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Abstract. We show that a smooth projective curve of genus g can be reconstructed from its

polarized Jacobian (X,Θ) as a certain locus in the Hilbert scheme Hilbd(X), for d = 3 and for

d = g + 2, de�ned by geometric conditions in terms of the polarization Θ. The result is an

application of the Gunning�Welters trisecant criterion and the Castelnuovo�Schottky theorem

by Pareschi�Popa and Grushevsky, and its scheme theoretic extension by the authors.

1. Introduction

Let (X,Θ) be an indecomposable principally polarized abelian variety (ppav) of dimension

g over an algebraically closed �eld k of characteristic di�erent from 2. The polarization Θ is

considered as a divisor class under algebraic equivalence, but for notational convenience, we shall

�x a representative Θ ⊂ X. (X,Θ) being indecomposable means that Θ is irreducible.

The geometric Schottky problem asks for geometric conditions on (X,Θ) which determine

whether it is isomorphic, as a ppav, to the Jacobian of a nonsingular genus g curve C. The

Torelli theorem then guarantees the uniqueness of the curve C up to isomorphism. One may

ask for a constructive version: can you �write down� the curve C, starting from (X,Θ)? Even

though one may embed C in its Jacobian X, there is no canonical choice of such an embedding,

so one cannot reconstruct C as a curve in X without making some choices along the way. We

refer to Mumford's classic [11] for various approaches and answers to the Schottky and Torelli

problems, and also to Arbarello [1], Beauville [2] and Debarre [3] for more recent results.

In this note, we show that any curve C sits naturally inside the punctual Hilbert scheme

of its Jacobian X. We give two versions: �rstly, using the Gunning�Welters criterion [7, 14],

characterizing Jacobians by having many trisecants, we reconstruct C as a locus in Hilb3(X).

Secondly, using the Castelnuovo�Schottky theorem, quoted below, we reconstruct C as a locus

in Hilbg+2(X). In fact, for any indecomposable ppav (X,Θ), we de�ne a certain locus in the

Hilbert scheme Hilbd(X) for d ≥ 3, and show that this locus is either empty, or one or two copies

of a curve C, according to whether (X,Θ) is not a Jacobian, or the Jacobian of the hyperelliptic

or nonhyperelliptic curve C. Then we characterize the locus in question for d = 3 in terms of

trisecants, and for d = g + 2 in terms of being in special position with respect to 2Θ-translates.
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To state the results precisely, we introduce some notation. For any subscheme V ⊂ X, we

shall write Vx ⊂ X for the translate V −x by x ∈ X. Let ψ : X → P2g−1 be the (Kummer) map

given by the linear system |2Θ|.

Theorem A. Let Y ⊂ Hilb3(X) be the subset consisting of all subschemes Γ ⊂ X with support

{0}, with the property that

{x ∈ X Γx ⊂ ψ−1(`) for some line ` ⊂ P2g−1}

has positive dimension. Then Y is closed and

(1) if X is not a Jacobian, then Y = ∅;
(2) if X ∼= Jac(C) for a hyperelliptic curve C, then Y is isomorphic to the curve C;

(3) if X ∼= Jac(C) for a non-hyperelliptic curve C, then Y is isomorphic to a disjoint union

of two copies of C.

The proof is by reduction to the Gunning�Welters criterion; more precisely to the character-

ization of Jacobians by in�ectional trisecants. Note that the criterion de�ning Y only depends

on the algebraic equivalence class of Θ, and not the chosen divisor.

For the second version, we need some further terminology from [12] and [6].

De�nition 1.1. A �nite subscheme Γ ⊂ X of degree at least g + 1 is theta-general if, for all

subschemes Γd ⊂ Γd+1 in Γ of degree d and d + 1 respectively, with d ≤ g, there exists x ∈ X
such that the translate Θx contains Γd, but not Γd+1.

De�nition 1.2. A �nite subscheme Γ ⊂ X is in special position with respect to 2Θ-translates

if the codimension of H0(X,IΓ(2Θx)) in H0(OX(2Θx)) is smaller than deg Γ for all x ∈ X.

Again note that these conditions depend only on the algebraic equivalence class of Θ. The term

�special position� makes most sense for Γ of small degree, at least not exceeding dimH0(OX(2Θx)) =

2g.

Our second version reads:

Theorem B. Let Y ⊂ Hilbg+2(X) be the subset consisting of all subschemes Γ ⊂ X with

support {0}, which are theta-general and in special position with respect to 2Θ-translates. Then

Y is locally closed, and

(1) if X is not a Jacobian, then Y = ∅;
(2) if X ∼= Jac(C) for a hyperelliptic curve C, then Y is isomorphic to the curve C minus

its Weierstraÿ points;

(3) if X ∼= Jac(C) for a non-hyperelliptic curve C, then Y is isomorphic to a disjoint union

of two copies of C minus its Weierstraÿ points.

The proof of Theorem B is by reduction to the Castelnuovo�Schottky theorem, which is the

following:
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Theorem 1.3. Let Γ ⊂ X be a �nite subscheme of degree g+ 2, in special position with respect

to 2Θ-translates, but theta-general. Then there exist a nonsingular curve C and an isomor-

phism Jac(C) ∼= X of ppavs, such that Γ is contained in the image of C under an Abel�Jacobi

embedding.

Here, an Abel�Jacobi embedding means a map C → Jac(C) of the form p 7→ p− p0 for some

chosen base point p0 ∈ C. This theorem, for reduced Γ, is due to Pareschi�Popa [12] and, under

a di�erent genericity hypothesis, Grushevsky [4, 5]. The scheme theoretic extension stated above

is by the authors [6]. The scheme theoretic generality is clearly essential for the application in

Theorem B.

We point out that the Gunning�Welters criterion is again the fundamental result that under-

pins Theorem 1.3, and thus Theorem B. More recently, Krichever [9] showed that Jacobians are

in fact characterized by the presence of a single trisecant (as opposed to a positive dimensional

family of translations), but we are not making use of this result.

2. Subschemes of Abel�Jacobi curves

For each integer d ≥ 1, let

Yd ⊂ Hilbd(X)

be the closed subset consisting of all degree d subschemes Γ ⊂ X such that

(i) the support of Γ is the origin 0 ∈ X,

(ii) there exists a smooth curve C ⊂ X containing Γ, such that the induced map Jac(C)→ X

is an isomorphism of ppav's.

We give Yd the induced reduced scheme structure.

We shall now prove analogues of (1), (2) and (3) in Theorems A and B for Yd with d ≥ 3:

Proposition 2.1. With Yd ⊂ Hilbd(X) as de�ned above, we have:

(1) If X is not a Jacobian, then Yd = ∅.
(2) If X ∼= Jac(C) for a hyperelliptic curve C, then Yd is isomorphic to the curve C.

(3) If X ∼= Jac(C) for a non-hyperelliptic curve C, then Yd is isomorphic to a disjoint union

of two copies of C.

As preparation for the proof, consider a Jacobian X = Jac(C) for some smooth curve C of

genus g. It is convenient to �x an Abel�Jacobi embedding C ↪→ X; any other curve C ′ ⊂ X for

which Jac(C ′) → X is an isomorphism is of the form ±Cx for some x ∈ X. Such a curve ±Cx
contains the origin 0 ∈ X if and only if x ∈ C. Hence Yd is the image of the map

φ = φ+
∐
φ− : C

∐
C → Hilbd(X)

that sends x ∈ C to the unique degree d subscheme Γ ⊂ ±Cx supported at 0, with the positive

sign on the �rst copy of C and the negative sign on the second copy.
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More precisely, φ is de�ned as a morphism of schemes as follows. Let m : X ×X → X denote

the group law, and consider

m−1(C) ∩ (C ×X)

as a family over C via �rst projection. The �bre over p ∈ C is Cp. Let Nd = V (md
0) be the

d− 1'st order in�nitesimal neighbourhood of the origin in X. Then

Z = m−1(C) ∩ (C ×Nd) ⊂ C ×X

is a C-�at family of degree d subschemes in X; its �bre over p ∈ C is Cp∩Nd. This family de�nes

φ+ : C → Hilbd(X), and we let φ− = −φ+ (where the minus sign denotes the automorphism of

Hilbd(X) induced by the group inverse in X).

Lemma 2.2. The map φ+ : C → Hilbd(X) is a closed embedding for d > 2.

In the proof of the Lemma, we shall make use of the di�erence map δ : C × C → X, sending

a pair (p, q) to the degree zero divisor p − q. We let C − C ⊂ X denote its image. If C is

hyperelliptic, we may and will choose the Abel�Jacobi embedding C ⊂ X such that the involution

−1 on X restricts to the hyperelliptic involution ι on C. Thus, when C is hyperelliptic, C − C
coincides with the distinguished surface W2, and the di�erence map δ can be factored via the

symmetric product C(2):

C × C 1×ι
∼=
- C × C

C(2)

?
- X

δ

?

We note that the double cover C × C → C(2), that sends an ordered pair to the corresponding

unordered pair, is branched along the diagonal, so that via 1× ι, the branching divisor becomes

the �antidiagonal� (1, ι) : C ↪→ C × C.
As is well known, the surface C − C is singular at 0, and nonsingular everywhere else. The

blowup of C − C at 0 coincides with δ : C × C → C − C when C is nonhyperelliptic, and with

the addition map C(2) →W2 when C is hyperelliptic.

Proof of Lemma 2.2. To prove that φ+ is a closed embedding, we need to show that its restriction

to any �nite subscheme T ⊂ C of degree 2 is nonconstant, i.e. that the family Z|T is not a product

T × Γ. For this it su�ces to prove that if Γ is a �nite scheme such that

(1) m−1(C) ⊃ T × Γ,

then the degree of Γ is at most 2.
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Consider the following commutative diagram:

(2)

X ×X (m,pr2)

∼=
- X ×X

m−1(C) ∩ (X × C)
∪

6

∼=
- C × C

∪

6

X

δ

?pr1 -

First suppose T = {p, q} with p 6= q. The claim is then simply that Cp ∩ Cq, or equivalently
its translate C ∩ Cq−p, is at most a �nite scheme of degree 2. Diagram (2) identi�es the �bre

δ−1(q− p) on the right with precisely C ∩Cq−p on the left. But δ−1(q− p) is a point when C is

nonhyperelliptic, and two points if C is hyperelliptic.

Next suppose T ⊂ C is a nonreduced degree 2 subscheme supported in p. Assuming Γ satis�es

(1), we have Γ ⊂ Cp, so
m−1(C) ∩ (X × Cp) ⊃ T × Γ

or equivalently

m−1(C) ∩ (X × C) ⊃ Tp × Γ−p.

We have Tp ⊂ C − C, and Diagram (2) identi�es δ−1(Tp) on the right with m−1(C) ∩ (Tp × C)

on the left.

Suppose C is nonhyperelliptic. Then δ is the blowup of 0 ∈ C−C, and δ−1(Tp) is the diagonal

∆C ⊂ C × C together with an embedded point of multiplicity 1 (corresponding to the tangent

direction of Tp ⊂ C−C). Diagram (2) identi�es the diagonal in C×C on the right with {0}×C
on the left. Thus m−1(C)∩ (Tp×C) is {0}×C ⊂ X×C with an embedded point. Equivalently,

m−1(C)∩ (T ×Cp) is {p}×Cp with an embedded point, say at (p, q). This contains no constant

family T × Γ except for Γ = {q}, so Γ has at most degree 1.

Next suppose C is hyperelliptic. We claim that δ−1(Tp) is the diagonal ∆C ⊂ C × C with

either two embedded points of multiplicity 1, or one embedded point of multiplicity 2. As in

the previous case, this implies that m−1(C)∩ (T ×Cp) is {p}×Cp with two embedded points of

multiplicity 1 or one embedded point of multiplicity 2, and the maximal constant family T × Γ

it contains has Γ of degree 2. It remains to prove that δ−1(Tp) is as claimed.

We have W2 = C − C, and the blowup at 0 is C(2) → W2 = C − C. The preimage of Tp is

the curve (1 + ι) : C → C(2), together with an embedded point of multiplicity 1, say supported

at q + ι(q). Now the two to one cover C ×C → C(2) is branched along the diagonal 2C ⊂ C(2),

If q 6= ι(q), then the preimage in C ×C is just (1, ι) : C → C ×C, together with two embedded

points of multiplicity 1, supported at (q, ι(q)) and (ι(q), q). If q = ι(q), i.e. q is Weierstraÿ,

then we claim the preimage in C ×C is (1, ι) : C → C ×C together with an embedded point of

multiplicity 2. This follows once we know that the curves 2C and (1 + ι)(C) in C(2) intersect
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transversally. And they do, as the tangent spaces of the two curves (1, 1)(C) (the diagonal) and

(1, ι)(C) in C×C are invariant under the involution exchanging the two factors, with eigenvalues

1 and −1, respectively. �

Proof of Proposition 2.1. Point (1) is obvious, so we may assume X = JacC. By Lemma 2.2,

φ+ is a closed embedding and hence so is φ− = −φ+. If C is hyperelliptic, we have chosen the

embedding C ⊂ X such that the involution −1 on X extends the hyperelliptic involusion ι on

C. It follows that Cp = −Cι(p), and thus φ− = φ+ ◦ ι. Thus the two maps φ+ and φ− have

coinciding image, and (2) follows.

For (3), it remains to prove that if C is nonhyperelliptic, then the images of φ− and φ+ are

disjoint, i.e. we never have Cp∩Nd = (−Cq)∩Nd for distinct points p, q ∈ C. In fact, Cp∩(−Cq)
is at most a �nite scheme of degree 2: the addition map

C × C → X

is a degree two branched cover of C(2) ∼= W2 (using that C is nonhyperelliptic), and its �bre

over p+ q ∈W2 is isomorphic to Cp ∩ (−Cq). �

3. Proof of Theorem A

In view of Proposition 2.1, it su�ces to prove that Y in Theorem A agrees with Y3 in Proposi-

tion 2.1. This is a reformulation of the Gunning�Welters criterion: given Γ ∈ Hilb3(X), consider

the set

VΓ = {x ∈ X ΓX ⊂ ψ−1(`) for some line ` ⊂ P2g−1}.

Then Gunning�Welters says that VΓ has positive dimension if and only if (X,Θ) is a Jacobian.

Moreover, when VΓ has positive dimension, it is a smooth curve, the canonical map Jac(VΓ)→ X

is an isomorphism, and Γ is contained in VΓ (see [15, Theorem (0.4)]). Thus Y in Theorem A

agrees with Y3 in Proposition 2.1.

4. Proof of Theorem B

Let X be the Jacobian of C. For convencience, we �x an Abel�Jacobi embedding C ↪→ X.

First, we shall analyse theta-genericity for �nite subschemes of C.

Recall the notion of theta-duality : whenever V ⊂ X is a closed subscheme, we let

T (V ) = {x ∈ X V ⊂ Θx}.

It has a natural structure as a closed subscheme of X (see [13, Section 4] and [6, Section 2.2]);

the de�nition as a (closed) subset is su�cient for our present purpose.

With this notation, theta-genericity means that for all chains of subschemes

(3) Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γg+1 ⊂ Γ,
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where Γi has degree i, the corresponding chain of theta-duals,

T (Γ1) ⊃ T (Γ2) ⊃ · · · ⊃ T (Γg+1),

consists of strict inclusions of sets.

We write F̂ for the Fourier�Mukai transform [10, 8] of a WIT-sheaf F on X [10, Def. 2.3]:

F̂ is a sheaf on the dual abelian variety, which we will identify with X using the principal

polarization.

Proposition 4.1. Let Γ ⊂ C be a �nite subscheme of degree at least g + 1. Then Γ is theta-

general, as a subscheme of Jac(C), if and only if dimH0(OC(Γg)) = 1 for every degree g

subscheme Γg ⊂ Γ. In particular, if Γ is supported at a single point p ∈ C, then Γ is theta-general

if and only if p is not a Weierstraÿ point.

Proof. For the last claim, note that the condition dimH0(OC(gp)) > 1 says precisely that p is

a Weierstraÿ point.

For any e�ective divisor Γg ⊂ C degree g, it is well known that dimH0(OC(Γg)) = 1 if

and only if Γg can be written as the intersection of C ⊂ Jac(C) and a Θ-translate (this is one

formulation of Jacobi inversion). If this is the case, then the point x ∈ X satisfying Γg = C∩Θx

is unique.

Consider a chain (3). If there is a degree g subscheme Γg ⊂ Γ not of the form C ∩ Θx, then

every Θ-translate containing Γg also contains C, and in particular T (Γg) = T (Γg+1). Hence Γ

is not theta-general.

Suppose, on the other hand, that Γg is of the form C ∩ Θx. Then T (Γg) \ T (Γg+1) consists

(as a set) of exactly the point x. Thus there is a Zariski open neighbourhood U ⊂ X of x such

that T (Γg)∩U = {x}. We claim that, for a possibly smaller neighbourhood U , there are regular

functions f1, . . . , fg ∈ OX(U), such that T (Γi) ∩ U = V (f1, . . . , fi) for all i: in fact, apply the

Fourier�Mukai functor to the short exact sequence

0→ IΓi(Θ)→ OX(Θ)→ OΓi → 0

to obtain

0→ OX(−Θ)
Fi−→ ÔΓi → ÎΓi(Θ)→ 0.

Then Fi is a section of a locally free sheaf of rank i, and its vanishing locus is exactly T (Γi).

Choose trivializations of ÔΓi over U for all i compatibly, in the sense that the surjections

ÔΓi+1 → ÔΓi correspond to projection to the �rst i factors. Then Fi = (f1, . . . , fi) in these

trivializations.

As T (Γg) ∩ U is zero dimensional, it follows that each T (Γi) ∩ U has codimension i in U .

Hence all the inclusions T (Γi) ⊃ T (Γi+1) are strict, and so Γ is theta-general. �

Now we can compare the locus Y in Theorem B with Yg+2 in Proposition 2.1 by means of the

Castelnuovo�Schottky theorem:
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Corollary 4.2 (of Theorem 1.3). Let Γ ∈ Hilbg+2(X) be theta-general and supported at 0 ∈ X.

Then Γ is in the locus Yg+2 in Propsition 2.1 if and only if it is in special position with respect

to 2Θ-translates.

Proof. Theorem 1.3 immediately shows that if Γ is in special position with respect to 2Θ-

translates, then Γ ∈ Yg+2.

The converse is straight forward, and does not require the theta-genericity assumption. In-

deed, we use that any curve C ′ ⊂ X for which Jac(C ′) → X is an isomorphism is of the

form ±Cp for some p ∈ X and we claim that if Γ ⊂ ±Cp, then Γ is in special position with

respect to 2Θ-translates. For ease of notation, we rename ±Cp as C, so that Γ ⊂ C. Then

H0(IC(2Θx)) ⊂ H0(IΓ(2Θx)), and the exact sequence

0→ H0(IC(2Θx))→ H0(OX(2Θx))→ H0(OC(2Θx))

shows that already the codimension ofH0(IC(2Θx)) inH0(OX(2Θx)) is at most dimH0(OC(2Θx)) =

g + 1. �

Theorem B now follows: The set Y de�ned there agrees with the theta-general elements

in Yg+2, by the Corollary. By Proposition 4.1, Γ = φ±(p) is theta-general if and only if the

supporting point 0 of Γ is not Weierstraÿ in ±Cp, i.e. p ∈ C is not Weierstraÿ.

5. Historical remark

Assume C is not hyperelliptic. Then Cp ∩ (−Cp) is a �nite subscheme of degree 2 supported

at 0. Thus, for d = 2, we have φ+ = φ−, and the argument in Lemma 2.2 shows that φ+ is

an isomorphism from C onto Y2. If C is hyperelliptic with hyperelliptic involution ι, however,

we �nd that φ+ factors through C/ι ∼= P1, and Y2
∼= P1, and we cannot reconstruct C from Y2

alone.

In the nonhyperelliptic situation, it is well known that the curve C can be reconstructed

as the projectivized tangent cone to the surface C − C ⊂ X at 0. This projectivized tangent

cone is exactly Y2 (when we identify the projectivized tangent space to X at 0 with the closed

subset of Hilb2(X) consisting of nonreduced degree 2 subschemes supported at 0). To quote

Mumford [11]: �If C is hyperelliptic, other arguments are needed.� In the present note, these

other arguments are to increase d!
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