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Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses 1	

within glomeruli of the olfactory bulb.  OSNs undergo continuous turnover throughout life, 2	

causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an 3	

experimental system to investigate rewiring of glomerular connectivity, we show that novel 4	

OSN synapses can transfer information immediately after formation, mediating an 5	

olfactory-guided behavior.  Tadpoles recover the ability to detect amino acids four days 6	

after bilateral olfactory nerve transection.  The restoration of olfactory-guided behavior 7	

depends on the efficient reinsertion of OSNs to the olfactory bulb.  Presynaptic terminals of 8	

incipient synaptic contacts generate calcium transients in response to odors, triggering long 9	

lasting depolarization of olfactory glomeruli.  The functionality of reconnected terminals 10	

relies on well-defined readily releasable and cytoplasmic vesicle pools.  The continuous 11	

growth of non-compartmentalized axonal processes provides a vesicle reservoir to nascent 12	

release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in 13	

conventional excitatory synapses.  The immediate availability of fully functional synapses 14	

upon formation supports an age-independent contribution of OSNs to the generation of 15	

odor maps.  16	

 17	
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INTRODUCTION 30	

 31	

 Olfactory sensory neurons (OSNs) are distributed throughout the olfactory epithelium to 32	

transduce chemical information carried by odorants.  OSNs send their axons to the olfactory bulb 33	

and transmit information to mitral and tufted (M/T) cells via glutamatergic synapses located 34	

within glomeruli (G.M. Shepherd, Chen, & Greer, 2004). Turnover is a unique feature of OSNs, 35	

since they have a life span of 30 to 120 days and are constantly replenished from basal cells of 36	

the olfactory epithelium (Cheetham, Park, & Belluscio, 2016; Mombaerts, 2006). Since each 37	

glomerulus receives inputs from a single population of OSNs expressing a given olfactory 38	

receptor, the axons from newborn OSNs must find their correct target in order to maintain 39	

processing of odor information. The targeting of olfactory glomeruli by OSNs is highly specific 40	

(Treloar, Feinstein, Mombaerts, & Greer, 2002): during development axonal branching only 41	

occurs upon entering a glomerulus and is rarely observed in the nerve layer (Klenoff & Greer, 42	

1998). This well-established ability of newborn neurons to continuously rewire odor maps 43	

contrasts with the gap of knowledge regarding how new synapses intermingle with pre-existing 44	

glomerular connectivity and become involved in the processing of olfactory information (Zou, 45	

Chesler, & Firestein, 2009). 46	

 The assembly of excitatory synapses takes place in a stereotyped manner within a time 47	

window of minutes. Vesicles containing presynaptic cytomatrix proteins are transferred to axon 48	

terminals to form functional active zones while glutamate receptors are gradually inserted in the 49	

postsynaptic density. As a result, recently formed synapses acquire capacity for evoked exo and 50	

endocytosis in less than 45 min (Friedman, Bresler, Garner, & Ziv, 2000) but are not fully 51	

functional. To achieve this aim synapses require a maturation process that lasts several weeks 52	

(Waites, Craig, & Garner, 2005), characterized by: an increase in pre and postsynaptic terminal 53	

size, the development of synaptic vesicle pools and a decrease in release probability (Mozhayeva, 54	

Sara, Liu, & Kavalali, 2002). Noticeably, only a fraction of established contacts are selected for 55	
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maturation since multiple embryonic synapses are pruned. All of these pieces of evidence, mostly 56	

gathered from synapses established on spines, illustrate the information processing requirements 57	

of higher brain areas during development, however, it is still unknown whether they are 58	

applicable to the continuous synaptic turnover of olfactory glomeruli.  59	

 The lack of data supporting selective pruning of axonal branches within glomeruli 60	

suggests that most of synaptic contacts established by newly formed OSNs undergo maturation 61	

(Klenoff & Greer, 1998). As a result, two possible scenarios can be drawn. If, similarly to other 62	

glutamaergic synapses, established contacts require weeks for completing their maturation, the 63	

contribution of individual OSNs to glomerular excitation should be age-dependent. Older neurons 64	

would thus provide qualitatively different responses to younger neurons due to the presence of a 65	

larger number of fully functional synapses. In contrast, if maturation were accomplished faster 66	

than conventional excitatory synapses, newly formed contacts would be virtually equivalent to 67	

consolidated contacts. In this scenario, the difference among young and old OSNs projecting to a 68	

given glomerulus should essentially reside on the number of synapses established.  69	

To address this question we took advantage of the well-described capacity of Xenopus 70	

tadpoles to rewire their olfactory connectivity after injury (Stout & Graziadei, 1980; Yoshino & 71	

Tochinai, 2006).  Olfactory nerve transection caused the complete loss of glomeruli.  We 72	

observed that OSN axons require days to consolidate an extensive network of glomerular 73	

connectivity but surprisingly, newly formed synapses displayed numerous synaptic vesicles 74	

throughout the process of glomerular reformation, mediated long lasting depolarizations upon 75	

exposure to waterborne odorants and supported odor-guided behavioral responses, altogether 76	

suggesting the acquisition of the ability to process information rapidly after formation.  In the 77	

light of our results, the age of OSNs essentially determines the number but not the functional 78	

properties of established intraglomerular synapses. 79	

 80	

 81	



Terni et al. 
Tight temporal coupling between synaptic rewiring the emergence of odor-guided behavior 

	 4	

 82	

 83	

METHODS 84	

 85	

Animals 86	

Ethical procedures were approved by the regional government (Generalitat de Catalunya, 87	

experimental procedure #9275).  X. tropicalis and X. laevis tadpoles were housed and raised 88	

according to standard methods. Larvae were obtained by either natural mating or in vitro 89	

fertilization of adult animals and kept in tanks at 25 °C. Water conductivity was adjusted to ∼700 90	

µS, pH 7.5 and ∼1400 µS, pH 7.8 for X. tropicalis and X. laevis tadpoles, respectively. Tadpoles 91	

at stages 48-52 of the Nieuwkoop–Faber criteria were used for the experiments.  To visualize the 92	

time-course of olfactory nerve reformation we took advantage of two transgenic lines expressing 93	

GFP under a neuronal b-tubulin promoter: X. laevis tubb2b-GFP and X. tropicalis NBT-GFP. 94	

Both lines allow the visualization of the entire nervous system and particularly of olfactory 95	

nerves. The transgenic X. tropicalis line zHB9-GFP, generated from the zebrafish HB9 gene 96	

(Flanagan-Steet, Fox, Meyer, & Sanes, 2005) allowed visualization of discrete glomerular 97	

structures. Although HB9 is a transcription factor specific of motor neurons it drives the ectopic 98	

expression of GFP in a subset of OSNs, as reported in mice (Nakano, Windrem, Zappavigna, & 99	

Goldman, 2005).  The transgenic X. laevis line tubb2-GFP was obtained from the National 100	

Xenopus Resource (NXR, Woods Hole, MA, RRID:SCR_013731).  Transgenic X. tropicalis lines 101	

NBT-GFP and zHB9-GFP were established from frozen sperm obtained from the European 102	

Xenopus Resource Centre (EXRC, Portsmouth, UK, RRID:SCR_007164). Unilateral and 103	

bilateral sectioning of olfactory nerves were performed using 8 cm scissors (WPI, cat # 501778) 104	

in tadpoles anesthetized in 0.02% MS-222.  Efficient olfactory nerve transection was certified by 105	

visual inspection. Line profiles were also drawn along sectioned nerves labeled with DiI-CM 106	
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(C7001, Molecular Probes) to verify cuts. Tadpoles were observed under a stereomicroscope to 107	

follow nerve reformation.  108	

 109	

Assay of olfactory-guided behavior  110	

The assay of an olfactory-guided response was performed using free swimming X. 111	

tropicalis tadpoles in a six-well dish placed on a custom made LED transilluminator.  Each well 112	

contained 10 mL of tadpole water and a single animal.  Tadpoles rested during 3-5 minutes 113	

before performing behavioral analysis.  Individual perfusion inlets allowed the delivery of 114	

waterborne odorants, which consisted in a mixture of five different amino acids (methionine, 115	

leucine, histidine, arginine and lysine) that acted as a broad-range stimulus of OSNs (Manzini, 116	

Brase, Chen, & Schild, 2007). Stock solutions (10 mM) of each amino acid were prepared in 117	

Xenopus Ringer, which contained (in mM):100 NaCl, 2 KCl, 1 CaCl2, 2 MgCl2, 10 glucose, 10 118	

HEPES, 240 mOsm/kg, pH=7.8.  The final 160 µM amino acid mixture was prepared in Xenopus 119	

water in a final volume of 20 mL, pH =7.2.  The solution was kept in an elevated reservoir, 120	

connected to a six-line manifold using propylene tubing.  Upon opening a clamp, 3.3 mL of the 121	

solution were added within ~35 s to each dish well.  This maneuver created a localized source of 122	

waterborne odorants.  Delivery of a 160 µM fast green (Sigma-Aldrich, St. Louis, MO) solution 123	

showed that dye dispersal within the well became homogeneous ~5s after perfusion onset, thus 124	

defining this time interval as a maximum latency to obtain a behavioral response.  To evaluate 125	

possible mechanosensitive effects generated by the flow of incoming solution, controls were 126	

established by substituting MQ water for the amino acid solution.  Tadpole movements were not 127	

restricted, considering their average length was ~12 mm, about 1/3 the size of the well diameter 128	

(35 mm). Swimming was continuously recorded using a digital camera (Olympus) or an MRC5 129	

camera (Zeiss).  Movies were imported in Image J, decimated to 6 Hz and analyzed with the 130	

MTrackJ and Wrmtrck plugins (Meijering, Dzyubachyk, & Smal, 2012; Nussbaum-Krammer, 131	
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Neto, Brielmann, Pedersen, & Morimoto, 2015).  Individual tracks were exported to Igor Pro 132	

software 7.0 for calculating the euclidean distance to the odorant source. 133	

 134	

Histological procedures 135	

 Tadpoles were fixed for immunohistochemistry during 2-7 days in 4% PFA and immersed 136	

in sucrose. Animals were next embedded in O.C.T. freezing medium (Tissue-Tek®, Sakura 137	

Finetek, Zoeterwoude, the Netherlands), snap-frozen in isopentane in a Bright Clini-RF rapid 138	

freezer and stored at −80 °C until use.  Coronal sections (15-30 μm thick) were obtained using a 139	

cryostat (Leica, Reichert-Jung, Heidelberg, Germany) and mounted on superfrost plus slides 140	

(VWR Scientific).  Sections were blocked for 2 h with PBS solution containing 0.2% Triton X-141	

100 and 10% NGS, and next incubated in a moist chamber overnight at 4 °C in PBS with 0.2% 142	

Triton X-100 and 2% NGS containing anti-synaptophysin (mouse monoclonal, Synaptic Systems 143	

101011, 1:200, RRID: AB-887824) and anti-GFP (rabbit polyclonal, A6455, Invitrogen, 1:300, 144	

RRID: AB-221570).  After three washes with PBS, sections were incubated with appropriate 145	

secondary antibodies and mounted in mowiol. 146	

 For electron microscopy tadpoles were fixed in a 1.5% glutaraldehyde solution prepared 147	

in PB, adjusted to ~300 mOsm/kg, pH=7.8. To visualize DiI labeled processes, photoconversion 148	

was carried out after fixation following previously described methods (Singleton & Casagrande, 149	

1996). Tadpoles were postfixed in 1% osmium tetroxide/1.5% potassium ferricyanide, 150	

dehydrated, and embedded in epon. Upon identification of the glomerular region, ultrathin 151	

sections (60 nm) were stained with uranyl acetate and lead citrate and viewed under a JEOL 1010 152	

electron microscope. 153	

 154	

Antibody characterization 155	

Primary antibody details are shown in Table 1.  The rabbit anti-GFP antibody specificity 156	

was verified for immunohistochemistry by the manufacturer and further details for its validation 157	
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are described elsewhere (Haws et al., 2014).  In our study the GFP staining was observed only in 158	

the nervous system where the expression of the GFP was regulated by the specific promoters 159	

neural beta tubulin (Marsh-Armstrong, Huang, Berry, & Brown, 1999) or zHB9 (Arber et al., 160	

1999).  The specificity of mouse anti synapthophysin 1 was verified by western-blot by the 161	

manufacturer.  The labeling of glomerular structures in the olfactory bulb perfectly matched 162	

glomeruli stained by DiI injected at the level of the olfactory placodes.   163	

 164	

In vivo measurement of synaptic activity 165	

X. tropicalis tadpoles were anesthetized in 0.02% MS-222 and placed on wet paper.  166	

Olfactory placodes were injected with 0.15-0.3 μL of a solution containing 12% Calcium Green-167	

1-dextran (10 kDa; Molecular Probes, Eugene, OR), 0.1% Triton X-100, and 1 mM NaCl 168	

(Friedrich & Korsching, 1997).  Dye was washed out during 2–4 min and tadpoles returned to 169	

tanks.  Two to three days after injection the glomerular layer of the olfactory bulb showed a 170	

homogenous fluorescence.  To measure evoked olfactory responses, tadpoles were anesthetized 171	

with 0.02% MS-222 and the portion of skin covering the olfactory bulb was removed.  Animals 172	

were next placed in a well fabricated in a sylgard-coated dish.  A coverslip restricted tadpole 173	

movements and leaved olfactory placodes and bulbs accessible.  Animals were transferred to the 174	

stage of an upright microscope (Zeiss, Axioexaminer A1) and continuously perfused with 175	

Xenopus Ringer (see composition above), supplemented with 100 µM d-tubocurarine to prevent 176	

muscle contractions.   177	

Olfactory bulbs were viewed with a 63x/0.9 N.A water immersion objective (Figs 8A and 178	

B). Images (250x250 pixels) were acquired with an Image EM camera at 33 Hz.  A TTL signal 179	

delivered by a Master-8 stimulator (AMPI, Israel) commanded the opening of a solenoid valve 180	

during 0.5 s to locally apply a 200 µM solution of methionine, leucine, histidine, arginine and 181	

lysine prepared in Xenopus Ringer. The solution was delivered through a 28 G microfil needle 182	

(WPI, Sarasota, FL) on the top of a single olfactory placode.  Movies were imported in Image J 183	
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and DF/F changes in fluorescence were measured as ((F-F0)/F0)·100. Glomerular structures 184	

showing calcium responses upon amino acid exposure were selected by defining regions of 185	

interest (ROIs).  The mean calcium transient evoked in the presynaptic terminal of OSNs was 186	

calculated by averaging the response of individual ROIs using Igor Pro 7.0. 187	

 For electrophysiology tadpoles were placed in sylgard-coated dishes using the same 188	

procedure and solutions applied for imaging experiments.  A 10x objective was used to locate 189	

olfactory pathways and to place the recording electrode in the glomerular layer.  Pipettes had a ~2 190	

MW resistance and were filled with extracellular solution.  As for imaging experiments, a Master-191	

8 stimulator (AMPI, Israel) commanded the delivery during 0.1 s of a 200 µM solution of 192	

methionine, leucine, histidine, arginine and lysine on the top of a single olfactory placode.  193	

Recordings of local field potentials were made using an Axopatch 200B controlled by WCP 194	

software (Dr. John Dempster, University of Strathclyde).  Signals were acquired at 10 KHz, low 195	

pass filtered offline <100 Hz and analyzed with Igor Pro 7.0. 196	

 197	

Statistical analysis 198	

For statistical analysis, the unpaired Student’s t test was used to evaluate differences between two 199	

experimental groups. Comparisons among three or more groups were performed using one-way 200	

ANOVA, followed by the Bonferroni post hoc test. 201	

 202	

 203	

RESULTS 204	

 205	

Xenopus tadpoles recover odor-guided behavior within four days after olfactory nerve 206	

transection 207	
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 The olfactory system of Xenopus tadpoles shows an exquisite sensitivity to detect amino 208	

acids in water, which effectively behave as waterborne odorants (Hassenklöver, Pallesen, Schild, 209	

& Manzini, 2012). Through at least 36 classes of ORNs, Xenopus larvae elaborate a map of odors 210	

by activating specific glomeruli projecting to M/T cells (Manzini & Schild, 2004).  The exposure 211	

of X. tropicalis tadpoles to a mixture of 5 amino acids (methionine, leucine, histidine, arginine, 212	

lysine), aiming to stimulate a broad range of glomeruli (Manzini, Brase, et al., 2007), evoked an 213	

olfactory-guided behavior. The odorant solution was applied to tadpole water using a custom-214	

made perfusion system at ~0.9 mmol·cm2·s-1 through inlets fabricated on a 6-well dish (Fig 1a). 215	

When animals noticed the arrival of odorants, they moved towards the incoming solution and 216	

transiently inspected the region enriched in amino acids. Consequently, the euclidean distance 217	

between the odorant source and the tadpole head was minimal during the application of the 218	

odorant solution (Fig.1b).  219	

 The odor-guided motor response was used to estimate the time required by OSNs to 220	

achieve functional insertion in olfactory bulb circuitry. The recovery of the ability to sense 221	

waterborne odorants was evaluated after sectioning both olfactory nerves. Transection of 222	

olfactory nerves is a well-established method to induce death of OSNs and to promote 223	

neurogenesis in the olfactory epithelium (Doucette, Kiernan, & Flumerfelt, 1983). Under these 224	

experimental conditions the olfactory bulb circuitry and placode neuronal precursor cells remain 225	

intact. The damage is exclusively targeted to OSNs, thus forcing their synchronous replenishment 226	

by newborn neurons. Tadpoles did not respond to the presence of amino acids one day after 227	

injury (D1, Fig.1c), however, the characteristic odor-guided behavior was again obvious four 228	

days after surgery (D4, Fig.1d). Corresponding control experiments substituting amino acids by 229	

water excluded the participation of non-odorant mechanisms (Fig. 2a). Tadpoles moved randomly 230	

before, during and after the inflow of water, which contrasted to the olfactory-guided behavior 231	

caused by the arrival of the amino acid solution.  On average, control tadpoles responded with a 232	

linear approximation to the odor source at 0.57 mm·s-1 (r2=0.94), reaching a minimum ~20 s after 233	
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perfusion onset (Fig. 2b).  This characteristic behavior was not observed one day after transection 234	

(D1, Fig. 2c) but emerged 4 days after surgery (D4, Fig. 2d).  Tadpoles showed a linear 235	

approximation to the odor source (0.43 mm·s-1, r2=0.94), reaching again a minimum ~20 s after 236	

perfusion onset.  Averaged data confirmed that within four days tadpoles recover an odor-guided 237	

behavior associated to the establishment of functional synapses among OSN axons and pre-238	

existing olfactory bulb circuitry, thus defining a temporal window for the effective insertion of 239	

newborn neurons in a neuronal network.  240	

 241	

Xenopus tadpoles efficiently reform olfactory nerves after injury 242	

 The exquisite labeling of olfactory nerves in X. laevis tubb2b-GFP and X. tropicalis NBT-243	

GFP tadpoles allowed cutting a single olfactory nerve leaving intact the contralateral one, which 244	

acted as control (Fig. 3a). The damaged nerve disappeared one day after transection, likely 245	

reflecting the death of OSNs. The complete absence of olfactory nerve input to the olfactory bulb 246	

was verified by DiI staining (Figs. 3b and c). Reformation was on average successful in ~85% of 247	

the animals and occurred in two phases: reconnection and thickening (Fig. 3d). Reconnection to 248	

the olfactory bulb was evident three to four days after injury, followed by an exponential increase 249	

in nerve thickness that occurred with a time constant of 17 h and 19 h for X. tropicalis and X. 250	

laevis, respectively (Fig. 3e). Reformed nerves were however, always thinner than corresponding 251	

controls. 252	

 These experiments revealed that the capacity of the Xenopus olfactory system to recover 253	

from injury is about an order of magnitude faster than rodents (Herzog & Otto, 2002). Formation 254	

of finer nerves (Figs. 3e) suggested that newborn OSNs did not completely compensate losses 255	

induced by damage. Considering the nerve as a cylindrical structure and an unaffected 256	

ensheathing by glial cells, the described ~20% reduction in nerve width should be associated to a 257	

~36% decrease in volume.  Therefore, a comparable lower number of OSNs should be expected 258	
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in the placode.  These figures could account for the recovery of olfactory guided behavior (Figs. 259	

1 and 2) taking into account the high degree of redundancy of the olfactory system (Lu & 260	

Slotnick, 1998).  The next step was investigating how synaptic connectivity was arranged to 261	

allow the emergence of olfactory-guided behavior ~48h after the arrival of OSN axons to the 262	

olfactory bulb.   263	

 264	

Olfactory information can be conveyed by immature glomerular structures  265	

 Xenopus tadpoles contain about 300 distinct glomeruli (Manzini, Heermann, et al., 2007; 266	

Nezlin & Schild, 2000), receiving information from OSNs whose cell bodies are located in the 267	

main cavity and detect waterborne odorants (Gaudin & Gascuel, 2005). Although individual 268	

glomeruli have a unique contribution to the elaboration of odor maps according to the expression 269	

of olfactory receptors (Manzini & Schild, 2004), they show comparable synaptic properties. The 270	

homogenous expression of the synaptic markers syntaxin, SNAP25 and synaptophysin suggests a 271	

similar density of synaptic contacts among the glomerular layer (Manzini, Heermann, et al., 272	

2007). Synaptophysin staining of tubb2b-GFP st. 49-52 X. laevis tadpoles revealed the presence 273	

of numerous glomeruli (Figs. 4a and b) with a mean perimeter of 64±1 µm (n=179). Only ventral 274	

sections showing the arrival of the olfactory nerve were considered. The dorsal portion of the 275	

olfactory bulb was excluded from analysis, since this region lacks well-defined glomerular 276	

structures (Gaudin & Gascuel, 2005; Manzini, Heermann, et al., 2007; Nezlin & Schild, 2000).  277	

 Sectioning of the olfactory nerve caused profound changes in the glomerular layer (Figs. 278	

4a and b).  Up to one week after injury synaptophysin staining did not reveal the reformation of 279	

glomerular structures. It was 8 days from transection when numerous synaptophysin positive 280	

puncta formed clusters in the ipsilateral bulb to the injured nerve and small, well-defined 281	

glomerular structures were obvious (Fig. 4a). As tadpole development proceeded, the number of 282	

glomeruli was lower in the rewired than in the control bulb, but on average, the size of reformed 283	

glomerular structures reached control values ~15 days after injury (Figs. 4b, c). These results 284	
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showed that de novo formation of mature glomerular units required weeks, hence basic olfactory-285	

guided behavior (Figs. 1 and 2) was likely mediated by simpler connectivity.  286	

 Visualization of synaptophysin staining provided readout of the time required for the 287	

overall reformation of glomeruli, however, the widespread labeling made not it possible to 288	

compare specific glomerular structures between control and rewired bulbs. Living zHB9-GFP 289	

tadpoles embedded in agarose showed motor neurons labeled with GFP and, similarly to mice, 290	

also displayed discrete labeling of olfactory glomeruli. Fluorescent OSNs sent their axons to the 291	

olfactory bulb and projected to three distinct glomerular units (GUs, Figs. 4d and e), which we 292	

termed lateral (L), medial-1 (M1) and medial-2 (M2). All tadpoles inspected (n=52) showed the 293	

L-GU, which appeared alone or in combination with M1 and/or M2 GUs. The M2-GU was the 294	

smallest. Its size and location suggested a relationship to b or g glomeruli, while L-GU and M1-295	

GU were integrated within the lateral and intermediate glomerular clusters described elsewhere 296	

(Gaudin & Gascuel, 2005; Manzini, Heermann, et al., 2007).  297	

The characteristic glomerular pattern present in zHB9-GFP tadpoles was used to follow 298	

the rewiring of specific GUs. In agreement with synaptophysin stainings (Figs. 4a and b), we did 299	

not observe the formation of glomeruli 4 to 10 days after injury, however, localized fluorescence 300	

spots appeared in 23% of animals studied (n=40) in the region corresponding to L, M1 or M2 301	

GUs (Fig. 4e). The absence of aberrantly located GUs supported a correct targeting of 302	

postsynaptic partners by newly formed OSNs.  Considering the spatial resolution of our in vivo 303	

approach (~1 µm) limited the discrimination of axonal processes, we visualized GFP expression 304	

by immunohistochemistry in histological sections.  As expected, the axonal tuft of OSNs in 305	

control bulbs showed branches adopting a characteristic spherical organization (Fig. 4f).  306	

Although the processes rewiring lost connectivity did show branch formation, lacked a 307	

glomerular-like appearance (Fig. 4g).  These results are consistent with the recovery of olfactory-308	

driven behavior 4 days after injury (Figs. 1 and 2) and could be attributed to the reformation of a 309	

viable connectivity that was not yet establishing a complex presynaptic glomerular network.   310	
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The analysis of olfactory placodes in zHB9-GFP tadpoles revealed a five-fold reduction in 311	

the number of cell bodies caused by nerve transection, thus supporting reformation of finer 312	

olfactory nerves was caused by a decrease in OSNs (see also Figs. 3d and e). In terms of the 313	

whole glomerular tuft, glomerular volume was linearly related to the number of cell bodies 314	

identified in the ipsilateral placode (Fig. 4h) as previously reported (Bressel, Khan, & 315	

Mombaerts, 2016).  The average contribution of a single axonal arbor was 874 µm3, which is 316	

within the range of the previously reported value of 1077 µm3 for X. laevis tadpoles 317	

(Hassenklöver & Manzini, 2013).  This observation supports that labeled glomeruli in zHB9 318	

larvae could be considered as representative individual examples of the glomerular layer. 319	

 320	

Glomerular tufts contain a constant density of cytoplasmic vesicles throughout development 321	

The discrete enlargements of axonal arbors visualized in GFP labeled glomeruli (Figs. 4f 322	

and g) are presumably associated to the establishment synapses (Hassenklöver & Manzini, 2013), 323	

suggesting synaptic contacts were formed immediately after OSN axons entered to the olfactory 324	

bulb. To resolve how incipient synapses were integrated with pre-existing olfactory bulb circuitry 325	

we compared the ultrastructure of control and rewired presynaptic terminals using X. tropicalis 326	

tadpoles with both olfactory nerves sectioned. Low magnification electron micrographs revealed 327	

discrete glomerular structures (Fig.5a) that were separated from the nerve layer by 328	

juxtaglomerular neurons, as previously reported (Nezlin, Heermann, Schild, & Rössler, 2003). 329	

The terminals of OSN axons, which were identified by their dark cytoplasmic staining (Hinds & 330	

Hinds, 1976; G. M. Shepherd, 1972), formed an intricate network that gave rise to glomeruli by 331	

projecting on dendrites presumably from M/T cells. The separation among glomerular structures 332	

was not always obvious, due to the lack of surrounding astrocytes (Nezlin et al., 2003). 333	

Axodendritic synapses (Figs. 5b and c) were enriched within discrete glomerular regions thus 334	

suggesting their compartimentalization, similarly to the mammalian olfactory bulb (Kasowski, 335	

Kim, & Greer, 1999). In agreement with optical microscopy (Fig. 4), such characteristic 336	



Terni et al. 
Tight temporal coupling between synaptic rewiring the emergence of odor-guided behavior 

	 14	

organization was not observed in rewired bulbs 4 and 6 days after injury. Groups of axons 337	

entered to the bulb and their tips started to converge on dendrites, giving rise to structures that 338	

could be interpreted as precursors of glomeruli (Figs. 5d-i). Although well-defined glomerular 339	

structures were not detected, there were obvious signs of functional connectivity between OSNs 340	

and dendrites, illustrated by the emergence of pre and postsynaptic densities.  Precursors of 341	

glomerular structures continued increasing their size and complexity as a function of time, until 342	

the establishment of well-defined glomeruli 15 days after olfactory nerve transection.  At this 343	

stage, glomerular structure and connectivity was comparable to control bulbs (Figs. 5j-l).  344	

 Prominent active zones, as well as a high synaptic vesicle density found in the tortuous 345	

axonal processes of control tadpoles (Figs. 5b and c), guarantee an efficient neurotransmitter 346	

release in intraglomerular synapses (Doucette et al., 1983; Kasowski et al., 1999; G.M. Shepherd 347	

et al., 2004). Active zones in control tadpoles showed a mean length of 321±12 nm (n=37, 3 348	

animals) and on average attached 11±1 vesicles (Fig. 6a). Synaptic vesicles homogenously filled 349	

the entire surface of the cytoplasm at 112±7 vesicles·µm-2 (n=30, Fig. 6b).  The proportion 350	

between synaptic vesicles found in the cytoplasm and those attached to active zones was 351	

maintained constant throughout glomerular reformation (Figs. 6a and b). The distribution of 352	

synaptic vesicles throughout the cytoplasm remained stable, being found 127±18 vesicles·µm-2 353	

(n=14) and 131±13 vesicles·µm-2 (n=22) in D4 and D6 animals, respectively.  In terms of active 354	

zone length, although there was a transient reduction in D4 tadpoles (p<0.01), the number of 355	

vesicles attached to release sites was again constant during the rewiring process (Figs. 6a).  356	

Considering the implication of anterograde transport in vesicle formation (Rizzoli, 2014), the 357	

extensive network of microtubules present in axonal processes of OSNs in the early stages of 358	

rewiring (Figs. 5e and i) probably played a key role in the coordinated development of axonal 359	

arbors and vesicle pools.  360	

 361	
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Effect of postsynaptic environment on the rewiring of olfactory glomeruli 362	

 In about 15% of tadpoles inspected an aberrant nerve reformed, failing to re-establish a 363	

connection with the olfactory bulb (Fig. 3e). When present, the new nerve emanated from the 364	

placode, travelled caudally paralleling the route of trigeminal nerve and ended by connecting 365	

with the hindbrain. The rerouted nerve was thinner than the contralateral olfactory nerve.  It was 366	

revealed in transgenic tadpoles (X. laevis tubb2b-GFP and X. tropicalis NBT-GFP) and by DiI 367	

stainings obtained by local injection of placodes (Fig. 7a). Surprisingly, the aberrant connection 368	

was stable. A given nerve could be observed for more than 10 days (Fig. 7b), suggesting the 369	

establishment of permannent connectivity. DiI labelled processes revealed tortuous axons 370	

distributed along the rostro-caudal axis at the level of the hindbrain (Fig. 7c) but there was no 371	

evidence for the formation of glomeruli.  372	

 In order to resolve synapses established at the level of the hindbrain, DiI was 373	

photoconverted and the generated precipitate was observed by electron microscopy. The 374	

procedure was initially set-up for non-sectioned olfactory nerves. As expected, the procedure 375	

revealed the complex network formed by presynaptic axons within a single glomerulus (Figs. 7d-376	

f). OSN axons rerouted to the hindbrain did not converge on dendrites, which contrasted to the 377	

characteristic appearance of glomeruli. Axonal processes travelled among dendritic shafts (Fig. 378	

7g), without signs of specific connectivity. Irregularly distributed varicosities containing synaptic 379	

vesicles contacted the dendritic tree of hindbrain neurons to form putative synaptic contacts 380	

(Figs. 7h and i).  All evidences gathered from aberrant synapses showed that the particular 381	

postsynaptic environment of the olfactory bulb instructed the ability of OSNs to reform 382	

glomerular structures. 383	

 384	

Incipient synapses established by olfactory sensory neurons are functional  385	

 The presynaptic function of OSNs was evaluated in vivo by visualizing changes in 386	

intracellular calcium concentration. Sensory neurons from X. tropicalis tadpoles subjected to 387	
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unilateral sectioning of an olfactory nerve were loaded with calcium green dextran, following 388	

methods described for zebrafish (Friedrich & Korsching, 1997). Basal fluorescence in control 389	

olfactory bulbs revealed tortuous presynaptic axons (Fig.8a). In contrast, rewired bulbs 4 days 390	

after injury showed a distinct pattern. Clusters of fluorescent spots substituted glomerular 391	

structures (Fig.8b). Upon 0.5 s exposure of olfactory placodes to a 200 µM solution of five 392	

different amino acids (methionine, leucine, histidine, arginine, lysine) a subset of presynaptic 393	

terminals responded with transient increases of basal fluorescence (Fig. 8c). Repetition of the 394	

procedure in rewired bulbs provided similar responses (Fig. 8d). On average, amino acid 395	

application caused a DF/F in control tadpoles of 5.7±1 % (n=6). In reinnervated bulbs, calcium 396	

transients were comparable, showing a DF/F of 7.7±1 % (n=5). Time to peak was also similar 397	

being of 0.89±0.2 s and 0.81±0.1s for control and rewired bulbs, respectively (Fig. 8e). These 398	

results supported that presynaptic terminals of incipient synaptic contacts formed between OSNs 399	

and M/T cells correctly coupled olfactory transduction to calcium dependent release of 400	

neurotransmitters. 401	

 Further information was obtained by recording local field potentials (LFPs) in vivo. Using 402	

an electrode placed in the glomerular layer we measured the characteristic long lasting 403	

depolarizations triggered by the activation of OSNs (Gire et al., 2012). Stimulation was evoked 404	

by 100 ms application of the 200 µM amino acid solution, as previously performed for calcium 405	

imaging. Control tadpoles responded to the application of waterborne odorants showing an 406	

inward deflection of the LFP (Fig. 9a). Responses were reproducible: stimuli delivered at a time 407	

interval of >1 min provided comparable changes of the LFP. Four days after cut, the reinnervated 408	

olfactory bulb also displayed the characteristic inward deflection of the LFP upon application of 409	

the amino acid mixture (Fig. 9b). As in controls, repetitive stimuli provided comparable 410	

responses, showing that olfactory transduction at the placode level was being successfully 411	

processed at the level of the olfactory bulb. However, the amplitude of evoked responses in 412	
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rewired bulbs was about three fold smaller than controls (Fig. 9c). Since long lasting 413	

depolarizations are triggered by OSN stimulation but are amplified by local excitatory 414	

interactions among the intraglomerular tufts of M/T cells (Carlson, Shipley, & Keller, 2000), the 415	

observed decrease could be attributed, as suggested by morphology experiments, to a lower 416	

density of glomerular synapses.  417	

 A way to assay the functionality of synaptic contacts established by OSNs was measuring 418	

short-term plasticity of long lasting depolarizations. To this aim, the amino acid mixture was 419	

delivered by a paired-pulse protocol with time intervals ranging from 2.5 s to 1 min. Control 420	

bulbs showed a characteristic recovery from short-term depression, occurring with a time 421	

constant of 18 s (Figs. 9d and e). The small responses of rewired bulbs precluded obtaining an 422	

accurate paired pulse ratio for short time intervals, albeit a similar recovery to controls was 423	

inferred from time intervals ≥ 30 s. Although synaptic complexity underlying long lasting 424	

depolarizations (Carlson et al., 2000) limits defining the precise mechanism mediating short-term 425	

depression, the observation of a comparable paired pulse plasticity suggests the correct functional 426	

insertion of incipient synaptic contacts within pre-existing circuitry.  427	

 428	

DISCUSSION 429	

 Taking advantage of the ability of Xenopus tadpoles to rewire neuronal networks after 430	

injury, the present work shows that recovery of basic olfactory-guided behavior is tightly coupled 431	

to the formation of synaptic contacts between newborn OSNs and the pre-existing olfactory bulb 432	

circuitry. The functional reconnection of rewired synapses is supported by the presence of well-433	

defined active zones, as well as the ability to generate calcium transients and long lasting 434	

depolarizations in reponse to waterborne odorants. Formation of olfactory glomeruli requires 435	

weeks, is dictated by the postsynaptic environment but is not required to convey information. 436	

These results demonstrate that a reduced number of operative synapses, by being properly 437	

connected are capable to process information and set the basis of behavior.  438	
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 The description of a close temporal coupling between formation and proper information 439	

processing in synaptic contacts established by OSNs provides a framework for understanding 440	

how intraglomerular connectivity is maintained during neuronal turnover (Cheetham & Belluscio, 441	

2014; Mombaerts, 2006). As new OSNs appear in the olfactory epithelium, they send axons to 442	

the olfactory bulb. Upon leaving the nerve layer, axonal processes find their glomerulus and start 443	

to establish synapses. Growth of the axonal tuft is coordinated with the gradual increase in the 444	

number of active zones and the expansion of the cytoplasmic vesicle pool. Incipient OSN 445	

contacts show a high vesicle density in their active zones, thus suggesting the formation of a 446	

stable functional readily releasable pool (RRP). The constant presence of 100-150 synaptic 447	

vesicles·µm-2 in the cytoplasm supports that a vesicle reservoir permanently supplies active zones 448	

throughout development. This is a key difference to conventional synapses, which undergo a 449	

characteristic maturation of synaptic vesicle pools. Immature synapses typically display a readily 450	

releasable pool (RRP)/cytoplasmic pool ratio ~1, which shifts to ~0.3 within three weeks 451	

(Mozhayeva et al., 2002). Maturation is caused by the development of the cytoplasmic vesicle 452	

pool, while maintaining the size of the RRP constant.. The high number of vesicles that could be 453	

shared among neighboring synapses (Staras et al., 2010) within the tortuous presynaptic axons is 454	

presumably key for setting synaptic fidelity.  455	

Contrary to the visual system or the cerebellum, axonal OSNs arbors do not display 456	

exuberant growth (Klenoff & Greer, 1998; Terni, López-Murcia, & Llobet, 2017).  New synapses 457	

must be precisely inserted during normal neuronal turnover of intraglomerular connectivity. The 458	

net growth of axonal branches is thus associated to the establishment of novel synaptic contacts.  459	

Although the number of synaptic contacts varies with age (Hassenklöver & Manzini, 2013; 460	

Klenoff & Greer, 1998), the large amount of cytoplasmic vesicles distributed throughout the 461	

axonal arbor is likely available to any active zone.  Considering the comparable organization 462	

among release sites throughout rewiring (Figs. 5 and 6), the main difference among all OSNs 463	

projecting to a single glomerulus would essentially be the number of contacts established.  Older 464	
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neurons would likely display more complex presynaptic processes, containing more active zones 465	

than younger ones; however, the synaptic properties of any release site would be rather 466	

equivalent. This age-independent contribution of intraglomerular synapses established by OSNs 467	

provides an explanation for how constant neuronal turnover does not alter formation of odor 468	

maps.  469	

Our behavioral test provided a binary response to odor detection.  It allowed assigning a 470	

temporal window to detect the recovery of olfaction after injury, however, the test did not provide 471	

information about odor discrimination or sensitivity. The observation that small amplitude, long 472	

lasting depolarizations, could be evoked upon synapse formation suggests that intraglomerular 473	

circuitry is scaled-up during growth: as OSNs establish more synapses with M/T cells, gain is 474	

increased.  The sensitivity to detect odors is likely enhanced by glomerular growth. But in terms 475	

of re-gaining the capacity for odor discrimination synaptic rewiring should probably require 476	

longer, waiting for the establishment of interglomerular connectivity (Aungst et al., 2003).  The 477	

ability to discriminate odorants after injury is delayed upon the reacquisition of olfaction (Yee & 478	

Costanzo, 1995), which could be consistent with the rapid establishment of intraglomerular 479	

connectivity followed by the consolidation of interglomerular contacts.  Our study uses nerve 480	

transection that affects to all OSNs and depicts an extreme situation of synaptic rewiring. Normal 481	

neuronal turnover causes the synchronous replacement of just few sensory neurons and, contrary 482	

to our experimental approach glomerular structure is maintained. The flow of information 483	

remains unaltered, thus allowing correct lateral information processing and providing a scaffold 484	

for the fast re-insertion of synapses.   485	

 486	
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Figure 1. Examples of tadpoles showing recovery of olfactory guided behavior upon 610	
transection of olfactory nerves. a) Tracking of tadpole movements. The arrow indicates the 611	
position of the tube delivering a 160 µM solution of five amino acids (methionine, leucine, 612	
histidine, arginine, lysine).  Tadpole positions before and after amino acid application are 613	
indicated in green and orange, respectively.  Movements during odorant exposure are shown in a 614	
temporal gray scale. b) Measurement of the euclidean distance of the tadpole head to the solution 615	
inlet as a function of time for the animal shown in A). Colors indicate position before, during and 616	
after application of amino acids, as in A). Bar shows the increase in [aas]. c, d) Same as B) for 617	
tadpoles with both olfactory nerves transectioned. Plots correspond to individual examples of 618	
behavioral assays 1 day after cut (D1, blue) and 4 days after cut (D4, red).  619	
 620	
Figure 2. Emergence of olfactory guided behavior after olfactory nerve transection. Average 621	
euclidean distances expressed as mean±s.e.m (line±shadowed area) plotted as a function of time.  622	
Tadpole positions were grouped before exposure to waterborne odorants by baseline subtracting 623	
distances at the onset of stimulation.  The increases and decreases in tadpole distance to the odor 624	
source are associated to positive or negative changes in the euclidean distance, respectively . a) 625	
Tadpoles did not react to the application of water. Control (n=51), 1 day after transection 626	
(D1,n=39) and 4 days after transection (D4, n=54). b-d) Olfactory guided response in tadpoles 627	
exposed to the amino acid mixture, control (n=63), D1 (n=55) and D4 (n=63).  Notice the linear 628	
decrease in the euclidean distance during odor application in control and D4 groups compared to 629	
D1 tadpoles.  630	
 631	
Figure 3. Time course of olfactory nerve reformation after transection. A single olfactory 632	
nerve of tubb2-GFP X. laevis or NBT-GFP tadpoles was cut (arrow), leaving the contralateral one 633	
as control. a) Image of a tubb2-GFP X. laevis tadpoles immediately after (D0) transection of a 634	
single olfactory nerve (arrow). Both olfactory placodes were injected with DiI after nerve cut to 635	
validate transection by measuring the spread of the dye (red line) b) Plot of DiI fluorescence 636	
intensity normalized to the placode level along sectioned nerves (n=5).  Dye diffused for 24 h 637	
(D1). c) Tadpoles with olfactory pathways stained by DiI were fixed and sectioned. Notice the 638	
lack of fluorescence in the olfactory bulb innervated by the cut olfactory nerve (asterisk).  The 639	
dotted yellow line indicates the separation between the mitral cell layer (MCL) and the 640	
glomerular layer (GL).  The position of the olfactory nerve (ON) is also indicated. d) Images 641	
show the reformation of the olfactory nerve in four different tubb2-GFP X. laevis tadpoles at the 642	
indicated times after surgery. e) Time-course of olfactory nerve reformation. Plot shows the 643	
percentage of successful reconnection to the olfactory bulb (up, % Reform.) and the relative 644	
increase in olfactory nerve (O.N.) width as a function of time (down).  645	
 646	
Figure 4. Synaptic rewiring and formation of glomerular connectivity after olfactory nerve 647	
transection. a, b) Control and rewired olfactory bulbs from two X. laevis tubb2-GFP tadpoles 648	
subjected to unilateral transection of the olfactory nerve, 8 and 15 days after cut, respectively.  649	
The asterisk indicates the ipsilateral bulb to the sectioned nerve. Immunohistochemistry for GFP 650	
and synaptophysin revealed the location of neuronal processes (green) and synapses (red), 651	
respectively. Nuclei were stained with draq-5 (blue). c) Change of glomerular perimeter during 652	
normal development (black) and upon nerve reformation (red). d, e) Images of the olfactory bulb 653	
of living zHB9-GFP X. tropicalis tadpoles embedded in agarose 4 and 8 days after unilateral 654	
nerve transection. The asterisk indicates the ipsilateral bulb to the injured nerve. Control bulb 655	
shows three distinct glomerular structures (L, M1 and M2). A minimal labeling of the L 656	
glomerulus is observed in the rewired bulb 8 days after cut. f) Histological section of the lateral 657	
glomerulus from a control bulb.  Arrowheads indicate axonal varicosities presumably associated 658	
to synaptic contacts.  g) Same as f), but for a bulb rewired 8 days after olfactory nerve transection 659	
h) Relationship between the total volume of glomerular structures identified in a given olfactory 660	
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bulb and the number of GFP positive cell bodies found in the corresponding ipsilateral placode.  661	
A linear fit through binned data provided a slope of 874 µm3.   662	
 663	
Figure 5. Morphological appearence of rewired synaptic contacts. a) Low magnification 664	
electron microscopy image of a control glomerulus (dotted line). b, c) Higher magnification 665	
images of synapses established by olfactory sensory neurons (dark cytoplasm) within a control 666	
glomerulus (arrows in A).  d) Precursors of glomerular structures are evident 4 days after injury 667	
(dotted line).  e, f) Profile of two synaptic contacts reformed 4 days after transection. g-i) 668	
Appearance of glomerular structures (dotted line) and synaptic contacts 6 days after injury. j-l) 669	
Olfactory glomeruli (dotted line) and synapses established by olfactory sensory neurons 15 days 670	
after transection are comparable to controls.  671	
 672	
Figure 6. Properties of olfactory sensory neuron terminals during rewiring of olfactory 673	
glomeruli.  a) Average length and number of vesicles attached to an active zone (<100 nm, 674	
single section) at the indicated times after injury. Control is shown at “day 0”.  b) Distribution of 675	
cytoplasmic vesicles as a function of rewiring time. Asterisk indicates statistical difference (One-676	
way ANOVA, p<0.01). 677	
 678	
Figure 7. Olfactory nerves rerouted to the hindbrain establish an aberrant connectivity. a) 679	
Images of X. laevis tubb2-GFP tadpoles. Rerouting of the sectioned olfactory nerve (asterisk) to 680	
the hindbrain. Olfactory pathways are revealed by local application of DiI-CM to placodes. b) 681	
Images of a single tadpole 5, 13 and 16 days after cut show that rerouted nerve (yellow arrows) is 682	
stable.  The location of the optic nerve is indicated (green arrows). c) Tadpoles showing aberrant 683	
nerves were fixed and processed for histology to reveal DiI labeled processes at the level of the 684	
hindbrain (arrows). d-f) DiI was photoconverted for visualization by electron microscopy. This 685	
method allows observing the complex network of OSN axons (arrows) within glomeruli. g-i) 686	
Photoconverted axons at the level of the hindbrain do not form glomeruli (g) but establish 687	
putative synaptic contacts (h and i). 688	
 689	
Figure 8. Functional responses of incipient glomerular synapses. a, b) Transmitted light 690	
images of the control (a) and rewired (b) bulbs from two different tadpoles showing OSN 691	
terminals labeled with calcium green dextran.  c, d) Corresponding ∆F/F images obtained during 692	
0.5 s application of a 200 µM amino acid mixture to the ipsilateral olfactory placode. e) Time-693	
course of calcium transients evoked by exposure to odorants. Grey traces indicate responses from 694	
glomerular regions. The average transient is indicated in black (control) and red (4 days after cut, 695	
D4).  696	
 697	
Figure 9. Incipient synapses evoke long lasting depolarizations in the glomerular layer. a,b) 698	
Long lasting depolarizations recorded in the glomerular layer as changes in the local field 699	
potential (LFP). Grey traces indicate single responses upon 0.1 s application of the 200 µM 700	
amino acid solution. The average response (mean±s.e.m.) is shown in black (controls) and red (4 701	
days after cut, D4). c) Individual (open circles) and average (dots, mean±s.e.m.) amplitude of 702	
LFP responses in control (n=64) and D4 tadpoles (n=25). Asterisk indicates statistical difference 703	
(Student’s t-test, p<0.001). d) Paired-pulse depression observed upon application of the 200 µM 704	
amino acid solution in a tadpole subject to unilateral sectioning of an olfactory nerve. Recordings 705	
show single responses obtained at the indicated time intervals for control (black) and rewired 706	
(D4, red) bulbs. e) Recovery of paired-pulse depression for control (black) and rewired (D4, red) 707	
bulbs. Dots indicate mean±s.e.m. (n=6), fitted with a single exponential function (t=18 s).  708	
 709	
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