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ABSTRACT 

 A new family of two-dimensional carbon allotropes is presented, based on graphene 

stripes linked to each other by acetylenic connections. The large amount of allowed 

connectivities demands for a family name to them: Grazynes. The present study reports 

the energetic, structural, elastic, and electronic physicochemical properties of a set of 

simple grazynes by means of density functional theory based calculations, suggesting 

also possible synthetic routes. The main results conclude that these are exotic yet stable 

materials, stiffer than graphene in the acetylenic direction, highly anisotropic, and with 

the presence of Dirac points in the reciprocal space along the graphene stripes direction 

resistant to strain, regardless of its direction. Thus, grazynes infer directionality in 

electron conductivity and resilience to the materials stretching/compression, quite 

important, for instance, in the nanoelectronics applicability point of view. 
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1. INTRODUCTION 

The last decade has witnessed the bloom of C-based two-dimensional (2D) materials,1 

mostly leaded by graphene,2 and posteriorly followed by other, more exotic 2D carbon 

allotropes, e.g., graphynes,3 graphane,4 and graphone, to name a few.5 The applied 

research on them has even opened the gate towards other few-layered non C-based 

materials.6 Focusing on the 2D Carbon allotropes group, they have become richer in 

their types and diversity, and the forecasted structures experimentally synthesized 

and/or isolated, spurred by theoretical predictions of their appealing properties; see e.g. 

the corroborated larger electrical conductivity of graphynes —2D periodic arrangements 

of C atoms displaying sp and sp2 orbital hybridizations— compared to graphene,7 as 

previously predicted by computational simulations.3  

From the nanoelectronics applicability point of view, it would be highly 

desirable to infer directionality in the electron conductivity of such 2D materials, a 

feature that can be externally inducible, but that can be intrinsically/structurally 

prompted as well, as does happen in anisotropic graphyne structures.3 Directionality 

may also affect other properties, such as compressibility, and this correspondence is de 

facto both ways, as compression/expansion of 2D lattices may affect the network 

structure and, in turn, its electronic structure,8 a critical point in many 2D C-based 

Covalent Organic Frameworks (COFs).9,10 Therefore, 2D carbon allotrope materials 

with inherent anisotropic properties are technologically desirable so as to control and/or 

exploit the elastic/electronic properties at will on a given preferred direction. Here we 

present a new family of 2D carbon allotropes that accomplish this task, to which we 

refer to as grazynes in the following. These allotropes can be also inherently tagged as 

graphynes, given that they contain both sp2 and sp C atoms, although, at variance with 

graphynes, their directional display is inherently determined by the atomic 
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hybridization, a point not achieved in graphynes. As observed in Figure 1, the sp2 

graphenic building blocks, regarded as graphene stripes, are concurrently aligned on a 

given direction, and transversally interlinked by acetylenic building blocks. The vast 

variety of graphene stripe widths and acetylenic lengths as well as the unit cell 

periodicity implies a rich palette of building blocks connectivity, allowing for such 

materials tailoring at will. 

 

 

Figure 1. [n],[1]-grazyne structures with n=1 (left), 2 (middle), and 3 (right). Red lines 

fend the periodic unit cell. Note that the three structures correspond to variable widths 

of graphene stripes and the minimum length of acetylenic linkages (m=1), the last ones 

occurring at each linking position, i.e., with p1=0. 
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Consequently, the grazyne structures —whose proposed name combines 

graphene with acetylenic linkages, with a sonority clear distinguishable from 

graphynes— can be catalogued according to the width of the graphene stripes, which 

can be of [n]-rings (n = 1, 2, 3, …), and to the length of the acetylenic linkages, which 

can be of [m]-CºC units (m = 1, 2, 3, …), along with their alternation in the unit cell 

{p} indicating how many empty linking locations are needed until repetition (e.g., 

[n],[m]{p}-grazyne defines one grazyne with the same graphene stripes, acetylenic 

linkages, and [n1,n2,…],[m1,m2,…]{p1,p2,…}-grazyne defines the alternation of n1 and 

n2 graphene stripes with m1 and m2 acetylenic lengths with alternation p1 and p2). Figure 

1 shows the three grazyne structures studied in the present work (i.e., [1],[1]{0}-

grazyne, [2],[1]{0}-grazyne and [3],[1]{0}-grazyne). As can be seen in Figure 1, and 

for clarity purposes, when the acetylenic bridges occupy all the possible linking 

positions, the {0} index can be omitted. Moreover, Figure 2 shows two grazyne 

structures, one with different alternating graphenic stripes (i.e., [1,3],[1]{0}-grazyne) 

and another where acetylenic linkers do not occupy all the possible linking points (i.e., 

[1,3],[2]{2}-grazyne).  
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Figure 2. Example of [n1,n2],[m1,m2]{p1,p2}-grazyne structures with n1=1 and n2=3 with 

m1=1 (left) and m1=2 (right). The right structure exhibits p1=2 alternation in the 

acetylenic linkages. Red lines fend the periodic unit cell.  

 

 
 
 
 

2. COMPUTATIONAL DETAILS 

Here we have analyzed, by means of first-principles calculations, the three simplest 

grazyne structures (i.e., [1],[1]-grazyne, [2],[1]-grazyne and [3],[1]-grazyne, see Figure 

1) with different graphene stripe width. To this end Density Functional Theory (DFT) 

calculations have been performed, as done previously in the past for graphynes and 

COFs,3,9,10 exploiting the systems periodicity by imposing periodic boundary 

conditions. Two ab initio codes have been employed, the Vienna Ab initio Simulation 

Package (VASP)11 and the Fritz-Haber Institute Ab Initio Molecular Simulation (FHI-

AIMS) Package.12 
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 Optimizations were carried out using VASP where valence electrons are 

explicitly treated,11 whereas core electrons are described by the Projector Augmented 

Wave (PAW) method.13 The kinetic energy cutoff for the plane-wave expansion of the 

valence electron density was set to 850, 1200, and 1050 eV for [1],[1]-, [2],[1]-, and 

[3],[1]-grazynes, respectively. These values are large enough to obtain energies 

converged below 1 meV per unit cell in all cases. Long-range dispersion corrections 

were included through the pairwise D2 force field as developed by Grimme,14 even 

though previous studies highlight the minimum impact that other corrections, such as 

D3, can have on 2D C-based materials, with variations of cell parameters below 0.0001 

Å, and changes in energy below 1 meV,15,16 although one has to keep in mind that the 

use of one or another correction can sensibly influence the stacking of such sheets, or 

their interaction with other material surfaces.16 A vacuum layer of 20 Å was added 

perpendicular to the materials layer direction to prevent any interaction between 

adjacent grazyne layers. All optimizations were carried out spin polarized, given that 

open-shell configurations are energetically reachable in carbon-based 2D Covalent 

Organic Radical Frameworks (CORFs),9,17 although these spin-polarized optimizations 

revealed either non magnetic moments or negligible magnetic moments in the studied 

cases, and so, all posterior single-point calculations were performed non spin-polarized 

to reduce the computational cost.   

The systems were fully relaxed in the grazyne plane with an electronic energy 

convergence criterion of 10-5 eV per unit cell and using a conjugated gradient method 

for the atomic relaxations until the Hellmann-Feynman forces acting on atoms became 

smaller than 0.01 eV·Å-1. Moreover, the cell vectors containing the 2D structure were 

allowed to relax to accommodate the material. After the simultaneous optimization of 

atomic positions and cell vectors, the slight modifications of the vacuum region were 

reset to 20 Å, and ensuring afterwards that both the electronic and atomic convergence 
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criteria were met by carrying out a single-point calculation. Test calculations with a 

stronger optimization criterion (i.e., of 0.001 eV·Å-1) revealed negligible changes of 

only meV. The minimum character of the optimized structures was evaluated by 

vibrational frequency analyses of 0.03 Å, showing in all cases that the optimized 

structures correspond to true minima in the potential energy surface. Further than that, 

atomic out-of-plane displacement of carbon atoms and further relaxations were also 

tested, although the final structures back relaxed to the perfectly planar structures. 

Finally, layer rumplings and other collective deformations were applied and posteriorly 

relaxed, including graphenic or acetylenic rumplings, or both in opposite directions, 

similar to the observed deformations of graphyne upon molecular adsorption upon.18  In 

all cases the same back relaxation to the perfectly planar optimal structures was 

observed, confirming the stability of the structures. 

During the electronic structure calculations, the reciprocal spaces were sampled 

using optimal G-centered Monkhorst-Pack19 k-point grids of 20´20´1, 17´13´1, and 

19´19´1 dimensions for [1],[1]-, [2],[1]-, and [3],[1]-grazynes, respectively, given that 

test calculations with lighter k-point meshes of 13´9´1, 13´3´1, and 13´5´1 

respectively, and a 750 eV cutoff energy yielded converged cohesive energies but cell 

parameter variations of ±0.002 Å and spurious residual magnetic moments of 0.0342 , 

0.0308, and -0.1231 µB, respectively. The grazyne structures have been described within 

the Generalized Gradient Approximation (GGA) for the exchange-correlation 

functional, using for this purpose the functional developed by Perdew, Burke, and 

Ernzerhof (PBE),20 a functional proven to be accurate enough in the description of 

carbon-based materials.3,9 As far as strains along the grazyne sheet directions were 

concerned, the elastic properties were derived from energy calculations performed on 
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the same unit cells depicted in Figure 1, where the a and b cell parameters correspond to 

those located on x- and y- directions, respectively. 

In order to obtain the systems band structures, the geometrical structures were 

optimized again using the seamless parallel FHI-AIMS package,12 where the electron 

density is described with a basis set of Numerical Atomic Orbitals (NAO). The PBE0 

hybrid21 functional has been used including an all electron description and taking into 

account scalar-relativistic effects at the Zero Order Regular Approximation (ZORA) 

level.22 A Tier-1 basis set together with light grid options have been chosen, which is of 

quality similar or even higher than Dunning23 GTO aug-cc-pVDZ.24 Note that the use of 

hybrid PBE0 instead of PBE-D2 prevents the unduly reduction of the materials 

bandgap, if any, as the self-interaction error gets counteracted by the Hartree-Fock 

exchange fraction present in PBE0. The band structures have been computed sampling 

energy bands in the G-X-S-Y quadrant of the bidimensional k-space, see Figure 3, 

evaluating all bands on 200 k-points of each sampled segment of the Brillouin zone. In 

the proximity of Dirac points, Fermi velocities were estimated from energy vs. 

reciprocal length slopes.9 In the case of band structures calculations, a tighter electronic 

energy convergence criterion was applied (10-7 eV). 

 

Figure 3. Paths of the reciprocal k-space evaluated when gaining the grazynes band 

structures.  
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The grazynes energetic stabilities were analyzed by computing the cohesive 

energies once the in-plane cell parameters were optimized. These cohesive energies per 

C atom, 𝐸"#$, were computed according to Equation (1), where 𝐸%  is the total energy of 

the grazyne unit cell, 𝐸&  is the total energy of a carbon atom in its vacuum ground 

electronic state (i.e., in its triplet 3P ground state), and n the number of carbon atoms per 

unit cell. According to this notation, the more positive the Ecoh, the higher the stability. 

  𝐸"#$ =
(∙*+,*-

(
 (1). 

The elastic properties of any 2D material in the linear regime can be described 

by two independent constants; the in-plane stiffness, 𝐶, that characterizes the rigidity or 

the flexibility of the material, and the Poisson’s ratio, 𝜈, which defines the mechanical 

response to an external stress. Most of the materials tend to compress in one direction 

when they are expanded in a perpendicular one. This phenomenon, known as Poisson’s 

effect, can be measured through the ratio of the transverse contraction strain to axial or 

longitudinal expansion strain, namely, the Poisson’s ratio, 

  𝜈 = 	−	234567
25895:

 (2). 

These elastic constants can be deduced from DFT calculations through Equation 

(3), which relates the total energy of the system and the applied strain within the 

harmonic approximation, where 𝐸 is the energy of the system when the strain is applied, 

𝐸; is the energy of the unstrained structure, and 𝜀= and 𝜀> are the applied strains along 

the parallel and perpendicular directions of the graphene stripes of grazynes, 

respectively. 

  𝐸 = 𝑐@𝜀=A + 𝑐A𝜀>A + 𝑐C𝜀=𝜀> + 𝐸; (3). 

Following the procedure described in a previous work of some of us15, the in-

plane stiffness of the material along x and y directions are defined as Equation (4), 
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where 𝑆; is the unstretched area of the cell. Similarly, the Poisson’s ratio of the material 

along x and y directions are defined as Equation (5), respectively. 

  𝐶= = 	
@
EF

2𝑐@ −
"HI

A"I
  ;  𝐶> = 	

@
EF

2𝑐A −
"HI

A"J
 (4), 

  𝜈= = 		
"H
A"I

  ;  𝜈> = 		
"H
A"J

   (5). 

As mentioned above, these equations are only valid for linear elastic regimes up 

to the yield strength, which in the here explored grazynes corresponds to strains in the 

 ±2% range, and by that, contemplating both stretched and compressed situations. At 

larger strains the grazynes behave in a highly anisotropic fashion, and for these cases a 

nonlinear elastic analysis has been done up to the Ultimate Tensile Strength (UTS) 

following the continuum perspective procedure as outlined by Wei and coworkers25 and 

detailed in Section 3.2. 

Finally, outstanding electronic properties such as an extremely high carrier mobility 

and charge transport arise from the presence of Dirac points in a 2D material electronic 

structure, as happens in graphene. Near any Dirac point the electronic energy is linear 

with respect to the vector displacements in the reciprocal space, so the 2D band 

structure in this region can be adjusted by Equation (6). In the case of grazynes, Dirac 

points have been located (see below), and in order to compare their conductivity 

capacity among them, and, also with respect graphene and graphynes, their Fermi 

velocities have been evaluated. 

  E = 	±ℏvO𝐤	 (6). 

 

3. RESULTS AND DISCUSSION 

3.1. Energetic and Structural Properties. Figure 4 shows the DFT PBE-D2 

optimized structures for [n],[m]-grazynes with n = 1, 2, and 3. The corresponding 
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cohesive energies and geometric parameters are listed in Table 1 and Table 2, 

respectively.  

 
Figure 4. DFT PBE-D2 optimized cells for [1],[1]-, [2],[1]-, and [3],[1]-grazynes (left, 

middle, and right, respectively). The sp and sp2 carbon atoms are represented by gray 

and black spheres, respectively. The optimized cell parameters, a and b, are 2.553 Å and 

6.812 Å for [1],[1]-grazyne, 2.526 Å and 17.901 Å for [2],[1]-grazyne, and 2.512 Å and 

11.084 Å for [3],[1]-grazyne, respectively. 
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The geometric parameters obtained by self-consistent PBE optimizations using 

the all electron FHI-AIMS code correspond to nearly identical structures compared to 

VASP optimizations, with deviations in bond lengths no more than 0.01 Å, and energy 

differences below 0.02 eV for the Ecoh. Consequently, in the following, only VASP 

results are discussed for this matter. Notice in Table 1 and Table 2 that cohesive energy 

values for [n],[m]-grazynes are closer to the value of graphene26 rather than to the value 

of graphynes,15 denoting the grazynes stability.  

 

Table 1. DFT cohesive energy at PBE-D2 level for the optimized [n],[1]-grazynes (n = 

1, 2, and 3) structures and other C-based 2D materials. 

 
Ecoh / eV atom-1 

[1],[1]-grazyne 7.36 

[2],[1]-grazyne 7.49 

[3],[1]-grazyne 7.58 

graphene26 7.85 

a-graphyne15 6.93 

b-graphyne15 7.01 

g-graphyne15 7.21 
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Table 2. Bond distances in Å of DFT PBE-D2 optimized [n],[1]-grazynes (n = 1, 2, and 

3) structures. Values for graphene and a-, b-, and g-graphyne are also shown for 

comparison. 

 
d(sp– sp) d(sp2– sp) 

d(sp2– sp2) 

(x-, y-) direction 

[1],[1]-grazyne 1.226 1.383 1.455, 1.423  

[2],[1]-grazyne 1.225 1.385 1.445, 1.424 

[3],[1]-grazyne 1.226 1.385 1.440, 1.424 

graphene26 - - 1.420  

a-graphyne15 1.230 1.395 - 

b-graphyne15 1.232 1.389 1.456 

g-graphyne15 1.222 1.407 1.426 

 

The simplest grazyne structure, the [1],[1]-grazyne is equivalent to the 

previously studied undistorted squarographene structure.27 The present relative stability 

with respect graphene per C atom, dE, is here computed to be 0.49 eV atom-1, which is 

very close to the previously reported value of 0.54 eV atom-1 obtained through Density 

Functional based Tight Binding (DF-TB) simulations. Further than that, the closer 

energetic relative stability found here for grazynes, being in between graphene and 

graphynes, is also in accordance to previous findings.27 As expected, here we found 

that, the higher the n value, the closer to graphene stability is the Ecoh. Notice how, 

ultimately, graphene is only 0.27 eV per C atom more stable than [3],[1]-grazyne.  

It is worth to stress out that other carbon allotropes like graphynes present 

markedly lower cohesive energies (e.g., 6.93, 7.01, and 7.21 eV atom-1 for a-, b-, and g-

graphyne, respectively). These values reinforce the higher stability of [1],[1]-grazyne 

with respect to graphynes, and consequently, their feasibility and stability when 



 15 

synthesized and isolated, as this has been already achieved for the less stable graphyne 

structures.28 Thus, their synthesis becomes only a problem of organic synthesis, 

although a feasible procedure could well start from iodine or bromine capped graphene 

stripes,29 where there is a plethora of procedures to achieve them, either through 

bottom-up or top-down strategies.30 Such halide-capped graphene stripes can be linked 

to acetylenic building blocks through Sonogashira cross-coupling reactions,28 see Figure 

5.  

 

Figure 5. Example of Sonogashira’s cross-coupled reaction in between halide-capped 

graphene stripes and acetylene.  
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Actually, such a procedure can be step-wise controlled by protective 

trimethylsilylacetylene (TMS) endings applied either on the graphene stripes or the 

acetylenic linkages, which offer diverse interesting routes for knitting them.31 However, 

there are other possible synthetic routes. As an example, it is worth highlighting the 

similarities with the bottom-up synthesis of nanoporous graphene, as it resembles the 

here presented grazynes, but with sp2 type of links in between the graphene stripes.32 

Briefly, there, a precursor reactant, namely the diphenyl-10,10’-dibromo-9,9’-

bianthracene (DP-DBBA), was used to create graphene ribbons (stripes) through 

Ullmann coupling and cyclohydrogenation. The resulting graphene stripes were actually 

transversally linked directly through dehydrogenative cross coupling. All in all, the 

above successful synthesis allows stating that, although the grazynes synthesis may 

appear challenging, seems at hand, nevertheless.  

 Leaving the possible synthetic routes apart, and focusing on the grazynes 

geometric structure, as far as the rectangular unit cell parameters (a,b) are concerned, 

their values are 2.553 and 6.812 Å for [1],[1]-grazyne, thus very similar to the 

previously optimized DF-TB values of 2.51 and 6.96 Å, respectively.27 Such a,b values 

are 2.526 and 17.901 Å for [2],[1]-grazyne, and 2.512 and 11.084 Å for [3],[1]-grazyne, 

respectively. These values indicate that the unit cell gets slightly compressed in x- 

direction as the [n] index increases, which could well reflect the fact that the addition of 

a higher proportion of acetylenic linkages may disrupt the graphenic network, 

weakening it, and, by that, forcing its expansion.  

Table 2 shows some bond distances of the optimized structures. The distances 

between sp-sp and between sp2-sp C atoms in [1],[1]-, [2],[1]-, and [3],[1]-grazyne 

structures are in line with the values obtained for a-, b-, and g-graphyne. Indeed, the 

d(sp-sp), d(sp2-sp), d(sp2-sp2) distances of [1],[1]-grazyne of 1.226 Å, 1.383 Å, and 
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1.423-1.455 Å compare well with the previously obtained DF-TB values on undistorted 

squarographene (i.e., 1.236 Å, 1.426 Å and 1.446 Å, respectively). The only possible 

caveat is that DF-TB seems to imply a weaker sp-sp2 bond, as the distance is longer 

than the value obtained using PBE-D2.   

Back to the grazyne family analysis, the d(sp2-sp2) distances are closer to those 

of graphene although two values can be distinguished, depending on the orientation of 

the bond. Thus, bonds in the y- direction (i.e., armchair direction) are graphene like 

bonds and their values, only 0.3 % larger than those in graphene, do not depend on the 

size n of the stripes. Instead, the sp2-sp2 in the x- direction (i.e., zig-zag direction) bonds 

are larger than graphene like bonds and their values are reduced as the size of the stripe 

increases. Thus, zig-zag sp2-sp2 bonds are 2.5%, 1.8%, and 1.4% larger for [1],[1]-, 

[2],[1]-, and [3],[1]-grazynes than in graphene, respectively. 

 

3.2. Elastic Properties. For the above commented structures, we analyzed in detail 

the elastic constants in the linear regime according to Equation (3), thus applying 𝜀= (in 

x- direction) and 𝜀> (in y- direction) strains in the range ±2% to the cells shown in 

Figure 4. To do so the lattice constants were changed with 0.5% steps along both 

directions (i.e., 𝜀= = ∆𝑎/𝑎; and 𝜀> = ∆𝑏/𝑏;, with 𝑎; and 𝑏; being the cell parameters 

corresponding to the minimum energy structure, Figure 4). Thus, a total of 81 DFT 

points were used to fit the previous 𝐸 = 𝐸 𝜀=, 𝜀>  expression (see Table 3). In isotropic 

2D materials, the elastic constants along x and y directions are identical due to the 

symmetry of the lattice. Our calculations show anisotropy in the Poisson’s ratio and the 

in-plane stiffness along x- (parallel direction) and y- (perpendicular direction). This is 

expected given the presence of acetylenic linkages that break the structural symmetry. 

The obtained values of c1, c2, and c3, along with the minimum E0 and the exposed 

surface, S0, are shown in Table 3. 
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Table 3. Fitted parameters for PBE-D2 energy as a function of the strain applied in x- 

and y- directions (𝐸 = 𝑐@𝜀=A + 𝑐A𝜀>A + 𝑐C𝜀=𝜀> + 𝐸;), as applied on [n],[1]-grazynes (n = 

1, 2, and 3) structures, along with the exposed surface area, S0, and the adjustment Root 

Mean Squared Deviation (RMSD).  

Fitted parameters [1],[1]-grazyne [2],[1]-grazyne [3],[1]-grazyne 

𝑐@ / eV 122.12294 358.55816 234.17391 

𝑐A / eV 207.70522 528.08010 321.65298 

𝑐C / eV 47.39527 136.17870 91.93225 

𝐸; / eV -52.39949 -141.85390 -89.47430 

𝑆; / Å2 17.39104 45.21793 27.84301 

RMSD 9.22·10-3 2.05·10-2 1.44·10-2 

 
 

With the adjusted parameters, shown in Table 3, the Poisson’s ratio and the in-

plane stiffness can be obtained, according to Equations (4) and (5), respectively, in a 

straightforward fashion, and these have been gained and gathered in Table 4. From their 

inspection it is interesting to note that [1],[1]- and [2],[1]-grazyne materials are stiffer 

than graphene in y- direction, essentially due to the presence of acetylenic units in this 

direction33,34,35. As the size of the graphenic stripes increases, the in-plane stiffness in 

both directions becomes closer. One would expect that these two values would converge 

towards the graphene value for higher values of n. In the case of Poisson’s ratios, the 

highest value is also obtained in x- direction, with values around 0.19 close to the 

experimental value of graphene25. The in-plane stiffness for [n],[m]-grazynes in both 

directions are also above the values for graphynes36,37 (e.g., 21.98, 73.07, and 165.51 N 

m-1 for a-, b-, and g-graphyne,15 respectively) whereas the Poisson’s ratio values of 

grazynes are below those of graphynes38 (e.g., 0.87, 0.67, and 0.42 for a-, b-, and g-
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graphyne,15 respectively). Our in-plane stiffness values for [1],[1]-grazyne in x- and y-

direction, Cx=220.03 N m-1 and Cy=374.23 N m-1, are in agreement with those reported 

by Sun et al. of Cx=203.5 N m-1 and Cy=351.7 N m-1, respectively.39 

Table 4. Elastic properties (Poisson’s ratio and in-plane stiffness in x- and y- direction) 

for [n],[1]-grazynes (n = 1, 2, and 3). Values for graphene and a-, b-, g-graphyne are 

also shown for comparison. 

 Poisson’s ratio In-plane stiffness / N m-1 

 nx ny Cx Cy 

[1],[1]-grazyne 0.194 0.114 220.03 374.23 

[2],[1]-grazyne 0.190 0.129 247.87 365.06 

[3],[1]-grazyne 0.196 0.143 261.94 359.80 

graphene 0.1815, 0.14933, 

0.16925 

341.0915, 36333, 34736, 

 34034, 34825 

a-graphyne 0.8715, 0.8826, 

0.87433 

21.9815, 2126 

b-graphyne 0.6715 73.0715 

g-graphyne 0.4215, 0.47933, 

0.41736, 0.42937, 

0.41635 

165.5115, 17833, 16636,  

170-22438, 162.126, 166.335 

 

At higher strains grazynes show a clear nonlinear elastic behavior, though. 

Consequently, their nonlinear elastic constants were evaluated using the fourth order 

continuum description of the nonlinear elasticity theory,25 where the material elastic 

properties are determined from the elastic strain energy density, F, quadratic in strain 

for a linear elastic material. To account for the nonlinear elastic behavior F is expanded 

in a Taylor series in terms of powers of strain, as 
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  Φ = @
A!
𝐶XYZ[𝜂XY𝜂Z[ +

@
C!
𝐶XYZ[](𝜂XY𝜂Z[𝜂]( +

@
^!
𝐶XYZ[](#_𝜂XY𝜂Z[𝜂](𝜂#_ + ⋯ (7), 

where lower case subscripts range from 1 to 3, 𝜂XY is the Lagrangian elastic strain, 

related to the true strain by 𝜂 = @
A

𝜀 + 1 A − 1  and C represents each higher-order 

elastic modulus tensor whose rank corresponds to the number of subscripts (i.e., the 

Second-Order Elastic Constants (SOEC), 𝐶XYZ[, and the Third- and the Fourth-Order 

Elastic Constants (TOEC and FOEC, respectively) are given by the components of the 

fourth-, sixth-, and eight-rank tensors, respectively).  

The symmetric second Piola-Kirchoff (P-K) stress tensor, ΣXY, is derived as 

 ΣXY =
cd
ef9g

= 𝐶XYZ[𝜂Z[ +
@
A!
𝐶XYZ[](𝜂Z[𝜂]( +

@
C!
𝐶XYZ[](#_𝜂Z[𝜂](𝜂#_ … (8), 

and employing the Voigt40 notation (i.e., 11®1, 22®2, 33®3, 23®4, 31®5 and 

12®6), both equations can be rewritten as 

 Φ = @
A!
𝐶ij𝜂i𝜂j +

@
C!
𝐶ijk𝜂i𝜂j𝜂k +

@
^!
𝐶ijkl𝜂i𝜂j𝜂k𝜂l + ⋯ (9), 

 Σi =
cd
efm

= 𝐶ij𝜂j +
@
A!
𝐶ijk𝜂j𝜂k +

@
C!
𝐶ijkl𝜂j𝜂k𝜂l + ⋯ (10), 

with an upper-case summation subscript running from 1 to 6. Since the deformed state 

of grazynes has no bending contribution only in-plane stress and strain components can 

be considered (i.e., components with subscripts 1 and/or 2).  

Hence, the mechanical response under uniaxial Lagrangian strain (η) along the x 

direction (i.e., η= = η@ ≥0, η>=	ηA=	ηp=0) can be represented by 

 =@@ 𝑐@@η@ +
@
A
𝑐@@@𝜂@A +

@
p
𝑐@@@@𝜂@C (11), 

 =@A 𝑐@Aη@ +
@
A
𝑐@@A𝜂@A +

@
p
𝑐@@@A𝜂@C (12), 
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whereas, the uniaxial Lagrangian strain (η) along the y direction (i.e., η= = η@ = ηp=0, 

η>=	ηA ≥0) follows, 

 =A@ 𝑐@AηA +
@
A
𝑐@AA𝜂AA +

@
p
𝑐@AAA𝜂AC (13), 

 =AA 𝑐AAηA +
@
A
𝑐AAA𝜂AA +

@
p
𝑐AAAA𝜂AC (14). 

 Finally, the equi-biaxial loading can be represented by 

=qXr=
@ 𝑐@@ + 𝑐@A η +

@
A
𝑐@@@ + 𝑐@AA + 2𝑐@@A ηA +

@
p
𝑐@@@@ + 𝑐@AAA + 3𝑐@@@A +

3𝑐@@AA ηC  (15), 

=qXr=
A 𝑐AA + 𝑐@A η +

@
A
	 𝑐@@A + 𝑐AAA + 2𝑐@AA ηA +

@
p
𝑐@@@A + 𝑐AAAA + 3𝑐@AAA +

3𝑐@@AA ηC  (16). 

From VASP calculations, the true Cauchy stress (𝝈) is obtained at different 

strains. Then, the stress is converted to the second P-K stress Σ through the deformation 

tensor (𝑭) by means of,  

  𝚺 = 𝐽𝑭,@𝝈 𝑭,@ x (17), 

where 𝐽 is the deformation tensor determinant. 

The nonlinear elastic constants were evaluated by performing a least-squares 

fitting of the stress-strain data to Equations (11)-(15). Different magnitudes of uni- and 

biaxial strains in the x- and y-directions were applied on the grazyne cells (see Figure 1 

for cell orientation), dilating the unit cells along the loading direction and applying an 

equal affine transformation to the atomic positions. The deformed cell was posteriorly 

minimized keeping constant the cell dimensions but allowing the atoms relaxing in the 

plane. 
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Figures 6 and 7 show the true stress-strain curves and the second P-K stresses, 

respectively, for the grazyne structures at uniaxial x- and y-strains, along with the equi-

biaxial strain. Figure 7 also shows the best fits obtained for Equations (11)-(15) at 

strains up to the UTS. Under uniaxial strain in x-direction (y-direction) the UTS 

corresponds to 18.93 (29.08), 21.71 (28.50), and 23.44 (28.61) N m-1 for [1],[1]-, 

[2],[1]- and [3],[1]-grazynes, respectively, at η= (η>) = 0.22 (0.17). Thus, grazynes 

withstand higher stresses in the y-direction due to the presence of acetylenic linkages. 

Moreover, increasing the stripes width enables the material resist higher stresses in both 

directions. Table 5 lists the elastic coefficients for the analyzed grazyne structures. 

Obviously, the second order elastic constants obtained here from stress-strain data are 

equivalent to those listed in Table 3 that were obtained in the harmonic analysis of 

strain energy although considering that 𝑐@ =
@
A
𝑐@@, 𝑐A =

@
A
𝑐AA, and 𝑐C = 𝑐@A.  
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Figure 6. True Cauchy stress vs. strains, sx and sy, for [1],[1]- (red circles), [2],[1]- 

(blue squares), and [3],[1]-(green rhombus) grazyne structures for uniaxial tension in x-

direction, 𝜀= (top), uniaxial tension in y-direction, 𝜀> (middle), and equi-biaxial tension, 

𝜀 (bottom). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 24 

 

 

Figure 7. Second Piola-Kirchoff stress vs. lagrangian strain for [1],[1]- (circles), [2],[1]- 

(squares), and [3],[1]- (rhombus) grazyne structures for uniaxial tension in x-direction, 

𝜂@ = 𝜂= (top), uniaxial tension in y-direction, 𝜂A = 𝜂> (middle) and equi-biaxial 

tension, 𝜂 (bottom). Solid lines correspond to the best fits obtained for Equations (11)-

(15). 
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Table 5. Elastic coefficients for [n],[1]-grazynes (n = 1, 2, and 3) structures obtained 

from fitting second Piola-Kirchoff stresses shown in Figure 6 with Equations (11)-(15). 

 

Elastic constants / N m-1 [1],[1]-grazyne [2],[1]-grazyne [3],[1]-grazyne 

SO
EC

 𝑐@@ 225.02 254.09 269.50 

𝑐AA 382.70 374.22 370.18 

𝑐@A 43.66 48.25 52.90 

TO
EC

 

𝑐@@@ -1742.68 -1952.87 -2025.93 

𝑐AAA -2977.22 -3006.33 -2878.45 

𝑐@@A -277.46 -300.02 -353.29 

𝑐@AA -295.33 -348.88 -449.58 

FO
EC

 

𝑐@@@@ 6419.82 7179.95 7259.93 

𝑐AAAA 7609.00 10451.24 8762.75 

𝑐@@@A 717.02 798.60 1097.56 

𝑐@AAA 689.77 1021.10 1916.38 

𝑐@@AA 977.64 240.51 634.52 

 

 

3.3. Electronic Properties. Regarding the electronic properties of the studied 

grazynes, these have been obtained following the k-space paths defined in Figure 3. The 

obtained band structures and the corresponding Density of States (DOS) for [1],[1]-, 

[2],[1]-, and [3],[1]-grazynes are shown in Figure 8.  
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Figure 8. Electronic band structures of [1],[1]-, [2],[1]-, and [3],[1]-grazyne structures 

(top, middle, and bottom, respectively) along with the DOS diagram. Red line delimits 

the Fermi energy, EF, arbitrarily set to zero. 
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It is worth to stress out that, at variance with PBE-D2 and other DFT based 

methods, the employment of PBE0 hybrid functional avoids the known underestimation 

of energy band gaps.9 This fact reinforces the point that the shown Dirac points (or 

Dirac cones) located at Fermi energies, EF, of all the studied grazynes are no artifact of 

the employed methodology. Further than that, despite the band structure sampling is 

done only on particular directions of the reciprocal space, and so, not sampling the full 

k-space, it seems as the found Dirac cones are so, given that the full integration of the 

reciprocal space, as carried out on the projected DOS, reveals a nominally zero density 

of states at Fermi energy. This already implies that the last valence and first conduction 

bands do not cross the Fermi level in other points of the reciprocal space out of the 

explored regions. The present results differ from the previous DF-TB results on 

undistorted squarographene,27 as there, only an open Dirac cone in the X→S path was 

found, with a direct band gap of 0.7 eV. However, in such previous results, a nominally 

zero bandgap was extracted from the DOS. It seems, as the DF-TB was not capable of 

properly describing the peculiarities of such band structures, which unduly lead to the 

description of undistorted squarographene as a semiconductor. The here presented 

PBE0 results show that, regardless of the studied grazyne, Dirac cones are present in 

X→S ([1],[1]- and [3],[1]-grazynes) or Y→G [2],[1]-grazyne) paths. 

The systems feature linear band dispersion in the proximity of the Dirac cones, 

as characteristic of graphene and graphynes. As commented, in two cases they are 

located across the X→S or Y→G paths, which are placed along the graphene stripe 

direction. Indeed, no Dirac cones are featured along the graphyne direction, with just a 

succinct approach of bands near the X point. Therefore, it seems, as the ballistic 

transport is achievable along the graphene stripes channels, but inhibited perpendicular 

to it, pointing for anisotropy in the charge carrier mobility, with fundamental 

implications in oriented nanoelectronic devices.  
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One may wonder whether strain affects the grazynes band structures. To this 

end, the electronic structure has been evaluated for [1],[1]-grazyne when 

compressed/stretched in the elastic region by ±2% along the graphenic (x) and 

acetylenic (y) directions, also considering the uniaxial and biaxial deformations. Figure 

9 shows the results of the original band structure with no deformations, plus the eight 

possibilities of compressions/stretching.  

From the inspection of Figure 9 several conclusions can be withdrawn: First, the 

overall electronic structures are marginally affected by the strain, with only some 

changes in the bands energetic dispersion. More importantly is that Dirac cones prevail 

with strain, regardless of the strain direction, the simultaneous strains along different 

axes, even opposite strain directions on different axes. This implies that such Dirac 

cones are resilient to such in-plane deformations. If any, only some minor changes are 

detected. The above-commented band at X approaches the EF when compressed along 

the graphenic direction, and separates when stretched, with marginal effect when the 

strain is applied in the acetylenic direction.   

Given the above, the Fermi velocities in the proximity of the Dirac cones have 

been calculated using Equation (6) on the unstrained geometry, and employing five 

points located in the range of ±0.04 Å-1 in the fitting procedure. The Fermi velocity 

values, listed in Table 6, are slightly smaller than the Fermi velocities, calculated 

likewise, for graphene and graphynes. However, as the width of the graphene stripes 

increases (e.g., n = 1, 2, 3, …), the Fermi velocities become closer to that of graphene. 

In any case, grazynes can be still regarded as materials with directional ballistic 

transport. Another aspect of interest is that graphenic stripes are actually isolated, as 

happens on H-capped graphene nanoribbons reported in the literature, which present 

edge effects that perturb their electronic structure, even more when non-capped.41 In 
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this sense, the grazyne formation would be a way of displaying a semimetal character 

on very thin graphene stripes, without losing too much conductivity in the process. 

 

 

Figure 9. Electronic band structures of [1],[1]-grazyne structures while compressed/ 

stretched ±2% along graphenic (x) and acetylenic (y) directions. Red line delimits the 

Fermi energy, EF, arbitrarily set to zero. 
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Table 6. Calculated PBE0 Fermi velocities, in m·s-1, for [n],[1]-grazynes (n = 1, 2, and 

3) Dirac cones, and their location in k-space (in parentheses, see Figure 3). Values for 

graphene and a-, and b-graphyne are shown for comparison, yet previously obtained at 

DFT PBE level. 

 

 Fermi velocity 

[1],[1]-grazyne 4.81·105 (X®S) 

[2],[1]-grazyne 4.85·105 (Y®Γ) 

[3],[1]-grazyne 5.02·105 (X®S) 

graphene26 8.3·105 (Γ) 

a-graphyne15 6.76·105 (K) 

b-graphyne15 5.07·105 (Γ®M), 3.80·105 (M®Γ) 

 

 

4. CONCLUSIONS 

Altogether, here we present a new family of 2D carbon allotropes based on graphene 

stripes knitted to each other by acetylenic linkages. Given the large amount of allowed 

connectivities we name them as grazynes. The results on the structural, elastic, and 

electronic properties of a set of simple grazynes by means of DFT calculations, 

including consistent calculations within GGA but also considering hybrid functionals, 

allow concluding that such grazynes are exotic yet stable materials, which could be 

experimentally achieved, being a priori more stable than already synthesized 

graphynes. In general terms, they are stiffer than graphene in the acetylenic direction, 

and present Dirac points in the reciprocal space along the graphene stripes, resilient to 

strain, and featuring Fermi velocities comparable to the latter. 
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