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Abstract

Large-N phase transitions occurring in massive N = 2 theories can be
probed by Wilson loops in large antisymmetric representations. The log-
arithm of the Wilson loop is effectively described by the free energy of a
Fermi distribution and exhibits second-order phase transitions (discon-
tinuities in the second derivatives) as the size of representation varies.
We illustrate the general features of antisymmetric Wilson loops on a
number of examples where the phase transitions are known to occur:
N = 2 SQCD with various mass arrangements and N = 2∗ theory. As
a byproduct we solve planar N = 2 SQCD with three independent mass
parameters. This model has two effective mass scales and undergoes two
phase transitions.
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1 Introduction

Localization is a powerful tool to explore supersymmetric gauge theories in the non-perturbative
domain, and in particular in the large-N limit. Exact results obtained in the latter case bear
direct links to the holographic duality at strong coupling.

The partition function and select observables of any N = 2 gauge theory on S4 localize
to an effective matrix model [1], that can be studied at large-N by the standard methods of
random matrix theory [2]. A somewhat unexpected outcome of this analysis is appearance of
large-N phase transitions in a variety of massive N = 2 gauge theories [3, 4]. Their holographic
description remains an interesting open problem. The difficulty is related to the strong-weak
coupling nature of the holographic duality: transitions occur upon varying a coupling constant,
and this is difficult to achieve in holography where an infinite-coupling regime is normally
considered. It is desirable, in this respect, to devise observables that undergo phase transitions
at fixed coupling while some other auxiliary parameter is being varied. Particularly promising
probes of this kind are Wilson loops in large antisymmetric representations of the gauge group,
which were shown to undergo phase transitions once the size of representation is dialed to a
critical value [5].

Methods to calculate expectation values of Wilson loops in large representations, both
holographically and from localization, have been devised in the context of the N = 4 super-
Yang-Mills (SYM) theory [6, 7, 8], which localizes to the Gaussian matrix model [9, 1]. These
methods have been transplanted to N = 2 theories, both conformal [10] and massive [5, 11],
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and in massive case antisymmetric Wilson loops were shown to undergo phase transitions in
the rank of the gauge-group representation [5].

Here we discuss general features of phase transitions in antisymmetric Wilson loops and
then apply the general framework to a variety of theories where the transitions are known to
occur, namely to N = 2 super-QCD for different combinations of mass parameters and to N = 2∗

SYM, extending in the latter case the results of [5, 11].

2 Anti-symmetric Wilson loops

By localization, the expectation value of the circular Wilson loop in any N = 2 theory on S4

can be expressed as a matrix model correlator:

WR(C) = ⟨trR e LΦ⟩
MM

, (2.1)

where L = 2πRS4 is the circumference of the circle, which we consider to be large compared
to any other scale in the problem. In the decompactification limit RS4 → ∞ the circular loop
should obey the same universal scaling law as any sufficiently large contour. We thus expect
that (2.1) describes the universal behavior of large Wilson loops of arbitrary shape in N = 2
gauge theories.

We concentrate on the Wilson loops in antisymmetric representations. The generating
function for characters in the rank-k anti-symmetric representation Ak is given by

N

∑
k=0

e −Lνk trAk e LΦ = det (1 + e L(Φ−ν)) . (2.2)

An expectation value in any particular representation can be computed as

WAk(C) = L
C+ iπ

L

∫
C− iπ

L

dν

2πi
e Lkν ⟨det (1 + e L(Φ−ν))⟩

MM
. (2.3)

In the ’t Hooft limit, with

N →∞, k →∞, f = k

N
− fixed, (2.4)

the saddle point of the matrix model is not affected by the Wilson loop insertion, and is
characterized by the eigenvalue density

ρ(x) = 1

N
tr δ(x −Φ), (2.5)

obtained by solving the localization matrix model in the large-N limit. In the same scaling
limit, the saddle-point approximation for the integral over ν in (2.3) becomes exact and the
Wilson loop expectation value takes on an exponential, perimeter-law form:

WAk(C) ≃ eNLF (f). (2.6)
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The function F (f) is determined by the saddle-point equation, which can written as follows.
Define the function

F(f, ν) = fν + 1

L ∫ dxρ(x) ln (1 + e L(x−ν)) . (2.7)

Then F (f) = F(f, ν(f)), where ν(f) is the value of ν that maximizes F(f, ν) for a given f :

f = ∫
dxρ(x)

e L(x−ν(f)) + 1
. (2.8)

Once the eigenvalue distribution is known, the expectation value of the antisymmetric Wilson
loop can be computed from the above two equations [7].

The distribution of eigenvalues in massive N = 2 theories is confined to an interval (−µ,µ),
where µ is the characteristic mass scale of the underlying gauge theory, which we assume to be
such that µL ≫ 1. This corresponds to the low-temperature regime of the effective statistical
model, and the Fermi distribution in the above formulas can be replaced by the step function:

F(f, ν) = fν +
µ

∫
ν

dxρ(x) (x − ν)

f =
µ

∫
ν(f)

dxρ(x). (2.9)

It follows from these equations that

dF

df
= ν

d2F

df 2
= − 1

ρ(ν) , (2.10)

where ν ≡ ν(f). While the first of these equations is exact, the second one is only valid in the
limit µL→∞.

2.1 Phase transitions

The eigenvalue distribution in massive theories may develop specific singularities in a certain
range of parameters, which lead to phase transitions as the parameters change. The fundamen-
tal Wilson loops are not very good probes of the phase transitions, because the influence of any
given singularity in the eigenvalue density is washed out by averaging over the whole eigenvalue
distribution. On the contrary, the singularities are very pronounced in large antisymmetric
Wilson loops due to the sharp form of the Fermi distribution at zero temperature.

Large-N solutions of the localization matrix model are known for a number of D = 4 super-
symmetric gauge theories [4]. It was observed that in the decompactification limit, when the
size of the four-sphere becomes infinite, RS4 →∞, the density may develop singularities. The
features encountered so far are come in two types, the delta functions and the one-sided cusps.
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The first type of singularity arises in theories with fundamental matter, such as super-QCD,
while the second type is characteristic for adjoint matter and arises, for instance, in the N = 2∗

theory. It is these singularities which are responsible for the phase transitions. We consider the
two cases in turn, first at a general, model-independent level and then on concrete examples.

2.1.1 Delta-function singularity

Suppose that the density has a delta-functional peak in the middle of the eigenvalue distribution:

ρ(x) x→xc= ρ0 + pδ (x − xc) , (2.11)

where p is the fraction of eigenvalues concentrated in the peak and ρ0 is a constant. It is not
hard to see that this structure translates into two singularities in the Wilson loop expectation
value, at f = fc+ and f = fc− , where

fc+ =
µ

∫
xc+0

dxρ(x), fc− = fc+ + p. (2.12)

The function ν(f) stays flat, ν(f) = xc, for fc+ < f < fc− . From (2.10) we see that the free
energy F is continuous across the transitions together with its first derivative, while the second
derivative experiences a finite jump:

d2F

df 2
∣
fc±+0

fc±−0

= ± 1

ρ0

. (2.13)

2.1.2 Cusp

Strictly speaking, there are two types of cusps, the left cusp and the right cusp. On one side of
the cusp the density approaches a finite value, while on the other side it has an inverse square
root singularity:

ρ(x) x→xc±=
⎧⎪⎪⎨⎪⎪⎩

C√
∣x−xc± ∣

at x→ xc± ∓ 0

ρ0 at x→ xc± ± 0.
(2.14)

As a result, the antisymmetric Wilson loop develops a singularity at f = fc± , where

fc± =
µ

∫
xc±

dxρ(x). (2.15)

The free energy stays continuous together with its first derivative across the critical point, while
the second derivative experiences a finite jump, given by the same formula (2.13) as for the
delta-function singularity.

These are the two types of singularities encountered in the large-N solutions of the localiza-
tion matrix models in N = 2 theories in four dimensions. The delta-function singularities arise
in theories fundamental matter, while cusps are characteristic of the adjoint matter. Below we
consider a few examples of each type.
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3 Pure N = 2 SYM theory

We begin with a case where there is no large N phase transition, N = 2 SU(N) SYM theory
without matter. The large-N solution of this theory was first obtained from the Seiberg-Witten
theory [12]. The localization matrix model for pure N = 2 SYM was studied in [13, 14]. In the
decompactification limit R →∞, one finds [12, 13]:

ρ(x) = 1

π
√
µ2 − x2

, µ = c0ΛR , c0 = 2e−1−γ . (3.1)

where R is the radius of S4 and Λ is the dynamically generated scale.1

The saddle-point equation (2.9) gives

f =
µ

∫
ν

dx
1

π
√
µ2 − x2

= 1

π
arccos

ν

µ
, (3.2)

i.e.
ν = µ cos(fπ) . (3.3)

The Wilson loop (2.6) is given by

lnWAk = N
µ

∫
ν

dx ρ(x) x = N
π

√
µ2 − ν2 . (3.4)

Thus

lnWAk = NRF (f) , F (f) = c0Λ

π
sin(fπ) , 0 < f < 1 . (3.5)

It is a smooth function of f , as expected, since the theory does not have any phase transitions.

4 N = 2 Super QCD

As a first example where phase transitions occur, we consider the case of N = 2 SU(N)
super Yang-Mills theory with Nf pairs of fundamental and anti-fundamental hypermultiplets
of masses (M,−M), Nf < N .2

This model was studied in [4, 14]. We consider the N → ∞ limit with fixed Veneziano
parameter ζ ≡ Nf/N and fixed (renormalized) ’t Hooft coupling λ = g2

YMN , which in turn is
traded by the dynamically generated scale Λ,

ΛR = e−
4π2

λ(1−ζ) (4.1)

1In terms of the original, renormalized ’t Hooft coupling, ΛR = exp[−4π2/λ].
2The theory with Nf = N with massless hypermultiplets corresponds to N = 2 superconformal SQCD. In

this case there are no phase transitions [4].
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In the decompactification limit, the theory undergoes a phase transition at Λ = M/2. The
different features of the model were also reproduced in [15] by taking the large N limit on the
the Seiberg-Witten curve. Another interesting limit is the decompactification limit at finite
N . The partition function can then be computed by incorporating instantons through the
Seiberg-Witten curve [16].

It is possible to generalize the theory by considering fundamental hypermultiplets of different
masses, M1, ...,MNf . The eigenvalue density in the large N limit can still be determined in
terms of analytic formulas. The resulting theory describes multiple phase transitions occurring
whenever the largest eigenvalue µ (or the lowest eigenvalue −µ) crosses a new mass scale. An
explicit example with three mass scales, Λ, m,M is given in the appendix A.

The present theory depends on two parameters ΛR and MR. In the large N limit, the
eigenvalue density is determined by a saddle-point equation. This simplifies in the decom-
pactification limit R → ∞. By differentiating the saddle-point equation once, one obtains, for
R →∞,

2

µ

∫
−µ

dy ρ(y) ln
(x − y)2

Λ2
= ζ ln

(x2 −M2)2

Λ4
. (4.2)

Differentiating once more, we find the equation:

2

µ

⨏
−µ

dy
ρ(y)
x − y = ζ

x +M + ζ

x −M . (4.3)

This (singular) integral equation has two different solutions, which depends on whether the
points x = ±M lie, or do not lie, within the eigenvalue distribution. The two solutions describe
the two phases of the theory:

• Phase I. Strong coupling phase, µ >M , with

ρ(x) = 1 − ζ
π
√
µ2 − x2

+ ζ
2
δ(x +M) + ζ

2
δ(x −M) (4.4)

• Phase II. Weak coupling phase, µ <M , with

ρ(x) = 1 − ζ
π
√
µ2 − x2

+ ζM
√
M2 − µ2

1

π
√
µ2 − x2(M2 − x2)

(4.5)

The non-analytic behavior in the Wilson loop lnWAk appears when ν(f) crosses a singular
point in the eigenvalue density. Since in phase II the eigenvalue density is smooth, in the
weak coupling phase the lnWAk will be smooth. We thus focus on the more interesting strong
coupling phase, where we have a delta-function singularity of the type described in section
2.1.1. In this phase, µ = 2Λ, so the phase transition takes place at Λc =M/2 (see appendix A).

The saddle-point equation (2.9) now leads to

f = (1 − ζ) 1

π
arccos

ν

µ
+ ζ

2
θ(M − ν) + ζ

2
θ(−M − ν) . (4.6)
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The solution has several critical points f1, f2, f3, f4, where

πf1 = (1 − ζ)arccos
M

µ
, f2 = f1 +

ζ

2
, f3 = 1 − f2 , f4 = 1 − f1 . (4.7)

The critical points (f1, f2) corresponds to the points (fc+ , fc−) described in section 2.1.1, when
ν meets the delta-function singularity at x =M . In the interval (f1, f2), ν remains constant, ν =
M . Similarly, (f3, f4) are the two critical points corresponding to the delta-function singularity
at x = −M . Explicitly, the complete solution is

ν = µ cos
πf

1 − ζ , 0 < f < f1

ν =M , f1 < f < f2

ν = µ cos
π(f − ζ/2)

1 − ζ , f3 < f < f2

ν = −M , f3 < f < f4

ν = µ cos
π(f − ζ)

1 − ζ , f4 < f < 1

(4.8)

Fig. 1 shows a plot of the saddle-point ν as a function of f = k/N for ζ = 1/2 (i.e. Nf = N/2).

f1 f2 f3 f4

0.2 0.4 0.6 0.8 1.0
f

-15

-10

-5

5

10

15
Ν

Figure 1: ν as a function of f (M = 10, Λ = 3M/4, ζ = 1/2). As ν = dF /df , the figure also shows the

behavior of the first derivative of lnWAk .
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Let us now compute the Wilson loop. We have lnWAk = NRF (f), with

F = fν +
µ

∫
ν

dx ρ(x) (x − ν)

= fν + 1

π
(1 − ζ)

√
µ2 − ν2 − ν

π
(1 − ζ)arccos

ν

µ

+ ζ

2
(M − ν) θ(M − ν) − ζ

2
(M + ν) θ(−M − ν) . (4.9)

It exhibits discontinuities in the second derivative with respect to f at the critical points. This
is readily seen from (2.10), since the first derivative of lnWAk is proportional to ν(f) which, as
can be seen from fig. 1, has discontinuities in its first derivatives. More directly, from (2.13),
we have

d2F

df 2
∣
fc±+0

fc±−0

= ±π
√
µ2 −M2

1 − ζ , (4.10)

where fc+ , fc− are either f1, f2 or f3, f4. Figs. 2a and 2b respectively show plots of F =
1
NR lnWAk and d2F /df 2 as functions of f . The first derivative, dF /df , being equal to ν(f), can
be seen from figure 1. One can check that the jumps in the second derivatives in figure 2b are
in precise agreement with (4.10).

f1 f2 f3 f4

0.2 0.4 0.6 0.8 1.0
f

1

2

3

4

F

f1 f2 f3 f4

0.2 0.4 0.6 0.8 1.0
f

-80

-60

-40

-20

d2 F

df2

(a) (b)

Figure 2: a) F = 1
NR lnWk as a function of f . b) d2F

df2
as a function of f . Here R = 1, with the same

values for M,Λ, ζ as in fig. 1.

5 N = 2∗ theory

The field content of N = 2∗ SYM consists of the vector multiplet and an adjoint hypermultiplet
of mass M . The ’t Hooft coupling λ = g2

YMN does not run and is just a parameter that
characterizes the theory. The theory undergoes a fourth-order phase transition each time the
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(a) (b)

Figure 3: (a) The eigenvalue density, for n = 6, along with the average Wigner distribution shown as

the dashed line. (b) The second derivative of the free energy, for the same set of parameters.

width of the eigenvalue distribution 2µ passes an integer multiple of M : µ(λ(n)c ) = nM/2. It is
convenient to introduce the parameters

n = [2µ

M
] , ∆ = {2µ

M
} , (5.1)

where the square (curly) brackets denote the integer (fractional) part of a real number. The
eigenvalue density has left (right) cusps at

x
(k)
c+ = µ − kM, k = 1, . . . , n

x
(k)
c− = µ − kM −∆, k = 0, . . . , n − 1. (5.2)

In what follows we concentrate on the strong-coupling regime of large λ.
The width of the eigenvalue distribution 2µ grows with λ, and the number of cusps accord-

ingly multiplies. At strong coupling the density gets a rather complicated short-scale structure
with a large number of cusps, while the average density is very simple and is described by
the Wigner distribution, as shown in fig. 3(a). To the first two orders of the strong-coupling
expansion [17],

ρ(x) ≃ 2

πµ2

√
µ2 − x2

+ 1

π

√
M

2µ5
[(µ − x) ζ (1

2
,{µ + x

M
}) + (µ + x) ζ (1

2
,{µ − x

M
})] . (5.3)

The width of the eigenvalue distribution, to the same accuracy, is given by

µ ≃
√
λM

2π
, (5.4)
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but it is more convenient to regard M and µ as independent variables (rather than M and λ).
Taking into account that the zeta function has the square-root branch point at zero:

ζ(1/2, z) ≃ 1/√z, we find that the singular points (5.2) are left or right cusps:

ρ(x) x→x
(k)
c±=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C
(k)
±√
∣x−x(k)c± ∣

at x→ xc± ∓ 0

ρ
(k)
0 at x→ xc± ± 0,

(5.5)

where

ρ
(k)
0 =

2M
√
k (n − k)
πµ2

, (5.6)

and

C
(k)
+ = M

2(n − k)√
2π2µ5

, C
(k)
− = M2k√

2π2µ5
. (5.7)

Notice that ρ
(k)
0 ∼ 1/µ≫ C

(k)
± /√µ ∼M/µ2, so the singularities are parametrically weak.

The oscillating structure in the density (5.3) is a small correction on top of the regular
Wigner distribution, and in addition the irregular part of the eigenvalue density integrates to
zero upon averaging over sufficiently large interval, up to O(M3/2/µ3/2) which is beyond the
accuracy of (5.3). Therefore, to the leading order, the expectation value of the anti-symmetric
Wilson loop is given by the formulas for the Gaussian matrix model [7]:

F = 2µ

3π
sin3 θ, (5.8)

where cos θ = ν/µ, with ν from (2.9) related to the representation variable f by

πf = θ − 1

2
sin 2θ. (5.9)

Taking into account the next order introduces the oscillating peak structure in the eigenvalue
density and leads to the phase transitions in the Wilson loop expectation value. According to
(5.2), the phase transitions happen at f = f (k)c± , where the critical representation labels f

(k)
c+ are

given by (5.9) with

cos θ
(k)
c+ = 1 − 2k

n +∆
, k = 1, . . . , n (5.10)

and
f
(k)
c− = 1 − f (n−k+1)

c+ . (5.11)

Although n ≫ ∆, it is important to keep ∆ in this equation to break the degeneracy under
θ → π − θ and to get right the positions of the critical points.

The second derivative of the free energy experiences a jump (2.13) at the k-th critical point
of an amplitude

d2F

df 2
∣
f
(k)
c± +0

f
(k)
c± −0

= ± πµ2

2M
√
k(n − k)

. (5.12)
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Since d2F /df 2 at each critical point jumps to zero, its discontinuity is of the same order O(µ)
as its average value. This leads to the structure displayed in fig. 3(b).

The above calculations apply to f = O(1). For parametrically smaller f = O(λ−3/4) the
endpoint region of the eigenvalue distribution, where (5.3) is no longer accurate, becomes more
important. The phase transitions for f = O(λ−3/4) were analyzed in detail in [5]. In both cases λ
is assumed to be large, and these results are potentially relevant for the holographic description
[18, 19] of the N = 2∗ theory.

6 Conclusions

Wilson loops in large antisymmetric representations undergo phase transitions which mirror
quantum phase transitions in the underlying gauge theories. Both are caused by features in
the eigenvalue density, delta functions or cusps, known to occur in localization matrix models
for N = 2 gauge theories. In four dimensions only these singularities can arise. It would be
interesting to extend the analysis to localization matrix models in other dimensions where
different types of singularities may occur.

Holographically, anti-symmetric Wilson loops of rank k ∼ N correspond to probe D5-branes
in the dual geometry [7]. The classical solutions for D5-branes are known only for AdS5 × S5

[7]. It would be extremely interesting to construct D5-brane configurations for the backgrounds
that are dual to massive models with phase transitions, for instance in the Pilch-Warner back-
ground [18] dual to N = 2∗ SYM. So far only D3-brane solutions, which correspond to Wilson
loops in large symmetric representations, have been constructed for this background [20]. The
latter are affected by singularities in the eigenvalue density to much lesser degree compared to
antisymmetric representations and are not very sensitive to the phase transitions.
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A SQCD with several mass scales

Consider N = 2 supersymmetric SU(N) QCD on S4, with nf pairs of fundamental hypermul-
tiplets of mass (m,−m), and Nf pairs of fundamental hypermultiplets of mass (M,−M), with
M >m. The case m =M is the theory studied in section 4.

11



The partition function computed by localization is given by

ZSQCD
Nf

= ∫ dN−1a
e

2(N−Nf−nf )(ln ΛR+γ+1)∑
i
a2iR

2

∏i<j (ai − aj)
2
H2(ai − aj)

∏iH
Nf (ai +M)HNf (ai −M)Hnf (ai +m)HNf (ai −m) , (A.1)

where R is the radius of S4 and Λ is the dynamically generated scale

ΛR = e −
4π2

λ(1−ζ) , (A.2)

with Veneziano parameters

ζ = ζM + ζm , ζM = Nf

N
, ζm = nf

N
. (A.3)

We shall consider ζM + ζm < 1, in which case the theory is asymptotically free. The partition
function is thus expressed in terms of a finite dimensional integral, which is still difficult to
compute. Here, as section 4 (see also [4, 14]), we shall compute this integral in the planar, large
N limit at fixed λ, ζm, ζM , by the saddle-point method.

Let us first summarize the physical picture of the m =M case considered in section 4. The
theory has two phases, weak coupling 2Λ < M and strong coupling 2Λ > M , separated by a
third-order phase transition at 2Λc =M . In this new theory with three mass scales Λ, M, m,
the question we would like to address is whether there are more phase transitions and at which
value of Λ they occur. A naive guess would be that a new phase transition should occur at
Λ ∼ m. However, when Λ ≪ M , the hypermultiplets of mass M can be integrated out and
the new dynamical scale of the theory is not Λ: it is replaced by a new effective scale that
we shall compute. For example, in the theory of [4, 14] with a single mass scale, at Λ ≪ M
the theory flows to pure N = 2 SYM with Λeff = Λ1−ζMM ζM . In the new theory with two mass
scales M, m, the next phase transition is expected not when Λ = O(m), but, perhaps, when
the new dynamical scale of the theory (left behind after the hypermultiplets of mass M have
been integrated out) is of order m. The present exact calculation will determine which are the
effective scales in each phase, and at which precise coupling Λ the different phase transitions
occur.

In the large N limit, the saddle-point equation becomes the following integral equation:

2

µ

⨏
−µ

dyρ(y) ( 1

x − y −K(x − y)) = −4 (1 − ζM − ζm) (ln Λ + γ + 1)x

−ζMK(x +M) − ζMK(x −M) − ζmK(x +m) − ζmK(x −m) . (A.4)

where K = x(ψ(1+ ix)+ψ(1− ix)+ 2γ), ψ represents as usual the logarithmic derivative of the
Γ-function and γ is the Euler constant, γ = −ψ(1) (see [4] for the relation of K to the Barnes
G-function and other properties). Here we have set R = 1 for the sake of clarity.

The model depends on three parameters ΛR,MR and mR. In the decompactification
limit, these parameters go to infinity and the saddle-point equations simplify. In this limit,

12



the eigenvalue distribution extends to large eigenvalues and one can use the approximation
K = x lnx2 + 2γx +O(x−1). The first derivative of the saddle-point equations is given by

2

µ

∫
−µ

dy ρ(y) ln
(x − y)2

Λ2
= ln

(x2 −M2)2ζM (x2 −m2)2ζm

Λ4ζ
. (A.5)

Differentiating once more we obtain a singular integral equation that can be easily solved:

2

µ

⨏
−µ

dy
ρ(y)
x − y = ζM

x +M + ζM
x −M + ζm

x +m + ζm
x −m . (A.6)

Just like in the model of section 4, corresponding to the m = M case (or to the ζm = 0 case),
the solution to this equation (A.6) depends on whether x = ±m or x = ±M lie inside or outside
the cut (−µ,µ). The system has therefore three phases:

• i) Strong coupling, µ >M >m. The poles at x = ±M and x = ±m lie inside the cut. The
eigenvalue density ρ(x) has delta function terms 1

2ζMδ(x ±M) and 1
2ζmδ(x ±m).

• ii) Intermediate coupling, M > µ > m. The poles at x = m and at x = −m lie on the cut.
The eigenvalue density ρ(x) now contains delta function terms 1

2ζmδ(x ±m).

• iii) Weak coupling phase, M >m > µ. All poles lie outside the eigenvalue distribution.

In what follows we describe the analytic solution in each phase.

Strong-coupling phase (µ >M >m)

When µ >M >m, the eigenvalue density that solves (A.6) is given by

ρ(x) = 1 − ζ
π
√
µ2 − x2

+ ζM
2
δ(x +M) + ζM

2
δ(x −M) + ζm

2
δ(x +m) + ζm

2
δ(x −m). (A.7)

The parameter µ is determined in terms of M, m and Λ by substituting the solution into (A.5).
This gives

µ = 2Λ. (A.8)

Note that in this phase the endpoint of the eigenvalue distribution is therefore independent of
the hypermultiplet masses.

The solution (A.7) holds as long as M < µ. As Λ is gradually decreased, there is a critical
point Λc1 where µ =M , which thus occurs at

Λc1 =
M

2
. (A.9)

For Λ < Λc1, the delta-functions δ(x ±M) lie outside the interval [−µ,µ] and the density (A.7)
does not solve (A.6) anymore. This happens just like in the m =M case discussed in section 4.
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Intermediate-coupling phase (M > µ >m)

In the regime M > µ >m, the solution is given by

ρ(x) = 1 − ζ
π
√
µ2 − x2

+ ζMM
√
M2 − µ2

π
√
µ2 − x2 (M2 − x2)

+ ζm
2
δ(x +m) + ζm

2
δ(x −m). (A.10)

Substituting into (A.5) we find the following transcendental equation for µ:

(1 − ζ) ln
µ

2M
+ ζM ln

µ

M +
√
M2 − µ2

= (1 − ζ) ln
Λ

M
. (A.11)

In the particular case ζm = 0, corresponding to nf = 0 and giving ζM = ζ, the resulting
equation was studied in [4, 14]. Like in this case, the solution can be expressed in a parametric
form:

µ = M
√

1 − u2, (A.12)

(2Λ

M
)

2−2ζm−2ζM

= (1 + u)1−ζm−2ζM (1 − u)1−ζm . (A.13)

Here we can see the emergence of the first relevant effective scale. When M ≫ Λ, the hyper-
multiplets can be integrated out. From the above equations we obtain

(µ
2
)

1−ζm
≈M ζMΛ1−ζ , M ≫ Λ . (A.14)

The theory left behind should be SQCD with nf flavors and dynamical QCD scale Λeff1 ∼ µ.
Note that (A.11), (A.13) simplify in the particular case ζm+2ζM = 1. Then we can explicitly

solve for µ

µ = 2
√

Λ(M −Λ) . (A.15)

There is another interesting case, ζM = 3
4(1 − ζm), where the equation (A.11) simplifies and

can be solved explicitly. Then we find

µ = Λ√
2

⎛
⎝

√
1 + 4M

Λ
− 1

⎞
⎠

3
2

. (A.16)

For Λ ≪M , one has
µ ≈ 2M

3
4 Λ

1
4 = Λeff1 , (A.17)

in agreement with (A.14).

Weak-coupling phase (M >m > µ)

As Λ is further decreased, there is a critical point Λc2 where µ =m. For lower values of Λ, the
delta-functions δ(x±m) move outside the eigenvalue region [−µ,µ] and the density (A.10) does
no longer solve (A.6). In this regime M >m > µ we find the solution
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ρ(x) = 1 − ζ
π
√
µ2 − x2

+ ζMM
√
M2 − µ2

π
√
µ2 − x2 (M2 − x2)

+ ζmm
√
m2 − µ2

π
√
µ2 − x2 (m2 − x2)

. (A.18)

Substituting into the integrated form of the saddle-point equation (A.5), we now find the
following transcendental equation for µ:

(1 − ζ) ln
µ

2
+ ζM ln

µ

M +
√
M2 − µ2

+ ζm ln
µ

m +
√
m2 − µ2

= (1 − ζ) ln Λ . (A.19)

This defines µ = Λf(m/Λ,M/Λ). In particular, consider the case Λ ≪ m,M . In this case,
all hypermultiplets can be integrated out and the theory should be pure N = 2 SYM with an
effective dynamical scale. The question is which the effective dynamical scale is. From (A.19),
in this limit we find

µ ≈ 2mζmM ζMΛ1−ζM−ζm ≡ Λeff2 . (A.20)

This can also be written in the form

Λeff2 = M̄ ( Λ

M̄
)

1−ζ
, M̄ ζm+ζM ≡mζmM ζM . (A.21)

Concerning the interpretation of Λeff2 as the effective dynamical scale, one can make the fol-
lowing consistency check. We note that Λeff2 ≈ Λ1−ζm

eff1 mζm . This is indeed the dynamical scale
that one should expect when nf = ζmN flavors are integrated out starting from a theory with
scale Λeff1.

Let us now determine at which value of the original coupling Λc2 the phase transition from
the intermediate to the weak-coupling phase occur. This is computed by setting µ = m in
(A.19) (or, equivalently, in (A.11)). This gives

(1 − ζ) ln 2Λc2 = (1 − ζm) lnm − ζM ln(M +
√
M2 −m2) . (A.22)

Note that M +
√
M2 −m2 = αM , where 1 < α < 2. Therefore, ignoring a factor of order 1, we

can substitute M +
√
M2 −m2 by M . Then

Λ1−ζ
c2 ≈m1−ζmM−ζM , (A.23)

or

Λc2 ≈m(m
M

)
ζM
1−ζ

. (A.24)

This last expression shows, in particular, that Λc2 ≪m if m≪M .
Substituting Λ = Λc2 into Λeff2, we find that the new phase transition occurs at

Λeff2 ≈m . (A.25)

Note also that, for this Λ, one also has Λeff1 ≈ Λeff2.
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Following [4, 14], it is easy to show that the two first transitions occurring at Λc1, Λc2 are
third order. To show this, one computes the different derivatives of the free energy at each
phase using

Λ
∂F

∂Λ
= −2(1 − ζ)

µ

∫
−µ

dxρ(x)x2 . (A.26)

[Here F = − lnZ is the standard free energy of the theory –it should not be confused with the
F (f) appearing in (2.6), which is related to the free energy of the effective Fermi distribution].
Likewise, one can show that the Wilson loop in the fundamental representation is discontinuous
in its first derivatives: recall that lnWf ∼ 2πµ, therefore lnWf inherits the first-derivative
discontinuities of µ at Λc1, Λc2.

Summarizing, starting from strong coupling Λ ≫ M, m, as Λ is gradually decreased, the
theory undergoes a first phase transition when Λ = M/2. As Λ is further reduced, one finds
that nothing happens when Λ = O(m); the theory has a smooth behavior with the coupling
Λ at this scale. The new phase transition to the weak-coupling phase occurs at a lower scale
Λc2 (which becomes much lower if m ≪ M). Once the hypermultiplets of mass M have been
integrated out, the theory left behind has a new dynamical scale Λeff1. As one may expect, if a
new phase transition occurs, this one will take place when Λeff1 is of order m and this is indeed
what happens. It is reassuring that all field theory expectations are realized in a precise way
through the exact large N solution of the system.

B Useful integrals

The formulas for the integrals used in section 2 can be derived by residue integration. One
chooses a contour surrounding the cut from (−µ,µ) and evaluates the residue of the poles
outside the cut (including possible poles at infinity) by the change of variable z = 1/x. One
finds

µ

∫
−µ

dx
1

π
√
µ2 − x2

= 1 (B.1)

µ

∫
−µ

dx
1

π
√
µ2 − x2

1

x − y = 0 (B.2)

µ

∫
−µ

dx
1

π
√
µ2 − x2

lnx2 = ln
µ2

4
(B.3)

For µ <M , by residue integration, one finds

M
√
M2 − µ2

µ

∫
−µ

dx
1

π
√
µ2 − x2

1

M2 − x2
= 1 , (B.4)

M
√
M2 − µ2

µ

∫
−µ

dx
1

π
√
µ2 − x2

1

M2 − x2

1

x − y = 1

x +M + 1

x −M , (B.5)
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M
√
M2 − µ2

µ

∫
−µ

dx
1

π
√
µ2 − x2

1

M2 − x2
ln

x2

M2
= 2 ln

µ

M +
√
M2 − µ2

. (B.6)
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