacco smoking [27]. That paradigm is now challenged as reports showed that up to half of COPD patients never had a normal peak lung function in early adulthood [30], pointing to a dynamic heterogeneity of the natural history of COPD. The observations of core paper 2 also support the idea that COPD might arise from failure to attain the normal early adulthood spirometric plateau since low peak lung function in early adulthood (25-40 years old) in FOC and CARDIA was significantly correlated to also having an abnormally low peak lung function later in life (50-65 years) and an increased COPD prevalence.
The aetiology can be pushed even further back in time, as low lung function and respiratory symptoms in infancy appear to track from birth into adulthood, and that parental respiratory factors (such as maternal or paternal asthma or maternal smoking) are correlated to children lung health [116]: In 1991 Barker D. J. and colleagues showed that childhood respiratory symptoms such as bronchitis, pneumonia, or whooping cough are associated to a reduced adult lung function [117]. Spirometry measurements in more than a hundred infants in the Tucson Children's Respiratory Study demonstrated that those who had a low (1st quartile) maximal expiratory flows at functional residual capacity (Vmax(FRC)) at birth ended up with statistical lower FEV1, FVC, and forced expiratory flow between 25% and 75% of FVC (FEF25-75) throughout childhood up to early adulthood [118]. A 2016 study of the same cohort, analysing FEV1/FVC trajectories in 599 subjects from 11 to 32 years old, identified with latent class analysis a significant proportion of individuals (9.3%) who had a persistently low trajectory throughout. The latter was associated to more paternal asthma than in the normal trajectory group, as well as more early life lower respiratory illnesses caused by respiratory syncytial virus, physician-diagnosed active asthma at age 32 years and lower VmaxFRC at age 6 years [119]. Similarly, Owens L. et al. derived, from a 2018 longitudinal study that tested lung function from 1 year old to 24 year old in 253 individuals, that the airway framework is laid down in the antenatal period and tracks into adulthood [120] and that childhood low lung function is associated to increased respiratory symptoms later on. They further uncovered two pre-birth factors associated with a lower FEV1 between 6 and 24 years old: maternal smoking and maternal asthma. In CARDIA, paternal asthma had a significant different prevalence between individuals with early adulthood low peak lung Function (ELLF) and individuals with normal peak lung function (ENLF). In 2009, Svanes C. et al. uncovered several "childhood disadvantage factors" significantly associated with lower FEV1 in adulthood, faster lung function decline and higher COPD incidence: maternal asthma, paternal asthma, childhood, asthma, maternal smoking, and childhood respiratory infections [121]. In 2016, a longitudinal study that followed asthmatic children also established childhood asthma as well as specific patterns of abnormal (reduced FEV1) lung function growth as predictors of early adulthood low lung function [122]. Multinomial regression on spirometry measurements of 1389 individuals from a Tasmanian cohort at 7 and 45 years old also exposed that the lowest quartile of FEV1 at 7 years was associated with the co-occurrence of asthma and COPD (ACOS) at 45 years old, but not COPD or asthma alone,
wile the lowest quartile of FEV1/FVC ratio at 7 years was associated with ACOS, COPD but not asthma alone [123, 124]. However, it must be noted that the diagnostic of asthma in children is of limited utility since it is very unspecific: it relies only on clinically observable phenotypes that do not use biological objective tests and may include distinct pathobiological endotypes, such as abnormal lung development.

Aside from paternal or maternal asthma and maternal smoking, there are other (pre-) birth factors correlated to abnormal lung development [125], such as low birth weight or premature birth [126]. In FOC, low birth weight (<2.5 kg) was twice as high (20% vs 9%, p=0.021) in participants with low lung function that in those with normal lung function, which corroborates several studies. Barker D. J. hypothesised in 1991 that intrauterine influences that retard foetal weight gain may also irrecoverably impair the growth of the airways [117]. In that study he noted that lower birth weight was associated with worse adult lung function, and that COPD death in adult life was associated with lower birth weight and weight at 1 year. The idea was developed in what is known as the “Barker Hypothesis” [127]: suboptimal foetal development caused by undernutrition lead to permanent changes in structure and metabolism that may be the origin of a number of diseases later in life, including coronary heart disease, stroke, diabetes and hypertension. A 2015 study confirmed with a logistic regression the negative influence of low birth weight on COPD incidence [128], and likewise a 2016 study used a linear mixed model to negatively correlate birth weight, gestational age and gestational maternal smoking to lung function in children [129].

2.2 Tobacco as a Potential Cause of Early Adulthood Low Lung Function

Tobacco (accumulative) smoking is a central adverse factor for COPD and lung function in general, and, as mentioned, maternal smoking is also known to have a negative influence on children’s lung function [130-132].

Given the core paper 2 data, it was impossible to unequivocally disentangle the effect of smoking (or maternal smoking, or chronic exposure to smoking) from the effect of early adulthood low lung function on the occurrence of later abnormalities, mainly because maternal smoking, passive exposure during childhood and smoking in adolescence are themselves three known causal risk factors for early adulthood low lung function, reduced
FEV1/FVC and increased airway resistance [133, 134]. In fact, FOC and CARDIA smoking exposure data in the age range 20-40 y.o. revealed that ELLF had significantly more (compared with ENLF), % of ever-smokers (76% vs versus 64% in FOC, 61% vs 53% in CARDIA), number of cigarettes smoked per day (28.8 vs 20.3 in FOC, 7.8 vs 6.2 in CARDIA), as well as possibly an earlier age of smoking onset (16.8 vs 17.5 in FOC, not different in CARDIA: 17.7 vs 17.5). The same tendency was also observed in GenIII, although not statistically significant (possibly because of the lower sample size, or because later generations smoke less on average). Furthermore, a recent paper by Mathew A. R. and colleagues [135] correlated (low rate) tobacco smoking trajectories to severe increase of emphysema risk, which may indicate that ELLF smoked more than ENLF since in GenIII the prevalence of emphysema in early adulthood and during follow-up was significantly higher in ELLF than ENLF. In the former, similarly, the FOC prevalence was also higher during late adulthood (50-65 years old, not measured in early adulthood). All in all, deconvoluting accumulated smoking exposure from early adulthood low peak lung function would require large cohorts spanning from childhood until late adulthood that contain extensive smoking records, including maternal exposure to smoking and infancy data (e.g. birth weight and spirometry).

2.3 Novel Hypothesis: The factors that Cause an Abnormal Lung Development Might Also Compromise the Cardiovascular and Metabolic Systems

Going further that limiting the possible putative effects of early-life factors to the pulmonary system, it can be hypothesized that the factors that lead to a sub-optimal lung development might not be specific to the lungs but instead also cause abnormalities in the cardiovascular and metabolic systems, as well as more premature death [117]. This new hypothesis is consistent with the core paper 2 analysis since early low lung function individuals had higher cumulative and earlier incidence of abnormalities in all these biological systems when contrasted with normal lung function participants, at 25-40 and during follow-up until 65 years of age.

A recent analysis of the Tucson Epidemiological Study of Airway Obstructive Disease confirmed that low FEV1 (and to a lesser extent FVC) in early adulthood is a risk factor for early cardiopulmonary (heart disease or COPD) mortality [136]. A 2018 analysis of the Hertfordshire Cohort by Humphreys J. et al. with more than 2000 participants, for which
perinatal and infant health records were available, as well as medication and chronic diseases data until about 66 years old, reported that early-life factors such as childhood illnesses significantly increased the risk of multimorbidity in later life [137].

Furthermore, low birth weight (LBW) is associated with dysfunction of several organs later in life. It is a risk factor not only for COPD onset [128], but also for metabolic conditions (e.g. diabetes mellitus), circulatory and heart conditions [138], obesity incidence [139], severe steatosis and non-alcoholic steatohepatitis [140]. Boeri L. and colleagues assessed in 2016, in adult males, that LBW predicted higher Charlson Comorbidity Index (CCI) values, a measure of Health-significant comorbidities, as well as more pathologic progressive motility and pathologic sperm morphology [141]. Two recent reviews of the accumulated evidence, combined with other birth and pre-birth adverse factors (maternal/foetal disease states, nutritional deficits/excess, stress, exposure to environmental chemicals, medical interventions) suggest that insults occurring during the perinatal period alter the developmental trajectory of the offspring’s cardiopulmonary system [142] and other systems [143] leading to long-term detrimental outcomes that often culminate in adult pathologies.

2.4 (Epi-)Genetic Factors that Lead to Abnormal Lung Development

The core paper 2 research revealed a trans-generational reproducibility of low lung function in early adulthood since it showed a significant correlation or $R^2=0.28$ between the FEV1 of GenIII participants and their FOC parents’s average FEV1. Accordingly, 10% of GenIII participants that had at least one parent stratified as having low lung function in FOC had a FEV1 below 80% predicted, while in contrast the proportion was only 3% in those whom both FOC parents were classified as normal. Furthermore, those GenIII participants with at least one ELLF parent also had a significantly lower FEV1/FVC ratio, a higher proportion of women and more reported parental asthma. These associations suggest that there may be a genetic component to abnormal lung development and resulting early low lung function.

Much of the lung function development and COPD heritability remains unexplained, although several GWAS studies have established gene variants significantly associated with either lung function parameters (e.g. to FEV1, FVC, and FEV1/FVC ratio, longitudinal
variations), tobacco effects on lung decline, or COPD parameters (e.g. onset, or airflow obstruction severity) [144-147]. Recently, McGeachie J., Yates P. and colleagues uncovered a specific genetic polymorphism (rs4445257) associated to early decline in lung function after normal growth that may also protect against early decline in reduced growth groups [148].

Recently, McGeachie J., Yates P. and colleagues uncovered a specific genetic polymorphism (rs4445257) associated to early decline in lung function after normal growth that may also protect against early decline in reduced growth groups [148].

Recent research uncovered gene variants that affect lung development as early as the embryonic stage [149, 150], and now that early adulthood peak lung function and trajectories importance for COPD are established, more research is needed into their genetic basis. In terms of epigenetic determinants in early life, a 2018 Epigenome-wide association study of cord blood and mid-childhood peripheral blood total serum Immunoglobulin E (IgE) levels identified several cord blood methylation signals that were correlated to mid-childhood IgE, thus providing evidence that IgE-mediated hyper-sensitivity may be epigenetically programmed in utero and during early childhood [151]. Several of these methylation sites were already associated to asthma (ADAM19, EPX, IL4, IL5RA, and PRG2) [152-154].

These studies lead to new interpretations of COPD pathobiology unrelated to tobacco smoking for a subset of patients, via abnormal early life lung development supported by genetic susceptibility and/or early life adverse programming of epigenetic sites.

2.5 Potential Opportunities for Treatment, Prevention and Early Intervention

The findings of this PhD Thesis suggest that some of the comorbidities frequently reported in COPD patients might originate earlier in life than previously thought, especially for the high proportion (up to 50%) of COPD patients who had a low peak lung function in early adulthood. For clinical practice it means that these individuals might benefit greatly from early detection (potentially via systematic population-wise spirometry tests in childhood and early adulthood), early intervention and targeted preventive measures.

2.6 Core Paper 2 Limitations

In both FOC and CARDIA cohorts, the drop-out rate during follow-up was higher in participants with early low adulthood peak lung function (ELLF) than in the normal peak group individuals (ENLF). It is a potential results bias, although it may underestimate the
observed higher proportion of bioclinical abnormalities in ELLF, as adverse medical conditions and poor health may be the reason of drop-out for a number of cases in these decade-long observational cohorts of the general population.

Additionally, the comparison of observations between the three cohorts (FOC, CARDIA and GENIII) was limited by the fact that most often the nominal biological variables, clinical variables and questionnaires were not the same across cohorts (or even in-between visits of a given cohort). This potential bias was mitigated by summarizing the alterations into their respective clinical category (e.g. respiratory, cardiovascular or metabolic) and then calculating for each category the proportion of individuals that have at least one clinical alterations in any of the category’s variables. These accumulative proportions are more robust than nominal variable prevalences and more readily compared between ELLF vs ENLF across cohorts as well as longitudinally during follow-up.

Finally, the associations reported in this Thesis do no establish causation and the observations are prospective. Therefore, the findings require validation and confirmatory analysis in other cohorts, as well as a more detailed analysis of the clinical factors discussed (effects of early life factors on early lung function, causal interactions with tobacco smoking exposure, etc.).

2.7 Futures Challenges of Systems Medicine in this Field

If the lungs develop suboptimally, resulting symptoms of airflow limitation may be diagnosed as asthma [155], which would represent an important misdiagnosis since the underlying pathobiological mechanisms of individuals born prematurely are different from those of common asthmatics [126]. This potential misclassification should be further considered in future studies.

Longitudinally the core paper 2 reports important statistical associations between clinical and biological factors across time, but it does not uncover the biological mechanisms and endotypes that underlie these relationships. Extensive omics data collection and
genotyping in large cohorts of the appropriate clinical setting will provide the necessary basis for the analysis of such mechanisms.

One of the hardest (but major) aspects of NCDs to quantify is the environmental impact on disease initiation and development [156]. The environmental variables (termed exposome) range from prenatal events to lifelong exposure variables (e.g. air pollution, low physical activity and adverse diet) that could not be properly tracked in past cohorts. Of note, although cumulative tobacco smoking is a crucial COPD risk factor, its current quantification based on patients self-estimation clearly lacks accuracy. Future advancements in technology (e.g. wearables or drones to continuously track air pollution) will improve the quantification in future prospective (ideally trangenerational) cohorts.

Access to extensive electronic medical records is also important to the proper study of NCDs comorbidities and their of confounding factors (sex, age, socioeconomic status, etc.). The centralized collection of that much individual data (omics data, environmental data and medical records) in large cohorts - arguably necessary to fully understand NCDs heterogeneity - poses substantial ethical challenges, as well as confidentiality, security and legal issues [157].

Finally, it is possible that the future implementation of personalized medicine in healthcare will partly rely on probabilistic models that do not use mechanistic pathobiological information, but instead leverage big data with unbiased machine learning algorithms to predict clinical outcomes and best medication strategies in tools tailored to the profile of individual patients [158, 159].
Conclusions

In conclusion, this PhD Thesis has used multi-level integrated analysis to shed light on two specific aspects of COPD heterogeneity:

1) Exacerbations of COPD (ECOPD)

- ECOPD are characterized by several alterations (dyspnoea, tachypnoea, tachycardia and respiratory failure, lung and cardiovascular physiology, systemic inflammation markers, biochemistry markers, sputum bacteria or viral infection), although, for practically all variables, significant overlap remain between the two clinical states distributions, thus highlighting the heterogeneity of the events.
- ECOPD are characterised by a fragmentation of the correlation network observed during convalescence, suggesting loss of system control, homeostasis and reduced resilience.
- These acute events can be identified objectively (AUC 0.97) by using a panel of three biomarkers (dyspnoea, circulating neutrophils and CRP levels) frequently determined in clinical practice.

2) Early low lung function and health in later life

- Low peak lung function in early adulthood (FEV1 of less than 80% predicted at the age of 25-40 years) is common in the general population, with a prevalence of 4-12%.
- Early low peak lung function individuals have a higher prevalence of respiratory, cardiovascular, and metabolic abnormalities in early adulthood.
- These individuals also have a higher and earlier (about a decade) incidence of cardiovascular, metabolic and systemic comorbidities in later adulthood.
- They are burdened by an increased risk of premature death (hazard ratio 2.3 [95% CI 1.4-3.7]).
Low peak lung function status in early adulthood is significantly correlated ($R^2=0.28$) in-between parents and offsprings, indicating a possible genetic heritability.
Appendix

Published review

From systems biology to P4 medicine: applications in respiratory medicine.

Noell G., Faner R.tc, Agustí A.

Eur Respir Rev. 2018 Feb 7;27(147)
From systems biology to P4 medicine: applications in respiratory medicine

Guillaume Noell1,2, Rosa Faner1,2 and Alvar Agusti1,2,3

Number 4 in the Series "Personalised medicine in respiratory diseases"
Edited by Renaud Louis and Nicolas Roche

Affiliations: 1Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. 2CIBER Enfermedades Respiratorias (CIBERES), Barcelona, Spain. 3Respiratory Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.

Correspondence: Alvar Agusti, Respiratory Institute, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain. E-mail: AAGUSTI@clinic.cat

@ERSpublications
Systems biology and network medicine have the potential to transform medical research and practice
http://ow.ly/r3jR30h35x

ABSTRACT Human health and disease are emergent properties of a complex, nonlinear, dynamic multilevel biological system: the human body. Systems biology is a comprehensive research strategy that has the potential to understand these emergent properties holistically. It stems from advancements in medical diagnostics, “omics” data and bioinformatic computing power. It paves the way forward towards “P4 medicine” (predictive, preventive, personalised and participatory), which seeks to better intervene preventively to preserve health or therapeutically to cure diseases. In this review, we: 1) discuss the principles of systems biology; 2) elaborate on how P4 medicine has the potential to shift healthcare from reactive medicine (treatment of illness) to predict and prevent illness, in a revolution that will be personalised in nature, probabilistic in essence and participatory driven; 3) review the current state of the art of network (systems) medicine in three prevalent respiratory diseases (chronic obstructive pulmonary disease, asthma and lung cancer); and 4) outline current challenges and future goals in the field.

Received: Sept 28 2017 | Accepted after revision: Nov 30 2017
Support statement: This work was supported, in part, by Instituto de Salud Carlos III (PI12/01117, PI15/00799, CP16/0039), Recercaixa-2012 (AA084096), SEPAR (PI065/2013, PI192/2012, PI68/2015), AGAUR FI-DGR 2016 PhD grant and AstraZeneca Foundation COPD Young Researcher Award. CERCA Programme/Generalitat de Catalunya. This work was developed at the building Centre de Recerca Biomédica Celles, Barcelona, Spain. Funding information for this article has been deposited with the CrossRef Funder Registry.

Conflicts of interest: None declared.
Provenance: Commissioned article, peer reviewed.
Copyright ©ERS 2018. ERR articles are open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
therefore, if we want to intervene prophylactically to preserve health or therapeutically to cure disease, in a safe and effective way, we should understand these dynamic gene–environment interactions in greater detail. Certainly, this will not be an easy task, but the alliance of new high-throughput "omic" methodologies, novel imaging techniques and current (and future) computational power can project us forward in this endeavour and eventually facilitate the development of novel therapeutic strategies (and the repurposing of old ones) [3]. However, as wisely highlighted by one of the anonymous reviewers of this paper, to whom we are grateful: "... full understanding of complex nonlinear systems in physics and biology might not be ever possible and, fortunately, might not be even required because probabilistic decisions are (and will become) more powerful than decisions based on precise mechanistic understanding. This is a real revolution already happening in society (Google and Amazon can predict your behaviour without knowing (less understanding) you). Similarly, Artificial Intelligence (AI) will be able soon to predict the clinical course and responsiveness to intervention based on probabilities rather than on deep understanding of the system ...". We think that both concepts are actually synergistic since a more comprehensive and precise understanding of human biology (figure 1) will, no doubt, feed back to any AI platform, which will in turn provide new hypotheses to test iteratively. In any case, embracing a holistic scientific approach (as opposed to the reductionist research strategy used traditionally) for the understanding of human health and disease is a unique (and mandatory) opportunity to really move medical practice forward in the 21st century.

In this review, we: 1) discuss the principles of systems biology, a relatively recent research strategy that leverages from omics and bioinformatics to gain a holistic understanding of complex biological systems; 2) elaborate on how this can pave the way towards the effective deployment of the so-called "P4 medicine" (predictive, preventive, personalised and participatory) [4], which can shift healthcare from treatment of illness to prediction and prevention of illness, in a revolution that will be personalised in nature, probabilistic in essence and participatory driven; 3) review the state of the art of network (systems) medicine in three prevalent respiratory diseases (chronic obstructive pulmonary disease (COPD), asthma and lung cancer); and 4) outline current challenges and future goals in the field.

Systems biology
System approaches and emergent properties
System approaches stem from the premise that separate analysis of information gathered from different elements, compartments or levels of a dynamic system (figure 1) cannot yield appropriate understanding/

![Diagram of multilevel layers of biological, environmental and social information ideally integrated in systems biomedicine approaches. For further explanations, see text. Reproduced and modified from [2] with permission.](https://doi.org/10.1183/16000617.0110-2017)
prediction of the global behaviour of the system (so-called emergent properties, which are implicit in nonlinear systems) nor allow to fix it if found globally away from a homeokinetic state (e.g. disease versus health), with alterations that may spread throughout various levels or compartments of the system [5]. As Macleod [5] pointed out, emergent properties arise spontaneously as self-organised order from the nonlinear interactions of the different biological components and thus the overall emergent behaviour transcends the behaviour from each part in isolation. It follows that a more holistic approach, integrating information of the interacting parts and subentities into a single mathematical representation or model, can potentially offer better clues as to the causal chain of events that leads to the apparent phenotypic manifestations and how to remedy the situation [6]. Therefore, systems biology departs from the reductionist approach followed by traditional biomedical research by integrating (rather than taking apart) different biological levels (genes, molecules, cells, organs and the environment) and mechanisms, and shares a very similar goal with integrative physiology: to better understand holistically the systemic dynamic state of individuals [7, 8]. In this context, systems biology (and systems or network medicine) is nothing more than physiology, which has always meant to be multiscale and integrative [7, 8]. The difference is that today’s availability of new tools, high-throughput technologies and computing power allows, for the first time, real physiology to be performed. In essence, it is all about perspective [9]. Before “perspective” (i.e. three-dimensional) painting was “invented”, classical painting considered only two dimensions. Systems biology includes many different biological levels (dimensions) as well as the element of time dynamics. Hence, it has the potential to provide a much better definition for “the eye of the beholder” [9].

Biology as an informational science

In recent decades, faced with the biological complexity of human diseases, biomedical scientists have increasingly turned their efforts to apply high-throughput methodologies that embrace the Cartesian view that the human body is a system of formally interacting parts and that biology is an informational science. A nonexhaustive list of information sources (table 1) includes “omics” data ((epi-)genomic, transcriptomic, proteomic, metabolomic and microbiomic), single-cell analyses, phenotypic assays, extensive medical records and an endless list of environmental factors (“exposome”), such as smoking, exercise, diet and pollution, among others (figure 1). Common respiratory-specific levels of information are lung function and imaging.

System representation: networks

A network (or graph) is a practical graphical representation of complex data in the context of systems approaches (figure 2), where nodes are the elements of the system under study (e.g. genes, proteins, biochemical or physiological measures, individuals or patients, among many others) and edges (or links) connect nodes that interact somehow (causality, correlation). The network(s) constructions are hypothesis driven, i.e. there is not a single, fixed, network “template”; on the contrary, they can be “custom-made”. Networks are used to make inferences regarding the emergent dynamic (spatial and temporal) behaviour of the system in response to perturbations of putative critical network elements (nodes and/or edges).

Diseases as network perturbations

Any disease can be viewed as a system in an abnormal state (a perturbed network) far from homeokinetic operating conditions [5], either with: 1) associated nonemergent (i.e. subclinical) alterations, or 2) observable phenotypic abnormalities (i.e. clinical symptoms) progressively departing from functional equilibrium towards partial system collapse (i.e. organ failure, etc.) or complete collapse (death). In opposition, perfect health, or wellness, can be viewed as the optimal and quantifiable state of a system in dynamic equilibrium (i.e. homeokinesis [5]).

Biological network properties

Several aspects of biomedical networks are due to their particular biological nature and must always be considered in a research setting [16]. In terms of “topology” (i.e. their spatial distribution) they are generally scale-free (as opposed to random networks). In this setting, “scale-free” means that this type of network contains many nodes with few connections and a few nodes with many links (hubs) (figure 2). This topology makes networks more robust against random perturbations [17] because of their higher modularity [18]. They are composed of loosely connected subparts (modules), which are groups of nodes highly connected internally but little to outsiders. Modules are usually coupled with specialised biological subtasks. Additionally, not all nodes are equal relative to the network structure. Central elements that are much more connected than the average are denominated “hub” nodes [19], while linkers between modules are termed “bottleneck” nodes (figure 2) [20]. Perturbations of these elements (hubs and bottlenecks) often alter the system behaviour drastically, whereas the impact of more peripheral nodes on systems behaviour (emergent properties) is often marginal. Other influential network properties with regard to the
<table>
<thead>
<tr>
<th>TABLE 1 Common omics data types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay</td>
</tr>
<tr>
<td>Genomics</td>
</tr>
<tr>
<td>Transcriptomics</td>
</tr>
<tr>
<td>Proteomics</td>
</tr>
<tr>
<td>Metabolomics</td>
</tr>
<tr>
<td>Epigenomics</td>
</tr>
<tr>
<td>Microbiomics</td>
</tr>
</tbody>
</table>

SNP: single nucleotide polymorphism; GWAS: genome-wide association study; MS: mass spectrometry.

The robustness of the system include “redundancy” and “degeneracy” [21]. Finally, nodes and edges may be characterised qualitatively (e.g. fold-change sign for nodes that represent gene products) or quantitatively (e.g. chemical binding constant for edges that connect drug ligands to their target molecules) (figure 2).

Medical uses
Although systems biology is best suited for experimental models of disease, it can also provide actionable and useful insights in clinical medicine [22–24]. Systems (network) medicine can lead to the identification of disease biomarkers or drug targets, both defined as key nodes whose perturbation transits the state of the biological system from health to disease or vice versa. A paradigmatic example comes from the field of cancer and the observation that the sequential use of anticancer drugs enhances cell death by rewiring apoptotic signalling networks [25].

P4 medicine
The holistic approach of systems biology discussed earlier has enabled the emergence of a new comprehensive paradigm in medicine, called P4 medicine, for predictive, preventive, personalised and participatory [4, 26–28].

From treatment to prediction and prevention
Current western medicine mostly focuses on treating diseases and symptoms when they appear. Thus, the current healthcare system organisation (and its major stakeholders, i.e. hospitals and primary care centres, pharmaceutical industry, insurance companies, policy makers, providers (e.g. physicians) and patients) is based on the provision of medication and related health products to individuals once they are sick and

biosensors continuously tracking essential variables, such as exhaled breath [39], urine [40], imaging [41] and/or ambient pathogens or allergens [42-44].

Participatory driven

Finally, the benefits of this new P4 medicine will only be possible if patients and healthy subjects become active agents in the continuous assessment and preservation of their health. The role of health providers, both traditional (physicians, nurses, physiotherapists) and novel (genetic counsellors, behavioural coaches), will evolve to facilitate actionable information to individuals, which they can use to maintain their health [45]. Importantly, a new legal framework of rights, obligations and protections for individuals/patients and health professionals alike remains to be established and implemented. The emergence of personalised “big” data repositories raises unprecedented ethical, privacy, confidentiality, security and policy issues related to information ownership, access and management. Of note, the insurance company regulatory framework is markedly unprepared in most countries.

How to do it?

Research strategy

In principle, there are two different approaches to analyse data in this setting: “supervised” analysis based on *a priori* knowledge (e.g. clinical characteristics of patients) and “unsupervised” analysis (i.e. hypothesis-free). Both strategies have advantages and disadvantages, and in a sense they are complementary; their characteristics are further discussed in the Analytical complexity section.

Input data

Systems biology leverages from several omics data types. The most commonly used data types are genomics, transcriptomics, proteomics, metabolomics, epigenomics and microbiomics. Table 1 summarises their definitions, available experimental platforms, advantages/disadvantages and the bioinformatics tools needed. In each omic, data is curated, normalised and the differences between groups are usually computed using general linear models [46, 47]. We acknowledge that exposomics and imaging are missing in table 1; this is on purpose as both fields are currently developing very actively [48, 49].

Analytical complexity

Single-level analysis

A common research approach is to perform standard (supervised or unsupervised) single-level omic analysis (table 1) and then use further bioinformatics tools to facilitate the translational interpretation (table 2 and figure 3). For instance, from a list of genes/proteins of interest, in order to identify underlying biological mechanisms, functional enrichment can be performed against many databases that host annotated information on functional roles (figure 3A): Gene Ontologies of biological processes, cellular components or molecular functions [62]; KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways [63], Reactome pathways [64] and gene set enrichment analysis (GSEA) [50]. Furthermore, the

<table>
<thead>
<tr>
<th>Analytical tool</th>
<th>Goal</th>
<th>Advantages and disadvantages</th>
<th>Pipelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional enrichment</td>
<td>From lists of identifiers (commonly genes) computes the over-representation in a specific molecular function, Gene Ontology, pathway, biological process, cell localisation, etc.</td>
<td>Noise and dimension reduction, helps interpret gene sets; useful to aggregate the individual gene contribution to overall changes; results are dependent on database knowledge and thus may be biased</td>
<td>Gene set enrichment analysis (GSEA): http://software.broadinstitute.org/gsea/index.jsp [50], gene set variation analysis (GSVA) [51], Enrichr: http://amp.pharm.mssm.edu/Enrichr [52], FunRich: http://funrich.org [53]; STRING: https://string-db.org [54]; k-means [55, 56], hierarchical bottom-up [57]; hierarchical top-down (divisive analysis clustering (DIANA)) [58]</td>
</tr>
<tr>
<td>Data clustering</td>
<td>Classifies samples/variables based on their similarity in order to obtain homogeneous groups</td>
<td>Unsupervised, data driven and probabilistic; requires medium/large data sets</td>
<td>Weighted gene coexpression networks analysis (WGCNA) [59]; conventional coexpression measures (Pearson/ Spearman/Kendal) mutual information [60]; miRNA (targets) - genes [61]</td>
</tr>
<tr>
<td>Coexpression networks</td>
<td>From the dataset builds a correlation network to identify groups of related genes (modules), which can be investigated for biological functions and/or related to clinical traits</td>
<td>Coexpression in order to reflect causative processes must be coupled with functional enrichment and validation; correlations are affected by sample size of the dataset; requires proper data normalisation</td>
<td></td>
</tr>
</tbody>
</table>
with any imputed (usually clinical) characteristic. WGCNA can be complemented with functional enrichment analysis.

Multilevel analysis: the true revolution

Although some studies have and will continue to work successfully on a single omic level, recent decades have seen an ever-increasing body of work where several distinct omics datasets, including also other biological or clinical levels, are analysed conjointly using multiscale integrative methods such as SNF (similarity network fusion) [69]. This combination of levels has the potential to provide researchers with simultaneous information from several compartments of the biological system of interest, thus facilitating the modelling of the dynamic nonlinear relationships that characterise emergent properties (phenotypes) and complex diseases. Accordingly, this strategy would be able to provide more power to identify groups of patients affected with the same pathological mechanism or more power to probabilistically model (without understanding) the health versus disease states. The main multiscale analytical tools described to date are summarised in table 3. The “supervised” methods can be grouped mostly into either network-based, machine learning or multistep approaches [86], while the “unsupervised” can be further classified as based primarily on networks, Bayesian approaches or matrix factorisation (table 3).

Current applications of systems approaches in respiratory medicine

The pathogenesis of most common respiratory diseases is complex and largely undefined from a precise pathobiological point of view. Chronic respiratory conditions, such as asthma or COPD, are still diagnosed (and treated) based on respiratory symptoms and traditional lung function measures, but they are highly heterogeneous and often overlap. In fact, they are the end result of complex genetic and environmental interplays that are yet to be explicitly modelled. This poorly defined characterisation of the basic disease mechanisms results in nonspecific, mostly symptom-driven treatment options, or lack thereof, that may eventually be able to slow the progression of these diseases in fortunate, responsive patients.

Systems biology and network medicine approaches are being put forth in an effort to palliate this painful lack of knowledge and understanding by tackling two fundamental and interrelated matters: 1) as in other biomedical fields such as cancer, a novel classification (i.e. “taxonomy”) of chronic airway diseases is needed, based not on clinical presentation (i.e. “phenotypes”) but instead either on the underlying biological mechanisms (i.e. “endotypes”) when characterised or resulting directly from data-driven probabilistic clustering of patients data; and 2) a more precise patient stratification that can be transferred to distinct and personalised preventive or therapeutic prognosis as well as improved prognosis (i.e. P4 medicine) is also needed, as recently highlighted in a review focused on biological therapies for airway diseases [87].

COPD

COPD is a heterogeneous disease with pulmonary and extrapulmonary manifestations [88], and variable response to pharmacological treatment [89], suggesting that the condition affects several distinct biological pathways. To characterise this heterogeneity at the molecular level, several studies have already used a number of different systems approaches. 1) WGCNA and GSEA showed that a molecular signature composed of gene modules related to B-cell activity, NK-cell activity or viral infection cellular markers might be detectable in peripheral blood months following COPD exacerbations [90]. 2) Xue et al. [91] used other network-centric procedures to reveal an unexpected loss of inflammatory signature in COPD patients, as well as an activation-independent core signature for human and murine macrophages. 3) Glass et al. [92] used the network inference analysis PANDA (Passing Attributes between Networks for Data Assimilation) [93], designed for improved integration of individual with public datasets, and discovered network rewiring of lymphocyte activation signalling circuits in a known gene variant implicated in COPD by genome-wide association studies. 4) Faner et al. [94] unravelled differences in the molecular pathogenesis of emphysema and bronchiolitis by performing correlation network analysis of lung transcriptomics on COPD patients. They found that B-cell-related genes were significantly enriched in emphysema (compared with COPD patients without emphysema), paving the way for differential therapeutic research on inflammatory pathways of the adaptive immune response. 5) Two COPD studies demonstrated the utility of unsupervised k-means clustering by identifying robust cluster associations with clinical characteristics and known COPD genetic variants [95, 96]. 6) Very recently, Ross et al. [97] introduced a new Bayesian method for COPD subtyping. They applied it to the COPDGene cohort and identified nine different patient subgroups with distinct disease progression trajectories. Of note, Ross et al. [97] prove that their sophisticated model has a better predictive capacity than multivariate ordinary least squares regression analysis.
clinical and biomarker profiles (from blood, sputum and airway data) [98]. 2) Kuo et al. [99] recently reported three novel molecular phenotypes of asthma in the U-BIOPRED cohort by analysing sputum cell transcriptomics in asthmatic and nonasthmatic subjects. They applied hierarchical clustering of differentially expressed genes as well as gene set variation analysis, gene–protein coexpression and pathway enrichment analysis. 3) Sharma et al. [100] used network-based tools to analyse the predictive value of the asthma interactome, and characterised high-impact pathways central to the disease heterogeneity and drug response. 4) Qu et al. [101] used PANDA on participants of the Childhood Asthma Management Program cohort to assess the differential connectivity between the gene regulatory network of good responders to inhaled corticosteroids versus that of poor responders. The method allowed them to integrate their dataset with public data interactions of genes, transcription factors and proteins, and eventually implicate several network hubs and transcription factors (as well as regulatory rewiring) in the heterogeneity of drug treatment effects. Specifically, the differential network topology of good responders versus that of poor responders revealed enriched corticosteroid-induced pro-apoptosis pathways in the former and anti-apoptosis pathways in the latter, as well as key regulatory transcription factors (hubs) that drove differential downstream gene expression in the two groups.

Lung cancer
Lung cancer is the leading cause of cancer death in the world. Lung cancer is highly heterogeneous genetically because of a high mutation rate, as well as extremely complex since it comprises a disparate subset of diseases with distinct and possibly overlapping pathobiologies that share a common phenotypic manifestation. Smoking is a core shared risk factor for COPD and lung cancer; up to 65–70% of lung cancer patients suffer both lung cancer and COPD [102, 103]. So far, no single satisfactory circulating (i.e. liquid biopsy) tumour marker has been properly validated, but recently a panel of six tumour markers showed a very high specificity and sensitivity in patients referred to a tertiary hospital because of the clinical suspicion of lung cancer [104, 105]. Given that inherited genetic variants play a significant role in lung cancer development [106], but contribute little to risk estimates of classical predictive statistical models [107-109], it is hoped that systems biology approaches will allow the comparison multilevel high-throughput omics data between tumour and normal tissue, and facilitate the identification of early diagnostic lung cancer biomarkers. WGCNA has already been used successfully in lung cancer research. 1) Tang et al. [110] related the gene expression profile of lung squamous cell carcinoma with five differentially expressed long noncoding RNAs that could help in prognosis evaluation. Their gene signature was statistically associated with overall survival in important clinical subsets (stage I, epidermal growth factor (EGFR) wild-type and EGFR mutant). 2) Tian et al. [111] analysed coexpression networks and protein-protein interactions of data available in public repositories (The Cancer Genome Atlas, KEGG and Gene Ontology).

What’s next? Future challenges
For the successful development and implementation of systems biology and network medicine approaches in respiratory medicine, several challenges need to be faced and eventually solved.

Technical challenges
In any clinical study, only a fraction of the biological variability is captured (and therefore analysed) due to technical limitations (and cost) of the experimental tools available. The development of new experimental tools (e.g. high-throughput next-generation sequencing, mass spectrometry-based flow cytometry or real-time molecular imaging) will generate new information but, at the same time, massive amounts of (big) data that will have to be adequately handled, analysed and interpreted [112-114]. In this context, Rikkersberg and Powers [115] recently reviewed the methodological advancements and successful applications of metabolomics, one of the newest omic fields.

However, research would benefit not only from measuring “more” relevant variables, but also from estimating with better precision those variables already determined in the context of a more complete definition of reference and pathological ranges (that vary in time, across individuals and biological codeterminants) [116]. Of the variability supposedly present in experimental data, these currently unaccounted factors and batch effects should not be underrated since they can partly explain the general difficulty to replicate scientific findings in the biomedical field, of which respiratory medicine is not exempt.

Computational challenges
Computational methodologies and programming analytical tools are being constantly refined as they translate advancements from complementary areas such as AI and information science. However, challenges and difficulties remain. For instance, in differential expression (omics) analysis, one of the main

Informe de publicaciones de la Tesis

La tesis del doctorando se centra en dos artículos originales publicados el año 2017. En ambas el doctorando es el primer co-autor, ambas son del primer decil del ámbito respiratorio, y en ambas el doctorando ha realizado el análisis de datos, interpretación, extracción de conclusiones y redacción de los mismos. Específicamente:

1. **Multi-level differential network analysis of COPD exacerbations.**
 Eur Respir J. 2017 Sep 27;50(3). PMID: 28954781. (: authors contributed equally)*
 - La revista de este artículo (*European Respiratory Journal*) tiene un impact factor en 2017 de **12.2 puntos**.
 - El doctorando es **primer co-autor** de este artículo*. Los otros dos coautores ya son doctores y han participado en el diseño del estudio y recogida de los datos. Mientras que el doctorando, específicamente ha trabajado con los datos brutos, realizado todos los análisis estadísticos del artículo y ha participado en la interpretación de los mismos, extracción de conclusiones, elaboración y escritura del artículo y de sus revisiones.

2. **Lung function in early adulthood and health in later life: a transgenerational cohort analysis.**
 Agustí A*, Noell G*, Brugada J, Faner R.
 - La revista de este artículo (*Lancet Respiratory Medicine*) tiene un impact factor actual de **21.5**, siendo la primera de su categoría.
 - El doctorando es **co-primer autor** de este artículo con Àlvar Agustí, que es codirector del doctorando y ha contribuido en el diseño del estudio e interpretación de resultados.
 - En este caso, el doctorando, ha tenido acceso a los datos brutos, ha realizado todos los análisis estadísticos del artículo y ha participado en la interpretación de resultados, extracción de conclusiones, elaboración y escritura del artículo y de sus revisiones.

Asimismo, declaro formalmente que **ninguno de los coautores de estos dos artículos ha utilizado, implícitamente o explícitamente, estos trabajos para la realización de una tesis doctoral**. Además el doctorando durante su doctorado ha colaborado con la realización de 5 artículos más (1-5), uno de los cuales es una revisión, dos se han utilizado en otras tesis doctorales, pero 2 son originales y no se han utilizado en ninguna tesis. Todo ello demuestra la implicación del doctorando con el grupo y su trabajo de tesis durante este periodo.

Barcelona, 20 de Diciembre de 2018

Firma del co-director de Tesis Firma del co-director de Tesis Firma del doctorando
Dra. María Rosa Faner Canet Dr. Àlvar Agustí Guillaume Noell
Otros artículos que no conforman el trabajo de la tesis, pero en los que ha participado el doctorando:

Bibliography

Li, L.S.K., et al., *“what are my chances of developing COPD if one of my parents has the disease?”* A systematic review and meta-analysis of prevalence of co-occurrence of COPD diagnosis in parents and offspring. 2017. *12*: p. 403.

Li, L.S.K., et al., *“what are my chances of developing COPD if one of my parents has the disease?”* A systematic review and meta-analysis of prevalence of co-occurrence of COPD diagnosis in parents and offspring. 2017. *12*: p. 403.

120. Owens, L., et al., Airway function in infancy is linked to airflow measurements and respiratory symptoms from childhood into adulthood. 2018.

