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ABSTRACT

Motivated by recent applications of Carroll symmetries we investigate the geometry of

flat and curved (AdS) Carroll space and the symmetries of a particle moving in such a space

both in the bosonic as well as in the supersymmetric case. In the bosonic case we find that

the Carroll particle possesses an infinite-dimensional symmetry which only in the flat case

includes dilatations. The duality between the Bargmann and Carroll algebra, relevant for

the flat case, does not extend to the curved case.

In the supersymmetric case we study the dynamics of the N = 1 AdS Carroll superparti-

cle. Only in the flat limit we find that the action is invariant under an infinite-dimensional

symmetry that includes a supersymmetric extension of the Lifshitz Carroll algebra with

dynamical exponent z = 0. We also discuss in the flat case the extension to N = 2 super-

symmetry and show that the flat N = 2 superparticle is equivalent to the (non-moving)

N = 1 superparticle and that therefore it is not BPS unlike its Galilei counterpart. This is

due to the fact that in this case kappa-symmetry eliminates the linearized supersymmetry.

In an appendix we discuss the N = 2 curved case in three dimensions only and show

that there are two N = 2 theories that are physically different.

http://arxiv.org/abs/1503.06083v1
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1 Introduction

Space-time symmetries have played a central role in the understanding of various physical

theories such as Newtonian Gravity, Maxwell’s Electromagnetism, Special Relativity, Gen-

eral Relativity, Strings and Supergravity. Most of these models are based on relativistic

symmetries. An example of a model with non-relativistic symmetries is Newtonian Gravity

which is based on the Galilei symmetries. Such non-relativistic symmetries arise when the

velocity of light is sent to infinity.

A formulation of non-relativistic gravity that is invariant under diffeomorphisms was

introduced by Cartan [1], see also [2–6]. This so-called Newton-Cartan gravity can be

reformulated as a gauge theory of the Bargmann algebra [7, 8]. The interest in Galilean-

invariant theories with diffeomorphism invariance has increased recently due to their relation

with condensed matter systems [9–11], see also [12, 13] and references therein. Galilean-

invariant theories have also appeared recently in studies of Lifshitz holography [14,15].

Other non-relativistic theories such as non-relativistic superstrings and superbranes have

been studied as special points in the parameter space of M-theory [16,17]. Non-relativistic

strings have also attracted attention due to the fact that they appear as a possible soluble

sector within string theory or M-theory [18,19].

A less well known example of a non-relativistic symmetry are the Carroll symmetries

which arise when the velocity of light is sent to zero [20]. In this sense the Carroll symmetries

are the opposite to the Galilei symmetries. This can also be seen by looking at the light

cone which in the Carroll case, at each point of spacetime, collapses to the time axis whereas

in the Galilei case it coincides with the space axis. These Carroll symmetries have played

an important role in recent investigations. For instance, theories with Carroll symmetries

occur in studies of tachyon condensation [21]. More recently, they also have appeared in

the study of warped conformal field theories [22].

A systematic investigation of the possible relativity groups1 was initiated by Bacry and

Lévy-Leblond [23]. They showed that all these groups can be obtained by a contraction

of the anti-de Sitter (AdS) and de Sitter (dS) groups2. As Table 1 shows there are three

different types of contractions: the non-relativistic limit c → ∞ of the AdS group leads to

the Newton-Hooke (NH) group. The flat limit R → ∞ leads to the Poincaré (P) group and

the ultra-relativistic limit c → 0 leads to the AdS-Carroll (AC) group [20]3. In a second

stage, the flat limit of the AdS-Carroll group and the ultra-relativistic limit of the Poincaré

group leads to the Carroll (C) group while the non-relativistic limit of the Poincaré group

and the flat limit of the Newton-Hooke group leads to the Galilean (G) group.

All the algebras corresponding to the groups given in Table 1 contain the same commu-

tators involving spatial rotations. These commutators are given by

[Mab, Mcd] = 2ηa[cMd]b − 2ηb[cMd]a , (1.1)

[Mab, Pc] = 2δc[bPa] , [Mab, Kc] = 2δc[bKa] , (1.2)

1A relativity group is an invariance group of a physical theory that contains the generators of special

relativity: time translations, spatial translations, boosts and spatial rotations.
2In this paper we will only consider the AdS case.
3Bacry and Lévy-Leblond [23] call this algebra the para-Poincaré algebra.
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AdS

AC P NH

C G

c → 0
R → ∞

c → ∞

R → ∞

c → 0 c → ∞

R → ∞

Table 1

The figure displays the different contractions of the AdS group. The different abbreviations are explained

in the text.

where a = 1, . . . , D−1, for a D-dimensional space-time. The Galilean algebra can extended

with a central charge generator Z to the so-called Bargmann algebra [24]. It has been

recently shown that there is a duality between this Bargmann algebra and the Carroll

algebra by the exchange of Z and the generator of time translations H [25]. Note that this

duality does not extend to a duality between the Newton-Hooke and AdS-Carroll algebras.

This is due to the expression for the commutator [Pa, Pb], see Table 2.

The aim of this paper is to study the general structure of the Carroll symmetries along

the same lines as this has been done for the Galilean symmetries. This will be done in two

stages. As a first step we will study the geometry of the empty Carroll space considering the

coset G/H = AC/Hom AC, where Hom AC is the homogeneous part of the AC algebra. In

a second step we will put a particle in this Carroll space and construct an action describing

its dynamics.

More specifically, in the first part of this paper we consider the bosonic AC algebra.

In particular, we will construct the action of a particle invariant under the symmetries

corresponding to this algebra using the method of non-linear realizations [26,27]. This so-

called AC particle reduces, in the limit that the AdS radius goes to infinity, to the Carroll

particle that we studied in our previous paper [28]. A characteristic feature of the free

Carroll particle is that it does not move [25, 28, 29]4. As we will see the AC particle does

not move, but unlike the Carroll particle the momenta are not a constant of motion as a

consequence of the AdS-Carroll symmetry. Another difference with the Carroll particle is

that the mass-shell constraint depends on the coordinates of the AC space, therefore the AC

particle ‘sees’ the geometry. This is different from the Carroll case where the energy of the

particle is equal to plus or minus the mass [25,28]. We find that only in the massless limit

the mass-shell constraint coincides with the flat Carroll case. Using the AC particle action

we will construct the Killing equations for the AC space. We find that the solution of the

Killing equations produces an infinite-dimensional algebra that contains the symmetries of

4If we consider two particles or a particle interacting with Carroll gauge fields the dynamics is non-trivial.

The same phenomenon occurs in tachyon condensation when the tachyon interacts with a gauge field [21].
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the AC algebra. The Lifshitz dilatations are not included in these symmetries. Only in the

flat case the dilatations with z = 0 are part of the infinite dimensional algebra.

[Pa, Kb] [H, Ka] [H, Pa] [Pa, Pb] [Ka, Kb]

AdS δabH Pa − 1

R2 Ka
1

R2 Mab Mab

Poincaré δabH Pa 0 0 Mab

Newton-Hooke δabZ Pa − 1

R2 Ka 0 0

AdS-Carroll δabH 0 − 1

R2 Ka
1

R2 Mab 0

Galilei δabZ Pa 0 0 0

Carroll δabH 0 0 0 0

Table 2

This table gives an overview of the algebras of the relativity groups that we consider in this paper.

In the second part of this paper we consider the supersymmetric extension of the Carroll

algebras 5. We first construct the N = 1 AC superalgebra in any dimension (see Tables 2

and 3, where Q stands for the generator of supersymmetry). A difference with respect to the

supersymmetric Newton-Hooke case is that we have a conventional supersymmetry algebra,

where the energy and boost generators appear in the anti-commutator of the supersymme-

tries. The AC superalgebra in the flat limit contains the supersymmetric extension of the

‘Lifshitz boost extended Carroll algebra’ introduced in appendix B of [30]. We construct

the AC superparticle action both as the non-relativistic limit of the relativistic massive

superparticle [31,32] as well as by applying the non-linear realization technique. As we will

see the N = 1 AC superparticle like in the Relativistic and Galilean case is non-BPS, i.e. the

supersymmetries are non-linearly realized. We will study the super-Killing equations and

we find in general an infinite-dimensional algebra of symmetries thereby extending the finite

N = 1 super AC transformations.

N = 1 [Mab, Q] [Pa, Q] {Qα, Qβ}

Newton-Hooke − 1

2
γabQ 0 2δαβZ

AdS-Carroll − 1

2
γabQ

1

2R
γaQ [γ0C−1]αβH + 2

R
[γa0C−1]αβKa

Table 3

In this table we give the (anti-)commutators of the N = 1 Newton-Hooke and AdS-Carroll superalgebras

that involve the generators Q of supersymmetry. Note that here is no duality between the two algebras.

Inspired by the relativistic and Galilei case we will investigate whether the N = 2 Carroll

superparticle is BPS or not. For simplicity we restrict to the three-dimensional case. We

first construct the N = 2 Carroll superalgebra as a contraction of the N = 2 Poincaré

superalgebra. This leads to the result given in Table 4. We see that, unlike in the bosonic

5A first attempt in this direction was done in the unpublished notes [29].
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N = 2 [Mab, Q±] [Ka, Q+] {Q+
α , Q+

β } {Q+
α , Q−

β } {Q−
α , Q−

β }

Galilei − 1

2
γabQ

± − 1

2
γa0Q− [γ0C−1]αβH [γaC−1]αβPa 2[γ0C−1]αβZ

Carroll − 1

2
γabQ

± 0 1

2
[γ0C−1]αβ(H + 2Z) 0 1

2
[γ0C−1]αβ(H − 2Z)

Table 4

In this table we give the (anti-)commutators of the N = 2 Galilei and Carroll supersymmetry algebras.

Note that there is no duality between these two algebras.

case, there is no duality in the supersymmetric case. Next, we construct the action for the

N = 2 Carroll superparticle. This action has two terms, one of them is a Wess-Zumino

(WZ) term. If we properly choose the coefficients of the two terms we find a so-called

kappa gauge symmetry [33,34] that kills half of the fermions. This gauge symmetry has the

form of a Stückelberg symmetry, similar to what we found in the Galilean case [18,35]. We

find that after fixing the kappa-symmetry the super-Carroll action reduces to the action we

found in the N = 1 case. The linearly realized supersymmetry acts trivially on all the fields

and therefore the N = 2 Carroll superparticle reduces to the N = 1 Carroll superparticle

and hence is not BPS. This is rather different from the N = 2 super-Galilei case were

BPS particles do exist. The main difference between the super-Carroll and super-Galilei

cases comes from the kappa symmetry transformations, in the former case it eliminates the

linearized supersymmetry and it the last case it does not.

In a separate Appendix we extend our investigations to the N = 2 curved case and con-

sider the Carroll contraction of the so-called (p,q) AdS superalgebras [36] for the particular

cases of (p, q) = (2, 0) and (p, q) = (1, 1). The (2,0) and (1,1) AdS Carroll algebras are not

isomorphic. We find that the associated particle actions are rather different. While in the

(2,0) case we have kappa-symmetry, we find that this is not the case in the (1,1) case. The

two models have different degrees of freedom.

This paper is organized as follows. In section 2 we discuss the bosonic free AC particle

thereby extending our previous analysis [28] to the curved case. In particular, we construct

the action and investigate the Killing equations. In section 3 we consider the N = 1 AC

superparticle. At the end of this section we discuss the flat limit. Finally, in section 4 we

investigate the N = 2 Super Carroll particle. Our conclusions are presented in section 5.

Some technical details and the extension of the N = 2 Super Carroll particle to the curved

case, for three dimensions only, are given in three Appendixes.

2 The Free AdS Carroll Particle

Before discussing the supersymmetric case we will first study in this section different aspects

of the free AdS Carroll (AC) particle.

2.1 The AdS Carroll Algebra

In order to write the commutators corresponding to the AC algebra, we will start with

the contraction of the D-dimensional AdS algebra. The basic commutators are given by

6



(A = 0, 1, . . . , D − 1)

[MAB, MCD] = 2ηA[CMD]B − 2ηB[CMD]A , (2.1)

[MAB , PC ] = 2ηC[BPA] , [PA, PB ] =
1

R2
MAB , (2.2)

where R is the AdS radius. Here PA and MAB are the (anti-hermitian) generators of

space-time translations and Lorentz rotations, respectively.

To make the Carroll contraction we rescale the generators with a parameter ω as follows

[20,23]:

P0 =
ω

2
H , Ma0 = ωKa . (2.3)

Taking the limit ω → ∞ we find that the commutators corresponding to the D-dimensional

AC algebra are given by (a = 1, . . . , D − 1):

[Mab, Mcd] = 2ηa[cMd]b − 2ηb[cMd]a , [Mab, Kc] = 2δc[bKa] , (2.4)

[Mab, Pc] = 2δc[bPa] , [Pa, Kb] =
1

2
δabH , (2.5)

[Pa, Pb] =
1

R2
Mab , [Pa, H] =

2

R2
Ka . (2.6)

Notice that the commutation relations of space-time translation coincide with the same

commutation relations of the AdS algebra. The difference between the AdS and AC algebra

is in the different commutation relations that involve the boost generators. Note that this

is not the case for the Newton-Hook algebras.

The AC algebra can be expressed in terms of the left invariant Maurer-Cartan 1-forms

La, which satisfy the Maurer-Cartan equations dLC − 1
2 fC

ABLBLA = 0. Explicitly, these

equations read

dLH +
1

2
L a

P L a
K = 0 , dL a

P − 2L b
P L ab

M = 0 , (2.7)

dL a
K − 2L b

K L ab
M =

2

R2
LHLP

a , dL ab
M − 2L ca

M L cb
M =

1

2R2
LP

bLP
a . (2.8)

2.2 Non-Linear Realizations

In this subsection we apply the method of non-linear realizations [26,27] and use the algebra

(2.4) to construct the action of the AC particle.

We consider the coset G/H = AC/SO(D-1) and the coset element g = g0 U, where

g0 = eHtePaxa

is the coset representing the AC space and U = eKava

is a general Carroll

boost. The xa (a = 1, ...D − 1) are the Goldstone bosons of broken translations, t is the

Goldstone boson of the unbroken time translation6 and U is parametrized by the Goldstone

bosons of the broken Carroll boost transformations.

The reason to consider the coset element in terms of g0 and U is because in this way

we have that for a general symmetric space-time g0 is the coset element representing the

‘empty’ space-time, while U represents the broken symmetries that are due to the presence

6The unbroken translation P0 generates via a right action [37] [38] a transformation which is equivalent

to the world-line diffeomorphisms.
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of a dynamical object, in our case a particle, in the ‘empty’ space-time. For the case of a

particle U is given by the general rotation that mixes the ‘longitudinal’ time direction with

the ‘transverse’ space directions, i.e. the Carroll boosts. If we would like to consider as a

dynamical object a p-brane, we should consider as U the general rotations that mix the

longitudinal and tranverse directions [38].

Returning to the AC particle, it is interesting to write out the Maurer-Cartan form Ω0

associated to the AC space

Ω0 = g−1
0 dg0 = He0 + Paea + Kaωa0 + Mabω

ab , (2.9)

where (e0, ea) and (ωa0, ωab) are the space and time components of the Vielbein and spin

connection 1-forms of the AdS space, respectively. If we parametrize the AdS space as

eHtePaxa

, the Vielbein and spin-connection 1-forms corresponding to the AC space are

given by

e0 = dt cosh
x

R
,

ea =
R

x
dxa sinh

x

R
+

1

x2
xaxbdxb

(

1 − R

x
sinh

x

R

)

,

ωa0 = − 2

xR
dtxa sinh

x

R
,

ωab =
1

2x2
(xbdxa − xadxb)

(

cosh
x

R
− 1

)

.

(2.10)

These 1-forms satisfy the structure equations

de0 +
1

2
e a ω a0 = 0 , de a − 2e b ω ab = 0 , (2.11)

de a − 2ω b0 ω ab =
2

R2
e0ea , dω ab − 2ω ca ω cb =

1

2R2
ebea . (2.12)

We see that the Vielbein satisfies the torsionless condition and that the AC space, like the

ancestor AdS space, has constant negative curvature.

We now insert a particle in the empty AC space and consider the Maurer-Cartan form

of the combined system:

Ω = g−1dg = U−1Ω0U + U−1dU . (2.13)

In order to derive an expression for Ω we need to know how the space-time translation

generators and the boost generators transform under a general Carroll boost:

U−1 H U = H +
1

2
vaPa ,

U−1 Pa U = Pa ,

U−1 Ka U = Ka ,

U−1 Mab U = Mab + vbKa − vaKb .

(2.14)

We have also U−1dU = dvaKa. Using these formulae we find that the Maurer-Cartan form

8



Ω is given by

LH = e0 +
1

2
vaea ,

LP
a = ea ,

LK
a = ω0a + dva + 2vb ωab ,

LM
ab = ωab .

(2.15)

We note that that the Maurer-Cartan forms of space-time translations can be written in

matrix-form as follows:

(

LH , LP
a
)

=
(

e0, ea
)

(

1 0
1
2va 1

)

. (2.16)

The matrix appearing at the right-hand-side is the most general Carroll boost in the vector

representation.

We now proceed with the construction of an action of the AC particle. An action with

the lowest number of derivatives is obtained by taking the pull-back of all the L’s that are

invariant under rotations, see for example [38]. In this way we obtain the following action:

S = M

∫

(LH)∗ = M

∫

(

e0 +
1

2
vaea

)∗

= M

∫

dτ

(

ṫ cosh
x

R
+

R

2x
vaẋa sinh

x

R
+

1

2x2
xbvbxaẋa

(

1 − R

x
sinh

x

R

)

)

.
(2.17)

This action is invariant under the following transformation rules with constant parameters

(ζ, ai, λi, λi
j) corresponding to time translations, spatial translations, boosts and spatial

rotations, respectively:

δt = −ζ +
R

2x
λkxk tanh

x

R
+

t

Rx
akxk tanh

x

R
,

δxi = − 1

x2

(

xiakxk − x

R
coth

x

R
(xiakxk − aix2)

)

− 2λi
k xk ,

δvi = −λi − 1

x2
λkxkxisech

x

R

(

1 − cosh
x

R

)

− 2λi
j vj − 2t

R2
ai

− 2t

R2x2
xiakxk sech

x

R

(

1 − cosh
x

R

)

+
2

Rx
vba

[ixb]csch
x

R

(

1 − cosh
x

R

)

.

(2.18)

The equations of motion for t, xa and va read

0 =
1

xR
xaẋa sinh

x

R
,

0 = − R

2x
ẋa sinh

x

R
− 1

2x2
xaxbẋ

b
(

1 − R

x
sinh

x

R

)

,

0 =
R

2x
v̇a sinh

x

R
− 1

xR
ṫxa sinh

x

R
+

1

2x2
xaxbv̇b

(

1 − R

x
sinh

x

R

)

+
ẋb

2x2
(vaxb − xavb)

(

cosh
x

R
− 1

)

.

(2.19)
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These equations imply that

ẋa = 0 ,

1

xR
ṫxa sinh

x

R
=

R

2x
v̇a sinh

x

R
+

1

2x2
xaxbv̇b

(

1 − R

x
sinh

x

R

)

.
(2.20)

Notice that the evolution of va is non-trivial. If we take the limit R → ∞ we recover the

flat bosonic equations of motion ẋa = v̇a = 0 and therefore a trivial dynamics for both

xa, va [28].

The energy and spatial momenta of the free AC particle are given by

E = −∂L
∂ṫ

= −M cosh
x

R
,

pa =
∂L
∂ẋa

= M

[

R

2x
va sinh

x

R
+

1

2x2
xaxbvb

(

1 − R

x
sinh

x

R

)

]

.

(2.21)

They satisfy the constraint

E2 − M2 cosh2 x

R
= 0 . (2.22)

The canonical action of the AC particle is given by 7

S =

∫

dτ

[

−Eṫ + paẋa − e

2

(

E2 − M2 cosh2 x

R

)]

. (2.23)

Note that if we calculate ṗa and impose both equations of motion (2.20) we obtain

ṗa =
M

Rx
ṫxa sinh

x

R
=

eM2

Rx
xa cosh

x

R
sinh

x

R
. (2.24)

In the last step we have used that ṫ = −eE = eM cosh x
R

, see eq. (2.26). This is the same

result one finds using the Hamiltonian form given in eq. (A.5).

2.3 The Killing Equations of the AdS Carroll Particle

In order to find the Killing symmetries of the AC space, it is convenient to consider the

symmetries of the canonical action (2.23). The basic Poisson brackets of the canonical

variables occurring in the action (2.23) are given by

{E, t} = 1 , {e, πe} = 1 , {xi, pj} = δij . (2.25)

This leads to the following equations of motion:

ṫ = −eE , ẋi = 0 , Ė = 0 , ṗi =
eM2

2Rx
xi sinh

2x

R
,

π̇e = −1

2

(

E2 − M2 cosh2 x

R

)

, ė = λ .

(2.26)

Here λ = λ(τ) is an arbitrary function and πe is constrained by π̇e = 0.

7Alternatively, we can obtain this action by taking the Carroll limit of the canonical action of a massive

particle in AdS, see appendix A.
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We take as the generator of canonical transformations

G = −Eξ0(t, ~x, e) + pi ξi(t, ~x, e) + γ(t, ~x, e)πe , (2.27)

where ξ0 = ξ0(t, ~x, e), ξi = ξi(t, ~x, e) and γ = γ(t, ~x, e). The condition that this generator

generates a Noether symmetry is that it is a constant of motion and it leads to the following

restrictions:

Ġ = 0 = −E(ṫ∂tξ
0 + ė∂eξ0) + ṗiξ

i + pi(ṫ∂tξ
i + ė∂eξi) + γπ̇e

= eE2∂tξ
0 − λE∂eξ0 +

eM2

2Rx
xiξ

i sinh
2x

R

− eEpi∂tξ
i + λpi∂eξi − γ

2

(

E2 − M2 cosh2 x

R

)

.

(2.28)

From this equation we deduce the following equations describing the symmetries of the AC

space:
∂eξ0 = 0 , ∂eξi = 0 , ∂tξ

i = 0 ,

γ = 2e∂tξ
0 ,

e

xR
xiξ

i sinh
x

R
+

1

2
γ cosh

x

R
= 0 .

(2.29)

The last two equations can be combined into the single condition

∂tξ
0 = − 1

xR
xiξ

i tanh
x

R
. (2.30)

The generator G is given by

G = −Eξ0(t, ~x) + pi ξi(~x) + γ(t, ~x, e)πe . (2.31)

From the variation of the momenta we can obtain the transformation rules for vi as

follows. First, we use that

δpi = {pi, G} = {pi, −Eξ0(t, ~x) + pi ξi(~x) + 2e∂tξ
0(t, ~x)πe}

= E∂iξ
0 − pk∂iξ

k − 2e∂t∂iξ
0πe . (2.32)

Next, using eq. (2.21) and πe = 0 we obtain

δpi = −M cosh
x

R
∂iξ

0 − M

[

R

2x
vi sinh

x

R
+

1

2x2
xix

bvb

(

1 − R

x
sinh

x

R

)

]

∂iξ
k . (2.33)

Finally, using the expression for pi given in eq. (2.21), we obtain the following transforma-
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tions of the variables vi:

δvi = − 2x

R
∂iξ

0 coth
x

R
− va∂iξa − 1

Rx
vbx

bxk∂iξ
k
(

1 − R

x
sinh

x

R

)

+
2

Rx
coth

x

R

(

1 − R

x
sinh

x

R

)

xixa∂aξ0 +
1

Rx

(R

x
− coth

x

R

)

vixbξ
b

− 1

Rx

(R

x
− R2

x2
sinh

x

R

)(

xixbξ
b − 1

x2
xixa∂aξkvk

)

+
1

Rx3
csch

x

R

(

− R

x
sinh

x

R
− R2

x2
sinh2 x

R
+ 1 + cosh

x

R

)

xixbξ
bxkvk

+
1

Rx
csch

x

R

(

− 2
R

x
sinh

x

R
− R2

x2
sinh2 x

R
+ 1 + cosh

x

R

)

xixbξ
bxkvk

+
1

Rx
csch

x

R

(R

x
sinh

x

R
− 1

)

ξixbv
b .

(2.34)

We see that the free Carroll particle in an AdS background has an infinite-dimensional

symmetry. A possible solution to these equations is given by eq. (2.18) which are the

symmetry transformations of the Carroll group. We do not find any Lifshitz dilatations in

this case i.e., a transformation with parameters ξi = xi, ξ0 = zt.

2.3.1 The Massles Limit

Using the canonical action

S =

∫

dτ

[

−Eṫ + paẋa − e

2

(

E2 − M2 cosh2 x

R

)]

, (2.35)

it is straightforward to take the massless limit M → 0 and obtain the action

S =

∫

dτ

(

−Eṫ + paẋa − e

2
E2
)

. (2.36)

We see that in the massless limit the R-dependence of the AC particle has disappeared.

This means that the massive Carroll particles are affected by the geometry but the massless

Carroll particles are not. Consequently, in the massless limit there is no difference between

particles in an AdS or flat background. Furthermore, the isometries should be given by the

most general conformal Carroll group as it was analyzed in [28]. In this case dilatations are

included i.e., with parameters ξi = xi, ξ0 = zt.

3 The N = 1 AdS Carroll Superparticle

In this section we extend our investigations to the N = 1 supersymmetric case and consider

the AC superparticle.
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3.1 The N = 1 AdS Carroll Superalgebra

We start by taking the contraction of the D-dimensional N = 1 AdS algebra. The basic

commutators are given by (A = 0, 1, . . . , D − 1)

[MAB , MCD] = 2ηA[CMD]B − 2ηB[CMD]A ,

[MAB , PC ] = 2ηC[BPA] , [PA, PB ] = 4x2MAB ,

[MAB , Q] = −1

2
γABQ , [PA, Q] =

1

2R
γAQ ,

{Qα, Qβ} = 2[γAC−1]αβPA +
1

R
[γABC−1]αβMAB ,

(3.1)

where R is the AdS radius and PA, MAB and Qα are the generators of space-time trans-

lations, Lorentz rotations, and supersymmetry transformations, respectively. The bosonic

generators PA and MAB are anti-hermitian while de fermionic generator Qα is hermitian.

To make the Carroll contraction we rescale the generators with a parameter ω as follows:

P0 =
ω

2
H , Ma0 = ωKa , Q =

√
ωQ̃ ; a = 1, 2, . . . , D − 1 (3.2)

Taking the limit ω → ∞ and dropping the tildes on the Q we get the following N = 1 AdS

Carroll superalgebra:

[Mab, Pc] = 2δc[bPa] , [Mab, Kc] = 2δc[bKa] ,

[Pa, Pb] =
1

R2
Mab , [Pa, Kb] =

1

2
δabH , [Pa, H] =

2

R2
Ka

[Pa, Q] =
1

2R
γaQ , [Mab, Q] = −1

2
γabQ ,

{Qα, Qβ} = [γ0C−1]αβH +
2

R
[γa0C−1]αβKa .

(3.3)

The Maurer-Cartan equation dLC − 1
2 fC

ABLBLA = 0 in components reads

dLH = − 1

2
L a

P L a
K − 1

2
L̄Qγ0LQ , dL a

P = 2L b
P L ab

M ,

dL a
K =2L b

K L ab
M +

2

R2
LHLP

a − 1

R
L̄Qγa0LQ , dL ab

M = 2L ca
M L cb

M +
1

2R2
LP

bLP
a ,

dLQ =
1

2
γabLQ L ab

M − 1

2R
γaLQLP

a .

(3.4)

3.2 Superparticle Action

We now use the algebra (3.3) to construct the action of the AC superparticle with the coset

G

H
=

N = 1 AdS Carroll

SO(D-1)
(3.5)

that is locally parametrized as g = g0 U, where g0 = eHtePaxa

eQαθα

is the coset representing

the ‘empty’ curved AC Carroll superspace and U = eKava

is a general Carroll boost repre-

senting the particle inserted in the empty space. The Maurer-Cartan form Ω0 associated to

the empty AC superspace is given by

Ω0 = g−1
0 dg0 = HE0 + PaEa + Kaωa0 + Mabω

ab − Q̄E , (3.6)
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where (E0, Ea, Eα) and (ωa0, ωab) are the time and space components of the supervielbein

and the spin connection of super-AdS if we parametrize the AdS superspace as eHtePaxa

eQαθα

.

The explicit expressions for these components are given by

E0 = dt cosh
x

R
− 1

2
θ̄γ0dθ − 1

2
ωabθ̄γabγ

0θ ,

Ea =
R

x
dxa sinh

x

R
+

1

x2
xaxbdxb

(

1 − R

x
sinh

x

R

)

,

ωa0 = − 2

xR
dtxa sinh

x

R
− 1

R
θ̄γa0dθ − 1

2R2
θ̄γabγ

0θEb ,

ωab =
1

2x2
(xbdxa − xadxb)

(

cosh
x

R
− 1

)

,

Eα = dθα − 1

2R
[γaθ]αEa +

1

2
ωab[γabθ]α .

(3.7)

In this case we have torsion given by T0 = −1
2Ēαγ0Eα and a non-vanishing spin connection.

The Maurer-Cartan form for the N = 1 AC superparticle inserted in the AC superspace is

given by

Ω = g−1dg = U−1Ω0U + U−1dU , (3.8)

where

LH = E0 +
1

2
vaEa ,

LP
a = Ea ,

LK
a = ωa0 + dva + 2vb ωab ,

LM
ab = ωab ,

LQα
= Eα .

(3.9)

Note that the Maurer-Cartan forms of the spacetime supertranslations can be written in

matrix form in terms of the Supervielbein components of the AC superspace as follows:

(

LH , LP
a, LQα

)

=
(

E0, Ea, Eα

)







1 0 0
1
2va 1 0

0 0 1






. (3.10)

Like in the bosonic case the Maurer-Cartan forms of the supertranslations of the AC super-

particle can be obtained from the Maurer-Cartan forms of the AC superspace by a matrix

representation of the Carroll boost.

The action of the N = 1 AC superparticle is given by the pull-back of all the L’s that

are invariant under rotations:

S = M

∫

(LH)∗ = M

∫

(

E0 +
1

2
vaEa

)∗

=

= M

∫

dτ

(

ṫ cosh
x

R
+

R

2x
vaẋa sinh

x

R
+

1

2x2
xbvbxaẋa

(

1 − R

x
sinh

x

R

)

− 1

2
θ̄γ0θ̇

− 1

4x2
xbẋaθ̄γabγ

0θ
(

cosh
x

R
− 1

)

)

.

(3.11)

The equations of motion corresponding to this action can be written as follows

ẋi = 0 , θ̇ = 0 ,

1

xR
ṫxa sinh

x

R
=

R

2x
v̇a sinh

x

R
+

1

2x2
xaxbv̇b

(

1 − R

x
sinh

x

R

)

.
(3.12)
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We can write a Hamiltonian version of this action with the momenta given by

pt = M cosh
x

R
,

pa = M

[

R

2x
va sinh

x

R
+

1

2x2
xaxbvb

(

1 − R

x
sinh

x

R

)

− 1

4x2
xbθ̄γabγ

0θ
(

cosh
x

R
− 1

)

]

,

P̄θ =
M

2
θ̄γ0 .

(3.13)

Then, the canonical form of (3.11) is

S =

∫

dτ

[

−ṫE + ẋapa + ¯̇θPθ − e

2

(

E2 − M2 cosh2 x

R

)

−
(

P̄θ cosh
x

R
+

1

2
Eθ̄γ0

)

ρ

]

. (3.14)

The bosonic transformation rules for the coordinates with constant parameters (ζ, ai, λi, λi
j)

corresponding to time translations, spatial translations, boosts and rotations, respectively,

are given by

δt = −ζ +
R

2x
λkxk tanh

x

R
+

t

Rx
akxk tanh

x

R
,

δxi = − 1

x2

(

xiakxk − x

R
coth

x

R
(xiakxk − aix2)

)

− 2λi
k xk ,

δvi = −λi − 1

x2
λkxkxisech

x

R

(

1 − cosh
x

R

)

− 2λi
j vj − 2t

R2
ai

− 2t

R2x2
xiakxk sech

x

R

(

1 − cosh
x

R

)

+
2

Rx
vba

[ixb]csch
x

R

(

1 − cosh
x

R

)

,

δθ = −1

2
λabγabθ +

1

2Rx
akxbγkbθcsch

x

R

(

1 − cosh
x

R

)

.

(3.15)

The fermionic transformation rules with constant parameter ǫ corresponding to the super-

symmetry transformation are given by

δt =
1

2
ǭγ0θsech

x

R
cosh

x

2R
− 1

2x
xk ǭγk0θsech

x

R
sinh

x

2R
,

δxi = 0 ,

δvi =
1

Rx
xi tanh

x

R

(

ǭγ0θ cosh
x

2R
− 1

x
xk ǭγk0θ sinh

x

2R

)

− 1

Rx
xiǭγ0θ sinh

x

2R
+

1

R
ǭγi0θ cosh

x

2R
+

1

Rx
xk ǭγik0θ sinh

x

2R
,

δθ = ǫ cosh
x

2R
+

1

x
xkγkǫ sinh

x

2R
.

(3.16)

3.3 The Super Killing Equations

The basic Poisson brackets of the canonical variables are given by

{E, t} = 1 , {e, πe} = 1 , {xi, pj} = δij ,

{P α
θ , θβ} = −δα

β , {Πα
ρ , ρβ} = −δα

β ,
(3.17)
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and the corresponding Dirac Hamiltonian of the action (3.14) is given by

HD =
e

2

(

E2 − M2 cosh2 x

R

)

+ λπe +
(

P̄θ cosh
x

R
+

1

2
Eθ̄γ0

)

ρ + π̄ρΛ , (3.18)

πe = 0 and Πρ = 0 are the primary constraints, λ = λ(τ) and Λ = Λ(τ) are arbitrary

functions. The corresponding primary hamiltonian equations of motion are given by

ṫ = −eE − 1

2
θ̄γ0ρ , ẋi = 0 , Ė = 0 , ṗi =

eM2

xR
xi cosh

x

R
sinh

x

R
− 1

xR
xi sinh

x

R
P̄θρ ,

π̇e = −1

2

(

E2 − M2 cosh2 x

R

)

, ė = λ ,

θ̇ = −ρ cosh
x

R
, ¯̇Pθ = −1

2
Eρ̄γ0 , ρ̇ = −Λ , ¯̇Πρ = P̄θ cosh

x

R
+

1

2
Eθ̄γ0 .

(3.19)

The stability of primary constraints give as secondary constraint the mass-shell condition

E2 − M2 cosh2 x
R

= 0 and the fermionic constraint P̄θ cosh x
R

+ 1
2Eθ̄γ0 = 0. If we require

the stability of the secondary constraints we get ρ = 0. Substituting this into (3.19) and

using the canonical momenta (3.13) we obtain equations (3.12).

The generator of canonical transformations has a bosonic and a fermionic part given by

G = −Eξ0(t, ~x, θ) + pi ξi(t, ~x, θ) + γ(t, ~x, θ)πe − P̄θχ(t, ~x, θ) + Π̄ρΓ(t, ~x, θ) , (3.20)

the parameters ξ0 = ξ0(t, ~x, θ), ξi = ξi(t, ~x, θ), χ = χ(t, ~x, θ), γ = γ(t, ~x, θ) have the

following restrictions

0 = Ġ

= −E(ṫ∂tξ
0 + ∂θξ0θ̇) + ṗiξ

i + pi(ṫ∂tξ
i + ∂θξiθ̇) + γπ̇e − ¯̇Pθχ − P̄θ(∂tχṫ + ∂θχθ̇) + ¯̇ΠρΓ

= eE2∂tξ
0 +

1

2
E∂tξ

0θ̄γ0ρ + E∂θξ0ρ cosh
x

R
+

eM2

xR
xiξi cosh

x

R
sinh

x

R

− 1

xR
xiξi sinh

x

R
P̄θρ − eEpi∂tξ

i − 1

2
pi∂tξ

iθ̄γ0ρ − pi∂θξiρ cosh
x

R

− 1

2
γ

(

E2 − M2 cosh2 x

R

)

+
E

2
ρ̄γ0χ + eEP̄θ∂tχ +

1

2
P̄θ∂tχθ̄γ0ρ + P̄θ∂θχρ cosh

x

R

+ P̄θΓ cosh
x

R
+

E

2
θ̄γ0Γ .

(3.21)

From this equation we derive the super-Killing equations

γ = 2e∂tξ
0 , Γ = −∂θχρ +

1

xR
xiξi tanh

x

R
ρ ,

∂tξ
0 = − 1

xR
xiξi tanh

x

R
, ∂θξ0 =

1

2
χ̄γ0sech

x

R
+

1

2
θ̄γ0∂θχsech

x

R
,

∂tξ
i = 0 , ∂θξi = 0 , ∂tχ = 0 .

(3.22)

The solution to this equations is given by eqs. (3.15) and (3.16) with the symmetry generator

G given by
G = −Eξ0(~x, θ) + pi ξi(t, ~x) + 2e∂tξ

0(~x, θ)πe − P̄θχ(~x, θ)

+ Π̄ρ

(

− ∂θχ(~x, θ)ρ +
1

xR
xiξi(~x, θ) tanh

x

R
ρ
)

.
(3.23)
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Then, the N = 1 AC superparticle has an infinite dimensional algebra with the transfor-

mation rules given by (3.15) and (3.16).

3.4 The Flat Limit

We end this section with some comments on the flat limit (R → ∞) which can be taken

directly from the AC curved case in order to obtain the dynamics and symmetries of the

N = 1 flat Carroll superparticle. In this case, the time and space components of the

supervielbein simplify to

E0 = dt − 1

2
θ̄γ0dθ, Ea = dxa , Eα = dθα . (3.24)

In the R → ∞ limit, the torsion becomes T0 = −1
2dθ̄γ0dθ and since we are studying the flat

case, the spin connection vanishes. The supertranslations can be again written in terms of

the supervielbein in matrix form as in (3.10) and the action is given by

S = M

∫

(

E0 +
1

2
vaEa

)∗

= M

∫

dτ(ṫ − 1

2
θ̄γ0θ̇ +

1

2
vaẋa) . (3.25)

The equations of motion that follow from this action are:

~̇x = ~̇v = θ̇ = 0 . (3.26)

Therefore, the superparticle does not move. The transformation rules of the different vari-

ables are given by

δt = −ζ +
1

2
λixi +

1

2
ǭγ0θ , δxi = −ai − 2λi

j xj ,

δvi = −λi − 2λi
j vj , δθ = −1

2
λijγijθ + ǫ .

(3.27)

As we can see from the transformation of θ the N = 1 Carroll superparticle is not BPS like

in the relativistic and Galilean case.

If we rewrite the action (3.25) in Hamiltonian form

S =

∫

dτ

[

−ṫE + ẋapa + ¯̇θPθ − e

2
(E2 − M2) −

(

P̄θ +
1

2
Eθ̄γ0

)

ρ

]

, (3.28)

it turns out that the super-Killing equations can be obtained as the flat limit of the equations

(3.22)

γ = 0 , Γ = −∂θχρ , ∂tξ
0 = 0 , ∂tξ

i = 0 , ∂θξi = 0 , ∂tχ = 0 ,

∂θξ0 =
1

2
χ̄γ0 +

1

2
θ̄γ0∂θχ ,

(3.29)

where the symmetry generator G is

G = −Eξ0(~x, θ) + pi ξi(~x) − P̄θχ(~x, θ) − Π̄ρ∂θχ(~x, θ)ρ . (3.30)

From the variation of the momenta

δpi = {pi, G} = E∂iξ
0 − pk∂iξ

k + P̄θ∂iχ (3.31)

17



and using that the energy, the spatial momenta and the fermionic momenta are given by

E = −M , pi =
M

2
vi , P̄θ =

M

2
θ̄γ0 , (3.32)

we find that the transformation rule of vi

δvi = −2∂iξ
0 − vk∂iξ

k + θ̄γ0∂iχ . (3.33)

Note that the above symmetries include the dilatations given by

δt = 0, δxa = xa, δθ = 0, δva = −va . (3.34)

These dilatations, together with the super-Carroll transformations, form a supersymmetric

extension of the Lifshitz Carroll algebra [30] with dynamical exponent z=0. The Lifshitz

Carroll algebra with z=0 has appeared in a recent study of warped conformal field theories

[22].

4 The N = 2 Flat Carroll Superparticle

In this Section we extend our investigations to the N = 2 supersymmetric case. The flat

case is discussed in this Section while the curved case will be dealt with in Appendix C.

4.1 The N = 2 Carroll Superalgebra

Our starting point is the N = 2 super-Poincaré algebra. For simplicity, we consider 3D

only. The basic commutators are (A = 0, 1, 2; i = 1, 2)

[MAB , MCD] = 2ηA[CMD]B − 2ηB[CMD]A ,

[MAB , PC ] = 2ηC[BPA] ,

[MAB , Qi] = −1

2
γABQi ,

{Qi
α, Qj

β} = 2[γAC−1]αβPAδij + 2[C−1]αβǫijZ .

(4.1)

To make the Carroll contraction we define new supersymmetry charges by

Q±
α =

1

2
(Q1

α ± γ0Q2
α) (4.2)

and rescale the different symmetry generators with a parameter ω as follows:

P0 =
ω

2
H , Ma0 = ωKa , Z = ωZ̃ ,

Q+ =
√

ωQ̃+ , Q− =
√

ωQ̃− .
(4.3)

Taking the limit ω → ∞ we obtain the following 3D Carroll algebra

[Mab, Kc] = 2δc[bKa] , [Mab, Pc] = 2δc[bPa] ,

[Ka, Pb] = −1

2
δabH , [Mab, Q̃±] = −1

2
γabQ̃

±

{Q̃+
α , Q̃+

β } = [γ0C−1]αβ

(1

2
H + Z̃

)

, {Q̃−
α , Q̃−

β } = [γ0C−1]αβ

(1

2
H − Z̃

)

.

(4.4)
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The Maurer-Cartan equation dLC − 1
2fC

ABLB ∧ LA = 0 in components reads:

dLH = −1

2
L a

P L a
K − 1

4
L̄−γ0L− − 1

4
L̄+γ0L+ , dL a

P = 2L b
P L ab

M ,

dLZ = −1

2
L̄+γ0L+ +

1

2
L̄−γ0L− , dL a

K = 2L b
K L ab

M ,

dL− =
1

2
γabL− L ab

M , dL+ =
1

2
γabL+ L ab

M ,

dL ab
M = 2L ca

M L cb
M .

(4.5)

4.2 Superparticle Action and Kappa Symmetry

To construct the action of the N = 2 Carrollian superparticle we consider the following

coset:
G

H
=

N = 2 super Carroll

SO(D-1)
. (4.6)

The coset element is given by g = g0 U, where g0 = eHtePaxa

eQ−

α
θα

−eQ+
α

θα

+eZs is the coset

representing the ‘empty’ N = 2 Carroll superspace with a central charge extension and

U = eKava

is a general Carroll boost representing the insertion of the particle.

The Maurer-Cartan form associated to the super-Carroll space is given by

Ω0 = (g0)−1dg0 = HE0 + PaEa − Q̄−E− − Q̄+E+ + ZEZ , (4.7)

where (E0, Ea, E−α, E+α, EZ) are the supervielbein components of the Carroll superspace

given explicitly by

E0 = dt − 1

4
θ̄−γ0dθ− − 1

4
θ̄+γ0dθ+ , Ea = dxa ,

E−α = dθ−α , E+α = dθ+α ,

EZ = ds +
1

2
θ̄−γ0dθ− − 1

2
θ̄+γ0dθ+ .

(4.8)

In terms of the supervielbein the Maurer-Cartan form of the N = 2 Carroll superparticle

is given by

LH = E0 +
1

2
vaEa , La

P = Ea ,

LZ = EZ , La
K = dva ,

L−α = E−α , L+α = E+α .

(4.9)

As before, we can write the space-time super-translations in matrix form in terms of the

Vielbein of Carroll superspace as follows:

(

LH , LP
a, L−α, L+α, LZ

)

=
(

E0, Ea, E−α, E+α, EZ

)

















1 0 0 0 0
1
2va 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

















.

(4.10)
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The action of the N = 2 Carrollian superparticle is given by the pull-back of all the L’s

that are invariant under rotations:

S = a

∫

(LH)∗ + b

∫

(LZ)∗

= a

∫

dτ

(

ṫ − 1

4
θ̄−γ0θ̇− − 1

4
θ̄+γ0θ̇+ +

1

2
vaẋa

)

+ b

∫

dτ

(

ṡ +
1

2
θ̄−γ0θ̇− − 1

2
θ̄+γ0θ̇+

)

.

(4.11)

The equations of motion corresponding to this action are given by

ẋa = 0 , v̇a = 0 , θ̇− = 0 , θ̇+ = 0 . (4.12)

The transformation rules for the coordinates with constant parameters (ζ, η, ai, λi, λi
j,

ǫ+, ǫ−) corresponding to time translations, Z transformations, spatial translations, boosts,

rotations and supersymmetry transformations, respectively, are given by

δt = −ζ +
1

2
λixi +

1

4
ǭ−γ0θ− +

1

4
ǭ+γ0θ+ , δxi = −ai − 2λi

j xj ,

δs = −η − 1

2
ǭ−γ0θ− +

1

2
ǭ+γ0θ+ , δvi = −λi − 2λi

j vj ,

δθ+ = −1

2
λabγabθ+ + ǫ+ , δθ− = −1

2
λabγabθ− + ǫ− .

(4.13)

To derive an action that is invariant under additional κ-transformations we need to find

a fermionic gauge-transformation that leaves LH and/or LZ invariant. The variation of LH

and LZ under gauge-transformations is given by

δLH = d([δzH ]) +
1

2
La

P [δza
K ] +

1

2
La

K [δza
P ] +

1

2
L̄−γ0[δz−] +

1

2
L̄+γ0[δz+] ,

δLZ = d([δzZ ]) − L̄−γ0[δz−] + L̄+γ0[δz+] .

(4.14)

where [δza
K ] is obtained from LH by changing the 1-forms dt, dθ+, dθ− with the transfor-

mations δt, δθ+, δθ−. In analogous way we can construct the other terms appearing in

(4.14).

For κ-transformations, [δzH ] = 0, [δza
K ] = 0, [δza

P ] = 0,

0 = δLH =
1

2
δθ̄−γ0[δz−] +

1

2
δθ̄+γ0[δz+] ,

0 = δLZ = −δθ̄−γ0[δz−] + δθ̄+γ0[δz+] .
(4.15)

It follows that to obtain a κ-symmetric action we need to take b = ±1
2a. We focus here on

the case b = −1
2a. With this choice the action and κ-symmetry rules are given by

S = a

∫

(LH − 1

2
LZ)∗ , [δz+] = κ , [δz−] = 0 , (4.16)

where κ = κ(τ) is an arbitrary local parameter. Using this we find the following κ-

transformations of the coordinates

δt =
1

4
θ̄+γ0κ , δxa = 0 , δθ+ = κ ,

δs =
1

2
θ̄+γ0κ , δva = 0 , δθ− = 0 .

(4.17)
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After fixing the κ-symmetry, by imposing the gauge condition θ+ = 0, the action reduces

to

S = a

∫

dτ

(

ṫ − 1

2
ṡ − 1

2
θ̄−γ0θ̇− +

1

2
vaẋa

)

. (4.18)

The residual transformations that leave this action invariant are given by

δt = −ζ +
1

2
λixi +

1

4
ǭ−γ0θ− , δxi = −ai − 2λi

j xj ,

δs = −η − 1

2
ǭ−γ0θ− , δvi = −λi − 2λi

j vj ,

δθ− = −1

2
λabγabθ− + ǫ− .

(4.19)

The linearly realized supersymmetry acts trivially on all the fields and therefore the N = 2

Super Carroll particle reduces to the N = 1 Super Carroll particle and hence is not BPS

since the kappa-symmetry eliminates the linearized supersymmetry. This is different from

the N = 2 Super Galilei case were BPS particles do exist.

5 Discussion and Outlook

In this paper we have investigated the geometry of the flat and curved (AdS) Carroll space

both in the bosonic as well as in the supersymmetric case. We furthermore have analyzed

the symmetries of a particle moving in such a space. In the bosonic case we constructed the

Vielbein and spin connection of the AdS Carroll (AC) space which shows that this space

is torsionless with constant (negative) curvature. We constructed the action of a massive

particle moving in this space thereby extending the flat case analysis of [28]. Like in the

flat case, we found that the AC particle does not move. However, in the curved case the

momenta are not conserved. Particles moving in a Carroll space, whether flat or curved, do

not have a relation among their velocities and momenta.

Using the symmetries of the AC particle we have computed the Killing equations of the

AC space. We found that these Killing equations allow an infinite-dimensional algebra of

symmetries that, unlike in the flat case, does not include dilatations. Another difference with

the flat case is that there is no duality between the Newton-Hooke and AdS Carroll algebras.

Furthermore, in the curved case the mass-shell constraint depends on the coordinates of the

AC space.

In the second part of this paper we have extended our investigations to the supersym-

metric case. Unlike the bosonic case, the N = 1 AC superspace has torsion with constant

curvature due to the presence of fermions. Like in the bosonic case, we found that the N = 1

AC superparticle does not move and the momenta are conserved. We have constructed the

super-Killing equations and showed that the symmetries form an infinite dimensional su-

peralgebra. After taking the flat limit we found that among the symmetries of the N = 1

Carroll superparticle we have a supersymmetric extension of the Lifshitz Carroll algebra [30]

with dynamical exponent z = 0. The bosonic part of this algebra has appeared as a sym-

metry of warped conformal field theories [22].

We also showed that the N = 2 Carroll superparticle has a fermionic kappa-symmetry

such that, when this gauge symmetry is fixed, the N = 2 Carroll superparticle reduces
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to the N = 1 Carroll superparticle. Apparently, in flat Carroll superspace the number of

supersymmetries is not physically relevant. This is due to the fact that the kappa gauge

symmetry neutralizes the extra linear supersymmetries beyond N = 1. Unlike the bosonic

case, there is no duality between the N = 2 Super Galilei and Super Carroll algebras.

In a separate appendix we investigated the N = 2 AC superparticle 8. We studied the so-

called (2,0) and (1,1) super-Carroll spaces and the corresponding superparticles. Physically,

the (2,0) and (1,1) cases are different, they have unequal degrees of freedom. For instance,

only the (2,0) superparticle has a kappa-symmetry. Apparently, for the AC superparticle

the type of supersymmetry one considers does make a difference.

As a possible continuation to the ideas presented in this paper it would be interesting

to find the coupling of the AdS Carroll particle, and the corresponding superparticle, to

the (super) AdS gauge fields. Like in the flat Carroll case [28] we expect that the (super)

particle will have a non-trivial dynamics.

Finally, it would be interesting to study if one could construct the corresponding Carroll

(super) gravity theory. There are two approaches to this issue. One approach is to gauge

the (super) Carroll algebra and/or the Lifhsitz Carroll algebra with z = 0. In this respect

we note that the gauging of the Carroll algebra as performed in [28] can be improved by

imposing curvature constraints that allow to set some of the spin-connection fields equal to

zero, like in [22], instead of trying to solve for all of the spin-connection fields. It would

be interesting to apply this improved gauging technique to the other algebras as well. A

second alternative approach would be to try to define an ultra-relativistic limit of relativistic

(super-)gravity similar to the non-relativistic limit.
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A The Carroll action as a Limit of the AdS action

In this appendix we show how to obtain the action of the D-dimensional free AdS Carroll

particle starting from the massive particle moving in an D-dimensional AdS spacetime and

to take the Carroll limit. The canonical form of the action before taking the limit is given

by

S =

∫

dτ [pµẋµ − ẽ

2
(gµνpµpν + m2)] , (A.1)

where τ is the evolution parameter, gµν is the metric of an AdS space and ẽ is a Lagrange

multiplier. We use that the signature of the metric is (−, +, +, . . .) and that the AdS line

element is given by

ds2 = − cosh2 x

R
(dx0)2 +

R2

x2
sinh2 x

R
(dxa)2 −

(

R2

x2
sinh2 x

R
− 1

)

(dx)2 , (A.2)

where x =
√

xaxa. To take the Carroll limit we first consider a re-scaling of the variables

x0 =
t

ω
, p0 = ωE , m = ωM , ẽ = − e

ω2
, (A.3)

and next take the limit ω → ∞ to obtain

S =

∫

dτ [−Eṫ + paẋa − e

2
(E2 − M2 cosh2 x

R
)] . (A.4)

The equations of motion are given by

ṫ = −eE , Ė = 0 ,

ẋa = 0 , ṗa =
eM2

Rx
xa cosh

x

R
sinh

x

R
,

ė = λ , πe = −1

2
(E2 − M2 cosh2 x

R
) .

(A.5)

Note that although the dynamics of x is trivial, i.e. ẋa = 0 (the particle is not changing

its position), the momentum is changing over τ because ṗa 6= 0. In the flat limit (the limit

when R → ∞) the particle is at rest and does not move.

Finally, the mass-shell constraint reads

E2 − M2 cosh2 x

R
= 0 . (A.6)

B The super-AdS Carroll action as a limit of the super-AdS

action

In the supersymmetric case, we obtain the action of the free AdS Carroll superparticle

starting from the massive superparticle moving in an AdS spacetime whose action is given

by

S =

∫

dτ [ẋµpµ + ¯̇φPφ − ẽ

2
(gµνpµpν + m2) + (P̄φ + gµνpµφ̄γν)λ] , (B.1)
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where gµν is the AdS metric with line element given by eq. (A.2). Rescaling the variables

as

x0 =
t

ω
, p0 = ωE , m = ωM , ẽ = − e

ω2
,

φ =
1√
ω

θ , Pφ =
√

ω Pθ , λ =
1√
ω

ρ ,
(B.2)

allows us to take the Carroll limit with ω → ∞ to obtain

S =

∫

dτ [−ṫE + ẋapa + ¯̇θPθ − e

2

(

E2 − M2 cosh2 x

R

)

+ (P̄θ cosh
x

R
+ E θ̄γ0)ρ] . (B.3)

The primary equations of motion are

ṫ = −eE − θ̄γ0ρ , Ė = 0 ,

ẋa = 0 , ṗa =
eM2

Rx
xa cosh

x

R
sinh

x

R
− 1

xR
xa sinh

x

R
P̄θρ ,

ė = λ , πe = −1

2
(E2 − M2 cosh2 x

R
) ,

θ̇ = − cosh
x

R
ρ , ¯̇Pθ = −E ρ̄γ0 ,

ρ̇ = −Λ , ¯̇Πρ = P̄θ cosh
x

R
+ E θ̄γ0 .

(B.4)

After requiring the stability of all the constraints we obtain the equations of motion (3.12).

Like in the bosonic case we find that the dynamics of x is trivial, ẋa = 0 (the particle is not

changing its position), but that the momentum is changing over τ because ṗa 6= 0.

C The 3D N = 2 AdS Carroll Superparticle

There are two independent versions of the 3D N = 2 AdS algebra, the so-called N = (1, 1)

and N = (2, 0) algebras. Correspondingly, there are two possible N = 2 AdS Carroll

superalgebras which we consider below.

C.1 The N = (2, 0) AdS Carroll Superalgebra

We will start with the contraction of the 3D N = (2, 0) AdS algebra. The basic commutators

are given by (A = 0, 1, 2; i = 1, 2)

[MAB , MCD] = 2ηA[CMD]B − 2ηB[CMD]A , [MAB , Qi] = −1

2
γABQi ,

[MAB , PC ] = 2ηC[BPA] , [PA, Qi] = xγAQi ,

[PA, PB ] = 4x2MAB , [R, Qi] = 2xǫijQj ,

{Qi
α, Qj

β} = 2[γAC−1]αβPAδij + 2x[γABC−1]αβMABδij + 2[C−1]αβǫijR .

(C.1)

Here PA, MAB , R and Qi
α are the generators of space-time translations, Lorentz rotations,

SO(2) R-symmetry transformations and supersymmetry transformations, respectively. The

bosonic generators PA, MAB and R are anti-hermitian while de fermionic generators Qi
α

are hermitian. The parameter x = 1/(2R), with R being the AdS radius. Note that the

24



generator of the SO(2) R-symmetry becomes the central element of the Poincaré algebra in

the flat limit x → 0.

To take the Carroll contraction we define new supersymmetry charges by

Q±
α =

1

2
(Q1

α ± γ0Q2
α) (C.2)

and rescale the generators with a parameter ω as follows:

P0 =
ω

2
H , R = ωZ , Ma0 = ωKa , Q± =

√
ωQ̃± . (C.3)

Taking the limit ω → ∞ and dropping the tildes on the Q± we get the following 3D

N = (2, 0) Carroll superalgebra:

[Mab, Pc] = 2δc[bPa] , [Mab, Kc] = 2δc[bKa] ,

[Pa, Pb] =
1

R2
Mab , [Pa, Kb] =

1

2
δabH , [Pa, H] =

2

R2
Ka

[Pa, Q±] =
1

2R
γaQ∓ , [Mab, Q±] = −1

2
γabQ

± ,

{Q+
α , Q+

β } =
1

2
[γ0C−1]αβ (H + 2Z) , {Q−

α , Q−
β } =

1

2
[γ0C−1]αβ (H − 2Z) ,

{Q+
α , Q−

β } =
1

R
[γa0C−1]αβKa .

(C.4)

In components the Maurer-Cartan equation dLC − 1
2 fC

ABLBLA = 0 reads as follows:

dLH = − 1

2
L a

P L a
K − 1

4
L̄−γ0L− − 1

4
L̄+γ0L+ , dL a

P = 2L b
P L ab

M ,

dL a
K =2L b

K L ab
M +

2

R2
LHLP

a − 1

R
L̄−γa0L+ , dLZ = −1

2
L̄+γ0L+ +

1

2
L̄−γ0L− ,

dL− =
1

2
γabL− L ab

M − 1

2R
γaL+LP

a , dL+ =
1

2
γabL+ L ab

M − 1

2R
γaL−LP

a ,

dL ab
M =2L ca

M L cb
M +

1

2R2
LP

bLP
a .

(C.5)

C.2 Superparticle action

We use the algebra (C.4) to construct the action of the N = 2 Carrollian superparticle.

The coset that we will consider is

G

H
=

N = (2, 0) AdS Carroll

SO(D-1)
, (C.6)

with the coset element g = g0 U, where g0 = eHtePaxa

eQ−

α
θα

−eQ+
α

θα

+eZs is the coset represent-

ing the N = (2, 0) Carroll superspace with a central charge extension and U = eKava

is a

general Carroll boost that represents the superparticle.

The Maurer-Cartan form associated to the super-Carroll space is given by

Ω0 = (g0)−1dg0 = HE0 + PaEa + Kaωa0 + Mabω
ab − Q̄−E− − Q̄+E+ + ZEZ , (C.7)
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where (E0, Ea, E−α, E+α, EZ) and (ωa0, ωab) are the supervielbein and the spin connection

of the Carroll superspace which are given explicitly by

E0 = dt cosh
x

R
− 1

4
(θ̄−γ0dθ− + θ̄+γ0dθ+) − 1

4
ωab(θ̄+γabγ

0θ+ + θ̄−γabγ
0θ−)

+
1

4R
θ̄−γa0θ+Ea ,

Ea =
R

x
dxa sinh

x

R
+

1

x2
xaxbdxb

(

1 − R

x
sinh

x

R

)

,

ωa0 = − 2

xR
dtxa sinh

x

R
− 1

R
θ̄+γa0dθ− − 1

4R2
(θ̄+γabγ

0θ+ + θ̄−γabγ
0θ−)Eb

− 1

R
ωbcθ̄−γbcγ

a0θ+ ,

ωab =
1

2x2
(xbdxa − xadxb)

(

cosh
x

R
− 1

)

,

E−α = [dθ−]α − 1

2R
[γaθ+]αEa +

1

2
ωab[γabθ−]α ,

E+α = [dθ+]α − 1

2R
[γaθ−]αEa +

1

2
ωab[γabθ+]α ,

EZ = ds +
1

2
θ̄−γ0dθ− − 1

2
θ̄+γ0dθ+

− 1

2
ωab(θ̄+γabγ

0θ+ + θ̄−γabγ
0θ−) +

1

2R
θ̄−γa0θ+Ea .

(C.8)

We can use the supervielbein to write the Maurer-Cartan form of the N = (2, 0) Carroll

superparticle as follows:

LH = E0 +
1

2
vaEa , La

P = Ea ,

La
K = ωa0 + dva + 2vb ωab , LZ = EZ ,

L−α = E−α , L+α = E+α .

(C.9)
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C.3 Global Symmetries and Kappa symmetry

The action of the Carrollian superparticle is given by the pull-back of all L’s that are

invariant under rotations:

S = a

∫

(LH)∗ + b

∫

(LZ)∗

= a

∫

dτ

(

ṫ cosh
x

R
+

R

2x
vaẋa sinh

x

R
+

1

2x2
xbvbxaẋa

(

1 − R

x
sinh

x

R

)

− 1

4
θ̄−γ0θ̇− − 1

4
θ̄+γ0θ̇+ − 1

8x2
xbẋa(θ̄+γabγ

0θ+ + θ̄−γabγ
0θ−)

(

cosh
x

R
− 1

)

+
1

4x
θ̄−γa0θ+

[

ẋa sinh
x

R
+

1

Rx
xaxbẋ

b
(

1 − R

x
sinh

x

R

)]

)

+ b

∫

dτ

(

ṡ +
1

2
θ̄−γ0θ̇− − 1

2
θ̄+γ0θ̇+ − 1

4x2
xbẋa(θ̄+γabγ

0θ+ − θ̄−γabγ
0θ−)

(

cosh
x

R
− 1

)

+
1

2x
θ̄−γa0θ+

[

ẋa sinh
x

R
+

1

Rx
xaxbẋ

b
(

1 − R

x
sinh

x

R

)]

)

,

(C.10)

which is invariant under the following bosonic transformation rules for the coordinates with

constant parameters (ζ, η, ai, λi, λi
j) corresponding to time translations, Z transformations,

spatial translations, boosts, rotations, respectively

δt = −ζ +
R

2x
λkxk tanh

x

R
+

t

Rx
akxk tanh

x

R
,

δxi = − 1

x2

(

xiakxk − x

R
coth

x

R
(xiakxk − aix2)

)

− 2λi
k xk ,

δs = −η ,

δvi = −λi − 1

x2
λkxkxisech

x

R

(

1 − cosh
x

R

)

− 2λi
j vj

− 2t

R2
ai − 2t

R2x2
xiakxk sech

x

R

(

1 − cosh
x

R

)

+
2

Rx
vba

[ixb]csch
x

R

(

1 − cosh
x

R

)

,

δθ+ = −1

2
λabγabθ+ +

1

2Rx
akxbγkbθ−csch

x

R

(

1 − cosh
x

R

)

,

δθ− = −1

2
λabγabθ− +

1

2Rx
akxbγkbθ+csch

x

R

(

1 − cosh
x

R

)

.

(C.11)
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The same action is invariant under fermionic transformation rules with constant parameters

(ǫ+, ǫ−) corresponding to the supersymmetry transformations

δt =
1

4
ǭ+γ0θ+sech

x

R
cosh

x

2R
− 1

4x
xk ǭ+γk0θ−sech

x

R
sinh

x

2R

+
1

4
ǭ−γ0θ−sech

x

R
cosh

x

2R
− 1

4x
xk ǭ−γk0θ+sech

x

R
sinh

x

2R
,

δxi = 0 ,

δvi =
1

Rx
xiǭ+γ0θ+

(1

2
tanh

x

R
cosh

x

2R
− 2 sinh

x

2R

)

+
1

R
ǭ+γi0θ− cosh

x

2R

− 1

2Rx2
xixk ǭ+γk0θ− tanh

x

R
sinh

x

2R

+
1

2Rx
xiǭ−γ0θ− tanh

x

R
cosh

x

2R
− 1

Rx
xbǭ−γbγ

i0θ− sinh
x

2R

− 1

2Rx2
xixk ǭ−γk0θ+ tanh

x

R
sinh

x

2R
,

δs =
1

2
ǭ+γ0θ+ cosh

x

2R
+

1

2x
xkǭ+γk0θ− sinh

x

2R

− 1

2
ǭ−γ0θ− cosh

x

2R
− 1

2x
xk ǭ−γk0θ+ sinh

x

2R
,

δθ+ = ǫ+ cosh
x

2R
+

1

x
xkγkǫ− sinh

x

2R
,

δθ− = ǫ− cosh
x

2R
+

1

x
xkγkǫ+ sinh

x

2R
.

(C.12)

To derive an action that is invariant under κ-transformations we need to find a fermionic

gauge-transformation that leaves LH and/or LZ invariant. The variation of LH and LZ

under gauge-transformations are given by

δLH = d([δzH ]) +
1

2
La

P [δza
K ] +

1

2
La

K [δza
P ] +

1

2
L̄−γ0[δz−] +

1

2
L̄+γ0[δz+] ,

δLZ = d([δzZ ]) − L̄−γ0[δz−] + L̄+γ0[δz+] ,

(C.13)

where, for example, [δza
K ] is obtained from LH by changing the 1-forms dt, dθ+, dθ− with

the transformations δt, δθ+, δθ−. For κ-transformations we have [δzH ] = 0, [δza
K ] = 0,

[δza
P ] = 0 and hence we find

δLH =
1

2
δθ̄−γ0[δz−] +

1

2
δθ̄+γ0[δz+] ,

δLZ = −δθ̄−γ0[δz−] + δθ̄+γ0[δz+] .

(C.14)

It follows that to obtain a κ-symmetric action we need to take the pull-back of either LH

or LZ , with b = ±1
2a. We focus here on the case b = −1

2a. For this choice the action and

κ-symmetry rules are given by

S = a

∫

(LH − 1

2
LZ)∗ , [δz+] = κ , [δz−] = 0 , (C.15)
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where κ = κ(τ) is an arbitrary local parameter. Using this we find the following κ-

transformations of the coordinates

δt =
1

4
sech

x

R
θ̄+γ0κ , δxa = 0 , δθ+ = κ ,

δs =
1

2
θ̄+γ0κ , δva =

1

2Rx
xaθ̄+γ0κ tanh

x

R
, δθ− = 0 .

(C.16)

After κ-gauge fixing (setting θ+ = 0) the action reads

S = a

∫

dτ

(

ṫ cosh
x

R
− 1

2
ṡ +

R

2x
vaẋa sinh

x

R
+

1

2x2
xbvbxaẋa

(

1 − R

x
sinh

x

R

)

−1

2
θ̄−γ0θ̇− − 1

4x2
xbẋaθ̄−γabγ

0θ−

(

cosh
x

R
− 1

)

)

.

(C.17)

This action is invariant under the following transformation rules

δt = − 1

4x
xk ǭ+γk0θ−sech

x

R
sinh

x

2R
+

1

4
ǭ−γ0θ−sech

x

R
cosh

x

2R
,

δxi = 0 ,

δvi =
1

R
ǭ+γi0θ− cosh

x

2R
− 1

2Rx2
xixk ǭ+γk0θ− tanh

x

R
sinh

x

2R

+
1

2Rx
xiǭ−γ0θ− tanh

x

R
cosh

x

2R
− 1

Rx
xbǭ−γbγ

i0θ− sinh
x

2R

δs = − 1

2x
xk ǭ+γk0θ− sinh

x

2R
− 1

2
ǭ−γ0θ− cosh

x

2R
,

δθ− = ǫ− cosh
x

2R
+

1

x
xkγkǫ+ sinh

x

2R
.

(C.18)

C.4 The N = (1, 1) AdS Carroll Superalgebra

We now consider the 3D N = (1, 1) anti-de Sitter algebra which is given by

[MAB , MCD] = 2ηA[CMD]B − 2ηB[CMD]A , [MAB , Q±] = −1

2
γABQ± ,

[MAB , PC ] = 2ηC[BPA] , [PA, Q±] = ±xγAQ± ,

{Q±
α , Q±

β } = 4[γAC−1]αβPA ± 4x[γABC−1]αβMAB , [PA, PB ] = 4x2MAB .

(C.19)

Here PA, MAB and Q±
α are the generators of space-time translations, Lorentz rotations and

supersymmetry transformations, respectively. The bosonic generators PA and MAB are

anti-hermitian while de fermionic generators Q±
α are hermitian. Like in the previous case,

the parameter x = 1/(2R) is a contraction parameter.

To make the Carroll contraction we rescale the generators with a parameter ω as follows:

P0 =
ω

2
H , Ma0 = ωKa , Q± =

√
ωQ̃± . (C.20)

Taking the limit ω → ∞ and dropping the tildes on the Q± we get the following 3D
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N = (1, 1) Carroll superalgebra:

[Mab, Pc] = 2δc[bPa] , [Mab, Kc] = 2δc[bKa] ,

[Pa, Pb] =
1

R2
Mab , [Pa, Kb] =

1

2
δabH , [Pa, H] =

2

R2
Ka

[Pa, Q±] = ± 1

2R
γaQ± , [Mab, Q±] = −1

2
γabQ

± ,

{Q±
α , Q±

β } = 2[γ0C−1]H ± 4

R
[γa0C−1]αβKa .

(C.21)

The corresponing componetns of the Maurer-Cartan equation dLC − 1
2 fC

ABLBLA = 0 are

given by

dLH = −1

2
L a

P L a
K − L̄+γ0L+ − L̄−γ0L− ,

dL a
P = 2L b

P L ab
M ,

dL a
K = 2L b

K L ab
M +

2

R2
LHLP

a − 2

R
L̄+γa0L+ +

2

R
L̄−γa0L− ,

dL ab
M = 2L ca

M L cb
M +

1

2R2
LP

bLP
a ,

dL+ =
1

2
γabL+ L ab

M − 1

2R
γaL+LP

a ,

dL− =
1

2
γabL− L ab

M +
1

2R
γaL−LP

a .

(C.22)

C.5 Superparticle Action

Taking the algebra (C.21) we consider the following coset

G

H
=

N = (1, 1) AdS Carroll

SO(D-1)
. (C.23)

The coset element is g = g0 U, where g0 = eHtePaxa

eQ−

α
θα

−eQ+
α

θα

+ is the coset representing

the N = (1, 1) Carroll superspace and U = eKava

is a general Carroll boost representing

the insertion of the superparticle..

The Maurer-Cartan form associated to the super-Carroll space is given by

Ω0 = (g0)−1dg0 = HE0 + PaEa + Kaωa0 + Mabω
ab − Q̄−E− − Q̄+E+ , (C.24)

where (E0, Ea, E−α, E+α) and (ωa0, ωab) are the supervielbein and the spin connection of
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the Carroll superspace:

E0 = dt cosh
x

R
− θ̄−γ0dθ− − θ̄+γ0dθ+ − ωab(θ̄+γabγ

0θ+ + θ̄−γabγ
0θ−) ,

Ea =
R

x
dxa sinh

x

R
+

1

x2
xaxbdxb

(

1 − R

x
sinh

x

R

)

,

ωa0 = − 2

xR
dtxa sinh

x

R
− 1

R2
(θ̄+γabγ

0θ+ + θ̄−γabγ
0θ−)Eb

− 2

R
(θ̄+γa0dθ+ − θ̄−γa0dθ−) ,

ωab =
1

2x2
(xbdxa − xadxb)

(

cosh
x

R
− 1

)

,

E−α = [dθ−]α +
1

2R
[γaθ−]αEa +

1

2
ωab[γabθ−]α ,

E+α = [dθ+]α − 1

2R
[γaθ+]αEa +

1

2
ωab[γabθ+]α .

(C.25)

We can use the supervielbein to write the Maurer-Cartan form of the N = (1, 1) Carroll

superparticle as follows:

LH = E0 +
1

2
vaEa , La

P = Ea ,

La
K = ωa0 + dva + 2vb ωab ,

L−α = E−α , L+α = E+α .

(C.26)

C.6 Global Symmetries

The action of the Carrollian superparticle is given by the pull-back of all L’s that are

invariant under rotations:

S = M

∫

(LH)∗

= M

∫

dτ

(

ṫ cosh
x

R
+

R

2x
vaẋa sinh

x

R
+

1

2x2
xbvbxaẋa

(

1 − R

x
sinh

x

R

)

−θ̄−γ0θ̇− − θ̄+γ0θ̇+ − 1

2x2
xbẋa(θ̄+γabγ

0θ+ + θ̄−γabγ
0θ−)

(

cosh
x

R
− 1

)

)

.

(C.27)

This action is invariant under the following bosonic transformation rules for the coordi-

nates with constant parameters (ζ, ai, λi, λi
j) corresponding to time translations, spatial
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translations, boosts and rotations, respectively

δt = −ζ +
R

2x
λkxk tanh

x

R
+

t

Rx
akxk tanh

x

R
,

δxi = − 1

x2

(

xiakxk − x

R
coth

x

R
(xiakxk − aix2)

)

− 2λi
k xk ,

δvi = −λi − 1

x2
λkxkxisech

x

R

(

1 − cosh
x

R

)

− 2λi
j vj

− 2t

R2
ai − 2t

R2x2
xiakxk sech

x

R

(

1 − cosh
x

R

)

+
2

Rx
vba

[ixb]csch
x

R

(

1 − cosh
x

R

)

,

δθ+ = −1

2
λabγabθ+ +

1

2Rx
akxbγkbθ+csch

x

R

(

1 − cosh
x

R

)

,

δθ− = −1

2
λabγabθ− +

1

2Rx
akxbγkbθ−csch

x

R

(

1 − cosh
x

R

)

.

(C.28)

The same action is invariant inder the following fermionic transformation rules with constant

parameters (ǫ+, ǫ−) corresponding to supersymmetry transformations:

δt = ǭ+γ0θ+sech
x

R
cosh

x

2R
− 1

x
xkǭ+γk0θ+sech

x

R
sinh

x

2R

+ ǭ−γ0θ−sech
x

R
cosh

x

2R
+

1

x
xk ǭ−γk0θ−sech

x

R
sinh

x

2R
,

δxi = 0 ,

δvi =
2

R
ǭ+γi0θ+ cosh

x

2R
− 2

Rx
xkǭ+γkγi0θ+ sinh

x

2R

+
2

xR
xi tanh

x

R

(

ǭ+γ0θ+ cosh
x

2R
− 1

x
xkǭ+γk0θ+ sinh

x

2R

)

− 2

R
ǭ−γi0θ− cosh

x

2R
− 2

Rx
xk ǭ−γkγi0θ− sinh

x

2R

+
2

xR
xi tanh

x

R

(

ǭ−γ0θ− cosh
x

2R
+

1

x
xkǭ−γk0θ− sinh

x
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)

δθ+ = ǫ+ cosh
x

2R
+

1

x
xkγkǫ+ sinh

x

2R
,

δθ− = ǫ− cosh
x

2R
− 1

x
xkγkǫ− sinh

x

2R
.

(C.29)
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