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Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea
(OSA), a very prevalent respiratory disease associated with increased cardiovascular
morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH)
mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and
molecular levels. However, it remains unclear whether IH modifies the passive stiffness
of the cardiac tissue extracellular matrix (ECM).

Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of
left ventricular (LV) myocardium in a murine model of OSA.

Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20%
O2 40 s–6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each
age were kept under normoxia. Fresh LV myocardial strips (∼7 mm × 1 mm × 1 mm)
were prepared, and their ECM was obtained by decellularization. Myocardium ECM
macroscale mechanics were measured by performing uniaxial stress–strain tensile tests.
Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain
and Young’s modulus (EM) computed at 0.2 strain by fitting Fung’s constitutive model to
the stress–strain relationship. ECM stiffness was characterized at the microscale as the
Young’s modulus (Em) measured in decellularized tissue slices (∼12 µm tick) by atomic
force microscopy.

Results: Intermittent hypoxia induced a ∼1.5-fold increase in σ (p < 0.001) and a ∼2.5-
fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In
contrast, no significant differences emerged in Em among IH-exposed and normoxic
mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young
and aged mice.
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Conclusion: The marked IH-induced increases in macroscale stiffness of LV
myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced
by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM
stiffness suggests that the significant increases in macroscale stiffening are primarily
mediated by 3D structural ECM remodeling.

Keywords: atomic force microscopy, tensile test, heart mechanics, myocardial stiffness, ventricular strain,
obstructive sleep apnea

INTRODUCTION

Obstructive sleep apnea (OSA) is a highly prevalent respiratory
disease, affecting patients across the whole human life span
from infants to the elderly (Peppard et al., 2013; Heinzer
et al., 2015). OSA is characterized by repetitive obstructions
in the upper airway causing periodic apneas, with consequent
increases in negative intrathoracic pressure swings that result
in intermittent oxyhemoglobin desaturations in arterial blood
which are usually terminated by arousals. All these challenges
potentially induce mechanical stress, maladaptive transcriptional
regulation, disruption of sympathetic outflow and alteration
of multiple immunoregulatory pathways (Lévy et al., 2015).
Owing to intermittent hypoxemia, all patient organs and tissues
experience recurrent events of nocturnal hypoxia-reoxygenation
(Almendros et al., 2010, 2011, 2013; Torres et al., 2014; Moreno-
Indias et al., 2015), which in the case of severe OSA disease
can occur >60 times per hour with nadir reductions in arterial
oxygen saturation down to 60–70% (Ruehland et al., 2009;
Lloberes et al., 2011). Given the multifactorial pathophysiological
mechanisms leading to OSA, there is no specific treatment to
prevent the abnormal collapsibility of the upper airway during
sleep, and hence OSA is usually a chronic lifetime disease that
is most frequently managed by applying continuous positive
airway pressure (CPAP) via a nasal mask interface (Sullivan et al.,
1981). The positive pressure applied by CPAP into the lumen
of the upper airway splints its walls, and thus avoids upper
airway collapse. This palliative mechanical treatment is very
effective, but only when the patient is actually using the device.
Unfortunately, adherence to CPAP is generally sub-optimal,
with a non-negligible proportion of patients being intolerant or
completely non-adherent to CPAP and the remainder using the
device only for a portion of their sleep (Wozniak et al., 2014).

Chronic exposure to hypoxia-reoxygenation – either during
the period preceding OSA diagnosis (usually several years) or
in the context of poor or non-adherence to CPAP therapy after
diagnosis – is a major perturbation that has been shown to
significantly and independently increase both the morbidities
and mortality of patients with OSA (Jordan et al., 2014),
with these findings being further corroborated by a large
number of mechanistic studies in experimental models of
the disease (Davis and O’Donnell, 2013). Indeed, the specific
pattern of high-frequency and high-amplitude tissue hypoxia-
reoxygenation swings as seen in OSA patients triggers a cascade
of inflammatory and oxidative stress pathways which then
impose a large number of deleterious repercussions in organ
systems, primarily affecting the cardiovascular, metabolic, and

neurocognitive systems, while also adversely affecting cancer
risk and prognosis (Gozal et al., 2016; Mokhlesi et al., 2016).
This maladaptive response to chronic hypoxia/reoxygenation
contrasts with the favorable adaptations observed when this
hypoxia/reoxygenation stimulus is provided using divergent
paradigms that promote pre-conditioning (Almendros et al.,
2014; Mallet et al., 2018).

The cardiovascular system is particularly susceptible to OSA.
Indeed, OSA has now been conclusively and independently
associated with increased cardiovascular morbidity and
mortality, with a spectrum of morbid phenotypes ranging from
subclinical coronary atherosclerosis and systemic hypertension
to ischemic coronary artery disease, stroke, peripheral artery
disease, arrhythmias, and cardiac failure (Dong et al., 2013;
Utriainen et al., 2014; Schaefer et al., 2015; Lee et al., 2016;
Parati et al., 2016; Medeiros et al., 2017; Seo et al., 2017; Zhao
et al., 2017). The mechanisms underlying the increased risk for
cardiovascular pathology in OSA patients have been uncovered
by experimental animal models of intermittent hypoxia (IH)
mimicking the recurring events of hypoxia-reoxygenation,
which have implicated inflammation and oxidative stress as the
major culprits (Davis and O’Donnell, 2013; Lavie, 2015; Chopra
et al., 2016). However, most of the research focusing on how IH
affects the cardiovascular system has revolved around molecular
(e.g., oxidative stress, inflammatory cytokines) and cellular
(e.g., endothelial dysfunction, inflammatory cells) processes,
and only scarce evidence is available on how IH modifies the
extracellular matrix (ECM) of cardiovascular tissues (Gileles-
Hillel et al., 2014; Castro-Grattoni et al., 2016). Remarkably, how
these tissue changes may modify their mechanical properties
remains unclear. This is obviously a translationally relevant
question, since alterations such as hypertension and right- and
left-heart diastolic and systolic dysfunction are modulated by the
mechanical properties of the aortic wall and myocardial tissues
(Mishra et al., 2013; Xu and Shi, 2014; Egemnazarov et al., 2018).
Notwithstanding data showing that oxidative stress may remodel
the composition of the ECM of heart tissue (Jacob-Ferreira
and Schulz, 2013; Chuang et al., 2014), whether the passive
stiffness of the ECM of the left ventricular (LV) myocardium is
modified by IH mimicking OSA is unknown. Should this stiffness
increase, it could be a mechanism potentially contributing to
OSA-associated cardiac dysfunction and failure by limiting either
diastolic relaxation and systolic contraction (van Putten et al.,
2016; Pandey et al., 2018).

Given that oxidative stress potentially remodels the ECM
by modifying its composition and crosslinking (Gilkes et al.,
2014; Labrousse-Arias et al., 2017), the aim of this work was to
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test the hypothesis that hypoxia-reoxygenation events mimicking
OSA increase the passive stiffness of the LV myocardium ECM
in a murine model. The current study was conducted on
decellularized myocardium strips with multiscale approaches
being applied to the same tissue samples. Indeed, stiffness at the
macroscale was measured using a tensile stretch technique and
microscale stiffness was measured by atomic force microscopy
(AFM). Furthermore, since aging has been shown to potentially
remodel the myocardial ECM (Horn and Trafford, 2016;
Meschiari et al., 2017) and thus its stiffness, we conducted studies
in both young and aged animals to explore whether the potential
effects of IH on myocardial ECM mechanics are modulated by
chronological age.

MATERIALS AND METHODS

Animals and Exposures of Intermittent
Hypoxia
The study was carried out in 20 young (2-month old) and 20
aged (18-month old) C57BL/6J mice housed in standard cages at
the vivarial facilities of the University of Barcelona, with water
and food being provided ad libitum, while animals were kept in
a temperature- and light-controlled room (25◦C, 12L:12D). The
animal research protocol was approved by the institutional Ethics
Committee of Animal Experimentation.

Mice were randomly distributed into 2 groups for IH (10
young and 10 aged mice) and 2 groups for normoxic controls
being exposed to room air (RA) (10 young and 10 aged mice).
Each group of animals was placed in an experimental setting
specially designed for IH exposures mimicking OSA (Almendros
et al., 2012). The system was based on a transparent methacrylate
box (26 cm long, 18 cm wide, 6 cm high) flushed with air cyclically
changing its oxygen content (40 s of normoxic air at 21% O2 and
20 s of hypoxic air at 6% O2) mimicking a rate of 60 apneas/h,
typical of severe OSA. The mice subjected to RA were placed
in similar boxes continuously flushed with normoxic air at 21%
O2. Both exposures were applied for 6 h/day during the light
period (10:00–16:00 h) for 6 weeks, with food and water being
unrestricted and freely available at all times. At the end of the 6-
week exposures, the animals were anesthetized and immediately
sacrificed by exsanguination through the abdominal aorta, the
hearts were excised, frozen and kept at −80◦C for subsequent
analysis.

Measurement of Macroscale Stiffness by
Tensile Stretching
The hearts were thawed at room temperature, the left ventricle
wall was excised and a strip of ∼7 mm × 1 mm × 1 mm was
cut with a scalpel along the long-axis direction. The rest of the
myocardial sample was then frozen (−80◦C). Each strip was
gently dried with tissue paper and its mass (M) measured.

One end of the strip was glued with cyanoacrylate to a small
hook attached to the lever of a servo-controlled displacement
actuator with an integrated force sensor (300C-LR, Aurora
Scientific, Aurora, ON, Canada), which permitted stretching the

strip and measuring both the stretched length (L) and the applied
force (F) simultaneously. The other end of the strip was glued to
a fixed hook. Measurements were performed inside a bath with
PBS at 37◦C. The unstretched length (Lo) of the strip was defined
as its length at F = 0.1 mN and the cross-sectional area (A) was
computed as

A =
M

ρ · L0
(1)

where ρ is tissue density (assumed to be 1 g/cm3). The stress (σ)
applied to the strip was computed as

σ =
F
A

(2)

Tissue strain (ε) was defined as

ε =
L
L0
− 1 (3)

where L/Lo is the stretch. The myocardial strips were initially
pre-conditioned by applying 10 stretch cycles at a frequency of
0.2 Hz and maximum stretch of ∼25%, and 10 additional cycles
were recorded for analysis. Mechanical properties of the strip at
the macroscale were characterized as the average of the last nine
stress–strain (σ–ε) curves recorded.

The stiffness of the strip was characterized by the macroscale
Young’s modulus (EM) defined as dσ/dε for a given ε. Stress–
strain curves were analyzed with Fung’s model (Fung, 1967)
which assumes that EM increases linearly with stress as

EM = α · (σ+ β) (4)

being α and β the parameters of the model. Then, the stress
increases exponentially with strain

σ = (σr + β) eα(ε−εr) − β (5)

where σr and εr define an arbitrary point of the σ-ε curve. The
parameters of Eq. 5 were computed by non-linear least-squares
fitting using custom built code (MATLAB, The MathWorks,
Natick, MA, United States). The macroscopic stiffness of the strip
was characterized as σ and EM computed at 20% strain (ε = 0.2).

After native EM was assessed, each strip was decellularized to
measure EM of the ECM. As described elsewhere in detail (Perea-
Gil et al., 2015, 2018), myocardial strips were immersed in a 1%
sodium dodecyl sulfate (Sigma-Aldrich, Darmstadt, Germany)
solution for 48 h, followed by 1% Triton X-100 (Sigma-Aldrich,
Darmstadt, Germany) for 24 h, with solutions being replaced
every 24 h and constant moderate stirring, and the strips were
finally washed for 24 h using phosphate buffered saline (PBS) and
gently dried with tissue paper and its mass (M) measured. EM of
the myocardial ECM was measured as previously described for
the native strip.

Measurement of Microscale Stiffness by
Atomic Force Microscopy
After tensile testing, the decellularized myocardial strips were
detached from the hooks of the stretching device, immersed in
optimal cutting temperature compound (OCT, Sigma-Aldrich,
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Darmstadt, Germany) and frozen at −8◦C. Thin tissue slices
(∼12 µm) were obtained by cryosectioning (HM 560, Thermo
Fisher Scientific, Waltham, MA, United States) and placed on
top of positively charged glass slides. OCT was removed by
thawing and washing the samples in PBS at room temperature.
Micromechanical properties of the sample were measured in
PBS at 37◦C pH 7.4 using a custom-built AFM mounted
on an inverted optical microscope (TE2000; Nikon, Tokyo,
Japan). Measurements were performed with V-shaped silicon
nitride cantilevers (0.1 N/m nominal spring constant) ended
with a 2.25 µm radius spherical polystyrene bead (Novascan
Technologies, Ames, IA, United States). The actual spring
constant of the cantilever (k) was calibrated by the conventional
thermal tune method. The piezo actuator-controlled vertical
position of the cantilever (z) was measured with strain gauge
sensors (Physik Instrumente, Karlsruhe, Germany) and a four-
quadrant photodiode (S4349, Hamamatsu, Japan) was employed
to measure cantilever deflection (d). The relationship between
cantilever deflection and photodiode signal was determined from
a deflection-displacement (d–z) curve obtained in a bare region
of the glass slide. The force (F) applied by the cantilever was
computed as

F = k(d − do) (6)

and the indentation (δ) of the sample was computed as

δ = (z − zo)− (d − do) (7)

being do and zo the offset of the deflection and the displacement
of the cantilever, respectively, when the tip contacts the surface
of the sample. Force indentation curves were analyzed with the
Hertz contact model for a rigid sphere indenting an elastic half
space

F =
4
3
Em ·
√
R(

1− ν2
)δ3/2 (8)

where R is the radius of the tip, υ the Poisson’s ratio (assumed
to be 0.5) and Em the microscale Young’s modulus of the sample.
Em was computed by fitting Eq. 8 to force-indentation curves by
least-squares fitting for a maximum indentation of 0.5 µm using
custom built code (MATLAB, The MathWorks, Natick, MA,
United States). The micromechanics of each LV myocardium
ECM sample was probed in 4 randomly selected zones of the
sample. Five force curves (0.5 Hz and 10 µm amplitude) in 4
points randomly selected and separated ∼50–100 µm form each
other were recorded in each zone. Micromechanical stiffness of
each sample was characterized as the average Em computed from
the different curves recorded in the sample.

Collagen Assessment
The extent of fibrosis was assessed from the frozen samples
of native myocardial tissue after thawing at room temperature.
The collagen content from the mouse cardiac tissue of each
group was quantified by a conventional colorimetric assay of the
hydroxyproline content (MAK008, Sigma-Aldrich, Darmstadt,
Germany). Briefly, dry tissue was weighted and hydrolyzed in 6N
HCl 120◦C for 3 h and the samples were processed according to

the manufacturer instructions. The absorbance was measured at
560 nm in duplicate with a microplate spectrophotometer.

Statistical Analysis
Data are expressed as mean ± SE. Two-way ANOVA with
post hoc pairwise multiple comparison with the Student–
Newman–Keuls method were performed to compare changes in
mechanical parameters and collagen content owing to age and
treatment. Statistical significance was considered at p< 0.05. The
number of viable ECM samples probed in each experiment is
indicated in the “Results” section.

RESULTS

Tensile Stretch Measurements
Left ventricular myocardium ECM strips exhibited a marked
strain hardening behavior showing an approximately exponential
stress–strain relationship (Figure 1). At 20% strain, ECM
strips from young mice breathing room air (n = 7) showed
σ = 1.35 ± 0.18 kPa and EM = 16.29 ± 3.45 kPa. Similar
results were found in aged mice (σ = 1.24 ± 0.08 kPa and
EM = 17.49 ± 1.59 kPa; n = 7). IH exposures induced a
∼1.5-fold increase in σ (Figure 2A) and ∼2.5-fold increase
in EM (Figure 2B) both in young (σ = 2.17 ± 0.21 kPa and
EM = 39.17± 14.10 kPa; n = 5) and aged mice (σ = 2.44± 0.25 kPa
and EM = 48.13 ± 5.63 kPa). Two-way ANOVA analysis
revealed a significant effect of IH both in stress (p < 0.001)
and in macroscale Young’s modulus (p < 0.001). In contrast,
no significant effect of age emerged on σ (p = 0.757) or EM
(p = 0.164).

As expected from previously reported data, stiffness measured
in native and decellularized LV myocardial strips were very close
and well correlated: taking into account the whole samples EM
was 30.46 ± 5.38 kPa and 29.68 ± 4.23, respectively (p = 0.784
in paired t-test), coefficient of correlation r = 0.852 (p < 0.001).
Similar agreement was found when comparing σ between native
(1.77 ± 0.14 kPa) and decellularized (1.70 ± 0.20 kPa) strips
(0.606 paired t-test; coefficient of correlation r = 0.812, p< 0.001).

AFM Measurements
Microscale Young’s modulus computed from AFM
measurements was similar to EM computed by tensile testing
at 20% stretch. Young (n = 6) and aged (n = 6) mice breathing
room air showed Em of 18.03 ± 3.07 kPa and 15.25 ± 2.68 kPa,
respectively. Slightly higher values of Em were observed when
young (21.12 ± 2.70 kPa; n = 6) and aged (18.89 ± 2.65 kPa;
n = 6) mice were subjected to IH (Figure 3). No statistically
significant effects of age (p = 0.378) and IH (p = 0.240) on
ECM stiffness were found when the latter was measured at the
microscale level.

Collagen Content
Collagen content (expressed in fold-change respect to the mean
of RA-young group) was 1.00± 0.11 (RA, n = 7) and 1.21± 0.13
(IH, n = 8) for young mice and 1.41 ± 0.20 (RA, n = 8) and
1.55 ± 0.19 (IH, n = 10) for aged mice (Figure 4). Two-way
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FIGURE 1 | Stress–strain relationships of left ventricular (LV) myocardium
ECM. Stress–strain recorded by tensile stretching in ECM myocardium strips
of young and aged mice subjected to room air (blue and red lines,
respectively) and intermittent hypoxia (IH) exposures mimicking obstructive
sleep apnea (OSA) (green and brown lines, respectively). Data are mean (solid
lines) ± SE (dashed lines).

ANOVA analysis found significant effects of age (p < 0.05), but
no significant effect of IH exposures (p = 0.203).

DISCUSSION

This multiscale mechanical study reveals for the first time
that IH mimicking OSA differentially affects the macro- and
micromechanical properties of the LV myocardium ECM.
Indeed, mice subjected to IH exhibited marked increases
in ECM stiffness measured at the macroscale by tensile
stretching. In contrast, no significant changes were apparent in
microscale ECM stiffness measured by AFM. Interestingly from
a translational perspective, the observed effect of IH on ECM
stiffness was similar among young and aged mice.

The current study was carried out using a widely accepted
animal model of OSA that realistically mimics the episodic events
of hypoxia-reoxygenation that characterize this highly prevalent
medical condition. Indeed, the high frequency (60 events/h) and
magnitude [arterial oxygen desaturation with nadir values of
60–70% (Torres et al., 2015)] of the IH events imposed to the
mice, as well as the duration of daily exposures, were sufficient
to warrant the designation of severe, but in no way unrealistic
since they remarkably overlap and recapitulate the oxygenation
patterns seen in patients with severe OSA (Ruehland et al., 2009;
Lloberes et al., 2011). Such an IH paradigm has been extensively
employed to reproduce the different morbid consequences of
OSA: cardiovascular (Ramos et al., 2014), neurocognitive (Gozal
et al., 2017), metabolic (Moreno-Indias et al., 2015), reproductive
(Torres et al., 2014), and malignancies (Campillo et al., 2017).
Interestingly, and contrasting with the majority of experimental
research models that have traditionally used only young animals
to mimic diseases occurring over a wide range of chronological

FIGURE 2 | Macroscale stiffness of LV myocardium ECM computed from the
stress–strain relationship curves. Stress (A) and macroscale Young’s modulus
(EM) (B) computed at 20% strain from young (Y) and aged (A) mice subjected
to room air (RA) and IH mimicking OSA. Data are mean ± SE. ∗, ∗∗, ∗∗∗

denote p values less than 0.05, 0.01 and 0.001, respectively.

ages, we here included both young and aged mice whose ages
would be equivalent to∼20 year old and 60–65 year old humans,
respectively (Flurkey et al., 2007). This is particularly important,
considering that older age may be an important modifier of the
phenotypic expression of OSA-associated morbidity (Lavie and
Lavie, 2009).

The ECM is a major determinant of the passive
macromechanical properties of the LV myocardium as previously
reported (Perea-Gil et al., 2018) and when observing the very
close values of EM and σ we found when comparing native
and decellularized samples. Consequently, macroscale ECM
stiffening could result in diastolic dysfunction characterized
by increased LV end-diastolic pressures (Zile et al., 2004;
Rommel et al., 2016). On the other hand, micromechanical
properties of the ECM are a key factor of the cell-matrix crosstalk
which mediates critical cellular processes such as contractility,
proliferation and differentiation (Alcaraz et al., 2003; Ng et al.,
2012; Yeh et al., 2012; Macrí-Pellizzeri et al., 2015). Consequently,
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FIGURE 3 | Microscale stiffness of LV myocardium ECM. Microscale Young’s
modulus (Em) computed by AFM from young (Y) and aged (A) mice subjected
to room air (RA) and IH mimicking OSA. Data are mean ± SE.

FIGURE 4 | Collagen content of LV myocardium ECM. Hydroxyproline content
(fold-change respect the Y-RA group) measured in young (Y) and aged (A)
mice subjected to room air (RA) or IH mimicking OSA. Data are mean ± SE.
∗p < 0.05.

LV myocardial ECM was studied using a multiscale approach to
gain a thorough insight into changes in its mechanical properties
as a consequence of in vivo IH exposures. It has been recently
reported in a porcine model of heart regeneration that structure,
micro- and micromechanical properties of LV myocardium
tissues are preserved after decellularization (Perea-Gil et al.,
2015, 2018). Therefore, all measurements were performed in
decellularized tissues to facilitate sample preparation for AFM
measurements, and to compare micro- and micromechanics
under the same conditions and in the same tissue samples such
as to minimize inter-sample variability.

Macroscale mechanics was studied in LV myocardium
ECM strips by uniaxial tensile testing. This technique enables

direct characterization of sample stiffness, thereby avoiding
the geometric assumptions required when tissue mechanics
are determined from pressure-volume measurements in the
whole ventricular cavity (Voorhees and Han, 2015). Strip
uniaxial testing also avoided some difficulties presented by
echocardiography which is the cornerstone tool to assess cardiac
morphology and function in human. Indeed, values of heart
size and beating rate in mice pose technical limitations that
makes difficult a complete functional and anatomical study in
these animals (Fayssoil and Tournoux, 2013; Schnelle et al.,
2018). Owing to the small size of the mouse heart, tensile
testing was performed in strips cut along the LV longitudinal
axis. However, it is expected that stiffness changes observed
by applying longitudinal stretch testing are representative of
changes in bulk tissue stiffness since no significant differences
between longitudinal and circumferential loading directions
of macroscale stiffness of LV myocardium ECM have been
reported (Quinn et al., 2016). Given the marked strain-
hardening behavior of the myocardium (Figure 1), macroscopic
stiffness was characterized as the values of σ and EM when
these were computed at 20% strain which is in the strain
range experienced by the LV wall under physiological heart
functioning conditions (Park et al., 2016). Macroscopic ECM
stiffness exhibited by mice breathing air o among those subjected
to IH are comparable with the values recently reported in
swine (Perea-Gil et al., 2018). On the other hand, AFM is
a well-suited technique for micromechanical measurements
of tissue slices at a length scale of ∼1 µm, which is the
length scale at which cells sense the mechanical properties
of their mechanical niche (Andreu et al., 2014). The values
of microscale stiffness found in this study are also in the
range of those previously reported in mice and swine (Andreu
et al., 2014; Perea-Gil et al., 2018). ECM stiffness at the
macroscopic scale is determined by the local micromechanics
of the matrix and its structural 3D assembly. The lack of
significant changes in stiffness at the microscale (Figure 3)
suggests that the IH-induced stiffening of the LV myocardium
ECM at the macroscale (Figure 2) is principally determined
by 3D structural remodeling of the matrix (e.g., different
fibers density, orientation and cross-linking). However, better
understanding of the detailed relationships between micro- and
macroscale stiffness in non-homogeneous, anisotropic biological
soft tissues – which are measured by very different experimental
approaches and theoretical assumptions – requires further future
research (McKee et al., 2011).

The results indicating that aging does not play a significant
role in modifying the passive stiffness of the LV myocardium
ECM both in normoxic conditions and under IH (Figures 2, 3)
have translational relevance for OSA. The age span of the
mice in this study encompassed the range of young to late
middle age humans. We excluded senescent ages (>70 years
in humans) since the phenotype and mortality rates differ in
advanced aging (Lavie et al., 2005) and it is unclear how OSA
naturally progresses in senescent ages (Sforza et al., 2012).
The lack of aging effect found in myocardial ECM stiffness is
consistent with the values for end-systolic and end-diastolic LV
elastances reported in humans, which showed only very modest
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increases over the 50–90 year old age range (Redfield et al.,
2005; Borlaug et al., 2013). The amount of collagen found in
fresh myocardium tissues, usually considered a global index of
fibrosis, was slightly higher (by 41%) in the older normoxic
mice, a finding that is consistent with data previously reported
for aged mice (Derumeaux et al., 2008; Chiao et al., 2012).
It is of note that collagen abundance results from a balance
between increased collagen deposition and cross-linking, and
increased ECM degradation due to increased expression of
matrix metalloproteinases with aging (Meschiari et al., 2017).
However, the relationship between ECM stiffness and collagen
concentration is not direct (Quinn et al., 2016), since factors
such as collagen distribution, different collagen types, and
collagen cross-linking should be taken into consideration, while
also accounting for the contribution of other important ECM
components in determining ECM stiffness (Collier et al., 2012;
Lopez et al., 2012). In contrast with the lack of effects of
aging on myocardial ECM mechanics, IH markedly increased
ECM macroscopic stiffness. This finding should be attributed
to changes induced by hypoxia-reoxygenation on the different
components and structure of the ECM. Although the data
available in this regard are scarce, it has been recently reported
that hypoxia reduced heart fibrosis after myocardial infarction in
mice (Nakada et al., 2017), and that upregulation of lysyl oxidase,
an enzyme contributing to changes in the structure of collagen
and elastin fibers, is associated with enhanced oxidative stress that
promotes structural alterations and vascular stiffness, and could
play a potential role in cardiac remodeling (El Hajj et al., 2017;
Galán et al., 2017; Varona et al., 2017). Interestingly, increased
expression of lysyl oxidase has been reported in OSA patients
(Mesarwi et al., 2015).

The finding that the macroscopic stiffness of the LV
myocardium ECM is increased by IH mimicking OSA may
provide insights into a relevant cardiovascular consequence
of this sleep breathing disorder, namely heart failure (HF)
(Baguet et al., 2012). Indeed, OSA is clinically associated with
HF (Schulz et al., 2007), with OSA increasing the risk of HF
by 2.2-fold (Shahar et al., 2001). Moreover, experimental data
have shown that application of chronic IH mimicking OSA
results in adverse LV remodeling (Hayashi et al., 2011) and
in cardiac dysfunction typical of HF, such as increases in
end-diastolic volume, and decreases in ejection fraction (Wei
et al., 2016). However, ECM myocardial mechanics is only
one among several potential contributing factors by which
OSA can induce HF (e.g., increased sympathetic activity,
endothelial dysfunction, systemic inflammation, oxidative
stress, metabolic anomalies, and immune alterations) (Baguet
et al., 2012; Farré et al., 2018). In fact, the complexity and
sometimes counteracting effects of the pathways activated and
propagated by IH may account for some of the conflicting
experimental findings concerning cardiac dysfunction in
OSA (Naghshin et al., 2009). Notwithstanding, there is clear
evidence that, together with myocytes, the ECM plays a relevant
role in determining the passive mechanical properties of
the myocardium (Borlaug, 2014), and hence in modulating
diastolic dysfunction (Zile et al., 2004; Rommel et al., 2016).
Accordingly, an increase in ECM passive bulk stiffness,

such as observed as a consequence of IH, would negatively
contribute to end-diastolic volume. On the other hand, studies
carried out in cardiomyocytes seeded in polyacrylamide gels
reported that increased substrate stiffness disturbs normal
cardiomyocyte differentiation and maturation from progenitor
cells (Engler et al., 2008), and decreases their contractile
activity (Dasbiswas et al., 2015), suggesting that IH would
promote systolic dysfunction through increase in ECM elastance.
Consequently, the stiffening of the ventricular myocardial
ECM observed in this study when the animals were chronically
subjected to IH reinforces the assumption that one of the
factors contributing to HF in OSA would be cardiac matrix
remodeling.

This work was focused on the effects of IH mimicking sleep
apnea on the biomechanics (passive stiffness) of LV myocardial
ECM. To this end, we used macro- and microscale techniques
(tensile and AFM, respectively) to answer the main question.
Given our current limited knowledge on myocardial ECM
remodeling by the hypoxia-reoxygenation events experienced
by patients with OSA, the present biomechanics study at
the ECM level opens the opportunity for future studies
(from the biochemical mechanisms at molecular scale to heart
function at functional scale in vivo) to explore the potential
mechanisms involved and the functional consequences in
detail.

CONCLUSION

In conclusion, exposures to chronic IH mimicking severe OSA
exerted a differential effect on the micro- and macromechanics
of the LV myocardium ECM: whereas the local Young’s
modulus measured by AFM remained unaltered, the bulk
elastance increased considerably, suggesting 3D remodeling of
the mesh network in the matrix scaffold. Increases in the
macroscopic stiffness by IH, which were age-independent, would
be anticipated to contribute to the cardiac dysfunction frequently
observed among OSA patients. The novel results of this study
add further support to the notion that multiscale studying matrix
mechanics may contribute to interpreting basic mechanisms in
cardiorespiratory diseases.
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