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Abstract: Bacterial cellulose (BC) was functionalized applying the Laccase/TEMPO oxidative
treatment, leading to a five-fold increase of the concentration of carboxyl groups. Paper
produced with this cellulose showed improved mechanical properties while maintaining
barrier function against water and greases as compared to paper produced with non-
oxidized BC. Also, the negative charge provided by the carboxyl groups on
functionalized BC was used to generate silver nanoparticles (AgNPs), obtaining a BC
paper and Ag composite. The presence of AgNPs in the composites was validated by
SEM, EDS and ICP analysis, showing spherical, uniformly sized particles stabilized in
the BC nanofibers matrix. Additionally, antimicrobial property of composites containing
AgNPs was tested. The results showed the strong antimicrobial activity of the
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composites against Gram-positive and Gram-negative bacteria and fungi. The
generation of Ag nanoparticles in a matrix that combine the physical characteristics of
the BC nanofibers with the stiffness and the mechanical properties of paper produced
composites that may have applicability in technological and biomedical uses.

Response to Reviewers: Author's response to the issues raised by reviewers
Manuscript number: CELS-D-19-00522

Dear Editor,

Please find below the answers (in red) to the issues raised by the reviewers to the
manuscript
entitled Laccase/TEMPO-mediated bacterial cellulose functionalization: production of
paper-silver nanoparticles composite with antimicrobial activity. The questions raised
by the reviewers have been carefully addressed and the corresponding corrections
have been included in the revised manuscript. We thank the reviewers for helping to
improve the manuscript.

Reviewer #1:
The manuscript "Laccase/TEMPO-mediated bacterial cellulose functionalization:
production of paper-silver nanoparticles composite with antimicrobial activity"
described the oxidation of bacterial cellulose (BC) by applying laccase and TEMPO,
the paper produced from oxidized BC showed capacity for stabilizing silver
nanoparticles (AgNPs) and thus showed antimicrobial activity. The manuscript was
organized well and fit the scope of the journal of Cellulose, it is recommended that the
manuscript can be considered for publication after minor revisions according to the
following suggestions.

1. "laccase" should be included in the keywords
The suggestion has been accepted and incorporated

2. All of "via" in the manuscript should be in italic font.
The suggestion has been accepted and incorporated

3. As described in the introduction part of manuscript: "The hydroxyl groups and ether
oxygen of the cellulose molecule anchor the silver ions via ion-dipole interaction and,
once reduced, form stabilized nanoparticles in the fine nanofiber network ( Maneerung
et al. 2008; Pinto et al.  2009; Barud et al. 2011; Yang et al. 2012)." The description
means that besides carboxyl groups, the hydroxyl groups can also stabilize silver
nanoparticles. If so, Fig.1 should be modified to be more accurate.
We modified the Figure 1 to be more specific

4. The manuscript showed that by laccase/TEMPO oxidation, the carboxyl groups was
increased to 139.49μmol/g, is this the highest content of carboxyl groups, or it can be
improved by optimizing the oxidation condition?
It is the highest content of carboxyl groups under the used conditions. The optimization
of the laccase/TEMPO oxidation procedure was conducted previously by the research
group for vegetal cellulose (Quintana E, Roncero MB, Vidal T, Valls C  (2017)
Cellulose oxidation by Laccase-TEMPO treatments.  Carbohydrate Polymers, 157,
1488–1495. https://doi.org/10.1016/j.carbpol.2016.11.033). This study showed that the
concentration of carboxyl groups reached in this work was enough to generated Ag
nanoparticles.

5. Table 1, the density of BC-ox paper is lower than that of BC paper, why?

The density difference of the two samples is derived from the variability of the paper
making process. This does not affect the discussion of the results of the properties
evaluated, considering above all that the paper with lower density is the one produced
with the oxidized cellulose.
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Reviewer #2:

This manuscript describes the preparation and characterization of homogenised
bacterial cellulose membranes that are oxidized using the laccase/TEMPO oxidative
treatment. This bacterial cellulose functionalized with carboxyl groups allowed the
attraction of silver ions via electrostatic assembly that are posteriorly reduced by
thermal treatment. The authors made the characterization of the paper materials by
several techniques namely SEM, EDS, ICP, physical and mechanical properties.
Furthermore, they studied the respective antimicrobial activity against distinct types of
Gram-positive and Gram-negative bacteria and fungi.

The characterisation of the materials is well described demonstrating clearly the
functionalization of the BC with the carboxyl groups and the presence of the
nanoparticles at the bacterial cellulose paper. The antimicrobial activity of the BC-
oxidized-paper was clearly demonstrated mainly in the sample with major silver
amount.

However, my major concern is regarding the novelty of the work. Regarding the
oxidation of the BC for the better linkage of silver ions, the only difference to the
already reported use of TEMPO/NaBr/NaClO is that in this work the authors use the
system laccase/TEMPO. This was not a new system since some authors used it to
oxidize BC and the values obtained for the carboxyl groups content are similar to the
reported for the TEMPO/NaBr/NaClO system. Furthermore, this BC-oxidized fibres with
the laccase/TEMPO system were already reported by Zhou et al. (2017) showing that
allow the incorporation of distinct metals. The authors need to state clearly what is the
real novelty of this work.
Ifuku et al. 2009, and others, showed the oxidation of BC with the TEMPO/NaBr/NaClO
system, and generated AgNPs. Zhou et al. (2017) used the laccase/TEMPO system to
oxidize CB to aldehyde groups and then grafted silk fibroins.
In this work we used laccase / TEMPO to generate carboxyl groups in the bacterial
cellulose molecule. Next, we produce Ag nanoparticles. These nanoparticles were
generated in a paper type matrix. The works in which the oxidation of bacterial
cellulose with TEMPO is described, both with the enzymatic system and with the
chemical system, have been carried out with membranes of bacterial cellulose (native
bacterial cellulose), not paper. As main novelties, we produced paper from bacterial
cellulose fibers, both oxidized with laccase/TEMPO and non-oxidized, compared their
physical and mechanical properties, and demonstrated the generation of AgNPs in a
paper-like BC matrix.

However, in order to improve the document others points in the text need to be
changed and/or clarified.

The authors need to emphasize why the use BC. Why not use vegetal cellulose or
other type of nanocellulose? Probably it will be much cheaper and easier and for
example, in the case of cellulose nanocrystals, they have already charged groups at
surface avoiding the oxidation step.

Although their chemical composition is the same, bacterial cellulose has different
properties than plant cellulose. As we indicated in the manuscript, bacterial cellulose is
synthesized in a pure form, and the nano diameter of its fibers and its three-
dimensional structure give it unique physical-mechanical properties. From our point of
view, it is interesting to investigate how this biopolymer behaves as a matrix to
generate and stabilize silver nanoparticles. We believe that the process, from the
synthesis of cellulose to the obtaining of the nanocomposites of Ag, is more
environmentally friendly using bacterial cellulose.

Pag 4 Lines 102-103: The authors justify that the idea of the work is to develop BC
paper with good mechanical properties from bacterial cellulose oxidized with
Laccase/TEMPO. Nevertheless, in the previous paragraph, they show other groups
already use this system in BC (Zhou et al. (2017)) and in this work was already
described that with the oxidation was not verified the change of its thermal behaviour.
In this case, this is not a justification of the novelty of this work.
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We respectfully indicate to the reviewer some differences with respect to the work of
Zhou et al. 2017 related to the oxidation process and the matrix used. Zhou et al. 2017
showed that the laccase/TEMPO oxidative treatment generated aldehyde groups on a
model compound of bacterial cellulose, namely cellobiose (two-glucose molecule).  In
the present work, we demonstrated the increase of carboxyl groups on the molecule of
bacterial cellulose after oxidation with laccase/TEMPO. Moreover, Zhou et al. oxidized
and grafted silk fibroin into membranes of bacterial cellulose. In the present work, we
oxidized bacterial cellulose fibers suspensions and, from those, make paper.

Pag 5 Lines 129-130: As curiosity, it will be possible to make this work without the
cutting of the bacterial cellulose even though the accessibility for the oxidation will be
lower? In terms of mechanical properties, the final materials probably will demonstrate
a much higher mechanical performance.
The native bacterial cellulose is a membrane, which once dried forms a very thin
transparent film. There are works that oxidize bacterial cellulose films. In this work the
main purpose for cutting of the bacterial cellulose was to make paper (equivalent to
paper made with plant cellulose) after the oxidation treatment.

Page 8 Line 180: Why the authors selected a thermal treatment for the formation of the
AgNPs? The use of a common reducing agent will not be preferable? The authors can
test the reduction using a common reducing agent in order to prove that for example
the amount of silver will be distinct and if the release can be also dissimilar.
The thermal treatment for the formation of AgNPs has previously been used
successfully (Ifuku et al 2009). In this work we preferred to use this treatment instead
of chemical reduction to reduce the generation of polluting waste. We discuss this
aspect of our work in the manuscript, Page 16, 356-360:

In agreement with the results obtained, the procedure employed here was efficient in
forming spherical, uniformly sized AgNPs, without the inclusion of chemical reducing
agents and stabilizers. This improves both the environmental aspect of the process,
avoiding the secondary pollutants, and the reduction of the presence of residues in the
nanocomposite that could interfere in its applicability, especially related to fields such
as biomedicine and catalysis.

Page 12 Lines 265-267: Transfer this sentence for the introduction since was a valid
and clear justification of the use of Laccase/TEMPO and help to understand the
importance of this system contrary to the common TEMPO/NaBr/NaClO treatment.
Done.

Page 12 Lines 274-276: I do not understand why the author claimed that the results
are comparable since this work presented an increase of 5 times in the amount of
carboxyl groups, however, some of the works presented much higher values as
Gehmayr et al.2012 showing an eleven-fold increase. This value is more than the
double.
 The work of Gehmayr et al.2012 was done with TEMPO/NaBr/NaClO. With
laccase/TEMPO the increase in the amount of carboxyl groups is less, between 2 and
9 times (Aracri et al. 2012; Aracri and Vidal 2012; Jaušovec et al. 2015; Patel et al.
2011; Quintana et al 2017). In this work, using laccase/TEMPO, we reported an
increase of 5 times.
We modified the paragraph to clarify that the comparison was between plant and
bacterial cellulose treated with laccase/TEMPO

Page 15 Line 329: The EDS analysis give the information of elemental silver in the
sample. Through the EDS analysis was not possible to said that we have a pure
metallic form. I recommend the author to provide an XRD analysis of the sample,
maybe of the more concentrated sample to confirm the metallic phase.
Unfortunately, we cannot perform XRD of the sample at this time. We believe that in
our study it is important to demonstrate the formation of metallic nanoparticles and that
these evidently contain silver. We have modified the text to not imply that the
nanoparticles are necessarily pure silver

Page 19 Lines 400-403: The authors said that the "heat treatment was necessary for
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the stabilization of Ag in the matrix". The sentence indicate to the reader an
unequivocal need for heat treatment to stabilize the AgNPs. This is not correct.
The heat treatment allows the reduction of the Ag+ to AgNPs and without the reduction
we only have Ag+, and the ion form is more prone to an aqueous release. Other
methodology of reduction will show probably similar results.
Please clarify this sentence.
The reviewer is right. What we meant to say is that the reduction of Ag + is necessary.
We have modified the sentence to clarify it.

Page 20 Figure 5: Why the authors do not test also test the samples with less silver
amount (BC-ox-0.1Ag)? It will be interesting understand the behavior in samples with
less silver amounts.
Samples with less silver concentration (BC-ox-0.1Ag) were analyzed for silver
migration obtaining the same results. Both BC-ox-10Ag composite and BC-ox-10Ag
composite presented the same behavior regarding silver migration. We have modified
the manuscript to clarify it.

Page 23 Line 80: When the author finishes the conclusion refer the possibility of
employing these materials in several applications. I understand the use in catalytic and
biomedical field, however, how the authors pretend to use BC-AgNPs in magnetic or
conductive (electrical?) applications?
The conclusion referred to by the reviewer refers to the possibility of obtaining another
type of metallic nanoparticles, besides AgNPs. For example, ferromagnetic
nanoparticles of Ni (Vitta et al. 2010, http://dx.doi.org/10.1063/1.3476058), or Au and
Ag nanoparticles combined with other compounds to obtain electrically conductive
composites (Dinh et al. 2014, https://doi.org/10.1016/j.apsusc.2014.01.101; Liu et al.
2015, https://doi.org/10.1016/j.apsusc.2015.05.044;  Ul-Islam et al. 2015, DOI
10.1002/biot.201500106)

It is foreseeable that composites with nanoparticles of other metals can be obtained by
following the same method described here. BC paper composites containing metal
nanoparticles could be employed in catalytic, magnetic, conductive, and biomedical
applications.
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Author's response to the issues raised by reviewers 
Manuscript number: CELS-D-19-00522 
 
Dear Editor, 
 
Please find below the answers (in red) to the issues raised by the reviewers to the manuscript 
entitled Laccase/TEMPO-mediated bacterial cellulose functionalization: production of paper-
silver nanoparticles composite with antimicrobial activity. The questions raised by the 
reviewers have been carefully addressed and the corresponding corrections have been 
included in the revised manuscript. We thank the reviewers for helping to improve the 
manuscript.  
 
 
Reviewer #1: 
The manuscript "Laccase/TEMPO-mediated bacterial cellulose functionalization: production of 
paper-silver nanoparticles composite with antimicrobial activity" described the oxidation of 
bacterial cellulose (BC) by applying laccase and TEMPO, the paper produced from oxidized BC 
showed capacity for stabilizing silver nanoparticles (AgNPs) and thus showed antimicrobial 
activity. The manuscript was organized well and fit the scope of the journal of Cellulose, it is 
recommended that the manuscript can be considered for publication after minor revisions 
according to the following suggestions. 
 

1. "laccase" should be included in the keywords 

The suggestion has been accepted and incorporated 

 

2. All of "via" in the manuscript should be in italic font.  

The suggestion has been accepted and incorporated 

 

3. As described in the introduction part of manuscript: "The hydroxyl groups and ether oxygen 

of the cellulose molecule anchor the silver ions via ion-dipole interaction and, once reduced, 

form stabilized nanoparticles in the fine nanofiber network ( Maneerung et al. 2008; Pinto et 

al.  2009; Barud et al. 2011; Yang et al. 2012)." The description means that besides carboxyl 

groups, the hydroxyl groups can also stabilize silver nanoparticles. If so, Fig.1 should be 

modified to be more accurate. 

We modified the Figure 1 to be more specific 

 

4. The manuscript showed that by laccase/TEMPO oxidation, the carboxyl groups was 

increased to 139.49μmol/g, is this the highest content of carboxyl groups, or it can be 

improved by optimizing the oxidation condition?  

It is the highest content of carboxyl groups under the used conditions. The optimization of the 

laccase/TEMPO oxidation procedure was conducted previously by the research group for 

vegetal cellulose (Quintana E, Roncero MB, Vidal T, Valls C  (2017)  Cellulose oxidation by 

Laccase-TEMPO treatments.  Carbohydrate Polymers, 157, 1488–1495. 

https://doi.org/10.1016/j.carbpol.2016.11.033). This study showed that the concentration of 

carboxyl groups reached in this work was enough to generated Ag nanoparticles.  
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5. Table 1, the density of BC-ox paper is lower than that of BC paper, why?  
 
The density difference of the two samples is derived from the variability of the paper making 
process. This does not affect the discussion of the results of the properties evaluated, 
considering above all that the paper with lower density is the one produced with the oxidized 
cellulose. 
 
Reviewer #2: 
 
This manuscript describes the preparation and characterization of homogenised bacterial 
cellulose membranes that are oxidized using the laccase/TEMPO oxidative treatment. This 
bacterial cellulose functionalized with carboxyl groups allowed the attraction of silver ions via 
electrostatic assembly that are posteriorly reduced by thermal treatment. The authors made 
the characterization of the paper materials by several techniques namely SEM, EDS, ICP, 
physical and mechanical properties. Furthermore, they studied the respective antimicrobial 
activity against distinct types of Gram-positive and Gram-negative bacteria and fungi. 
 
The characterisation of the materials is well described demonstrating clearly the 
functionalization of the BC with the carboxyl groups and the presence of the nanoparticles at 
the bacterial cellulose paper. The antimicrobial activity of the BC-oxidized-paper was clearly 
demonstrated mainly in the sample with major silver amount. 
 
However, my major concern is regarding the novelty of the work. Regarding the oxidation of 
the BC for the better linkage of silver ions, the only difference to the already reported use of 
TEMPO/NaBr/NaClO is that in this work the authors use the system laccase/TEMPO. This was 
not a new system since some authors used it to oxidize BC and the values obtained for the 
carboxyl groups content are similar to the reported for the TEMPO/NaBr/NaClO system. 
Furthermore, this BC-oxidized fibres with the laccase/TEMPO system were already reported by 
Zhou et al. (2017) showing that allow the incorporation of distinct metals. The authors need to 
state clearly what is the real novelty of this work.  
Ifuku et al. 2009, and others, showed the oxidation of BC with the TEMPO/NaBr/NaClO system, 
and generated AgNPs. Zhou et al. (2017) used the laccase/TEMPO system to oxidize CB to 
aldehyde groups and then grafted silk fibroins.  
In this work we used laccase / TEMPO to generate carboxyl groups in the bacterial cellulose 
molecule. Next, we produce Ag nanoparticles. These nanoparticles were generated in a paper 
type matrix. The works in which the oxidation of bacterial cellulose with TEMPO is described, 
both with the enzymatic system and with the chemical system, have been carried out with 
membranes of bacterial cellulose (native bacterial cellulose), not paper. As main novelties, we 
produced paper from bacterial cellulose fibers, both oxidized with laccase/TEMPO and non-
oxidized, compared their physical and mechanical properties, and demonstrated the 
generation of AgNPs in a paper-like BC matrix. 
 
 
However, in order to improve the document others points in the text need to be changed 
and/or clarified. 
 
The authors need to emphasize why the use BC. Why not use vegetal cellulose or other type of 
nanocellulose? Probably it will be much cheaper and easier and for example, in the case of 
cellulose nanocrystals, they have already charged groups at surface avoiding the oxidation 
step. 
 



Although their chemical composition is the same, bacterial cellulose has different properties 
than plant cellulose. As we indicated in the manuscript, bacterial cellulose is synthesized in a 
pure form, and the nano diameter of its fibers and its three-dimensional structure give it 
unique physical-mechanical properties. From our point of view, it is interesting to investigate 
how this biopolymer behaves as a matrix to generate and stabilize silver nanoparticles. We 
believe that the process, from the synthesis of cellulose to the obtaining of the 
nanocomposites of Ag, is more environmentally friendly using bacterial cellulose. 
 
  
Pag 4 Lines 102-103: The authors justify that the idea of the work is to develop BC paper with 
good mechanical properties from bacterial cellulose oxidized with Laccase/TEMPO. 
Nevertheless, in the previous paragraph, they show other groups already use this system in BC 
(Zhou et al. (2017)) and in this work was already described that with the oxidation was not 
verified the change of its thermal behaviour. In this case, this is not a justification of the 
novelty of this work. 
We respectfully indicate to the reviewer some differences with respect to the work of Zhou et 
al. 2017 related to the oxidation process and the matrix used. Zhou et al. 2017 showed that 
the laccase/TEMPO oxidative treatment generated aldehyde groups on a model compound of 
bacterial cellulose, namely cellobiose (two-glucose molecule).  In the present work, we 
demonstrated the increase of carboxyl groups on the molecule of bacterial cellulose after 
oxidation with laccase/TEMPO. Moreover, Zhou et al. oxidized and grafted silk fibroin into 
membranes of bacterial cellulose. In the present work, we oxidized bacterial cellulose fibers 
suspensions and, from those, make paper. 
 
 
Pag 5 Lines 129-130: As curiosity, it will be possible to make this work without the cutting of 
the bacterial cellulose even though the accessibility for the oxidation will be lower? In terms of 
mechanical properties, the final materials probably will demonstrate a much higher 
mechanical performance.  
The native bacterial cellulose is a membrane, which once dried forms a very thin transparent 
film. There are works that oxidize bacterial cellulose films. In this work the main purpose for 
cutting of the bacterial cellulose was to make paper (equivalent to paper made with plant 
cellulose) after the oxidation treatment.  
 
Page 8 Line 180: Why the authors selected a thermal treatment for the formation of the 
AgNPs? The use of a common reducing agent will not be preferable? The authors can test the 
reduction using a common reducing agent in order to prove that for example the amount of 
silver will be distinct and if the release can be also dissimilar. 
The thermal treatment for the formation of AgNPs has previously been used successfully (Ifuku 
et al 2009). In this work we preferred to use this treatment instead of chemical reduction to 
reduce the generation of polluting waste. We discuss this aspect of our work in the 
manuscript, Page 16, 356-360: 
  
In agreement with the results obtained, the procedure employed here was efficient in forming 
spherical, uniformly sized AgNPs, without the inclusion of chemical reducing agents and 
stabilizers. This improves both the environmental aspect of the process, avoiding the secondary 
pollutants, and the reduction of the presence of residues in the nanocomposite that could 
interfere in its applicability, especially related to fields such as biomedicine and catalysis. 
 
 



Page 12 Lines 265-267: Transfer this sentence for the introduction since was a valid and clear 
justification of the use of Laccase/TEMPO and help to understand the importance of this 
system contrary to the common TEMPO/NaBr/NaClO treatment. 
Done. 
 
Page 12 Lines 274-276: I do not understand why the author claimed that the results are 
comparable since this work presented an increase of 5 times in the amount of carboxyl groups, 
however, some of the works presented much higher values as Gehmayr et al.2012 showing an 
eleven-fold increase. This value is more than the double. 
 The work of Gehmayr et al.2012 was done with TEMPO/NaBr/NaClO. With laccase/TEMPO the 
increase in the amount of carboxyl groups is less, between 2 and 9 times (Aracri et al. 2012; 
Aracri and Vidal 2012; Jaušovec et al. 2015; Patel et al. 2011; Quintana et al 2017). In this work, 
using laccase/TEMPO, we reported an increase of 5 times.  
We modified the paragraph to clarify that the comparison was between plant and bacterial 
cellulose treated with laccase/TEMPO 
 
Page 15 Line 329: The EDS analysis give the information of elemental silver in the sample. 
Through the EDS analysis was not possible to said that we have a pure metallic form. I 
recommend the author to provide an XRD analysis of the sample, maybe of the more 
concentrated sample to confirm the metallic phase. 
Unfortunately, we cannot perform XRD of the sample at this time. We believe that in our study 
it is important to demonstrate the formation of metallic nanoparticles and that these evidently 
contain silver. We have modified the text to not imply that the nanoparticles are necessarily 
pure silver 
 
Page 19 Lines 400-403: The authors said that the "heat treatment was necessary for the 
stabilization of Ag in the matrix". The sentence indicate to the reader an unequivocal need for 
heat treatment to stabilize the AgNPs. This is not correct. 
The heat treatment allows the reduction of the Ag+ to AgNPs and without the reduction we 
only have Ag+, and the ion form is more prone to an aqueous release. Other methodology of 
reduction will show probably similar results. 
Please clarify this sentence. 
The reviewer is right. What we meant to say is that the reduction of Ag + is necessary. We have 
modified the sentence to clarify it. 
 
Page 20 Figure 5: Why the authors do not test also test the samples with less silver amount 
(BC-ox-0.1Ag)? It will be interesting understand the behavior in samples with less silver 
amounts. 
Samples with less silver concentration (BC-ox-0.1Ag) were analyzed for silver migration 
obtaining the same results. Both BC-ox-10Ag composite and BC-ox-10Ag composite presented 
the same behavior regarding silver migration. We have modified the manuscript to clarify it.   
 
Page 23 Line 80: When the author finishes the conclusion refer the possibility of employing 
these materials in several applications. I understand the use in catalytic and biomedical field, 
however, how the authors pretend to use BC-AgNPs in magnetic or conductive (electrical?) 
applications? 
The conclusion referred to by the reviewer refers to the possibility of obtaining another type of 
metallic nanoparticles, besides AgNPs. For example, ferromagnetic nanoparticles of Ni (Vitta et 
al. 2010, http://dx.doi.org/10.1063/1.3476058), or Au and Ag nanoparticles combined with 
other compounds to obtain electrically conductive composites (Dinh et al. 2014, 
https://doi.org/10.1016/j.apsusc.2014.01.101; Liu et al. 2015, 

http://dx.doi.org/10.1063/1.3476058
https://doi.org/10.1016/j.apsusc.2014.01.101


https://doi.org/10.1016/j.apsusc.2015.05.044;  Ul-Islam et al. 2015, DOI 
10.1002/biot.201500106) 
 
It is foreseeable that composites with nanoparticles of other metals can be obtained by 
following the same method described here. BC paper composites containing metal 
nanoparticles could be employed in catalytic, magnetic, conductive, and biomedical 
applications.  
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2 
 

Abstract 31 

Bacterial cellulose (BC) was functionalized applying the Laccase/TEMPO oxidative treatment, 32 

leading to a five-fold increase of the concentration of carboxyl groups. Paper produced with 33 

this cellulose showed improved mechanical properties while maintaining barrier function 34 

against water and greases as compared to paper produced with non-oxidized BC. Also, the 35 

negative charge provided by the carboxyl groups on functionalized BC was used to generate 36 

silver nanoparticles (AgNPs), obtaining a BC paper and Ag composite. The presence of AgNPs in 37 

the composites was validated by SEM, EDS and ICP analysis, showing spherical, uniformly sized 38 

particles stabilized in the BC nanofibers matrix. Additionally, antimicrobial property of 39 

composites containing AgNPs was tested. The results showed the strong antimicrobial activity 40 

of the composites against Gram-positive and Gram-negative bacteria and fungi. The 41 

generation of Ag nanoparticles in a matrix that combine the physical characteristics of the BC 42 

nanofibers with the stiffness and the mechanical properties of paper produced composites 43 

that may have applicability in technological and biomedical uses. 44 

 45 

Keywords: Bacterial cellulose oxidation, laccase, bacterial cellulose paper, nanocomposite, 46 

silver nanoparticle, antimicrobial activity  47 

Introduction 48 

Bacterial cellulose (BC) is a biopolymer produced by some microorganisms, especially from the 49 

genera Komagataeibacter. In terms of chemical structure, BC is identical to the cellulose 50 

produced by vascular plants, composed by units of glucose linked by β(1→4)–glycosidic bonds. 51 

However, unlike vegetable cellulose, which is always bound to hemicellulose and lignin, BC is 52 

chemically pure (Chawla et al. 2009). The mechanical properties and microstructure of BC 53 

differ from those of vegetable cellulose. BC displays a higher degree of crystallinity, a higher 54 
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tensile strength, a higher water-holding capacity, and a finer three-dimensional nanofiber 55 

network ( Yano et al. 2005; Lee et al. 2014). The structural features and mechanical properties 56 

are significant for practical application of BC. It can be used as a biomaterial for cosmetics 57 

(Hasan et al. 2012; UllahSantos et al. 2016) and medical devices (Gao et al. 2011; Bielecki et al. 58 

2012; Nimeskern et al. 2013; Ul-Islam et al. 2015; Stumpf et al. 2018;) as a reinforcement of 59 

polymeric materials or paper (Miao et al. 2013; Fillat et al. 2018;), and as a material for food 60 

packaging (Spence et al. 2010; Wu et al. 2018).  61 

The chemical modification of the molecule is frequently a prerequisite to provide new 62 

functions and applicability to cellulose (Rol et al. 2019). The functionalization of plant cellulose 63 

by the oxidation of the C-6 carbon of glucose unites is known to improve some physical 64 

characteristics of the paper such as the wet strength development (Kitaoka et al. 1999; Saito et 65 

al. 2005, 2006). The most common procedure to selective oxidation of C-6 primary hydroxyl to 66 

carboxyl or aldehyde groups in cellulose is through the radical 2,2,6,6–tetramethylpiperidine–67 

1–oxyl (TEMPO) combined with NaBr/NaOCl under alkaline conditions (Saito et al. 2004; Gert 68 

et al. 2005). This is a well-established treatment widely used in vegetal cellulose (Isogai et al. 69 

2011) and also has been recently attempted in bacterial cellulose ( Lai et al. 2013; Feng et al. 70 

2014;  Pahlevan et al. 2018). The rate of these reactions is remarkably high, but the treatment 71 

presents some disadvantages such as the undesirable de-polymerization of the cellulose, the 72 

harsh conditions of the reaction, and the generation of chemical residues (Isogai et al. 2011). 73 

The use of enzyme technology in industrial processes can reduce its negative environmental 74 

and economic impact. The Laccase/TEMPO mediated oxidation operates in milder conditions 75 

than the TEMPO/NaBr/NaClO treatment generating less environmental harmful residues, and 76 

it has been successfully performed on vegetal cellulose ( Aracri et al. 2011; Aracri and Vidal 77 

2012; Aracri et al. 2012; Jiang et al. 2017; Quintana et al. 2017). 78 
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Once the cellulose is oxidized and new functional groups are created,  compounds can be 79 

added in order to provide new functionalities or to generate new composites (Johnson et al. 80 

2011). Carboxyl groups have been used as host groups to introduce metal ions by an ion-81 

exchange reaction ( Saito et al. 2005; Matsumoto et al. 2006;). Metal nanoparticles have been 82 

proposed in different catalytic, photoelectric, magnetic, sensor, and biomedical applications 83 

due to their electronic, optical, and chemical properties ( Zhou et al. 2003; Sondi et al. 2004; 84 

Jun et al. 2007; Wu et al. 2008). An essential issue with the synthesis and stabilization of metal 85 

nanoparticles is their strong tendency to aggregate, losing their nanoscale characteristics. One 86 

effective approach to prevent aggregation is the immobilization of the nanoparticles in a 87 

polymeric insoluble matrix. The BC membranes have been used as nanoreactors for the 88 

generation of silver nanoparticles (AgNPs). The hydroxyl groups and ether oxygen of the 89 

cellulose molecule anchor the silver ions via ion-dipole interaction and, once reduced, form 90 

stabilized nanoparticles in the fine nanofiber network ( Maneerung et al. 2008; Pinto et al. 91 

2009; Barud et al. 2011; Yang et al. 2012). The chemical oxidation with TEMPO of BC 92 

membranes to generate carboxyl groups has been reported to increase the bounding strength 93 

between the cellulose fibers and the silver ions, achieving a higher yield and a more uniform 94 

distribution of the metal nanoparticles ( Ifuku et al. 2009; Jin Feng et al. 2014). Recently, the 95 

generation of aldehyde groups in BC by the hybrid system Laccase/ TEMPO oxidation of BC to 96 

obtain aldehyde groups has been reported (Zhou et al. 2017) and its capability of further 97 

oxidation to carboxyl groups would be expected.  Moreover, in the AgNPs/BC composites 98 

described so far, the metal nanoparticles are contained in membranes of BC. The implantation 99 

of Ag nanoparticles in a matrix that combine the high surface-to-volume ratio of the BC 100 

nanofibers with the stiffness and the mechanical properties of paper would generate a 101 

composite with extended applicability. 102 

The purpose of this study was to develop BC paper with good mechanical properties from 103 

bacterial cellulose oxidized with the milder condition treatment Laccase/TEMPO. Furthermore, 104 
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we investigated the suitability of the bacterial cellulose functionalized with carboxyl groups to 105 

obtain silver nanoparticles on a solid stiff organic matrix and their antimicrobial activity. 106 

 107 

Experimental 108 

Materials 109 

Microbial strains Komagataeibacter xylinus CECT 7351, Staphylococcus aureus CECT 234, 110 

Pseudomonas aeruginosa PAO1 CR321, Klebsiella pneumoniae CECT 143 and Candida albicans 111 

CECT 1001 were obtained from the Spanish Type Culture Collection (CECT). Peptone, Yeast 112 

extract, Luria Bertani broth (LB), Triptone Soy Agar (TSA) and Bacteriologic Agar were 113 

purchased from Laboratiorios Conda. Citric acid and disodium hydrogen phosphate (Na2HPO4) 114 

were purchased from Emsure. Glucose was purchased from PanReac. Silver nitrate, sodium 115 

hydroxide anhydrate pellet, sodium chloride and 2,2,6,6–tetramethyl–1–piperidinyloxy 116 

(TEMPO) and resazurin were purchased from Sigma Aldrich. Laccase from Trametes villosa 117 

with an activity of 746 U/mL was supplied by Novozymes. 118 

 119 

Production of bacterial cellulose 120 

To produce bacterial cellulose, Komagataeibacter xylinus was grown on the Hestrin and 121 

Schramm (HS) medium, containing 20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract, 1.15 122 

g/L citric acid, 6.8 g/L Na2HPO4, pH 6. Inoculum for culture was prepared by transferring K. 123 

xylinus cells grown on HS–Agar to HS liquid medium. After shaking vigorously, the resulting cell 124 

suspension was used to inoculate (1:40) 10 cm–Petri dishes containing 40 mL of HS medium. 125 

The cultures were statically incubated at 25–28°C for 7 days. After incubation, bacterial 126 

cellulose pellicles generated in the air/liquid interface of the culture media were harvested, 127 

rinsed with water, and purified by incubating them in 1 % NaOH at 70°C overnight. Finally, the 128 

BC pellicles were thoroughly washed in deionized water until the pH reached neutrality. To 129 
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obtain the bacterial cellulose suspension, pellicles were mechanically cut into small pieces and 130 

disrupted with a homogenizer (Homogenizing System UNIDRIVE X1000).  131 

 132 

Laccase/TEMPO oxidation 133 

Laccase/TEMPO oxidation was adapted from earlier studies carried out in vegetable cellulosic 134 

fibers (Aracri et al. 2012; Aracri et al. 2011; Quintana et al. 2017). The treatment was 135 

performed at room temperature in a 50 mM acetate buffer at pH 5, in the dark. TEMPO (8% 136 

w/w) and Laccase (60 U/dry gram of BC) were added to the 5% consistency BC suspension. The 137 

blend was mechanically mixed until the components were totally homogenized and then kept 138 

at room temperature for 24 h. After the treatment, the functionalized BC suspension was 139 

filtered and washed with deionized water. These oxidized BC samples were named as BC–ox. 140 

 141 

Quantification of carboxyl and aldehyde groups 142 

Carboxyl and aldehyde groups were measured in the initial and oxidized BC samples. 143 

Quantification of carboxyl groups (COOH) was performed by the methylene blue dye test. 144 

Briefly, this method is based on the following ion exchange reaction (Equation 1): 145 

R − COOH + Mb+ ↔ R − COOMb + H+                         (1) 146 

where Mb+ represents the methylene blue ions in dye solution (Davidson 1948).  147 

For the analysis, 0.05 dry grams of sample were suspended in 50 mL of a 0.2 mM solution of 148 

methylene blue. After 24 h of stirring in the dark, the sample was passed through a glass filter. 149 

The filtrate was centrifuged at 3,000 rpm for 20 minutes. The supernatant was diluted 1:25 150 

and analyzed using UV spectroscopy (Type Evolution 600 BB, Thermo Scientific) at 664 nm. The 151 

concentration of carboxyl groups (μmol per dry gram of BC) was estimated through the 152 

Equation 2 and using a calibration curve: 153 
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Concentration of COOH groups (µmol/g) =
(c−c′)·0.05·1000

m+p−m′
                                          (2) 154 

where c is the initial concentration of methylene blue, c' is the concentration of methylene 155 

blue after the reaction, p is the dry weight of the sample, m is the weight of the glass filter, and 156 

m’ is the weight of the glass filter after the filtration. 157 

Quantification of aldehyde groups (CHO) was performed by the methylene blue dye test, using 158 

0.25 dry grams of sample. Prior to the measurement, the samples were introduced into 25 mL 159 

of sodium chlorite. The mixture was incubated for 24 h, stirring in the dark. The concentration 160 

of aldehyde groups can be determined by Equation 3:  161 

Concentration of CHO groups (µmol/g) = COOHAO − COOHBO                     (3) 162 

where COOHAO is the content of carboxyl groups(µmol/g) after the oxidation with sodium 163 

chlorite and COOHBO is the content of carboxyl groups (µmol/g) before the oxidation with 164 

sodium chlorite.  165 

 166 

BC paper sheet formation and physical and mechanical properties characterization 167 

Bacterial cellulose sheets were produced using a Rapid–Köthen laboratory former (Frank–PTI) 168 

following the ISO–5269:2004 standard method. Sheets were conditioned at 23°C and 50% of 169 

relative humidity for at least 24 h before physical and mechanical testing, as indicated in ISO 170 

187. Physical and mechanical properties were measured according with standards indicated in 171 

parenthesis as follow: density (ISO 534), brightness (UNE 57060), opacity (UNE 57063), water 172 

drop test (tappi T835 om-08), grease resistance (UNE 57071), and wet tensile index (ISO 1924-173 

2). 174 

 175 
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Formation of composites of paper containing silver nanoparticles 176 

Oxidized BC suspension was soaked in a 10 mM or 0.1 mM AgNO3 solution in a 1:1 ratio (BC 177 

wet weight : AgNO3 solution volume). The mixture was mechanically homogenized and 178 

incubated in the dark, at room temperature for 24 hours. After the incubation, the treated BC 179 

was rinsed with water and filtered through a glass filter to remove the excess of AgNO3. 180 

Following the formation of BC paper sheets, a thermal treatment at 121°C for 20 minutes was 181 

applied to induce the reduction of Ag ions and promote the formation of AgNPs (Fig. 1). For 182 

simplicity, the composites of paper generated with 10 mM and 0.1 mM AgNO3 will be referred 183 

as BC-ox-10Ag and BC-ox-0.1Ag throughout respectively. 184 

 185 

Fig. 1  Schematic model of silver nanoparticles generation in BC composites after oxidation 186 

treatment 187 

 188 

Scanning Electron Microscope (SEM) and Energy Dispersive X–ray Spectroscopy (EDS) 189 

analysis 190 

The presence of nanoparticles in BC-ox-Ag composites was verified by SEM (JSM 7100 F) using 191 

a LED filter and a backscattered electron detector (BED).  EDS analysis was carried out to verify 192 

the chemical composition of the nanoparticles. The diameter of the nanoparticles was 193 

measured using the ImageJ software.  194 

 195 
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Ag migration from the composites 196 

To measure the diffusion of silver from the BC matrix, the composites were cut into square 197 

pieces of 1 cm2, immersed into 1 mL of deionized water, and incubated at room temperature 198 

while shaken at 1000 rpm during 24 h. Then, the composites were removed and the silver 199 

content in the water was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). 200 

The Ag content of the samples was analyzed both before and after the addition of HNO3 at a 201 

final concentration of 1%. The acid dissolves the AgNPs to Ag ions prior to ICP-MS analysis.  202 

 203 

Antimicrobial activity of the composites containing silver nanoparticles (BC-ox-Ag) 204 

The antimicrobial properties of BC-ox-Ag composites were tested against the Gram-positive 205 

bacteria Staphylococcus aureus, the Gram-negative bacteria Pseudomonas aeruginosa and 206 

Klebsiella pneumoniae, and the yeast Candida albicans. To obtain the inoculum for the 207 

antimicrobial tests, the strains were grown overnight in LB broth at 37°C in shaking conditions. 208 

The overnight cultures were centrifuged for 4 minutes at 14000 xg and the pellet suspended in 209 

0.3 mM KH2PO4 (hereinafter work solution) to remove the culture medium. Both, BC-ox-Ag 210 

composites and BC paper were cut in squares of 1 cm2 and sterilized prior to the assay. Two 211 

antimicrobial tests were performed, the Drop over paper test and the Dynamic contact 212 

condition test.  213 

Drop over paper test 214 

3 l of the corresponding microbial suspension (about 105 microorganisms per mL) were 215 

inoculated over the 1 cm2 BC-ox-Ag composites placed on the surface of TSA medium plates. 216 

The growth over a sample of BC paper was used as positive control.  After overnight incubation 217 

at 37°C, the microorganisms were detached from the composites and BC paper by intense 218 

shaking on the work solution, and the metabolic activity of the resuspension was measured by 219 
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the resazurin assay. For the assay, 50 μL of resazurin (7–Hydroxy–3H–phenoxazin–3–one–10–220 

oxide) were added to 100 μL of each microbial resuspension in a 96–well plate. The plate was 221 

incubated at 37°C in dark conditions until the solution turned pink (approximately 10 minutes). 222 

Fluorescence was measured with Varian Cary Eclipse Fluorescence Spectrophotometer. The 223 

difference between the metabolic activity of the microorganisms grown on BC-ox-Ag 224 

composites and on BC paper was used to calculate the percentage of growth inhibition.  225 

Dynamic contact conditions test  226 

This procedure was adapted from ASTM E2149–01 (Standard test Method for determining the 227 

antimicrobial activity agents under dynamic contact conditions). Nine 1 cm2 pieces of the 228 

composites were immersed in 5 mL of a suspension of a known concentration of 229 

microorganisms and incubated at room temperature while stirred. In each case, a control was 230 

run with the BC paper under the same conditions. The viable cells on the suspension were 231 

determined at different times (0, 1, 4 and 24 h). The percentage of reduction was calculated by 232 

Equation 4: 233 

% cell viability reducion =
viable CFU at t0−viable CFU at tx

viable CFU at t0
× 100          (4) 234 

where t0 is the time 0 h and tx is the time at which the percentage of reduction is calculated.  235 

 236 

Results and discussion 237 

Laccase/TEMPO oxidation 238 

BC suspension was treated with Laccase/TEMPO to oxidize the hydroxyl groups of cellulose 239 

molecules and to introduce functional carboxyl groups. The enzyme Laccase catalyzes the 240 

oxidation of the TEMPO molecule. The oxidized TEMPO radical, in turn, oxidizes the primary 241 

alcohols in cellulose to carboxyl (COOH) and aldehyde (CHO) functional groups (Aracri et al. 242 



11 
 

2011). Fig. 2 shows the content of carboxyl and aldehyde groups of BC molecule before (BC) and 243 

after Laccase /TEMPO oxidation (BC-ox) with 8% TEMPO and 60 U/g Laccase. 244 

 245 

Fig. 2  Carboxyl and aldehyde groups (µmol/g cellulose) of bacterial cellulose (BC) and oxidized 246 
bacterial cellulose with the Laccase/TEMPO treatment (BC-ox)    247 

 248 

Results showed that the amount of carboxyl groups increased from 26.6 µmol/g to 139.5 249 

µmol/g after the oxidation, which is five times more than the initial value. The presence of 250 

carboxyl and aldehyde groups in the BC molecule before the Laccase/TEMPO treatment could 251 

be due to the oxidation of cellulose by unspecific physical factors, such as visible light (Tolvaj et 252 

al. 1995), or during the isolation and purification procedures (Jaušovec et al. 2015). After the 253 

treatment, the concentration of aldehyde groups decreased because part of these aldehyde 254 

groups was oxidized to carboxyl groups by action of Laccase/TEMPO. Thus, the results 255 

suggested that some of the carboxyl groups detected were induced from aldehyde groups 256 

initially present in BC, while other were generated de novo from new aldehyde groups which, 257 

in turn, were induced from primary alcohol groups present in BC.  258 
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Previous studies have shown that the TEMPO/NaBr/NaClO oxidation treatment of cellulose 259 

was efficient generating carboxyl groups. Milanovic et al. reported an eight-fold increase of the 260 

COOH amount in cotton fibers after TEMPO/NaBr/NaClO (Milanović et al. 2016), while 261 

Gehmayr et al. achieved an eleven-fold increase in ECF eucalyptus kraft pulp (Gehmayr et al. 262 

2012). The TEMPO/NaBr/NaClO procedure has been also successfully attempted in 263 

nanofibrillated cellulose from different plant cellulosic fibers (Chen et al. 2017). The studies 264 

reporting bacterial cellulose oxidized with TEMPO/NaBr/NaClO treatment found an efficiency 265 

similar to that previously referred to cellulose from plant (Ifuku et al. 2009; Wu et al. 2018). 266 

The Laccase/TEMPO mediated oxidation operates in milder conditions than the 267 

TEMPO/NaBr/NaClO treatment generating less environmental harmful residues and it has 268 

been successfully applied in plant cellulose, although with less efficiency. Quintana et al. 269 

reported a 6-fold increase of COOH groups in a refined dissolving pulp from plant cellulose 270 

after Laccase/TEMPO oxidation (Quintana et al. 2017). Likewise, Patel et al. oxidized cotton 271 

linters by Laccase/TEMPO and the carboxyl group content was 9 times higher than in the 272 

control sample (Patel et al. 2011). However, other authors reported an increase of the COOH 273 

content of only up to 2 or 3 times (Aracri et al. 2012; Aracri and Vidal 2012; Jaušovec et al. 274 

2015). While the Laccase/TEMPO procedure has been previously applied to generate aldehyde 275 

groups in BC membranes (Zhou et al. 2017), this work assessed the oxidation to carboxyl 276 

groups. The results were comparable to those obtained in plant cellulose after Laccase/TEMPO 277 

mediated oxidation.  278 

 279 

Characterization of paper sheets produced with oxidized BC 280 

After the oxidation of BC, paper sheets were produced and compared with paper made from 281 

non-oxidized BC in terms of physical and mechanical properties to verify if the Laccase/TEMPO 282 

oxidation treatment affected those properties. Results are shown in Table 1. 283 
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Table 1. Physical and mechanical properties of oxidized BC (BC–ox) paper sheets and BC papers 284 
sheets  285 

Property BC paper BC–ox paper 

Density (g/cm3) 0.78 0.51 

Brightness (%) 52.0 ± 1.6 54.4 ± 1.9 

Opacity (%) 66.3 ± 1.8 65.6 ± 1.4 

Water dropt test (WDT) (s) 2355 ± 102.5 2397 ± 89.6 

Grease resistance (s) >1800 >1800 

Wet tensile index (kN·m/kg) 11.1 ± 4.3 15.1 ± 0.3 

Wet tensile strength development (W/D) (%) 13.8 22.3 

  286 

The oxidative treatment of BC did not affect brightness and opacity of the paper. Moreover, 287 

values of WDT and grease resistance were similar in both BC and BC-ox sheets, indicating that 288 

water and grease barrier properties were not modified by the Laccase/TEMPO treatment. 289 

However, the strength properties varied in the two types of paper. The wet tensile strength 290 

development is the increase of tensile resistance in wet paper in relation to dry paper, and it is 291 

also known as ratio of wet versus dry tensile index (W/D). The wet strength is one of the most 292 

important properties of papers that must be in contact with liquids, such as tissue paper, 293 

paper towels, filter paper, packaging papers, etc. Paper made from BC-ox showed a 22.3% wet-294 

to-dry (W/D) strength ratio, whereas for paper made from BC, this value was 13.8%. Thus, the 295 

Laccase/TEMPO treatment allowed the improvement of the wet strength development by 296 

62%. The reported W/D value of BC-ox paper is a significant improvement, paper with values 297 

over 15% are considered to have excellent wet tensile strength properties (Scott 1996). The 298 

increase of wet strength obtained in BC-ox paper could be attributed to the formation of 299 

hemiacetal bonds in cellulose, as suggested by Aracri et al. (2011). 300 

 301 
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Production and characterization of BC-ox-Ag composites 302 

The suitability of the functionalized BC on the generation of paper sheets containing silver 303 

nanoparticles (BC-ox-Ag composites) was tested. Suspensions of BC-ox were mixed with 10 304 

mM or 0.1 mM AgNO3 solutions as a source of Ag ions. In the proper conditions, it would be 305 

expected that the negatively-charged BC molecules functionalized with carboxyl groups attract 306 

the Ag+ cations via electrostatic interactions. In addition, electron-rich oxygen atoms resulting 307 

from hydroxyl and ester of the BC molecule could also contribute to keep stable the Ag ions in 308 

the BC nanofibers matrix (i.e., by ion-dipole interaction) (Barud et al. 2011). Then, with the 309 

obtained BC-ox-Ag mix, paper sheets were produced, and heat (121°C, 20 min) was used to 310 

trigger the reduction of Ag ions and consequently the formation of nanoparticles (Maria et al. 311 

2010). It has been described that the complex formed between Ag and carboxyl groups could 312 

promote particle nucleation, anchoring the growing nanoparticle (de Santa Maria et al. 2009). 313 

The tri-dimensional structure of BC nanofibrils with very high specific surface area would help 314 

to stabilize the particles preventing agglomeration.  315 

 316 

BC-ox-Ag composites were analyzed by scanning electron microscopy (SEM) and energy 317 

dispersive X-ray spectroscopy (EDS). Fig. 3 shows SEM images of the surface of BC paper and 318 

BC-ox-Ag composites produced with 10 mM AgNO3 (BC-ox-10Ag) and 0.1 mM AgNO3 (BC-ox-319 

0.1Ag). Fig. 3a is an image of the surface of the paper produced with BC showing a typical 320 

network structure of ribbon-shaped cellulose fibrils of about 50-70 nm wide and several 321 

micrometers long. After treatment with 10 mM AgNO3 and 0.1 mM AgNO3, we observed the 322 

matrix of nanofibers with randomly distributed spherical nanoparticles attached to their 323 

surface (Fig. 3c and 3e, respectively). The same SEM fields observed with the BED–C filter 324 

showed the nanoparticles brightly highlighted (Fig. 3d and 3f), suggesting that they may be 325 

made of a high atomic weight element. As shown in Fig. 3c to 3f, both BC-ox-10Ag and BC-ox-326 
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0.1Ag composites presented nanoparticles on the BC fiber surface, unlike on the BC paper (Fig. 327 

3a and 3b). 328 

The composition of the generated nanoparticles was further investigated by energy dispersive 329 

X–ray spectroscopy (EDS) analysis (Fig. 4). EDS of BC-ox-10Ag and BC-ox-0.1Ag composites 330 

indicated a strong signal corresponding to silver (white arrows in Fig. 4). Peaks of hydrogen, 331 

oxygen, and carbon in the spectrum correspond to components of the molecule of cellulose. 332 

The results confirmed that the spherical nanoparticles observed in SEM images of the BC 333 

composites were made of silver.  334 

The average size of the nanoparticles was measured, resulting in diameters of 41.4 ± 2.4 nm 335 

and 51.4 ± 2.4 nm for BC-ox-10Ag and BC-ox-0.1Ag composites, respectively. The size of the 336 

nanoparticles was uniform in both cases. BC-ox-0.1Ag composites presented larger but less 337 

abundant nanoparticles than BC-ox-10Ag composites, as observed in microscope images (Fig. 338 

3). These results could be explained by different dynamics in the silver nanoparticle formation 339 

depending on the ratio between silver ion concentration and the carboxyl groups available 340 

(Uddin et al. 2014). During the reduction process, the lowest concentration of Ag+ (0.1 mM 341 

AgNO3) could allow the nucleation of a limited number of stable clusters of metallic silver to 342 

form the nanoparticles. The remaining dissolved silver of the surroundings, that would not 343 

reach the nucleation threshold to cluster, would be absorbed into the growing nanoparticles 344 

(Perala et al. 2013) leading to larger sizes. In contrast, in 10 mM AgNO3 solutions there would 345 

be enough concentration of silver ions to form of a larger number of stable clusters, but of 346 

smaller size. 347 

The impregnation of BC membranes with Ag nanoparticles has been previously described to 348 

provide antimicrobial activity for wound healing applications (Inoue et al. 2010; UllahWahid et 349 

al. 2016; Chun-Nan Wu et al. 2018). In these studies, BC membranes were immersed in AgNO3 350 

solutions followed by the reduction of the Ag ion and the formation of the metal particles. 351 
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Often, additives such as protective colloids were used to control the formation and size 352 

distribution of the particles ( Maneerung et al. 2008; Jalili Tabaii et al. 2018). BC membrane 353 

oxidized by the TEMPO chemical system has been used as a template to form AgNPs by 354 

thermal (Ifuku et al. 2009) or chemical (Jin Feng et al. 2014) reduction. 355 

In agreement with the results obtained, the procedure employed here was efficient in forming 356 

spherical, uniformly sized AgNPs, without the inclusion of chemical reducing agents and 357 

stabilizers. This improves both the environmental aspect of the process, avoiding the 358 

secondary pollutants, and the reduction of the presence of residues in the nanocomposite that 359 

could interfere in its applicability, especially related to fields such as biomedicine and catalysis. 360 

Moreover, in this work AgNPs were generated in a dry, stiff, enduring paper with important 361 

properties for applications such as biocatalysis, biosensors, or packaging. 362 
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 363 

Fig. 3  SEM images of BC composites. (a) BC paper visualized with LED filter. (b) BC paper 364 
visualized with BED–C filter. (c) BC-ox-10Ag composites visualized with LED filter. (d) BC-ox-365 
10Ag composites visualized with BED–C filter (e) BC-ox-0.1Ag composites visualized with LED 366 
filter. (f) BC-ox-0.1Ag composites visualized with BED–C filter 367 



18 
 

 368 

Fig. 4  Energy dispersive X–ray spectrometer (EDS) spectrum of silver nanoparticles in BC-ox-369 
10Ag composite (a) and in BC-ox-0.1Ag composite (b). White arrows indicate the Ag peak in 370 
the spectrum 371 

 372 

Silver release from BC-ox-Ag composites 373 

The silver diffusion from the BC-matrix was analyzed to acquire further information regarding 374 

the properties of the composites. Composites which were not heat-treated to prevent the 375 

induction of AgNPs formation (BC-ox-10Ag-NR and BC-ox-0.1Ag-NR, in Table 2) were produced 376 

and compared with composites containing Ag nanoparticles (BC-ox-10Ag and BC-ox-0.1Ag, in 377 

Table 2). The composites were immersed and shaken in water for 24 h. Then, the silver 378 

content in the water was analyzed by inductively coupled plasma (ICP) (Table 2). Samples were 379 

analyzed both with and without the addition of HNO3. Without the addition of HNO3, the Ag 380 

released in form of ions was determined. The addition of HNO3 allowed the digestion of the 381 

AgNPs to Ag ions prior to the ICP-MS analysis, thus retrieving the value of the total content of 382 

silver released by the matrix of the composites. The comparison of the values obtained for the 383 

same sample with and without the treatment with HNO3 would allow the estimation of Ag 384 

released that was in form of nanoparticles.  385 



19 
 

Table 2. Silver migration from composites (ng Ag/mg composite) 386 

Composite Silver released in form of Ag ions Total content of silver released 

BC-ox-10Ag  4.65 ± 0.2 5.34 ± 0.3 

BC-ox-10Ag-NR 16.42 ± 2.2 19.44 ± 3.7 

BC-ox-0.1Ag  <0.1 (*) 0.23 ± 0.1 

BC-ox-0.1Ag-NR 1.24 ± 0.2 1.92 ± 0.2 

NR: not reduced. (*): Value below the detection limit of the method 387 

 388 

Differences of the values comparing the silver released as ion with the total Ag release, 389 

showing Table 2, were found not significant (t-Student, statistical confidence level 95 %). Thus, 390 

for the composites containing AgNPs, the results indicated that most of the Ag present in the 391 

analyzed samples was in the form of Ag ion, suggesting that silver was leached to the medium 392 

in form of Ag ions diffused from the NPs inside the BC matrix, rather than in form of NPs. 393 

Probably, the fine network of nanofibers of the BC matrix on the composite helps to stabilize 394 

and to retain the NPs. Release of Ag from composites that were not submitted to heat 395 

treatment, and therefore no NPs were generated (BC-ox-Ag NR), was greater than from its 396 

counterpart composites (BC-ox-Ag) (Table 2), indicating that the chemical form in which the 397 

silver was embedded in the BC matrix affected its diffusion into the surrounding aqueous 398 

medium. 399 

The fraction of silver released varied regarding the chemical form of Ag embedded in the BC 400 

matrix (Fig. 5). For BC-ox-10Ag composites, 29 % of its silver content was diffused from the 401 

matrix after 24 h immersed in the aqueous medium. However, the release of Ag increased to 402 

94% for composites where the heat reduction treatment was not applied, indicating that the 403 

reduction was necessary for the stabilization of Ag in the matrix, probably through the 404 

generation of NPs.  405 

Finally, we explored the importance of the BC oxidation on the silver release from the 406 

composites prepared with non-oxidized BC pulp. As shown in Fig. 5, the diffusion of Ag from 407 
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non-oxidized composites (BC-10Ag) was significantly higher than that found in oxidized 408 

composites (BC-ox-10Ag). The difference could be attributed to the carboxyl groups induced by 409 

the laccase/TEMPO oxidation, which provided negative charges attracting Ag ions and 410 

promoting nucleation for NPs formation.  411 

These results suggested that both steps, oxidation and heat treatment, were necessary to 412 

obtain BC composites containing silver nanoparticles stabilized in the matrix. The same 413 

conclusion was drawn from the results obtained using BC-ox-0.1Ag composite (data not 414 

shown). The stability of the nanoparticle inside the matrix as well as the diffusion of silver ions 415 

could have important implications for biomedical or food packaging applications (Marini et al. 416 

2007; Kong et al. 2008; Maneerung et al. 2008).  417 

 418 

Fig. 5  Silver content and silver migration from the composites (ng Ag/mg composite). BC-ox-419 
10Ag: composite produced with oxidized bacterial cellulose and 10 mM of silver nitrate; BC-420 
10Ag: composite produced with non-oxidized bacterial cellulose and 10 mM of silver nitrate. 421 
NR: no thermal reduction applied. Percentages represent the fraction of silver released from 422 
each type of composite 423 

  424 
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Antimicrobial properties of BC-ox-Ag nanocomposites 425 

The antimicrobial property of composites containing silver nanoparticles (BC-ox-Ag) was tested 426 

against Gram-positive bacteria (S. aureus), Gram-negative bacteria (P. aeruginosa, K. 427 

pneumoniae), and yeast (C. albicans). 428 

The capability of the BC-ox-Ag composites to inhibit the microbial growth on their surface was 429 

assayed by the drop over paper test. Microbial metabolic activity was not detected after 430 

incubation in contact with BC-ox-10Ag and BC-ox-0.1Ag composites for any of the 431 

microorganisms tested, while all four strains were able to grow in contact with the BC paper 432 

sheet (results not shown). 433 

To evaluate the bactericidal and fungicidal ability of the BC-ox-Ag composites under dynamic 434 

liquid condition, suspensions of microorganisms were incubated in contact with the 435 

composites. Viable cell counts were determined at different times, and the percentage of cell 436 

viability reduction was calculated (Table 3). Suspensions of the microorganisms in contact with 437 

samples of BC paper sheets did not experiment a decrease of viability over 24 h incubation 438 

time (results not shown). The reduction of viability after one hour of incubation with BC-ox-439 

10Ag composites was over 90% for S. aureus, P. aeruginosa and K. pneumoniae, and complete 440 

loss of bacterial viability was obtained after 4 h (Table 3). For C. albicans, total elimination of 441 

106 CFU/mL was not achieved after 24 h in contact with BC-ox-10Ag composite. These results 442 

demonstrated that BC-ox-10Ag composite presented strong biocidal activity against the tested 443 

strains, being more effective for bacteria than for yeast. 444 

BC-ox-0.1Ag composites presented antibacterial properties as well, although unevenly for 445 

different types of microorganisms. Hence, contact with BC-ox-0.1Ag composites eliminated 446 

Gram-negative bacteria P. aeruginosa and K. pneumoniae, and reduced the viability of the 447 

Gram-positive S. aureus to 95 % after 24 h (Table 3). However, the viability of about 105 448 

CFU/mL of the fungi C. albicans was not affected after 24 h. The differences observed between 449 
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the three types of microorganisms may be related to the structure of their cellular envelopes. 450 

Thus, to some extent, thicker cell walls, such as those of S. aureus and C. albicans, would 451 

protect the cell from the contact of silver ions with the cell membrane and their penetration 452 

into the cytoplasm (Feng et al. 2000). Evidently, BC-ox-10Ag composites presented a further 453 

pronounced antimicrobial property as they contain a larger amount of silver. BC membranes 454 

containing silver nanoparticles have previously been reported to present antimicrobial activity 455 

against E. coli, S. aureus, K. pneumoniae and C. albicans (Maneerung et al. 2008; Pinto et al. 456 

2009; Shao et al. 2015; Jalili Tabaii et al. 2018). Silver has been used for centuries for the 457 

treatment of burns and wounds. It has been reported that silver ions bind to the thiol groups 458 

of proteins and the respiratory enzymes of the bacterial cell membrane (Liau et al. 1997; Feng 459 

et al. 2000). However, the mechanism for its antimicrobial action is not completely 460 

understood. Both silver ion and silver nanoparticles are toxic for microorganisms (Abdel-461 

Mohsen et al. 2014), although some authors maintain that the antimicrobial effect of the 462 

nanoparticles derives from the release of silver ions (Lansdown 2006).  463 

Table 3.Viable cell counts (CFU/mL) and cell viability reduction (%) of microorganisms in dynamic 464 
contact with BC-ox-10Ag and BC-ox-0.1Ag composites. 465 

   BC-ox-10Ag    BC-ox-0.1Ag  

   CFU/mL % reduction   CFU/mL % reduction 

S. aureus  t0 2.5·107 0   1.3·106 0,0 
  t1 1.2·106 95.2   5.4·105 57.9 
  t4 0 100   1.8·105 84.5 
  t24 0 100   5.7·104 95.6 

P. aeruginosa  t0 1.4·106 0   3.5·105 0 
  t1 1.3·105 90.7   2.7·105 5.3 
  t4 0 100   1.92·105 45.1 
  t24 0 100   0 100 

K. pneumoniae  t0 6.6·105 0   3.5·106 0 
  t1 2·103 99.7   2.7·106 22.8 
  t4 0 100   2.2·106 34.9 
  t24 0 100   0 100 

C. albicans  t0 1.4·106 0   5.9·104 0 
  t1 7.6·105 47.2   8.4·104 0 
  t4 8·105 44.4   1·105 0 
  t24 4.6·105 69.8   1·105 0 

 466 
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BC-ox-Ag composites produced in this work presented strong antimicrobial activity due to their 467 

silver nanoparticle content. The toxic action of the nanoparticles can be exerted both by direct 468 

contact of the microorganisms with the surface of the composite, and by the release of Ag ions 469 

in aqueous conditions. The composites suitability to inhibit the microbial growth in their 470 

surfaces as well as to eliminate bacteria and fungi in aqueous surroundings is a fundamental 471 

aspect to consider for future applications. 472 

 473 

Conclusions 474 

In this work the production of BC and Ag nanoparticles composites with paper mechanical 475 

features and excellent barrier properties was achieved. Carboxyl groups induced by the 476 

Laccase/TEMPO oxidation of BC nanofibers enabled the interaction with Ag ions and the 477 

generation of silver nanoparticles after thermal induction. BC matrix allowed the stabilization 478 

of evenly sized and shaped nanoparticles. Composites had antimicrobial activity, showing great 479 

capability to both inhibit growth and kill Gram-positive bacteria, Gram-negative bacteria, and 480 

fungi. It is foreseeable that composites with nanoparticles of other metals can be obtained by 481 

following the same method described here. BC paper composites containing metal 482 

nanoparticles could be employed in catalytic, magnetic, conductive, and biomedical 483 

applications.  484 

 485 

Acknowledgements   486 

This work was financed by the Spanish Ministry of Economy, Industry and Competitiveness, 487 

grant ref. MICROBIOCEL: CTQ2017-84966-C2-1-R and CTQ2017-84966-C2-2-R projects, 488 

FILMBIOCEL CTQ2016-77936-R (funding also from the “Fondo Europeo de Desarrollo Regional 489 

FEDER”), by the Pla de Recerca de Catalunya, grant 2017SGR-30, and by the Generalitat de 490 



24 
 

Catalunya, “Xarxa de Referència en Biotecnologia” (XRB). Special thanks are also due to the 491 

Serra Húnter Fellow to C. Valls.   492 

Conflict of interest 493 

The authors declare that they have no conflict of interest. 494 

 495 

References 496 

Abdel-Mohsen AM, Abdel-Rahman RM, Fouda MMG, Vojtova L, Uhrova L, Hassan AF, Al-Deyab 497 

SS, El-Shamy IE, Jancar J  (2014)  Preparation, characterization and cytotoxicity of 498 

schizophyllan/silver nanoparticle composite.  Carbohydrate Polymers, 102(1), 238–245. 499 

https://doi.org/10.1016/j.carbpol.2013.11.040 500 

Aracri E, Valls C, Vidal T  (2012)  Paper strength improvement by oxidative modification of sisal 501 

cellulose fibers with laccase–TEMPO system: Influence of the process variables.  502 

Carbohydrate Polymers, 88(3), 830–837. https://doi.org/10.1016/j.carbpol.2012.01.011 503 

Aracri E, Vidal T  (2012)  Enhancing the effectiveness of a laccase–TEMPO treatment has a 504 

biorefining effect on sisal cellulose fibres.  Cellulose, 19(3), 867–877. 505 

https://doi.org/10.1007/s10570-012-9686-4 506 

Aracri E, Vidal T, Ragauskas AJ  (2011)  Wet strength development in sisal cellulose fibers by 507 

effect of a laccase–TEMPO treatment.  Carbohydrate Polymers, 84(4), 1384–1390. 508 

https://doi.org/10.1016/j.carbpol.2011.01.046 509 

Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL  (2011)  Antimicrobial 510 

bacterial cellulose-silver nanoparticles composite membranes.  Journal of Nanomaterials, 511 

2011, 1–8. https://doi.org/10.1155/2011/721631 512 

Bielecki S, Kalinowska H, Krystynowicz A, Kubiak K, Kołodziejczyk M, de Groeve M  (2012)  Wound 513 

Dressings and Cosmetic Materials from Bacterial Nanocellulose.  In Perspectives in 514 

Nanotechnology Series. Bacterial NanoCellulose. CRC Press. 515 

Chawla PR, Bajaj IB, Survase S a., Singhal RS  (2009)  Microbial cellulose: Fermentative production 516 

and applications.  Food Technology and Biotechnology, 47, 107-124. 517 

Chen Y, Geng B, Ru J, Tong C, Liu H, Chen J  (2017)  Comparative characteristics of TEMPO-518 

oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and 519 



25 
 

hardwood pulps.  Cellulose, 24(11), 4831–4844. https://doi.org/10.1007/s10570-017-520 

1478-4 521 

Davidson GF  (1948)  6—The acidic properties of cotton cellulose and derived oxycelluloses. Part 522 

II. The absorption of methylene blue.  Journal of the Textile Institute Transactions, 39(3), 523 

T65–T86. https://doi.org/10.1080/19447024808659403 524 

de Santa Maria LC, Santos ALC, Oliveira PC, Barud HS, Messaddeq Y, Ribeiro SJL  (2009)  Synthesis 525 

and characterization of silver nanoparticles impregnated into bacterial cellulose.  Materials 526 

Letters, 63(9–10), 797–799. https://doi.org/10.1016/j.matlet.2009.01.007 527 

Feng J, Shi Q, Li W, Shu X, Chen A, Xie X, Huang X  (2014)  Antimicrobial activity of silver 528 

nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose.  Cellulose, 529 

21(6), 4557–4567. https://doi.org/10.1007/s10570-014-0449-2 530 

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO  (2000)  A mechanistic study of the antibacterial 531 

effect of silver ions on Escherichia coli and Staphylococcus aureus.  Journal of Biomedical 532 

Materials Research, 52(4), 662–668. https://doi.org/10.1002/1097-533 

4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 534 

Fillat A, Martínez J, Valls C, Cusola O, Roncero MB, Vidal T, Valenzuela S V., Diaz P, Pastor FIJ  535 

(2018)  Bacterial cellulose for increasing barrier properties of paper products.  Cellulose, 536 

25(10), 6093–6105. https://doi.org/10.1007/s10570-018-1967-0 537 

Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J  (2011)  Preparation and characterization of 538 

bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold.  539 

Journal of Porous Materials, 18(2), 139–145. https://doi.org/10.1007/s10934-010-9364-6 540 

Gehmayr V, Potthast A, Sixta H  (2012)  Reactivity of dissolving pulps modified by TEMPO-541 

mediated oxidation.  Cellulose, 19(4), 1125–1134. https://doi.org/10.1007/s10570-012-542 

9729-x 543 

Gert EV, Torgashov VI, Zubets OV, Kaputskii FN  (2005)  Preparation and Properties of 544 

Enterosorbents Based on Carboxylated Microcrystalline Cellulose.  Cellulose, 12(5), 517–545 

526. https://doi.org/10.1007/s10570-005-7134-4 546 

Hasan N, Biak DRA, Kamarudin S  (2012)  Application of Bacterial Cellulose (BC) in Natural Facial 547 

Scrub.  International Journal on Advanced Science, Engineering and Information 548 

Technology, 2(4), 272. https://doi.org/10.18517/ijaseit.2.4.201 549 

Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H  (2009)  Synthesis of Silver Nanoparticles 550 



26 
 

Templated by TEMPO-Mediated Oxidized Bacterial Cellulose Nanofibers.  551 

Biomacromolecules, 10(9), 2714–2717. https://doi.org/10.1021/bm9006979 552 

Inoue Y, Kiyono Y, Asai H, Ochiai Y, Qi J, Olioso A, Shiraiwa T, Horie T, Saito K, Dounagsavanh L  553 

(2010)  Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical 554 

mountain of Laos based on time-series satellite images.  International Journal of Applied 555 

Earth Observation and Geoinformation, 12(4), 287–297. 556 

https://doi.org/10.1016/j.carbpol.2017.02.093 557 

Isogai A, Saito T, Fukuzumi H  (2011)  TEMPO-oxidized cellulose nanofibers.  Nanoscale, 3(1), 71–558 

85. https://doi.org/10.1039/C0NR00583E 559 

Jalili Tabaii M, Emtiazi G  (2018)  Transparent nontoxic antibacterial wound dressing based on 560 

silver nano particle/bacterial cellulose nano composite synthesized in the presence of 561 

tripolyphosphate.  Journal of Drug Delivery Science and Technology, 44, 244–253. 562 

https://doi.org/10.1016/j.jddst.2017.12.019 563 

Jaušovec D, Vogrinčič R, Kokol V  (2015)  Introduction of aldehyde vs. carboxylic groups to 564 

cellulose nanofibers using laccase/TEMPO mediated oxidation.  Carbohydrate Polymers, 565 

116, 74–85. https://doi.org/10.1016/j.carbpol.2014.03.014 566 

Jiang J, Ye W, Liu L, Wang Z, Fan Y, Saito T, Isogai A  (2017)  Cellulose Nanofibers Prepared Using 567 

the TEMPO/Laccase/O2 System.  Biomacromolecules, 18(1), 288–294. 568 

https://doi.org/10.1021/acs.biomac.6b01682 569 

Johnson RK, Zink-Sharp A, Glasser WG  (2011)  Preparation and characterization of hydrophobic 570 

derivatives of TEMPO-oxidized nanocelluloses.  Cellulose, 18(6), 1599–1609. 571 

https://doi.org/10.1007/s10570-011-9579-y 572 

Jun YW, Choi JS, Cheon J  (2007, March 28)  Heterostructured magnetic nanoparticles: Their 573 

versatility and high performance capabilities.  Chemical Communications, pp. 1203–1214. 574 

https://doi.org/10.1039/b614735f 575 

Kitaoka T, Isogai A, Onabe F  (1999)  Chemical modification of pulp fibers by TEMPO-mediated 576 

oxidation.  Nordic Pulp and Paper Research Journal, 14(04), 279–284. 577 

https://doi.org/10.3183/NPPRJ-1999-14-04-p279-284 578 

Kong H, Jang J  (2008)  Antibacterial properties of novel poly(methyl methacrylate) nanofiber 579 

containing silver nanoparticles.  Langmuir, 24(5), 2051–2056. 580 

https://doi.org/10.1021/la703085e 581 



27 
 

Lai C, Sheng L, Liao S, Xi T, Zhang Z  (2013)  Surface characterization of TEMPO-oxidized bacterial 582 

cellulose.  Surface and Interface Analysis, 45(11–12), 1673–1679. 583 

https://doi.org/10.1002/sia.5306 584 

Lansdown ABG  (2006)  Silver in health care: Antimicrobial effects and safety in use.  Current 585 

Problems in Dermatology, 33, 17–34. https://doi.org/10.1159/000093928 586 

Lee KY, Buldum G, Mantalaris A, Bismarck A  (2014)  More than meets the eye in bacterial 587 

cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites.  588 

Macromolecular Bioscience, 14(1), 10–32. https://doi.org/10.1002/mabi.201300298 589 

Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD  (1997)  Interaction of silver nitrate with readily 590 

identifiable groups: Relationship to the antibacterial action of silver ions.  Letters in Applied 591 

Microbiology, 25(4), 279–283. https://doi.org/10.1046/j.1472-765X.1997.00219.x 592 

Maneerung T, Tokura S, Rujiravanit R  (2008)  Impregnation of silver nanoparticles into bacterial 593 

cellulose for antimicrobial wound dressing.  Carbohydrate Polymers, 72(1), 43–51. 594 

https://doi.org/10.1016/j.carbpol.2007.07.025 595 

Maria LCS, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL  (2010)  596 

Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial 597 

cellulose.  Polímeros, 20(1), 72–77. https://doi.org/10.1590/S0104-14282010005000001 598 

Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F  (2007)  Antibacterial 599 

Activity of Plastics Coated with Silver-Doped Organic−Inorganic Hybrid Coatings Prepared 600 

by Sol−Gel Processes.  Biomacromolecules, 8(4), 1246–1254. 601 

https://doi.org/10.1021/bm060721b 602 

Matsumoto A, Ishikawa T, Odani T, Oikawa H, Okada S, Nakanishi H  (2006)  An organic/inorganic 603 

nanocomposite consisting of polymuconate and silver nanoparticles.  Macromolecular 604 

Chemistry and Physics, 207(4), 361–369. https://doi.org/10.1002/macp.200500430 605 

Miao C, Hamad WY  (2013)  Cellulose reinforced polymer composites and nanocomposites: a 606 

critical review.  Cellulose, 20(5), 2221–2262. https://doi.org/10.1007/s10570-013-0007-3 607 

Milanović J, Mihajlovski K, Nikolić T, Kostić M  (2016)  Antimicrobial Cotton Fibers Prepared By 608 

Tempo-Mediated Oxidation and Subsequent Silver Deposition.  Cellulose Chem. Technol, 609 

50(910), 905–914.  610 

Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS  (2013)  Mechanical 611 

evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.  612 



28 
 

Journal of the Mechanical Behavior of Biomedical Materials, 22, 12–21. 613 

https://doi.org/10.1016/j.jmbbm.2013.03.005 614 

Pahlevan M, Toivakka M, Alam P  (2018)  Mechanical properties of TEMPO-oxidised bacterial 615 

cellulose-amino acid biomaterials.  European Polymer Journal, 101, 29–36. 616 

https://doi.org/10.1016/j.eurpolymj.2018.02.013 617 

Patel I, Ludwig R, Haltrich D, Rosenau T, Potthast A  (2011)  Studies of the chemoenzymatic 618 

modification of cellulosic pulps by the laccase-TEMPO system.  Holzforschung, 65(4), 475–619 

481. https://doi.org/10.1515/HF.2011.035 620 

Perala SRK, Kumar S  (2013)  On the mechanism of metal nanoparticle synthesis in the Brust-621 

Schiffrin method.  Langmuir, 29(31), 9863–9873. https://doi.org/10.1021/la401604q 622 

Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P  (2009)  Antibacterial activity 623 

of nanocomposites of silver and bacterial or vegetable cellulosic fibers.  Acta Biomaterialia, 624 

5(6), 2279–2289. https://doi.org/10.1016/j.actbio.2009.02.003 625 

Quintana E, Roncero MB, Vidal T, Valls C  (2017)  Cellulose oxidation by Laccase-TEMPO 626 

treatments.  Carbohydrate Polymers, 157, 1488–1495. 627 

https://doi.org/10.1016/j.carbpol.2016.11.033 628 

Rol F, Belgacem MN, Gandini A, Bras J  (2019, January)  Recent advances in surface-modified 629 

cellulose nanofibrils.  Progress in Polymer Science, Vol. 88, pp. 241–264. 630 

https://doi.org/10.1016/j.progpolymsci.2018.09.002 631 

Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N  (2005)  Distribution of carboxylate groups 632 

introduced into cotton linters by the TEMPO-mediated oxidation.  Carbohydrate Polymers, 633 

61(4), 414–419. https://doi.org/10.1016/j.carbpol.2005.05.014 634 

Saito Tsuguyuki, Isogai A  (2004)  TEMPO-mediated oxidation of native cellulose. The effect of 635 

oxidation conditions on chemical and crystal structures of the water-insoluble fractions.  636 

Biomacromolecules, 5(5), 1983–1989. https://doi.org/10.1021/bm0497769 637 

Saito T, Isogai A  (2005)  A novel method to improve wet strength of paper.  Tappi Journal, 4(3), 638 

3–8. 639 

Saito T, Isogai A  (2006)  Introduction of aldehyde groups on surfaces of native cellulose fibers 640 

by TEMPO-mediated oxidation.  Colloids and Surfaces A: Physicochemical and Engineering 641 

Aspects, 289(1–3), 219–225. https://doi.org/10.1016/j.colsurfa.2006.04.038 642 



29 
 

Scott WE  (1996)  Wet strength additives.  In Principles of wet end chemistry (pp. 61–68). 643 

Retrieved from http://www.tappi.org/content/pdf/member_groups/paper/0101r241.pdf 644 

Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R  (2015)  pH-responsive release behavior and anti-645 

bacterial activity of bacterial cellulose-silver nanocomposites.  International Journal of 646 

Biological Macromolecules, 76, 209–217. https://doi.org/10.1016/j.ijbiomac.2015.02.048 647 

Sondi I, Salopek-Sondi B  (2004)  Silver nanoparticles as antimicrobial agent: A case study on E. 648 

coli as a model for Gram-negative bacteria.  Journal of Colloid and Interface Science, 649 

275(1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012 650 

Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ  (2010)  The effect of chemical composition 651 

on microfibrillar cellulose films from wood pulps: mechanical processing and physical 652 

properties.  Bioresource Technology, 101(15), 5961–5968. 653 

https://doi.org/10.1016/j.biortech.2010.02.104 654 

Stumpf TR, Yang X, Zhang J, Cao X  (2018, January 1)  In situ and ex situ modifications of bacterial 655 

cellulose for applications in tissue engineering.  Materials Science and Engineering C, Vol. 656 

82, pp. 372–383. https://doi.org/10.1016/j.msec.2016.11.121 657 

Tolvaj L, Faix O  (1995)  Artificial Ageing of Wood Monitored by DRIFT Spectroscopy and CIE 658 

L*a*b* Color Measurements 1. Effect of UV Light.  Holzforschung, 49(5), 397–404. 659 

https://doi.org/10.1515/hfsg.1995.49.5.397 660 

Uddin KMA, Lokanathan AR, Liljeström A, Chen X, Rojas OJ, Laine J  (2014)  Silver nanoparticle 661 

synthesis mediated by carboxylated cellulose nanocrystals.  Green Materials, 2(4), 183–662 

192. https://doi.org/10.1680/gmat.14.00010 663 

Ul-Islam M, Khan S, Ullah MW, Park JK  (2015)  Bacterial cellulose composites: Synthetic 664 

strategies and multiple applications in bio-medical and electro-conductive fields.  665 

Biotechnology Journal, 10(12), 1847–1861. https://doi.org/10.1002/biot.201500106 666 

Ullah H, Santos HA, Khan T  (2016)  Applications of bacterial cellulose in food, cosmetics and 667 

drug delivery.  Cellulose, 23(4), 2291–2314. https://doi.org/10.1007/s10570-016-0986-y 668 

Ullah H, Wahid F, Santos HA, Khan T  (2016)  Advances in biomedical and pharmaceutical 669 

applications of functional bacterial cellulose-based nanocomposites.  Carbohydrate 670 

Polymers, 150, 330–352. https://doi.org/10.1016/j.carbpol.2016.05.029 671 

Wu C-N, Fuh S-C, Lin S-P, Lin Y-Y, Chen H-Y, Liu J-M, Cheng K-C  (2018)  TEMPO-Oxidized Bacterial 672 

Cellulose Pellicle with Silver Nanoparticles for Wound Dressing.  Biomacromolecules, 19(2), 673 



30 
 

544–554. https://doi.org/10.1021/acs.biomac.7b01660 674 

Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, Watt AAR  (2008)  Biomolecule-assisted 675 

synthesis of water-soluble silver nanoparticles and their biomedical applications.  Inorganic 676 

Chemistry, 47(13), 5882–5888. https://doi.org/10.1021/ic8002228 677 

Wu Y, Wang F, Huang Y  (2018)  Facile and simple fabrication of strong, transparent and flexible 678 

aramid nanofibers/bacterial cellulose nanocomposite membranes.  Composites Science 679 

and Technology, 159, 70–76. https://doi.org/10.1016/j.compscitech.2018.02.036 680 

Yang G, Xie J, Deng Y, Bian Y, Hong F  (2012)  Hydrothermal synthesis of bacterial cellulose/AgNPs 681 

composite: A “green” route for antibacterial application.  Carbohydrate Polymers, 87(4), 682 

2482–2487. https://doi.org/10.1016/j.carbpol.2011.11.017 683 

Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K  (2005)  Optically 684 

Transparent Composites Reinforced with Networks of Bacterial Nanofibers.  Advanced 685 

Materials, 17(2), 153–155. https://doi.org/10.1002/adma.200400597 686 

Zhou Q, Zhang Q, Wang P, Deng C, Wang Q, Fan X  (2017)  Enhancement biocompatibility of 687 

bacterial cellulose membrane via laccase/TEMPO mediated grafting of silk fibroins.  Fibers 688 

and Polymers, 18(8), 1478–1485. https://doi.org/10.1007/s12221-017-7306-5 689 

Zhou Y, Yu SH, Thomas A, Han BH  (2003)  In situ cyclodextrin-based homogeneous incorporation 690 

of metal (M = Pd, Pt, Ru) nanoparticles into silica with bimodal pore structure.  Chemical 691 

Communications, 9(2), 262–263. https://doi.org/10.1039/b210590j 692 

 693 

 694 



Fig1 Click here to access/download;Figure;Fig1.tiff.tif

https://www.editorialmanager.com/cels/download.aspx?id=261060&guid=e9fb3648-d8fe-405c-9ef6-8e4bcb52cb96&scheme=1
https://www.editorialmanager.com/cels/download.aspx?id=261060&guid=e9fb3648-d8fe-405c-9ef6-8e4bcb52cb96&scheme=1


Fig 2 Click here to access/download;Figure;Fig2.tiff.tif

https://www.editorialmanager.com/cels/download.aspx?id=261051&guid=d4d37ab8-3dd2-4a11-a60e-0f4d71f03845&scheme=1
https://www.editorialmanager.com/cels/download.aspx?id=261051&guid=d4d37ab8-3dd2-4a11-a60e-0f4d71f03845&scheme=1


Fig 3 Click here to access/download;Figure;Fig3.tiff.tif

https://www.editorialmanager.com/cels/download.aspx?id=261052&guid=74e13659-b3a9-4213-8d0e-17fd8a20981c&scheme=1
https://www.editorialmanager.com/cels/download.aspx?id=261052&guid=74e13659-b3a9-4213-8d0e-17fd8a20981c&scheme=1


Fig 4 Click here to access/download;Figure;Fig4.tiff.tif

https://www.editorialmanager.com/cels/download.aspx?id=261053&guid=1d4acf06-f2b8-4ffe-a62d-b330911f33d6&scheme=1
https://www.editorialmanager.com/cels/download.aspx?id=261053&guid=1d4acf06-f2b8-4ffe-a62d-b330911f33d6&scheme=1


Fig 5 Click here to access/download;Figure;Fig5.tiff.tif

https://www.editorialmanager.com/cels/download.aspx?id=261054&guid=45e7e595-7871-4eba-a7e6-c01a284b8de6&scheme=1
https://www.editorialmanager.com/cels/download.aspx?id=261054&guid=45e7e595-7871-4eba-a7e6-c01a284b8de6&scheme=1


Graphical Abstract Click here to access/download;Figure;Graphical-abstract-cellulose-jpg.jpg

https://www.editorialmanager.com/cels/download.aspx?id=261061&guid=5dcb7cc9-e4c7-4126-8d41-de867de5d638&scheme=1
https://www.editorialmanager.com/cels/download.aspx?id=261061&guid=5dcb7cc9-e4c7-4126-8d41-de867de5d638&scheme=1

