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Abstract: Cutaneous leishmaniasis (CL) is treated with painful intralesional injections of meglumine
antimoniate (MA). With the aim of developing an alternative topical treatment for CL, a gel-based
formulation with 30% MA was prepared and its physicochemical properties, stability and rheological
behavior were studied. The following were assessed: drug release on propylene hydrophilic
membranes ex vivo human skin permeation, tolerance in healthy volunteers, cytotoxicity in three cell
lines and anti-leishmanial activity against Leishmania infantum promastigotes and amastigotes. The MA
gel formulation was found to have suitable pH, and good spreadability and stability. Low quantities
of pentavalent antimony (SbV) were observed in release and permeation tests, whereas retention was
high in both non-damaged and damaged skin (71,043.69 ± 10,641.57 and 10,728 ± 2254.61 µg/g/cm2

of SbV, respectively). The formulation did not have a toxic effect on the cell lines, and presented
lower SbV IC50 values against amastigotes (15.76 ± 4.81 µg/mL) in comparison with the MA solution.
The high amount of drug retained in the skin and the SbV IC50 values obtained suggest that this
semi-solid dosage form has potential as an alternative treatment of CL.

Keywords: Leishmania infantum; cutaneous leishmaniasis; meglumine antimoniate; Sepigel 305®;
topical treatment

1. Introduction

Leishmaniasis is caused by protozoan parasites, including more than 20 Leishmania species, and
is transmitted through the bites of infected female phlebotomine sandflies. It is a neglected tropical
disease that is prevalent in low-income countries [1] and is endemic in 98 countries with tropical,
temperate and mild temperate climates, with an estimated 12 million people infected by the disease.
There are three types of leishmaniasis: cutaneous (CL), mucocutaneous (MCL) and visceral (VL).
The most common form of the disease worldwide is CL, with 0.6–1 million new cases estimated to
occur annually [2]. In the Mediterranean area, Leishmania infantum is the main species responsible
for CL and VL [3]. Depending on the Leishmania species involved, manifestations of CL range from
self-resolving ulcerative lesions, which may take up to two years to heal, to painful open wounds that
leave permanent scars or even disseminate and affect other areas of the body [4].

Treatments proposed for CL depend on the infecting species, patient immunity, as well as the
number, sizes and location of lesions, but none of them are universally effective [5]. CL cases presenting
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small and localized lesions are usually treated with pentavalent antimony salts, sodium stibogluconate
or meglumine antimoniate (MA). These first-line drugs are administered by intralesional infiltrations
requiring multiple injections that cause acute pain to the extent that patients are often unable to complete
the treatment [6]. As it is a common mistake when talking about MA treatments for leishmaniasis
to confuse the therapeutic dose that refers to MA with the amount of pentavalent antimony (SbV),
henceforth we will refer all the concentrations to the amount of SbV since it is the main active ingredient.

Consequently, efforts have been made to develop alternative drugs and forms of administration.
According to the World Health Organization (WHO), topical and local therapies with less systemic

toxicity (thermotherapy, cryotherapy, paromomycin ointment, local infiltration with antimonials) are
good treatment options for patients with a low number of small lesions [7].

Topical treatments have many advantages: they are easy to administer, do not require
hospitalization or other infrastructure, favor patient commitment, are low cost and have fewer
toxic side effects [8–10].

A widely used treatment is the application of 15% paromomycin ointments in association with
12% methylbenzethonium chloride twice a day for 20 days, although results are variable, and patients
experience significant irritation, inflammation, pain and pigmentation [11,12]. Cure rates of around
80% have been obtained in some clinical trials [13,14], whereas others report lower efficiency [15].
Liposomes and a nanogel formulation containing paromomycin have also been developed [6,16,17].

Alternatively, topical conjugates with amphotericin B were reported to penetrate the skin in
a murine model [18]. However, the cure rates in a phase II study with topical 3% amphotericin
B cream for uncomplicated CL were low and its clinical development as a therapeutic option was
discontinued [19].

Clinical trials have also been performed with a topical formulation of miltefosine, but no efficacy
against CL has been proven [10] despite experimental trials in mice reporting a reduction in lesion size
and full recovery, albeit with relapse [20].

Regarding antimonials, there are few data available on semi-solid dosage forms for topical
administration. The development and characterization of liposomes loading sodium stibogluconate
and MA has been described [21–23].

Sepigel 305®, a product used in gels and gel-creams, consists of a gelling agent (polyacrylamide),
a non-ionic emulsifier (polyoxyethylene 7 lauryl ether) and a fatty oil (isoparaffin). Simple gel
formulations containing Sepigel 305® have medium to high viscosity [24], a degree of cooling power,
evanescent properties and optimal dermocosmetic qualities. They also allow the incorporation of both
hydrophilic and lipophilic substances, and previous studies on different drugs have reported that
formulations containing this polymer have good stability [24–26].

In this context, the use of hydrogels could be a promising strategy to deliver MA for the
management and healing of CL. The aim of the present study was therefore to design and develop a
gel-based formulation containing MA for CL treatment. Physico-chemical parameters were monitored
to determine stability over time. Human skin permeation and retention ex vivo and tolerance in vivo
were tested to optimize a new dosage system of the drug with fewer side effects. Cytotoxic effects
and leishmanicidal activity in vitro were assayed in promastigotes and intracellular amastigotes of
L. infantum.

2. Materials and Methods

2.1. Materials

Meglumine antimoniate was obtained from Acros Organics (Thermo Fisher Scientific, Waltham,
MA, USA). Gentamicin was acquired from Sigma-Aldrich (Darmstadt, Germany), and Sepigel 305®

from Acofarma (Barcelona, Spain). Distilled water utilized in the experiments was obtained from a
Mili-Q® Plus System (Millipore Co., Burlington, MA, USA).
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2.2. Preparation of the Gel

Briefly, a gel-based formulation containing 30% of MA (with 31.6% SbV w/w) was prepared. MA
was dissolved in water with 0.5% of gentamicin. Sepigel 305® was added under continuous stirring to
obtain the gel formulation at a concentration of 4.5%.

2.3. Physicochemical Characterization of the MA Gel

2.3.1. Morphological Analysis

To analyze its morphology, the MA gel was dried over a period of 7 days using a vacuum desiccator.
Once totally dried, 0.1 g was coated with carbon as a conductive agent. The internal structure of the gel
was examined by scanning electron microscopy (SEM) using a JEOL J-7100FE (Peabody, MA, USA).

2.3.2. Swelling and Degradation Tests

A gravimetric method was used to obtain the swelling ratio (SR) and to test degradation, which
was represented as the percentage of weight loss (WL). Dried and fresh MA gel were used to carry out
the swelling and degradation tests, respectively. In both experiments the MA gel was incubated in PBS
(pH = 5.5) at 32 ◦C for 20 min. Samples (n = 6) were removed and weighed after blotting the surface
water at predetermined time intervals of 3 min. The SR was calculated using the following equation
and expressed by kinetic modeling:

SR =
Ws−Wd

Wd
(1)

where Ws is the weight of the swollen MA gel at 3 min intervals for 20 min and Wd is the weight of
dried gel.

WL was calculated following the equation and expressed by kinetic modeling:

WL (%) =
Wi−Wd

Wi
× 100 (2)

where Wi is the initial weight of the MA gel and Wd is the gel weight each 3 min.

2.3.3. Water Loss Due to Drying

Water loss was evaluated by weighing 1 g of fresh MA gel, which was placed in a vacuum
desiccator for 7 days until the weight was constant.

2.3.4. Porosity Study

The porosity percentage (P) was calculated by a solvent displacement method, which consisted
of immersing the previously dried MA gel in absolute ethanol for 2 min and then weighing it after
the excess ethanol on the surface was blotted. The porosity percentage was calculated using the
following equation:

P (%) =
W2 − W1
ρ × V

× 100 (3)

where W1 represents the weight of the dried MA gel, W2 stands for the weight of the MA gel after
being immersed in ethanol, ρ is the density of absolute ethanol and V is the volume of the gel.

2.4. Stability Studies

The MA gel was stored at room temperature (RT), 4 ◦C and 37 ◦C. The pH values of the
formulation were measured with universal test paper (Filter-Lab®) by direct spread of the samples
(n = 3). Appearance was visually inspected, and pH was measured after 30 days and after 6 months.

SbV was quantified by ICP-OES (Inductively coupled plasma-optical emission spectrometry,
Perkin Elmer Elan 6000, Waltham, MA, USA) after previous treatment of the samples with HNO3 and
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H2O2 in a microwave digester at 220 ◦C for 72 h. The drug content was evaluated at the beginning and
end of the 6-month experiment.

2.5. Rheological Studies

The rheological measurements were performed in duplicate 24 h after gel preparation using
a rotational rheometer (Thermo Scientific HaakeRheostress 1, Thermo Fischer Scientific, Karlsruhe,
Germany) equipped with a cone plate set-up (0.105 mm gap between cone and plate) with a fixed
lower plate and a mobile upper cone Haake C60/2◦ Ti (60 mm diameter, 2◦ angle). The rheometer was
connected to a temperature control ThermoHaake Phoenix II + Haake C25P (Thermo Fischer Scientific,
Waltham, MA, USA) and a computer provided with the HaakeRheowin® Job Manager v. 4.0 (Thermo
Fischer Scientific, Waltham, MA, USA) to carry out the tests and HaakeRheowin® Data Manager v.4.0
(Thermo Fischer Scientific) to carry out the analyses of the obtained data. Viscosity curves (η = f(

.
γ))

and flow curves (τ = f(
.
γ)) were recorded at 25 ◦C. The shear rate ramp program included: a ramp-up

period from 0 to 50 s−1 for 3 min; constant shear rate period of 50 s−1 for 1 min; and a ramp-down
period from 50 to 0 s−1 for 3 min. The data from the flow curves (τ = f(

.
γ)) were fitted to different

mathematical models equations: Newton, Bingham, Ostwald-de-Waele, Herschel-Bulkley, Casson and
Cross [27]. Best fit of mathematical models was based on the correlation coefficient value (r). The
viscosity mean value (Pa·s) was determined from the constant share section at 50 s−1.

2.6. Spreadability Test

The spreadability of MA gel and MA solution was determined in triplicate as follows: 0.5 g of
formulation and 150 µL of MA solution were placed within 1 cm diameter circles previously marked on
a glass plate, and also on a plastic plate. A series of weights (5, 10, 20, 50 and 100 g) were successively
added and allowed to rest for 2 min each at RT. The diameters (cm2) of the circle spreads were measured
and recorded as comparative values.

2.7. In Vitro Release Studies

Vertical Franz diffusion cells (FDC 400; Crown Glass, Somerville, NJ, USA) were used to assay the
MA release with hydrophilic polypropylene membranes (GH Polypro, Life Sciences). The receptor
medium was water at 32 ± 0.5 ◦C under stirring at 600 rpm in sink conditions. The experiment was
performed with a diffusion area of 0.64 cm2. Small quantities of MA gels (0.3 g) or MA solution (300 µL)
were added to the donor compartment. At the end of the study at 55 h, the amount of SbV in the
receptor compartment was analyzed by ICP-OES (Perkin Elmer Elan 6000). Results were reported as
the mean ± SD of five replicates.

2.8. Ex Vivo Permeation Studies

Ex vivo permeation tests were performed as described in Section 2.7 using damaged and
non-damaged human skin samples with a thickness of 400 µm from a single donor. The skin was
damaged using the tape stripping technique, which involves repeated application of adhesive tapes to
the skin surface to remove stratum corneum layers. For the assay, adhesive tapes were applied to the
skin 7 times to damage the skin but not remove it completely. Then 0.3 g of MA gel was placed in the
donor compartment. After 27 h the quantity of SbV was determined by ICP-OES in five replicates.

To determine the amount of drug retained in the epidermal tegument, the skin membranes were
detached from the Franz cells, cleaned with gauze soaked in 0.05% sodium dodecylsulphate solution
and washed in distilled water. The area of permeation was then cut and weighed. Finally, the SbV

retained was extracted in an ultrasound bath with water for 30 min. The resulting solutions were
measured by ICP-OES for quantification.

The Plastic Surgery Department of Barcelona-SCIAS Hospital (Barcelona, Spain) provided the
human skin from the abdominal region of a healthy woman, and the Bioethics Committee of the same
hospital approved the experimental protocol (reference number: BEC/001/16; date: 15 January 2016).
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Written informed consent forms were provided. Human skin was dermatomed (GA630 dermatome,
Aesculap, Tuttlingen, Germany) into pieces with a thickness of 400 µm [28]. The integrity of skin
samples was assessed in triplicate by measuring the trans-epidermal water loss (TEWL) values using a
DermaLab® module (Cortex Technology, Hadsund, Denmark).

2.9. In Vivo Tolerance Study

Ten female volunteers with healthy skin between 25 and 35 years old participated in the study.
The study was approved by the Ethics Committee of the University of Barcelona (reference number:
IRB00003099; date: 20 March 2018) following the guidelines of the Declaration of Helsinki [29] and all
volunteers signed written informed consent forms. Skin-care cosmetics were not permitted on the test
areas for two days prior to the study. Volunteers stayed in the test room for at least 30 min prior to
the measurements. Measurements were performed before applying the gel (to establish the baseline
readings) and 15 min, 1 h and 2 h after the application of 0.5 g on the flexor side of the left forearm.

Trans epidermal water loss (TEWL), referring to the total amount of water vapor lost through
the skin was measured by a Tewameter® TM 300 (Courage-Khazaka electronic GmbH, Cologne,
Germany). The stratum corneum hydration (SCH) was determined using a Corneometer® CM
825 (Courage-Khazaka electronic GmbH). Measurements were performed according to international
guidelines [30].

2.10. Parasite Strains and Cultures

The Leishmania infantum strain MHOM/ES/2016/CATB101 isolated from an individual with CL
from Mallorca (Spain) was used. Promastigotes were cultured at 26 ◦C in Schneider insect medium, pH
7.0, with 20% heat-inactivated fetal calf serum, 25 µg/mL gentamicin solution (Sigma G-1397, St. Louis,
MO, USA), and 1% penicillin (100 U/mL)-streptomycin (100 mg/mL) solution (Sigma P4333).

2.11. In Vitro Cytotoxicity Assay

In order to study the cytotoxicity of the MA gel and the gel excipients, 5 × 104 cells/mL of
the cell lines RAW 264.7, J774A.1 and HaCaT were cultured in 96-well plates (Costar 3595). Serial
dilutions of the gel in RPMI-1640 medium with 10% heat-inactivated fetal calf serum and 1% penicillin
(100 U/mL)-streptomycin (100 mg/mL) were added. After 24 h of incubation at 37 ◦C in a 5% CO2

atmosphere, WST-1 reagent (Roche Diagnostics GmbH, Mannheim, Germany) was added to each
well and the plate was incubated in the same conditions for 4 h. The absorbance of the samples
was measured at 450 nm using a spectrophotometer (Multiskan EX, Thermo Electron Corporation,
Shanghai, China). The concentration inhibiting 50% of cell viability (CC50) was determined by linear
regression analysis and experiments were performed in triplicate [31].

2.12. In Vitro Anti-Leishmanial Activity against Promastigotes

The activity of MA gel, gel alone and MA solution was studied on promastigotes in microtiter
plates (Costar 3595). Serial dilutions of the gel in Schneider medium were seeded, and then 106

promastigotes/mL in their logarithmic growth phase were added to each well and incubated at 26 ◦C
for 48 h. Growth was measured through acid phosphatase and the optical density was determined at
405 nm with a spectrophotometer (Multiskan EX, Thermo Electron Corporation). The concentration
inhibiting 50% of parasite growth (IC50) was determined by linear regression analysis of the minimum
squares of parasitic growth versus the logarithm of the drug concentration with 95% confidence
interval. Experiments were performed in triplicate [32].

2.13. In Vitro Anti-Leishmanial Activity against Intracellular Amastigotes

J774A.1 cells at a concentration of 5 × 104 cells/mL were cultured in an eight LabTek chamber slide
system (Nunc®). After 24 h, late stationary phase promastigotes from a 5-day culture in RPMI-1640
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complete medium with 10% heat-inactivated fetal calf serum and 1% penicillin (100 U/mL)-streptomycin
(100 mg/mL) were added at a concentration of 5 × 105 cells/mL and incubated for 24 h at 37 ◦C in 5%
CO2 atmosphere. Free promastigotes were removed by washing. RPMI-1640 complete medium with
serial dilutions of the gel was added to each well and incubated at 37 ◦C in 5% CO2 atmosphere for
48 h. Infected cells were washed and slides were stained with Giemsa. Drug activity was evaluated by
counting the number of infected cells by examining 300 macrophages in triplicate [33].

2.14. Statistical Analysis

Experimental data obtained were analyzed by one-way parametric analysis of variance (ANOVA),
followed by a multiple comparison Tukey test. A p < 0.05 indicated the differences were statistically
significant. Prism® V. 5 (GraphPad Software Inc., San Diego, CA, USA) was used for calculations.

3. Results

3.1. Physicochemical Characterization of the MA Gel

As shown in Figure 1A,B, SEM revealed a laminar disposition in the gel formulation. The layers
were regularly organized and a porous structure was evident.

Pharmaceutics 2019, 11, x FOR PEER REVIEW 6 of 16 

 

U/mL)-streptomycin (100 mg/mL) were added at a concentration of 5 × 105 cells/mL and incubated 
for 24 h at 37 °C in 5% CO2 atmosphere. Free promastigotes were removed by washing. RPMI-1640 
complete medium with serial dilutions of the gel was added to each well and incubated at 37 °C in 
5% CO2 atmosphere for 48 h. Infected cells were washed and slides were stained with Giemsa. Drug 
activity was evaluated by counting the number of infected cells by examining 300 macrophages in 
triplicate [33]. 

2.14. Statistical Analysis 

Experimental data obtained were analyzed by one-way parametric analysis of variance 
(ANOVA), followed by a multiple comparison Tukey test. A p < 0.05 indicated the differences were 
statistically significant. Prism® V. 5 (GraphPad Software Inc., San Diego, CA, USA) was used for 
calculations. 

3. Results 

3.1. Physicochemical Characterization of the MA Gel 

As shown in Figure 1A,B, SEM revealed a laminar disposition in the gel formulation. The layers 
were regularly organized and a porous structure was evident. 

  
(A) (B) 

Figure 1. SEM images of the meglumine antimoniate (MA) gel, (A) laminar disposition (2700×) and 
(B) porous structure (190×). 

The swelling process of MA gel followed a hyperbolic model, which was represented by the 
kinetic constants k = 0.64 min−1 (r2 = 0.9986) (Figure 2A). The degradation of MA gel was completed 
in 15 min and followed a one phase exponential model with a kinetic constant k = 0.01 min−1 (r2 = 
0.9995) (Figure 2B), and the P percentage of MA gel was ~89.37 ± 0.15%. 

Figure 1. SEM images of the meglumine antimoniate (MA) gel, (A) laminar disposition (2700×) and
(B) porous structure (190×).

The swelling process of MA gel followed a hyperbolic model, which was represented by the
kinetic constants k = 0.64 min−1 (r2 = 0.9986) (Figure 2A). The degradation of MA gel was completed in
15 min and followed a one phase exponential model with a kinetic constant k = 0.01 min−1 (r2 = 0.9995)
(Figure 2B), and the P percentage of MA gel was ~89.37 ± 0.15%.
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After 7 days of drying the gel, the sample showed 22 ± 2.13% loss of water content.

3.2. Drug Quantification and Stability Studies
Determination of the drug content revealed 72.7% entrapment efficiency of SbV in the gel

formulation. The concentration of SbV in the reference solution and in the gel over time is summarized
in Table 1. The SbV content of the gel samples at the tested temperatures did not present statistical
differences (p > 0.05) after 6 months (Figure 3).

Table 1. Concentration of SbV and SD in the reference solution and MA gel samples at the beginning
of the experiment and 6 months later at different storage temperatures (t0 = initial time; t180 = after 6
months).

Formulations
SbV (µg/mL) ± SD

t0 t180 RT t180 37 ◦C t180 4 ◦C

MA solution 79,659.92 ± 1023.45
MA gel 57,936.62 ± 894.92 57,436.62 ± 854.92 58,575.93 ± 654.07 59,255.83 ± 524.49
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Figure 3. Concentration of SbV in the gel at different storage temperatures at the beginning of the
experiment and 6 months later.

The MA gel had a pH value of 5–6 at the beginning and end of the experiment.
When freshly prepared, the gel formulation was a semi-transparent white with homogeneous

appearance without precipitates. After 30 days at RT and 4 ◦C, the formulation had the same appearance
as at the beginning of the experiment, whereas at 37 ◦C it turned yellow. After 6 months at 4 ◦C it
looked the same as at the beginning of the experiment, while at RT it was a semi-transparent light
yellow and at 37 ◦C a semi-transparent dark yellow.

3.3. Rheological Studies
The MA gel formulation exhibited pseudoplastic behavior (Cross model; r2 = 0.9997) (Figure 4A).

Viscosity at 50 s−1 was 677.8 ± 1.76 mPa·s, and it was non-thixotropic. The MA solution showed
Newtonian behavior (Newton model; r2 = 0.9967) (Figure 4B) and viscosity at 50 s−1 was
2.67 ± 0.06 mPa·s.
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3.4. Spreadability Test

The equation that best fitted the spreadability behavior of the MA gel and solution followed a
first-order kinetic model [S = Smax × (1 − exp(−k ×W))], where S is the extension surface (cm2), Smax is
the maximum extension surface (cm2), k is the kinetic constant (g−1) and W is the weight added (g).
The resulting graphics and equations are shown in Figure 5. Spreadability of the MA gel increased as
more weight was applied, until a maximum value was reached.
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3.5. In Vitro Release Studies

After 55 h the amount of SbV released in the receptor compartment through the hydrophilic
polypropylene membranes was 13,646.53 ± 960.63 µg/cm2 of SbV for MA solution and
9081.13 ± 1446.20 µg/cm2 of SbV for the gel, corresponding to a release of 32.3 ± 3.56% and 21.5
± 3.43%, respectively, from the total amount seeded. The differences (p < 0.01) between the SbV released
from the solution and the gel are statistically significant (Figure 6).Pharmaceutics 2019, 11, x FOR PEER REVIEW 9 of 16 
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3.6. Ex Vivo Permeation Studies

Table 2 summarizes the amount of SbV permeated (µg/cm2) through the skin and the amount
retained (µg/g/cm2). In both permeation and retention assays, higher SbV values were obtained for
non-damaged than damaged skin when testing the reference solution and the MA gel. The percentage
of SbV in the reference solution and MA gel that permeated through the healthy skin was 7.03 ± 1.23%
and 2.89 ± 0.83%, and through the damaged skin 0.29 ± 0.51% and 1.84 ± 0.65%, respectively.
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Table 2. SbV permeation across the skin barrier and SbV retained after 27 h in damaged and
non-damaged skin.

Assay MA Solution MA Gel

Non-Damaged Skin Damaged Skin Non-Damaged Skin Damaged Skin

Permeation (µg/cm2) ± SD 2966.50 ± 562.37 121.00 ± 59.45 1217.53 ± 279.41 774.81 ± 179.63

Retention in skin (µg/g/cm2) ± SD 51,672.84 ± 8964.28 2057.47 ± 381.67 71,043.69 ± 10,641.57 10,728.23 ± 2254.61

3.7. In Vivo Tolerance Study

The results for the TEWL and SCH are shown in Figure 7. The MA solution decreased the
TEWL with statistically significant differences for all of the experiment times (Figure 7A). The MA gel
increased the TEWL after 15 min, and basal values were almost recovered after 1 h, with statistically
significant differences between 15 min and 60 min, and between 15 min and 120 min (Figure 7C). As
the graph shows, significant differences in SCH values were found when comparing baseline values
with all the experiment times for both formulations, revealing the dehydration of the stratum corneum
and its slow gradual recovery (Figure 7B,D).
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3.8. In Vitro Cytotoxicity Assay

Figures 8 and 9 show the cytotoxic effects on the cell lines assayed. No cytotoxicity was observed in
the keratinocyte cell line HaCaT at the ranges of dilution tested. The gel formulation with and without
MA showed cytotoxicity in the RAW264.7 and J774A.1 cell lines only at the highest concentrations of
the gelling excipients and SbV assayed. The CC50 of the MA gel and the gel alone are summarized in
Tables 3 and 4.
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(C) J774A.1.

Table 3. In vitro activity against promastigotes and amastigotes, and cytotoxicity of the reference MA
solution and the MA gel and selectivity index (SI).

Formulations
(µg/mL SbV)

IC50 (µg/mL SbV
± SD) SI CC50 (µg/mL SbV

± SD)

Promastigotes Amastigotes SIRAW SIJ774 RAW 264.7 J774A.1

MA solution >750 (* na) 57.35 ± 2.76 6.66 6.37 381.76 ± 94.74 365.14 ± 165.26

MA gel 633.15 ± 43.26 (* na) 15.76 ± 4.81 14.19 14.03 223.66 ± 46.82 221.05 ± 65.41

* na: not active.

Table 4. In vitro activity against promastigotes and amastigotes, and cytotoxicity of the gel alone and
selectivity index (SI).

Excipients
IC50 (µg/mL ± SD) SI CC50 (µg/mL ± SD)

Promastigotes Amastigotes SIRAW SIJ774 RAW 264.7 J774A.1

Gelling agents (375–0.37 µg/mL) >375 20.39 ± 5.43 6.57 6.13 134.00 ± 42.57 125.00 ± 20.80

3.9. Anti-Leishmanial In Vitro Activity against Promastigotes

The effects of the MA solution and MA gel are summarized in Table 3, and Table 4 shows the
effect of the gel without the drug. Neither the MA gel nor the gel alone were able to inhibit the growth
of L. infantum promastigotes, with SbV IC50 values of 633.15 ± 43.26 µg/mL (0.70% of gel) for the MA
gel and IC50 values greater than 375 µg/mL (0.71% of gel) for the gel alone.

3.10. Anti-Leishmanial In Vitro Activity against Intracellular Amastigotes

The activity of the MA solution and MA gel is summarized in Table 3. In the amastigote assay the
MA gel presented lower SbV IC50 values (15.76 ± 4.81 µg/mL) in comparison with the MA solution
(57.35 ± 2.76 µg/mL). As shown in Table 4, the gelling excipients showed some activity against the
amastigotes of L. infantum. Figure 10 shows the images of control infected macrophages and infected
macrophages treated with MA gel.
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Figure 10. Effect of the MA gel on the infection of J774A.1 macrophages with L. infantum. (A) Infected
and untreated control cultures. (B) Cultures treated with 15.63 µg/mL of SbV of the MA gel. Amastigotes
are indicated by arrows.

4. Discussion

The development of an effective topical treatment for CL is an interesting but difficult challenge.
One of the main problems in topical administration is that Leishmania amastigotes are localized within
dermal macrophages, in the papillary dermis beneath the epidermis [34]. Thus, after the drug is released
from the vehicle, it must cross the stratum corneum in the skin barrier and reach the macrophages to
deliver the pharmacological action.

In this study, we developed a Sepigel 305®-based formulation for the dermal delivery of MA with
qualities that could enhance the activity of MA against CL with minimal side effects.

The water content in the MA gel formulation represented almost a quarter of its composition.
Degradation was constant over time, indicating it did not depend on the remaining polymer
concentration, and the process was completed in 15 min. The very high porosity percentage of
the MA gel was corroborated by SEM images, which also revealed a regular laminar disposition in the
superficial structure of the gel layers. The porous structure, similar to that described by Dong et al.
(2015) [35], allows the drug to be released when applied on membranes or skin.

The pH plays an important role in the stability of gels as well as in skin tolerability, and should
be between 5 and 6 for skin formulations [26]. The tested formulation maintained a pH of 5–6
throughout the experiment, indicating biocompatibility for skin applications, with minimal risk of
irritation or bacterial or fungal infection [36]. Anchisi et al. (2001) studied the stability of a wide range
of formulations containing the same gel base over 6 months, and observed minimal changes in the
pH [24].

At the beginning of the experiment the quantity of SbV found in the gel was 57,936.62 µg/mL,
27.3% less than in the reference solution consisting of MA in water. This reduction may be explained
by incomplete digestion during the analytical procedure, considering the high quantity of organic
material, which may mask the actual amount of SbV. The stability test indicated that the amount
of SbV in the gels remained constant for 6 months at all the tested storage temperatures, although
the organoleptic characteristics varied. Samples stored at 4 ◦C retained the same visual properties
throughout the 6 months (a homogeneous semi-transparent white appearance), whereas samples
stored at RT turned pale yellow in the third month, and at 37 ◦C they turned yellow after the first
month. This change in color may be due to meglumine oxidation with increasing temperature. Gel
homogeneity was observed in all samples, without any biphasic formation.

When comparing different topical formulations, Bilia et al. (2006) found the best long-term
stability with polyacrylamide, C13-14 isoparaffin and laureth-7 [25]. Similar results were reported by
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Anchisi et al. (2001), who observed that samples containing Sepigel 305® did not polymerize at high
temperatures because of the ability of polyacrylamide to trap free water; organoleptic features of the
formulations were also stable throughout the six-month study period [24].

The rheological properties of topical semi-solid dosage forms are important because they influence
skin spreadability, adhesion and retention in the application site [21]. The rheological analysis indicated
that the MA gel is a pseudoplastic fluid, like most gels reported in the literature, which is ideal for
topical administration [37]. As such, its main characteristic is decreased viscosity when the deformation
speed is increased, resulting in a good spreading capacity. The pseudoplastic behavior is determined by
the cross linking of the polymer. The MA solution showed Newtonian behavior due to its predominant
water composition and very low viscosity, which makes it difficult to avoid spilling or to maintain skin
adhesion after application.

Spreadability, which is considered a quality parameter for skin formulations, was lost in the MA
solution at 37 g, but continued to increase in the more viscous MA gel until 127 g, indicating its ease of
application (see rheograms in Figure 4A,B).

The profile of drug release from the delivery vehicle can be useful for predicting in vivo behavior
of the product. At 55 h, drug release from the formulation was incomplete: only 32.3 ± 3.56% of SbV

from the MA solution and 21.5 ± 3.43% from the MA gel had been released. This was probably due to
the large amount of sample located in the donor compartment, the slow release of the drug from the
gel, and the chemical binding of the meglumine.

In addition, the permeation study performed with damaged and healthy human skin showed
very low amounts of SbV in the receptor compartment at 27 h for both the MA solution and MA gel.
The percentage of permeation was higher through healthy skin than damaged skin with both vehicles.
In the retention study, the drug in the skin was determined in terms of µg of SbV per g and cm2 of
skin. Higher SbV retention values were obtained for the MA gel when the skin was undamaged,
probably due to better functioning and ability to absorb more drug. The same behavior was observed
for the MA solution, although a lower amount of SbV was detected. Similar results were obtained
by Dar et al. (2018), who tested nano-deformable liposomes with sodium stibogluconate and the
same liposomes in a Carbopol gel on rat skin, and observed a low percentage of SbV permeated into
the receptor compartment and a high percentage was retained in the skin [21]. Other studies with
liposomes encapsulating MA, MA combined with oleic acid and MA plus stearylamine also showed
low permeation of SbV across the skin barrier and high retention in mouse skin [22,23]. Bilia et al.
(2006) found the highest amounts of sesquiterpenes retained in stripped skin when using a mixture of
polyacrylamide, C13-14 isoparaffin and laureth-7 and other excipients, since the level of lipophilicity
enhanced the permeation compared with other topical delivery systems [25].

Most substances penetrate the skin through the transepidermic route, mainly across the spaces
between cells [38]. The level of penetration depends essentially on two coefficients: that of the
vehicle-skin partition and the diffusion. Small molecules are able to cross the skin more easily [39],
while highly lipophilic molecules can be retained in the stratum corneum [40]. The drug of our
formulation may cross the skin through the intercellular route, as MA is a small molecule (MW:
365.98 g/mol), thereby allowing proper diffusion despite its hydrophilicity. In the permeation
experiments, we found lower SbV values in the damaged skin than when it was not. This indicates
that stratum corneum plays an important role as a drug reservoir that allows a slow release, as we
could detect SbV in the receptor compartment. Regarding the new formulation, the low permeation of
SbV to the receptor compartment through the skin barrier, and retention of sufficient quantities of SbV

in the damaged skin after 27 h suggests the drug could remain in the skin layers where leishmania
parasites are located.

In relation to biomechanical properties, the MA solution maintained TEWL values below 12 g/h·m2,
which is considered normal, and the integrity of the stratum corneum was not affected. The slight
decreasing pattern observed could be due to an occlusive effect of the solution. The solution also
caused a loss of water in the skin but with a tendency to recover after 1 h. When applying the MA
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gel, an increase in water loss from the stratum corneum was observed 15 min after the application,
pointing to an alteration in the constitution of the skin. However, within one hour the basal values
were recovered, which indicated the alterations were reversible. When using gels containing polymers
with a high capacity to capture water, the skin hydration is strongly affected and water is lost from the
stratum corneum. In the current study, this effect was marked at 15 min, followed by a slow gradual
recuperation of hydration over the next 2 h. The application of the MA gel did not induce any visual
skin irritation and was well tolerated by all the individuals participating in the study, none of whom
reported pain or any inconveniences from its administration.

At the highest concentrations tested, the gel formulation with or without MA showed cytotoxicity
effects on the RAW 264.7 and J774A.1 cell lines. Cytotoxicity in the macrophage cell lines was similar for
all the compounds tested, indicating a similar resistance to the excipients and the MA in the formulation.

The in vitro anti-leishmanial activity on intracellular amastigotes showed the MA gel inhibited
amastigote survival to a greater extent than the MA solution. Analysis of the selectivity index (SI)
showed higher SI values for the MA gel formulation than for the MA solution, which indicated that
the gel was less toxic and with higher activity against the parasite.

Interestingly, the amount of SbV retained in damaged and undamaged skin was greater when
the gel formulation was applied compared to the solution, which makes it more advantageous for
therapeutic application. These skin retention values, as well as the IC50 results against amastigotes
(Table 3) and considering the density of the hydrated skin (0.964 g/mL) [41], indicate that the new MA
gel formulation could provide high local amounts of SbV, even in damaged skin, and may exert an
efficient action against CL. Future experiments in an animal model need to be performed to confirm
our preliminary results and determine the efficacy in vivo.

5. Conclusions

We have developed an easy to prepare topical MA gel-based formulation, an administration route
that avoids injections and has higher patient acceptance and tolerability. It was shown to be stable
for at least 6 months and has optimal properties for use in CL treatment: a biocompatible pH, easy
spreadability and no skin irritant effects.

Experiments showed low permeation of the SbV through the skin, which would represent a low
concentration of the drug in blood, and high retention in the skin layers. Thus, the gel formulation
almost completely avoids the toxic side effects of SbV and could supply a therapeutic level of MA at
the local site for an extended period.

Low cytotoxicity in the keratinocyte cell line and the two macrophages cell lines was observed.
The study of anti-leishmanial activity in intracellular amastigotes treated with the MA gel showed
a reduction of the IC50 in comparison to the reference solution. These preliminary results indicate
the MA formulation could be a promising alternative for CL treatment, although further studies are
required to establish a proper dosage schedule in vivo.
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