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ABSTRACT 

Maintenance of glucose homeostasis is mandatory for organismal survival. It is 

accomplished by a complex, coordinated interplay between glucose detection 

mechanisms and multiple effector systems. The brain, in particular homeostatic 

regions such as the hypothalamus, plays a critical role in orchestrating such a highly 

integral response. Here we review current understanding of how the hypothalamus 

senses glucose availability and participates in systemic glucose homeostasis. We 

provide an update of the relevant signaling pathways and neuronal subsets involved, 

as well as the mechanisms modulating metabolic processes in peripheral tissues such 

as liver, skeletal muscle, fat, and especially the pancreas. We also discuss the relevance 

of these networks in human biology and prevalent metabolic conditions such as 

diabetes and obesity. 
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HISTORICAL ESSENTIALS 

The first evidence that the brain influences glucose metabolism was provided by 

Claude Bernard in 1849. He observed that stimulation of the base of the fourth 

ventricle in rabbits caused a dramatic rise in blood glucose. The notion that the brain 

was the only relevant location for glucoregulation was widely accepted until Banting 

and colleagues discovered insulin in 1921. These findings heralded an era devoted to 

investigating the mechanisms of insulin secretion and action in physiology and 

pathophysiology that left the brain in the background. Nevertheless, in the early 

1950s, Jean Mayer proposed the “glucostatic theory”, which implied that the brain 

could detect glucose fluctuations [1], and in the mid-1960s, electrophysiological 

recordings uncovered glucose-sensing neurons in the hypothalamus [2, 3]. With 

renewed interest in the brain, the topic of central glucose metabolism control 

blossomed over the following decades, especially with the advent of powerful 

techniques and mouse genetics in the 1990s. 

   

HYPOTHALAMIC GLUCOSE-SENSING: THE BASICS 

 

Location of glucose-sensing neurons 

Glucose is the prime cellular energy source to sustain life and therefore its 

availability must be constantly monitored. Higher organisms have developed dedicated 

sensor and effector mechanisms to maintain systemic glucose homeostasis [4, 5]. The 

brain uses ∼60-70% of the total glucose. It predominantly expresses high affinity GLUT-

1 and GLUT-3, allowing effective glucose transport at normal circulating range. Thus 

the brain does not depend on insulin for glucose uptake, even though insulin is a key 

signaling molecule.  

As the brain is the most avid glucose consumer of the organism, it is 

teleologically reasonable that the brain executes surveillance functions. Evidence 

indicates that continuous glucose monitoring is achieved by dedicated cell types 

located in several regions including the brainstem, corticolimbic areas and 

hypothalamus (Figure 1A). Notably, neuronal glucose-sensing has received most 

attention, but the relevance of non-neuronal cells in this biological process has been 

underscored recently (Box 1).  
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While glucose-sensing is a complex, distributed process, extensive research has 

recognized the hypothalamus as a key nexus of these networks. The hypothalamus is 

constituted by distinct nuclei morphologically and functionally, including the 

paraventricular (PVN), ventromedial (VMN), lateral (LH) and arcuate nucleus (ARC), 

which all contain specific glucose-sensing neuronal populations. 

The ARC, which is adjacent to the third ventricle (3V; see Glossary) and the 

median eminence, contains two antagonistic neuronal populations: orexigenic Agouti-

related peptide (AgRP)-producing neurons and anorexigenic neurons that release Pro-

opiomelanocortin (POMC)-derived peptide α-melanocyte-stimulating hormone (α-

MSH). Together with neurons expressing the melanocortin 4 receptor (MC4R), they 

constitute the melanocortin system which is essential for appetite, energy expenditure 

and glucose homeostasis [4]. Competitive binding of α-MSH and AgRP on MC4Rs 

define the activation magnitude of downstream pathways and effectors. AgRP 

neurons, which send inhibitory Gamma-aminobutyric acid (GABA) terminals onto 

POMC neurons, also contain the orexigenic neuropeptide Y (NPY) [4]. The overall 

balance between orexigenic and anorexigenic forces defines the final metabolic 

outcome. AgRP neurons are considered glucose-inhibited (GI) cells, while most studies 

suggest that POMC neurons are glucose-excited (GE) [5]. However, further studies are 

warranted as recent reports raise the possibility that modulation of POMC neuron 

activity by glucose is due to presynaptic inputs rather than direct detection [6].  

ARC POMC and AgRP neurons project to numerous extra-hypothalamic and 

hypothalamic regions, including the VMN [7]. A subset of VMN neurons sense changes 

in extracellular glucose concentration, including both GE and GI neurons [5, 8]. 

Steroidogenic factor 1 (SF1) expressing neurons are particularly abundant and express 

receptors for key metabolic hormones, but only ∼10% are glucose-responsive [8].  In 

addition to regulating energy balance, the VMN is critical to initiate the 

counterregulatory response to hypoglycemia [9]. 

The LH consists of a heterogeneous structure of neuronal populations, 

including the well-described orexin and melanin-concentrating hormone (MCH) 

neurons, amongst other neuronal types. In general terms, a portion of orexin neurons 

are GI, while subsets of MCH neurons are GE [5]. This area is implicated in arousal, 

appetite and reward.     
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Molecular mechanisms of glucose-sensing 

The molecular foundations underlying neuronal glucose-sensing are diverse and not 

completely understood, but plausibly similar to classical mechanisms operating in 

pancreatic β-cells. Based on their electrical response to changes in extracellular 

glucose levels, glucose-sensing neurons are classified as GE or GI [5]. Glucose uptake 

by GE neurons seems to be mediated by heterogeneous mechanisms, as differential 

expression of glucose transporters (mainly GLUT-2, GLUT-3, GLUT-4 and SGLT) has 

been reported depending on their neuropeptide identity or localization. Generally 

speaking, depolarization in GE neurons operates similarly to pancreatic β-cells: via 

glucokinase (GK) and ATP-mediated closure of KATP channels (Figure 1B). [10, 11]. GK 

has a low glucose affinity, so its activity varies substantially and proportionally to 

glucose concentration. Given these distinctive features, GK is considered a critical 

element and has been used to predict glucose-sensing populations of neurons [5]. The 

cellular energy sensor AMPK has also been proposed to play a relevant role in glucose-

sensing, [12]. 

Similarly, subsets of GI neurons express the same glucose transporters [5]. A 

large proportion of GI neurons seem to rely on GK [11] but exceptions are reported, 

which suggests that it is not essential for glucose-sensing [13]. In the VMN, an 

important region for hypoglycemia detection, low glucose levels depolarize GI neurons 

via closure of chloride channel through a mechanism mediated by AMPK and nitric 

oxide (Figure 1B) [5]. In addition to GI neurons that respond to fluctuations in glucose 

via its metabolization, the activity of some GI neurons is modulated by the glucose 

molecule itself. This is the case of orexin-expressing GI neurons in the LH, which can 

respond to either glucose or 2-deoxyglucose (2-DG), although the precise mechanisms 

are not fully understood [6]. The diversity of brain regions, neuronal types and 

molecular mechanisms involved in glucose-sensing underscores the complexity and 

heterogeneity of this fundamental biological process and suggests the existence of 

intricate neurocircuits (Box 2). According to these inputs, the hypothalamus conveys 

multiple effector mechanisms to precisely adjust the metabolic output of peripheral 

tissues thus preserving glucose homeostasis. These effects involve the main metabolic 

tissues, including the liver, skeletal muscle, adipose tissue and pancreas.  The main 

focus of this review is the pancreas.   
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HYPOTHALAMIC CONTROL OF HEPATIC GLUCOSE PRODUCTION 

Hepatic glucose production (HGP) is one of the major processes implicated in systemic 

glucose homeostasis. Ample evidence indicates that the hypothalamic action of 

metabolic hormones (insulin and leptin) and nutrients influence HGP in rodents [14]. 

Hypothalamic leptin, preferentially via POMC neurons, suppresses HGP and increases 

insulin-independent tissue glucose uptake [14]. The beneficial effects of hypothalamic 

leptin action on HGP are also apparent in pathophysiological conditions such as diet-

induced insulin resistance [15] or severe insulin deficiency (Box 3).  

  The physiological role of insulin signaling in the hypothalamus is more 

controversial. Several pharmacological and genetic studies suggest that hypothalamic 

insulin suppresses HGP in rodents via neuronal KATP channels, PI3K and the vagus 

nerve [14]. Surprisingly, direct hepatic insulin signaling seems to be dispensable for 

suppression of glucose output in mice if the central mechanisms remain functional 

[16]. In dogs, insulin also engages brain pathways and liver changes in glucoregulatory 

genes but without significant effects on HGP [17]. These findings call into question a 

physiological role for central insulin upon HGP control, in favor of direct insulin effects 

in liver. This controversy may partly arise from technical issues and differences in 

glucose physiology between species.  

Collectively, evidence suggests that adequate HGP is achieved by the complex 

coordination of both liver and central-mediated indirect effects. It is likely that the 

hypothalamus, through integrated sensing of circulating hormones and nutrients, fine-

tunes hepatic glucose output according to metabolic status. An extensive discussion 

can be found elsewhere [18, 19] 

 

HYPOTHALAMIC CONTROL OF GLUCOSE METABOLISM IN SKELETAL MUSCLE 

Skeletal muscle is the major site for glucose disposal, but current understanding of 

underlying hypothalamic mechanisms is scarce. Intracerebroventricular (i.c.v.) insulin 

augments muscle glycogen synthesis and this is prevented by glucose co-infusion [20]. 

Leptin microinjection in the VMN, but not in other hypothalamic nuclei, preferentially 

increases glucose uptake in skeletal muscle and heart [21, 22]. These effects are 

mediated via the melanocortin system: VMN leptin action is abolished by MCR 
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antagonists, while delivery of MCR agonists, either into the VMN or i.c.v., is sufficient 

to increase muscle glucose uptake [23].  

The advent of optogenetic and chemogenetic strategies has allowed for more 

accurate functional studies. Chemogenetic activation of VMN SF1 neurons increases 

whole-body insulin sensitivity and the uptake of glucose in red-type skeletal muscle 

and heart under hyperinsulinemic-euglycemic conditions. Parallel stimulation of insulin 

signaling in soleus muscle is observed after activation of VMN SF1 neurons during the 

clamp period [24]. These studies confirm previous findings on the role of the VMN 

upon insulin-induced glucose uptake in muscle and heart. 

Orexin administration into the VMN also promotes insulin-induced glucose 

uptake and glycogen synthesis in skeletal muscle but not in WAT. This is part of a non-

homeostatic system, involving orexin neurons in the LH, required to support glucose 

metabolism in motivated behaviors [25].  

 

HYPOTHALAMIC CONTROL OF GLUCOSE METABOLISM IN ADIPOSE TISSUE 

Glucose uptake in white adipose tissue (WAT) is largely dependent on insulin action, 

although it only accounts for ∼5-10% of total. However, WAT supplies gluconeogenic 

precursors (glycerol and non-esterified free fatty acids) for HGP, thus efficient control 

of lipolysis contributes to coordinating glycemia and adiposity.  

Evidence suggests that lipid mobilization is divergently regulated by 

hypothalamic insulin and leptin. Infusion of insulin into the mediobasal hypothalamus 

of rodents suppresses sympathetic outflow to WAT, thereby restraining lipolysis. It also 

induces de novo lipogenesis by modulating the expression of key lipogenic enzymes 

[26]. Intra-hypothalamic insulin administration combined with clamp experiments 

revealed that glycerol correlated with HGP, while neither of these parameters 

correlated with circulating insulin levels [26]. Conversely, i.c.v. leptin reduces WAT lipid 

storage by increasing lipolysis and inhibiting lipogenesis. The latter process is mediated 

by PI3K and sympathetic outflow [27]. 

The melanocortin system is a critical modulator of WAT metabolism. Central 

injection of MC3/4R agonist in rodents enhances the sympathetic drive to specific WAT 

depots and increases lipolysis-related genes [28]. In contrast, pharmacological or 

genetic disruption of MC4R markedly promotes lipid uptake, triglyceride synthesis, and 
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fat accumulation. This is associated with improved insulin sensitivity and glucose 

uptake in WAT. Importantly, these effects are irrespective of food intake and 

anticipate adiposity changes [29].  

Brown adipose tissue (BAT) is highly flexible in terms of glucose uptake 

potential and can significantly contribute to glucose uptake and thus whole-body 

glucose metabolism under certain conditions. VMN leptin delivery or chemogenetic 

activation of SF1 neurons stimulates BAT glucose uptake [21, 22, 24]. In the LH, 

selective restoration of MC4R expression in MC4R-null mice increases the sympathetic 

outflow to BAT, associated with GLUT4 upregulation and effective glucose absorption 

in this tissue [30]. Elegant optogenetic studies revealed that acute stimulation of ARC 

AgRP neurons deteriorates systemic glucose metabolism through impairment of 

insulin-stimulated glucose uptake into BAT. This is due to gene expression 

reprogramming of BAT towards a myogenic signature [31]. 

 

HYPOTHALAMIC CONTROL OF PANCREATIC FUNCTION 

The principal role of the endocrine pancreas, represented by the islet of Langerhans, is 

to maintain systemic glucose homeostasis. It has been known for decades that the 

brain influences pancreatic islet physiology via sympathetic and parasympathetic 

inputs, thus fine-tuning endocrine functions according to metabolic needs. However, 

our understanding of the neurocircuits and molecular mechanisms involved is still 

rudimentary. This section summarizes current knowledge of hypothalamic control of 

insulin and glucagon release, as prominent pancreatic hormones with critical roles in 

maintaining glucose levels within physiological range (Figure 2). 

 

Brain-pancreas connection: neuroanatomical, neurochemistry and 

neuropharmacology studies 

 

Neurocircuits 

Virus-assisted Cre-mediated retrograde tracing strategies have established that the 

main route originates in the hypothalamus (ARC, VMN and LH) and communicates to 

the brainstem (nucleus tractus solitarius and dorsal motor nucleus of the vagus) via the 

PVN, the raphe (Ra), A5/C1 cell groups in the pons, and the periaqueductal gray ventral 
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zone (PAG) in the midbrain. Brainstem structures innervate pancreatic islets via the 

vagus and/or spinal cord (Figure 2) [32]. This study thus defines an in vivo map of the 

neuronal networks, emphasizing the hypothalamus as a critical hub linking with the 

endocrine pancreas.  

 

Neuropharmacology and neurochemistry 

The role of central glucose or insulin in pancreatic function regulation is controversial. 

Intracerebroventricular administration of glucose, and subsequent glucose-stimulated 

insulin secretion (GSIS) assessment in rats, improves glucose handling and increases 

plasma insulin levels. This observation cannot be attributed to higher systemic glucose 

levels [33]. However, a similar approach shows a KATP channel-mediated reduction in 

circulating insulin levels [34]. Regarding insulin, studies in dogs concluded that 

ventricular injection of this hormone stimulates pancreatic insulin secretion under 

constant baseline concentration of glucose [35]. Likewise, cerebral insulin causes a fast 

increase in plasma insulin and a concomitant decrease in glucose levels in rats via KATP 

channels [36]. However, other studies failed to confirm these findings [37, Ishihara 

2009 #12091]. These discrepancies, which may be of methodological origin, lead to 

some considerations regarding the overall interpretation and physiological relevance 

of results. Factors include the divergent results using different experimental species, 

the use of suprapharmacological concentrations of the hormone and non-physiological 

delivery routes, and the fact that i.c.v. insulin actions are not restricted to the 

hypothalamus, and thus other brain areas may be reached.   

   It has also been suggested that classical hypothalamic neuropeptides play a role 

in endocrine pancreas modulation. Acute central delivery of MC4R agonists in mice 

cause a potent reduction in plasma insulin levels, which is not secondary to a lowering 

of blood glucose or food intake [38]. Consistently, mice with genetic loss or 

overexpression of melanocortin signaling exhibit changes in circulating insulin, 

irrespective of body weight and feeding [38, 39]. However, other studies show that 

central effects of MC4R agonists/antagonists on insulin levels are absent or are 

secondary to food intake changes [40-42]. Thus, the central melanocortin system’s role 

in insulin secretion remains debatable, and divergent results may be the consequence 

of diverse methodological issues and/or compensatory mechanisms in chronic models.  
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Evidence also suggests a stimulatory effect of central NPY on insulin release. 

Ventricular delivery of NPY promotes insulin secretion and potentiates the insulinemic 

response to hyperglycemia, independent of food intake [43]. In line with this, central 

subchronic administration of AgRP results in increased insulin concentrations 

independent of hyperphagia. However, as plasma glucose was not assessed, changes 

in insulin could be secondary [44].  

 

Arcuate nucleus of the hypothalamus  

 

Glucose-sensing mechanisms 

GK allows for glucose sensing within physiological range and, in the brain, it is highly 

expressed in ARC relative to other areas [32]. As the GK/Hexokinase-1 (HK1) ratio 

activity is critical for glucose-sensing, viral-mediated overexpression of HK1 is 

predicted to alter this process. HK1 overexpression in the ARC rendered animals 

glucose intolerant likely due to reduced glucose-stimulated insulin secretion (GSIS) 

[32]. These results suggest that glucose-sensing in the ARC influences pancreatic 

endocrine function.  

 

Melanocortin neurons 

Studies aimed at understanding the role of mitochondrial dynamics, as a bioenergetic 

adaptation to the fluctuations in nutrient availability, uncovered a link between POMC 

neurons and endocrine pancreas [45]. Deletion of the mitochondrial fusion protein 

Mitofusin 1 (Mfn1) in POMC neurons of mice results in glucose intolerance despite 

normal insulin sensitivity without energy balance repercussions. These glucose 

metabolism perturbations are due to impaired insulin release in response to glucose. 

Pharmacological rescue studies showed that enhanced sympathetic function and 

excessive reactive oxygen species (ROS) production underlie abnormal GSIS in these 

mice [45].  

Impaired melanocortin system development in mice also impacts on pancreatic 

function [46]. High-fat diet administration to lactating mothers leads to aberrant 

innervation of POMC neuron axons to several hypothalamic areas and 

parasympathetic fibers to pancreas in the offspring. This is associated with altered 
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GSIS. Interestingly, genetic loss of insulin receptor in POMC neurons protected 

offspring from abnormal neuronal innervation and insulin release [46].  

Chemogenetic activation of AgRP neurons acutely induces peripheral insulin 

resistance and increases plasma insulin within 1h without changes in glucagon or 

corticosterone levels [31]. However, enhanced insulin release may be a compensatory 

mechanism to counteract insulin resistance rather than a direct effect. In contrast, no 

effects on glucose metabolism are found when neighboring POMC neurons are 

chemogenetically activated.  

Collectivelly the current data suggest that while SF1 VMN neurons are critical 

for counterregulation, hypothalamic neurons may be important for fine-tuning post-

prandial insulin release (Figure 2).  

 

Ventromedial nucleus of the hypothalamus (VMH) 

 

Counterregulatory response 

Classical VMN lesion and stimulation studies suggested a direct neural influence on 

pancreatic function [47, 48]. In particular, the VMN is important for hypoglycemia 

detection and counterregulatory response [49, 50] (Figure 2). Low glucose levels in the 

VMN depolarize GI neurons via closure of chloride channel through a mechanism 

mediated by AMPK and nitric oxide [5]. Indeed, pharmacological activation of VMN-

AMPK enhances the counterregulatory response, while its genetic inhibition results in 

the opposite effect [51, 52]. Furthermore, hypoglycemia-induced glucagon release is 

blocked by the administration of glucose or KATP channel inhibitors into the VMN [53]. 

Consistently, intra-VMN insulin exerts an inhibitory effect on α-cell glucagon release 

[54].  

Glucose-sensing determinants in the VMN also impact on pancreatic function. 

In a set of elegant studies, remote activation of GK-expressing VMN neurons increases 

plasma glucagon and lowers insulin levels, while inhibition of VMN neurons reduces 

blood glucose, raises insulin levels and suppresses feeding [55]. Genetic loss of GK in 

SF1 neurons causes a sex-dependent phenotype only in females, characterized by fat 

accumulation, impaired hypoglycemia-induced glucagon secretion, and lack of 

autonomic nervous system activation by neuroglucopenia. This gender dimorphism 
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suggests an interaction between glucose sensing by GK and sex-hormone signaling 

[56]. 

In mouse VMN neurons, absence of functional KATP channels, which are also 

critical for glucose-sensing, causes severe glucagon secretion deficit under 

hypoglycemia or neuroglucopenia conditions. However, ex vivo islets showed normal 

α-cell function in mutant animals, which indicates the importance of central KATP 

channels in modulating glucagon responses [57]. GABA may mediate these effects, as 

pharmacological manipulation of KATP channels in the VMN results in altered GABA 

release within this region, concomitant with changes in glucagon-mediated 

hypoglycemia responses [58]. Consistently, increased GABAergic tone in VMN 

suppresses counterregulatory responses to a hypoglycemic stimulus [59]. 

Effective glucoregulation seems to be achieved via glutamatergic SF1 neuronal 

subsets. Genetic disruption of glutamatergic transmission in SF1 neurons does not alter 

basal body weight, although it does predispose mice to gain weight when fed with a 

Western diet. Notably, the counterregulatory response to insulin-induced 

hypoglycemia and central glucopenia is impaired in mutant mice [60]. 

Optogenetic and chemogenetic approaches can be used to investigate causality 

between cellular changes and functional outcomes. Direct photoinhibition of SF1 

neurons in mice does not alter fasting blood glucose concentration, but dramatically 

impairs the ability to recover from insulin-induced hypoglycemia by blocking the 

increase in glucagon and corticosterone [61]. Conversely, activation of SF1 neurons 

causes a diabetogenic-like effect characterized by hyperglycemia and glucose 

intolerance. This hyperglycemic response is partially mediated by the combination of 

GSIS inhibition and enhanced glucagon release. Neurocircuit mapping studies 

identified SF1 neurons as part of an ascending glucoregulatory circuit that also includes 

extra-hypothalamic regions [61].  

 

Hormone signaling pathways  

Insulin delivery into the VMN exerts inhibitory effects on glucagon release under both 

normoglycemic and hypoglycemic conditions [54]. Indeed, electrophysiology 

recordings showed that insulin hyperpolarizes SF1 neurons through activation of KATP 

channels [62]. However, genetic inhibition of insulin signaling in these neurons does 
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not cause any obvious pancreatic phenotype [62]. These divergences may be the result 

of compensations in the genetic constitutive model when compared to acute 

pharmacological studies. Notably, leptin signaling in the VMN does not seem to impact 

on pancreatic function [21, 22, 63] .  

 

EVIDENCE FOR CENTRAL CONTROL OF GLUCOSE HOMEOSTASIS IN HUMANS 

Substantial evidence in rodents supports the notion that the hypothalamus plays a role 

in systemic glucose homeostasis. However, given the artificial nature of the 

experimental strategies used (suprapharmacology, genetic modifications, opto- and 

chemogenetics), the real contribution of brain mechanisms to physiological glucose 

control is controversial. This discussion is especially relevant in the context of human 

biology, but in this regard obvious methodological difficulties arise. 

 Indirect evidence of central control of glucose metabolism is backed by 

expression of glucose-sensing determinants and metabolic hormone receptors in the 

human hypothalamus [64]. Furthermore, functional imaging techniques have shown 

that the hypothalamus, and other brain areas, respond to glucose and insulin [65, 66]. 

 To explore the role of brain insulin signaling in a selective non-invasive manner, 

intranasal insulin (INI) has been used in clinical studies. INI delivery transiently 

increases insulin concentration in the cerebrospinal fluid and influences the activity of 

various brain regions. The reported effects of INI are diverse, including reduction of 

appetite and body weight [67], suppression of systemic lipolysis [68], and improved 

hepatic energy metabolism [69]. In terms of glucoregulation, INI decreases post-

prandial insulin levels, and hyperinsulinemic-euglycemic clamp studies revealed 

enhanced whole-body insulin sensitivity [70, 71]. These effects are positively 

associated with increased parasympathetic activity and hypothalamic activation 

assessed by imaging techniques [71]. The improvement in insulin sensitivity may be 

due to HGP suppression and stimulation of glucose uptake after INI delivery [72]. 

Although INI primarily impacts the brain [73], it should be considered that minor 

transient systemic insulin absorption could theoretically mediate part of the effects 

attributed to the brain. 

  Another reported strategy to investigate central glucoregulation in humans is 

by investigating the effects of diazoxide. To examine its extra-pancreatic effects, 
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Kishore and collaborators conducted pancreatic clamps in healthy humans. Diazoxide 

causes a ∼30% reduction in glucose production without changes in uptake. Although 

this study does not directly prove that these effects are mediated by brain KATP channel 

modulation, complementary rodent studies do support this notion [74]. 

 These studies suggest that the brain, and in particular the hypothalamus via 

insulin signaling, modulates peripheral glucose metabolism in healthy humans. 

Importantly, several reports also show a lack of glucoregulation effects after INI or 

diazoxide treatment in obese or type-2 diabetic (T2D) patients [71, 72, 75]. This, 

together with imaging studies reporting selective impairment of insulin signaling in the 

hypothalamus and other areas [76], supports the concept of brain insulin resistance. 

Despite the manifest importance of the brain’s insulin signaling in glucose homeostasis 

control, it has yet to be demonstrated whether central defects causally contribute to 

metabolic dysfunction in humans. 

 

CONCLUDING REMARKS  

The brain controls many essential homeostatic functions, so it seems implausible that 

glucose metabolism is entirely regulated by a peripheral mechanism. In recent years, 

major advances in mouse genetics and experimental technology have substantially 

consolidated the pioneering concept that suggests a role for the brain in peripheral 

control of glucose metabolism. Extensive literature posits the hypothalamus as an 

important glucoregulatory center, and there is little doubt that it can influence aspects 

of glucose homeostasis in response to nutrients, hormones, neuropeptides and stress 

situations such as hypoglycemia. However, experimental controversy and uncertainty 

about the role of the hypothalamus in the physiological control of daily glucose 

metabolism have led to skepticism. Further studies need to unequivocally address 

these questions and strictly control the metabolic context in which the study is 

performed (see Outstanding Questions).  

 Despite these flaws, a basic conceptual model of glucoregulation suggests the 

existence of complex, coordinated interactions between the brain and peripheral 

tissues [77]. Under hypoglycemic conditions, the brain (and in particular the VMN) 

plays a key role in orchestrating the glucoregulatory response. Under normal 

conditions, the brain would exert fine adjustments to diverse peripheral responses to 
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achieve glucose homeostasis. However, defective central mechanisms would cause 

mild glucose metabolism perturbations that could be compensated peripherally. 

Similarly, altered peripheral pathways could be counterbalanced by the brain. 

Therefore, it seems plausible that multiple defects in regulatory systems may be 

required for diabetes development [77]. Future research will be fundamental to 

delineate the central machinery underlying glucose homeostasis and to design novel 

therapeutics for metabolic disorders such as obesity and T2D. 
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BOXES: 

Box 1. Non-neuronal brain glucose-sensing 

Tanycytes 

Tanycytes are ependymal cells surrounding the ventricular walls and the floor of the 

third ventricle of the brain. These specialized cells, and not neurons, are in direct 

contact with cerebrospinal fluid and thus they are ideally positioned to sense glucose 

fluctuations. Recent evidence supports the notion that tanycytes exhibit glucose-

sensing properties. For example, they express critical determinants of glucose-sensing 

such as GLUT2, GK and KATP channels [78]. Notably, in primary cultures of tanycytes 

and brain slices, an increase in extracellular glucose evokes an ATP-mediated rise in 

intracellular Ca2+. The underlying mechanisms remain largely unknown, but glucose 

could act via G-protein-coupled receptors to directly trigger intracellular Ca2+ 

mobilization and transfer the signal to neighboring cells [78]. Collectively, these 

evidences indicate that tanycytes exhibit multiple mechanisms to respond to glucose 

fluctuations. However, the in vivo relevance of tanycytes glucose-sensing and their 

participation in the global integration and regulation of systemic glucose homeostasis 

remains unknown. 

 

Astrocytes 

Astrocytes play a critical role in fueling neurons via lactate production, and 

hypothalamic glucose-sensing has been shown to be altered when astrocyte-to-neuron 

fueling is disrupted. For example, pharmacological blockage of astroglial glutamate 

metabolism blunts neuronal activation [79]. In addition to modulate neuronal glucose-

sensing indirectly, astrocytes also exert direct glucoregulation via glucose transporters, 

as changes in glial GLUT1 in the hypothalamus mediate glucose-sensing in this region 

and influence glucose production [80]. Furthermore, global inactivation of GLUT2 

gene, which is preferentially expressed in astrocytes, causes abnormal glucagon 

secretion upon hypoglycemia. However, selective re-expression of GLUT2 in glia (but 

not in neurons) restores hypoglycemia-induced glucagon release [81]. More recently, 

Garcia-Cáceres and colleagues have unveiled the relevance of astroglyal insulin 

signaling in brain glucose uptake and in response to changes in systemic glucose 

availability. Genetic ablation of insulin receptor in astrocytes impairs glucose-induced 
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POMC neuron activation and the physiological responses to fasting or glucoprivation 

[82]. Together, these results emphasize the role of astrocytes upon glucose-sensing 

and homeostasis and suggest that astroglial networks form an intricate sensing unit 

with neurons. 

 

Box 2. Brain circuits integrating glucose-sensing 

The hypothalamus is a prominent glucose-sensing area implicated in glucoregulation. 

However, it is now recognized that this biological process is in fact mediated by a 

complex and distributed neuroregulatory network that includes extra-hypothalamic 

nuclei. Glucose-sensing neurons have been described in brainstem structures such as 

the dorsal motor nucleus of the vagus (DMV), nucleus tractus solitarius (NTS) and the 

parabrachial nucleus (PBN). While the DMV and NTS contain both GE and GI neurons, 

the PBN mainly include GI neurons consistent with a role in the counterregulatory 

response [83]. Furthermore, glucose-sensing neurons have also been reported to exist 

in corticolimbic areas including the nucleus accumbens (NAC) and amygdala [84]. 

Within the NAC, GE neurons are mainly found in the shell whereas GI are 

predominantly localized in the core region. Similarly, the amygdale also contains GE 

and GI neurons that express GK and respond to intragastric glucose administration and 

glucoprivation induced by 2-DG [84]. Nevertheless, the role of glucose-sensing in the 

reward system, its influence on behavior and implication in 

physiology/pathophysiology remains to be elucidated. 

 The distributed anatomy of glucose-sensing neurons amongst several brain 

regions strongly suggest the existence of sophisticated interactions to integrate and 

respond adequately to glucose fluctuations. A precise delineation of these 

neurocircuits is just starting to emerge thanks to the implementation of optogenetic 

methodologies. In this regard, a discrete neurocircuit implicated in hypoglycemia 

response has been recently unveiled in a set of elegant studies. This circuit involves a 

subset of neurons of the lateral PBN (LPBN), that co-express leptin receptor and 

cholecystokinin, which are activated by glucoprivic stimuli [85]. Optogenetic 

stimulation of these neurons promotes a counterregulatory-like response via 

downstream SF1 neurons of the VMN. Further studies have shown that, amongst the 

different brain areas that VMN SF1 neurons project, only the bed nucleus of the stria 



 17

terminalis (BNST) mediates the response to hypoglycemia [61]. Collectively, these 

studies offer compelling evidence of an ascending glucorregulatory circuit involving 

LPBN → VMN-SF1 neurons → BNST. 

 In contrast, the neuroanatomy of circuits implicated in glucose homeostasis 

remains largely unknown. It is well described that the ARC is interconnected with the 

VMN, and also sends projections to the LH and the PVN. These three nuclei are 

synaptically connected with preganglionic parasympathetic neurons of the 

intermediolateral cell column (IML) [86]. These anatomical connections suggest 

potential circuits and effector pathways to peripheral tissues thus influencing glucose 

homeostasis [87]. 

 An intriguing unsolved question is how these apparently distinct neurocircuits 

involved in glucose counterregulation, homeostasis and reward are able to cross-talk 

and coordinate appropriate responses. It seems plausible that adequate sensing and 

subsequent adjustments to maintain euglycemia is achieved by a precise 

communication amongst these different levels of control. Understanding this 

complexity is a challenge for years to come, but a critical aspect to design better 

therapies for diabetes. 

 

Box 3. Life without insulin 

The long-standing dogma that life without insulin is not possible has been challenged 

recently. Shortly after the identification of leptin by Dr. Jeffrey M Friedman and 

colleagues in 1994 [88], various teams reported that leptin treatment could improve 

glucose metabolism in rodent models [89, 90]. These effects appeared to be centrally 

mediated, as i.c.v. delivery of leptin normalized glucose levels independent of appetite 

in diabetic models [91]. Further evidence for the hypothalamic effects of leptin as an 

antidiabetic agent was provided via elegant virogenetic reactivable technology. Re-

expression of leptin receptors (LepR) in the ARC of mice globally lacking LepR improved 

hyperinsulinemia and diabetes with modest effects on body weight [92]. While these 

effects seemed to be the consequence of insulin-sensitizing effects of leptin, studies 

also described insulin-independent mechanisms [93].  

The first attempt to directly address whether insulin was dispensable for 

glucoregulation was conducted by Dr. Roger Unger’s group. In their study, adenoviral-
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mediated systemic leptin overexpression ameliorated hyperglycemia and blocked body 

weight loss in autoimmune and chemically-induced rodent models of diabetes. 

Notably, this metabolic improvement was observed in all the studied animals within ∼ 

10 days of treatment in the context of near-complete insulin deficiency [94]. 

Subsequent studies reported that these effects were indeed centrally-mediated. I.c.v. 

administration of leptin reversed lethality, hyperglycemia and other associated 

alterations in mice with undetectable circulating insulin levels [95]. To make sure that 

insulin traces were not underlying the beneficial effects of leptin, the authors 

developed a model of complete insulin loss by diphtheria toxin-induced β-cell death. 

Loss of function and re-expression experiments revealed a neurocircuitry whereby 

leptin engages hypothalamic GABA and POMC neurons to normalize the metabolic 

aberrations caused by insulinopenia [96]. Such beneficial effects have been attributed 

to a variety of mechanisms, including suppression of hyperglucagonemia or glucagon 

responsiveness, enhanced glucose uptake by brown adipose tissue, and muscle as well 

as improved liver metabolism [94-96]. Collectively, these studies demonstrate the 

existence of neurocircuits and molecular mechanisms that can be engaged to 

normalize glucose metabolism in the context of insulin absence. The underpinnings 

and the relevance of these circuits in normal physiology are still unknown, but they 

may be useful to exploit therapeutic opportunities.  
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GLOSSARY: 

Chemogenetics: technology that in neuroscience is used to remotely modulate the 

activity of specific neuronal subsets in freely moving animals. It is based on the use of 

“designer receptors exclusively activated by designer drugs” (DREADDS) that are 

activated by otherwise inert compounds. It is an alternative to optogenetics, which 

allows for long timescale interventions. 

Diazoxide: commercially-available drug which is used in clinical practice. It acts as a 

KATP channel activator, markedly inhibiting insulin release via hyperpolarization of the 

cell membrane and a subsequent decrease in calcium influx. 

Depolarization: rapid shift of cell membrane resting potential, becoming temporarily 

less negative. This is achieved via opening of channels allowing positive ions to flow 

into the cell.  

Hyperinsulinemic-euglycemic clamp: gold-standard method to quantify insulin 

sensitivity in vivo. It consists of continuous insulin infusion to achieve a pre-established 

insulin concentration (hyperinsulinemic). Simultaneously, glucose is intravenously 

administered at a variable rate to maintain euglycemia. The steady-state rate of 

glucose infusion is directly correlated with insulin sensitivity. Combined incorporation 

of radioactive tracers allows for specific tissue measurements. 

Glucose counterregulatory response: adaptive and coordinated defensive process 

aimed at restoring euglycemia when hypoglycemia occurs. It is mainly characterized by 

i) reduced insulin secretion; ii) increased glucagon release; iii) increased 

adrenomedullary epinephrine; iv) enhanced appetite. 

Hyperpolarization: the opposite of depolarization.  

Islet of Langerhans: organizational and functional regions of the pancreas that contain 

and release endocrine hormones. They are predominantly formed by insulin-secreting 

β-cells (∼70%) and glucagon-secreting α-cells (∼20%).  

Intracerebroventricular: invasive surgery procedure that allows for direct injection of 

substances into the cerebral ventricles.  

Mitochondrial fusion: dynamic biological process by which two mitochondria merge 

into one single compartment. It is mediated by complex enzymatic machinery that 

assists in the process of inner and outer mitochondrial membrane fusion.   



 20

Optogenetics: technology that uses optic and genetic tools to modulate the activity of 

targeted neurons in vivo. This strategy consists in the genetic modification of neurons 

to express light-sensitive ion channels. Neuron activity can be modulated by 

illumination with different light sources. 

Pancreatic clamp: experimental technique in which somatostatin is infused to inhibit 

endogenous insulin, glucagon and growth hormone secretion. Suppressed hormones 

are usually replaced by controlled intravenous administration, and the targeted clamp 

levels for glucose are maintained by varying rates of glucose or insulin.   

Third ventricle: one of the four cerebrospinal fluid-filled cavities that constitute the 

brain ventricular system. It is medially situated, between the cerebral hemispheres, 

and anterior-inferiorly bounded to the hypothalamus. 

 

FIGUERE LEGENDS: 

 

Figure 1. General overview of brain glucose-sensing mechanisms. (A) Hypothalamic, 

brainstem and corticolimbic structures contain glucose-sensing neurons that can be 

classified as GE or GI. (B) High glucose levels depolarize GE neurons via GK and ATP-

mediated closure of KATP channels. ROS generation may also act as a signaling molecule 

implicated in glucose-sensing. In contrast, low glucose levels activate GI neurons via a 

mechanism that involves AMPK, NO and closure of chloride channels.   

 

Figure 2. Hypothalamic control of endocrine pancreatic function. (1) Specific subsets 

of ARC (POMC and AgRP) and VMN (SF1) neurons sense fluctuations in circulating 

factors, conveying information on energy status. The VMN critically initiates the 

counterregulatory response to hypoglycemia in part by increasing pancreatic glucagon 

release. ARC neurons may be preferentially involved in adjusting post-prandrial insulin 

secretion. (2) Multisynaptic transmission via PVN, PAG, A5, Ra to the nucleus of the 

tractus solitarius (NTS) in the brainstem engages pancreatic effector mechanisms. (3) 

As a result, pancreas endocrine hormones (insulin and glucagon) are released 

accordingly into circulation. Endocrine pancreas control represents a part of integral 

and coordinated actions in additional peripheral tissues, by which the hypothalamus 

contributes to whole-body glucose homeostasis maintenance.  
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Outstanding Questions  

 

- How heterogeneous are glucose-sensing neurons and molecular mechanisms? 

-  What are the precise neurocircuits linking glucose-sensing information with 

effector systems?  

- How multiple glucose-sensing brain regions cooperate? Is there also a cross-

talk with peripheral sensors to precisely maintain euglycemia? 

- Does the hypothalamus play a relevant role in the regulation of glucose 

homeostasis in humans? Powerful non-invasive technical advances are needed 

to investigate this in a reliable and comprehensive manner. 

- What is the actual contribution of the hypothalamus in ensuring adequate 

glucoregulation under normal physiology and meal-scale?  

 



ARC

VMN

PVN

LH

NAcc

BNST

GE neuron GI neuron

i.e. POMC neuron i.e. SF1 neuron

pyruvate

GLUT1/3 GLUT1/3

High glucose

Glucose

GK

Low glucose

↓Glucose

KATP

channel

↑ATP

Ca2+ 
channel

Mfn1

K+

Ca2+

depolarization

↑AMPK

↑AMP/ATP

pyruvate

↑NO

Cl-

channel

nNOS

depolarization

A.  

B.  

Figure 1



Hypothalamic
Glucose & Hormone

sensing

SF1 
neuron AgRP

neuron

POMC
neuron

Glucose
Insulin
Glucagon
Leptin

1

Post-prandial
Insulin release

Counter-regulatory 
Glucagon release

2

3

Brainstem – pancreas
signaling

Figure 2


