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In this work we develop two methods to construct Bell inequalities for multipartite systems. By considering
non-Hermitian operators we study Bell inequalities for the cases of three settings, three outcomes, and three to
six parties. The maximal value achieved in the framework of quantum theory is computed for subsystems with
three levels each. The other technique, based on a mapping from pure entangled states to Bell operators, allows
us to construct further multipartite Bell inequalities. As a consequence, we reproduce some known results in a
different way and find some multipartite Bell inequalities for systems having three settings and three outcomes
per party.
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I. INTRODUCTION

In 1964, Bell introduced an inequality that provided a tool
to discern between quantum nonlocality and any local theory
of hidden variables [1]. A new Bell inequality was proposed
in the 1969 CHSH paper [2], which was simpler and easier to
test experimentally. It placed constraints on expected values
of measurements of correlations of two outcomes with two
settings per observer. Experimenters quickly began to test the
inequality, and by 1982 there was already a strong evidence
that local hidden variable theories were being ruled out [3].
However, the question of loopholes remained alive: hypotheses
on the experimental setting that were taken for granted while
computing the expectation values and that were not necessarily
true in strict analysis. Recent experiments [4] claim to have
closed all “closable” loopholes.

There have been numerous attempts to go beyond the CHSH
inequalities. Mermin introduced a set of inequalities for an
arbitrary number of qubits that were maximally violated by
the GHZ state [5,6]. A systematic mathematical treatment
of these inequalities was carried out a decade later [7–9].
It was also at that time that an inequality for two parties,
each performing quantum measurements with d outcomes
was discovered [10] and with it came the first realization that
maximally entangled states do not always maximally violate
a Bell inequality [11], which showed that entanglement is not
in a one-to-one correspondence with nonlocality. Progress in
generalization to a larger number of d-dimensional particles
has been more modest [12]. For a general recent review of Bell
nonlocality and a large list of references, see Ref. [13].

The main aim of this paper is to construct Bell inequalities
for systems composed of several subsystems composed by
more than two levels each. In particular, we focus our attention
on quantum systems consisting on qutrits. Inequalities for
three outcomes have been written more often in terms of
probabilities but they can also be treated with expectation
values [14,15]. We have extended this formalism in order to
build inequalities for three outcomes and a different number of
parties and find its classical and quantum bounds for qutrits in a
semisystematic way. We have found some regular patterns for

the coefficients of the inequalities and for the settings and states
that maximally violate these inequalities. This mechanism is
potentially generalizable to other dimensions.

This work is organized as follows. In Sec. II, a review
of the CHSH and Mermin inequalities for two outcomes and
several parties is presented. We focus on an interesting pattern
involving commutators, which we use to write n-particle
inequalities and classical and quantum bounds in a simple
way. In Sec. III, the work done for qutrits is reviewed
and we present our formalism and methods to construct
inequalities and find their classical and quantum bounds. In
Sec. IV, a strategy is presented to find Bell inequalities from
the expressions of maximally entangled states. Some further
issues, including the multiplets of optimal settings (MOS)
and potential generalization of the results obtained for higher
dimensions are discussed in the Appendixes.

II. BELL INEQUALITIES FOR TWO OUTCOMES

A. Two parties

In the case of two parties the only relevant Bell inequality is
the one of Clauser, Horne, Shimony, and Holt [2]. It is obtained
out of the following Bell polynomial:

BCHSH = ab + ab′ + a′b − a′b′. (1)

Here, a,a′ = ±1 and b,b′ = ±1 are the possible outcomes
detected by observers Alice and Bob, respectively. Note that
Eq. (1) can be factorized as

BCHSH = a(b + b′) + a′(b − b′), (2)

so one of the terms is ±2, while the other one is equal to zero,
which means that the maximum value that can be obtained with
a local realistic theory is 〈BCHSH〉LR = 2. In a more general
case, this classical bound can be obtained by computing the
value of the Bell polynomial with all possible outcomes for
a, a′, b, and b′ and selecting its maximum.

In quantum mechanics, the variables a,a′ and b,b′ are
represented by Hermitian operators acting on the Hilbert
spaces Ha and Hb, respectively. For dichotomic variables
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the operators satisfy a2 = a′2 = b2 = b′2 = I, because the
measurement operators a, a′, b, and b′ have eigenvalues ±1.
The quantum Bell operator reads then

BCHSH = a ⊗ b + a ⊗ b′ + a′ ⊗ b − a′ ⊗ b′, (3)

where ⊗ denotes the Kronecker product. The quantum bound
〈BCHSH〉QM corresponds to the maximal eigenvalue of all
possible Bell operators (3) satisfying the previously stated con-
ditions. A Bell operator B defines a Bell inequality if 〈B〉LR <

〈B〉QM. In the case of CHSH, it was proven by Tsirelson [16]
that the maximum quantum value is 〈BCHSH〉QM = 2

√
2. An

enlightening proof of this quantum value is given in Ref. [17]
and is reproduced now. The square of the Bell operator shown
in Eq. (3) is

B2
CHSH = 4Ia ⊗ Ib − [â,â′] ⊗ [b̂,b̂′]. (4)

For a local hidden variable theory all observables com-
mute, so the classical value is determined by 〈BCHSH〉LR =√

〈B2
CHSH〉LR = √

4 = 2. On the other hand, the largest abso-
lute value of all the possible eigenvalues for commutators of
Hermitian operators is 2 and it is achieved by considering the
Pauli matrices, as they have the property [σj ,σk] = 2iεjklσl

and σl has eigenvalues ±1. Here, εjkl is the antisymmetric
Levy-Civita tensor. Therefore, the quantum value of the square

Bell operator (4) is given by 〈BCHSH〉QM =
√

〈B2
CHSH〉QM =√

8 = 2
√

2. In Sec. II C we give a more formal treatment of
this technique.

It is interesting to study the ratio associated to a Bell
polynomial

R(B) = 〈B〉QM

〈B〉LR
, (5)

as it quantifies the strength of the inequality generated by the
Bell operator B. Note that a Bell inequality is characterized
by the ratio R(B) > 1. For example, for the CHSH inequality
we have R(BCHSH) = √

2.
Quantum states producing R(B) > 1 are nonlocal in the

sense that those ratios cannot be reproduced by considering
a local hidden variable theory. As consequence, nonlocal
quantum states cannot be fully separable. However, en-
tanglement and nonlocality are different concepts. Indeed,
some entangled states do not violate any Bell inequality.
Furthermore, states producing the maximal ratio are typically
highly entangled [18].

This paper focuses on the study of this ratio, although more
elaborated measures can be studied, like the p value [4] or the
Kullback-Leibler relative entropy [19].

B. Three parties

In the case of three qubits the most general symmetric Bell
operator can be written as

B3 = z0(a ⊗ b ⊗ c) + z3(a′ ⊗ b′ ⊗ c′)

+ z1(a ⊗ b ⊗ c′ + a ⊗ b′ ⊗ c + a′ ⊗ b ⊗ c)

+ z2(a ⊗ b′ ⊗ c′ + a′ ⊗ b ⊗ c′ + a′ ⊗ b′ ⊗ c), (6)

where z0, . . . ,z3 ∈ R. The following values for zi [20]:

zM
i = {z0,z1,z2,z3}M = {0,1,0, − 1}, (7)

lead us to the three-qubit Mermin operator

M3 = (a ⊗ b ⊗ c′ + a ⊗ b′ ⊗ c + a′ ⊗ b ⊗ c)

− (a′ ⊗ b′ ⊗ c′), (8)

having a square

M2
3 = 4IABC − ([a,a′] ⊗ [b,b′] ⊗ IC + [a,a′] ⊗ IB ⊗ [c,c′]

+ IA ⊗ [b,b′] ⊗ [c,c′]). (9)

For brevity the symbols of the Kronecker product and identities
are suppressed in every subsequent equation. Equation (9)
allows us to obtain the classical value 〈M3〉LR = 2 and the
quantum value 〈M3〉QM = 4, since each commutator can
achieve a maximum absolute value of 2.

A different set of coefficients zS
i = {1,1, − 1,1} was pro-

posed by Svetlichny [21]. This choice leads to the form

S3 = (abc) + (abc′ + ab′c + a′bc)

− (ab′c′ + a′bc′ + a′b′c) + (a′b′c′), (10)

having the square form

S2
3 = 8 − 2([a,a′][b,b′] + [a,a′][c,c′] + [b,b′][c,c′])

−{a,a′}{b,b′}{c,c′}. (11)

Note that this squared operator includes both commutators and
anticommutators. For Pauli matrices {σi,σj } = 2δij , so a max-
imal value for the commutator implies a minimum value for
the anticommutator, and vice versa. The commutators vanish
while estimating the classical value and 〈S3〉LR = 4. For the
quantum value the optimal case occurs when the commutators
take the maximum amplitude ±2 and the anticommutators
vanish, so that 〈S3〉QM = 4

√
2. The ratios for the Bell operators

of Eqs. (8) and (10) are given by R(M3) = 2 and R(S3) = √
2.

It is known that Mermin inequality generated by the Bell
operator (8) can be violated by biseparable states, whereas
Svetlichny inequality defined by the operator (10) cannot.
Bell inequalities generated by operators like S3 are called
multipartite Bell inequalities. This topic is analyzed in detail
by Collins et al. [22].

These inequalities are already well tested experimentally.
Violation of inequalities M3 and S3 have been reported in
Refs. [23] and [24], respectively.

C. Mermin polynomials

There exists an entire family of n-qubit inequalities first
discovered by Mermin [5,7]. Here, we construct Mermin oper-
ators as in Ref. [22]. Let us change the notation of observables
{a,b,c, . . .} ≡ {a1,a2,a3, . . .}, which is more convenient to
treat the multipartite case. Defining M1 ≡ a1, the Mermin
polynomials are obtained recursively as

Mn = 1
2Mn−1(an + a′

n) + 1
2M ′

n−1(an − a′
n), (12)

where M ′
k is obtained from Mk by interchanging primed

and nonprimed observables an. In particular, M2 and M3

correspond to the operators (3) and (8), respectively, up to a
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constant factor. It was proven in [8] that all Mermin operators
have a square form composed by the identity and commutators,
as operators (3) and (8). Let us now proceed with our version of
the proof. The square of Mermin operators gives an expression
containing commutators [·,·] and anticommutators {·,·}

M2
n = 1

4

(
M2

n−1(2 + {an,a
′
n}) + M ′2

n−1(2 − {an,a
′
n})

− [Mn−1,M
′
n−1][an,a

′
n]

)
, (13)

M ′2
n = 1

4

(
M ′2

n−1(2 + {an,a
′
n}) + M2

n−1(2 − {an,a
′
n})

− [Mn−1,M
′
n−1][an,a

′
n]

)
. (14)

Furthermore, if M2
n−1 = M ′2

n−1, then M2
n = M ′2

n . As this is
true for M2

1 = M ′2
1 = 1, by induction it is true for every n.

Therefore, Eq. (13) can be simplified to

M2
n = M2

n−1 − 1
4 [Mn−1,M

′
n−1][an,a

′
n], (15)

where

[Mn−1,M
′
n−1] = [Mn−2,M

′
n−2] + M2

n−2[an−1,a
′
n−1].

Given that [M1,M
′
1] = [a1,a

′
1] every operator M2

n can be
expressed as a sum of products of an even number of
commutators. Thus the operator M2

n reads

M2
n = 1 +

[n/2]∑
s=1

(−1)s

22s

∑
ij ∈D

2s∏
j=1

[aij ,a
′
ij

], (16)

where D is the set of n operators taken in groups of 2s elements.
This result is implicitly presented in Ref. [7]. The classical and
quantum values arise immediately. On one hand, 〈Mn〉LR = 1,
as the second term in Eq. (16) is always zero due to the presence
of commutators. On the other hand, for the quantum value
every commutator takes ±2, conveniently chosen to maximize
it. Thus

〈
M2

n

〉
QM = 1 +

(
n

2

)
+

(
n

4

)
+ · · · = 2n−1. (17)

The quantum value for Mn is, therefore, 〈Mn〉QM =√〈M2
n〉QM = 2

n−1
2 , which matches the rate computed by

Werner and Wolf [7]. Let us note that when computing this
last step it is assumed that the maximum eigenvalue of a sum
of matrices is equal to the sum of the maximum eigenvalues,
a fact that is not true in general but is true in this case.

The optimal states for the Mermin inequalities are the GHZ
states [5,7]. For n = 2 and n = 3 these states can be considered
as maximally entangled. However, for n � 4 it is not the
case [25,26] if one considers the mean entropy of a reduced
density matrix, averaged over all possible choices of [n/2]
subsystems, which define the reduced state. Here, [x] denotes
the integer part of x. Therefore, the Mermin inequalities
provide an example, for which the maximal violation does
not correspond to maximally entangled states. Let us mention
that the experimental violation of Mermin inequalities has
been verified up to 14 qubits with ion traps [27]. Recently,
the M3, M4, and M5 cases have been implemented on a

five superconducting qubits quantum computer designed by
IBM [28].

III. BELL INEQUALITIES FOR THREE OUTCOMES

In this section we study Bell inequalities for three outcomes
and their maximum violations in the case of Hermitian and
unitary setting operators. We remark that all the maximal
violations presented for Bell inequalities and having three
outcomes have been found for qutrit states. Therefore, they
are lower bounds for the maximal possible quantum value
which, in principle, could be attained for qudits with more
than three number of levels each.

A. Two parties with Hermitian operators

A Bell inequality for two parties, two settings, and d

outcomes was proposed by Collins et al. [10] and it is known as
CGLMP inequality. The violation of some of these inequalities
has been verified experimentally [29]. In the case of three
outcomes the inequality is given by

p(a = b) + p(b = a′ + 1) + p(a′ = b′)

+p(b′ = a) − p(a = b − 1) − p(b = a′)

−p(a′ = b′ − 1) − p(b′ = a − 1) � 2, (18)

where the possible outcomes are {0,1,2} and the sum inside
probabilities is modulo d = 3. This Bell inequality can be
associated with the following Bell operator:

C223 = 2 − 3(a2 + b′2) + 3
4 (ab + a2b − a′b − a′2b − ab2

+ a′b2 + ab′ − a2b′ + a′b′ + a′2b′ + ab′2 − a′b′2)

+ 9
4 (a2b2 − a′2b2 + a2b′2 + a′2b′2), (19)

where the notation Cnsd stands for n parties, s settings, and d

outcomes. The optimal settings can be obtained by choosing
one arbitrary setting and obtaining the other one with a
phase transformation followed by the Fourier transform, as
discussed extensively in Ref. [10]. The quantum value is given
by 〈C223〉QM = 2(5 − γ 2)/3 ≈ 2.9149 for the optimal state
|ψ〉 = (|00〉 + γ |11〉 + |22〉)/

√
(2 + γ 2) where γ = (

√
11 −√

3)/2 ≈ 0.7923 [11]. The violation rate for this quasi-Bell
state reads R2t = (5 − γ 2)/3 ≈ 1.4547. In Ref. [11] the ratios
for CGLMP inequalities are found up to d = 8 levels. The
optimal settings can be conveniently expressed in terms of
eight Gell-Mann matrices λi , the traceless generators of
SU(3) [30]. The optimal settings for the Bell inequality
generated by the operator (19) are

A = B = λ3,
(20)

A′ = B ′ = 2
3 (λ1 + λ6) + 1

6 (λ3 +
√

3λ8),

where J1 and J3 are two elements of the representation of
SU(2) in three dimensions.

The Bell operator in Eq. (19) has a rather long and
unenlightening form. In the next subsection we will show
how the consideration of unitary setting operators instead of
Hermitian operators simplifies the study of Bell inequalities.
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B. Two parties with unitary operators

A more convenient way to represent Bell inequalities for
three outcomes is by considering complex outcomes associated
to the third roots of unity [14,15,31]. In this way, settings
turn from Hermitian to unitary operators with eigenvalues
{1,w,w2}, where w = exp(2πi/3). Note that for qubits the
Pauli matrices are both Hermitian and unitary, while for qutrits
a choice between one of these properties has to be made. Note
that any operator that can be expressed as a linear combination
(with real or complex coefficients) of rank one projectors
forming a POVM allows for a physical interpretation. Note
also that sum of unitary operators is, in general, not a normal
operator. A complex operator M is normal if [M,M†] = 0.
However, any operator can be decomposed into its Hermitian
and anti-Hermitian part, B = [B]H + i[B]A, where [B]H :=
1
2 (B + B†) and [B]A := 1

2i
(B − B†) are Hermitian operators

and, therefore, they have real eigenvalues.
The Bell operator (19) can be written as the anti-Hermitian

part of a non-Hermitian operator,

C223 = [a(wb − b′) + a′(wb′ − b)]A. (21)

This form appears to be a direct generalization of the
CHSH operator (2), with different signs and relative phases
added. If one of the terms reaches the maximum value

√
3,

then the other one is forced to be zero. The classical and
quantum values for this operator are 〈C223〉LR = √

3 ≈ 1.73
and 〈C223〉QM = (1/2)(

√
3 + √

11) ≈ 2.52, and the ratio is
given by R(C223) = (1/3)(5 − γ 2) ≈ 1.45. The violation rate
is therefore the same as for CGLMP inequality (18) as
expected, because it is the same inequality albeit written in
a different language. Let us now find the optimal settings for
the operator (21). The convenient representation for unitary
operators are the generalized unitary Pauli matrices which
form the Weyl-Heisenberg group. The generators of the group
are

X =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, Z =

⎛
⎝1 0 0

0 w 0
0 0 w2

⎞
⎠, (22)

where ω = e2πi/3. An orthonormal basis is given by the nine
elements

XkZj =
2∑

m=0

|m + k〉wjm〈m|, (23)

which are proportional to the elements of the Weyl-Heisenberg
group. By numerical optimization it is possible to show that
the optimal settings for the operators (21) are

A = B = X,
(24)

A′ = B ′ = 1
3 (−X + 2wXZ + 2w2XZ2).

In matrix notation, A′ has a simple structure

A′ =
⎛
⎝ 0 0 1

−1 0 0
0 −1 0

⎞
⎠.

The optimal settings for all the complex CGLMP inequalities,
in this case ({X,A′}), are called multiplets of optimal settings
(MOS). In Appendix A some properties of MOS are discussed.

Let us investigate the square of the operator C223 introduced
in (19). Making use of the identity for the Hermitian and
anti-Hermitian parts of an operator C,

(CA)2 = 1
4 (CC† + C†C) − 1

2 (C2)H , (25)

it is easy to show that C223C
†
223 has an interesting structure

C223C
†
223 = 3 + (1 + {{a,a′}})(1 + {{b,b′}}). (26)

Here {{a,a′}} is called the complex anticommutator {{a,a′}} =
aa′† + a′a†. The complex anticommutator attains its maxi-
mum value 2 both for MOS and MUB (see Appendix A for
a definition of these pairs of matrices). However, its classical
value can also be equal to 2 by using a = a′ = 1. Thus the
form (26) does not allow us to distinguish between classical
and quantum values.

C. Three parties

A three parties Bell inequality was proposed by Acı́n et al.
in Ref. [12]. In the probability formalism it reads

p(a + b + c = 0) + p(a + b′ + c′ = 1)

+p(a′ + b + c′ = 1) + p(a′ + b′ + c = 1)

−2p(a′ + b′ + c′ = 0) − p(a′ + b + c = 2)

−p(a + b′ + c = 2) − p(a + b + c′ = 2) � 3. (27)

The analysis here is very similar to the CGLMP case: the
maximal violation is given by a quasimaximally entangled
state |ψ〉 = (|000〉 + γ |111〉 + |222〉)/

√
2 + γ 2, where now

γ ≈ 1.186. The quantum value is 4.37 and the violation
rate is R = (5 − γ 2)/3 ≈ 1.4574, as for two qutrits. The
corresponding Hermitian Bell operator has a rather long form,
so we will not reproduce it here. The optimal settings can be
expressed in terms of the Gell-Mann matrices as

A = B = C = λ3,
(28)

A′ = B ′ = C ′ = 1√
3

(λ2 + λ4 + λ6) .

Let us now consider the case of unitary settings having
complex eigenvalues. The Bell operator associated to inequal-
ity (27) can be expressed as the Hermitian part of an operator

C333 = I + 2
3 [abc + 2a′b′c′ + w(a′b′c + a′bc′ + ab′c′)

−w2(a′bc + ab′c + abc′)]H . (29)

One can also drop the additive and multiplicative terms and
study the simplified operator

C ′
333 = [abc + 2a′b′c′ + w(a′b′c + a′bc′ + ab′c′)

−w2(a′bc + ab′c + abc′)]H . (30)

Here, the classical value is 〈C ′
333〉LR = 3 and the quantum

value is 〈C ′
333〉QM = (3/4)(1 + √

33) ≈ 5.058, which yields
to the ratio R(C ′

333) = (1/4)(1 + √
33) ≈ 1.686. The optimal
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settings are given by

A = B = C = X,
(31)

A′ = B ′ = C ′ = Z.

Note that the settings are mutually unbiased (see Appendix A).
Now the violation rate is greater because the additive constant
term has been eliminated. This appears somewhat arbitrary but
it is more convenient to compare inequalities for two and three
qutrits without additive terms. In this way, it is expected that
the rate of violation increases with the number of particles, as it
happens for qubits. Intriguingly, the three-qutrit operator (30)
can be derived from the two-qutrit CGLMP operator (21) and
adding a third party such that the resulting three-qutrit operator
is symmetric, as shown in Appendix B.

D. Larger number of parties

In the case of four parties, two settings, and three outcomes
we have found the following symmetric Bell operator:

C423 = [2(abcd) + (a′bcd + ab′cd + abc′d + abcd ′)

+w(a′b′cd + a′bc′d + a′bcd ′ + ab′c′d + ab′cd ′

+ abc′d ′) + (a′b′c′d + a′bc′d ′ + a′b′cd ′

+ ab′c′d ′) + 2(a′b′c′d ′)]A, (32)

which produces 〈C423〉LR = 3
√

3 ≈ 5.19, 〈C423〉QM ≈ 9.766,
and R(C423) ≈ 1.879 for the optimal settings

A = B = C = D = X,
(33)

A′ = B ′ = C ′ = D′ = Z,

which are again mutually unbiased settings. The optimal
state has entanglement properties equivalent to those of the
GHZ of four parties and three settings |GHZ4,3〉 = (|0000〉 +
|1111〉 + |2222〉)√3.

For six parties we have also found a symmetric Bell oper-
ator. To simplify the notation, the polynomials having terms
with the same number of primes are denoted by its number
of primes in parenthesis, for example: (1′) ≡ a′bcdef +
ab′cdef +abc′def +abcd ′ef + abcde′f +abcdef ′. In this
notation, the six parties operator reads

C623 = −w(0′) + (1′) − (2′) + w(3′) − (4′) + (5′) − w(6′).

(34)

For this inequality, 〈C623〉LR = 9
√

3 ≈ 15.589, 〈C623〉QM ≈
32.817, and R(C623) ≈ 2.105, with MOS optimal settings. The
maximal violation is a given by a quasi-GHZ state, as for the
case of two and three qutrits.

Let us summarize the results for the symmetric Bell opera-
tors for n-qutrit systems studied in this section. Unfortunately,
we could not find a five-qutrit inequality that follows all the
patterns. The inequalities considered are those determined by
the coefficients of Table I, and the results are summarized in
Table II.

The main patterns that can be seen in Table II are as follows.
(i) For an even number of qutrits the classical values 〈B〉LR

arise from the anti-Hermitian part of an operator while for odd
number of qutrits one takes its Hermitian part. The following

TABLE I. Coefficients for symmetric Bell inequalities from two
to six parties and three settings and three outcomes, where ω = e2πi/3.
The primed notation (k′) identifies all terms having k primed settings,
as defined before in Eq. (34).

�������Terms

Parties

2 3 4 5 6

(0′) ω 1 2 ω2 −ω

(1′) 1 −ω2 1 −ω2 1
(2′) ω ω ω −ω2 −1
(3′) 2 1 −ω2 ω

(4′) 2 ω2 −1
(5′) ω2 1
(6′) −ω

relation between the minimal and the maximal classical values
holds: 〈B−〉LR = −2〈B〉LR.

(ii) There is a factor of
√

3 between the maximum value of
the Hermitian and anti-Hermitian parts, and also a factor of√

3 between the maximal value of two consecutive numbers
of qutrits. The maximal value of the Hermitian parts are the
same for n and n + 1 qutrits if n is even. Also, the maximal
value of the anti-Hermitian parts are the same for n and n + 1
if n is odd.

(iii) The quantum value 〈B〉QM of a non-Hermitian oper-
ator B is computed as the maximum over quantum values
of the Hermitian and anti-Hermitian parts, i.e., 〈B〉QM =
max{〈BH 〉QM,〈BA〉QM}. The rate of violation increases with
the number of qutrits except for the five-qutrit case, which
does not follow the patterns.

TABLE II. Main results for inequalities from two to six qutrits,
where it can be seen that the classical patterns match perfectly, while
the five-qutrit inequality appears not to follow the quantum pattern.
Here, 〈B〉LR and 〈B〉(−)

LR denote the maximum and minimum classical
value for optimizations of anti-Hermitian or Hermitian part of the
operator, respectively. The quantity that we take as the extremal
classical bound is marked in bold, and 〈[B]x〉QM stands for its
corresponding quantum value, where x = A for an even number of
qutrits and x = H for an odd number of qutrits. R = 〈B〉QM/〈B〉LR

and Settings denotes the optimal settings. P denotes the purity of the

n/2� party reductions of the optimal state and Num means numerical
approximate solution, and italic font in the five-qutrits case is written
to note that this case does not follow the same patterns of the others.
We remark that optimal values appearing in this table have been
achieved by optimizing over qutrit systems.

�����
Qutrits

2 3 4 5 6

〈[B]A〉LR

√
3 3

√
3 3

√
3 9

√
3 9

√
3

〈[B]A〉(−)
LR −2

√
3 −3

√
3 −6

√
3 −9

√
3 −18

√
3

〈[B]H 〉LR 3 3 9 9 27
〈[B]H 〉(−)

LR −3 −6 −9 −18 −27
〈[B]x〉QM 2.524 5.058 9.766 15.575 32.817
R 1.457 1.686 1.879 1.731 2.105
Settings MOS MUB MUB Num MOS
P 0.347 0.342 1/3 0.351 0.334
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(iv) The optimal settings are either MUB or MOS, with the
exception of the five-qutrit inequality.

(v) The optimal states have entanglement properties close
to a GHZ or exactly those of a GHZ state in the case of
four qutrits. In Table II the closeness to the GHZ state is
measured by the purity P of the reduced matrix σ over

n/2� particles. The GHZ state of n qutrits has reductions
to two parties with P = Trσ 2 = 1/3, whereas the absolutely
maximally entangled state has P = 1/3[n/2].

IV. MAPPING STATES TO BELL OPERATORS

Let us now present an idea to generate Bell inequalities
based on a mapping from maximally entangled states to
Bell operators. We shall illustrate the construction through
an example and, then, generalize it to different cases.

The two-qubit state

|ψ〉 = (|+〉 ⊗ |0〉 + |−〉 ⊗ |1〉)/
√

2, (35)

where |±〉 = √
1/2(|0〉 ± |1〉), can be expanded to match the

form

|ψ〉 = 1
2 (|0A0B〉 + |0A1B〉 + |1A0B〉 − |1A1B〉). (36)

This state belongs to the set of maximally entangled Bell states.
The CHSH Bell operator can be obtained from this state by
identifying first and second particle with observables for Alice
and Bob, respectively. We identify symbol 0 with nonprimed
settings and symbol 1 with primed settings, as in Table III.

By removing the normalization term the CHSH operator
arises:

BCHSH = ab + ab′ + a′b − a′b′. (37)

Furthermore, the maximally entangled state (36) is the optimal
state for a suitable choice of the measurement settings.
This remarkable fact motivates us to study multipartite Bell
inequalities generated from multipartite quantum states.

A. Bell inequalities from entangled states

The general strategy is to construct Bell inequalities
associated to some distinguished maximally entangled states.
Starting from the Bell state for two qutrits, |ψ+

3 〉 = (|00〉 +
|11〉 + |22〉)/√3, and applying the Fourier transform to the
second party we obtain

|φ〉 = I ⊗ F3|ψ+
3 〉. (38)

From this state, using the legend from Table III and adding the
case |2A〉 → a′′ and analogously for party B, a Bell operator
for two qutrits and three settings arises,

C233 = [a · F3 b]H , (39)

TABLE III. Substitution legend for mapping states to Bell
operators for the CHSH case.

|ψ〉 → B
|0A〉 → a

|1A〉 → a′

|0B〉 → b

|1B〉 → b′

where a = (a,a′,a′′), b = (b,b′,b′′), and F3 is the Fourier
matrix of order three, (F3)jk = e2πijk/3. This operator has a
classical value 〈C233〉LR = 9/2 and it is maximally violated by
a state with the same entanglement properties of the GHZ with
a violation ratio R(C233) = 2/

√
3 cos(π/18) ≈ 1.137 for the

optimal MUB settings

A = B = X,

A′ = B ′ = Z, (40)

A′′ = B ′′ = X2Z2,

where X and Z are given in Eq. (22). An equivalent inequality
with the same properties was found in Refs. [32,33].

We can apply the same strategy for four qutrits starting with
the GHZ state |GHZ3

4〉 = (|0000〉 + |1111〉 + |2222〉)/√3.
Acting with Fourier transform F3 on three parties we obtain a
locally equivalent state∣∣GHZ3′

4

〉 = I ⊗ F3 ⊗ F3 ⊗ F3

∣∣GHZ3
4

〉
, (41)

which leads to the Bell operator

C ′
433 = [a · F3 b · F3c · F3 d]H , (42)

where a = (a,a′,a′′), b = (b,b′,b′′), and analogously for other
parties. The generalized inner product of four vectors is defined
as w · x · y · z = ∑2

j=0 wjxjyj zj . The optimal state has the
entanglement properties of the GHZ, but with a larger violation
ratio than for the operator (32).

B. Bell inequalities from AME state

An absolutely maximally entangled state (AME) of n

particles is a state with every reduction, up to 
n/2� particles,
maximally mixed [34–37]. Let us now try the strategy above
described for the AME of four qutrits,

AME(4,3) = 1

9

2∑
i,j,k,l=0

wj (i−k)+l(i+k)|ijkl〉. (43)

The recipe to construct the Bell operator consists in
taking representation (43) which contains 34 = 81 terms with
coefficients of the form {1,w,w2}. In the next step one uses
the same legend from the previous subsection. This procedure
leads us to a Bell operator for four parties, three settings, and
three outcomes, which can be written in a compact way as

C433 =
2∑

i,j,k,l=0

wj (i−k)+l(i+k)aibj ckdl, (44)

where a0 = a, a1 = a′, a2 = a′′, and the same for the rest of
the observables.

After transformations d ′ → wd ′ and d ′ ↔ d ′′, numerical
optimization produces the following configuration of optimal
settings

A = B = C = D = X,

A′ = C ′ = D′ = X2Z2 B ′ = X, (45)

A′′ = C ′′ = D′′ = Z B ′′ = N,
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TABLE IV. Characterization of Bell inequalities for two and four
parties, three settings, and three outcomes. There is one four-qutrit
inequality built from the GHZ state and another one built from the
AME state. For all the cases the optimal states are states with the same
entanglement properties as the GHZ. Abbreviations and symbols are
considered as in Table II, although in this case the quantum bound is
computed always with the Hermitian part.

�������
Qutrits

2 4 (GHZ) 4 (AME)

〈[B]A〉LR 3
√

3 9
√

3 9
√

3
〈[B]A〉(−)

LR −3
√

3 −9
√

3 −9
√

3
〈[B]H 〉LR 4.5 13.5 13.5
〈[B]H 〉(−)

LR −4.5 −27 −27
〈[B]H 〉QM 5.117 26.025 25.372
R 1.137 1.928 1.879
Settings MUB Num MUB and Num
P 1/3 1/3 1/3

where N is certain matrix of size three obtained numerically.
The optimal settings are not symmetric because the AME state
is not symmetric under interchange of particles.

Numerical optimization suggests that the optimal state is
not AME. Surprisingly, it has almost the same entanglement
properties as the GHZ state, namely its purity is P = 1/3 for
the density matrices of reductions to two parties, and P = 1/3
for three of the possible reductions to one party, while the
fourth one (party B) has P = 1, indicating that party B is in a
product state with the other three. The same violation ratio as
for four qutrits with two settings is obtained; see Eq. (32). This
result, and the fact that the optimal settings include B = B ′
suggests that the third setting is not adding anything new and
that this inequality is essentially the same as in the case of two
settings.

Table IV summarizes the results for the three-settings qutrit
inequalities arising from entangled states.

V. CONCLUDING REMARKS

We have used the formalism of unitary matrices with
complex roots of unity as eigenvalues to construct Bell
inequalities of multipartite systems, three settings, and three
outcomes (see Sec. III). We have shown that the two-party
and three-party inequalities from Ref. [10] and Ref. [12] are
closely related. Furthermore, we have extended these cases
to four and six parties and, less convincingly, to five parties.
We obtained regular patterns for this set of inequalities, as
shown in Table II. Two of the most striking patterns are (a) the
structure of the classical bounds and their simple arithmetic
progression with the number of particles and (b) the fact that
the inequalities tend to have a maximal quantum bound for
settings that are either MUBs or multiplets of optimal settings
(MOS)—see Appendix A.

We also introduced a mapping from entangled states to
Bell operators that allows us to define Bell inequalities for
multipartite systems (see Sec. IV A). In particular, we have
constructed inequalities for two and four parties with three
settings, which are maximally violated by states with the
same entanglement properties as the GHZ state. We also

demonstrated that a Bell inequality generated by a given
quantum state is not necessarily maximally violated by the
same state. For example, the inequality Eq. (44) is generated
by the absolutely maximally entangled state of four qutrits, but
maximally violated by a GHZ-like state. This formalism has
the potential to generate a wide range of Bell inequalities for
an arbitrary large number of parties, settings, and outcomes.

Let us also mention here some important questions, which
remain open. Concerning the approach to Bell inequalities
from squares of operators represented by commutators it would
be interesting to find a procedure to determine whether a given
Bell operator allows such a form. Analyzing the mapping
between states and Bell operators one can raise the question
whether a maximally entangled state is necessary to produce a
tight Bell inequality in the case of two outcomes (e.g., it holds
for the CHSH and all Mermin inequalities). On the other hand,
the mathematical characterization of the entire set of MOS for
the CGLMP inequalities defined in Appendix A is a pending
task. Finally, it would be interesting to have a generating
polynomial for Bell inequalities with three outcomes, in the
same way that we have the Mermin polynomials for Bell
inequalities with two outcomes [see Eq. (12)].
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APPENDIX A: MAXIMIZING SETTINGS: MUTUALLY
UNBIASED BASES AND MULTIPLETS OF OPTIMAL

SETTINGS

In the present work we have shown that two remarkable
sets of measurement settings optimize the violation of Bell
inequalities. These are the mutually unbiased bases (MUB)
and multiplets of optimal settings (MOS). Two orthonormal
bases {|φ0〉, . . . ,|φd−1〉} and {|ψ0〉, . . . ,|ψd−1〉} are mutually
unbiased if

|〈φj |ψk〉|2 = 1

d
, ∀j,k ∈ {0, . . . ,d − 1}. (A1)

If d is a prime power number, i.e., d = pn for p prime and
n ∈ N, then there exists a maximal set of d + 1 MUB. In prime
dimensions such set is given by the eigenvectors bases of the
d + 1 generalized Pauli operators defined in Eq. (23)

X,Z,XZ,XZ2, . . . ,XZd−1. (A2)

We say that a set of normal operators is MUB if their
eigenvector bases are MUB. For example, the optimal settings
for Mermin inequalities for qubits are MUB. Indeed, if one
setting is fixed to σx then the other setting has to be a linear
combination of the form ασy + βσz in order to maximize the
eigenvalue of the commutator. This restriction implies that the
settings are MUB.
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In the qutrit case, the optimal settings for the CGLMP
inequality, A = λ3 and A′ = 2

3 (λ1 + λ6) + 1
6 (λ3 + √

3λ8), are
not MUB. However, for three qutrits the optimal settings, A =
λ3 and A′ = 1√

3
(λ2 + λ4 + λ6), are MUB.

For Bell operators with complex settings the optimal
settings have a more regular structure. The elements of the
basis XiZj ,XkZl are MUB except for the case where j = l

and i = k. So it is clear that in three- and four-qutrit cases the
optimal settings are mutually unbiased (A = X and A′ = Z)
while in the two- and six-qutrit cases A = X and A′ is a
combination that includes X (24), so it cannot be unbiased
with respect to A.

We have introduced the notion of multiplets of optimal
settings (MOS) which denotes any set of matrices that
maximize the two-qutrit and six-qutrit inequalities, and all
the two qudit inequalities. One is obtained from the other
by applying a phase matrix and then the Fourier transform
and they have the property that both the commutator and the
anticommutator of any pair of MOS are nilpotent matrices,
i.e., matrices M such that Mk = 0 for some integer k. If one
of the settings is set to X then the other one has the following

form:

MOS = eiφ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ... ... ... 1
−1 0 0 ... ... ... 0
0 −1 0 ... ... ... 0

...... ... ... ... ... ... ...

...... ... ... ... ... ... ...

...... ... ... ... ... ... ...

0 ... ... ... 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where φ is a global phase that has to be tuned when changing
between different forms of equivalent Bell inequalities. So, it
is the same as X but with opposite signs in all elements except
for the first one, and a global phase.

APPENDIX B: FROM TWO TO THREE QUTRITS

From the two-qutrit inequality (21) it is possible to derive
the three-qutrit inequality (30), under the assumption of
symmetry for an additional third party. Starting from Eq. (21)
it follows the sequence

[w(ab) − (a′b + ab′) + w(a′b′)]A �
√

3,

[−i(w(ab) − (a′b + ab′) + w(a′b′))]H �
√

3,[
w2 − w√

3
(w(ab) − (a′b + ab′) + w(a′b′))

]
H

�
√

3,

(B1)
[(1 − w2)(ab) + (w − w2)(a′b + ab′) + (1 − w2)(a′b′)]H � 3,

[(ab) − w2(ab + a′b + ab′) + w(a′b + ab′) + (w + 2)(a′b′)]H � 3,

[(ab) − w2(ab + a′b + ab′) + w(a′b + ab′ + a′b′) + 2(a′b′)]H � 3.

This form of the two-qutrit CGLMP inequality suggests an
eight-term symmetric inequality for three qutrits, where all
terms with the same number of primes should have the
same coefficients. By inserting c and c′ according to this last
requirement we have

[(abc) − w2(abc′ + a′bc + ab′c)

+w(a′bc′ + ab′c′ + a′b′c) + 2(a′b′c′)]H � 3. (B2)

Thus the symmetric three-qutrit inequality (30) is obtained.

APPENDIX C: GENERALIZATION TO d DIMENSIONS

In Ref. [10] the bipartite CGLMP is extended to d outcomes.
Its expression in the probability language reads

C22d =
[d/2]−1∑

k=0

(
1 − 2k

d − 1

)
(p(a = b + k)

+p(b = a′ + k + 1) + p(a′ = b′ + k)

+p(b′ = a + k) − (p(a = b − k − 1)

+p(b = a′ − k) + p(a′ = b′ − k − 1)

+p(b′ = a − k − 1))) � 2. (C1)

Let us write these inequalities in terms of operators. In order
to do this let us start from a different form for (21) presented,
for example, in Ref. [14]

C223 = [ab + ab′ + a′b − a′b′]H

+ 1√
3

[−ab + ab′ + a′b − a′b′]A � 2 . (C2)

In order to transform from probabilities to operators we have
to establish a match between the number of variables and
the number of equations. The variables here are the joint
probabilities p(a = b + k), with k running from 0 to d − 1,
so there are d unknowns. We need therefore d equations. One
equation is given by the normalization condition, i.e., the sum
of probabilities is 1. For d = 2, a second equation is enough,
and that is the definition of expectation value of the product

ab = p(a = b) − p(a = b + 1). (C3)

For d = 3 there are three equations. Apart from the normaliza-
tion of probabilities, two extra equations are needed, and those
can be the Hermitian and anti-Hermitian parts of the expected
value of the product, as in Eq. (C2). It appears to be an accident
that the CGLMP for d = 3 can be expressed solely with the
anti-Hermitian part by inserting powers of w as in Eq. (21).
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For d = 4 we add the Hermitian part of the expected
values of the squares of products, and for d = 5 we add their
anti-Hermitian part. The concrete expressions read as follows:

C224 = t 1
3 (2[ab + ab′ + a′b − a′b′]H

+ 2[−ab + ab′ + a′b − a′b′]A
+ [(ab)2 + (ab′)2 + (a′b)2 − (a′b′)2]H ) (C4)

and

C225 = 1
2 ([ab + ab′ + a′b − a′b′]H

+ [(ab)2 + (ab′)2 + (a′b)2 − (a′b′)2]H )

+ 2
5 ((3s1 + s2)[−ab + ab′ + a′b − a′b′]A

+ (−s1 + 3s2)[−(ab)2 + (ab′)2 + (a′b)2 − (a′b′)2)]A,

(C5)

where the numbers s1 and s2 are the imaginary parts of
e2πi/5 and e4πi/5, respectively. The classical bounds for these
operators are 〈C42〉LR = 2 and 〈C52〉LR = 2.

It is possible to derive the general expression of the Bell
operator for any number of levels d as follows:

C22d = N

(
[d/2]∑
k=1

rk,dH(ab)k +
[(d−1)/2]∑

k=1

ik,dA(ab)k

)
� 2, (C6)

where rk,d and ik,d are constants related to real and imaginary
parts of w (in general related to both of them), N is a
normalization constant such that the maximal classical value
of C22d is 2, and also

H(ab)k ≡ [(ab)k + (ab′)k + (a′b)k − (a′b′)k]H ,

A(ab)k ≡ [−(ab)k + (ab′)k + (a′b)k − (a′b′)k]A.

All these inequalities are maximally violated by d-dimensional
MOS as defined in Appendix A. The numerical violation ratios
increase with d, and can be found, for example, in Ref. [11].
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